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Abstract

Suboptimal heuristic search algorithms such as weighted A* and greedy best-first search
are widely used to solve problems for which guaranteed optimal solutions are too expensive
to obtain. These algorithms crucially rely on a heuristic function to guide their search.
However, most research on building heuristics addresses optimal solving. In this paper,
we illustrate how established wisdom for constructing heuristics for optimal search can fail
when considering suboptimal search. We consider the behavior of greedy best-first search
in detail and we test several hypotheses for predicting when a heuristic will be effective for
it. Our results suggest that a predictive characteristic is a heuristic’s goal distance rank
correlation (GDRC), a robust measure of whether it orders nodes according to distance to
a goal. We demonstrate that GDRC can be used to automatically construct abstraction-
based heuristics for greedy best-first search that are more effective than those built by
methods oriented toward optimal search. These results reinforce the point that suboptimal
search deserves sustained attention and specialized methods of its own.

1. Introduction

A* is a best-first search that expands nodes in order of f(n) where f(n) = g(n) + h(n).
While the optimal solutions provided by A* (Hart, Nilsson, & Raphael, 1968) are the most
desirable, time and memory often prevent the application of this algorithm. When A* fails
because of either insufficient time or memory, practitioners sometimes turn to bounded
suboptimal algorithms that may not return the optimal solution, but that return a solution
that is guaranteed to be no more than a certain factor more expensive than the optimal
solution.

The most well-known of these is likely Weighted A* (Pohl, 1970), which is a best-first
search that expands nodes in f ′ order, where f ′(n) = g(n)+w ·h(n) : w ∈ (1,∞). Variants
of Weighted A* are used in a wide variety of applications, including domain-independent
planning (Helmert, 2006; Richter & Westphal, 2010) and robotics (Likhachev, Gordon, &
Thrun, 2003; Likhachev & Ferguson, 2009). Weighted A* is also a component of a number
of anytime algorithms. For example, Anytime Restarting Weighted A* (Richter, Thayer,
& Ruml, 2009) and Anytime Repairing A* (Likhachev et al., 2003) both use Weighted A*.
Anytime Nonparametric A* (van den Berg, Shah, Huang, & Goldberg, 2011) doesn’t use
Weighted A* per se, but rather its limiting case, greedy best-first search (Doran & Michie,
1966), best-first search on h(n). All of these anytime algorithms have, built in, the implicit
assumption that Weighted A* with a high weight or greedy best-first search will find a
solution faster than A* or Weighted A* with a small weight.

c©2016 AI Access Foundation. All rights reserved.



Wilt & Ruml

In many popular heuristic search benchmark domains (e.g., sliding tile puzzles, grid path
planning, Towers of Hanoi, TopSpin, robot motion planning and the traveling salesman
problem) increasing the weight does lead to a faster search, until the weight becomes so
large that Weighted A* has the same expansion order as greedy best-first search, which
results in the fastest search. The first contribution of this paper is to provide illustrations
of how, in some domains, greedy best-first search performs worse than Weighted A*, and is
sometimes even worse than A*.

We show that the failure of greedy best-first search is not merely a mathematical cu-
riosity, only occurring in hand crafted counterexamples, but rather a phenomenon that can
occur in real domains, including variants of popular single-agent heuristic benchmarks. Our
second contribution is to empirically characterize conditions when this occurs, knowledge
that is important for anyone using a suboptimal search. This is also an important first step
in a predictive theoretical understanding of the behavior of suboptimal heuristic search.

The root cause of the failure of greedy best-first search can be ultimately traced back
to the heuristic, which is used to guide a greedy best-first search to a goal. For A*, there
are a number of well-documented techniques for constructing an effective heuristic. We
revisit these guidelines in the context of greedy best-first search. Our third contribution is
to show that, if one follows the well-established guidelines for creating a quality heuristic for
A*, the results can be poor. We present several examples where following the A* wisdom
for constructing a heuristic leads to slower results for greedy best-first search. We use
these examples to understand the requirements that greedy best-first search places on its
heuristic.

Our fourth contribution is a quantitative metric for assessing a greedy heuristic, goal
distance rank correlation (GDRC). GDRC can be used to predict whether or not greedy
best-first search is likely to perform well. GDRC can also be used to compare different
heuristics for the same domain, allowing us to make more informed decisions about which
heuristic to select if there are a variety of choices, as is the case for abstraction-based
heuristics like pattern databases. This quantitative metric can be used to automatically
construct a heuristic for greedy best-first search by iteratively refining an abstraction and
measuring how good each candidate heuristic is. We show that iteratively refining an
abstraction using a simple hill-climbing search guided by GDRC can yield heuristics that
are more powerful than those built by traditional methods oriented toward optimal search.

This work increases our understanding of greedy best-first search, one of the most pop-
ular and scaleable heuristic search techniques. More generally, it suggests that techniques
developed for optimal search are not necessarily appropriate for suboptimal search. Sub-
optimal search is markedly different from optimal search, and deserves its own theory and
methods.

2. A Conundrum: Ineffective Weighted A*

The starting point for our investigation of heuristics for suboptional search begins with a
curious empirical observation: although weighted A* is one of the most popular way of
speeding up heuristic search, increasing the weight of Weighted A* does not always work.
In order to get a better grasp on the question of when increasing the weight is ineffective,
we first need some empirical data.
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Average Solution Total Branching
Domain Length States Factor Unit-cost

Dynamic Robot 187.45 20,480,000 0-240 No
Hanoi (14) 86.92 268,435,456 6 Yes
Pancake (40) 38.56 8× 1047 40 Yes
11 Tiles (unit) 36.03 239,500,800 1-3 Yes
Grid 2927.40 1,560,000 0-3 Yes
TopSpin (3) 8.52 479,001,600 12 Yes
TopSpin (4) 10.04 479,001,600 12 Yes
11 Tiles (inverse) 37.95 239,500,800 1-3 No
City Navigation 3 3 15.62 22,500 3-8 No
City Navigation 4 4 14.38 22,500 3-10 No
City Navigation 5 5 13.99 22,500 3-12 No

Table 1: Domain Attributes for benchmark domains considered

2.1 Benchmark Domains

We consider six standard benchmark domains: the sliding tile puzzle, the Towers of Hanoi
puzzle, grid path planning, the pancake problem, TopSpin, and dynamic robot navigation.
We selected these domains because they represent a wide variety of interesting heuristic
search features, such as branching factor, state space size, and solution length. Since we
would like to compare against A*, we are forced to use somewhat smaller puzzles than it is
possible to solve using state of the art suboptimal searches. Our requirement for problem
size was that the problem be solvable by A*, Weighted A*, and greedy best-first search in
main memory (eight gigabytes). Basic statistics about each of these domain variants are
summarized in Table 1.

For the sliding tile 11 puzzle (3 × 4), we used random instances and the Manhattan
distance heuristic. We used the 11 puzzle, rather than the 15 puzzle for two reasons. First,
optimally solving 15 puzzles using A* without running out of memory requires significant
resources (At least 27 gigabytes, significantly more than our eight gigabyte limit, according
to Burns et al., 2012). In addition to that, we consider the sliding tile puzzle with non-unit
cost functions. These non-unit problems are significantly more difficult to solve than the
unit-cost variants. The non-unit version of sliding tile puzzle we consider uses the inverse
cost function, where the cost of moving a tile n is 1/n. The Manhattan distance heuristic,
when weighted appropriately, is both admissible and consistent for this cost function. For
the Towers of Hanoi, we considered the 14-disk-4 peg problem, and used two disjoint pattern
databases, one for the bottom 12 disks, and one for the top two disks (Korf & Felner,
2002). For the pancake problem, we used the gap heuristic (Helmert, 2010). For grid path
planning, we used maps that were 2000x1200 cells, with 35% of the cells blocked, using the
Manhattan distance heuristic with four way movement. In the TopSpin puzzle, the objective
is to sort a circular permutation by iteratively reversing a continuous subsequence of fixed
size. An example of a TopSpin puzzle is in Figure 1. We considered a problem with 12
disks with a turnstile that would turn either three or four disks, denoted by TopSpin(3) and
TopSpin(4). For a heuristic, we used a pattern database with 6 contiguous disks present,
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Figure 1: A 20 disk TopSpin puzzle.

and the remaining 6 disks abstracted. For the dynamic robot navigation problem, we used a
200x200 world, with 32 headings and 16 speeds. In dynamic robot navigation, the objective
is to navigate a robot from one location and heading to another location and heading, while
respecting the dynamics of the robot. The robot is not able to change direction and speed
instantaneously, so not all combinations of heading/speed can be reached from a given
state. In addition to that, some states in this domain represent dead ends. For example,
a state where the robot is moving at full speed directly towards an obstacle will produce
no children, because the robot will crash no matter what control action is applied. The
objective is to minimize the total travel time; the actions do not all have the same cost.

We also introduce a new domain we call City Navigation, designed to simulate navigation
using a system similar to American interstate highways or air transportation networks. In
this domain, there are cities scattered randomly on a 100x100 square, connected by a random
tour which guarantees it is possible to get from any city to any other city. Each city is also
connected to its nc nearest neighbors. All links between cities cost the Euclidean distance
+ 2. Each city contains a collection of locations, randomly scattered throughout the city
(which is a 1x1 square). Locations in a city are connected in a random tour, with each
place also connected to the nearest np places. Links between places cost the true distance
multiplied by a random number between 1 and 1.1. Within each city there is a special
nexus node that contains all connections in and out of this city. The goal is to navigate
from a randomly selected start location to a randomly selected end location. For example,
we might want to go from Location 3 in City 4 to Location 23 in City 1. Each city’s nexus
node is Location 0, so to reach the goal in the example problem we must navigate from
Location 3 to Location 0 in City 4, then find a path from City 4 to City 1, then a path from
Location 0 in City 1 to Location 23 in City 1. An example instance of this type can be
seen in Figure 2. The circles in the left part of the figure are locations, connected to other
locations. The nexus node, Location 0, is also connected to the nexus nodes of neighboring
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Figure 2: A city navigation problem with np = nc = 3, with 15 cities and 15 locations in
each city.

cities. The right part of the figure shows the entire world, with cities shrunk down to a
circle.

City Navigation instances are classified by np and nc. We consider problems with varying
numbers of connections, but always having 150 cities and 150 places in each city. Since each
location within a city has a global position, the heuristic is direct Euclidean distance. In
this domain, solutions vary in length, and it is straightforward to manipulate the accuracy
of the heuristic. This domain bears some similarity to the IPC Logistics domain in which
locations within cities are connected by roads, but special airport locations are used to
travel between cities.

2.2 Results

Figures 3 and 4 show the number of expansions required by A*, greedy best-first search, and
Weighted A* with weights of 1.1, 1.2, 2.5, 5, 10, and 20. These plots allow us to compare
greedy best-first search with Weighted A* and A*, and to determine whether increasing the
weight speeds up the search, or slows down the search.

Looking at the plots in Figure 3, it is easy to see that as we increase the weight the
number of expansions goes down, but in Figure 4, the opposite is true. In each of these
domains, increasing the weight initially speeds up the search, as A* is relaxed into Weighted
A*, but as Weighted A* transforms into greedy best-first search, the number of nodes
required to solve the problem increases. In two of the domains, TopSpin with a turnstile of
size 4 and City Navigation 3 3, the number of nodes expanded by greedy best-first search is
higher than the number of nodes expanded by A*. Explaining this phenomenon is a central
goal of this paper.
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Figure 3: Domains where increasing the weight speeds up search. Numbers denote Weighted
A* run with a specific weight, and G denotes greedy best-first search.

3. Characteristics of Effective Heuristics

We have established that increasing the weight in Weighted A* does not always speed up
the search, and in some situations can actually slow down search. The fact that A* is
sometimes faster than greedy best-first search and sometimes slower than greedy best-first
search suggests that some heuristics work well for A* and poorly for greedy best-first search,
and that some heuristics work well for greedy best-first search but not for A*. Thus, the
question is precisely what is driving this difference, and what each algorithm, A* and greedy
best-first search, needs out of the heuristic.

We first review the literature for suggestions about how to make a good heuristic for
A*. With this in mind, we then apply the A* rules for constructing an effective heuristic
to greedy best-first search. This leads us to observations on effective heuristics for greedy
best-first search that are distinct from the common recommendations for building a good
heuristic for A*.

3.1 Effective Heuristics for A*

Much of the literature about what constitutes a good heuristic centers on how well the
heuristic works for A*. For finding optimal solutions using A*, the first and most important
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Figure 4: Domains where increasing the weight slows down search. Numbers denote
Weighted A* with the specified weight, and G denotes greedy best-first search.

requirement is that the heuristic be admissible, meaning for all nodes n, h∗(n) – the true
cheapest path from n to a goal – is greater than or equal to h(n). If the heuristic is not
admissible, A* degenerates into A (no star) which is not guaranteed to find the shortest
path.

It is generally believed that consistency is also important, due to the fact that inad-
missible heuristics can lead to an exponential number of re-expansions (Martelli, 1977).
This situation, however, rarely arises in practice and Felner et. al. (2011) argue that
inconsistency is generally not as much of a problem as is generally believed.

The most widespread rule for making a good heuristic for A* is: dominance is good (Nils-
son, 1980; Pearl, 1984). A heuristic h1 is said to dominate h2 if ∀n ∈ G : h1(n) ≥ h2(n).
This makes sense, because due to admissibility, larger values are closer to h∗. Furthermore
A* must expand every node n it encounters where f(n) is less than the cost of an optimal
solution, so large h often reduces expansions. Dominance represents the current gold stan-
dard for comparing two heuristics. In practice, heuristics are often informally evaluated by
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their average value or by their value at the initial state over a benchmark set. In either
case, the general idea remains the same: bigger heuristics are better.

If we ignore the effects of tie breaking as well as the effects of duplicate states, A* and
the last iteration of IDA* expand the same number of nodes. This allows us to apply the
formula from Korf, Reid, and Edelkamp (2001). They predict that the number of nodes
IDA* will expand at cost bound c is:

E(N, c, P ) =

c∑

i=0

NiP (c− i)

The function P (h) in the KRE equation represents the equilibrium heuristic distribution,
which is “the probability that a node chosen randomly and uniformly among all nodes at a
given depth of the brute-force search tree has heuristic value less than or equal to h” (Korf
et al., 2001). This quantity tends to decrease as h gets larger, depending on how the nodes
in the space are distributed. The dominance relation also transfers to the KRE equation,
meaning that if a heuristic h1 dominates a different heuristic h2, the KRE equations predicts
that the expected expansions using h1 will be less than or equal to the expected expansions
using h2.

When considering pattern database (PDB) heuristics, Korf’s conjecture (1997) can lend
insight into the performance of IDA*, which tells us that we can expect m

1+log(m) × t = n
with m being the amount of memory the PDB in question takes up, t is the amount of time
we expect an IDA* search to consume, and n is a constant (Korf, 2007). If we are willing
to apply results regarding IDA* to A* this equation tells us that we should expect larger
pattern databases to provide faster search for A*. To summarize, the prevailing wisdom
regarding heuristics is that bigger is better, both in terms of average heuristic value and
pattern database size.

3.2 The Behavior of Greedy Best-First Search

As we shall see, this advice regarding heuristics is all very helpful when considering only
A*. What happens if we apply this same wisdom to greedy best-first search? We answer
this question by taking a detailed look at the behavior of greedy best-first search on three
of our benchmark problems: the Towers of Hanoi, the TopSpin puzzle, and the sliding tile
puzzle.

3.2.1 Towers of Hanoi

The first domain we consider is the Towers of Hanoi. The most successful heuristic for
optimally solving 4 peg Towers of Hanoi problems is disjoint pattern databases (Korf &
Felner, 2002). Disjoint pattern databases boost the heuristic value by providing information
about the disks on the top of the puzzle. For example, consider a 12-disk puzzle, split into
two disjoint pattern databases: eight disks in the bottom pattern database, and four disks
in the top pattern database. With A*, the best results are achieved when using the full
disjoint pattern database. With greedy best-first search, however, faster search results when
we do not use a disjoint pattern database, and instead only use the 8 disk pattern database.
The exact numbers are presented in the Unit rows of Table 2. All problems are randomly
generated Towers of Hanoi states, with the goal being to get all disks onto the first peg.
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Cost Heuristic A* Exp Greedy Exp

Unit
8/4 PDB 2,153,558 36,023
8/0 PDB 4,618,913 771

Square
8/4 PDB 239,653 4,663
8/0 PDB 329,761 892

Rev Square
8/4 PDB 3,412,080 559,250
8/0 PDB 9,896,145 730

Table 2: Average number of nodes expanded to solve 51 12-disk Towers of Hanoi problems.
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Figure 5: The minimum h value on open as the search progresses, using different pattern
databases (single on left, two disjoint additive ones on the right).

The theory for A* corroborates the empirical evidence observed here: the disjoint pat-
tern database dominates the single pattern database, so absent unusual effects from tie-
breaking, it is no surprise that the disjoint pattern database results in faster A* search.

The reason for the different behaviour of A* and greedy best-first search is simple. With
greedy best-first search using a single pattern database, it is possible to follow the heuristic
directly to a goal, having the h value of the head of the open list monotonically decrease.
To see this, note that every combination of the bottom disks has an h value, and all possible
arrangements of the disks on top will also share that same h value. The disks on top can
always be moved around independently of where the bottom disks are. Consequently, it is
always possible to arrange the top disks such that the next move of the bottom disks can
be done, while not disturbing any of the bottom disks, thus leaving h constant. Eventually,
h decreases because more progress has been made putting the bottom disks of the problem
in order. This process repeats until h = 0, at which point greedy best-first search simply
considers possible configurations of the top disks until the goal has been found.

This phenomenon can be seen in the left pane of Figure 5, where the minimum h value
of the open list monotonically decreases as the number of expansions the search has done
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h = 10

h = 9

Figure 6: Two Towers of Hanoi states, one near a goal (top) and one far from a goal
(bottom).

increases. The heuristic created by the single pattern database creates an extremely effective
gradient for the greedy best-first search algorithm to follow for two reasons. First, there are
no local minima at all, only the global minimum where the goal is. In this context, we define
a minimum as a region of the space M where ∀n ∈ M , every path from n to a goal node
has at least one node n′ with h(n′) > h(n). Second, there are exactly 256 states associated
with each configuration of the bottom 8 disks. This means that every 256 expansions, h is
guaranteed to decrease. In practice, a state with a lower h tends to be found much faster.

In the right pane of Figure 5, the heuristic is a disjoint pattern database. We can see
that the h value of the head of the open list fluctuates substantially when using a disjoint
pattern database, indicating that greedy best-first search’s policy of “follow small h” is much
less successful. This is because those states with the bottom disks very near their goal that
are paired with a very poor arrangement of the disks on top are assigned large heuristic
values, which delays the expansion of these nodes. This is illustrated in Figure 6. The top
state is significantly closer to a goal, despite having a higher h value than the bottom state.
If we ignore the top disks completely, the top state has h = 1 compared to the bottom
state’s h = 9, which correctly conveys the fact that the top state is significantly closer to
a goal. The disjoint PDB causes substantial confusion for greedy best-first search, because
prior to making any progress with any of the 8 bottom disks, the greedy best-first search
considers states where the top 4 disks are closer to their destination. If the bottom state is
expanded, it will produce children with lower heuristic values which will be explored before
ever considering the top state, which is the state that should be explored first. Eventually,
all descendants of the bottom state with h ≤ 9 are explored, at which point the top state
is expanded, but this causes the h value of the head of the open list to go up and down.

To summarize, the disjoint pattern database makes a gradient that is more difficult
for greedy best-first search to follow because nodes can have a small h for more than one
reason: being near the goal because the bottom pattern database is returning a small value,
or being not particularly near the goal, but having the top disks arranged on the target peg.
This suggests the following observation regarding heuristics for greedy best-first search:
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Observation 1. All else being equal, greedy best-first search tends to work well when it is
possible to reach the goal from every node via a path where h monotonically decreases along
the path.

While this may seem self-evident, our example has illustrated how it conflicts with the
common wisdom in heuristic construction. It is also important to note that this observation
makes no comment about the relative magnitude of the heuristic, which for greedy best-first
is completely irrelevant; all that matters is the relative ordering of the nodes when ordered
using the heuristic.

Another way to view this phenomenon is in analogy to the Sussman Anomaly (Sussman,
1975). The Sussman anomaly occurs when one must undo a subgoal prior to being able
to reach the global goal. In the context of Towers of Hanoi problems, the goal is to get
all of the disks on the target peg, but solving the problem may involve doing and then
undoing some subgoals of putting the top disks on the target peg. The presence of the top
pattern database encourages greedy best-first searches to privilege states where subgoals
which eventually have to be undone have been accomplished.

Korf (1987) discusses different kinds of subgoals, and how different kinds of heuristic
searches are able to leverage subgoals. Greedy best-first search uses the heuristic to create
subgoals, attempting to follow the h to a goal. For example, in a unit-cost domain, the first
subgoal is to find a node with h = h(root)− 1. If the heuristic follows Observation 1, these
subgoals form a perfect serialization, and the subgoals can be achieved one after another.
As the heuristic deviates from Observation 1, the subgoals induced by the heuristic cannot
be serialized.

Another important factor is, of course, the number of distinct nodes at each heuristic
level one encounters prior to finding a better node. Consider, for example, one of the worst
heuristics, h = 0. Technically, this heuristic follows Observation 1 because all paths only
contain nodes with h = 0, but the one plateau contains all nodes in the entire space, which is
obviously undesirable. Hoffmann (2005) discusses this general idea using the term “maximal
bench exit distance”, and once again, the idea is that in domains in which this quantity is
small, both greedy best-first search and his Enforced Hill Climbing method perform well,
because finding nodes with lower h is straightforward.

These effects can be exacerbated if the cost of the disks on the top is increased relative
to the cost of the disks on the bottom. If we define the cost of moving a disk as being
proportional to the disk’s size, we get the Square cost metric, where the cost of moving disk
n is n2. We could also imagine the tower being stacked in reverse, requiring that the larger
disks always be on top of the smaller disks, in which case we get the Reverse Square cost
function. In either case, we expect that the number of expansions that greedy best-first
search will require will be lower when using only the bottom pattern database, and this is
indeed the effect we observe in Table 2. However, if the top disks are heavier than the disks
on the bottom, greedy best-first search suffers even more than when we considered the unit
cost problem, expanding an order of magnitude more nodes. This is because the pattern
database with information about the top disks is returning values that are substantially
larger than the bottom pattern database, due to the fact that the top pattern database
considers the most expensive operators. If the situation is reversed, however, and the top
pattern database uses only the lowest cost operators, the top pattern database’s contribution
to h is a much smaller proportion of the total expansions. Since greedy best-first search
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Greedy Search with Disjoint PDB

Figure 7: The minimum h value on open during searches using disjoint pattern databases
with different cost functions (square on left, reverse square on right).

performs best when the top pattern database isn’t even present, it naturally performs better
when the contribution of the top pattern database is smaller.

This phenomenon is vividly illustrated in the execution times in Figure 7. In the left of
the figure, the disks in the top pattern database are much cheaper to move than the disks
in the bottom pattern database, and are therefore contributing a much smaller proportion
of the total value of h. In the right part of the figure, the disks in the top pattern database
are much more expensive to move than the disks in the bottom pattern database, so the
top pattern database makes a much larger contribution to h, causing substantially more
confusion.

Hoffmann (2005) notes that the success of the FF heuristic in many domains is at-
tributable to the fact that the h+ heuristic produces a heuristic with no local minima. A
heuristic with no local minima precisely matches our Observation 1, because it will always
be possible to reach the goal via a path where h monotonically decreases.

3.2.2 TopSpin

We considered TopSpin with 12 disks and a turnstile that flipped 4 disks using pattern
databases that contained 5, 6, 7, and 8 of the 12 total disks.

Korf’s conjecture predicts that the larger pattern databases will be more useful for
A*, and should therefore be considered to be stronger heuristics, and indeed, as the PDB
becomes larger, the number of expansions done by A* dramatically decreases. This can be
seen in Figure 8. Each box plot (Tukey, 1977) is labeled with either A* or G (for greedy
best-first search), and a number, denoting the number of disks that the PDB tracks. Each
box denotes the middle 50% of the data, so the top of the box is the upper quartile, the
bottom of the box is the bottom quartile, and the height of the box is the interquartile
range. The horizontal line in the middle of the box represents the median. The grey stripe
indicates the 95% confidence interval about the mean. The circles denote points that are
more than 1.5 times the interquartile range away from either the first quartile or the third
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E
x
p
a
n
si

o
n
s

60000

30000

A*5 G5 A*6 G 6 A*7 G7 A*8 G 8

Figure 8: TopSpin puzzle with different heuristics. A∗ followed by a number denotes A∗

with that number of disks in the PDB heuristic. G followed by a number denotes
greedy best-first search with that number of disks in the PDB heuristic.

quartile, and the whiskers represent the range of the non-outlier data. As we move from left
to right, as the PDB heuristic tracks more disks, it gets substantially better for A*. While
there are also reductions for greedy best-first search in terms of expansions, the gains are
nowhere near as impressive as compared to A*.

The reason that greedy best-first search does not perform better when given a larger
heuristic is that, with the larger heuristic, states with h = 0 may still be quite far from a
goal. For example, consider the TopSpin state represented as follows, where A denotes an
abstracted disk:

State 1: 0 1 2 3 4 5 A A A A A A

The turnstile swaps the orientation of 4 disks, but there are configurations such that
putting the abstracted disks in order requires moving a disk that is not abstracted, such as:

State 2: 0 1 2 3 4 5 6 7 8 9 11 10

For a TopSpin state, the abstraction process takes the largest N disks and converts
them to abstracted disks, and abstracted disks are all treated the same, so State 2 would be
abstracted into State 1, which means that it abstracts to the same state as the goal, making
its heuristic 0. If we wanted to expand State 2, we could do so and one of the children is
State 3, whose heuristic is still 0:

State 3: 0 1 2 3 4 5 6 7 10 11 9 8

Consider a different child, for example the child obtained by rotating the middle 4 disks:
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State 4: 0 1 2 3 7 6 5 4 8 9 10 11

which abstracts into:

State 5: 0 1 2 3 A A 5 4 A A A A

The heuristic for State 4 is not 0, because State 4 abstracts into State 5. State 5 is an
abstract state that is different from State 1 (the abstracted goal) so the heuristic of State
4 is not 0.

If we abstract disks 6-11, we still have the same abstract state as before, so the heuristic
is still 0. Moving a disk that is not abstracted will increase the heuristic, but moving only
abstracted disks will leave the heuristic at 0. Unfortunately, transforming State 2 into a
goal cannot be done without moving at least one of the disks whose index is between 0 and
5, because the turnstile is of size 4.

This means that the subgraph consisting of only nodes with h = 0 in the TopSpin
problem is disconnected. Thus, when greedy best-first search encounters a state with h = 0,
the state could be a h = 0 state that is connected to the goal via only h = 0 states, which
would be desirable, or the state could be a h = 0 state that is connected to the goal via only
paths that contain at least one h 6= 0 nodes, which would be undesirable. If this is the case,
greedy best-first search will first expand all the h = 0 nodes connected to the first h = 0
node (which by hypothesis is not connected to a goal node via paths only containing h = 0
nodes), and will then return to expanding nodes with h = 1, looking to find a different
h = 0 node.

The abstraction controls the number and size of h = 0 regions. For example, if we
abstract 6 disks, there are two strongly connected regions of h = 0 nodes, each containing
360 nodes. If we instead abstract 5 disks, there are 12 strongly connected h = 0 regions,
each with 10 nodes. For the heuristic that abstracts 6 disks, there is a 50% chance that
any given h = 0 node is connected to the goal via only h = 0 nodes, but once greedy
best-first search has entered the correct h = 0 region, finding the goal node is largely up
to chance. For the heuristic that abstracts 5 disks, the probability that any given h = 0
node is connected to the goal via only h = 0 nodes is lower. Once the correct h = 0 region
is found, however, it is much easier to find the goal, because the region contains only 10
nodes, as compared to 360 nodes. Empirically, we can see that these two effects roughly
cancel one another out, because the total number of expansions done by greedy best-first
search remains roughly constant no matter which heuristic is used. This brings us to our
next observation.

Observation 2. All else being equal, nodes with h = 0 should be connected to goal nodes
via paths that only contain h = 0 nodes.

One can view this as an important specific case of Observation 1. Interestingly, some types
of heuristics, such as the delete-relaxation heuristics used in domain-independent planning,
obey this observation implicitly by never allowing non-goal states to have h values of 0.

One obvious way to make a heuristic satisfy this recommendation is to change the
heuristic for all non-goal states to be the same as the minimum cost operator from the
domain with cost of ǫ. If we do this, we can simply restate the recommendation substituting
ǫ for 0, and we arrive at a similar result.
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Figure 9: Different tile abstractions. “A” denotes a tile that is abstracted..

Abstraction Greedy Exp A* Exp

Outer L (Figure 9 left) 258 1,251,260
Checker (Figure 9 right) 11,583 1,423,378
Outer L Missing 3 3,006 DNF
Outer L Missing 3 and 7 20,267 DNF
Instance Specific 8,530 480,250
GDRC Generated 427 1,197,789
Average 6-tile PDB 17,641 1,609,995
Worst 6-tile PDB 193,849 2,168,785

Table 3: Average number of expansions required by Greedy best-first search and A* to solve
3 × 4 tile instances with different pattern databases. DNF denotes at least one
instance would require more than 8GB to solve.

3.2.3 Sliding Tiles

The sliding tile puzzle is one of the most commonly used benchmark domains in heuristic
search. As such, this domain is one of the best understood. Pattern database heuristics
have been shown to be the strongest heuristics for this domain, and have been the strongest
heuristics for quite some time (Korf & Taylor, 1996; Felner, Korf, Meshulam, & Holte,
2007). We use the 11 puzzle (4× 3) as a case study because the smaller size of this puzzle
allows creating and testing hundreds of different pattern databases. The central problem
when constructing a pattern database for a sliding tile puzzle is selecting a good abstraction.

The abstraction that keeps only the outer L, shown in the left part of Figure 9, is
extremely effective for greedy best-first search, because once greedy best-first search has
put all abstracted tiles in their proper places, all that remains is to find the goal, which is
easy to do using even a completely uninformed search on the remaining puzzle, as there are
only 6!

2 = 360 states with h = 0 and the h = 0 states form a connected subgraph. This is
analogous to the heuristic directing the search algorithm to follow the process outlined by
Parberry (1995), in which large sliding tile puzzles are solved by first solving the outer L,
and then treating the remaining problem as a smaller sliding tile puzzle.

Compare this to what happens when greedy best-first search is run on a checkerboard
abstraction, as shown in the right part of Figure 9. Once greedy best-first search has iden-
tified a node with h = 0, there is a very high chance that the remaining abstracted tiles
are not configured properly, and that at least one of the non-abstracted tiles will have to
be moved. This effect can be seen in Table 3, where the average number of expansions re-
quired by A* is comparable with either abstraction, while the average number of expansions
required by greedy best-first search is larger by two orders of magnitude.
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The sheer size of the PDB is not as important for greedy best-first search as it is for
A*. In Table 3, we can see that as we weaken the pattern database by removing the 3 and
7 tiles, the number of expansions required increases by a factor of 10 for greedy best-first
search. For A* using the PDB with the 3 tile missing, 3 instances are unsolvable within 8
GB of memory (approximately 25 million nodes in our Java implementation). With both
the 3 and the 7 tile missing, A* is unable to solve 16 instances within the same limit. It is
worth noting that even without the 3 tile, the outer L abstraction is still more effective for
greedy best-first search as compared to the checkerboard abstraction.

The underlying reason behind the inefficiency of greedy best-first search using certain
pattern databases is the fact that the less useful pattern databases have nodes with h = 0
that are nowhere near the goal. This provides further evidence in favor of Observation 2;
greedy best-first search concentrates its efforts on finding and expanding nodes with a low h
value, and if some of those nodes are, in reality, not near a goal, this clearly causes problems
for the algorithm. Because A* uses f , and g contributes to f , A* is able to eliminate some
of these states from consideration (not expand them) because the high g value helps to give
the node a high f value, which causes A* to relegate the node to the back of the expansion
queue.

The checkerboard pattern database also helps to make clear another problem facing
greedy best-first search heuristics. Once the algorithm discovers a node with h = 0, if that
node is not connected to any goal via only h = 0 nodes, the algorithm will eventually run
out of h = 0 nodes to expand, and will begin expanding nodes with h = 1. When expanding
h = 1 nodes, greedy best-first search will either find more h = 0 nodes to examine for goals,
or it will eventually exhaust all of the h = 1 nodes as well, and be forced to consider h = 2
nodes. A natural question to ask is how far the algorithm has to back off before it will be
able to find a goal. This leads us to our next observation.

Observation 3. All else being equal, greedy best-first search tends to work well when the
difference between the minimum h value of the nodes in a local minimum and the minimum
h that will allow the search to escape from the local minimum and reach a goal is low.

This phenomenon is clearly illustrated when considering instance-specific pattern databases
(Holte, Grajkowskic, & Tanner, 2005). In an instance-specific pattern database, the tiles
that start out closest to their goals are abstracted first, leaving the tiles that are furthest
away from their goals to be represented in the pattern database. This helps to maximize
the heuristic values of the states near the root, but due to consistency this can also have the
undesirable side effect of making states that are required to be included in a path to the goal
have high heuristic values as well. Raising the heuristic value of the initial state is helpful for
A* search, as evidenced by the reduction in the number of expansions for A* using instance-
specific abstractions of the same size, shown in Table 3. Unfortunately, this approach is
still not as powerful for greedy best-first search as the simpler outer L abstraction, or even
the smaller variant missing the 3. This is because some instance-specific pattern databases
use patterns that are difficult for greedy best-first search to use effectively, similar to the
problems encountered when using the checkerboard abstraction.

288



Effective Heuristics for Suboptimal Best-First Search

Domain Heuristic h(n)-h∗(n) h(n)-h∗(n) h(n)-h∗(n)
% Error Correlation Correlation Correlation

(Pearson) (Spearman) (Kendall)

Towers of Hanoi 29.47 0.9652 0.9433 0.8306
Grid 25.11 0.9967 0.9958 0.9527

Greedy Pancake 2.41 0.9621 0.9593 0.9198
Works Dynamic Robot 15.66 0.9998 0.9983 0.9869

Unit Tiles 33.37 0.7064 0.7065 0.5505
TopSpin(3) 25.95 0.5855 0.4598 0.4158

TopSpin(4) 32.86 0.2827 0.3196 0.2736
Greedy Inverse Tiles 29.49 0.6722 0.6584 0.4877
Fails City Nav 3 3 44.51 0.5688 0.6132 0.4675

City Nav 4 4 37.41 0.7077 0.7518 0.6238

Table 4: Average % error and correlation between h(n) and h∗(n)

4. Predicting Effectiveness of Greedy Heuristics

In the previous section, we saw that common wisdom regarding effective heuristics for
optimal search did not carry over to suboptimal search. Instead, our examples motivated
three general observations regarding what greedy best-first search looks for in a heuristic.
While these qualitative observations are perhaps helpful heuristics for heuristic design, it is
also useful to have a simple, quantitative metric for evaluating and comparing heuristics.

We begin by considering two intuitively reasonable quantitative metrics, the percent
error in h, and the correlation between h and h∗. For each of these metrics, we show that
the metric cannot be used to predict whether or not greedy best-first search will perform
worse than Weighted A*. Then we consider a measure of “search distance to go” called d∗.
d∗(n) is the same as h∗ if we change the graph by making all edges cost 1. We find that
the correlation between h and d∗ can be used to predict when greedy best-first search will
perform poorly.

4.1 Percent Error in h(n)

The first metric we consider is perhaps the most intuitive measure of heuristic performance:
the percent error in h. We define the percent error in the heuristic as h∗(n)−h(n)

h∗(n) . Since greedy
best-first search increases the importance of the heuristic, it is reasonable to conclude that
if the heuristic has a large amount of error, relying upon it heavily, as greedy best-first
search does, is not going to lead to a fast search.

In Table 4, we have the average percent error in the heuristic for each of the domains
considered. Surprisingly, the average percentage error bears little relation to whether or
not greedy best-search will be a poor choice. Towers of Hanoi, unit tiles, and TopSpin(3),
three domains where greedy best-first search is effective, have as much or more heuristic
error than domains where greedy best-first search works poorly. This leads us to conclude
that you cannot measure the average heuristic percent error and use this to predict whether
or not increasing the weight will speed up or slow down search.
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To see intuitively why this makes sense, note that greedy best-first search only really
requires that the nodes get put in h∗(n) order by the heuristic. The exact magnitude, and
therefore error, of the heuristic is unimportant, but magnitude has a huge effect on the
average percent error. This can be seen if we consider the heuristic h(n) = h∗(n)

R
: R ∈ R

+

for a very large or very tiny R, which will always guide greedy best-first search directly to
an optimal goal, while exhibiting arbitrarily high average percent error in the heuristic as
R increases or decreases away from 1.

4.2 h− h∗ Correlation

The next metric we consider is the correlation between h and h∗. While considering the
percent error in h as a metric, we noted that greedy best-first search has run time linear
in the solution length of the optimal solution if the nodes are in h∗(n) order. One way to
quantify this observation is to measure the correlation between the two values. We will do
this in three different ways.

The most well known correlation coefficient is Pearson’s correlation coefficient r, which
measures how well the relationship between h(n) and h∗(n) can be modeled using a linear
function. Such a relationship would mean that weighting the heuristic appropriately can
reduce the error in the heuristic, which could reasonably be expected to lead to a faster
search. In addition, if the relationship between h(n) and h∗(n) is a linear function, then
order will be preserved: putting nodes in order of h(n) will also put the nodes in order of
h∗(n), which leads to an effective greedy best-first search. For each domain, we calculated
Pearson’s correlation coefficient between h∗(n) and h(n), and the results are in the second
column of Table 4.

Another reasonable way to measure the heuristic correlation is to use rank correlation.
Rank correlation measures how well one permutation (or order) respects another permuta-
tion (or order). In the context of search, we can use this to ask how similar the order one
gets by putting nodes in h order is to the order one gets by putting nodes in h∗ order. Rank
correlation coefficients are useful because they are less sensitive to outliers, and are able to
detect relationships that are not linear.

Spearman’s rank correlation coefficient (ρ) is the best known rank correlation coefficient.
ρ is Pearson’s r between the ranked variables. This means that the smallest of N heuristic
values is mapped to 0, the largest of the n heuristic values is mapped to N . This is done
for both h and h∗, at which point we simply calculate Person’s r using the rankings. In
the context of greedy best-first search, if Spearman’s rank correlation coefficient is high,
this means that the h(n) and h∗(n) put nodes in very close to the same order. Expanding
nodes in h∗(n) order leads to greedy best-first search running in time linear in the solution
length, so it is reasonable to conclude that a strong Spearman’s rank correlation coefficient
between h∗(n) and h(n) would lead to an effective greedy best-first search. For each domain,
we calculate the Spearman’s rank correlation coefficient between h∗(n) and h(n), and the
results are in the third column of Table 4.

A more natural metric for measuring this relationship can be achieved by using Kendall’s
τ (1938). Kendall’s τ is another rank correlation coefficient, but it measures the amount
of concordance between the two rankings. Concordance is having the rankings for two
elements agree. In the context of greedy best-first search, a concordant pair is a pair of
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nodes such that h(n1) > h(n2) and h∗(n1) > h∗(n2) or h(n1) < h(n2) and h∗(n1) < h∗(n2).
Kendall’s τ is the proportion of pairwise comparisons that are concordant. If h puts nodes
in h∗ order, all pairwise comparisons will be concordant, and Kendall’s τ will be 1. If h puts
nodes in reverse h∗ order, all comparisons will be discordant, and Kendall’s τ will be -1. If
sorting nodes on h puts nodes in a random order, we expect that half of the comparisons
will be concordant and half of the comparisons will be discordant.

Kendall’s τ can also be understood in the context of bubble sort. The Kendall τ distance
is the number of swaps that a bubble sort would do in order to change one list into the
other. In this case, it is the number of swaps that a bubble sort would do rearranging a list
of nodes sorted on h so the list is sorted on h∗. Kendall’s τ is calculated by normalizing the
Kendall τ distance, which is done by dividing by N(N − 1)/2. 1

Since τ and ρ are both rank correlation coefficients, they are related, but we argue that
τ is the more natural statistic. Consider this question: given an open list containing n
nodes, how likely is it that the node with the smallest h∗ will be at the front of the open
list, given that the nodes are ordered on h? We can use τ to predict that the node will,
on average, be in the middle of the list if h and h∗ are completely unrelated, and closer to
the front of the open list the stronger the τ(h, h∗) correlation is. The reason is that if we
assume that the nodes on the open list are a random selection of nodes, τ tells us how often
a random comparison is correct. We can use therefore τ to predict how far back the node
with the minimum h∗ is. ρ has no such natural interpretation, making τ the more natural
statistic. It is worth nothing that τ and ρ are generally related to one another, in that one
can be used to predict the other (Gibbons, 1985). This relationship means that in practice,
it is generally possible to use either metric.

Returning to Table 4, the results lead us to reject the correlation between h and h∗ as
a metric for predicting how well greedy best-first search will work. For all three correlation
coefficients, there are examples of domains where greedy best-first search fails with high
h(n)-h∗(n) correlations, and examples of domains where greedy best-first search works well
with poor h(n)-h∗(n) correlations. For example, in TopSpin(3), we have a Kendall’s τ of
.42, but this is lower than the τ for Inverse Tiles and both City Navigation problems we
consider.

4.3 h− d∗ Correlation

The strategy of greedy best-first search is to discover a goal quickly by expanding nodes
with small h(n) values. If nodes with small h(n) are far away from a goal it is reasonable to
believe greedy best-first search would perform poorly. We will denote by d∗(n) the count of
edges between a node n and the nearest goal, where distance is not measured by summing
the cost of the edges in the path, but rather by counting the edges in the path.

d∗(n) is equivalent to h∗(n) if we modify the graph so that all edges cost 1. Looking at
the plot of h(n) vs h∗(n) in the left half of Figure 10, we can see that for City Navigation
4 4 there is a reasonable relationship between h(n) and h∗(n), in that the nodes with low
h(n) tend to have small h∗(n) values. We denote the distance to the nearest goal in terms

1. Malte Helmert has noted (personal communication) that Kendall’s τ , as described, is not an ideal metric
to use for sequences that contain ties. For integer-valued heuristics, especially, ties may be very common.
One way to account for ties in the rankings to use Kendall’s τ -b statistic (Kendall & Gibbons, 1990)
instead of τ (also known as τ -a). Kendall’s τ -b accounts for ties in the rankings.
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Figure 10: Plot of h(n) vs h∗(n), and h(n) vs d∗(n) for City Navigation 4 4

Domain h(n)-d∗(n) h(n)-d∗(n) h(n)-d∗(n)
Correlation Correlation Correlation
(Pearson) (Spearman) (Kendall)

Towers of Hanoi 0.9652 0.9433 0.8306
Grid 0.9967 0.9958 0.9527

Greedy Pancake 0.9621 0.9593 0.9198
Works Dynamic Robot 0.9998 0.9983 0.9869

Unit Tiles 0.7064 0.7065 0.5505
TopSpin(3) 0.5855 0.4598 0.4158

TopSpin(4) 0.2827 0.3196 0.2736
Greedy Inverse Tiles 0.5281 0.5173 0.3752
Fails City Nav 3 3 0.0246 -0.0338 -0.0267

City Nav 4 4 0.0853 0.1581 0.1192

Table 5: Correlation between h(n) and d∗(n)

of the number of edges in the state space graph as d∗(n). The right half of Figure 10 shows
a plot of h(n) vs d∗(n). We can clearly see that in the City Navigation 4 4 domain, there
is almost no relationship between h(n) and d∗(n), meaning that nodes that receive a small
h(n) value can be found any distance away from a goal, which could explain why greedy
best-first search works so poorly for this domain, despite the fact that h(n) and h∗(n) are
so closely related.

If nodes with small h(n) values are also likely to have small d∗(n) values (and these
nodes are therefore close to a goal, in terms of expansions away) expanding nodes with
small h(n) values will quickly lead to a goal. The converse is also reasonable. If the nodes
with small h(n) value have a uniform distribution of d∗(n) values (and thus many of these
nodes are far away from a goal in terms of expansions away), expanding these nodes will
not quickly lead to a goal.
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Figure 11: Average log of expansions done by greedy best-first search with different heuris-
tics, plotted according to their GDRC.

For each domain, we quantify this concept by calculating Pearson’s correlation coef-
ficient, Spearman’s rank correlation coefficient, and Kendall’s τ between d∗(n) and h(n).
Looking at Table 5, we can see that, using both Kendall’s τ and Pearson’s r, we are finally
able to separate the domains on which greedy best-first search performs well from the do-
mains on which greedy best-first search performs poorly. For Kendall’s τ , we can draw a
line at approximately 0.4 that can be used to separate the domains where greedy best-first
search works well and the domains where greedy best-first search works poorly. Likewise,
for Pearson’s r, we can draw a line at approximately .55. We will call this type of metric
the Goal Distance Rank Correlation (GDRC) and, unless otherwise noted, compute it using
Kendall’s τ .

The correlation between d∗(n) and h(n) connects to our three observations, although
the connection is not a mathematical necessity (as counterexamples can be constructed).
Note that a heuristic that obeys Observation 1 will produce paths where h monotonically
decreases to a goal. Consider the nodes along a path to a goal. By hypothesis, h will
monotonically decrease along this path. Now, consider one of the nodes at the goal end of
the path. Since h monotonically decreases along the path, the nodes at the goal end of the
path have a low h, and because they are near the end of the path, they also have a low d∗

value. While little else can be said about the nodes in general, this restriction improves the
heuristic’s GDRC compared to a situation in which the nodes with low d∗ are allowed to
have high h values. A similar argument can be used to show how following Observation 2
helps to produce a heuristic with a high GDRC.

Observation 3 discusses nodes in a local minimum, and the difference in h between nodes
in the local minimum, and nodes that are on the edge of the local minimum. If we assume
that in order to escape a local minimum one must go through one of the nodes on the edge of
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the local minimum, then we know that the nodes in the local minimum must have a higher
d∗ than the nodes on the edge of the local minimum, but we also know that their h is lower
(because the node is in the local minimum). This means that the h ranking incorrectly
orders all nodes in the local minimum as compared to the nodes on the edge of the local
minimum, a clear problem for producing a high GDRC. If the nodes in the local minimum
have a low d∗ because they can get to the goal through a very high h node, the relationship
between this observation and GDRC is weaker. Consider personal transportation as an
example. An action such as, “call a taxi” might result in reaching states very near the goal
in one step, but at very high cost. If the heuristic recognizes the cost of this action, the node
will correctly have a high h, but be very close to the goal as measured with d because of the
call a taxi path. While such a situation clearly causes problems for domains attempting to
follow Observation 3, we believe that domains with this kind of attribute are, in practice,
quite uncommon. For example, none of our example domains exhibit this trait.

4.4 Comparing Heuristics

Because it is a quantitative metric, GDRC can be used to compare different heuristics for
the same domain. To test its effectiveness, we ran experiments on the Towers of Hanoi
problem using 17 different disjoint and non-disjoint pattern databases. We considered
pattern databases with between 3 and 8 disks, as well as a selection of pairings of the PDBs
where the total number of disks is less than or equal to 12. For each pattern database, we
calculated the GDRC for the heuristic produced by the PDB. In Figure 11 we plot, for each
PDB, the GDRC of the PDB on the X axis and the average of the log of the number of
expansions required by greedy best-first search to solve 51 random 12-disk Towers of Hanoi
problems on the Y axis. As we can see from the figure, when the GDRC is below roughly
0.4, greedy best-first search performs very poorly, but as the GDRC increases, the average
number of expansions done by greedy best-first search decreases. This suggests that it is
possible to use GDRC to directly compare heuristics against one another.

We can see similar behavior in a different domain in the left part of Figure 12. Each
dot represents one of the 462 possible disjoint 5/6 pattern databases (one 6 tile PDB and
one 5 tile PDB that are disjoint) for the 3× 4 sliding tile puzzle with inverse costs. On the
Y axis is the log of the average expansions required to solve 100 random instances. On the
X axis is the GDRC. Since we are using a non-unit problem, h∗ and d∗ are not the same,
so we can also calculate the correlation between h and h∗. In the right part of Figure 12,
this correlation is on the X axis.

As we can see, GDRC and the rank correlation between h and h∗ can both yield useful
information about how well greedy best-first search is likely to work.

For the domains we have tested, the correlation between h and d∗ neatly predicts when
greedy best-first search performs worse thanWeighted A* (or A*). It is not perfect, however.
If we consider the heuristic h(n) = h∗(n), any measure of the correlation between h(n) and
h∗(n) will be perfect, but the relationship between h(n) and d∗(n) for such a heuristic could
be arbitrarily poor. As the heuristic approaches truth, the h(n)-h∗(n) correlations will
approach 1, which allows Weighted A* to scale gracefully, as greedy best-first search will
have linear run time, no matter what the correlation between h(n) and d∗(n) is. In this
situation, looking solely to the correlation between h(n) and d∗(n) to determine whether
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Figure 12: Average log of expansions done by greedy best-first search with each of the
possible 462 5/6 disjoint PDB heuristics, plotted against GDRC (left) and the
correlation between h(n) and h∗(n)

Domain Heuristic h(n)-h∗(n) h(n)-h∗(n) h(n)-d∗(n) h(n)-d∗(n)
% Error Correlation Correlation Correlation Correlation

(Pearson) (Spearman) (Pearson) (Spearman)

City Nav 5 5 31.19 0.9533 0.9466 0.0933 0.0718

Table 6: Average % error, correlation between h(n) and h∗(n), and correlation between
h(n) and d∗(n) in City Nav 5 5

or not greedy best-first search will be faster than Weighted A* may produce an incorrect
answer.

This can be seen in the City Navigation 5 5 domain. City Navigation 5 5 is similar
to the other City Navigation problems we consider, except that the cities and places are
better connected, allowing more direct routes to be taken. Since the routes are more direct,
and thus shorter, the heuristic is more accurate. Table 6 shows the various correlations
and percent error in h(n) for City Navigation 5 5. Figure 13 shows that as we increase the
weight, despite the very weak correlation between h(n) and d∗(n), there is no catastrophe:
greedy best-first search expands roughly the same number of nodes as Weighted A* with
the best weight for speed. This occurs because of the extreme strength of the heuristic,
which correlates to h∗(n) at .95, an extremely strong correlation.

The next question is which correlation matters more: h∗(n) or d∗(n). Clearly, a perfect
correlation between h∗(n) and h(n) or d∗(n) and h(n) will lead to a fast greedy best-first
search, which leads us to the conclusion that in order for greedy best-first search to be
effective, nodes with small h(n) that get expanded are required to have at least one virtue:
they should either be close to the goal measured in terms of remaining search distance
(small d∗(n)) or close to the goal measured in terms of remaining cost (small h∗(n)). We
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Figure 13: Expansions done by A*, Weighted A*, and greedy best-first search on City
Navigation 5 5

have seen empirically that as the two correlations break down, the d∗(n) correlation allows
greedy best-first search to survive longer: in tested domains where the d∗(n)-h(n) is above
.58, greedy best-first search does well, whereas we have seen domains where the h∗(n)-
h(n) correlation is as high as .70 (or .75, depending on which correlation metric is being
used) where greedy best-first search performs poorly.

The importance of the correlation between h(n) and d∗(n) reflects the importance of
node ordering for greedy best-first search. In optimal search, the search cannot terminate
when a solution is found, but rather when the solution is known to be optimal because
all other paths have been pruned. The larger the heuristic values, the sooner nodes can
be pruned. This means that in optimal search, heuristic size is of paramount importance:
bigger is better. With greedy best-first search, the heuristic is used to guide the search to a
solution, so relative magnitude of the heuristic (or the error in the heuristic) has no bearing
on the performance of the search, as we saw when we considered the percent error in h. It
is common for researchers to say that A*’s heuristic “guides” the search, but our discussion
reveals why this language should be reserved for suboptimal search.

Some heuristics are able to satisfy both the needs of A* and greedy best-first search
simultaneously. For example, the dynamic robot navigation heuristic works extremely well
for both A* and greedy best-first search, because it is both big, and therefore good for A*,
and good at differentiating nodes that are near the goal from those far away from the goal,
helping greedy best-first search.

5. Building a Heuristic by Searching on GDRC

As shown by Haslum, Botea, Helmert, Bonet, and Koenig (2007), given a metric for assess-
ing the quality of a heuristic, we can use that metric to automatically construct effective
abstraction-based heuristics simply by searching the space of abstractions. In many do-
mains, a heuristic can be constructed by initially abstracting everything, and slowly refining
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the abstraction to construct a heuristic. While Haslum et al. (2007) were concerned with
optimal search and hence use pruning power to evaluate heuristics, our focus on greedy best-
first search suggests that GDRC might serve as a useful metric. For example, in the TopSpin
problem, we begin with a heuristic that abstracts all disks. We then consider all PDBs that
can be devised by abstracting everything except one disk, and measure the GDRC of each
pattern database. The GDRC can be effectively estimated by doing a breadth-first search
backwards from the goal (we used 10,000 nodes for a 12 disk problem) to establish d∗ values
for nodes, and the h value can be looked up in the pattern database. We then sample 10% of
the nodes generated in this way, and used the sample to calculate an estimate of Kendall’s
τ . While we elected to sample 10%, of the nodes, a sample of any size can be taken provided
the confidence interval is sufficiently small to tell which τ is better. Last, we take the PDB
with the highest value as the incumbent PDB. This process repeats until either all PDB’s
have a worse GDRC than the previous best PDB, or until the PDB has reached the desired
size. The reason we allow the algorithm to possibly terminate early is to cover the case of
GDRC decreasing with larger PDB’s. If increasing the size of the PDB decreases GDRC,
it is likely that further increasing the size of the PDB will degrade the GDRC even more,
so we elect to terminate. The full algorithm is detailed in Algorithm 1. While this simple
hill-climbing search appears effective, a more sophisticated search strategy could certainly
be employed instead.

5.1 TopSpin

Algorithm 1 Hill Climbing PDB Builder

1: AllTokens = {Tokens in problem that can be abstracted}
2: RemainingTokens = AllTokens
3: BestPDB = build PDB by abstracting AllTokens
4: BestTau = 0
5: function tryPDB(tokens)
6: pdb = build PDB by abstracting AllTokens \ tokens
7: allNodes = nodes discovered by breadth first search backwards from the goal state(s)
8: sample = randomly sample 10% of the nodes from allNodes
9: return calcTau(sample, pdb)

10: while BestPDB.size < Max Allowed Size do

11: LocalBestPDB, LocalBestTau, LocalBestToken = (None,BestTau,None)
12: for all CurrentToken ∈ RemainingTokens do

13: CurrentTau, CurrentPDB = tryPDB(RefinedTokens ∪ {token})
14: if CurrentTau > LocalBestTau then

15: set local best variables to current
16: if LocalBestPDB 6= None then

17: set best variables to local best variables
18: RemainingTokens = RemainingTokens \ LocalBestTokens
19: else

20: Break
21: return BestPDB
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PDB Greedy Exp A* Exp Avg. Value

Contiguous 411.19 10,607.45 52.35
Big Operators 961.11 411.27 94.37
Random 2,386.81 26,017.25 47.99

Table 7: Expansions to solve TopSpin problem with the stripe cost function using different
PDBs

When used to generate unit-cost TopSpin pattern databases, hill-climbing on GDRC
always produced PDBs where the abstracted disks were all connected to one another, and
the refined disks were also all connected to one another. This prevents the abstraction from
creating regions where h = 0, but where the goal is nowhere near the h = 0 nodes, per
Observation 2.

With unit-cost TopSpin problems, abstractions where all of the disks are connected to
one another work well for both greedy best-first search and A*. If we change the cost
function such that moving an even disk costs 1 and moving an odd disk costs 10, we get the
stripe cost function, so called because the costs are striped across the problem. The most
effective PDBs for A* are those that keep as many odd disks as possible, because moving
the odd disks is much more expensive than moving an even disk. If we use such a “big
operator” pattern database for greedy best-first search, the algorithm will align the high
cost odd disks, but will have great difficulty escaping from the resulting local minimum. If
we use hill climbing on GDRC to build the heuristic, we end up with a “contiguous” heuristic
that keeps the abstracted and the refined disks connected to one another. Table 7 provides
results of how the various pattern databases did solving a suite of instances. We can see the
importance of creating a good pattern database when we consider the Random row in the
table, which contains the average number of expansions from 20 different randomly selected
6 disk pattern databases.

5.2 Towers of Hanoi

We can already infer from Figure 11 that, if we greedily select the PDB with the best τ
from a collection of PDBs, we would select the best one. But it is certainly also possible
to use a hill-climbing search to incrementally construct a PDB. When creating a PDB
heuristic for the Towers of Hanoi, one maps the full size problem onto an abstracted version
of the problem by removing some of the disks in the larger problem, and re-indexing the
remaining disks so they map to the disks in the smaller problem. With this technique, a
critical component in terms of performance is which disks are abstracted.

We define a mapping as a selection of disks to abstract. In our example, we once again
consider a 12 disk problem using an 8 disk PDB, so we must select 4 of the 12 total disks
to abstract. In Figure 14 the “+” glyphs each represent a randomly selected abstraction,
and the heuristic it produced. As we can see, some abstractions produced extremely poor
quality heuristics as measured by GDRC and by the average number of expansions done
by greedy best-first search solving problems using that heuristic. Other heuristics fared
significantly better both in terms of GDRC and average expansions by greedy best-first
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Figure 14: Expansions using different Towers of Hanoi PDB abstractions.

search. If we examine the plot in Figure 14 we can see that there are several clusters of
heuristics. The heuristics with a GDRC of about 0 are clustered together, all requiring
greedy best-first search to expand between 107 and 108 nodes. These heuristics are the
worst heuristics, because they largest disk is abstracted. The next cluster of heuristics have
a GDRC of about 0.4 to 0.5 and require greedy best-first search to expand between 106.5 and
107 nodes. These are the heuristics where the largest disk is not abstracted, but the second
largest disk is abstracted. These abstractions also produce very poor quality heuristics,
but the heuristics represent a significant improvement over the heuristics where the largest
disk is abstracted. Each color in Figure 14 represents a mapping with a different largest
abstracted disk, with the blue “X” glyph representing the best pattern database where only
the smallest disks are abstracted. As we can see in this plot, there is a definite overall trend
where mappings that product heuristics with a higher GDRC tend to fare better overall in
terms of average total expansions used by greedy best-first search.

The hill climbing algorithm selected the heuristic that contained disks 0, 1, 2, 4, 5, 6,
7, and 8 (skipping the 3 disk). An example of how the hill climbing algorithm selected
this heuristic can be seen in the green circles and line in Figure 14 when starting from
an abstraction that abstracted the largest disk. The hill climbing algorithm climbed a hill
leading to a reasonable, albeit not the most effective, heuristic. Despite failing to find the
optimal heuristic, the selected heuristic is quite reasonable nonetheless, falling between the
86th and the 75th percentile overall, a significant improvement for an automated approach.

5.3 City Navigation

In addition to building pattern database heuristics using hill climbing on GDRC, it is also
possible to build a portal-style heuristic by hill climbing on GDRC. Using the city navigation
domain, we defined a portal heuristic (Goldenberg, Felner, Sturtevant, & Schaeffer, 2010)
by selecting a number of nodes to be portal nodes (we used the same number of nodes as
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Heuristic Average GDRC Average greedy best-first search expansions

Random Portals 0.44 2200
Nexus Portals 0.76 488
Hill Climbed Portals 0.60 1117

Table 8: Expansions and GDRC using different ways to select portal nodes

cities, 150), and calculating the true distance from every node to the closest portal node.
The heuristic for two nodes is the true distance between the portals associated with each
node minus the distance of each node to its own portal. In the event that this quantity is
negative, 0 is used. This heuristic is highly accurate across long distances because it uses
the true distance between the portals, but it is obviously less accurate when comparing
two nodes that share the same portal. When constructing portal heuristics, the critical
difference between an effective portal heuristic and a poor quality portal heuristic is the
selection of which nodes are portals. We allowed our algorithm to automate this process
by hill climbing on GDRC. The algorithm is initialized with a random array of nodes as
the portals. At each step, the algorithm iterates through the indexes in its array of portals,
considering moving the location that is currently serving as a portal to a different location.
In our implementation, we considered two times the number of cities, or 300 different
random places. We then assessed the GRDC of the new heuristic using a sample of 100,000
randomly selected pairs of places. If moving the city to a new location improved GDRC, we
kept the portal array with the new place, otherwise, we discarded the change as its GDRC
is inferior to that of the incumbent. When we reach the end of the array, we restart at
the beginning. If we reach a point where we are at the same position in the array, and all
other aspects of the array remain unchanged since the last time we modified that index, the
algorithm terminates, returning the array of portals for use in a heuristic.

Results from this experiment are shown in Table 8. The average GDRC is the GDRC
that one obtains by selecting 100,000 random pairs of start and end nodes and calculating
GDRC using those nodes. The average greedy best-first search expansions is the average
number of expansions needed to solve a City Navigation problem with a random start and
goal.

We considered three different methods for selecting portal nodes. The first was to
completely randomize the selection of portal nodes, which unsurprisingly resulted in the
lowest GRDC and the highest number of expansions. The most successful method for
selecting portal nodes was to identify the nexus nodes, and use those nodes as the portals.
Unsurprisingly, this method led to the highest GDRC, and the fewest number of expansions.
This result further demonstrates the usefulness of GDRC in identifying a quality heuristic for
greedy best-first search. Last, our automatic algorithm for finding portal nodes performed
significantly better than random, while still trailing the hand-selected portals. We believe
that a better search strategy may be able to better capture the potential performance gain
offered by high GDRC heuristics.
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5.4 Sliding Tile Puzzle

We can also compare the GDRC-generated PDBs to instance-specific PDBs for the sliding
tile puzzle (Holte et al., 2005). On this domain, in order to get an accurate estimate
of τ , we had to increase the number of nodes expanded going backwards from 10,000 to
1,500,000. Following the hill climbing procedure, the algorithm selected a pattern database
that tracked the 1, 3, 4, 7, 8, and 11 tiles. The results of using this PDB are shown in Table
3. While this abstraction is not as strong as the outer L abstraction, it is the fourth best
PDB for minimizing the average number of expansions done by greedy best-first search
out of the 462 possible 6-tile pattern databases. The automatically constructed PDB is
two orders of magnitude faster than the number of expansions one would expect to do
using an average 6-tile PDB, and three orders of magnitude faster than the worst 6-tile
PDB for greedy best-first search. The GDRC-generated PDB works substantially better for
greedy best-first search then the state-of-the-art instance-specific PDBs, requiring about one
twentieth of the expansions. One additional advantage that the GDRC-generated PDB has
over instance-specific PDBs is the fact that GDRC produces a single PDB, unlike instance
specific PDBs, which produce a new PDB for every problem.

In summary, these results show that GDRC is useful for predicting the relative quality
of heuristics for greedy best-first search. They also showed that it is possible to leverage this
quantitative metric to automatically construct a heuristic for greedy best-first search, and
that the automatically created heuristics are extraordinarily effective for greedy best-first
search.

6. Related Work

As a metric, GDRC predicts that heuristics that have a high rank correlation with d∗ will
work well. In general, the objective of h is to approximate h∗, not d∗, so one alternative way
to find a quality heuristic is to leverage this fact and try to construct a heuristic directly
that mimics d∗, generally referred to as d. Indeed, this approach is generally quite successful
(as opposed to relying exclusively on h), handily outperforming h in many situations (Wilt
& Ruml, 2014).

Gaschnig (1977) describes how to predict the worst case number of nodes expanded
by A*, and also discusses how weighting the heuristic can affect the worst case final node
expansion count. His predictions, however, have two limitations. First, the predictions
assume the search space is a tree, and not a graph, as is the case for many applications of
heuristic search. In addition to that, the worst case predictions only depend on the amount
of error present in the heuristic, where error is measured as relative deviation from h∗(n).
For A*, this criterion makes a certain amount of sense, but for greedy best-first search,
we have seen that relative deviation from h∗(n) cannot be used to predict when greedy
best-first search will perform poorly. Gaschnig points out that increasing the weight ad
infinitium may decrease performance, which is precisely the phenomenon we documented
in Section 2.

Chenoweth and Davis (1991) show that if the heuristic is “rapidly growing with loga-
rithmic cluster”, a greedy best-first search can be done in polynomial time. A heuristic is
rapidly growing with logarithmic cluster if, for every node n, h(n) is within a logarithmic
factor of a monotonic function f of h∗(n), and f grows at least as fast as the function

301



Wilt & Ruml

g(x) = x. We are not aware of any heuristics that have been proven to be rapidly growing
with logarithmic cluster.

A number of works consider the question of predicting search algorithm performance
(Korf et al., 2001; Pearl, 1984; Helmert & Röger, 2008), although the subject attracting
by far the most attention is determining how many nodes will be expanded by an optimal
search algorithm. As we saw in Section 3, the behavior of optional search does not in general
predict the behavior of GBRS. Lelis, Zilles, and Holte (2011) did an empirical analysis of
suboptimal search algorithms, predicting the number of nodes that would be expanded by
Weighted IDA*, but it is not clear if those methods can predict greedy best-first search
behavior, and thus tell us if increasing the weight too far can be detrimental.

Korf (1993) provides an early discussion of how increasing the weight may actually be
bad, showing that when recursive best first search or iterative deepening A* is used with a
weight that is too large, expansions actually increase. This paper is also an early example
of exploring how the weight interacts with the expansion count, something central to our
work.

Hoffmann (2005) discusses why the FF heuristic (Hoffmann & Nebel, 2001) is an ef-
fective way to solve many planning benchmarks when used in conjunction with enforced
hill climbing. The paper shows that in many benchmark problems, the heuristic has small
bounded-size plateaus, implying that the breadth-first search part of the enforced hill climb-
ing algorithm is bounded, which means that those problems can be solved quickly, some-
times in linear time. Although enforced hill climbing is a kind of greedy best-first search,
its behaviour is very different from greedy best-first search when a promising path turns
into a local minimum. Greedy best-first search considers nodes from all over the search
space, possibly allowing very disparate nodes to compete with one another for expansion.
Enforced hill climbing limits consideration to nodes that are near the local minimum (with
nearness measured in edge count), which means that the algorithm only cares about how
the heuristic performs in a small local region of the space. Hoffmann (2011) extends this
concept, describing a process for automatically proving that a domain will have small local
minima.

Xu, Fern, and Yoon (2009) discuss constructing heuristics for a suboptimal heuristic
search, but the algorithm they consider is a beam search. Beam searches inadmissibly
prune nodes to save space and time, so their function is ultimately being used not to rank
nodes, but to make a decision as to whether or not to keep any one node. The function
that Xu et al. create can be used to rank nodes, but the input function requires a variety of
features of the state to function, and is created by using training data from trial search runs.
Our approach of creating a heuristic by hill-climbing on GDRC does not require training
instances, nor does it require any information about the states themselves. Hill-climbing
on GDRC does, however, have the limitation that the automatic generation of heuristics
only works when an appropriate search space can be defined, as with abstraction-based
heuristics.

7. Conclusion

Suboptimal heuristic searches rely heavily on the heuristic node evaluation function. We
first showed that greedy best-first search can sometimes perform worse than A*, and that
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although in many domains there is a general trend where a larger weight on the heuristics
in Weighted A* leads to a faster search, there are also domains where a larger weight leads
to a slower search. It has long been understood that greedy best-first search has no bounds
on performance, and given a poor heuristic, greedy best-first search could very well expand
the entire state space, or never terminate if the state space is infinite. Our work shows
that poor performance is not just a theoretical curiosity, but that this behavior can occur
in practice.

We then considered characteristics of effective heuristics for greedy best-first search. We
showed several examples in which the conventional guidelines for building heuristics for A*
can actually harm the performance of greedy best-first search. We used this experience
to develop alternative observations and desiderata for heuristics for use with greedy best-
first search. The first is that from every node, there should be a path to a goal that only
decreases in h. The second, an important special case of the first, is that nodes with h = 0
should be connected to a goal via nodes with h = 0. The third observation is that nodes
that require including high h nodes in the solution should themselves have as high an h
value as possible.

We then showed that the domains where greedy best-first search is effective share a
common trait of the heuristic function: the true distance from a node to a goal, defined
as d∗(n), correlates well with h(n). This information is important for anyone running
suboptimal search in the interest of speed, because it allows them to identify whether or
not the assumption that weighting speeds up search is true or not, critical knowledge for
deciding which algorithm to use.

Finally, we showed that goal distance rank correlation (GDRC) can be used to compare
different heuristics for greedy best-first search, and demonstrated how it can be used to
automatically construct effective abstraction heuristics for greedy best-first search.

Recent work has shown that search algorithms explicitly designed for the suboptimal
setting can outperform methods like weighted A*, which is a simple unprincipled derivative
of an optimal search (Thayer & Ruml, 2011; Thayer, Benton, & Helmert, 2012; Stern,
Puzis, & Felner, 2011). Our results indicate that the same holds true for heuristic functions
as well: suboptimal search deserves its own specialized methods. Given the importance of
suboptimal methods in solving large problems quickly, we hope that this investigation spurs
further analysis of suboptimal search algorithms and the heuristic functions they rely on.
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