
Journal of Artificial Intelligence Research 56 (2016) 547-571 Submitted 01/16; published 08/16

Research Note
Time-Bounded Best-First Search for Reversible and Non-reversible

Search Graphs

Carlos Hernández CARLOS.HERNANDEZ.U@UNAB.CL
Departamento de Ciencias de la Ingenierı́a,
Universidad Andrés Bello,
Santiago, Chile

Jorge A. Baier JABAIER@ING.PUC.CL
Departamento de Ciencia de la Computación
Pontificia Universidad Católica de Chile
Santiago, Chile

Roberto Ası́n RASIN@UCSC.CL

Departamento de Ingenierı́a Informática
Universidad Católica de la Santı́sima Concepción
Concepción, Chile

Abstract
Time-Bounded A* is a real-time, single-agent, deterministic search algorithm that expands

states of a graph in the same order as A* does, but that unlike A* interleaves search and action exe-
cution. Known to outperform state-of-the-art real-time search algorithms based on Korf’s Learning
Real-Time A* (LRTA*) in some benchmarks, it has not been studied in detail and is sometimes not
considered as a “true” real-time search algorithm since it fails in non-reversible problems even it
the goal is still reachable from the current state. In this paper we propose and study Time-Bounded
Best-First Search (TB(BFS)) a straightforward generalization of the time-bounded approach to any
best-first search algorithm. Furthermore, we propose Restarting Time-Bounded Weighted A* (TBR

(WA*)), an algorithm that deals more adequately with non-reversible search graphs, eliminating
“backtracking moves” and incorporating search restarts and heuristic learning. In non-reversible
problems we prove that TB(BFS) terminates and we deduce cost bounds for the solutions returned
by Time-Bounded Weighted A* (TB(WA*)), an instance of TB(BFS). Furthermore, we prove TBR

(WA*), under reasonable conditions, terminates. We evaluate TB(WA) in both grid pathfinding and
the 15-puzzle. In addition, we evaluate TBR (WA*) on the racetrack problem. We compare our
algorithms to LSS-LRTWA*, a variant of LRTA* that can exploit lookahead search and a weighted
heuristic. A general observation is that the performance of both TB(WA*) and TBR (WA*) im-
proves as the weight parameter is increased. In addition, our time-bounded algorithms almost
always outperform LSS-LRTWA* by a significant margin.

1. Introduction

In many search applications, time is a very scarce resource. Examples range from video game path
finding, where a handful of milliseconds are given to the search algorithm controlling automated
characters (Bulitko, Björnsson, Sturtevant, & Lawrence, 2011), to highly dynamic robotics (Schmid,
Tomic, Ruess, Hirschmüller, & Suppa, 2013). In those settings, it is usually assumed that a standard
search algorithm will not be able to compute a complete solution before an action is required, and
thus execution and search must be interleaved.

c©2016 AI Access Foundation. All rights reserved.

HERNÁNDEZ, BAIER, & ASÍN

Time-Bounded A* (Björnsson, Bulitko, & Sturtevant, 2009) is an algorithm suitable for search-
ing under tight time constraints. In a nutshell, given a parameter k, it runs a standard A* search
towards the goal rooted in the initial state, but after k expansions are completed, a move is per-
formed and then search, if still needed, is resumed. The move is computed as follows. If the agent
is in the path π found by A* from the root node to the best node b in the search frontier then the
agent is moved towards b following the path π. Otherwise, it performs “backtracking move”, re-
turning the agent to its previous state. The algorithm always terminates with the agent at the goal
state, if the problem has a solution.

Time-Bounded A* is an algorithm that is relevant to the real-time search community. It is
significantly superior to well-known real-time heuristic search algorithms in some applications.
Indeed Hernández, Baier, Uras, and Koenig (2012) showed it significantly outperforms state-of-the-
art real-time heuristic search algorithms such as RTAA* (Koenig & Likhachev, 2006) and daRTAA*
(Hernández & Baier, 2012) in pathfinding.

Being a relatively new algorithm, Time-Bounded A* has not been studied deeply in the liter-
ature. One of the reasons for this is perhaps its inability to adequately deal with non-reversible
problems. Indeed, in non-reversible problems any real-time search algorithm will fail as soon the
algorithm has led the agent to a dead-end state; i.e., one from which the goal is unreachable. Time-
Bounded A*, however, has an additional failure condition: it will always fail as soon as a backtrack
move is required over an unreversible action. Thus the class of problems it cannot solve is more lim-
ited compared to other real-time search algorithms, like, for example, the well-known LRTA* (Korf,
1990). For this reason, Time-Bounded A* is sometimes excluded from experimental comparisons
with real-time search algorithms (see e.g. Burns, Ruml, & Do, 2013, p. 725).

In this paper we extend the time-bounded search approach in two directions. As already noted
by their authors (Björnsson et al., 2009), the time-bounded approach is not limited just to A*. A first
contribution of this paper is a study of what are the implications of using other search algorithms
instead of A*. Specifically, we generalize Time-Bounded A* to Time-Bounded Best-First Search.
In general, if A is an instance of Best-First Search, we call TB(A) the algorithm that results from
applying the time-bounded approach toA. A second contribution of this paper is an extension to the
time-bounded search approach that allows the algorithm to deal more adequately with non-reversible
problems. The algorithm we propose here, Restarting Time-Bounded Weighted A*—which we call
TBR(WA*)—, can be seen as lying in the middle ground between time-bounded algorithms and
learning-based real-time search algorithms like Korf’s Learning Real-Time A* (LRTA*) (1990). In
fact, TBR (WA*) restarts search from the current state when a backtracking move is not available
and updates the heuristic function.

We carry out a theoretical analysis of both Time-Bounded Weighted A* (TB(WA*)), an instance
of TB(BFS), and of TBR (WA*). For TB(WA*) we establish upper and lower bounds for the
solution cost. Our cost bound establishes that, in some domains, the solution cost may be reduced
significantly by increasing w without increasing search time; hence, in contrast to what is well-
known about Weighted A* when solving offline search problems, we might obtain better solutions
by increasing the weight. This result is important since it suggests that TB(WA*) (with w > 1)
should be preferred to TB(A*) in domains in which WA* runs faster than A*. While WA* does not
always run faster than A* (see e.g., Wilt & Ruml, 2012), it is known that it does in many situations.

Experimentally, we evaluate TB(WA*) on pathfinding benchmarks and in the 15-puzzle, and
TBR (WA*) on the racetrack problem. In all three benchmarks we observe performance improve-
ment as w is increased. In addition, we observe TB(WA*) is significantly superior to both TB(A*)

548

TIME-BOUNDED BEST-FIRST SEARCH FOR REVERSIBLE AND NON-REVERSIBLE SEARCH GRAPHS

and LSS-LRTWA* (Rivera, Baier, & Hernández, 2015), a real-time search algorithm that can use
weighted heuristics.

This paper extends work that appears in conference proceedings (Hernández, Ası́n, & Baier,
2014), by including an empirical analysis on new benchmarks (Counter Strike Maps, the racetrack,
and the 15-puzzle), by extending pathfinding experiments with 16-neighbor connectivity, by pro-
viding a lower bound for the cost of the solution returned by TB(WA*) (Theorem 2, below), and by
introducing, analyzing, and evaluating TBR (WA*).

The rest of the paper is organized as follows. We start by describing the background needed
for the rest of the paper. Then we describe TB(BFS) and TBR (BFS), including a formal analysis
of their properties. Then we describe the experimental results, and finish with a summary and
perspectives for future research.

2. Background

Below we describe the background for the rest of the paper.

2.1 Search in Reversible and Non-reversible Environments

A search graph is a tuple G = (S,A), where S is a finite set of states, A ⊆ S × S is a set of edges
which represent the actions available to the agent in each state. A path over graph (S,A) from s to
t is a sequence of states π = s0s1 · · · sn, where (si, si+1) ∈ A, for all i ∈ {0, . . . , n − 1}, s0 = s,
and sn = t. We say that t is a successor of s if (s, t) is an edge in A. Moreover, for every s ∈ S we
define Succ(s) = {t | (s, t) ∈ A}.

A cost function c for a search graph (S,A) is such that c : A→ R+; i.e., it associates an action
with a positive cost. The cost of a path π = s0s1 · · · sn is c(π) =

∑n−1
i=0 c(si, si+1), i.e. the sum

of the costs of each edge considered in the path. A cost-optimal path from s to t is one that has
lowest cost among all paths between s and t; we denote this cost by c∗(s, t). In addition, we denote
by c∗T (s, t) the cost of a cost-optimal path between s and t that visits states only in T , that is, a
cost-optimal path π = s1s2 . . . sn such that s = s1, sn = t, and si ∈ T , for all i ∈ {2, . . . , n− 1}.

A search problem is a tuple (S,A, c, sstart , sgoal) where G = (S,A) is a search graph, sstart
and sgoal are states in S, and c is a cost function for G. A search graph G = (S,A) is reversible if
A is symmetric; that is, whenever (s, t) ∈ A then (t, s) ∈ A. A search problem is reversible if and
only if its search graph is reversible. Consequently, problem is non-reversible if its search graph
contains an action (s, t) but does not contain an action (t, s).

A solution to a search problem is a path from sstart to sgoal .

2.2 Best-First Search

Best-First Search (BFS) (Pearl, 1984) encompasses a family of search algorithms for static envi-
ronments which associate an evaluation function f(s) with every state s. The priority is such that
f(s) < f(t) when s is viewed as a more promising node than t. BFS starts off by initializing the
priority of all states in the search space to infinity, except for sstart , for which the priority is set to
f(sstart). A priority queue Open is initialized as containing sstart . In each iteration, the algorithm
extracts from Open the state with lowest priority, s. For each successor t of s it computes the eval-
uation fs(t), considering the path that has been found to t from s. If fs(t) is lower than f(t), then t

549

HERNÁNDEZ, BAIER, & ASÍN

is added to Open and f(t) is set to fs(t). The algorithm repeats this process until sgoal is in Open
with the lowest priority.

A pseudo code is presented in Algorithm 1. The f -value of state s is usually implemented as
an attribute of s, and the Open list is implemented as a priority list. Furthermore, we assume the
cost fs(t) computed in Line 13 is a function of the path to t via s. Thus fs(t) can only take a finite
number of values during an execution of BFS, because it depends on the (finite) number of simple
paths that connect the initial state with s.

Algorithm 1: Best-First Search
1 sroot ← scurrent
2 Open ← ∅
3 foreach s ∈ S do
4 f(s)←∞
5 f(sroot)← evaluation for sroot
6 Insert sroot in Open
7 while Open 6= ∅ do
8 Let s be the state with minimum f -value in Open
9 if s = sgoal then

10 return s
11 Remove s from Open
12 foreach t ∈ Succ(s) do
13 fs(t)← evaluation function for t considering that t is discovered from s
14 if fs(t) < f(t) then
15 f(t)← fs(t)
16 parent(t)← s
17 Insert t in Open

18 return “no solution”

An instance of Best-First Search is Weighted A* (WA*) (Pohl, 1970). WA* computes the eval-
uation function in terms of two other functions, g and h. The g-value corresponds to the cost of the
lowest-cost path found so far towards s, and it is implemented as an attribute of s. WA*’s evalu-
ation function is defined as f(s) = g(s) + wh(s), where g(s) is the cost of the lowest-cost path
found from sstart to s. In addition, h is a non-negative, user-given heuristic function such that h(s)
estimates the cost of a path from s to sgoal . Finally, w is a real number greater than or equal to 1.

The pseudo-code for WA* can be obtained from Algorithm 1 by storing the g-value as an at-
tribute of the state, while the h value is computed by an external function. The resulting pseudo-code
appears in Algorithm 2.

A heuristic function h is admissible if and only if h(s) ≤ c∗(s, sgoal), for all s ∈ S. Function
h is consistent if h(sgoal) = 0, and h(s) ≤ c(s, t) + h(t) for every edge (s, t) of the search graph.
Consistency implies that if π is a path from s to t then h(s) ≤ c(π) + h(t), which, in turn, implies
admissibility.

BFS’s closed list—denoted henceforth by Closed—is defined as the set of states that are not in
Open and that are such that g(s) is not infinity.1 In other words, it contains the states for which a
path is known but that are not being considered for re-expansion.

1. BFS initially sets f(s) to infinity for every s that is not the start node. In WA* this translates to setting g(s) to infinity
for all s except from sstart .

550

TIME-BOUNDED BEST-FIRST SEARCH FOR REVERSIBLE AND NON-REVERSIBLE SEARCH GRAPHS

Algorithm 2: Weighted A*
1 sroot ← scurrent
2 Open ← ∅
3 foreach s ∈ S do
4 g(s)←∞
5 f(s)←∞
6 g(sroot)← 0
7 f(sroot)← wh(sroot)
8 Insert sroot in Open
9 while Open 6= ∅ do

10 Let s be the state with minimum f -value in Open
11 if s = sgoal then
12 return s
13 Remove s from Open
14 foreach t ∈ Succ(s) do
15 gs,t = min{g(t), g(s) + c(s, t)}
16 if gs,t < g(t) then
17 g(t)← gs,t
18 f(t)← g(t) + wh(t)
19 parent(t)← s
20 Insert t in Open

21 return “no solution”

If h is admissible, WA* is known to find a solution whose cost cannot exceed wc∗(sstart , sgoal).
As such, WA* may return increasingly worse solutions as w is increased. The advantage of increas-
ing w is that search time is usually decreased because fewer states are expanded. When w = 1,
WA* is equivalent to A* (Hart, Nilsson, & Raphael, 1968). Another interesting result generalizes a
well-known property of consistent heuristics of the A* algorithm. It is formally stated as follows:

Lemma 1 (Ebendt & Drechsler, 2009) At every moment during the execution of Weighted A* from
state sroot, if h is consistent, upon expansion of a state s (Line 14 of Algorithm 2), it holds that
g(s) ≤ wc∗(sroot, s).

Another instance of Best-First Search is Greedy Best-First Search (GBFS). Here f is equal to
the user-given heuristic function h. When WA* is used with a sufficiently large value of w, both
WA* and GBFS rank nodes in a similar way. Indeed, let fGBFS and fWA* denote, respectively, the f
function for GBFS and WA*. If w is such that it exceeds the g-value of every node ever generated
and two nodes s1 and s2 have been generated with the same g-value by both algorithms such that
fGBFS(s1) = h(s1) > h(s2) = fGBFS(s2), then it will hold that fWA*(s1) > fWA*(s2). However,
even if w is sufficiently large, the reverse is not always true since fWA*(s1) > fWA*(s2) can hold
true when h(s1) = h(s2), because the g-value in fWA* acts in practice as a tie breaker.

2.3 Real-Time Heuristic Search

In real-time search the objective is to solve a search problem subject to an additional real-time
constraint. Under this constraint, a constant amount of time (independent of problem size) is given
to the search algorithm, by the end of which it is expected to perform one or more actions in a
sequence. Such a constant is very small in relation to the time that would be required by an offline

551

HERNÁNDEZ, BAIER, & ASÍN

search algorithm to solve search problem. If after performing actions the agent has not reached
the goal, the process repeats. Each iteration of the algorithm can be understood as two consecutive
episodes: (1) a search episode, in which a path is computed, and (2) an execution episode, in which
the actions in such a path are performed.

Rather than receiving a time limit in seconds, most real-time search algorithms receive a param-
eter, say k, and guarantee that the computational time taken by the search episode is bounded by a
non-decreasing function of k. An example of a real-time search algorithm is Local Search-Space,
Learning Real-Time A* (LSS-LRTA*; Algorithm 3) (Koenig & Sun, 2009). It receives a search
problem P and a parameter k. In its search episode, it runs a bounded execution of A* rooted at
the current state which expands at most k states. Following, it updates the heuristic values of those
states in the closed list of the A* run. This update, usually referred to as learning step, makes h
more informed, and guarantees that the following holds for every s in A*’s closed list:

h(s) = min
t∈Open

{c∗Closed (s, t) + h(t)}. (1)

The execution episode performs the actions that appear in the path found by A* from the current
state towards the state which has lowest f -value in the open list. In reversible search spaces if h

Algorithm 3: LSS-LRTA*
Input: A search problem P and a natural number k

1 s← sstart
2 while s is not a goal state do
3 run A* from s until k states are expanded or a goal node the best state in Open
4 best← state in A*’s closed list with lowest f -value
5 for each s ∈ Closed do
6 update the h-value of s such that Equation 1 holds
7 move along the path found by A* between s and best
8 s← best,

is initially consistent it can be shown that LSS-LRTA* terminates when the search problem has a
solution (Koenig & Sun, 2009). If the search space is non-reversible, however, termination cannot
be guaranteed. As we see later, time-bounded algorithms (without restarts) can prove a solution
does not exist as well. This property does not hold for algorithms whose search expands nodes
whose distance from the current state is bounded, like LSS-LRTA*.

2.4 Comparing Two Real-Time Search Algorithms

One way frequently used in the literature to compare two real-time search algorithms A and B is by
comparing the cost of the returned paths when the algorithms are configured is such a way that their
search episodes have approximately the same duration. Assume that a real-time search algorithm
requires n search episodes to solve a search problem and that its runtime is T . Then we say that the
average time per search episode for that run is T/n.

To evaluate the relative performance of two algorithms A and B we use a set of benchmark
problems P and a set of algorithm parameters. For each parameter of algorithm A, we obtain and
record the average solution cost for all problems in P and the average time per episode. We do
likewise with B and then plot the average solution cost versus the average time per episode for each
algorithm. If the curve for algorithm A is always on top of the curve for algorithm B we can clearly

552

TIME-BOUNDED BEST-FIRST SEARCH FOR REVERSIBLE AND NON-REVERSIBLE SEARCH GRAPHS

state that B is superior to A, because B returns better-quality solutions for a comparable search time
per episode.

Another approach that has been used to compare real-time search algorithms is the Game Time
Model (Hernández et al., 2012). In this model, time is partitioned into uniform time intervals. An
agent can execute one movement during each time interval, and search and movements are done
in parallel. The objective is to move the agent from its start location to its goal location in as few
time intervals as possible. The game time model is motivated by video games. Video games often
partition time into game cycles, each of which is only a couple of milliseconds long (Bulitko et al.,
2011). When using the Game Time Model, the implementation of the real-time search algorithm is
modified to stop search as soon as T units of time—where T is a parameter—have passed.

3. Time-Bounded Best-First Search

Time-Bounded A* (TB(A*), Björnsson et al., 2009) is a real-time search algorithm based on A*.
Intuitively, TB(A*) can be understood as an algorithm that runs an A* search from sstart to sgoal
that alternates a search phase with an execution phase until the goal is reached. In each search phase
a bounded number of states are expanded using A*. In the execution phase there are two cases.
If the agent is on the path from sstart to the best state in Open , then a forward movement on that
path is performed. Otherwise, the algorithm performs “backtracking moves” in which the agent is
moved to the state from where it came from. The search phase does not execute if a path connecting
sstart and sgoal has already been found. The algorithm terminates when the agent has reached the
goal.

Our generalization of TB(A*) is Time-Bounded Best-First Search, which simply replaces A*
in TB(A*) by a Best-First Search. Its pseudo code is shown in Algorithm 4. The parameters
are a search problem (S,A, c, sstart , sgoal), and an integer k which we refer to as the lookahead
parameter.

TB(BFS) uses a variable scurrent to store the current state of the agent. Its MoveToGoal proce-
dure (called from Main) implements the loop that alternates search and execution. At initialization
(Lines 27–28) scurrent is initialized to sstart , and, among other things, BFS’s Open list is set to
contain sstart only. If the goal state has not been reached (represented by the fact that variable
goalFound is false), a bounded version of BFS is called (Line 31) that expands k states, and then
computes a path from sstart to the state in Open that minimizes the evaluation function f . The
path is built quickly by following parent pointers, and it is stored in variable path . In the execu-
tion phase (Lines 32–36), if the current position of the agent, scurrent , is on path, then the agent
performs the action determined by the state immediately following scurrent on path . Otherwise, a
backtracking move is implemented by moving the agent to the parent of s in the search tree of BFS,
parent(scurrent). The use of backtracking moves is a mechanism that guarantees that the agent will
eventually reach a state in variable path because, in the worst case, the agent will eventually reach
sstart . As soon as such a state is reached the agent will start moving towards the state believed to be
closest to the goal.

Algorithm 4 is equivalent to TB(A*) when BFS is replaced by A*. Finally, we call Time-
Bounded Greedy Best-First Search (TB(GBFS)) the algorithm that results when we use Greedy
Best-First Search instead of BFS.

Note that the length of the path cannot in general be bounded by a constant on the size of the
problem. To bound the computation of each search episode we can use the same technique described

553

HERNÁNDEZ, BAIER, & ASÍN

Algorithm 4: Time-Bounded Best-First Search
1 procedure InitializeSearch()
2 sroot ← scurrent
3 Open ← ∅
4 foreach s ∈ S do
5 f(s)←∞
6 f(sroot)← evaluation for sroot
7 Insert sroot in Open
8 goalFound ← false
9 function Bounded-Best-First-Search()

10 expansions ← 0
11 while Open 6= ∅ and expansions < k and f(sgoal) > mint∈Open f(t) do
12 Let s be the state with minimum f -value in Open
13 Remove s from Open
14 foreach t ∈ Succ(s) do
15 Compute fs(t) considering that t is discovered from s.
16 if fs(t) < f(t) then
17 f(t)← fs(t)
18 parent(t)← s
19 Insert t in Open

20 expansions ← expansions + 1

21 if Open = ∅ then return false
22 Let sbest be the state with minimum priority in Open .
23 if sbest = sgoal then goalFound ← true
24 path ← path from sroot to sbest
25 return true
26 function MoveToGoal()
27 scurrent ← sstart
28 InitializeSearch()
29 while scurrent 6= sgoal do
30 if goalFound = false then
31 if Bounded-Best-First-Search() = false then return false
32 if scurrent is on path then
33 scurrent ← state after scurrent on path
34 else
35 scurrent ← parent(scurrent);

36 Execute movement to scurrent
37 return true
38 procedure Main
39 if MoveToGoal() = true then
40 print(“the agent is now at the goal state”)
41 else
42 print(“no solution”)

554

TIME-BOUNDED BEST-FIRST SEARCH FOR REVERSIBLE AND NON-REVERSIBLE SEARCH GRAPHS

by Björnsson et al. (2009), whereby an additional counter (analogous to k is used to measure the
effort for path extraction). This is omitted from the pseudocode for clarity.

3.1 Properties

Now we analyze a few interesting properties of the algorithms we have just proposed. First, just
like TB(A*), TB(BFS) always terminates and finds a solution if one exists. This is an important
property since many real-time heuristic search algorithms (e.g., LSS-LRTA*) enter an infinite loop
on unsolvable problems. Second, we prove an upper and a lower bound on the cost of solutions
returned by TB(WA*). This bound is interesting since it suggests that by increasing w one might
obtain better solutions rather than worse.

Theorem 1 TB(BFS) will move an agent to the goal state given a reversible search problem P if a
solution to P exists. Otherwise, it will eventually print “no solution”.

Proof: Follows from the fact that Best-First Search eventually finds a path towards the goal. This is
because of the fact that the search space is finite and that each state can only be inserted intoOpen a
finite number of times. In addition, all moves carried out by the algorithm (including moving from
s to parent(s)) are executable in a reversible search space. �

It is important to note that the reason why TB(BFS) will eventually print “no solution” in an
unsolvable problem is dependent on the fact that an Open list is used. LSS-LRTA* cannot always
detect unsolvable problems because search can only expand a locality around the current state. This
is a characteristic of agent-centered search algorithms (Koenig, 2001), a class of algorithms that
TB(BFS) is not a member of.

The following two lemmas are intermediate results that allow us to prove an upper bound on the
cost of solutions obtained with TB(WA*). The results below apply to TB(A*) but to our knowledge
Lemma 2 and Theorem 2 had not been proven before for TB(A*).

In the results below, we assume that P = (S,A, c, sstart , sgoal) is a reversible search problem,
that TB(WA*) is run with a parameter w ≥ 1 and that h is an admissible heuristic. Furthermore, we
assume that c+ = max(u,v)∈A c(u, v), that c− = min(u,v)∈A c(u, v), and that N(w) is the number
of expansions needed by WA* to solve P . Finally, we assume k � N(w) which is a reasonable
assumption given that we are in a real-time setting.

Lemma 2 The cost of the moves incurred by an agent controlled by TB(WA*) before goalFound

becomes true is bounded from below by bN(w)−1
k cc− and bounded from above by bN(w)−1

k cc+.

Proof: N(w) − 1 states are expanded before goalFound becomes true. If k states are expanded
per call to the search procedure, then clearly bN(w)−1

k c is the number of calls for which Best-First-
Search terminates without setting goalFound to true. Each move costs at least c− and at most c+,
from where the result follows. �

Now we focus on the cost that is incurred after a complete path is found. The following Lemma
is related to a property enjoyed by TB(A*) and stated in Theorem 2 by Hernández et al. (2012).

Lemma 3 The cost of the moves incurred by an agent controlled by TB(WA*) after goalFound has
become true cannot exceed 2wc∗(sstart , sgoal).

555

HERNÁNDEZ, BAIER, & ASÍN

Proof: Assume goalFound has just become true. Let π be the path that starts in sstart , ends in
scurrent and that is defined by following the parent pointers back to sstart . Path π is the prefix of a
path to the lowest f -value state in a previous run of WA* and therefore, by Lemma 1, is such that
c(π) < wc∗(sstart , sgoal). Now the worst case in terms of number of movements necessary to reach
the goal is that path and π coincide only in sstart . In this case, the agent has to backtrack all the
way back to sstart . Once sstart is reached, the agent has to move to the goal through a path of cost at
most wc∗(sstart , sgoal). Thus the agent may not incur a cost higher than 2wc∗(sstart , sgoal) to reach
the goal. �

Now we obtain a lower bound and an upper bound on the solution cost for TB(WA*) which
follows straightforwardly from the two previous lemmas.

Theorem 2 Let C be the solution cost obtained by TB(WA*). Then,

bN(w)− 1

k
cc− ≤ C ≤ bN(w)− 1

k
cc+ + 2wc∗(sstart , sgoal).

Proof: We put together the inequalities implied by Lemmas 2 and 3. �

A first observation about this result is that it has been shown empirically that in some domains,
when w is increased, N(w) may decrease substantially. Gaschnig (1977), for example, reports that
in the 8-puzzle N(1) is exponential in the depth d of the solution whereas N(w), for a large w is
subexponential in d. In other domains like grid pathfinding, it is well known that using high values
for w results in substantial reductions in expanded nodes (see e.g., Likhachev, Gordon, & Thrun,
2003). Thus, when increasing w, both the lower bound and the first term of the upper bound may
decrease substantially. The second term of the upper bound, 2wc∗(sstart , sgoal), when increasing
w, may increase only linearly with w. This suggests that there are situations in which better- rather
than worse-quality solutions may be found when w is increased. As we see later, this is confirmed
by our experimental evaluation.

A second observation about the bounds is that the factor b(N(w) − 1)/kc decreases as k in-
creases. This suggests that when k is large (i.e., close to N(w)), increasing w may actually lead to
decreased performance.

Putting both observations together, Theorem 2 suggests that TB(WA*) will produce better so-
lutions than TBA* when k is relatively small in problems in which WA* expands fewer nodes than
A* in offline mode. Problems in which WA* does not expand fewer nodes than A* exist (Wilt &
Ruml, 2012).

Finally, it is not hard to see that Theorem 2 can be generalized to other algorithms that provide
optimality guarantees. Given two search algorithms A and B that provide such bounds and whose
relative performance is known, the theorem can be used as a predictor of the relative performance
of TB(A) versus TB(B).

3.2 Non-reversible Search Problems via Restarting

In non-reversible problems, well-known real-time heuristic search algorithms such as LSS-LRTA*
will fail when, in the execution episode, a state from which there is no path to the goal is visited.
Time-bounded algorithms like TB(BFS) will fail under that very same condition but they will also
fail as soon as a physical backtrack is required over a non-reversible action. This second condition

556

TIME-BOUNDED BEST-FIRST SEARCH FOR REVERSIBLE AND NON-REVERSIBLE SEARCH GRAPHS

for failure is the reason why sometimes time-bounded algorithms are discarded for use in non-
reversible domains. The objective of this section is to propose a time-bounded algorithm that, when
used in non-reversible problems, will not fail due to the latter condition, but only due to the former.

Our modification of TB(WA*) for non-reversible problems comes from incorporating into it the
two key characteristics of real-time search algorithms like LSS-LRTA*: search restarts and heuristic
updates. Indeed, whenever “physical backtracking” is not available, or, more generally, when some
predefined “restart condition” holds, our algorithm restarts search. In addition, to avoid getting
trapped in infinite loops, our algorithm updates the heuristic using the same update rule of LSS-
LRTA*. We call the resulting algorithm Restarting Time-Bounded Weighted A* (TBR (WA*)).

Algorithm 5 shows the details of TBR (WA*). Lines 10–12 are the most relevant difference
with the previous algorithm. The algorithm restarts search when the agent is not in path and certain
“restart condition”, which must become true when there is no action leading from the current state
(scurrent) to its parent (parent(scurrent)).

Algorithm 5: Restarting Time-Bounded Weighted A*
1 function MoveToGoal()
2 scurrent ← sstart
3 InitializeSearch()
4 while scurrent 6= sgoal do
5 if goalFound = false then
6 if Bounded-WA*() = false then return false;
7 if scurrent is on path then
8 scurrent ← state after scurrent on path
9 Execute movement to scurrent

10 else if restart condition holds then
11 Update heuristic function h using LSS-LRTA* update rule (Equation 1)
12 InitializeSearch()
13 else
14 scurrent ← parent(scurrent);
15 Execute movement to scurrent

16 return true
17 procedure Main
18 if MoveToGoal() = true then
19 print(“the agent is now at the goal state”)
20 else
21 print(“no solution”)

Note that prior to restarting the algorithm updates the heuristic just as LSS-LRTA* would. This
can be implemented with a version of Dijkstra’s algorithm. Note that the number of states that may
need to be updated may not be bounded by a constant. If needed, we can compute the update in
an incremental manner, across several episodes. We refer the reader to the analysis of Koenig and
Sun (2009), and Hernández and Baier (2012) for details about the implementation and proofs of
correctness.

3.2.1 TERMINATION OF TBR (WA*)

TBR (WA*) can be used in both reversible and non-reversible domains. If the heuristic function h
is initially consistent and the search graph is strongly connected, the algorithm terminates.

557

HERNÁNDEZ, BAIER, & ASÍN

Theorem 3 Let P be a search problem with a strongly connected search graph. Then TBR (WA*),
run with a consistent heuristic h, finds a solution for P .

The proof for Theorem 3 depends on some intermediate results, some of which have proofs that
appear elsewhere. The following result establishes that if h is consistent, then it remains consistent
after being updated.

Lemma 4 (Koenig & Sun, 2009) If h is consistent it remains consistent after h is updated with
Equation 1.

Another intermediate results says that h cannot decrease after an update following Equation 1.

Lemma 5 (Koenig & Sun, 2009) If h is initially consistent then h(s), for every s, cannot decrease
if h is updated following Equation 1.

Another intermediate result says that h(s) finitely converges, which intuitively means that even
if we wanted to apply an infinite number of updates to h, then from some point on, hwill not change
anymore.

Definition 1 (Finite Convergence) A series of functions {fi}i≥0 finitely converges to function f if
there exists an n such that for every m ≥ n, it holds that fm = f . In addition, we say that a series
of functions {fi}i≥0 finitely converges if there exists a function f to which it finitely converges.

Lemma 6 Let h0 be a consistent heuristic function and P be a strongly connected graph. Let
σ = {hi}i≥0 be such that hk+1 is the function that results from (1) assigning hk to hk+1 then (2)
updating hk+1 using Equation 1, for some set Closed and Open generated by a bounded Weighted
A* run rooted at an arbitrary state. Then σ finitely converges.

Proof: A first observation is that hk(s) is bounded from above by a positive number for every s
and every k. Indeed, because of Lemma 4, hk is consistent, and thus admissible, for every k. In
addition, because the problem has a solution, hk(s) ≤ c∗(s, sgoal), for every s and every k.

A second observation is that the set of h-values that any state s can take is finite, even if σ is
infinite. Formally we prove H(s) = {hk(s) | k ≥ 0} is a finite set. Indeed, it is not hard to verify
by induction (we leave it as an exercise to the reader) that by using Equation 1, for every k ≥ 0, it
holds that hk(s) = c(πsk) + h0(s

′) for some, possibly empty path πsk originating in s and finishing
in s′. Now recall that hk(s) is bounded from above and observe there are only finitely many paths
in the graph whose cost is bounded. We conclude thatH(s) is a finite set, for every s.

Now the proof follows by contradiction, assuming σ does not finitely converge. Because σ is
non-decreasing (Lemma 5), the only possibility is that σ increases infinitely often. This implies
that there is at least one state s such that H(s) is infinite: a contradiction. We conclude σ finitely
converges. �

Note that the previous lemma is not saying anything about the function that σ converges to; we
do not need to know which function is it for the rest of the proof. The last intermediate result is
related to the result by Ebendt and Drechsler (2009) that was stated in Section 2.2 (Lemma 1).

Lemma 7 At every moment during the execution of Weighted A* from state sroot, if h is consistent,
for every state s in the open list, it holds that g(s) ≤ wc∗Closed (sroot, s).

558

TIME-BOUNDED BEST-FIRST SEARCH FOR REVERSIBLE AND NON-REVERSIBLE SEARCH GRAPHS

Proof: Let π be a cost-optimal path from sroot to s that visits only states in Closed. Let s′ be the
state that precedes s in π. Because s′ is part of an optimal path we have:

c∗Closed (sroot, s
′) + c(s′, s) = c∗Closed (sroot, s). (2)

Because s is a successor of s′, it holds that:

g(s) ≤ g(s′) + c(s′, s). (3)

Because of Lemma 1, we have that:

g(s′) ≤ wc∗(sroot, s′), (4)

Inequalities 3 and 4 imply:
g(s) ≤ wc∗(sroot, s′) + c(s′, s). (5)

Because w > 0 and c∗Closed ≥ c∗:

g(s) ≤ wc∗Closed (sroot, s
′) + wc(s′, s) = w(c∗Closed (sroot, s

′) + c(s′, s)). (6)

Substituting with Equation 2 we have that:

g(s) ≤ wc∗Closed (sroot, s), (7)

which finishes the proof. �

Now we provide a proof of the main result of this section.

Proof (of Theorem 3) : Let us assume the algorithm does not terminate and thus enters an infinite
loop. Note this means the algorithm restarts an infinite number of times (otherwise, Weighted A*
would eventually find the goal state, allowing the agent to reach the goal). Assume a moment
during this infinite execution after h has converged (we know this by Lemma 6), and let s1s2 . . . be
an infinite sequence of states such that si is a state where search was restarted. We now prove that
for every i, h(si) > h(si+1).

LetO denote the contents of the open list exactly when the algorithm expanded si+1, and Closed
denote the contents of the closed list immediately before the heuristic is updated. From Equation 1,
the following holds:

h(si) = c∗Closed (si, sO) + h(sO), for some sO ∈ O (8)

We can rewrite Equation 8 as:

wh(si) = wc∗Closed (si, sO) + wh(sO), (9)

Let g(sO) denote the g-value of sO exactly when si+1 is preferred for expansion over sO. Now,
we prove that wc∗Closed (si, sO) ≥ g(sO). Indeed, if sO ∈ Closed this follows from Lemma 1 and
from the fact that c∗Closed ≥ c∗ and w ≥ 1. On the other hand, if sO ∈ Open, then we obtain
wc∗Closed (si, sO) ≥ g(sO) from Lemma 7. Now we use this fact to write:

wh(si) ≥ g(sO) + wh(sO). (10)

559

HERNÁNDEZ, BAIER, & ASÍN

Because the algorithm preferred to expand si+1 instead of sO, then g(sO) + wh(sO) ≥ g(si+1) +
wh(si+1), and hence:

wh(si) ≥ g(si+1) + wh(si+1). (11)

Finally, because w > 0 and g(si+1) > 0 we obtain h(si) > h(si+1).
This implies that the sequence of states s1s2 . . . has strictly decreasing h-values. But because

the state space is finite, it must be the case that si = sj , for some i and j with i 6= j, which would
lead to conclude that h(si) > h(si), a contradiction. �

4. Experimental Results

This section presents our experimental results. The objective of our experimental evaluation was to
understand the effect of the weight configuration on the performance of both TB(WA*) and TBR

(WA*). To that end, we evaluate TB(WA*) in reversible search problems (grid pathfinding and the
15-puzzle), and TBR (WA*) in a non-reversible problem (the racetrack). For reference, we compare
against LSS-LRTWA* (Rivera et al., 2015), a version of LSS-LRTA* that uses Weighted A* rather
than A* in the search phase. We used this algorithm since it is among the few real-time search
algorithms that are able to exploit weights during search. LSS-LRTWA* is configured to perform a
single action in each execution phase.

We decided not to include results for WLSS-LRTA* (Rivera et al., 2015), another real-time
search algorithm that exploits weights, for two reasons. First, our new results are focused on rel-
atively large lookahead values (over 128). With these lookahead values, Rivera et al. (2015), in
grid-like terrain, observe improvements but not very significant. Second, we observed that, on the
15-puzzle, WLSS-LRTA* yields worse performance as w is increased.

In Section 4.1 we report results in 8- and 16-neighbor grids in a similar manner as was reported
in an earlier publication (Hernández et al., 2014). Section 4.2 reports results for 8- and 16-neighbor
grids using the Game Time Model (cf. Section 2.4). Section 4.3 reports results on non-reversible
maps in a deterministic version of a setting used to evaluate algorithms for the Stochastic Shortest-
Path problem (Bonet & Geffner, 2003). Finally, Subsection 4.4 reports results on the 15-puzzle.

The path-finding tasks of Section 4.1 and Section 4.2 are evaluated using 8-neighbor (Bulitko
et al., 2011; Koenig & Likhachev, 2005) and 16-neighbor grids (Aine & Likhachev, 2013) (see
Figure 5). The costs of the movements are 1,

√
2, and

√
5 for, respectively, orthogonal, diagonal,

chess-knight movements. In our implementation the agent cannot “jump over” obstacles. In addi-
tion, a diagonal movement (d, d) (for d ∈ {−1, 1}) is illegal in (x, y) if either (x+d, y) or (x, y+d)
is an obstacle. For 8-neighbor and 16-neighbor grids we use the octile distance and the Euclidean
distance as heuristic values, respectively. All experiments were run on an Intel(R) Core(TM) i7-
2600 @ 3.4Ghz machine, with 8Gbytes of RAM running Linux. All algorithms have a common
code base and use a standard binary heap for Open . Ties in Open are broken in favor of larger
g-values; we do not have a rule for breaking further ties.

4.1 Results in 8-Neighbor and 16-Neighbor Grid Maps

We evaluated the algorithms considering solution cost and runtime, as measures of solution quality
and efficiency, respectively, for several lookahead and weight values.

We used all 512 × 512 maps from the video game Baldurs Gate (BG), all the Room maps
(ROOMS), and all maps of different size from the Starcraft (SC) available from N. Sturtevant’s

560

TIME-BOUNDED BEST-FIRST SEARCH FOR REVERSIBLE AND NON-REVERSIBLE SEARCH GRAPHS

 300

 500

 1000

 2000

 4000
 6000

 10000

TB
(W

A*
)(1

.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

C
o
st

 (
lo

g
 s

ca
le

)

Algorithm

8-neighbor BG Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 128
Lookahead 256

 300

 500

 1000

 2000

 4000
 6000

 10000

 30000

TB
(W

A*
)(1

.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

C
o
st

 (
lo

g
 s

ca
le

)

Algorithm

8-neighbor Room Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 128
Lookahead 256

 500
 1000
 2000

 10000
 20000

 100000

TB
(W

A*
)(1

.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

C
o
st

 (
lo

g
 s

ca
le

)

Algorithm

8-neighbor Starcraft Maps

Lookahead 1
Lookahead 32

Lookahead 128
Lookahead 256
Lookahead 512

Lookahead 1024

 2000

 10000
 20000

 100000

 1e+06

TB
(W

A*
)(1

.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

C
o
st

 (
lo

g
 s

ca
le

)

Algorithm

8-neighbor Counter Strike Maps

Lookahead 1
Lookahead 32

Lookahead 128
Lookahead 256
Lookahead 512

Lookahead 1024

Figure 1: In the 8-neighbor results, solution cost tends to decrease as w or the lookahead parameter
is increased.

path-finding repository (Sturtevant, 2012). In addition, we used 7 large maps from Counter Strike
(CS), whose sizes range between between 4259× 4097 and 4096× 5462.

We evaluated six lookahead values (1, 4, 16, 64, 128, 256) for the 512 × 512 maps and six
lookahead values (1, 32, 128, 256, 512, 1024) for SC and CS maps. We used six weight values
(1.0, 1.4, 1.8, 2.2, 2.6, 3.0). For each map we generated 50 random solvable search problems, re-
sulting in 1800 problems for BG, 2000 problems for ROOMS, 3250 problems for SC, and 350
problems for CS.

Figures 1 and 2 show performance measures for the 8-neighbor grid maps. Note here that the
average search time per episode is the same across all algorithms when using the same lookahead
parameter. This is because search time per episode is proportional to the lookahead parameter and
depends on no other variable (in particular, it does not depend on the weight). Thus fair conclusions
can be drawn when comparing two configurations if their lookahead parameter is set to the same
value.

561

HERNÁNDEZ, BAIER, & ASÍN

 0

 1

 2

 3

 4

 5
TB

(W
A*

)(1
.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

R
u
n
ti

m
e
 (

m
s)

Algorithm

8-neighbor BG Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 128
Lookahead 256

 0
 2
 4
 6
 8

 10

 20

 25

TB
(W

A*
)(1

.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

R
u
n
ti

m
e
 (

m
s)

Algorithm

8-neighbor Room Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 128
Lookahead 256

 1

 3
 5

 50

TB
(W

A*
)(1

.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

R
u
n
ti

m
e
 (

m
s)

Algorithm

8-neighbor Starcraft Maps

Lookahead 1
Lookahead 32

Lookahead 128
Lookahead 256
Lookahead 512

Lookahead 1024

 60

 200

 1000

 10000
 20000

TB
(W

A
*)
(1

.0
)

TB
(W

A
*)
(1

.4
)

TB
(W

A
*)
(1

.8
)

TB
(W

A
*)
(2

.2
)

TB
(W

A
*)
(2

.6
)

TB
(W

A
*)
(3

.0
)

R
u
n
ti

m
e
 (

m
s)

Algorithm

8-neighbor Counter Strike Maps

Lookahead 1
Lookahead 32

Lookahead 128
Lookahead 256
Lookahead 512

Lookahead 1024

Figure 2: In the 8-neighbor results, search time typically decreases asw or the lookahead parameter
is increased.

We observe the following relations hold for all maps regarding solution cost and search time.

Solution Cost For most lookahead values, solution cost decreases as w is increased. More signifi-
cant improvements are observed for lower lookahead values. This is not surprising in the light
of our cost bound (Theorem 2) . For large lookahead parameters (≥ 256), the value of w does
not affect solution cost significantly. When the lookahead parameter increases, fewer search
episodes are needed and less physical backtracks (back moves) are needed (Hernández et al.,
2014). Back moves strongly influence the performance of the algorithms. In TB(WA*), when
w is increased the number of back moves decreases, which explains the improvement in solu-
tion quality. For example, in the BG maps, when using lookahead 1, the average reduction of
back moves is 1,960.5, when comparing w = 1 and w = 3, whereas when lookahead is 512
this reduction is only 2.4, when comparing w = 1 and w = 3.

562

TIME-BOUNDED BEST-FIRST SEARCH FOR REVERSIBLE AND NON-REVERSIBLE SEARCH GRAPHS

 300

 500

 1000

 2000

 4000
 6000

 10000

TB
(W

A*
)(1

.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

C
o
st

 (
lo

g
 s

ca
le

)

Algorithm

16-neighbor BG Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 128
Lookahead 256

 300
 500

 1000

 2000

 4000
 6000

 10000

 30000

TB
(W

A*
)(1

.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

C
o
st

 (
lo

g
 s

ca
le

)

Algorithm

16-neighbor Room Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 128
Lookahead 256

 500
 1000
 2000

 10000
 20000

 100000

TB
(W

A*
)(1

.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

C
o
st

 (
lo

g
 s

ca
le

)

Algorithm

16-neighbor Starcraft Maps

Lookahead 1
Lookahead 32

Lookahead 128
Lookahead 256
Lookahead 512

Lookahead 1024

 2000

 10000
 20000

 100000

 1e+06

TB
(W

A*
)(1

.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

C
o
st

 (
lo

g
 s

ca
le

)

Algorithm

16-neighbor Counter Strike Maps

Lookahead 1
Lookahead 32

Lookahead 128
Lookahead 256
Lookahead 512

Lookahead 1024

Figure 3: In the 16-neighbor results, solution cost tends to decrease asw or the lookahead parameter
is increased.

Search Time As w is increased, search time decreases significantly for lower lookahead values
and decreases moderately for higher lookahead values. In ROOMS we observe the largest
improvements when w is increased. This behavior in ROOMS is explained because WA*
performs very well in this type of map for w > 1.

Figures 3 and 4 show performance measures for the 16-neighbor grid maps. We observe the
same relations observed in 8-neighbor grid maps regarding solution cost and search time.

4.1.1 8-NEIGHBOR VERSUS 16-NEIGHBOR GRID MAPS

Lower cost solutions are obtained with 8-neighbor grids than with 16-neighbor grids for the looka-
head values 1, 4, and 16 in BG. Note that there exist some 16-neighbor movements which are more
expensive than any 8-neighbor moves, so for small lookaheads, 16-neighbor solutions may have
a similar number of moves, but a worse quality than 8-neighbor solutions. On the other hand, a

563

HERNÁNDEZ, BAIER, & ASÍN

 0

 1

 2

 3

 4

 5

 7
TB

(W
A*

)(1
.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

R
u
n
ti

m
e
 (

m
s)

Algorithm

16-neighbor BG Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 128
Lookahead 256

 0
 2
 4
 6
 8

 10

 20

 25

 30

TB
(W

A*
)(1

.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

R
u
n
ti

m
e
 (

m
s)

Algorithm

16-neighbor Room Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 128
Lookahead 256

 1

 3
 5

 50

TB
(W

A*
)(1

.0
)

TB
(W

A*
)(1

.4
)

TB
(W

A*
)(1

.8
)

TB
(W

A*
)(2

.2
)

TB
(W

A*
)(2

.6
)

TB
(W

A*
)(3

.0
)

R
u
n
ti

m
e
 (

m
s)

Algorithm

16-neighbor Starcraft Maps

Lookahead 1
Lookahead 32

Lookahead 128
Lookahead 256
Lookahead 512

Lookahead 1024

 60

 200

 1000

 10000
 20000

TB
(W

A
*)
(1

.0
)

TB
(W

A
*)
(1

.4
)

TB
(W

A
*)
(1

.8
)

TB
(W

A
*)
(2

.2
)

TB
(W

A
*)
(2

.6
)

TB
(W

A
*)
(3

.0
)

R
u
n
ti

m
e
 (

m
s)

Algorithm

16-neighbor Counter Strike Maps

Lookahead 1
Lookahead 32

Lookahead 128
Lookahead 256
Lookahead 512

Lookahead 1024

Figure 4: In the 16-neighbor results, search time typically decreases as w or the lookahead param-
eter is increased.

(a) (b)

Figure 5: 8-neighborhoods (a) and 16-neighborhoods (b).

564

TIME-BOUNDED BEST-FIRST SEARCH FOR REVERSIBLE AND NON-REVERSIBLE SEARCH GRAPHS

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0.1 0.3 0.5 0.7 0.9 1.1

N
u
m

b
e
r

o
f

th
e
 T

im
e
 I
n
te

rv
a
ls

Duration of Time Interval (ms)

8-neighbor Counter Strike Maps

TB(WA*)(1.0)
TB(WA*)(1.4)
TB(WA*)(1.8)
TB(WA*)(2.2)
TB(WA*)(2.6)
TB(WA*)(3.0)

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0.1 0.3 0.5 0.7 0.9 1.1

N
u
m

b
e
r

o
f

T
im

e
 I
n
te

rv
a
ls

Duration of the Time Interval (ms)

16-neighbor Counter Strike Maps

TB(WA*)(1.0)
TB(WA*)(1.4)
TB(WA*)(1.8)
TB(WA*)(2.2)
TB(WA*)(2.6)
TB(WA*)(3.0)

Figure 6: Results in the Game Time Model.

similar quality is observed for other lookahead values. TB(WA*), for almost all values of w and
lookahead configurations, on 16-neighbor grids performs fewer moves than on 8-neighbor grids.
For example, in SC when w = 2.6 and the lookahead parameter is 1024, 8-neighbor grids need
a factor of 1.6 more moves than 16-neighbor grids. Note however that some 16-neighbor moves
have a higher cost than 8-neighbor moves. Regarding runtime, TB(WA*) in 8-neighbor connectiv-
ity runs faster than TB(WA*) in 16-neighbor connectivity. This happens because the expansion of a
state with 16-neighbor connectivity takes more time than expanding the same state with 8-neighbor
connectivity.

4.2 Results on the Game Time Model

We report results for TB(WA*) using the Game Time Model in the Counter Strike maps for 8-
and 16-neighbor grids. We use 0.1, 0.3, 0.5, 0.7, 0.9, 1.1 milliseconds as the duration of the time
intervals. In this setting, the quality of the solution is measured as the number of time intervals
required to solve the problem, so the fewer the intervals that are used, the better the solution quality
is.

Figure 6 shows average performance. We observe that when the length of the time interval in-
creases, TB(WA*) yields solutions of better quality. On the other hand, as w is increased, TB(WA*)
obtains better solutions. This can be observed more clearly when the duration of the intervals is
small (e.g., 0.1ms). We also observe that better-quality solutions with 16- rather that with 8-neighbor
connectivity. This is because with 16-neighbor connectivity the agent can perform a knight move in
a single interval.

4.3 Results on Non-reversible Search Graphs: The Racetrack

In this section we compare TBR(WA*) and LSS-LRTWA* on a deterministic version of the race-
track problem (Barto, Bradtke, & Singh, 1995; Bonet & Geffner, 2003). In this problem the race-

565

HERNÁNDEZ, BAIER, & ASÍN

 50

 100

 150

 200

 250

 300

 350

 400

 0
.2

 0
.4

 0
.6

 0
.8 1

 1
.2

 1
.4

 1
.6

 1
.8 2

 2
.2

N
u
m

b
e
r

o
f

A
ct

io
n
s

Average Time per Search (ms)

Extended Hansen Racetrack

TBR(WA*)(1.0)
TBR(WA*)(3.0)
TBR(WA*)(5.0)
TBR(WA*)(7.0)

LSS-LRT(WA*)(1.0)
LSS-LRT(WA*)(3.0)
LSS-LRT(WA*)(5.0)
LSS-LRT(WA*)(7.0)

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0
.2

 0
.4

 0
.6

 0
.8 1

 1
.2

 1
.4

 1
.6

 1
.8 2

N
u
m

b
e
r

o
f

A
ct

io
n
s

Average Time per Search (ms)

Game Map Racetrack

TBR(WA*)(1.0)
TBR(WA*)(3.0)
TBR(WA*)(5.0)
TBR(WA*)(7.0)

LSS-LRT(WA*)(1.0)
LSS-LRT(WA*)(3.0)
LSS-LRT(WA*)(5.0)
LSS-LRT(WA*)(7.0)

Figure 7: Results on the Racetrack Grids.

track is represented as a grid where some cells are marked as obstacles. Similar to grid pathfinding,
the problem is to move an agent from a set of initial positions to any of the cells marked as a final
position. Nevertheless, in this problem the agent has an associated velocity, and the set of actions
involve accelerating (vertically or horizontally), or performing a no-op action which maintains the
current velocity.

A state in the racetrack is a tuple (x, y, vx, vy), where (x, y) is the position of the vehicle, and
(vx, vy) is the velocity vector. The actions are represented as tuples of the form (ax, ay), where
ax, ay ∈ {−1, 0, 1}, which correspond to an acceleration vector. Unlike the original version (Barto
et al., 1995), in ours actions are deterministic and we have only one initial and one destination cell.
Because actions are deterministic, when (ax, ay) is performed in (x, y, vx, vy), the new state is given
by (x′, y′, v′x, v

′
y), where v′x = vx+ax and v′y = vy+ay, and where (x′, y′) is computed considering

the vehicle changes its velocity to (v′x, v
′
y) before moving. When the movement towards (x′, y′)

would lead to crashing into an obstacle, like Bonet and Geffner (2003) do, we leave the vehicle next
to such an obstacle with velocity (0, 0).

In our experiments, we used two racetracks. The first—which we refer to as HRT—is a 33 ×
207 grid which corresponds to an extended version of the racetrack used by Hansen and Zilber-
stein (2001) (which is a 33× 69 grid). We also use the game map AR0205SR from Baldur’s Gate,
whose size is 214x212. Below we refer to such a map by GRT.

We generated 50 random test cases for HRT and GRT that were such that the Manhattan distance
between the initial state and goal state was greater than half of the width of the map. The absolute
value of each of the components of the velocity vector is restricted to be at most 3. As a heuristic
we use the Euclidean distance divided by the maximum speed.

We evaluated TBR (WA*) and LSS-LRTAWA* with four weight values (1.0, 3.0, 5.0, 7.0). Fig-
ure 7 shows a plot of the number of actions versus average time per search episode. For TBR (WA*)
the number of actions corresponds to the sum of the number of moves plus the number of times the

566

TIME-BOUNDED BEST-FIRST SEARCH FOR REVERSIBLE AND NON-REVERSIBLE SEARCH GRAPHS

 100

 1000

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

 4
50

 5
00

 5
50

C
o
st

 (
lo

g
 s

ca
le

)

Lookahead

15-puzzle

TBWA*(2)
TBWA*(3)
TBWA*(4)
TBWA*(5)

LSS-LRTWA*(2)
LSS-LRTWA*(3)
LSS-LRTWA*(4)
LSS-LRTWA*(5)

 10000

 100000

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

 4
50

 5
00

 5
50

N
u
m

b
e
r

o
f

E
x
p

a
n
si

o
n
s

(l
o
g

 s
ca

le
)

Lookahead

15-puzzle

TBWA*(2)
TBWA*(3)
TBWA*(4)
TBWA*(5)

LSS-LRTWA*(2)
LSS-LRTWA*(3)
LSS-LRTWA*(4)
LSS-LRTWA*(5)

Figure 8: Cost and time comparison between TB-WA and LSS-LRTWA*

vehicle did not move. We do this because TBR (WA*) does not make any movements when search
is restarted.

It is important to note that the time spent updating the heuristic is proportional to the number
of states being updated. As such an update by TBR (WA*) may take more time than an update
by LSS-LRTWA* because the Closed list may contain more states for the former algorithm. For
this reason we use in our comparison the average time per search, which considers both search and
update time.

In HRT (Figure 7) we observe that the worst behavior is the one obtained with TBR (WA*)(1.0).
Both algorithms improve performance when increasing w, but TBR (WA*), used with a weight
greater than 1.0, is the algorithm that clearly yields the best performance. In GRT, the worst algo-
rithms are TBR (WA*)(1.0) and LSS-LRTA(1.0). Here, both algorithms improve when increasing
the weight.

Because in this benchmark we used fewer problems than on the game maps, we carried out
a 95% confidence analysis on for the cost of the solutions. In the HRT, this showed that costs
for our best configuration TBR (WA*)(5.0) could be 10% away from the true mean, while for
LSS-LRTA*(3.0) costs could be 11% away from the true mean. In the GRT, on the other hand,
the difference in performance of the two best configurations TBR (7) and LSS-LRTWA*(7) is not
statistically significant.

Finally, our experiments showed that the computational cost of learning phase of TB(WA*) is
not higher than that of LSS-LRTA(WA*). Indeed, the number of updates carried out by TB(WA*)
is 3.4 times less than the number of updates carried out by LSS-LRTA(WA*) in HRT and 1.6 time
less in GRT. This explains the better performance in terms of runtime.

567

HERNÁNDEZ, BAIER, & ASÍN

4.4 Results on the 15-Puzzle

We chose the 15-puzzle as a another domain for evaluating the time-bounded algorithms. We
build our 15-puzzle implementation extending Richard Korf’s implementation available from Car-
los Linares’s homepage.2 We present results for TB(WA*), and LSS-LRT(WA*) algorithms. We
use the 100 test cases presented by Korf (1993), which uses the Manhattan distance as a heuristic.

In this domain we report the results in a slightly different way. First, we omit results for TB(A*)
(TB(WA*) with w = 1) because it does not terminate in a reasonable time. This is due to the fact
that A* needs too many expansions for solving the hardest test cases. Second, we use the number
of expansions instead of runtime as an efficiency measure. In this domain, we found this measure
to be more stable since, in general, solving all 100 problems does not take too much time when
w > 1 (0.3s for w = 2; 0.08s for w = 3), and thus time is prone to be affected by external factors
controlled by the operating system.

Figure 8 shows the performance of TB(WA*) and LSS-LRT(WA*). We use lookahead values
in {16, 32, 64, 128, 256, 512} and weights in {2, 3, 4, 5}. We observe the following relations.

Solution Cost The solution cost of TB(WA*) decreases as w is increased for almost all lookahead
values. TB(WA*) obtains better results than LSS-LRTWA* for all lookahead values when
w > 2. With w < 2 the performance of TB(WA*) is worse than the performence of LSS-
LRTA*. On the other hand, TB(WA*) with w = 5 obtains a solution 2.0 times better on
average than the solution obtained by LSS-LRTA* (LSS-LRTWA* with w = 1).

Number of Expansions The number of expansions of TB(WA*) decreases as w is increased.
TB(WA*) is more efficient than LSS-LRTWA* for all lookahead values and w > 2. The
worst performing configuration for TB(WA*) is w = 1.

Note that the curve remains flat for several of the configurations. This is because a small
number of expansions are needed to solve the problem.

In conclusion, considering solution cost and number of expansions, in 15-puzzle TB(WA*) is
the better algorithm. For instance, the average solution cost of TB(WA*) is 1.6 times better on
average than the average solution cost of LSS-LRTA*.

We did not compare to the greedy algorithm of (Parberry, 2015), which is real-time but domain-
specific, unlike our.

5. Summary and Conclusions

This paper introduced Time-Bounded Best-First Search, a generalization of the real-time search
algorithm Time-Bounded A*. In addition, it introduced a restarting version of the time-bounded
approach, TBR (WA*), which unlike TB(BFS), has a better coverage of non-reversible domains.

We carried out a theoretical analysis of both TB(WA*) and TBR (WA*), including termination
results and a cost bound for TB(WA*). Given a weight w, our bound suggests that TB(WA*) will be
significantly superior to TB(A*) precisely on search problems in which WA* expands significantly
fewer states than A*. In addition, our bound suggests that TB(WA*) may not yield benefits in
domains in which WA*, run offline, will not yield any improvements over A*. Our theoretical
bounds can be easily adapted to other instances of Best-First Search that offer guarantees on solution

2. http://scalab.uc3m.es/˜clinares/download/source/ida/ida.html

568

TIME-BOUNDED BEST-FIRST SEARCH FOR REVERSIBLE AND NON-REVERSIBLE SEARCH GRAPHS

quality. For TBR (WA*), we proved termination in strongly connected graphs, even if they contain
non-reversible actions. This property is also enjoyed by real-time search algorithms of the LRTA*
family but is not enjoyed by TB(BFS).

In our experimental evaluation, that focused on pathfinding, the 15-puzzle, and the racetrack
problem, we found both TB(WA*) and TBR (WA*) to be significantly superior to some real-time
search algorithms of the LRTA* family. In addition, we found that performance tends to improve as
the weight parameter is increased, without increasing the time per search episode. This finding is
interesting because although quality can also be improved by increasing the lookahead parameter,
this increases the time spent on each search episode.

It is well known that in many search benchmarks, WA* may expand significantly fewer nodes
than A*. Consistent with this, in our experiments, time-bounded versions of suboptimal algorithms
like Weighted A* produce significantly better solutions than those obtained by TB(A*). Improve-
ments are less noticeable when the lookahead parameter is large, as is also predicted by theory.

We are not the first to observe performance gains when using weights in a real-time setting.
Indeed, our findings are consistent with those of Rivera et al. (2015), who also obtain better solutions
by using weighted heuristics. Our work adds another piece of evidence that justifies studying the
incorporation of weights into other real-time algorithms (e.g., RIBS and EDA;* Sturtevant, Bulitko,
& Björnsson, 2010; Sharon, Felner, & Sturtevant, 2014). Finally, SLA* (Shue & Zamani, 1993)
and LRTS (Bulitko & Lee, 2006) are two algorithms that also perform backtracking moves. An
investigation of whether or not restarts could provide benefits for those algorithms is left for future
work.

Acknowledgements

We thank Vadim Bulitko for providing the Counter Strike maps. This research was partly funded by
Fondecyt grant number 1150328.

References

Aine, S., & Likhachev, M. (2013). Truncated incremental search: Faster replanning by exploiting
suboptimality. In Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI),
Bellvue, Washington, USA.

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time dynamic pro-
gramming. Artificial Intelligence, 72(1-2), 81–138.

Björnsson, Y., Bulitko, V., & Sturtevant, N. R. (2009). TBA*: Time-bounded A*. In Proceedings
of the 21st International Joint Conference on Artificial Intelligence (IJCAI), pp. 431–436.

Bonet, B., & Geffner, H. (2003). Labeled rtdp: Improving the convergence of real-time dynamic
programming.. In ICAPS, Vol. 3, pp. 12–21.

Bulitko, V., & Lee, G. (2006). Learning in real time search: a unifying framework. Journal of
Artificial Intelligence Research, 25, 119–157.

Bulitko, V., Björnsson, Y., Sturtevant, N., & Lawrence, R. (2011). Real-time Heuristic Search for
Game Pathfinding. Applied Research in Artificial Intelligence for Computer Games. Springer.

Burns, E., Ruml, W., & Do, M. B. (2013). Heuristic search when time matters. Journal of Artificial
Intelligence Research, 47, 697–740.

569

HERNÁNDEZ, BAIER, & ASÍN

Ebendt, R., & Drechsler, R. (2009). Weighted A* search - unifying view and application. Artificial
Intelligence, 173(14), 1310–1342.

Gaschnig, J. (1977). Exactly how good are heuristics?: Toward a realistic predictive theory of best-
first search. In Reddy, R. (Ed.), Proceedings of the 5th International Joint Conference on
Artificial Intelligence (IJCAI), pp. 434–441. William Kaufmann.

Hansen, E. A., & Zilberstein, S. (2001). Lao: A heuristic search algorithm that finds solutions with
loops. Artificial Intelligence, 129(1), 35–62.

Hart, P. E., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic determination of
minimal cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2).

Hernández, C., Ası́n, R., & Baier, J. A. (2014). Time-bounded best-first search. In Proceedings of
the 7th Symposium on Combinatorial Search (SoCS).

Hernández, C., & Baier, J. A. (2012). Avoiding and escaping depressions in real-time heuristic
search. Journal of Artificial Intelligence Research, 43, 523–570.

Hernández, C., Baier, J. A., Uras, T., & Koenig, S. (2012). TBAA*: Time-Bounded Adaptive A*.
In Proceedings of the 10th International Joint Conference on Autonomous Agents and Multi
Agent Systems (AAMAS), pp. 997–1006, Valencia, Spain.

Koenig, S. (2001). Agent-centered search. Artificial Intelligence Magazine, 22(4), 109–131.

Koenig, S., & Likhachev, M. (2005). Fast replanning for navigation in unknown terrain. IEEE
Transactions on Robotics, 21(3), 354–363.

Koenig, S., & Likhachev, M. (2006). Real-time adaptive A*. In Proceedings of the 5th International
Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS), pp. 281–288.

Koenig, S., & Sun, X. (2009). Comparing real-time and incremental heuristic search for real-time
situated agents. Autonomous Agents and Multi-Agent Systems, 18(3), 313–341.

Korf, R. E. (1990). Real-time heuristic search. Artificial Intelligence, 42(2-3), 189–211.

Korf, R. E. (1993). Linear-space best-first search. Artificial Intelligence, 62(1), 41–78.

Likhachev, M., Gordon, G. J., & Thrun, S. (2003). ARA*: Anytime A* with Provable Bounds on
Sub-Optimality. In Proceedings of the 16th Conference on Advances in Neural Information
Processing Systems (NIPS), Vancouver, Canada.

Parberry, I. (2015). Memory-efficient method for fast computation of short 15-puzzle solutions.
IEEE Trans. Comput. Intellig. and AI in Games, 7(2), 200–203.

Pearl, J. (1984). Heuristics: Preintelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Pohl, I. (1970). Heuristic search viewed as path finding in a graph. Artificial Intelligence, 1(3),
193–204.

Rivera, N., Baier, J. A., & Hernández, C. (2015). Incorporating weights into real-time heuristic
search. Artificial Intelligence, 225, 1–23.

Schmid, K., Tomic, T., Ruess, F., Hirschmüller, H., & Suppa, M. (2013). Stereo vision based in-
door/outdoor navigation for flying robots. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 3955–3962.

570

TIME-BOUNDED BEST-FIRST SEARCH FOR REVERSIBLE AND NON-REVERSIBLE SEARCH GRAPHS

Sharon, G., Felner, A., & Sturtevant, N. R. (2014). Exponential deepening a* for real-time agent-
centered search. In Proceedings of the 7th Symposium on Combinatorial Search (SoCS), pp.
871–877.

Shue, L., & Zamani, R. (1993). An admissible heuristic search algorithm. In Komorowski, H. J.,
& Ras, Z. W. (Eds.), Proceedings of the 7th International Symposium Methodologies for
Intelligent Systems (ISMIS), Vol. 689 of LNCS, pp. 69–75. Springer.

Sturtevant, N. (2012). Benchmarks for grid-based pathfinding. Transactions on Computational
Intelligence and AI in Games, 4(2), 144 – 148.

Sturtevant, N. R., Bulitko, V., & Björnsson, Y. (2010). On learning in agent-centered search. In
Proceedings of the 9th International Joint Conference on Autonomous Agents and Multi Agent
Systems (AAMAS), pp. 333–340, Toronto, Ontario.

Wilt, C. M., & Ruml, W. (2012). When does weighted A* fail?. In Proceedings of the 5th Sympo-
sium on Combinatorial Search (SoCS), Niagara Falls, Ontario, Canada.

571

