
Journal of Artificial Intelligence Research 56 (2016) 269–327 Submitted 12/15; published 05/16

Combining the Delete Relaxation with Critical-Path Heuristics:
A Direct Characterization

Maximilian Fickert S9MAFICK@STUD.UNI-SAARLAND.DE

Jörg Hoffmann HOFFMANN@CS.UNI-SAARLAND.DE

Marcel Steinmetz STEINMETZ@CS.UNI-SAARLAND.DE

Saarland University, Saarbrücken, Germany

Abstract

Recent work has shown how to improve delete relaxation heuristics by computing
relaxed plans, i. e., the hFF heuristic, in a compiled planning task ΠC which represents
a given set C of fact conjunctions explicitly. While this compilation view of such partial
delete relaxation is simple and elegant, its meaning with respect to the original planning
task is opaque, and the size of ΠC grows exponentially in |C|. We herein provide a di-
rect characterization, without compilation, making explicit how the approach arises from
a combination of the delete-relaxation with critical-path heuristics. Designing equations
characterizing a novel view on h+ on the one hand, and a generalized version hC of hm

on the other hand, we show that h+(ΠC) can be characterized in terms of a combined
hC+ equation. This naturally generalizes the standard delete-relaxation framework: un-
derstanding that framework as a relaxation over singleton facts as atomic subgoals, one
can refine the relaxation by using the conjunctions C as atomic subgoals instead. Thanks
to this explicit view, we identify the precise source of complexity in hFF(ΠC), namely max-
imization of sets of supported atomic subgoals during relaxed plan extraction, which is
easy for singleton-fact subgoals but is NP-complete in the general case. Approximating
that problem greedily, we obtain a polynomial-time hCFF version of hFF(ΠC), superseding
the ΠC compilation, and superseding the modified ΠC

ce compilation which achieves the
same complexity reduction but at an information loss. Experiments on IPC benchmarks
show that these theoretical advantages can translate into empirical ones.

1. Introduction

The delete relaxation in classical planning (McDermott, 1999; Bonet & Geffner, 2001) origi-
nates from work using a STRIPS representation, where state variables are Boolean, action
effects are conjunctions of literals, and action preconditions as well as the goal are restricted
to conjunctions of positive literals (facts). The relaxation assumes that there are no negative
(“delete”) effect literals, hence the name. More generally, i. e., with non-Boolean state vari-
ables, this amounts to assuming that state variables accumulate their values, rather than
switching between them. While optimal delete-relaxed planning is still NP-hard, satis-
ficing delete-relaxed planning is polynomial-time (Bylander, 1994). Relaxed plan heuristics,
employing satisficing delete-relaxed planning for the generation of inadmissible heuristic
functions, have proved highly successful (e. g. Hoffmann & Nebel, 2001; Gerevini, Saetti,
& Serina, 2003; Richter & Westphal, 2010). They form a key ingredient for successful satis-
ficing planning (not giving an optimality guarantee), in particular in almost all winners of
the satisficing-planning tracks of the International Planning Competitions (IPC).

c©2016 AI Access Foundation. All rights reserved.

FICKERT & HOFFMANN & STEINMETZ

Despite this success, the pitfalls of delete-relaxation heuristics (for example, ignoring
resource consumption) have been known since a long time, and there have been intense
efforts from the outset to “take some deletes into account” (e. g., Fox & Long, 2001; Do &
Kambhampati, 2001; Gerevini et al., 2003; Helmert, 2004; van den Briel, Benton, Kamb-
hampati, & Vossen, 2007; Helmert & Geffner, 2008; Cai, Hoffmann, & Helmert, 2009; Baier
& Botea, 2009; Coles, Coles, Fox, & Long, 2013; Alcázar, Borrajo, Fernández, & Fuentetaja,
2013). Two recent approaches, red-black planning (Domshlak, Hoffmann, & Katz, 2015) and
what we refer to as explicit conjunctions, were devised that allow to do so systematically:
partial delete relaxation, that can in principle render the heuristic estimate perfect. We herein
focus on explicit conjunctions.

To summarize our results in what follows, we need some basic notation and concepts
well known in the planning community. We denote the perfect heuristic, returning the pre-
cise remaining cost, by h∗; the heuristic returning the cost of an optimal relaxed plan by h+;
and relaxed plan heuristics by hFF (from the system FF where these were first introduced,
see Hoffmann & Nebel, 2001). We assume the common method of computing relaxed plan
heuristics by relaxed plan extraction on a best-supporter function (Keyder & Geffner, 2008). We
will assume by default that the best-supporter function is derived from the max heuristic
hmax (Bonet & Geffner, 2001). Relaxed plan extraction on a hmax best-supporter function is,
on unit-cost problems, equivalent to the original formulation in terms of relaxed planning
graphs by Hoffmann and Nebel (2001).

Explicit conjunctions were first introduced by Haslum (2009) as a compilation-based
characterization of the critical-path relaxation introduced earlier on by Haslum and Geffner
(2000). This relaxation assumes that, from any goal set of facts (a fact conjunction that
needs to be achieved at some point during a plan), it suffices to achieve the most costly
subgoal (subconjunction) of size at most m. Here, m is a parameter and the corresponding
heuristic is denoted hm. The special case m = 1 is equivalent to the max heuristic, i. e., h1 =
hmax. Haslum’s (2009) compiled planning task Πm represents each size-≤ m conjunction
c via a newly introduced π-fluent πc, and arranges the preconditions and effects on these
π-fluents such that h1(Πm) = hm.

Subsequently, Haslum (2012) introduced the modified compilation ΠC, which admits
arbitrary sets C of conjunctions and guarantees admissibility of h+ on the compilation,
i. e., that h+(ΠC) ≤ h∗, which is not true of h+(Πm). He furthermore showed that this
method converges to h∗, i. e., that h+(ΠC) = h∗ for appropriately chosen C. The downside
of ΠC is that its size is worst-case exponential in |C|: Say that an action a can support a
conjunction c if c can be regressed over a, i. e., a makes part of c true and makes none of c
false. In order to guarantee admissibility of h+(ΠC), ΠC explicitly enumerates all subsets
C′ ⊆ C of conjunctions c that any occurrence of an action a in the plan may support. This
size explosion was tackled by the ΠC

ce compilation (Keyder, Hoffmann, & Haslum, 2012,
2014), which handles each possibly-supported c by a separate conditional effect. ΠC

ce still
guarantees convergence, yet loses information as it ignores cross-context conditions, i. e.,
precondition π-fluents which arise only from the combination of several supported c ∈ C′.

One thing evident from this history of explicit conjunctions is that the resulting heuris-
tic functions combine information inherent in the critical-path relaxation, with information
inherent in the delete relaxation. But in what way, exactly? While the compilation view is
simple and elegant, its meaning with respect to the original planning task is opaque.

270

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

A first simple observation is that the step from size-≤ m conjunctions to arbitrary con-
junctions C is not specific to the, historically, simultaneous step from critical-path to partial
delete relaxation heuristics. The hm heuristic is straightforwardly generalizable to consider,
not all size-≤ m subgoals, but an arbitrary set C of subgoals. Intuitively, we can choose
any set of atomic subgoals, to be kept intact by the critical-path relaxation. We denote the
generalized heuristic by hC.

A second simple observation is that the delete relaxation can be viewed as “allowing to
achieve each fact in separation”: achieving the facts p in a goal set/conjunction one-by-one,
the negative effects within each step do not matter because they concern facts other than p.
Given this, h+ can be characterized in terms of an equation related to that characterizing
h1, but requiring to achieve all size-1 subgoals instead of achieving only the single most
costly one.

Putting the two observations together, we obtain a natural generalization of the stan-
dard delete-relaxation framework: where the standard delete relaxation, like h1, works with
singleton facts as its atomic subgoals, one can use the conjunctions C as atomic subgoals instead.
We spell this out in the form of two heuristic functions we denote by hC+ and hCFF:
(1) The h1-like equation characterizing h+ translates into a hC-like equation characterizing

hC+, equivalent to h+(ΠC).

(2) Relaxed plan extraction to obtain hFF from a h1 best-supporter function translates into
relaxed plan extraction to obtain hCFF (a relaxed plan for ΠC) from a hC best-supporter
function.

Result (1) is of theoretical interest. It formulates hC+ = h+(ΠC) without a compilation,
shedding a different light on Haslum’s (2012) equivalent proposal. Result (2) has more
immediate practical ramifications. It provides an alternative technique to obtain relaxed
plans for ΠC, exponentially more efficient in the worst case because it does not require to
exhaustively enumerate subsets C′ ⊆ C. The hC best-supporter function can be computed
in time polynomial in |C|, similar to hm. Intuitively, as the critical path pertains to single
atomic subgoals, there is no need to enumerate combinations of atomic subgoals here. For
relaxed plan extraction, we avoid such enumeration by identifying and tackling the precise
source of complexity.

Relaxed plan extraction on hC is more complex than relaxed plan extraction on h1 for
two reasons, of which the first corresponds to Haslum’s (2012) observations, yet the second
one only becomes apparent in our new direct formulation:
(a) To ensure convergence, allowing hFF(ΠC) to find real plans in the limit, we need to

collect a set of action occurrences, i. e., pairs (a, C′) of action a and set of supported
conjunctions C′, instead of just a set of actions as in the standard setting (where actions
merely support the facts in their direct effect).

(b) In every occurrence (a, C′) selected during relaxed plan extraction, C′ should be as
large as possible, as atomic subgoals (conjunctions) may now overlap, incurring the
risk of dramatic overestimation (e. g., achieving every fact pair in the global goal sep-
arately). But it is NP-complete to find a cardinality-maximal C′ that does not incur
infeasible cross-context conditions.

To understand this, consider an action a which can support at least one subgoal c ∈ C
during relaxed plan extraction. We need to decide which other current subgoals c′ ∈ C

271

FICKERT & HOFFMANN & STEINMETZ

to support with that same action occurrence. In the standard setting, where c and c′ are
singletons (e. g. c = {p} and c′ = {q}), one can simply support all c′ in a’s positive effects
(e. g. add(a) = {p, q}). In the general case, for arbitrary C, this is no longer so because
the part of c′ not contained in a’s positive effects gets propagated into the new subgoal
regressing over a (e. g. r1 for c′1 = {q, r1} and r2 for c′2 = {q, r2}). Combinations of several
c′ may incur cross-context conditions (e. g. {r1, r2}) harder to achieve than the conjunctions
c′ themselves in isolation.

We will refer to (b), maximization of |C′| during relaxed plan extraction, as the subgoal-
support selection problem. It is striking here that the underlying phenomena – supported
conjunction sets C′ and cross-context conditions – were previously identified and addressed,
yet not put into the specific context relevant for relaxed plan extraction. From this perspec-
tive, Haslum (2012) solves an NP-complete problem enumeratively, putting all solution
candidates (choices of C′) into memory in the form of the compiled task ΠC; and Keyder et
al.’s (2012, 2014) ΠC

ce compilation over-simplifies the problem, ignoring cross-context con-
ditions completely. Yet, if cardinality-maximal C′ is the real issue, why don’t we simply
select a subset-maximal C′ instead? Using a simple greedy approximation to this effect, we
obtain hCFF, extracting relaxed plans for ΠC in polynomial time without having to ignore
cross-context conditions. That heuristic supersedes, from a theoretical perspective and as
far as hFF is concerned, both the ΠC and ΠC

ce compilations.
It is at this point necessary to mention that our observation (2) is not entirely new.

Alcázar et al. (2013) already devised a heuristic they call FFm, extracting a relaxed plan
from a hm best-supporter function (they implement this for m = 2). This is essentially
(2), without the generality of an arbitrary conjunction set C (which can easily be fixed).
However, Alcazar et al.’s work was conducted as part of a much broader scope addressing
heuristic search regression planning, and does not investigate (2) in detail. The design of
FFm does not recognize, and therefore not appropriately address, (a) and (b). Regarding
(b), FFm always selects a single conjunction C′ = {c} to support, a trivial approximation of
the NP-complete |C′|-maximization problem, which may lead to dramatic overestimation.
The overestimation is counter-acted given that FFm also disregards (a), collecting a set of
actions as in standard relaxed plan extraction methods. But that loses convergence – the
value of FFm is bounded by the number of actions – defeating the purpose of the method.

From an empirical perspective, matters are not as clear-cut. Obviously, one can con-
struct cases in which our computational advantage over ΠC, and our information advan-
tage over ΠC

ce and FF2, leads to exponential savings. IPC benchmarks are another matter.
Evaluating all heuristic functions, we find that larger conjunction sets C do typically lead
to smaller search spaces, and that hCFF indeed is much faster than hFF(ΠC) for large C.
Unfortunately, even the slowdown in hCFF typically outweighs the search space reduction,
and best overall performance is most often obtained with small C. On the positive side,
our techniques can yield advantages even with small C, and in some IPC benchmarks large
C is beneficial.

We next introduce our basic notation as well as the ΠC and ΠC
ce compilations in Sec-

tion 2. We spell out our direct characterization of h+(ΠC) in Section 3, and we spell out
our generalized relaxed plan extraction methods in Section 4. We summarize our imple-
mentation and experiments in Section 5, before concluding in Section 6. Most proofs are
replaced in the main text by brief proof sketches. Full proofs are available in Appendix A.

272

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

2. Notations and Technical Background

We use the STRIPS framework. A planning task is a tuple Π = (F ,A, I ,G) where F is a
set of facts, A a set of actions, I ⊆ F is the initial state, and G ⊆ F is the goal. Each action
a ∈ A is a triple (pre(a), add(a), del(a)) of precondition, add list, and delete list, each a subset
of F . We henceforth tacitly assume a given input task Π = (F ,A, I ,G).

A state s is a subset of facts s ⊆ F . Action a is applicable to s if pre(a) ⊆ s; in that case,
applying a in s leads to the state (s∪ add(a)) \ del(a). A plan for s is a sequence of iteratively
applicable actions leading from s to a state that contains the goal G. A plan for the task Π
is a plan for the initial state I . A plan is optimal if its length is minimal among all plans.

We assume throughout that add(a) ∩ del(a) = ∅. This is a natural and common as-
sumption – an action adding p does not also delete it – and is without loss of generality
as any facts in the intersection can be equivalently removed from add(a). The assumption
is necessary for the “achieving each fact in separation” view of the delete relaxation, as
outlined in the introduction.

Note that, for simplicity, we consider unit costs: all action costs are 1, and plan quality is
just plan length. All our results straightforwardly extend to arbitrary non-negative action
costs, and plan quality measured in terms of summed-up cost.

Example 1 For illustration, we will frequently consider the following car-driving example. A
car moves on a one-way line X → Y → Z of locations, from X to Z. Each car move consumes a
fuel unit, and the car’s tank only holds one unit so we must refuel in Y.

To encode this in STRIPS, we design the task Π = (F ,A, I ,G) as follows. F = {carX, carY,
carZ, f uel}, I = {carX, f uel}, and G = {carZ}. A consists of: aXY with precondition
{carX, f uel}, add list {carY}, and delete list {carX, f uel}; aYZ with precondition {carY, f uel},
add list {carZ}, and delete list {carY, f uel}; and are f uel with precondition {carY}, add list
{ f uel}, and empty delete list. The only plan for this task is 〈aXY, are f uel , aYZ〉.

Given a planning task Π, we denote the set of all states by S. A heuristic (also heuristic
function) is a function h : S 7→ N+

0 ∪ {∞} mapping states to natural numbers including
0, or to ∞ to indicate that the state is a dead-end. The perfect heuristic h∗ maps any state
s to the length of an optimal plan for s (or to ∞ if there is no plan for s). A heuristic h is
admissible if h(s) ≤ h∗(s) for all s ∈ S. Abusing notation, we will often identify a heuristic
h with its value h(I) in the initial state. All statements made generalize to arbitrary states
s by setting I := s. By h(Π′), we denote a heuristic for Π whose value is given by applying
h in a modified task Π′. To make explicit that h is computed on Π itself, we write h(Π).

We will characterize heuristic functions in terms of equations over regressed subgoals.
The regression of fact set G over action a, R(G, a), is defined if add(a) ∩ G 6= ∅ and del(a) ∩
G = ∅. In that case, R(G, a) = (G \ add(a)) ∪ pre(a); otherwise, we write R(G, a) = ⊥.

The critical-path relaxation (Haslum & Geffner, 2000) assumes that, from any goal set of
facts, it suffices to achieve the most costly subgoal of size at most m. Here, m is a parameter
and the corresponding heuristic is denoted hm. Precisely, hm is defined as hm := h(G)
where h is a function on fact sets G that satisfies

h(G) =


0 G ⊆ I
1 + mina∈A,R(G,a) 6=⊥ h(R(G, a)) |G| ≤ m
maxG′⊆G,|G′|≤m h(G′) else

(1)

273

FICKERT & HOFFMANN & STEINMETZ

It is easy to see that there is exactly one such h, as assuming two such functions h, h′ where
h(G) 6= h′(G) recursively leads to a contradiction on the initial state.1 The same argu-
ment applies to all h-defining equations considered herein, so henceforth we will assume
uniqueness as given.

For m = 1, the definition of hm becomes identical to that of the max heuristic hmax (Bonet
& Geffner, 2001), which assumes that, to achieve a goal fact set, it is enough to achieve the
maximum costly single fact. For m = |F |, hm = h∗ simply because subgoals of size > |F |
do not exist. Computing hm takes time exponential in m but polynomial in the size of Π.

The delete relaxation assumes that all delete lists are empty; a plan under this relaxation
is a relaxed plan. The ideal delete-relaxation heuristic h+ maps s to the length of an optimal
relaxed plan for s. But optimal relaxed planning is NP-complete (Bylander, 1994). A re-
laxed plan heuristic maps s to the length of some, not necessarily optimal, relaxed plan for
s, which can be computed easily (Hoffmann & Nebel, 2001). The resulting heuristic func-
tions are not admissible, but are often very informative in practice for satisficing planning.
We will follow the common approach of considering the idealized heuristic h+ in theoret-
ical examinations of the delete relaxation (compare, e. g., Hoffmann, 2005, 2011; Bonet &
Helmert, 2010), and considering its effective approximation through relaxed plan heuris-
tics in practice.

Relaxed plan heuristics differ in how they find the relaxed plan. A flexible way of
specifying this are the best-supporter functions introduced by Keyder and Geffner (2008).
A best-supporter function maps each fact p to the action the relaxed plan should use to
support p. Given such a function, relaxed plan extraction starts at the goals, and keeps se-
lecting best supporters, opening their preconditions as new subgoal facts, until initial state
facts are reached. We will denote any heuristic arising from such a process by hFF (dis-
ambiguating in context where needed). A detailed and formal characterization of relaxed
plan extraction will be given in Section 4, where these details are technically relevant.

Practical best-supporter functions are based on hmax = h1, selecting for each p an action
a ∈ A, R(G, a) 6= ⊥minimizing the expression in the middle case of Equation 1 with m = 1
(where the subgoal G is a singleton set {p} which can be identified with its element p).
Alternatively, one can assign best supporters based on the additive heuristic hadd (Bonet &
Geffner, 2001) instead, which differs from h1 by using the sum, rather than the maximum,
over the estimated cost of the facts in a goal set (bottom case in Equation 1). Note that
(in both hmax and hadd) there may be several actions eligible as best supporter. Hence
the construction of a best-supporter functions encompasses tie-breaking, in the sense of
choosing an action from a set of actions supporting a given fact p. Such tie-breaking can
have a large effect on the empirical performance of a relaxed plan heuristic. We will get
back to this in detail in our experiments.

Throughout the paper, we will be concerned with conjunctions c. Following the STRIPS
convention of formulating conjunctive conditions (action preconditions and the goal) as
fact sets, a conjunction c here is a fact set c ⊆ F , e. g. c = {p, q}. However, to improve
readability, we will often notate c as a conjunctive formula instead, e. g. c = p ∧ q.

1. Matters are more complicated in case of 0-cost actions, where the recursion may lead into cycles and only
the point-wise maximal h is unique.

274

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

We will henceforth assume a given set C of conjunctions. In practice, C will be com-
puted once on the input task Π, prior to search.2 We assume throughout that C contains
all singleton conjunctions, {{p} | p ∈ F} ⊆ C. This is just for convenience, notating facts
as a special case of conjunctions. We will sometimes identify singleton conjunctions {p}
with the respective facts p, i. e., notate them without set brackets to avoid clutter; note that
“p” also is the notation we get when writing {p} as a conjunctive formula.

It will be convenient to introduce a shorthand for the operation of collecting the atomic
conjunctions contained in a fact set. Given a set of facts X ⊆ F , and assuming the given
conjunction set C as described, we define XC := {c | c ∈ C, c ⊆ X}. We will sometimes
extend this notation to sets X = {X1, . . . , Xn} of fact sets, where X C is defined pointwise,
i. e., X C :=

⋃
i XC

i .
The ΠC compilation and its relatives are based on representing conjunctions explicitly,

in terms of introducing new facts which are called π-fluents. They introduce one such
fluent, πc, for each c ∈ C. In correspondence to the shorthand just introduced, for a fact
set X ⊆ F , by XπC := {πc | c ∈ C, c ⊆ X} we denote the set collecting the π-fluents
for all atomic conjunctions entailed by X. We extend this notation to sets of fact sets in a
pointwise manner as above.

Using these notations, ΠC can be defined as follows:

Definition 1 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π contain-
ing all singleton conjunctions. The explicit-C compilation ΠC is the planning task (FπC,AπC,
IπC, GπC). Here, FπC, IπC, and GπC are defined as per the shorthand. The set of actions AπC

contains an action a[C′], for every pair a ∈ A and ∅ 6= C′ ⊆ {c ∈ C | R(c, a) 6= ⊥}, with a[C′]
given by

• pre(a[C′]) = [
⋃

c∈C′(pre(a) ∪ (c \ add(a)))]πC, and

• add(a[C′]) = {πc | c ∈ C′}.

The no cross-context explicit-C compilation ΠC
nc is identical to ΠC except that pre(a[C′]) =

{pre(a) ∪ (c \ add(a)) | c ∈ C′}πC.

We refer to pairs (a, C′) of action a and set C′ of supported conjunctions, corresponding
to the compiled actions a[C′] in ΠC and ΠC

nc, as action occurrences. We refer to c \ add(a), for
c ∈ C′, as the context of c in a: for a to support c, the context must be true in the preceding
state. This is captured by the preconditions in ΠC and ΠC

nc, which extend the original pre-
condition with the contexts of the supported conjunctions. For ΠC, the context is collected
across all supported conjunctions, for ΠC

nc this is done for each supported conjunction in-
dividually.

Our definition of ΠC diverges from the original definition by Haslum (2012) in several
minor ways. First, we do not distinguish explicitly between the action’s original effects
vs. its supported conjunctions, instead expressing the add list of a as part of the set C′

of conjunctions that may be supported. This is possible as C is assumed to contain all
singleton conjunctions. As a consequence, we can demand that C′ 6= ∅ (otherwise the
action would have no effect and thus be useless). Second, we do not automatically include

2. The details of exactly how this is done are not relevant to our contribution. We will briefly describe the
methods we use (adopted from Keyder et al., 2012, 2014) in the discussion of experiments, Section 5.

275

FICKERT & HOFFMANN & STEINMETZ

πc facts relying on a context consisting only of non-deleted preconditions. Third, we do
not demand C′ to be “downward closed”, i. e., to contain all subsumed conjunctions c′,
where there exists c ∈ C′ such that c′ ⊆ c. Fourth, we do not include any delete effects.
None of these changes have any consequences for the results we present. Changes two to
four introduce some superfluous actions, simplifying our presentation while not affecting
our results. The fourth change is suitable as we will use ΠC only for generating delete-
relaxation heuristics. For consistent use of language, we will speak of “relaxed plans” for
ΠC nevertheless.

We also modify the notation a bit, relative to Haslum (2012). We notate the actions
as a[C′] instead of AC′ . This will be more convenient. We furthermore somewhat mod-
ified the definition of a[C′] preconditions, exploiting that C′ 6= ∅. Namely, pre(a[C′]) =
[
⋃

c∈C′(pre(a)∪ (c \ add(a)))]πC in ΠC is equivalent to the perhaps more intuitively straight-
forward definition, namely pre(a[C′]) = [pre(a) ∪⋃c∈C′(c \ add(a))]πC as used by Haslum.
For ΠC

nc, the precondition pre(a[C′]) = {pre(a) ∪ (c \ add(a)) | c ∈ C′}πC, given the point-
wise interpretation of the “πC” superscript, equals

⋃
c∈C′ [pre(a) ∪ (c \ add(a))]πC, which

itself is the same as the perhaps more intuitively straightforward definition pre(a[C′]) =
pre(a)πC ∪⋃c∈C′ [pre(a)∪ (c \ add(a))]πC. Observe that our modifications allow to write the
action preconditions in terms of regression, thanks to R(c, a) = pre(a) ∪ (c \ add(a)). In
ΠC, the precondition then reads pre(a[C′]) = [

⋃
c∈C′ R(c, a)]πC. In ΠC

nc, it reads pre(a[C′]) =
{R(c, a) | c ∈ C′}πC. These simplified notations will conveniently link-in with the concepts
we introduce later on.

Note finally that the ΠC compilation introduces all atomic conjunctions into action pre-
conditions and the goal, even ones subsumed by other, larger, atomic conjunctions con-
tained in the same precondition/goal. We stick to this convention throughout, for sim-
plicity. In practice, we ignore the subsumed conjunctions. In the remainder of the paper,
this corresponds to a modified “C” superscript, only including conjunctions c ∈ C, c ⊆ X,
where there does not exist c′ ∈ C, c′ ⊆ X, so that c (c′; correspondingly for the “πC”
superscript. This leaves all results intact exactly as stated.

Example 2 Reconsider our car-driving example task Π from Example 1. As the delete relaxation
ignores the negative effect of aXY, a shortest relaxed plan is 〈aXY, aYZ〉 and h+ = 2.

However, say we set C to contain (all singleton conjunctions as well as) c = carY ∧ fuel.
Then, in ΠC, πc is a precondition of all actions aYZ[C′], i. e., of all actions adding the goal carZ.
The only actions adding πc have the form arefuel[C′] where c ∈ C′. Hence 〈aXY, aYZ〉 is not a
relaxed plan for ΠC. Instead, we need to perform a refueling action, for example in the relaxed plan
〈aXY[{carY}], arefuel[{carY ∧ fuel}], aYZ[{carZ}]〉. We get h+(ΠC) = 3 = h∗(Π).

The growth of ΠC and ΠC
nc is exponential in |C| because action occurrences enumer-

ate subsets C′ ⊆ C of supported conjunctions. This complexity is necessary because,
otherwise, h+(ΠC) and h+(ΠC

nc) would not be admissible. As a simple example, say
the goal in Πn is {g1, . . . , gn}, C contains the singleton conjunctions as well as all fact
pairs, and there is a single action a achieving all of {g1, . . . , gn}. Then h∗(Πn) = 1, and
h+(ΠC

n) = 1 thanks to the optimal plan 〈a[C′]〉 where C′ is the set of all conjunctions,
C′ = C = {{gi} | 1 ≤ i ≤ n} ∪ {{gi, gj} | 1 ≤ i 6= j ≤ n}. However, if we had to achieve
every conjunction separately in ΠC

n , that is, if we included into AπC only actions of the
form a[{c}] for c ∈ C, then we would get h+(ΠC

n) = n + n∗(n−1)
2 because we would have

276

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

to achieve every conjunction c ∈ C with a separate compiled action. (This observation will
become relevant again later on, compare Example 7 in Section 4.3.1.)

The difference between ΠC and ΠC
nc is that the latter, but not the former, ignores what

has been termed cross-context conditions: conjunction preconditions of a[C′] in ΠC which
arise only from the combination of several c ∈ C′. Precisely, a cross-context condition for
a and C′ is a conjunction c ∈ C where c ⊆ ⋃

c∈C′ [pre(a) ∪ (c \ add(a))], but there does not
exist any single c ∈ C′ such that c ⊆ pre(a) ∪ (c \ add(a)). In the ΠC

nc compilation, the pre-
condition of a[C′] does not contain any cross-context conditions, because the superscript
“πC” in pre(a[C′]) = {pre(a) ∪ (c \ add(a)) | c ∈ C′}πC, i. e., the collection of conjunc-
tions, is done for the context of each c ∈ C′ separately. This is in contrast to ΠC where, in
pre(a[C′]) = [

⋃
c∈C′(pre(a) ∪ (c \ add(a)))]πC, the conjunctions are collected from the union

of contexts across c ∈ C′.

Example 3 To illustrate cross-context conditions, we will consider the following abstract exam-
ple (given by Keyder et al., 2014, as part of the proof of their Theorem 3). Π = (F ,A, I ,G) where
F = {g1, g2, p, q1, q2}, I = {q1}, G = {g1, g2} andA consists of: ag1 with precondition {p, q1},
add list g1, and empty delete list; ag2 with precondition {p, q2}, add list g2, and empty delete list;
ap with empty precondition, add list {p}, and empty delete list; aq2 with precondition {q1}, add
list {q2}, and delete list {q1, p}. In this construction, q1 and q2 are mutex; achieving g1 requires
q1 and thus has to be done first, via ap and ag1. To achieve g2, we require q2. Getting q2 through aq2
deletes p, so that we must apply ap a second time before applying ag2. As in the delete relaxation
there never is a need to apply the same action twice, h+ = 4 < 5 = h∗.

Say we set C to contain cq1p = q1 ∧ p, cq2p = q2 ∧ p, and cq1q2 = q1 ∧ q2. Then any
relaxed plan for ΠC must contain two occurrences of ap: cq1p and cq2p are required to achieve the
goal; ap is the only action that can support these conjunctions (note here that aq2 deletes p); and
ap[{cq1p, cq2p}] supporting both conjunctions with a single action occurrence has the unreachable
cross-context condition cq1q2. Consequently, h+(ΠC) = 5 = h∗(Π).

In contrast, in ΠC
nc, ap[{cq1p, cq2p}] does not have the cross-context condition, so 〈aq2[{q2}],

ap[{p, cq1p, cq2p}], ag1[{g1}], ag2[{g2}]〉 is a relaxed plan and h+(ΠC
nc) = 4 = h+(Π) < h∗(Π).

Keyder et al. (2012, 2014) introduced the ΠC
ce compilation, which achieves the same

effect as ΠC
nc but has size polynomial in |C|. This is done by augmenting every original

action a ∈ A with one conditional effect for each c ∈ C that can be regressed over a,
adding πc and requiring the context c \ add(a) as the effect condition.

The ΠC
ce compilation is equivalent to ΠC

nc in the sense that h+(ΠC
ce) = h+(ΠC

nc). In-
tuitively, any occurrence of an action in ΠC

ce, where the conditional effects for the set of
conjunctions C′ fire, is equivalent to the ΠC

nc action a[C′] because in ΠC
ce the conjunctions

c ∈ C′ are handled separately, ignoring cross-context conditions.3 Given this equivalence,
in our theoretical discussion of heuristic functions and their properties – where the size
difference between ΠC

nc and ΠC
ce does not matter – we will refer throughout to ΠC

nc rather
than ΠC

ce. This simplifies matters because we do not have to switch between formalisms
(STRIPS with vs. without conditional effects).

3. Technically, h+(ΠC
ce) ≥ h+(ΠC

nc) was proved by Keyder et al. (2014) in the proof to their Lemma 2, and the
opposite direction h+(ΠC

ce) ≤ h+(ΠC
nc) is symmetric.

277

FICKERT & HOFFMANN & STEINMETZ

We will see in Section 4.3 that the complexity reduction from ΠC to ΠC
ce has its corre-

spondence in a complexity reduction of the subgoal-support selection problem (maximiza-
tion of |C′| during relaxed plan extraction): while that problem is NP-complete for ΠC, it
is polynomial-time for ΠC

nc.

3. Combining the Delete Relaxation with Critical Paths: hC+

We now spell out observation (1) from the introduction, characterizing the combination
of the delete relaxation with critical paths directly, without a compilation, in terms of a
heuristic function we call hC+. Section 3.1 starts with simple novel views on each of the
two components, and Section 3.2 combines these into an equation characterizing hC+. Sec-
tion 3.3 sketches our proof of correctness i. e., that hC+ = h+(ΠC). Section 3.4 summarizes
the properties of hC+, pointing out that the combination of the delete relaxation with criti-
cal paths naturally generalizes its components.

3.1 Novel Views on hm and h+

First, consider the following straightforward characterization of h∗, which will be relaxed
in different manners below: h∗ := h(G) where h is the function on fact sets G that satisfies

h(G) =

{
0 G ⊆ I
1 + mina∈A,R(G,a) 6=⊥ h(R(G, a)) else (2)

This equation obviously characterizes optimal planning, and therewith h∗: we minimize
plan length over all actions that can support our subgoal G.

Slightly rephrasing the critical-path relaxation, it assumes that, to achieve a subgoal G,
it suffices to achieve the most costly atomic subgoal, where the notion of “atomic subgoal”
is a parameter. In the traditional formulation, that parameter is instantiated with “all fact
sets of size at most m”. But there is no need to be so restrictive. The atomic subgoals can be
an arbitrary set of fact-sets, in other words: an arbitrary set C of conjunctions. We merely
need to replace the subgoal-selection mechanisms in hm (Equation 1) with accordingly gen-
eralized ones. We denote the resulting heuristic by hC, defined as hC := h(G) where h is
the function on fact sets G that satisfies

h(G) =


0 G ⊆ I
1 + mina∈A,R(G,a) 6=⊥ h(R(G, a)) G ∈ C
maxG′⊆G,G′∈C h(G′) else

(3)

Trivially, hC = hm if C consists of all conjunctions of size ≤ m. As we shall see below,
hC = h1(ΠC) as one would expect. The latter property is useful only from a theoretical
perspective though, connecting hC to known results about h1. In practice, hC can be com-
puted like hm, by a fixed point process on value assignments to the atomic subgoals C,
taking time polynomial in |C|, in contrast to the size of ΠC. Our particular implementation
will be described in Section 5.1.

It is worth pointing out that the simple generalization from hm to hC already can be
quite useful:

278

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

Example 4 Consider our car-driving example from Example 1, but without the refuel action. This
modified task is unsolvable, and h2 = ∞ recognizes that. Yet, there is no need to reason about all fact
pairs to arrive at this conclusion: Considering the single fact pair C = {c} where c = carY ∧ fuel,
like in Example 2, suffices to get hC = ∞, as c becomes a precondition for achieving the goal,
and there is no action over which c can be regressed. While this particular example only has 4
facts and thus 6 fact pairs, we could scale it arbitrarily by adding solvable parts, blowing up the
computational overhead of h2 while still recognizing unsolvability using the single fact pair c.

Getting back to our discussion of alternate ways to relax h∗, i. e., Equation 2, observe
that Equation 3 uses the correct regression semantics, but relaxes the subgoals considered.
The delete relaxation can be viewed as approaching this vice-versa, keeping the correct
subgoaling but relaxing the regression semantics. This is immediately visible in the fol-
lowing straightforward characterization of h+, as h+ := h(G) where h is the function on
fact sets G that satisfies

h(G) =

{
0 G ⊆ I
1 + mina∈A,∅ 6=G∩add(a) h((G \ add(a)) ∪ pre(a)) else (4)

This is identical to Equation 2 except for pretending that R(G, a) 6= ⊥ even if del(a) ∩ G 6=
∅, i. e., replacing R(G, a) with the relaxed concept that only asks for non-empty add-list
intersection.

The basic observation towards combining hC with h+ is that the underlying relaxation
principles, though they seem unrelated given Equations 3 and 4, can both be viewed as
relaxations pertaining to the subgoaling structure. This becomes visible in the following
alternative characterization of h+:

Lemma 1 Let Π = (F ,A, I ,G) be a planning task, and let h be the function on fact sets G that
satisfies

h(G) =

{
0 G ⊆ I
1 + mina∈A,∅ 6=G′={p|p∈G,R({p},a) 6=⊥} h((G \ G′) ∪⋃p∈G′ R({p}, a)) else (5)

Then h(G) = h+.

Proof: Observe that, for singleton fact sets G = {p}, (a) regressability of G over a trivializes
to add-list intersection, i. e., R({p}, a) 6= ⊥ iff p ∈ add(a), because with add(a)∩ del(a) = ∅
we get p 6∈ del(a); and (b) if G can be regressed over a then the regression simply gener-
ates the action precondition as the new subgoal, i. e., R({p}, a) = pre(a). So Equation 5
simplifies to

h(G) =

{
0 G ⊆ I
1 + mina∈A,∅ 6=G′=G∩add(a) h((G \ G′) ∪ pre(a)) else

With G′ = G ∩ add(a) we have G \ G′ = G \ add(a), so this is equivalent to Equation 4.

As per Equation 5, the delete relaxation can be understood as splitting subgoals up into
singleton facts, and considering regression separately with respect to each of these. As singleton
regression trivializes, in effect we need to worry only about the part of the subgoal we can

279

FICKERT & HOFFMANN & STEINMETZ

support, not about other parts that the same action may contradict.4 While this reformula-
tion is awkward and not useful in the standard setting, it exhibits a possible refinement to
that setting: instead of singleton facts, consider atomic subgoals in the form of an arbitrary
set C of conjunctions.

3.2 The Combined Heuristic

Consider again Equation 5, and compare it with the following equation characterizing h1:

h(G) =


0 G ⊆ I
1 + mina∈A,R({p},a) 6=⊥ h(R({p}, a)) G = {p}
maxp∈G h({p}) else

(6)

Equation 5 can be understood as a less relaxed version of Equation 6. Both decompose
a subgoal G into its atomic subgoals, instantiated as singleton facts, and both minimize
over actions regressing atomic subgoals. The difference is that, while Equation 6 picks the
single most costly atomic subgoal, Equation 5 requires to achieve every atomic subgoal (in
particular, including the ones not supported by a, i. e., G \ G′, in the recursive invocation
of h). As the set G consists exactly of its atomic subgoals, Equation 5 does not need a third
case identifying the atomic subgoals.

Now, hC generalizes h1 in considering the more general atomic subgoals C. Applying
a similar generalization to Equation 5, we obtain our desired combination of the delete
relaxation with critical paths:

Definition 2 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π contain-
ing all singleton conjunctions. The critical-path delete relaxation heuristic, short C-relaxation
heuristic, is defined as hC+ := h(GC), where h is the function on conjunction sets G that satisfies

h(G) =

{
0 ∀c ∈ G : c ⊆ I
1 + mina∈A,∅ 6=G′⊆{c|c∈G,R(c,a) 6=⊥} h((G \ G′) ∪ G′r

C) else
(7)

with G′r defined as G′r :=
⋃

c∈G′ R(c, a).
The no cross-context critical-path delete relaxation heuristic, short nc-C-relaxation heuris-

tic, denoted hC+
nc , is defined identically to hC+ except that we define G′r := {R(c, a) | c ∈ G′}.

Recall here that, for a fact set X, XC := {c | c ∈ C, c ⊆ X} denotes the set of atomic
conjunctions contained in X, and that for a set of fact sets (as in the case of G′r for hC+

nc)
we apply this notation pointwise. As a convention, we will refer to the expression “(G \
G′)∪ G′r

C” in Equation 7, and in related equations, as the recursive subgoal, and to G′r as the
regressed subgoal.

Intuitively, hC+ supports atomic subgoals from C individually by regression as in hC,
but instead of achieving only the most costly one, it achieves all of them. This parallels
our previous comparison between h+ and h1. The subgoals G recursed over now are sets
of conjunctions, because in difference to h+ (Equation 5) atomic subgoals are conjunctions

4. The independence assumptions identified by Keyder and Geffner (2009) are somewhat related to this. But
our formulation pertains to the delete relaxation heuristic h+ itself, ignoring negative side effects; whereas
Keyder and Geffner’s observations pertain to simplifying assumptions in approximations of h+, ignoring
positive side effects.

280

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

instead of single facts, and in difference to hC (Equation 3) we estimate the cost of sets
of atomic subgoals instead of single atomic subgoals. The initializing call on GC inserts
all atomic conjunctions from the global goal, and the recursive subgoals insert all atomic
conjunctions from the regressed subgoal G′r. Hence, like in Equation 5 the set G consists
exactly of its atomic subgoals, and we do not need a third case identifying the atomic
subgoals.

The top case in Equation 7 is self-explanatory. The bottom case generalizes that in
Equation 5. Because atomic subgoals now are non-unit conjunctions, in difference to our
arguments in Lemma 1, regression no longer trivializes: a is not allowed to contradict any
conjunction c ∈ G′, and R(c, a) may be a proper superset of pre(a), no longer trivializing
to the action precondition. Hence, in difference to Equation 5, the more complex notation
is now necessary. There also is a major new source of complexity, relative to Equation 5,
namely the need to allow G′ to be a subset of the supportable atomic subgoals, rather than
just setting G′ to that entire set. This corresponds to the aforementioned subgoal-support
selection problem. We illustrate that problem in Example 5 below; Section 4.3 conducts an
in-depth analysis in the context of relaxed plan extraction.

The difference between hC+ and hC+
nc is, as the notation suggests, designed to match the

difference between ΠC and ΠC
nc. The expressions “

⋃
c∈G′ R(c, a)” vs. “{R(c, a) | c ∈ G′}”

are in obvious correspondence with the action preconditions in Definition 1 (thanks to our
modifications with respect to the original definition). A pair (a, G′) of action and sub-
set of supported atomic subgoals in the hC+ equation corresponds to the ΠC action a[C′]
where C′ = G′, similarly for hC+

nc and ΠC
nc. An instructive alternative way to read the re-

gressed subgoals G′r is in terms of conjunctions. This gives
⋃

c∈G′ R(c, a) =
∧

c∈G′ R(c, a) =∧
c∈G′,p∈R(c,a) p, vs. {R(c, a) | c ∈ G′} = {∧p∈R(c,a) p | c ∈ G′}: one large conjunction vs.

several small ones. This makes a difference because larger conjunctions may contain larger
atomic subgoals, as captured in Definition 2 through the respective use of G′r

C.

Example 5 Consider, as in Example 2 (page 276), our car-driving example with C containing the
singleton conjunctions as well as c = carY ∧ fuel. We get hC+ = h({carZ}), i. e., h defined
as per Equation 7, applied to the conjunction set containing the single goal atomic conjunction
carZ. The only (a, G′) pair supporting carZ is (aYZ, {carZ}). Selecting (a, G′), we get the
recursive subgoal G = {carY, fuel, carY ∧ fuel}. As carY ∧ fuel cannot be supported by aXY
which deletes fuel, the only supporting action for that subgoal is arefuel. Say we select that action,
and G′ := {carY ∧ fuel}. The recursive subgoal then is {carY, fuel} because the conjunctions
carY and fuel in G are not included in G′. In detail, the recursive subgoal results from the ex-
pression (G \ G′) ∪ [

⋃
c∈G′ R(c, a)]C = ({carY, fuel, carY ∧ fuel} \ {carY ∧ fuel}) ∪ R(carY ∧

fuel, arefuel)
C = {carY, fuel} ∪ {carY}C = {carY, fuel} ∪ {carY}. That subgoal can be resolved

using (aXY, {carY}), yielding hC+ = h+(ΠC) = 3 due to the same relaxed plan as in Example 2.
Now consider, as in Example 3 (page 277), our abstract example with C containing the sin-

gleton conjunctions as well as cq1p = q1 ∧ p, cq2p = q2 ∧ p, and cq1q2 = q1 ∧ q2. We have
hC+ = h({g1, g2}), requiring to support each of the two goal facts (written as singleton conjunc-
tive formulas here). This can be done only by (ag1, {g1}) and (ag2, {g2}) respectively; after using
these, we get the recursive subgoal G = {q1, q2, p, q1 ∧ p, q2 ∧ p}. Now we have a non-trivial
subgoal-support selection problem. Ignoring the subsumed subgoals q1, q2, p which can be tackled
as a side effect of tackling the non-subsumed ones q1 ∧ p and q2 ∧ p, we can choose any of (a)

281

FICKERT & HOFFMANN & STEINMETZ

(ap, {q1 ∧ p, q2 ∧ p}), (b) (ap, {q1 ∧ p}), or (c) (ap, {q2 ∧ p}). If we choose (a), then our subgoal
is fully supported i. e., G \ G′ = ∅, yet [

⋃
c∈G′ R(c, ap)]C = {q1, q2}C = {q1, q2, q1 ∧ q2}. The

cross-context conjunction q1 ∧ q2 is not supported by any action, so we cannot get to the initial state
this way. Instead, we need to take either (b) or (c), yielding the recursive subgoals (b) {q2 ∧ p, q1}
respectively (c) {q1 ∧ p, q2}, each of which necessitates support by aq2 as well as another occurrence
of ap, leading to hC+ = h+(ΠC) = h∗ = 5.

Using hC+
nc instead, option (a) produces the different subgoal {R(c, a) | c ∈ G′}C =

{{q1}, {q2}}C = {q1, q2}, not containing the cross-context conjunction q1 ∧ q2. This subgoal
is feasible, and only requires support by aq2, leading to hC+

nc = h+(ΠC
nc) = h+ = 4.

3.3 Proof of Correctness

We prove that Equation 7 does indeed capture h+(ΠC), i. e., that h+(ΠC) = hC+(Π). For
illustration, we first consider the simple case where C contains only the singleton conjunc-
tions:

Proposition 1 Let Π = (F ,A, I ,G) be a planning task, and C = {{p} | p ∈ F}. Then
h+ = hC+.

Proof: With C = {{p} | p ∈ F}, the recursive subgoals G in Equation 7 are sets of singleton
fact-sets, so we can instead perceive G as a set of facts. We can then re-write Equation 7 to:

h(G) =

{
0 G ⊆ I
1 + mina∈A,∅ 6=G′⊆{p∈G|R({p},a) 6=⊥} h((G \ G′) ∪⋃p∈G′ R({p}, a)) else

This is identical to Equation 5 except that G′ is allowed to be a subset of {p ∈ G |
R({p}, a) 6= ⊥}. However, because R({p}, a) = pre(a), the minimum in the bottom case
can always be achieved using G′ = {p ∈ G | R({p}, a) 6= ⊥}, which can only yield smaller
recursive subgoals than G′ ⊂ {p ∈ G | R({p}, a) 6= ⊥}. This concludes the proof with
Lemma 1.

Observe that Proposition 1 proves that h+(ΠC) = hC+(Π) for C = {{p} | p ∈ F}: with
singleton conjunctions only, h+ = h+(ΠC), so by Proposition 1 we have h+(ΠC) = h+ =
hC+(Π) as desired. We now extend this to the general case, for arbitrary conjunction sets:

Theorem 1 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π containing
all singleton conjunctions. Then h+(ΠC) = hC+(Π).

Proof Sketch: We apply Equation 5 to ΠC, characterizing h+(ΠC). Making explicit that the
individual facts in ΠC all are π-fluents, we obtain: h+(ΠC) = h({πc | πc ∈ GπC}), where
h is the function on fact sets G that satisfies h(G) ={

0 ∀πc ∈ G : πc ∈ IπC

1 + mina[C′]∈AπC ,∅ 6=G′={πc|πc∈G,R({πc},a[C′]) 6=⊥} h((G \ G′) ∪ G′r) else

with G′r defined as G′r :=
⋃

πc∈G′ R({πc}, a[C′]).
The condition R({πc}, a[C′]) 6= ⊥ here simplifies to c ∈ C′, because these are exactly

the π-fluents added by a[C′]. So we have G′ = {πc | πc ∈ G, c ∈ C′} and the minimization
is over those a[C′] supporting a non-empty subset of subgoals πc. The c we can in principle

282

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

include into C′ are, by the definition of ΠC, exactly those where R(c, a) 6= ⊥. There is no
point in including c where πc 6∈ G, as this will support the same subgoals yet can only
result in a larger precondition. Hence, renaming C′ into G′ in order to unify notation, we
obtain h(G) ={

0 ∀πc ∈ G : πc ∈ IπC

1 + mina[G′]∈AπC ,∅ 6=G′⊆{c|πc∈G,R(c,a) 6=⊥} h((G \ G′) ∪ G′r) else

with G′r defined as G′r :=
⋃

c∈G′ R({πc}, a[G′]).
Comparing this equation with Equation 7, it is easy to see that the equations are in

exact correspondence via (∗) G = {πc | c ∈ G[7]}, where G[7] denotes the subgoal sets
in Equation 7. (*) is true by definition for the initializing calls, hC+(Π) = h(GC) respec-
tively h+(ΠC) = h({πc | πc ∈ GπC}). (*) is invariant over the bottom cases in both
equations, as G′r =

⋃
c∈G′ R({πc}, a[G′]) = pre(a[G′]) = [

⋃
c∈G′(pre(a) ∪ (c \ add(a)))]πC =

[
⋃

c∈G′ R(c, a)]πC, which matches the regressed subgoal G′r[7] = [
⋃

c∈G′ R(c, a)]C of Equa-
tion 7 as desired.

A similar proof shows the same correspondence for ΠC
nc and hC+

nc :

Theorem 2 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π containing
all singleton conjunctions. Then h+(ΠC

nc) = hC+
nc (Π).

3.4 Properties of the Combination

The combination of the delete relaxation with critical paths, as per Definition 2, naturally
generalizes the properties of its components. This follows from known results along with
the following simple observation:5

Theorem 3 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π containing
all singleton conjunctions. Then h1(ΠC) = h1(ΠC

nc) = hC(Π).

Proof Sketch: Consider first ΠC. Applying Equation 6 (page 6) characterizing h1 to ΠC,
we get h1(ΠC) = h(GπC) where h is the function on fact sets G that satisfies

h(G) =


0 G ⊆ IπC

1 + mina[C′]∈AπC ,R(G,a[C′]) 6=⊥ h(R(G, a[C′])) G = {πc}, c ∈ C
maxπc∈G h({πc}) else

Observe that, in the middle case, we must have c ∈ C′ because otherwise πc 6∈ add(a[C′]);
and that there is no point in including any other conjunctions into C′, i. e., C′) {c}, be-
cause this can only yield a larger recursive subgoal R(G, a[C′]). Hence we can re-write the
previous equation to:

h(G) =


0 G ⊆ IπC

1 + mina[{c}]∈AπC ,R(G,a[{c}]) 6=⊥ h(R(G, a[{c}])) G = {πc}, c ∈ C
maxπc∈G h({πc}) else

5. Keyder et al. (2014) already proved the h1(ΠC) ≤ h1(ΠC
nc) part of this observation, using a different proof

argument.

283

FICKERT & HOFFMANN & STEINMETZ

Comparing this equation with Equation 3 (page 278) characterizing hC, it is easy to see that
the equations are in exact correspondence via (∗) G = {πc | c ∈ C, c ⊆ G[3]}, where G[3]
denotes the subgoal (fact) sets in Equation 3.

The argument for ΠC
nc is identical because, for single-conjunction sets C′ = {c}, the two

compilations coincide.

Note that, in the step from the first to the second equation stated in this proof, the ex-
ponential size of ΠC is reduced to the polynomial-size compilation which is like ΠC but
includes only the actions a[{c}] for pairs a ∈ A and c ∈ C where c can be regressed through
a. Intuitively, as h1 only considers singleton subgoals, there is no need to enumerate sup-
ported conjunction sets of size greater than 1. This reduced compilation is essentially a
version of Haslum’s (2009) Πm compilation for arbitrary conjunction sets C. (This simple
generalization was not mentioned by Haslum in his works on Πm and ΠC.)

Together with results by Haslum (2012) and Keyder et al. (2014), as well as basic known
results about h1 and h+, Theorems 1 – 3 immediately imply all the properties one would
naturally expect hC+ and hC+

nc to have:

Corollary 1 Let Π be a planning task. Then, for any set C of conjunctions in Π containing all
singleton conjunctions, we have:

(i) hC, h+ ≤ hC+
nc ≤ hC+ ≤ h∗; and

(ii) hC+ = ∞ iff hC+
nc = ∞ iff hC = ∞.

Furthermore, both hC+ and hC+
nc converge to h∗, i. e., there exist sets C of conjunctions such that

(iii) hC+ = h∗ respectively (iv) hC+
nc = h∗.

Proof: Regarding (i): By Theorem 2, hC+
nc = h+(ΠC

nc) and by Theorem 3 hC = h1(ΠC
nc),

so hC ≤ hC+
nc follows from h1 ≤ h+. As h+(ΠC

nc) = h+(ΠC
ce) and hence hC+

nc = h+(ΠC
ce),

h+ ≤ hC+
nc holds by the corresponding result of Keyder et al. (2014) (h+ ≤ h+(ΠC

ce), their
Corollary 1). As ΠC

nc drops preconditions from ΠC, we get hC+
nc = h+(ΠC

nc) ≤ h+(ΠC),
where h+(ΠC) = hC+ by Theorem 1. Finally, hC+ ≤ h∗ holds by the corresponding result
of Haslum (2012) (h+(ΠC) ≤ h∗, his Theorem 4).

Regarding (ii): As hC+ = h+(ΠC), hC+
nc = h+(ΠC

nc), and hC = h1(ΠC) = h1(ΠC
nc), this

follows from h+ = ∞ iff h1 = ∞.
Finally, (iii) holds by convergence of h+(ΠC) (Haslum, 2012, Theorem 5) because hC+ =

h+(ΠC) as per Theorem 1, and (iv) holds by convergence of h+(ΠC
ce) (Keyder et al., 2014,

Theorem 5) because h+(ΠC
nc) = h+(ΠC

ce) and hC+
nc = h+(ΠC

nc) as per Theorem 2.

4. Extracting Relaxed Plans: hCFF

We just observed that, like in the standard setting, hC+ = ∞ iff hC = ∞, i. e., a relaxed plan
exists iff the critical-path component of our heuristic is solvable. So hC behaves like h1 in
the role of deciding relaxed plan existence. But then, can hC also fulfill the role of h1 in
relaxed plan extraction, i. e., finding some not necessarily optimal relaxed plan?

Implicitly, this is already being done in the ΠC compilation, via relaxed plan extrac-
tion on h1(ΠC) = hC, but this construction is wasteful as computing hC does not actually
require the exponential blow-up inherent in ΠC. Can we make do without this blow-up?

284

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

As we indicated in the introduction (in observation (2)), the answer is “yes”, in the form
of a heuristic function we denote by hCFF: Relaxed plan extraction to obtain hFF from a h1 best-
supporter function translates into relaxed plan extraction to obtain hCFF from a hC best-supporter
function. Thanks to this direct formulation, not using a compilation, hCFF computes relaxed
plans for ΠC in time polynomial in |C|.

To spell this out in detail, we start in Section 4.1 by, similarly as before, reformulating
standard relaxed plan extraction in a way preparing the generalization to arbitrary con-
junction sets C. Section 4.2 specifies that generalization and proves it correct. Section 4.3
analyzes the subgoal-support selection problem, which is benign in the standard setting
but is NP-complete in the general case; we define our heuristic function hCFF using a greedy
solution to that problem.

Throughout, we use equation-based formulations as these generalize directly to ar-
bitrary action costs. To improve readability, we also include pseudo-code formulations
which apply only to the simpler unit-cost case. Like before, we distinguish between vari-
ants taking cross-context conditions into account (ΠC) vs. not doing so (ΠC

nc).

4.1 Relaxed Plan Extraction from h1

Relaxed plan extraction was first formulated in terms of best-supporter functions by Key-
der and Geffner (2008). The advantage over more traditional relaxed planning graph for-
mulations (Hoffmann & Nebel, 2001) is that best-supporter functions are more flexible,
allowing to use hadd instead of h1, and generalizing to arbitrary action costs. As we shall
see, the best-supporter formulation also generalizes easily to the use of hC instead of h1.

Best-supporter functions map facts to actions. Based on h1, any fact p is mapped to
an action achieving h1({p}), i. e., achieving the minimum in the h1 equation (Equation 6,
page 279). For unit-cost actions, the latter is equivalent to h1(pre(a)) = h1({p})− 1. We
can hence write Keyder and Geffner’s formulation of relaxed plans πFF for the input task
Π = (F ,A, I ,G) as πFF :=

⋃
p∈G π(g), where π is a function on facts p that satisfies:

π(p) =


∅ p ∈ I⋃

q∈pre(a) π(q) ∪ {a} where a ∈ A,
p ∈ add(a), and h1(pre(a)) = h1({p})− 1 else

(8)

It is easy to see that the action set πFF can be sequentialized to form a relaxed plan for Π.
The generalization to arbitrary cost can be done by working with h1(pre(a)) = h1({p})−
c(a) instead, and using a modified action-costs function c′ := c + ε, for some ε > 0, in case
there are 0-cost actions (ε can in principle be chosen so as to preserve optimality; this is a
minor concern here as relaxed-plan heuristic functions are inadmissible anyway).

Note the special case where h1(pre(a)) = ∞ for all a with p ∈ add(a), and hence
h1({p}) = ∞. In this situation, p does not have a best supporter in Keyder and Geffner’s
formulation. In our formulation, π(p) is undefined (i. e., in our notation ∞ is not equal to
∞− 1). We abstract from this issue throughout the present subsection, just assuming that
h1({p}) < ∞ for all facts. We will deal with the issue below in our extension to conjunction
sets C, where π will be a partial function.

Note furthermore that we intentionally specify π to be “a” function that satisfies Equa-
tion 8. The relaxed plan πFF is unique only up to tie-breaking. Keyder and Geffner’s

285

FICKERT & HOFFMANN & STEINMETZ

formulation moves the tie-breaking into the definition of best supporters. We find it more
convenient, for our purposes here, to make the tie-breaking an explicit part of our equa-
tions (i. e., of Equation 8 and all relaxed-plan equations below).

Towards our generalization to arbitrary C, we first change Keyder and Geffner’s equa-
tion to account for positive side effects, to the extent of supporting, with the same action,
all open subgoals for which that action is a best supporter. Reformulating Equation 8 to
this end, we obtain πFF := π(G), where π is a function on fact sets G that satisfies:

π(G) =


∅ G ⊆ I
π((G \ G′) ∪ pre(a)) ∪ {a} where a ∈ A,

∅ 6= G′ = {p ∈ G | p ∈ add(a), h1(pre(a)) = h1({p})− 1} else
(9)

Compared to Equation 8, we need to recurse not over single facts but over sets of facts,
so that each recursive call “knows” the open facts and can select the entire best-supported
subset thereof.6

Equation 9 is in correspondence with typical relaxed planning graph based implemen-
tations, as depicted in Algorithm 1. The definition of G′ in the equation corresponds to
the maintenance of “TRUE” flags for facts at relaxed planning graph layers, where upon
selecting an action a at layer i all of a’s add effects are marked as TRUE at i (to see this, ob-
serve that, with h1(pre(a)) = i− 1, we have h1(pre(a)) = h1({p})− 1 iff h1({p}) = i). We
will extend Algorithm 1 to relaxed plan extraction from hC below. Note that Algorithm 1
deviates a bit from more common descriptions, explicitly including the computation of h1

instead of assuming an input relaxed planning graph caching the outcome of this compu-
tation. This is just to simplify notation and to tie in easily with our extension below.

The step from Equation 8 to Equation 9 is benign in the standard setting, in the sense
that its practical impact can be expected to be small: a single action typically does not add
many open facts, i. e., does not support many open atomic subgoals. Yet this step is of
paramount importance for our generalization of atomic subgoals to arbitrary conjunctions
C. In that general setting, atomic subgoals typically overlap, and supporting a subgoal just
means to add part of it, which may very well be the case for many subgoals.

We finally need to formulate the delete relaxation, not in terms of relaxing the regres-
sion semantics, but in terms of splitting subgoals up into singleton facts, and considering
the correct regression semantics but separately with respect to each of these singleton-fact
subgoals. In other words, we need to use the formulation underlying h+ in Equation 5. As
a reminder for convenience, that equation is: h(G) ={

0 G ⊆ I
1 + mina∈A,∅ 6=G′={p|p∈G,R({p},a) 6=⊥} h((G \ G′) ∪⋃p∈G′ R({p}, a)) else

Doing a similar transformation step to Equation 9, we obtain πFF := π(G), where π is a
function on fact sets G that satisfies π(G) =

∅ G ⊆ I
π((G \ G′) ∪ G′r) ∪ {a} where a ∈ A,

∅ 6= G′ = {p | p ∈ G, R({p}, a) 6= ⊥, h1(R({p}, a)) = h1({p})− 1} else
(10)

6. Note that this selection is dynamic as a function of the open facts, as opposed to the up-front design of
a best-supporter function sharing supporting actions as much as possible. This is not important in the
standard setting here. Yet, as we discuss in detail below, it does become important when using arbitrary
conjunctions C as atomic subgoals.

286

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

Algorithm 1: Relaxed plan extraction from h1.

1 compute h1({p}) for all p ∈ F
2 m := maxp∈G h1({p})
3 if m = ∞ then
4 return ⊥
5 for i := m, . . . , 1 do
6 Gi := {p | p ∈ G, h1({p}) = i}
7 π := ∅
8 for i := m, . . . , 1 do
9 while ex. p ∈ Gi s.t. p not TRUE at i do

10 select a ∈ A where ∅ 6= {p ∈ Gi | p not TRUE at i} ∩ add(a),
and h1(pre(a)) = i− 1

11 foreach p ∈ Gi ∩ add(a) do
12 mark p TRUE at i

13 foreach q ∈ pre(a) do
14 Gh1({q}) := Gh1({q}) ∪ {q}
15 π := π ∪ {a}

16 return π

with G′r defined as G′r :=
⋃

p∈G′ R({p}, a).
Relative to Equation 9, this is a simple reformulation, using regression notation which

trivializes for singleton conjunctions. In particular, the subgoal G′r =
⋃

p∈G′ R({p}, a) gen-
erated by the action simplifies to pre(a) here. Relative to Equation 5, instead of a heuristic
value, we compute a relaxed plan. Instead of minimizing over all action choices which
corresponds to h+, we impose the use of best supporters which corresponds to relaxed
plan extraction from h1.

4.2 Relaxed Plan Extraction from hC

From Equation 10, we obtain πCFF by similar generalizations as we made to get from h+

to hC+. Extending hC to sets G of conjunctions by hC(G) := maxc∈G hC(c), our definition
reads:

Definition 3 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π contain-
ing all singleton conjunctions. A hC-based critical-path delete-relaxed plan, short C-relaxed
plan, is a set πCFF of action occurrences (a, G′) where πCFF = π(GC), with π being a partial
function on conjunction sets G that is defined on GC and satisfies π(G) =

∅ ∀c ∈ G : c ⊆ I
π((G \ G′) ∪ G′r

C) ∪ {(a, G′)} where a ∈ A,
∅ 6= G′ ⊆ {c | c ∈ G, R(c, a) 6= ⊥, hC(R(c, a)) = hC(c)− 1},
and hC(G′r) = hC(G′)− 1 else

(11)

287

FICKERT & HOFFMANN & STEINMETZ

with G′r defined as G′r :=
⋃

c∈G′ R(c, a).
A hC-based no cross-context critical-path delete-relaxed plan, short nc-C-relaxed plan,

is a set πCFF
nc of action occurrences with the same property, except that we define G′r := {R(c, a) |

c ∈ G′}.

This definition parallels the definition of hC+ (Definition 2). The subgoaling structure
is the same, over sets of conjunctions from C each of which must be achieved through
regression. Instead of a heuristic value, we compute a relaxed plan (consisting of action
occurrences, action a plus supported subgoals G′ as in hC+ and ΠC, as opposed to actions as
in the standard case). Instead of minimizing over all action occurrence choices, we impose
the use of best supporters according to hC. The major new source of complexity, relative
to Equation 10, is that we allow G′ to be a subset of the best-supported atomic subgoals,
similarly as in Definition 2. Because a relaxed plan does not always exist, we allow π to be
partial and define πCFF only if π is defined on the goal. As we show below, this is possible
iff hC < ∞, i. e., a C-relaxed plan exists iff any relaxed plan for ΠC exists.

Observe that, relative to Equation 10, we have added the new additional condition
hC(G′r) = hC(G′)− 1. To understand this condition, consider that (a) G′r =

⋃
c∈G′ R(c, a) is

the union over the regressions from each individual supported subgoal c ∈ G′, and that (b)
for every such subgoal c ∈ G′ we have hC(R(c, a)) = hC(c)− 1, i. e., the action a selected is
a best supporter for c. From (b), one would surmise that hC(G′r) = hC(G′)− 1, because the
regressions R(c, a) in G′r each are one step easier to solve than their original counterparts
c ∈ G. That is only so, however, if there are no cross-context conditions: otherwise, the
union (a) may be more difficult to achieve than each of its components. We get back to
this in detail below in Section 4.3. For now, just keep in mind that the additional condition
hC(G′r) = hC(G′)− 1 is required due to possible cross-context conditions. (We remark that
the condition is equivalent to hC(G′r) < hC(G′), as the hC value cannot decrease by more
than 1 in a single regression step; we have written it as hC(G′r) = hC(G′)− 1 merely to use
the most specific write-up.)

It is instructive to consider πCFF from a procedural perspective. Algorithm 2 provides
a corresponding extension of Algorithm 1. Where previously we computed h1 for all facts,
now we compute hC for all conjunctions in C. Where previously our subgoal sets Gi were
sets of facts, now they are sets of conjunctions from C. Where previously the new subgoals
generated were the selected action’s precondition facts, now they are the atomic conjunc-
tions contained in the regressed subgoal G′r. Note here the pointwise interpretation for nc-
C-relaxed plans, where G′r = {R(c, a) | c ∈ G′} is a set of fact sets. In line 10, we now select
an action occurrence (a, G′) instead of just an action a, resulting in the additional choice of
supported atomic subgoals G′, and the accordingly more complicated structure of the re-
gressed subgoal G′r. Note here that, for every c ∈ Gi, we have hC(c) = i and, for any action
a′, hC(R(c, a′)) ≥ hC(c)− 1 = i− 1. Furthermore, if hC(G′r) = i− 1 then hC(R(c, a)) ≤ i− 1
for every c ∈ G′. Putting these observations together, we get hC(R(c, a)) = hC(c)− 1 for
every c ∈ G′, and the choice of G′ in Algorithm 2 is equivalent to that in Equation 11.

Example 6 Consider, as in Example 5 (page 281), our car-driving example with C containing the
singleton conjunctions as well as c = carY ∧ fuel. We have hC({carX}) = 0, hC({fuel}) = 0,
hC({carY}) = 1, hC({carY, fuel}) = 2, and hC({carZ}) = 3.

288

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

Algorithm 2: Relaxed plan extraction from hC. For C-relaxed plan, use G′r =⋃
c∈G′ R(c, a); for nc-C-relaxed plan, use G′r = {R(c, a) | c ∈ G′}.

1 compute hC(c) for all c ∈ C
2 m := maxc∈C,c⊆G hC(c)
3 if m = ∞ then
4 return ⊥
5 for i := m, . . . , 1 do
6 Gi := {c | c ∈ C, c ⊆ G, hC(c) = i}
7 π := ∅
8 for i := m, . . . , 1 do
9 while ex. c ∈ Gi s.t. c not TRUE at i do

10 select (a, G′) where a ∈ A, ∅ 6= G′ ⊆ {c ∈ Gi | R(c, a) 6= ⊥, c not TRUE at i},
and hC(G′r) = i− 1

11 foreach c′ ∈ G′ do
12 mark c′ TRUE at i

13 foreach c′ ∈ C s.t. ex. c ∈ G′r with c′ ⊆ c do
14 GhC(c′) := GhC(c′) ∪ {c′}
15 π := π ∪ {(a, G′)}

16 return π

Tracing Equation 11 from the initializing call πCFF = π({carZ}), we get the exact same
recursive development as in Example 5. First, carZ is supported only by (aYZ, {carZ}), where
hC({carY, fuel}) = 2 = 3 − 1 = hC({carZ}) − 1 as required for the supported conjunction
c = carZ. Similarly, hC(G′r) = hC(G′)− 1 for G′r = {carY, fuel} and G′ = {carZ} as for single
supported conjunctions there is no difference. The recursive subgoal is {carY, fuel, carY ∧ fuel}.
The only supporting action for carY ∧ fuel is arefuel. That action is a best supporter for carY ∧ fuel
as hC({carY}) = 1 = hC({carY, fuel})− 1. The action is not a best supporter for fuel though,
because fuel is true initially hC({fuel}) = 0. So the only possible choice for supporting carY ∧ fuel
is arefuel with G′ := {carY ∧ fuel}. We get G′r = {carY} and hC(G′r) = 1 = hC(G′) − 1 as
desired. The recursive subgoal is {fuel, carY}, supported by (aXY, {carY}) yielding G′r = {carX}
with hC(G′r) = 0 = hC(G′)− 1.

Taking the procedural perspective in Algorithm 2, we start by inserting carZ into G3. At layer
i = 3 we support this by (aYZ, {carZ}) with the same G′r = {carY, fuel} and hC(G′r) = 2 = i− 1.
Similarly, layers 2 and 1 mirror exactly the respective recursive invocations of Equation 11.

We next prove that C-relaxed plans and nc-C-relaxed plans do indeed correspond to
relaxed plans for ΠC respectively ΠC

nc. We start with C-relaxed plans:

Theorem 4 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π containing
all singleton conjunctions. Then any C-relaxed plan πCFF can be sequentialized to form a relaxed
plan for ΠC.

289

FICKERT & HOFFMANN & STEINMETZ

Proof Sketch: Sequencing πCFF as 〈(a0, G′0), . . . , (an−1, G′n−1)〉 in inverse order of action
occurrence selection in Equation 11, i. e., placing the outcome of recursive invocations up
front, 〈a0[G′0], . . . , an−1[G′n−1]〉 is a relaxed plan for ΠC. This is easy to show by induction
over the length of the sequence. With G0, . . . , Gn being the recursive subgoals generated in
Equation 11, and si being the state after applying ai[G′i] in ΠC, it holds that {πc | c ∈ Gi} ⊆
si. This is obvious for i = 0. If it holds at i, it also holds at i + 1 because (a) the Gi+1 \ G′i
part of Gi+1 is also part of Gi and hence true by induction hypothesis; and (b) the G′i part
of Gi+1 is made true by ai[G′i], which is applicable to si by induction hypothesis because its
precondition conjunctions are contained in Gi.

An almost identical proof shows the corresponding property for nc-C-relaxed plans:

Theorem 5 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π containing
all singleton conjunctions. Then any nc-C-relaxed plan πCFF

nc can be sequentialized to form a relaxed
plan for ΠC

nc.

Finally, a relaxed plan for ΠC respectively ΠC
nc exists if and only if a C-relaxed plan

respectively an nc-C-relaxed plan exists. This is simply because all of these properties are
fully determined by the critical-path component. Our proof shows this via deriving an
intermediate equation, Equation 12 below, which characterizes the behavior of πCFF and
πCFF

nc when restricting the choice of supported subgoal sets G′ to singletons. Equation 12
will play an important role in the comparison to related work, and in our experiments.

Theorem 6 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π containing
all singleton conjunctions. Then a C-relaxed plan exists if and only if an nc-C-relaxed plan exists
if and only if hC < ∞.

Proof Sketch: We show the claim in two parts, (a) a C-relaxed plan exists if and only
if hC < ∞, and (b) an nc-C-relaxed plan exists if and only if hC < ∞. The “only if”
directions follow as corollaries of (a) Theorems 3 and 4 respectively (b) Theorems 3 and 5:
if hC = ∞, neither a C-relaxed plan nor an nc-C-relaxed plan can exist, because otherwise
a relaxed plan for ΠC respectively ΠC

nc would exist by Theorem 4 respectively Theorem 5,
in contradiction to hC = ∞ = h1(ΠC) = h1(ΠC

nc) as per Theorem 3.
For the “if” directions, we consider versions of πCFF and πCFF

nc restricting the choice of
supported subgoal sets G′ to singletons, i. e., to single conjunctions G′ = {c}. Each of πCFF

and πCFF
nc then simplifies to

⋃
c∈GC π(c), with π(.) being a partial function on conjunctions

c that satisfies

π(c) =


∅ c ⊆ I⋃

c′∈R(c,a)C π(c′) ∪ {(a, {c})} where a ∈ A,
R(c, a) 6= ⊥, and hC(R(c, a)) = hC(c)− 1 else

(12)

Note the similarity to Equation 8 (page 285): we are now back to a more common notation
for relaxed plan extraction (over C instead of singleton facts), extracting best supporters
one-by-one.

By changing the subgoaling structure, one can transform Equation 12 into the form
π(G) where π is a partial function on fact sets G that satisfies

290

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

π(G) =


∅ G ⊆ I
π(R(G, a)) ∪ {(a, G)} where a ∈ A,

R(G, a) 6= ⊥, and hC(R(G, a)) = hC(G)− 1 G ∈ C⋃
G′⊆G,G′∈C π(G′) else

(13)

Comparing this to the hC equation (Equation 3, page 278), it is clear that the subgoaling
structure of the two equations coincides for subgoals c with hC(c) < ∞, and in particular,
if hC < ∞ then Equation 13 has a solution π defined on G. Therefore, Equation 12 has a
solution defined on all c ∈ GC. As Equation 12 captures a restricted version of πCFF and
πCFF

nc , C-relaxed and nc-C-relaxed plans exist as desired.

4.3 The Subgoal-Support Selection Problem

We have so far shown how C-relaxed plans and nc-C-relaxed plans can be extracted. We
have not yet explained how our actual heuristic functions hCFF and hCFF

nc are defined. Given
Theorem 6, both hCFF and hCFF

nc return ∞ in the case hC = ∞. For the case hC < ∞, our
description of relaxed plan extraction so far does not specify how to choose the supported
subgoal sets G′. Taking that choice in particular ways yields the functions hCFF and hCFF

nc .
The choice is non-trivial because the number of possible action occurrences is worst-case
exponential in |C|. We refer to this choice as the subgoal-support selection problem.

We start by discussing the optimization objective for that problem. Then we fix solu-
tions, for πCFF

nc and πCFF in this order, defining the desired heuristics hCFF
nc and hCFF through

corresponding specializations of Equation 11. We close the section with a brief discussion
of prior work in the light of our findings.

4.3.1 THE OPTIMIZATION OBJECTIVE

Assume that hC < ∞. As argued in the proof of Theorem 6, we know that Equation 12 has a
solution, so in principle we could restrict ourselves to |G′| = 1, resulting in at most |A| ∗ |C|
different action occurrence choices. However, this can result in dramatic overestimation:

Example 7 Consider the task Π = (F ,A, I ,G) where F = {g1, . . . , gn}, I = ∅, G =
{g1, . . . , gn} and A contains the single action a whose precondition and delete list are empty and
whose add list is {g1, . . . , gn}. Obviously, h∗ = h+ = hFF = 1. However, even with C con-
taining only the singleton conjunctions {gi}, Equation 12 results in dramatic overestimation: the
C-relaxed plan will collect a separate occurrence (a, {gi}) for every gi, resulting in relaxed plan
length n. If C also contains all fact-pair conjunctions {gi, gj} then we get a C-relaxed plan of size
n + n∗(n−1)

2 . In general, we get a C-relaxed plan of size |C|.
While this is an extreme example, similar situations arise whenever conjunctions overlap, be-

cause an action a adding a single fact p then is a possible supporter of all conjunctions that contain
p. With, e. g., the conjunctions containing all fact pairs, this means that the number of top-level
goal conjunctions supported by a is at least |G|. In domains with many top-level goal facts – includ-
ing most current IPC benchmarks and, more generally, e. g. typical transportation, construction,
puzzle problems – this is clearly detrimental. (Replacing G by a single fact and a new goal-achiever
action only moves the problem to the precondition of that action.)

291

FICKERT & HOFFMANN & STEINMETZ

This is essentially the same observation made by Haslum (2009, 2012), non-admissibility
of h+(Πm) as every conjunction must be achieved separately, which prompted the design
of ΠC where every action may achieve arbitrary subsets of conjunctions. What is new here
is the particular context in which we consider this issue, namely the choice of G′ in πCFF

and πCFF
nc as per Equation 11: We moved the issue from the generic planning-task level to

the specific subgoal-support selection level. This more specific perspective identifies the
precise source of complexity, as far as relaxed plan extraction is concerned: How to choose
the sets G′ in Equation 11 – equivalently, how to implement line 10 in Algorithm 2 – in a manner
avoiding overestimation to the extent possible?

The intuitive answer to this question, given Example 7, certainly is choose G′ to be as large
as possible. This intuition is not entirely correct. As we detail in Example 9 (Appendix A),
there are cases where supporting a conjunction c, even though it is feasible, is better done
later on in the recursion, with an action whose precondition is easier to combine with c.
Nevertheless, we employ |G′| maximization here, deeming it safe to presume that over-
lapping conjunctions as per Example 7 are much more practically relevant than contrived
situations as per Example 9.

It will be convenient to introduce a terminology for feasible choices of G′. As per
Equation 11, the possible choices of G′ are those where a is a best supporter for every
c ∈ G′, i. e., hC(R(c, a)) = hC(c)− 1, and where the overall regressed subgoal is feasible,
hC(G′r) = hC(G′)− 1. In this case, we say in the πCFF context, i. e., with G′r =

⋃
c∈G′ R(c, a),

that G′ is C-feasible. We say in the πCFF
nc context, i. e., with G′r = {R(c, a) | c ∈ G′}, that G′ is

nc-C-feasible.
Our maximization problems then are:

Definition 4 By C-SubgoalSupport we denote the following problem:
Given a planning task Π, a set of conjunctions C in Π containing all singleton conjunctions,

G ⊆ C, an action a in Π, and K ∈N. Does there exist G′ ⊆ {c ∈ G | R(c, a) 6= ⊥, h1(R(c, a)) =
h1(c)− 1} such that G′ is C-feasible and |G′| ≥ K?

We define nc-C-SubgoalSupport accordingly for nc-C-feasible G′.

4.3.2 THE hCFF
nc HEURISTIC

The subgoal-support selection problem for πCFF
nc , i. e., nc-C-SubgoalSupport, is easy to

solve. Indeed, any choice of G′ is nc-C-feasible:

Proposition 2 Let Π be a planning task, C a set of conjunctions in Π containing all singleton
conjunctions, G ⊆ C, and a an action in Π. Then any G′ ⊆ {c ∈ G | R(c, a) 6= ⊥, h1(R(c, a)) =
h1(c)− 1} is nc-C-feasible.

Proof: By definition, G′ is nc-C-feasible if hC(G′r) = hC({R(c, a) | c ∈ G′}) = hC(G′) −
1. Now, hC({R(c, a) | c ∈ G′}) = maxc∈G′ hC(R(c, a)) which by construction equals
maxc∈G′(hC(c)− 1). The latter equals (maxc∈G′ hC(c))− 1 = hC(G′)− 1 as desired.

In other words, for πCFF
nc , the additional condition hC(G′r) = hC(G′)− 1 in Definition 3

is redundant. To maximize |G′|, we can simply include into G′ all c where hC(R(c, a)) =
hC(G′)− 1. Accordingly, we define our heuristic function hCFF

nc as:

292

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

Definition 5 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π con-
taining all singleton conjunctions. The nc-C-relaxed plan heuristic is defined as hCFF

nc = ∞ if
hC = ∞, and otherwise hCFF

nc = |πCFF
nc | where πCFF

nc = π(GC) and π satisfies π(G) =
∅ ∀c ∈ G : c ⊆ I
π((G \ G′) ∪ G′r

C) ∪ {(a, G′)} where a ∈ A,
∅ 6= G′ = {c | c ∈ G, R(c, a) 6= ⊥, hC(R(c, a)) = hC(c)− 1} else

(14)

with G′r defined as G′r := {R(c, a) | c ∈ G′}.

In words, we restrict Equation 11 to a maximal choice of G′ in the middle case, using
G′ = {c ∈ G | R(c, a) 6= ⊥, hC(R(c, a)) = hC(c)− 1} instead of G′ ⊆ {c ∈ G | R(c, a) 6=
⊥, hC(R(c, a)) = hC(c)− 1}. We use the ΠC

nc variant of the regressed subgoal G′r, and we
drop the condition hC(G′r) = hC(G′)− 1 which is redundant for that variant.

4.3.3 THE hCFF HEURISTIC

Matters are not that simple for πCFF, i. e., C-SubgoalSupport, which requires C-feasible sets
G′ as opposed to nc-C-feasible ones. The feasible choice of G′ in the πCFF

nc setting is trivial
(Proposition 2) because πCFF

nc ignores cross-context conditions. Not ignoring these conditions,
in πCFF, this is no longer true:

Example 8 Consider, as in Example 5 (page 281), our abstract example with conjunctions cq1p =
q1 ∧ p, cq2p = q2 ∧ p, and cq1q2 = q1 ∧ q2. After supporting each of the goal facts, we get the
subgoal G = {q1, q2, p, q1 ∧ p, q2 ∧ p}. Ignore, like in Example 5, the subsumed subgoals q1, q2, p
which can be tackled as a side effect of tackling the non-subsumed ones q1 ∧ p and q2 ∧ p. The
only possible supporting action for the latter subgoals is ap which adds p (q1 is true initially, and
the action adding q2 deletes p so cannot support q2 ∧ p). There are three possible choices of G′:
G′12 := {q1 ∧ p, q2 ∧ p}, G′1 := {q1 ∧ p}, or G′2 := {q2 ∧ p}.

For G′1, G′r =
⋃

c∈G′1
R(c, a) = {q1} and hC({q1}) = 0 = hC({q1, p}) − 1. So G′1 is C-

feasible. For G′2, G′r =
⋃

c∈G′2
R(c, a) = {q2} and hC({q2}) = 1 = hC({q2, p}) − 1. So G′2

is C-feasible as well. However, G′12 is not C-feasible, because G′r =
⋃

c∈G′12
R(c, a) = {q1, q2},

corresponding to the atomic conjunction q1 ∧ q2. Selecting both atomic subgoals q1 ∧ p and q2 ∧ p,
even though each is feasible individually, incurs the cross-context condition q1 ∧ q2, an atomic
conjunction not present in the regression from either of q1 ∧ p or q2 ∧ p individually. The example
is constructed so that hC({q1, q2}) = ∞, hence in particular hC({q1, q2}) = ∞ 6= hC(G′12)− 1 =
hC({{q1, p}, {q2, p}})− 1 = 1.

Note here that, for G′12 in πCFF
nc , we get G′r = {R(c, a) | c ∈ G′12} = {{q1}, {q2}} instead. In

other words, we get a set containing two small conjunctions q1 and q2, instead of a set containing
one big conjunction q1 ∧ q2. We have hC({{q1}, {q2}}) = 1 = hC({{q1, p}, {q2, p}})− 1, so
G′12 is (not C-feasible but) nc-C-feasible.

As the example shows, cross-context conditions may render particular combinations of sup-
ported conjunctions in G′ infeasible. Having used this formulation, it should come as no
surprise that maximizing |G′| while avoiding such combinations is computationally hard:

Theorem 7 C-SubgoalSupport is NP-complete.

293

FICKERT & HOFFMANN & STEINMETZ

Proof Sketch: Membership by guess and check. Hardness via a reduction of Hitting Set:
Given a set of elements E and a collection of subsets b ⊆ E of elements, the construction
is such that, at a particular point during C-relaxed plan extraction, choosing G′ amounts
to choosing E′ ⊆ E, where E′ is C-feasible (results in a hC value 6= ∞) iff there exists no b
with b ⊆ E′. Given this, E′ \ E is a hitting set, and maximizing |E′| is equivalent to finding
a minimum-size such set.

So it is hard to find a cardinality-maximal feasible set of supported conjunctions in
πCFF. Presuming that we do not want to invest the effort to solve that problem exactly
(many times during the extraction of a C-relaxed plan on every search state), we need
an approximate solution. A canonical choice for approximating cardinality-maximality is
subset-maximality. We say that G′ ⊆ {c ∈ G | R(c, a) 6= ⊥, h1(R(c, a)) = h1(c) − 1} is
subset-maximally C-feasible if G′ is C-feasible and, for every G′′ such that G′ (G′′ ⊆ {c ∈
G | R(c, a) 6= ⊥, h1(R(c, a)) = h1(c)− 1}, G′′ is not C-feasible. Our heuristic function hCFF

is defined using the corresponding restriction of Equation 11:

Definition 6 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π contain-
ing all singleton conjunctions. The C-relaxed plan heuristic is defined as hCFF = ∞ if hC = ∞,
and otherwise hCFF = |πCFF| where πCFF = π(GC) and π satisfies π(G) =

∅ ∀c ∈ G : c ⊆ I
π((G \ G′) ∪ G′r

C) ∪ {(a, G′)} where a ∈ A,
∅ 6= G′ ⊆ {c | c ∈ G, R(c, a) 6= ⊥, hC(R(c, a)) = hC(c)− 1},
and G’ is subset-maximally C-feasible else

(15)

with G′r defined as G′r :=
⋃

c∈G′ R(c, a).

A subset-maximally C-feasible set G′ can be found through simple greedy algorithms,
adding conjunctions one-by-one as shown in Algorithm 3. The candidate conjunctions are
those c ∈ G with R(c, a) 6= ⊥ and hC(R(c, a)) = hC(c)− 1. Starting with empty G′, we just
try each candidate c exactly once. This suffices to get a subset-maximal G′ because, as G′

can only grow, if adding c was not feasible the first time around then adding c cannot be
feasible later on either.

Algorithm 3: Greedy selection of a subset-maximally C-feasible set of supported sub-
goals G′ in C-relaxed plan extraction. Implements line 10 in Algorithm 2 to obtain the
heuristic function hCFF.
1 select c ∈ Gi, c not TRUE at i
2 select a ∈ A with R(c, a) 6= ⊥ and hC(R(c, a)) = hC(c)− 1
3 G′ := {c}
4 foreach c′ ∈ Gi s.t. c′ not TRUE at i, R(c′, a) 6= ⊥, and hC(R(c′, a)) = hC(c′)− 1 do
5 if G′ ∪ {c′} is C-feasible then
6 G′ := G′ ∪ {c′}

We remark that, as Example 9 (Appendix A) shows, there are cases where selecting
a non-subset-maximally C-feasible G′ leads to a strictly smaller C-relaxed plan. In other
words, like cardinality maximization, subset-maximization is not fail-safe.

294

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

4.3.4 PREVIOUS WORKS RELATED TO THE SUBGOAL-SUPPORT SELECTION PROBLEM

Interestingly, while the subgoal-support selection problem has never previously been iden-
tified, it has already been solved. More plainly put, the previous works in this area can be
viewed as solving the problem at a very abstract level, not identifying what precisely the
problem is, and thus ending up with solutions that do solve the problem, but using un-
necessarily drastic measures. Mostly this is due to the compilation view, where relaxed
plan extraction becomes a standard technique, yet the subgoal-support selection problem
has to be solved at the STRIPS level, in the form of the compiled task. The single non-
compilation-view prior work, by Alcázar et al. (2013), was conducted as part of a much
broader scope, and does not address the subgoal-support selection problem in detail.

Let us have a closer look at Alcazar et al.’s heuristic, FFm (which they implement for
m = 2). This extracts a relaxed plan from hm, restricting C to contain exactly the conjunc-
tions of size≤ m. That restriction is easily removed. In our notation, FFm then corresponds
to a C-relaxed plan extracted using this equation: FFm =

⋃
c∈GC π(c) where

π(c) =


∅ c ⊆ I⋃

c′∈R(c,a)C π(c′) ∪ {a} where a ∈ A,
R(c, a) 6= ⊥, and hC(R(c, a)) = hC(c)− 1 else

(16)

This is almost exactly what the definitions of both πCFF and πCFF
nc simplify to when re-

stricting the choice of G′ to support only a single conjunction G′ = {c}, i. e., it is almost
identical to Equation 12 as derived in the proof to Theorem 6. Repeating Equation 12 for
convenience: πCFF = πCFF

nc =
⋃

c∈GC π(c) where

π(c) =


∅ c ⊆ I⋃

c′∈R(c,a)C π(c′) ∪ {(a, {c})} where a ∈ A,
R(c, a) 6= ⊥, and hC(R(c, a)) = hC(c)− 1 else

The only difference between these two equations is that FFm collects a set of actions as in
the standard setting, while πCFF and πCFF

nc collect a set of (single-supported-subgoal) action
occurrences.

In this sense, Alcazar et al.’s approach over-simplifies the choice of G′, to singleton sets.
It effectively tackles ΠC

nc rather than ΠC because, with |G′| = 1, cross-context conditions
never occur. It would furthermore run the risk of excessive overestimation as pointed out
in Example 7 – if it did actually collect action occurrences, rather than actions. The latter
might be viewed as a trick to avoid overestimation, yet from a theoretical perspective it
rather defeats the purpose of using explicit conjunctions in the first place. Whereas relaxed
planning on ΠC converges to h∗, FFm is bounded from above by the number of actions, |A|.

Altogether, our findings allow to understand prior work on this subject as follows:
• ΠC Compilation (Haslum, 2012): Includes one compiled action aG′ for every possible

pair of action a and possible set of supported subgoals G′. In this sense, it solves the
NP-complete problem C-SubgoalSupport enumeratively, in-memory.7

Lesson learned in hCFF: There is no need to pre-generate all possible conjunction subsets an
action could support. We can focus on the subgoals that actually arise during relaxed plan
extraction.

7. Plus, without actually giving an optimality guarantee: the optimal aG′ will be in the set of choices for
relaxed plan extraction/the best-supporter function, but there is no guarantee that it will be selected.

295

FICKERT & HOFFMANN & STEINMETZ

• ΠC
ce Compilation (Keyder et al., 2012, 2014): Includes one conditional effect for every

pair of action a and possibly supported conjunction c. This ignores cross-context
conditions and hence trivializes C-SubgoalSupport into nc-C-SubgoalSupport.
Lesson learned in hCFF: There is no need to ignore cross-context conditions completely. We
can greedily select supported conjunctions whose cross-context conditions are feasible.

• FFm (Alcázar et al., 2013): Restricts the conjunction set C to the size-≤ m conjunctions
as in hm. Restricts the supported subgoals G′ to single conjunctions, thus trivializing
C-SubgoalSupport and ignoring cross-context conditions like the ΠC

ce compilation.
Collects actions instead of action occurrences, losing convergence to h∗.
Lesson learned in hCFF: All of these weaknesses can be avoided.

5. Experiments

We evaluate the benefits of the hCFF and hCFF
nc heuristic functions relative to the most closely

related previous heuristics. We state the key issues that we will consider in terms of four
hypotheses, formulating our major expectations regarding algorithm behavior on IPC bench-
marks, the standard means for evaluation in the planning community:8

(H1) For hCFF relative to hFF(ΠC), the hypothesis is that (H1) avoiding the exponential blow-
up in |C| typically yields a faster heuristic and thus improved performance.

(H2) For hCFF relative to hFF(ΠC
ce), the hypothesis is that (H2) accounting for cross-context

conditions can yield a more informed heuristic and thus improved performance.
The difference between “typically” and “can” in (H1) vs. (H2) is intended. Cross-
context conditions presumably are important only in particular cases, whereas the
advantage of hCFF’s smaller representation presumably helps in most cases.

(H3) For both hCFF and hCFF
nc relative to hFF(ΠC

ce), the hypothesis is that (H3) the implemen-
tation of hCFF and hCFF

nc typically is more effective and thus yields improved performance.
We expect this to be so as hCFF and hCFF

nc are direct, not using a compilation, and thus
are more specialized than that of hFF(ΠC

ce).
Note here that hCFF

nc and hFF(ΠC
ce) are equivalent except for the implementation, in

that they use the same information and have the same scaling behavior in |C|. (In
contrast to the comparison between hCFF vs. hFF(ΠC), which is dominated by (H1)
the drastically different scaling behavior in |C|.)

(H4) We furthermore compare hCFF to a variant we denote hCFF
|G′|=1, as per Equation 12

where we restrict to |G′| = 1, the hypothesis being that (H4) the non-trivial subgoal
support selection in hCFF typically yields a more informed heuristic and thus improved per-
formance.

We finally include a variant we denote hCFF
|G′|=1A, as per Equation 16 where |G′| = 1 and a

set of actions (as opposed to action occurrences) is selected. This serves as a comparison to
Alcázar et al.’s (2013) work.

8. The hypotheses are not intended as formal statements that we will statistically accept or reject; nor are
they intended as an exhaustive representation of all issues we will discuss. They merely serve as a “red
thread” in the discussion of our large-scale experiments.

296

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

Section 5.1 describes some key points of our implementation, Section 5.2 explains our
experimental setup. Section 5.3 provides comprehensive results, across planner variants,
for small conjunction sets C which turn out to be best in terms of overall performance.
Section 5.4 then analyzes behavior as a function of growing C.

5.1 Implementation

We implemented hC, hCFF, and hCFF
nc in FD (Helmert, 2006). We furthermore implemented

the C-additive heuristic hCadd, defined exactly like hC (Equation 3) except that the maximiza-
tion over atomic subgoals is replaced by a summation over these subgoals:

h(G) =


0 G ⊆ I
1 + mina∈A,R(G,a) 6=⊥ h(R(G, a)) G ∈ C
∑G′⊆G,G′∈C h(G′) else

(17)

In other words, the step from hC to hCadd parallels that from hmax to hadd (Bonet & Geffner,
2001). We don’t use hCadd as a heuristic function per se: in contrast to the standard setting,
atomic subgoals overlap in the general case, so that summation doesn’t make sense. We
use hCadd as an alternative best-supporter function for relaxed plan extraction. For that
purpose, it turns out to be fairly useful empirically.

As computing critical-path heuristics becomes expensive with many conjunctions, a
key to practicality is an efficient implementation of hC. To that end, we extend the counter-
based algorithm originally implemented in FF (Hoffmann & Nebel, 2001) for computing h1

(aka a relaxed planning graph). Our extended algorithm is easily described as a modifica-
tion of the original algorithm. Assume an input state s. FF’s original algorithm associates
the precondition of each action a ∈ A with a counter, denoted here count(a), initialized to
|pre(a)|. Facts p are maintained in a priority queue ordered by an associated v(p) value,
which equals h1(p) once p has been dequeued. The queue is initialized with the facts p
true in s, each associated with value v(p) = 0. The main loop dequeues facts, activates
new actions, and maintains the v values. When a fact p is dequeued, a loop over all actions
a with p ∈ pre(a) decrements count(a). If this results in count(a) = 0 then the action is ac-
tivated, enqueuing every q ∈ add(a) with value v(q) = 1 + maxp′∈pre(a) v(p′), or reducing
v(q) to that value in case q is already in the queue with a higher value.9 The algorithm
stops if either all goal facts have been dequeued and h1(s) = maxp∈G v(p), or the queue
has become empty and h1(s) = ∞.

Our extension to hC works in much the same way. We just need to maintain the values
v(.) for conjunctions c ∈ C instead of single facts, and we need to maintain counters for pairs
of action and supported conjunction instead of just actions. Precisely, we create a counter
count(c, a) for every c ∈ C and a ∈ A where R(c, a) 6= ⊥ and R(c, a) does not contain a
mutex, i. e., a fact pair known to be unreachable. The latter corresponds to mutex pruning
as discussed by Keyder et al. (2014) for ΠC and ΠC

ce. It reduces computational effort as well
as strengthens the heuristic.

In the extended algorithm, each counter count(c, a) is initialized to |{c′ | c′ ∈ C, c′ ⊆
R(c, a)}|, i. e., to the number of sub-conjunctions we need to make true in order to be
able to achieve c using a (remember here that C contains all singleton conjunctions). The

9. For general action costs c(a), one can simply use v(q) = c(a) + maxp′∈pre(a) v(p′) here.

297

FICKERT & HOFFMANN & STEINMETZ

queue now contains conjunctions c′ ∈ C instead of facts. It is initialized with the con-
junctions c′ ⊆ s, with v(c′) = 0. Dequeueing a conjunction c′, we loop over all counters
count(c, a) where c′ ⊆ R(c, a), decrementing count(c, a). If this results in count(c, a) = 0,
we enqueue/upgrade c with value 1 + maxc′∈C,c′⊆R(c,a) v(c′).

To compute hCadd, we use the exact same algorithm except that maximization is re-
placed by summation, i. e., instead of 1+maxc′∈C,c′⊆R(c,a) v(c′) we use 1+∑c′∈C,c′⊆R(c,a) v(c′).

Based on the conjunction values v(c) computed for hC respectively hCadd, the imple-
mentation of hCFF and hCFF

nc follows Algorithm 2 (page 288). In particular, we select the
action/supported subgoals (a, G′) as previously discussed. For hCFF

nc we fix G′ = {c | c ∈
G, R(c, a) 6= ⊥, v(R(c, a)) = v(c)− 1}. For hCFF, we select G′ as per Algorithm 3 (page 294).
Here, the v(c) values of single conjunctions c are readily available. Values v(X) for a fact
set X are required for X := R(c, a), as well as during the check for C-feasibility in hCFF

(Algorithm 3 line 5), where X :=
⋃

c′′∈G′∪{c′} c′′ with G′ being the current set of supported
subgoals and c′ being a candidate for inclusion into that set. We compute v(X) by a loop
over the facts p ∈ X, using lists C[p] containing the c ∈ C where p ∈ c, and maximizing
respectively summing over v(c) for those c ∈ C[p] where c ⊆ X.

Helpful actions (Hoffmann & Nebel, 2001), i. e., FD preferred operators, are defined
similarly as for hFF. An action a applicable to state s is preferred in s if the C-relaxed plan
contains a, i. e., an action/supported subgoals pair of the form (a, G′). This corresponds to
the selection of preferred operators a in hFF(ΠC) and hFF(ΠC

ce), based on compiled actions
a[C′] occurring in relaxed plans in the respective compilations (Keyder et al., 2014).

The performance of satisficing search in planning is known to be brittle with respect to
minor differences in the heuristic functions (e. g. Valenzano, Sturtevant, Schaeffer, & Xie,
2014). This is important also in our setting. The unavoidable implementation differences
between our new heuristics and their predecessors turn out to be a major complication for
a fair comparison. All heuristics extract relaxed plans from a hC or hCadd best-supporter
function, yet hFF(ΠC) and hFF(ΠC

ce) do so via a compilation, while hCFF and hCFF
nc do not.

The relaxed plan extraction algorithms work on different representations. In particular,
the choice of an “action” in hFF(ΠC), i. e., of a compiled action a[C′], corresponds to the
choice of an action/supported subgoals pair (a, G′) in hCFF. By design, hFF(ΠC) cannot
distinguish between choosing a vs. choosing G′. In contrast, by design hCFF chooses first
only the action a and then assembles G′ by greedy C-feasible maximization.

To offset these unavoidable differences in relaxed plan extraction, we experiment across
a variety of tie-breaking strategies in the choice of best supporters. In ΠC and ΠC

ce, the tie-
breaking applies to compiled actions a[C′], in hCFF and hCFF

nc it applies to actions a support-
ing the same conjunction c and where hC(R(c, a)) = hC(c)− 1 respectively hadd(R(c, a)) =
hadd(c)− 1. Our strategies are:

Arbitrary: Choose an arbitrary best supporter, i. e., the first one we find. This is used (with
hadd best supporters) in FD’s implementation of hFF, as well as hFF(ΠC) and hFF(ΠC

ce).

Random: Choose a random best supporter. We use 3 different random seeds in our ex-
periments to gauge the performance variance incurred by this criterion. It turns out
that, in almost all cases, the variance is small and the performance change relative
to arbitrary tie-breaking is consistent across random seeds, i. e., consistently positive

298

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

or consistently negative. Thus random tie-breaking exhibits reliable behavior as an
algorithm option.

Difficulty (hC only): This is the tie breaking mechanism used in FF (Hoffmann & Nebel,
2001). It selects a best supporter that minimizes the summed-up hmax values of the
supporter’s preconditions. In hCFF and hCFF

nc , this translates to summing up the hC

values of the conjunctions contained in the regressed subgoals R(c, a). Remaining
ties are broken arbitrarily.

We use each of these 3 tie-breaking strategies with hC, and the first 2 strategies with hCadd,
in each of the 6 heuristics hCFF, hCFF

nc , hFF(ΠC), hFF(ΠC
ce), hCFF

|G′|=1, and hCFF
|G′|=1A.

5.2 Experiments Setup and Design

To be able to compare the different heuristic functions directly, in all such comparisons we
use the same conjunction set C for every heuristic. We find these sets C using the exact
same methods, and implementation, as used by Keyder et al. (2014). The motivation is
that our contribution here does not pertain to methods finding C, and re-using the estab-
lished methods provides for better comparability. To understand our experiments, it is not
necessary to understand the generation of C in detail, so we give a brief summary only.

Keyder et al.’s (2014) method is a variant of the method proposed earlier on by Haslum
(2012). In a pre-process to the actual search, C is learned by iteratively refining a delete-
relaxed plan on the initial state. Starting with empty C, a relaxed plan π+ for ΠC is gen-
erated. If π+ is a real plan (a plan for the original input task), the process stops. Else, an
analysis step finds a set C′ of new conjunctions which exclude π+, i. e., such that π+ is no
longer a relaxed plan for ΠC when setting C := C ∪ C′. Then the process iterates. Running
this ad infinitum, one will eventually find a plan for the input task. But that is typically
not feasible. To find instead a set C for heuristic search, the algorithm applies both, a time
limit T, and a size limit x on ΠC relative action set size increase, i. e., on |AπC|/|A|. If either
of the two criteria applies, the process stops and hands over the current set C to the search.
(Each limit may be set to ∞, meaning that this termination criterion is disabled.)

As all heuristics in our experiments use explicit conjunctions, and all use the same
set C, we separate the generation of C from the actual experiments. We apply separate
runtime limits for C-generation and search respectively, and we will report only about the
performance of search not about that of C-learning. Given this, T merely serves as a means
to keep the experiments feasible even for large size limits x. We fix T to 30 minutes.

Throughout, we use FD’s lazy-greedy best-first search with a dual open queue for pre-
ferred operators (Helmert, 2006), which profits from the search space pruning afforded
by preferred operators, yet preserves completeness by keeping the pruned nodes in the
second open queue. This is the canonical search algorithm for satisficing planning with
delete-relaxation heuristics, widely used as a baseline that yields competitive performance
while being reasonably simple. (Textbook single-queue greedy best-first search lags far be-
hind the state of the art, as it can either not use preferred operators, or loses the solutions
in those cases where preferred operators are too restrictive.) The experiments were run on
a cluster of machines with Intel Xeon E5-2660 processors running at 2.2 GHz. The mem-
ory limit was set to 4 GB. We used the benchmarks from the satisficing tracks of the two
most recent International Planning Competitions, IPC’11 and IPC’14. We do not include

299

FICKERT & HOFFMANN & STEINMETZ

21 22 23 24 25 26 27 28 29 210
0

100000

200000

300000

400000
hFF(ΠC)

hCFF

10−1 100 101 102 103 10410−1

100

101

102

103

104

21 22 23 24 25 26 27 28 29 210

260

270

280

290

300

310

320

330

340

350

360

370

hFF (hadd arb)
hFF (hadd rnd)

(a) (b) (c)

Figure 1: Data preview for hCFF vs. hFF(ΠC). (a) Number of counters in hCFF vs. number of
actions |AπC| in ΠC, as a function of the size limit x. (b) States per second with
x = ∞, x-axis hCFF, y-axis hFF(ΠC). (c) Total coverage as a function of x. In (b)
and (c), each of hCFF and hFF(ΠC) is run with hCadd using random tie-breaking.
In (c), we also include hFF as a baseline, with two tie-breaking variants: hadd

with arbitrary tie-breaking corresponds to the FD default, hadd with random tie-
breaking has better performance on these benchmarks. Recall in this comparison
that the effort for C-learning is not included in hCFF and hFF(ΠC) (see text).

the IPC’14 CityCar domain, in which the FD translator generates actions with conditional
effects, not supported by our implementation. For each domain, each test suite has 20 in-
stances (some domains have been used in both IPC’11 and IPC’14 so have two test suites).

With 6 heuristic functions, 5 best-supporter definitions (hC vs. hCadd, tie breaking), and
the numeric size-limit parameter x, the experiments space is large. To motivate how we
organize our exploration of that space in what follows, Figure 1 gives a data preview.

The major benefit of hCFF over hFF(ΠC) is the better scaling in |C|. One would ex-
pect this to manifest itself, for large C, in (a) a smaller representation and thus (b) a faster
heuristic function. Figure 1 (a) and (b) confirm that this is indeed so.10 For x = ∞, where
C contains the conjunctions learned within 30 minutes, we get speed-ups of 1–4 orders of
magnitude. Now, while this is good news, it turns out that in most cases large C is detri-
mental. While search space size generally does decrease when increasing the size limit
x, all heuristic functions also become slower. The slowdown is dramatic for hFF(ΠC). It
is much less dramatic for hCFF, but still typically enough to outweigh the search space
reduction. Figure 1 (c) shows the effect: overall coverage becomes worse with growing
x, dramatically for hFF(ΠC), in a more benign manner but still almost monotonically for
hCFF. The best overall coverage is most often (across heuristics, configurations, domains)
obtained at x = 2, which is also the best setting of x in Keyder et al.’s (2014) experiments.

The hFF baselines in Figure 1 (c) are based on hCFF using only the singleton conjunc-
tions (x = 1), for better comparability with our methods, and to have the same 5 tie-
breaking strategies at our disposal. In comparison to these baselines, hCFF consistently out-

10. In Figure 1 (a), for x = 2 the number of counters in hCFF exceeds |AπC|. This cannot happen in theory,
as per Definition 1, because ΠC includes an action a[{c}] for every counter count(c, a). It does happen in
practice only due to the handling of facts, i. e., the action’s original pre/add/del lists: while Definition 1
handles these as singleton conjunctions, our implementation of ΠC uses the more effective special-case
handling as per Haslum’s (2012) definition.

300

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

hCFF hFF(ΠC) hFF(ΠC
ce) hCFF

nc
hC hCadd h1(ΠC) hadd(ΠC) h1(ΠC

ce) hadd(ΠC
ce) hC hCadd

domain arb rnd dif arb rnd arb rnd dif arb rnd arb rnd dif arb rnd arb rnd dif arb rnd

Barman’11 3 2 8 8 12 0 0 1 14 1 1 0 2 15 2 2 2 8 11 13
Barman’14 1 0 3 3 7 1 0 0 7 0 1 0 1 8 1 1 0 3 4 7
CaveDiving’14 7
ChildSnack’14 2 0 14 2 1 2 0 0 0 0 2 0 0 0 0 2 0 14 2 1
Elevators’11 11 19 18 20 20 8 12 15 19 18 9 12 15 20 19 11 20 18 20 20
Floortile’11 20
Floortile’14 20
GED’14 20
Hiking’14 15 17 14 14 16 16 10 16 15 13 16 11 15 15 12 15 16 12 15 15
Maintenance’14 10 13 10 9 14 11 10 11 11 11 11 9 11 11 12 10 12 11 10 14
Nomystery’11 7 6 10 7 7 7 6 10 12 6 7 6 11 12 6 7 6 10 7 7
Openstacks’11 19 19 19 19 20 20 16 20 20 20 20 16 20 19 20 20 19 19 20 20
Openstacks’14 17 17 15 15 16 15 8 15 14 16 14 9 13 12 16 17 16 15 13 17
Parcprinter’11 16 10 13 12 12 12 12 13 12 7 8 11 10 9 10 16 10 14 12 13
Parking’11 5 20 8 8 14 2 19 4 11 20 2 16 4 12 20 5 20 7 8 14
Parking’14 1 17 1 4 9 0 9 0 5 20 0 8 0 5 19 1 20 1 5 9
Pegsol’11 20
Scanalyzer’11 17 18 20 20 20 18 18 20 19 20 18 19 20 19 20 18 20 20 20 20
Sokoban’11 18 16 17 17 17 18 16 18 17 17 18 16 16 17 17 18 17 17 17 17
Tetris’14 7 7 8 8 8 4 7 3 5 8 4 9 4 4 9 7 9 8 8 7
Thoughtful’14 13 13 9 10 11 13 10 15 12 10 13 9 15 11 10 12 12 9 10 11
Tidybot’11 11 15 13 14 16 10 15 15 14 19 13 17 15 14 18 11 15 13 14 16
Transport’11 0 2 6 12 13 2 1 5 10 11 2 3 4 10 11 0 2 5 14 13
Transport’14 0 0 2 9 7 0 0 2 7 7 0 0 1 10 9 0 0 2 6 9
Visitall’11 2 18 3 16 17 15 13 16 16 14 3 13 3 16 14 2 18 3 18 18
Visitall’14 0 4 0 4 4 4 4 4 4 4 0 4 0 4 4 0 4 0 4 4
Woodworking’11 20

∑ 282 340 318 338 368 285 293 310 351 349 269 295 287 350 356 282 345 316 345 372

Table 1: Coverage results with x = 2, for hCFF, hFF(ΠC), hFF(ΠC
ce), and hCFF

nc , with differ-
ent best-supporter functions (hC vs. hCadd) and tie-breaking strategies. Best re-
sults highlighted in boldface. Abbreviations: “arb” arbitrary tie-breaking; “rnd”
random tie-breaking (per-instance median seed, see also Table 2); “dif” difficulty
tie-breaking.

performs even the more competitive, non-standard hFF variant with random tie-breaking.
For hFF(ΠC), the same is true with small x values. Recall, however, that we report only
the performance of search, not that of C-learning: the data here evaluates exclusively the
merits of the respective heuristic functions, not the overhead required to obtain them in the
first place. We will stick to this rationale throughout, as the differences between explicit-
conjunction heuristics are our contribution here. For completeness, Appendix B shows
coverage plots counting C-learning as part of the solving effort, i. e., with a 30-minute limit
on the time taken by C-learning and search together.

Given the typically detrimental effect of large x, in what follows we first (Section 5.3)
explore the case x = 2, examining in detail the space of heuristic functions and best sup-
porters. Subsequently (Section 5.4), we examine in more detail what happens as we scale x.
To make the latter experiments feasible, we will fix for each heuristic function the most per-
formant best-supporter method; as it will turn out, for scaling x, this is the same method
for every heuristic, namely hCadd with random tie-breaking.

301

FICKERT & HOFFMANN & STEINMETZ

5.3 Small C: Heuristics, Best Supporters, and Tie Breaking for x = 2

We examine first the performance of the “main” heuristic functions, i. e., hCFF vs. the com-
peting previous variants hFF(ΠC) and hFF(ΠC

ce), as well as hCFF
nc which can essentially be

perceived as an alternative, no-compilation, implementation of hFF(ΠC
ce). We will discuss

the behavior of hCFF
|G′|=1 and hCFF

|G′|=1A, relative to hCFF, below. Consider Table 1.

The most striking observation in this data is that the differences between heuristic functions
are dominated by those between tie-breaking strategies. As a function of tie-breaking, the range
of overall coverage is 282–368 for hCFF, 285–351 for hFF(ΠC), 269–356 for hFF(ΠC

ce), and 282–
372 for hCFF

nc . This relatively small role of heuristic function differences, for x = 2, makes
sense as the advantages of hCFF and hCFF

nc – different scaling in C, cross-context conditions,
non-compilation implementation – naturally have more impact the larger C is. There are
cases though where even small C makes a difference.

Comparing tie-breaking strategies, hCadd best supporters are superior to hC best sup-
porters, typically per domain and almost consistently in the total. This makes sense in
that all heuristics here run the risk of over-estimation, and hCadd is better than hC at find-
ing cheap relaxed plans. There are several cases where some combination of heuristic and
tie-breaking method works exceptionally well, e. g. hCFF/hCFF

nc with hC and difficulty tie-
breaking in ChildSnack’14, hCFF/hCFF

nc with hC and arbitrary tie-breaking in Parcprinter’11,
hFF(ΠC)/hFF(ΠC

ce) with hadd and arbitrary tie-breaking in Barman’11. As these perfor-
mance peaks are not consistent across tie-breaking methods for the respective heuristics,
we consider them to be outliers caused by the brittleness of search.

Comparing heuristic functions h vs. h′, a way of identifying strong advantages is to
consider those domains in Table 1 where h has a consistent advantage over h′, i. e., h is at
least as good as h′ for all tie-breaking methods, and is strictly better for at least one method.
Call such an advantage strict if h is strictly better for all tie-breaking methods. In the com-
parison hCFF vs. hFF(ΠC), hCFF has a consistent advantage in 5 domains (ChildSnack’14,
Elevators’11, Openstacks’14, Tetris’14, and Transport’14), while hFF(ΠC) has a consistent
advantage in 2 domains (Sokoban’11 and Visitall’14). The advantage is strict only for hCFF

in Elevators: in all other cases, some tie-breaking methods work equally well for both
heuristics. Overall, despite the noise the data is (somewhat) in favor of hCFF.

The comparison hCFF vs. hFF(ΠC
ce) yields a similar picture, with 4 consistent (non-strict)

advantages for hCFF (ChildSnack’14, Elevators’11, Openstacks’14, Sokoban’11) vs. 1 con-
sistent (non-strict) advantage for hFF(ΠC

ce) (Tidybot’11). It is illuminating to offset these
observations against the data for hCFF

nc : in every domain where hCFF has a consistent ad-
vantage over hFF(ΠC

ce), hCFF
nc also has a consistent advantage over hFF(ΠC

ce), and the only
domain where hCFF

nc has a consistent disadvantage vs. hFF(ΠC
ce) is the same as for hCFF,

Tidybot’11. Hence the reason for the differences between hCFF and hFF(ΠC
ce) here are not

the cross-context conditions. Presumably, as cross-context conditions occur only in very
specific situations, with small C they just do not play a role.

Further evidence towards this conclusion comes from the comparison hCFF vs. hCFF
nc .

Actually, regarding cross-context conditions, that comparison is more informative than
that between hCFF vs. hFF(ΠC

ce): after all, hCFF and hCFF
nc differ only in accounting respec-

tively not accounting for cross-context conditions. In terms of consistent advantages, the
comparison is clearly in favor of hCFF

nc , with 8 consistent (non-strict) advantages for hCFF
nc

302

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

hCFF hFF(ΠC)
domain s1 s2 s3 worst med best var δ s1 s2 s3 worst med best var δ

Barman’11 13 12 12 10 12 15 1 +5 3 1 1 1 1 3 2 −13
Barman’14 8 5 7 5 7 8 3 +5 0 0 1 0 0 1 1 −7
CaveDiving’14 7 7 7 7 7 7 0 0 7 7 7 7 7 7 0 0
ChildSnack’14 2 1 2 0 1 4 1 −1 1 1 2 0 0 4 1 +2
Elevators’11 20 20 19 19 20 20 1 −1 18 17 19 17 18 19 2 −2
Floortile’11 20 20 20 20 20 20 0 0 20 20 20 20 20 20 0 0
Floortile’14 20 20 20 20 20 20 0 0 20 20 20 20 20 20 0 0
GED’14 20 20 20 20 20 20 0 0 20 20 20 20 20 20 0 0
Hiking’14 18 14 15 13 16 18 4 +4 13 13 13 11 13 15 0 −2
Maintenance’14 13 13 13 10 14 15 0 +4 11 8 12 5 11 15 4 ±3
Nomystery’11 6 7 7 6 7 7 1 −1 6 6 6 6 6 6 0 −6
Openstacks’11 20 20 20 20 20 20 0 +1 20 20 19 19 20 20 1 −1
Openstacks’14 18 16 16 16 16 18 2 +3 16 16 14 14 16 16 2 +2
Parcprinter’11 13 10 12 8 12 15 3 ±2 9 9 9 6 7 14 0 −3
Parking’11 14 14 16 13 14 17 2 +8 20 20 20 20 20 20 0 +9
Parking’14 9 11 8 7 9 12 3 +7 20 17 19 16 20 20 3 +15
Pegsol’11 20 20 20 20 20 20 0 0 20 20 20 20 20 20 0 0
Scanalyzer’11 20 20 20 20 20 20 0 0 20 20 20 20 20 20 0 +1
Sokoban’11 16 17 18 16 17 18 2 ±1 17 17 17 17 17 17 0 0
Tetris’14 8 9 7 6 8 10 2 ±1 11 9 7 7 8 12 4 +6
Thoughtful’14 11 10 12 9 11 13 2 +2 11 10 11 8 10 14 1 −2
Tidybot’11 15 16 16 14 16 17 1 +2 17 18 17 14 19 19 1 +4
Transport’11 14 12 11 9 13 15 3 ±2 12 11 11 9 11 14 1 +2
Transport’14 9 7 7 7 7 9 2 −2 8 6 7 5 7 9 2 ±1
Visitall’11 17 18 17 17 17 18 1 +2 14 14 13 13 14 14 1 −3
Visitall’14 4 4 4 4 4 4 0 0 4 4 4 4 4 4 0 0
Woodworking’11 20 20 20 20 20 20 0 0 20 20 20 20 20 20 0 0

∑ 375 363 366 336 368 400 358 344 349 319 349 383

Table 2: Coverage results with x = 2, showing the effect of different random seeds
in random tie-breaking for hCadd best-supporters. “s1”, “s2”, “s3” denote
the 3 random seeds (fixed throughout the experiment). The “best”, “med”,
and “worst” columns assess per-instance aggregation methods, selecting the
best/median/worst seed per instance respectively. “var” assesses the per-domain
performance variance, in terms of the difference between the best and worst cov-
erage. “δ” assesses the per-domain consistency of performance change relative
to the baseline, i. e., relative to hCadd best-supporters with arbitrary tie-breaking.
It shows the maximum absolute difference, with “+” if coverage is better for all
seeds, “−” if coverage is worse for all seeds, and “±” otherwise, i. e., if coverage
actually gets better or worse depending on the seed.

vs. 2 consistent (non-strict) advantages for hCFF. However, examining this more closely, all
these advantages are at a very small scale. Whereas, in the comparisons above, the average
coverage difference in consistent-advantage domains is typically between 2 and 3, in the
comparison between hCFF and hCFF

nc it is usually 0.2 and its maximum is 0.8.
What to conclude regarding our experimental hypotheses, (H1) advantage of hCFF over

hFF(ΠC) thanks to better scaling in |C|, (H2) advantage of hCFF over hFF(ΠC
ce) thanks to

cross-context conditions, and (H3) advantage of hCFF and hCFF
nc over hFF(ΠC

ce) thanks to
implementation? Table 1 provides evidence in favor of (H1) and (H3), though only in few
domains, and subject to substantial noise from tie-breaking. There is no support for (H2).
The evidence suggests that, for x = 2, taking cross-context conditions into account has
neither substantial positive effects nor substantial negative effects.

303

FICKERT & HOFFMANN & STEINMETZ

Some words are in order regarding our use of random tie-breaking. The crucial obser-
vations are that, per domain, (a) the variance over random seeds is typically small, while
(b) the performance change relative to the baseline typically is consistent. This makes ran-
dom tie-breaking comparable to other non-randomized algorithm options. That said, in
some domains either (a) or (b) are false, and in the total the differences would sum up.
We counteract this with a per-instance aggregation method to obtain per-instance data that
reduces variance relative to the individual seeds, and that interpolates between the seeds
in terms of overall performance. The per-instance median seed, of the 3 random seeds ran in
our experiments, turns out to be suitable (for coverage, this counts an instance as solved
if at least 2 of the 3 randomized runs solved it). We used the per-instance median seed
in Figure 1 and Table 1, and will use it below in all cases where random tie-breaking is
employed. Table 2 shows the data supporting these observations and design decisions.

A quick look at the “var” columns in Table 2 confirms observation (a). The difference
between the best and the worst per-seed coverage is ≤ 2 except in 5 domains for hCFF and
in 3 domains for hFF(ΠC). On the other hand, looking at the bottom row and comparing
the seeds, the differences do add up. This would be especially so if we were to select
the best or worst seed per instance (“best” and “worst” columns), resulting in coverage
differences of around 70 in the total. However, using the median (“med” column) seed
results in a per-instance aggregation with the desired properties.

Regarding observation (b), consider the “δ” columns in Table 2. Those domains where
performance relative to the baseline is not consistent, i. e., gets better or worse depending
on the random seed, are marked with a “±” symbol. These symbols are sparse in the
table. In all but 4 of the 27 domains for hCFF, and in all but 2 of them for hFF(ΠC), the
randomization changes performance consistently. (It rarely deteriorates performance for
hCFF, while for hFF(ΠC) the picture is more mixed depending on the domain.) This shows
clearly that random tie-breaking is reliable against the baseline.

Indeed, these findings contradict Keyder et al.’s (2014) use of random tie-breaking as a
measure of noise. Keyder et al.’s idea was to account for the brittleness of search by ran-
domizing the baseline heuristic h (in their case, hFF with hadd best supporters and arbitrary
tie-breaking), measuring δ as in Table 2 yet ignoring the distinctions “+”, “−”, “±”, i. e.,
considering only the absolute maximum difference. They deem a heuristic h′ to be signifi-
cantly better than h only if its improvement over h is larger than δ – intuitively, larger than
the random noise. However, this approach assumes that random tie-breaking yields a dis-
tribution around the baseline average, which is very much not so in our data. Consider for
example hFF(ΠC) in Barman’11. According to Keyder et al.’s method, the “random noise”
here is 13, and for any other heuristic to be significantly better than hFF(ΠC) it must hence
increase coverage by at least 14. But the “noise” is just the effect of random tie-breaking
being consistently detrimental. Similar examples abound.

We conclude that, in the specific context of our experiments, Keyder et al.’s measure is
not appropriate because random tie-breaking is typically not a source of noise. To the con-
trary, the performance of 3 separate runs of random tie-breaking can be reliably reported
like that of a single planner run, through per-instance median seed aggregation.

Let us finally consider the behavior of hCFF relative to hCFF
|G′|=1 which trivializes the sub-

goal support selection, and relative to hCFF
|G′|=1A which also trivializes the C-relaxed plan

(into a set of actions instead of action occurrences). Table 3 shows the data.

304

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

hCFF hCFF
|G′ |=1 hCFF

|G′ |=1A
hC hCadd hC hCadd hC hCadd

domain arb rnd dif arb rnd arb rnd dif arb rnd arb rnd dif arb rnd

Barman’11 3 8 2 8 12 2 3 0 13 13 0 3 0 6 1
Barman’14 1 3 0 3 7 2 1 0 6 4 1 1 0 1 1
CaveDiving’14 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
ChildSnack’14 2 14 0 2 1 2 10 1 1 2 2 10 0 2 0
Elevators’11 11 18 19 20 20 10 17 18 20 20 8 12 19 20 20
Floortile’11 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Floortile’14 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
GED’14 20 20 20 20 20 20 19 20 20 20 20 20 20 20 20
Hiking’14 15 14 17 14 16 10 10 14 14 13 12 11 15 15 14
Maintenance’14 10 10 13 9 14 4 5 4 6 5 7 10 10 10 10
Nomystery’11 7 10 6 7 7 7 6 5 6 6 6 9 5 8 7
Openstacks’11 19 19 19 19 20 19 19 20 20 19 20 19 20 19 20
Openstacks’14 17 15 17 15 16 17 17 20 16 15 16 17 16 16 16
Parcprinter’11 16 13 10 12 12 13 11 3 8 7 16 11 5 7 8
Parking’11 5 8 20 8 14 2 2 14 2 2 4 3 20 15 18
Parking’14 1 1 17 4 9 1 0 3 0 0 2 0 14 6 13
Pegsol’11 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Scanalyzer’11 17 20 18 20 20 19 19 20 20 20 17 20 19 20 20
Sokoban’11 18 17 16 17 17 16 17 17 17 16 16 17 17 17 16
Tetris’14 7 8 7 8 8 7 4 14 4 11 8 10 11 8 10
Thoughtful’14 13 9 13 10 11 9 14 10 13 14 9 13 9 14 12
Tidybot’11 11 13 15 14 16 10 11 12 14 16 10 12 16 13 15
Transport’11 0 6 2 12 13 0 4 2 13 13 1 3 1 11 9
Transport’14 0 2 0 9 7 0 1 0 8 7 0 2 0 9 5
Visitall’11 2 3 18 16 17 12 11 20 20 20 1 1 20 20 19
Visitall’14 0 0 4 4 4 4 3 11 7 5 0 0 9 8 5
Woodworking’11 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

∑ 282 318 340 338 368 273 291 315 335 335 263 291 333 352 346

Table 3: Coverage results with x = 2, for hCFF vs. hCFF
|G′|=1 and hCFF

|G′|=1A, with different best
supporter functions and tie-breaking strategies. Best results highlighted in bold-
face. Abbreviations as in Table 1.

Like in Table 1, there is a lot of noise due to tie-breaking strategies. Note though that
all heuristics shown here work on the same representation and are based on the same
implementation. The differences are only in the subgoal support selection/relaxed plan
definition. Comparisons of tie-breaking strategies across heuristics hence are direct.

The data shows a clear advantage of hCFF over hCFF
|G′|=1. For every tie-breaking strategy,

hCFF is strictly better in the total (the margin varying from 3 for hCadd with arbitrary tie-
breaking to 33 for hCadd with random tie-breaking). Using the per-domain comparison
across tie-breaking strategies, hCFF has a consistent advantage in 10 domains (3 of which
are strict), and a consistent disadvantage only in 2 domains (both strict, namely the two
Visitall variants). Comparing search space size and states per second on commonly solved
instances, the advantages of hCFF are partly due to quality (e. g. Parking’11 994.4 vs. 8, 091.1
geometric mean of state evaluations), supporting our hypothesis (H4) that the non-trivial
subgoal support selection in hCFF yields a more informed heuristic than hCFF

|G′|=1. There
also are several cases where the advantage is in speed (e. g. Elevators’11 4713.0 vs. 4591.1
states per second). The only possible cause for this lies in the different states evaluated:
those for hCFF are easier to evaluate, which typically is the case for states closer to the goal.
(We remark that, like for the standard relaxed plan heuristic, most of the heuristic function

305

FICKERT & HOFFMANN & STEINMETZ

runtime, typically 90% or more, is spent on the computation of the best-supporter function,
hC respectively hCadd in our case.)

Relative to hCFF
|G′|=1A, hCFF is still in the advantage but the picture is more mixed. In

terms of total coverage, hCFF is dominant except for hCadd with arbitrary tie-breaking. Per
domain, hCFF has a consistent advantage in 6 cases (1 strict), vs. a consistent disadvantage
in 4 cases (none strict). It appears that, at least for this setting of x and the IPC bench-
marks, relative to hCFF

|G′|=1 which is prone to over-estimation, the trivialized C-relaxed plan

in hCFF
|G′|=1A does result in a better heuristic. Comparing hCFF

|G′|=1A vs. hCFF
|G′|=1 directly, hCFF

|G′|=1A
dominates in the total except for hC with arbitrary tie-breaking, has a consistent advan-
tage in 5 domains (3 strict), and a consistent disadvantage in 3 domains (none strict). In
terms of search space size and states per second on commonly solved instances, the advan-
tages of hCFF

|G′|=1A are mostly due to quality (most notably in Parking’11, 1102.7 vs. 8091.1

state evaluations), except in Hiking’14 where hCFF
|G′|=1A is faster (526.7 vs. 639.8 states per

second).

5.4 Scaling C: Performance as a Function of x

We now examine search behavior as C becomes larger. This is naturally presented in terms
of plots of performance measures as a function of the size limit x. Keep in mind, especially
in the comparison to the hFF baselines, that the C-learning is conducted separately from
the search, with a separate 30-minute time limit. Appendix B shows the same coverage
plots included in the below, but when counting C-learning as part of the solving effort. In
the following discussions, we include brief summaries of this data.

Figure 2 shows total coverage as a function of x. Consider first Figure 2 (b) which set-
tles the question about the most competitive tie-breaking strategies. As we have seen in
Tables 1 and 2, total coverage at x = 2 is maximal using hadd with random tie-breaking,
for almost all heuristic functions. The two exceptions are hFF(ΠC) and hCFF

|G′|=1A. For both

of these, hadd with arbitrary tie-breaking works better than hadd with random tie-breaking
at x = 2 (2 more instances solved for hFF(ΠC), 6 more instances solved for hCFF

|G′|=1A). How-
ever, as Figure 2 (b) shows, the advantage of arbitrary tie-breaking at x = 2 turns into a
substantial disadvantage for larger values of x. Hence, for the remainder of the experi-
ments, we fix hadd with random tie-breaking as the best-supporter method throughout.

Consider now Figure 2 (a). As previously hinted (Figure 1 (c)), total coverage tends
to decrease as a function of x. All heuristics consistently outperform both hFF baselines
though, except for hFF(ΠC) whose per-state runtime overhead drags coverage below that
of hFF once x ≥ 32 (and except for a temporary dip of hCFF

|G′|=1 below hFF with random
tie-breaking at x = 16).

Note that all of hCFF, hCFF
nc , hFF(ΠC), and hFF(ΠC

ce) decrease, relatively speaking, more
steeply up to x = 25, and less steeply afterwards. This is because, around this point, in
many domains the C-learning reaches the time limit before the size limit. While hFF(ΠC)
in the remaining domains still becomes substantially worse, for the other heuristics this is
less pronounced. Observe here that the coverage difference between x = 2 and x = 210,
except for hFF(ΠC), is small, around 20 instances. Indeed, most of this decrease is caused
by a few domains only, namely Barman, Parking, Sokoban, and Visitall.

306

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

21 22 23 24 25 26 27 28 29 210

240

250

260

270

280

290

300

310

320

330

340

350

360

370

hCFF
nc

hCFF

hFF(ΠC
ce)

hFF(ΠC)

hCFF
|G′|=1A
hCFF
|G′|=1

hFF (arb)
hFF (rnd)

21 22 23 24 25 26 27 28 29 210

240

250

260

270

280

290

300

310

320

330

340

350

360

370

hFF(ΠC) (rnd)
hFF(ΠC) (arb)
hCFF
|G′|=1A (rnd)

hCFF
|G′|=1A (arb)

(a) hadd, random tie-breaking (b) hadd, random vs. arbitrary tie-breaking

Figure 2: Total coverage as a function of the size bound x. (a) All heuristics using hadd with
random tie-breaking (median per-instance seed; heuristic functions listed top-
down by order of their coverage for x = 2). (b) hadd with random vs. arbitrary
tie-breaking for hFF(ΠC) and hCFF

|G′|=1A, the only two heuristics where arbitrary
tie-breaking yields higher total coverage for x = 2. In (a), for comparison we
include hFF as a baseline, using hadd with arbitrary tie-breaking (FD default), and
using hadd with random tie-breaking. Recall in this comparison that the effort for
C-learning is not included in the explicit-conjunction heuristics.

The curves of hCFF, hCFF
nc , and hFF(ΠC

ce) are fairly close to each other, and follow a sim-
ilar pattern. hCFF is consistently better than hFF(ΠC

ce), and hCFF
nc is consistently better than

hFF(ΠC
ce) except for x = 29. For x ≥ 26, there is a consistent advantage for hCFF over hCFF

nc ,
indicating a beneficial impact of cross-context conditions.

Regarding hCFF
|G′|=1 and hCFF

|G′|=1A, the latter is consistently much better than the former.

hCFF
|G′|=1A achieves very competitive performance for x ≥ 25. Both heuristics exhibit no

clear trend over x. The latter is not due to a difference in heuristic function speed (as we
shall see below, the speed of hCFF

|G′|=1 and hCFF
|G′|=1A is similar to that of hCFF, across x values).

Rather, it is caused by particular behaviors in the few domains causing the coverage de-
cline tendency in Figure 2 (a). Compared to the other heuristics, hCFF

|G′|=1 and hCFF
|G′|=1A scale

better over x in Barman (only hCFF
|G′|=1A) and Visitall (both hCFF

|G′|=1 and hCFF
|G′|=1A). There also

are some cases, e. g. Barman for hCFF
|G′|=1 and Parking for both hCFF

|G′|=1 and hCFF
|G′|=1A, where

these heuristics are bad from begin with, not solving in the first place those instances lost
by other heuristics for larger x, and hence suffering less from large x.

In most domains other than Barman, Parking, Sokoban, and Visitall, the only heuristic
suffering from large x is hFF(ΠC), if any heuristic suffers at all. On the other heuristics,
growing x has only a marginally negative effect, an inconclusive effect, or no effect at all.
There also are 4 domains where most heuristics tend to improve in coverage as x grows.
Figure 3 shows the data for these. The coverage growth over x is most consistent across

307

FICKERT & HOFFMANN & STEINMETZ

21 22 23 24 25 26 27 28 29 210
0

5

10

15

20

21 22 23 24 25 26 27 28 29 210
0

5

10

15

20

(a) Maintenance (b) Parcprinter

21 22 23 24 25 26 27 28 29 210
0

5

10

15

20

21 22 23 24 25 26 27 28 29 210
0

5

10

15

20

(c) Tetris (d) Thoughtful

Figure 3: Coverage in individual domains. All explicit-conjunction heuristics use hadd

with random tie-breaking. Recall in the comparison to the hFF baselines that
the effort for C-learning is not included in the explicit-conjunction heuristics.

heuristics in Parcprinter. In the other domains, the picture is more mixed, with a lot of
variance in Maintenance and Thoughtful, and with mainly hCFF

|G′|=1, hCFF
|G′|=1A, hCFF, and hCFF

nc

profiting from large x in Tetris. (The curves remain flat in Tetris for x ≥ 27 because then
the C-learning time-limit applies and no more new conjunctions are added.)

How does this picture change when imposing a 30-minute limit on the time taken by C-
learning and search together? Naturally, the tendency of coverage to decline over growing
x becomes stronger, yet the relative performance of explicit-conjunction heuristics remains
very similar.

For total coverage, shown in Figure 7 (page 323), performance is substantially worse
than for search-only already at x = 2 (by 20-30 instances), and declines more steeply over
x for all heuristics. For the relative performance of heuristics, however, our conclusions
remain exactly the same as above. With respect to the baselines, only hCFF and hCFF

nc beat
the non-default hFF (random tie-breaking), and only at x = 2. The inferior default hFF

308

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

baseline is beat by all explicit-conjunction heuristics up to medium-large x values (x = 16
or x = 32), except for hFF(ΠC) which is worse for x ≥ 8, and for hCFF

|G′|=1 which marginally

beats default hFF only at x = 2.
For the individual domains in Figure 3, the questions are whether (a) x > 2 still im-

proves coverage when including the effort for C-learning, and whether (b) the explicit-
conjunction heuristics can still beat the hFF baselines. As Figures 8 and 9 (pages 324
and 325) show, the answer to both (a) and (b) is “yes”. In Maintenance and Thought-
ful, not much changes with respect to Figure 3. In Parcprinter and Tetris, very large values
of x are detrimental, but moderate ones aren’t. Coverage increases up to a certain point,
namely x = 23 in Parcprinter and x = 24 in Tetris, then decreases after that point.

Let us get back to our hypotheses (H1)–(H4). Figure 2 (a) confirms (H1) that hCFF typi-
cally has an advantage over hFF(ΠC); somewhat supports that (H2) the cross-context con-
ditions in hCFF yield an advantage over hFF(ΠC

ce) (and, more directly, over hCFF
nc); confirms

that (H3) hCFF and hCFF
nc have an advantage over hFF(ΠC

ce); and (H4) confirms that hCFF has
an advantage over hCFF

|G′|=1. To examine the reason for these advantages, and thus evaluate
the specific claim of each hypothesis, we now consider more fine-granular performance
measures, namely search space size (number of state evaluations), states per second, and
search runtime, on commonly solved instances.

The specific claim of hypothesis (H1) is that, thanks to avoiding the exponential blow-
up in |C|, hCFF is typically faster than hFF(ΠC) and thus improves performance. Figure 4
confirms this. The top row of plots shows the main data (the data for overall performance).
As we see in the top left plot, in terms of quality the two heuristics are similar. In terms
of speed, hFF(ΠC) suffers with growing x, in the overall and consistently in individual
domains, to the effect that runtime, like coverage discussed above, suffers as well. That is
much less so for hCFF, leading to a dramatic performance advantage for large x.11

On the other hand, as hCFF also suffers itself from large x, though less than hFF(ΠC),
its advantage over hFF(ΠC) in the overall is mute. Most relevant are the domains where,
thanks to its speed advantage, hCFF benefits from growing x, and hence improves over the
best performance obtainable with hFF(ΠC) for any value of x. For coverage, this happens
in Maintenance and Tetris (both, with and without including C-learning, cf. Figures 3, 8,
and 9). For search runtime on commonly solved instances, it happens in Hiking, Pegsol,
Tetris, and Thoughtful. Figure 4 showcases Hiking and Tetris, which we will also use as
showcases below as they nicely illustrate most of our main points.

We next compare three heuristic functions with each other, namely hCFF, hCFF
nc , and

hFF(ΠC
ce). This serves to examine hypotheses (H2) and (H3). The specific claim of the

former asserts that, thanks to accounting for cross-context conditions, hCFF can be more
informed than hFF(ΠC

ce). The latter asserts that the implementation of hCFF and hCFF
nc is typi-

cally faster than that of hFF(ΠC
ce). It is of advantage to compare all three heuristics together

as, to evaluate the importance of cross-context conditions, the comparison between hCFF

and hCFF
nc is more direct. Figure 5 shows the data.

Hypothesis (H3) is confirmed very consistently, at a small scale. hCFF and hCFF
nc are faster

than hFF(ΠC
ce) across all x values in the overall, with a small advantage that grows in x.

11. We remark that, for x = 1 where hCFF and hFF(ΠC) both are variants of hFF, there are hardly any speed
differences, neither between hCFF and hFF(ΠC) nor compared to FD’s standard implementation of hFF.

309

FICKERT & HOFFMANN & STEINMETZ

21 22 23 24 25 26 27 28 29 210
102

103

104

105

hCFF

hCFF (*)

hFF(ΠC)

hFF(ΠC) (*)

21 22 23 24 25 26 27 28 29 210
100

101

102

103

21 22 23 24 25 26 27 28 29 210
100

101

102

103

Overall: search space size, states per second, search runtime

21 22 23 24 25 26 27 28 29
102

103

104

105

21 22 23 24 25 26 27 28 29
100

101

102

103

21 22 23 24 25 26 27 28 29
100

101

102

103

Hiking: search space size, states per second, search runtime

21 22 23 24 25 26 27
102

103

104

105

21 22 23 24 25 26 27
100

101

102

103

21 22 23 24 25 26 27
100

101

102

103

Tetris: search space size, states per second, search runtime

Figure 4: Data for hCFF vs. hFF(ΠC). Geometric means. All curves use only those instances
solved for all values of x, for the curves with a (*) solved by both heuristics (174
instances overall), for those without (*) solved by the respective heuristic.

Essentially the same behavior occurs in every individual domain, with a single exception,
namely Tidybot where hFF(ΠC

ce) is consistently faster. Hiking and Tetris in Figure 5 are two
typical examples. In terms of coverage, hCFF and hCFF

nc consistently (across all or almost all
values of x) dominate hFF(ΠC

ce) in Barman, Elevators, Hiking, Maintenance, Sokoban, and
Visitall; the opposite happens only in Parking and Tidybot.

Regarding (H2), as the top left plot in Figure 5 shows, all three heuristics yield similar
search space sizes overall. There are no domains where hCFF consistently, across all values
of x, yields smaller search spaces than hCFF

nc . However, there are domains where hCFF has
a notable advantage for large values of x. This is mainly so for Hiking and Tetris, shown
in Figure 5. In Tetris, the advantage is basically consistent beyond x = 24. Hiking behaves
similarly except for a degradation at the largest two x values. In both domains, hCFF also
has corresponding coverage advantages over hCFF

nc . Overall, the support for hypothesis

310

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

21 22 23 24 25 26 27 28 29 210
103

104

105

hCFF

hCFF
nc

hFF(ΠC
ce)

21 22 23 24 25 26 27 28 29 210
102

103

104

21 22 23 24 25 26 27 28 29 210
101

102

103

Overall: search space size, states per second, search runtime

21 22 23 24 25 26 27 28 29 210
103

104

105

21 22 23 24 25 26 27 28 29 210
101

102

103

21 22 23 24 25 26 27 28 29 210
101

102

103

Hiking: search space size, states per second, search runtime

21 22 23 24 25 26 27 28 29 210
103

104

105

21 22 23 24 25 26 27 28 29 210
101

102

103

21 22 23 24 25 26 27 28 29 210
101

102

103

Tetris: search space size, states per second, search runtime

Figure 5: Data for hCFF vs. hCFF
nc vs. hFF(ΠC

ce). Geometric means. All curves use only those
instances solved for all values of x by all heuristics (225 instances overall). Note
that, for better readability, the y-scales show only 2 orders of magnitude (in dif-
ference to Figure 4).

(H2) is weak, but the data does give evidence that cross-context conditions can, in some
cases, be of advantage.

In this context, it is worth coming back briefly to the discussion of Table 1, for x =
2, where the comparison between hCFF and hCFF

nc was somewhat in favor of hCFF
nc (many

per-domain advantages, but at a small scale). For growing x, the picture becomes more
favorable for hCFF, though still at a small scale. There is no domain where hCFF

nc consistently
is faster, or of higher quality, or yields better coverage, than hCFF. On the other hand,
hCFF is consistently faster in Barman, GED, and Openstacks, plus the favorable behavior in
Hiking and Tetris as shown in Figure 5.

311

FICKERT & HOFFMANN & STEINMETZ

21 22 23 24 25 26 27 28 29 210

103

104

105

hCFF

hCFF|G′=1|
hCFF|G′=1|A

21 22 23 24 25 26 27 28 29 210
101

102

103

21 22 23 24 25 26 27 28 29 210

101

102

103

Overall: search space size, states per second, search runtime

21 22 23 24 25 26 27 28 29 210

103

104

105

21 22 23 24 25 26 27 28 29 210
101

102

103

21 22 23 24 25 26 27 28 29 210

101

102

103

Hiking: search space size, states per second, search runtime

21 22 23 24 25 26 27 28 29 210

103

104

105

21 22 23 24 25 26 27 28 29 210
101

102

103

21 22 23 24 25 26 27 28 29 210

101

102

103

Tetris: search space size, states per second, search runtime

Figure 6: Data for hCFF vs. hCFF
|G′|=1 vs. hCFF

|G′|=1A. Geometric means. All curves use only those
instances solved for all values of x by all heuristics (208 instances overall). Note
that, for better readability, the y-scales show only 2 orders of magnitude (in dif-
ference to Figure 4).

Let us finally consider hypothesis (H4), which asserts that, thanks to its non-trivial
subgoal support selection, hCFF typically yields a more informed heuristic than hCFF

|G′|=1. We

include hCFF
|G′|=1A into the comparison for completeness. Figure 6 shows the data.

All three heuristics perform very similarly in the overall. This is partly due to particu-
larities of the common instance basis. Several domains are not at all, or hardly, contained
in the instance basis of Figure 6. This pertains in particular to Barman, Maintenance, Par-
cprinter, and Parking, where hCFF has large coverage advantages over hCFF

|G′|=1.
Nevertheless, Figure 6 allows to confirm (H4), albeit at a small scale. In the overall,

consistently across values of x, hCFF has a slightly smaller search space than hCFF
|G′|=1. (It

also is slightly faster than hCFF
|G′|=1, and consequently results in slightly better runtime.) Per

312

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

domain, hCFF has search advantages in 9 cases, and disadvantages in only 3 cases. Fig-
ure 6 showcases Hiking and Tetris, which respectively represent these domain classes, and
where the heuristics benefit from growing x.

In most domains, like in the overall hCFF has a slight speed advantage over hCFF
|G′|=1. As

we already observed in our discussion of Table 3, these must be caused by the different
states evaluated, with hCFF evaluating more states close to the goal and thus being faster.

In terms of coverage, hCFF clearly dominates hCFF
|G′|=1 in the overall (Figure 2), and has

strong advantages in 8 domains (e. g. Maintenance and Parcprinter, cf. Figure 3), while
hCFF
|G′|=1 has advantages only in 3 domains (Tetris cf. Figure 3, Thoughtful, and Visitall).

Let us finally compare hCFF
|G′|=1 with hCFF

|G′|=1A. Their overall coverage difference is clearly

in favor of hCFF
|G′|=1A. Per domain, hCFF

|G′|=1A has a coverage advantage in 5 domains and a
disadvantage in 9, yet the disadvantages are typically marginal whereas the advantages
are substantial. Regarding speed and search space size on commonly solved instances,
speed is very similar almost universally. Search space size also is often very similar for both
(in the overall, hCFF

|G′|=1 and hCFF
|G′|=1A are almost indistinguishable). There are exceptions in

individual domains, specifically Elevators, Pegsol, and Visitall where hCFF
|G′|=1 is better, and

GED, Hiking, and Parking where hCFF
|G′|=1A is better.

Summing up our observations, the data confirms (H1) impressively, with the caveat
that there are only few IPC domains where large C is beneficial. (H3) and (H4) are con-
firmed consistently, in the overall and across most domains. The evidence for (H2) is
weaker, with good cases only in Hiking and Tetris. This is not entirely unexpected given
that cross-context conditions occur only in specific situations, important in theory but, ev-
idently, rare in practice as far as reflected by the IPC benchmarks.

6. Contribution Summary and Future Work

Our work contributes a new understanding of recent compilation-based partial delete re-
laxation heuristics, in terms of a combination of the delete relaxation with critical-path
heuristics. The key insight is to view each of these a priori unrelated relaxations as being
defined through an underlying set of atomic subgoals, where the relaxation consists in de-
composing non-atomic conjunctive goals into their atomic subgoals. Critical-path heuris-
tics require to achieve only the most costly atomic subgoal, the delete relaxation requires
to achieve all atomic subgoals. The standard delete-relaxation framework now becomes
the special case where the atomic subgoals are singleton facts, and the entire standard ma-
chinery – h+, relaxed plan existence testing based on h1, the additive heuristic hadd, relaxed
plan extraction from a best-supporter function – extends naturally along the dimension of
allowing arbitrary atomic subgoals C instead.

Our direct characterization identifies the precise new source of complexity in the re-
laxed plan extraction process, namely selecting the subset of atomic subgoals to support
with a given action. Thanks to this, we design new C-relaxed plan heuristics, hCFF and
hCFF

nc , avoiding the shortcomings of previous compilation-based heuristics. The theoretical
advantages of hCFF are reflected empirically in IPC benchmarks. The improvement over
the state of the art, overall, is marginal though, and relates more to the new heuristics’
implementation advantages than to their theoretical ones.

313

FICKERT & HOFFMANN & STEINMETZ

In our view, the main value of this work lies in understanding what the compilation
heuristics actually do, spelling out the framework of C-delete relaxation, and replacing
hFF(ΠC) and hFF(ΠC

ce) with the more direct and natural hCFF respectively hCFF
nc . While the

new heuristics may not yield dramatic benefits in most cases, they are certainly more re-
liable and somewhat more efficient than their predecessors, and there is no reason not to
use them. A nice side benefit is the simple yet useful generalization from hm to hC.

We believe that there are still many exciting avenues of future research in this area. We
expect that our results will help with many of them, through the more efficient and direct
implementation, or through the alternate and less opaque formulation.

An obvious topic is to use backward search instead of forward search, paralleling the
design of HSP-r (Bonet & Geffner, 1999) where we need to compute hC only once on the
initial state. Alcázar et al. (2013) already took this direction, but didn’t explore it in detail.

There is still a glaring hole in the understanding of C-relaxation heuristics, namely the
role of the conjunction set C. What are good sets C? How to find them? The literature so
far offers preliminary answers to the second question, and offers no answer at all to the
first one. In particular, the proof of convergence is via hm: if we select m large enough
then hm = h∗, and if we simulate m via C then hC = hm, and hC ≤ hC+ so we can get
hC+ = h∗ QED. But this completely ignores that (a) we are free to choose any set C, not just
the size-m conjunctions, and (b) while hC is a lower bound on hC+, it is a trivial one and
hC+ typically is much higher (similarly as for the well-known relation between h1 and h+).
So how many/which conjunctions are actually needed to render hC+ perfect?

Preliminary results have been obtained with a “bottom-up” approach trying to identify
planning fragments where small sets C suffice to obtain hC+ = h∗ (Hoffmann, Steinmetz, &
Haslum, 2014). This approach has proved to be exceedingly difficult though, with complex
case considerations already in trivial fragments. Can we instead explore this “top-down”,
identifying conjunctions not needed to render hC+ perfect, and thus guide the C-learning
mechanisms? In which IPC benchmarks does it suffice to use all fact pairs, and how does
h+ topology (Hoffmann, 2005) change in the other ones? Can we learn something from
that about how particular planning sub-structures should be handled?

A more practical approach is the design of alternate C-learning methods. In particular,
can we learn C during search? Learning “from mistakes” as has proved extremely suc-
cessful in constraint-satisfaction problems like SAT (e. g. Marques-Silva & Sakallah, 1999;
Moskewicz, Madigan, Zhao, Zhang, & Malik, 2001)? Recent work (Steinmetz & Hoffmann,
2016) has devised an approach doing so for dead-end detection, refining hC on dead-ends
as they become known during the search (i. e., once the search has explored all their de-
scendants). In a depth-first search, this algorithm approaches the elegance of clause learn-
ing in SAT, learning generalizing knowledge from refuted search subtrees.

But what about search guidance on non-dead-end states? Can we usefully refine hCFF

during search? A difficulty is that, whenever C was increased, to re-adjust the relative
ordering of states in principle we would need to re-evaluate hCFF on the entire open list.
An interesting option is local search: use hill-climbing until a local minimum is reached,
then refine C to eliminate that local minimum from hCFF’s search surface. In other words:
if caught in a local minimum, rather than giving up on the heuristic and relying on search
instead – as is commonly done across AI sub-areas – refine the heuristic to exhibit the exit.

314

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

In summary, we are now satisfied with the understanding of C-relaxation heuristics,
and we believe that the key to fully exploiting their power lies in a better understanding
and design of methods finding the atomic subgoals C.

Acknowledgments

This work was partially supported by the German Research Foundation (DFG), under
grant HO 2169/5-1. We thank the anonymous reviewers, whose comments helped to im-
prove the paper.

Appendix A. Proofs

Theorem 1 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π containing
all singleton conjunctions. Then h+(ΠC) = hC+(Π).

Proof: Denote Π = (F ,A, I ,G). Our proof is via comparing two equations. Equation I
simply is Equation 7 (page 280, the hC+ equation), characterizing hC+(Π). We derive Equa-
tion II by applying Equation 5 (page 279, our non-standard characterization of h+) to ΠC,
characterizing h+(ΠC).

Repeating Equation 7, for convenience: hC+(Π) = h(GC), where h is the function on
conjunction sets G that satisfies h(G) ={

0 ∀c ∈ G : c ⊆ I
1 + mina∈A,∅ 6=G′⊆{c|c∈G,R(c,a) 6=⊥} h((G \ G′) ∪ G′r

C) else

with G′r defined as G′r :=
⋃

c∈G′ R(c, a).
Reconsider now Equation 5, which can be written as: h+(Π) = h(G), where h is the

function on fact sets G that satisfies h(G) ={
0 G ⊆ I
1 + mina∈A,∅ 6=G′={p|p∈G,R({p},a) 6=⊥} h((G \ G′) ∪ G′r) else

with G′r defined as G′r :=
⋃

p∈G′ R({p}, a).
We now apply the previous equation to ΠC. Making explicit that the individual facts

in ΠC all are π-fluents, we obtain: h+(ΠC) = h({πc | πc ∈ GπC}), where h is the function
on fact sets G that satisfies h(G) ={

0 ∀πc ∈ G : πc ∈ IπC

1 + mina[C′]∈AπC ,∅ 6=G′={πc|πc∈G,R({πc},a[C′]) 6=⊥} h((G \ G′) ∪ G′r) else

with G′r defined as G′r :=
⋃

πc∈G′ R({πc}, a[C′]).
One can already see the correspondence here to Equation I, with conjunctions c cor-

responding to π-fluents πc. The only major difference is the set of action/supported-
subgoal-set pairs minimized over in the bottom cases.

Consider the set G′ = {πc | πc ∈ G, R({πc}, a[C′]) 6= ⊥} of supported atomic subgoals
as per the last equation. The condition R({πc}, a[C′]) 6= ⊥ simplifies to c ∈ C′, because

315

FICKERT & HOFFMANN & STEINMETZ

these are exactly the π-fluents added by a[C′]. Thus, removing the G′ variable which is
fixed anyway, the equation simplifies to: h(G) ={

0 ∀πc ∈ G : πc ∈ IπC

1 + mina[C′]∈AπC ,∅ 6={πc|πc∈G,c∈C′} h((G \ G′) ∪ G′r) else

Now what we minimize over are the actions a[C′] in ΠC, where C′ needs to support a
non-empty subset of subgoal π-fluents/conjunctions πc. What are the possible choices of
C′? The c we can in principle include into C′, i. e. the subgoals that we can in principle
support using the action a are, by the definition of ΠC, exactly those where R(c, a) 6= ⊥.
Observe that there is no point in including c where πc 6∈ G: This will support the same
subgoals yet can only result in a larger precondition. Hence the choice of C′ is exactly
∅ 6= C′ ⊆ {c | πc ∈ G, R(c, a) 6= ⊥}. Renaming C′ into G′ in order to unify notation with
Equation I, this yields our final Equation II: h+(ΠC) = h({πc | πc ∈ GπC}), where h is the
function on fact sets G that satisfies h(G) ={

0 ∀πc ∈ G : πc ∈ IπC

1 + mina[G′]∈AπC ,∅ 6=G′⊆{c|πc∈G,R(c,a) 6=⊥} h((G \ G′) ∪ G′r) else

with G′r defined as G′r :=
⋃

c∈G′ R({πc}, a[G′]).
To spell out the correspondence between Equations I and I I, view each of them as a

tree whose root node is the “initializing call” on the respective input task’s goal. Then
the two trees are isomorphic in the sense that there is a one-to-one mapping between tree
nodes, and, using the suffixes [I] and [I I] to identify the respective tree, at any pair G[I]
and G[I I] of corresponding tree nodes we have:

(∗) G[I I] = {πc | c ∈ G[I]}

This is true by definition for the root nodes (I) hC+(Π) = h(GC) respectively (I I) h+(ΠC) =
h({πc | πc ∈ GπC}).

Consider corresponding bottom-case nodes with (*). Observe that the choice of atomic
subgoals c for G′ is the same on both sides: Equation I allows those c ∈ G[I] where
R(c, a) 6= ⊥, Equation I I allows those πc ∈ G[I I] where R(c, a) 6= ⊥.

We map children nodes using the same action a and the same supported subgoal set
G′[I] = G′[I I] =: G′ on both sides. We use action a in Equation I and action a[G′] in
Equation I I. Consider the recursive subgoals, (G[I] \ G′) ∪ [

⋃
c∈G′ R(c, a)]C in Equation I,

and (G[I I] \ {πc | c ∈ G′}) ∪⋃c∈G′ R({πc}, a[G′]) in Equation I I.
The G \ G′ parts of these expressions are in exact match by (*) and construction, so it

remains to consider [
⋃

c∈G′ R(c, a)]C vs.
⋃

c∈G′ R({πc}, a[G′]). As regression over singleton
fact sets just yields the action precondition,

⋃
c∈G′ R({πc}, a[G′]) simplifies to pre(a[G′]).

By the definition of ΠC, this equals [
⋃

c∈G′(pre(a) ∪ (c \ add(a)))]πC. As R(c, a) = pre(a) ∪
(c \ add(a)), this equals [

⋃
c∈G′ R(c, a)]πC. The desired match with [

⋃
c∈G′ R(c, a)]C is now

obvious, showing that (*) is preserved, which concludes our argument.

Theorem 2 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π containing
all singleton conjunctions. Then h+(ΠC

nc) = hC+
nc (Π).

316

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

Proof: The proof is very similar to that of Theorem 1. Equation I is the same, except that
G′r := {R(c, a) | c ∈ G′} as per the definition of hC+

nc . Equation II is exactly the same,
the only difference being that G′r :=

⋃
c∈G′ R({πc}, a[G′]) now is interpreted as per the

definition of ΠC
nc, as opposed to that of ΠC. The arguments then are exactly the same, ex-

cept for the last part of the proof showing the correspondence of {R(c, a) | c ∈ G′}C vs.⋃
c∈G′ R({πc}, a[G′]). As regression over singleton fact sets just yields the action precon-

dition,
⋃

c∈G′ R({πc}, a[G′]) simplifies to pre(a[G′]). By the definition of ΠC
nc, this equals

{pre(a) ∪ (c \ add(a)) | c ∈ G′}πC. As R(c, a) = pre(a) ∪ (c \ add(a)), this equals {R(c, a) |
c ∈ G′}πC, matching {R(c, a) | c ∈ G′}C as desired.

Theorem 3 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π containing
all singleton conjunctions. Then h1(ΠC) = h1(ΠC

nc) = hC(Π).

Proof: Denote Π = (F ,A, I ,G). Consider first ΠC. We compare respective characterizing
equations. First, Equation 6 (page 279) characterizes h1; applying it to ΠC, we get that
h1(ΠC) = h(GπC) where h is the function on fact sets G that satisfies

h(G) =


0 G ⊆ IπC

1 + mina[C′]∈AπC ,R(G,a[C′]) 6=⊥ h(R(G, a[C′])) G = {πc}, c ∈ C
maxπc∈G h({πc}) else

Observe that, in the middle case, we must have c ∈ C′ because otherwise πc 6∈ add(a[C′]);
and that there is no point in including any other conjunctions into C′, i. e., C′) {c}, be-
cause this can only yield a larger recursive subgoal R(G, a[C′]). Hence we can re-write the
previous equation to:

h(G) =


0 G ⊆ IπC

1 + mina[{c}]∈AπC ,R(G,a[{c}]) 6=⊥ h(R(G, a[{c}])) G = {πc}, c ∈ C
maxπc∈G h({πc}) else

Refer to this as Equation I.
Recall that hC(Π) = h(G) where h is the function on fact sets G that satisfies

h(G) =


0 G ⊆ I
1 + mina∈A,R(G,a) 6=⊥ h(R(G, a)) G ∈ C
maxG′⊆G,G′∈C h(G′) else

Refer to this as Equation II.
Similarly as in the proof of Theorem 1, view each of these equations as a tree whose

root node is the “initializing call” (I) h1(ΠC) = h(GπC) respectively (II) hC(Π) = h(G).
Then the two trees are isomorphic in the sense that there is a one-to-one mapping between
tree nodes, and, using the suffixes [I] and [II] to identify the respective tree, at any pair G[I]
and G[I I] of corresponding tree nodes we have:

(∗) G[I] = {πc | c ∈ C, c ⊆ G[I I]}

This is obviously true for the root nodes, and is obviously invariant over the bottom case
where we can map the children node pairs corresponding to the same πc ∈ G[I] respec-
tively c ⊆ G[I I].

317

FICKERT & HOFFMANN & STEINMETZ

Consider now corresponding middle-case nodes where G[I] = {πc} and G[I I] = c.
First, the ΠC actions a[{c}] all by definition satisfy R(G[I], a[{c}]) = R({πc}, a[{c}]) 6= ⊥.
The choice of a[{c}] thus corresponds to the choice of actions a from the original task Π
for which an action a[{c}] is included into ΠC. These are exactly the actions a over which
c can be regressed, R(c, a) 6= ⊥, and hence those where R(G[I I], a) = R(c, a) 6= ⊥. So the
choice of actions minimized over is the same on both sides, and we can map the children
node pairs corresponding to the same a.

For any such pair, the recursive subgoal Gr[I I] generated in (II) is R(c, a) = (c \ add(a))∪
pre(a). The recursive subgoal Gr[I] generated in (I) is R({πc}, a[{c}]) = pre(a[{c}]), which
by the definition of ΠC equals [(c \ add(a)) ∪ pre(a)]πC. The latter is defined as {πc′ | c′ ∈
C, c′ ⊆ (c \ add(a)) ∪ pre(a)}. This equals {πc′ | c′ ∈ C, c′ ⊆ Gr[I I], showing (*) and
concluding our argument.

The argument for ΠC
nc is identical because, for single-conjunction sets C′ = {c}, the two

compilations coincide (specifically, the precondition of a[{c}] is the same in ΠC and ΠC
nc).

Theorem 4 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π containing
all singleton conjunctions. Then any C-relaxed plan πCFF can be sequentialized to form a relaxed
plan for ΠC.

Proof: Denote Π = (F ,A, I ,G). Recall the definition of πCFF, as πCFF = π(GC), with π
being a partial function on conjunction sets G that is defined on GC and satisfies π(G) =

∅ ∀c ∈ G : c ⊆ I
π((G \ G′) ∪ G′r

C) ∪ {(a, G′)} where a ∈ A,
∅ 6= G′ ⊆ {c | c ∈ G, R(c, a) 6= ⊥, hC(R(c, a)) = hC(c)− 1},
and hC(G′r) = hC(G′)− 1 else

with G′r defined as G′r :=
⋃

c∈G′ R(c, a).
Starting at π(GC), say we keep tracing the recursive invocations of the equation, us-

ing a suitable (a, G′) choice in πCFF whenever the bottom case of the equation applies. By
construction (because πCFF = π(GC)), we can make these choices in a way so that we
eventually reach the top case, where we terminate. Denote by 〈(a0, G′0), . . . , (an−1, G′n−1)〉
the inverted sequence of action occurrences selected along our trace, i. e., deeper recur-
sion steps correspond to smaller indices, (a0, G′0) is the action occurrence whose selection
lead to the terminating top case, and (an−1, G′n−1) is the action occurrence selected in the
initializing call. We show that 〈a0[G′0], . . . , an−1[G′n−1]〉 is a relaxed plan for ΠC.

Denote by Gi, for 1 ≤ i ≤ n, the subgoal tackled by the selection of (ai−1, G′i−1) in the
middle case, and denote by G0 the final subgoal tackled by the top case. Denote by si the
state resulting from applying 〈a0[G′0], . . . , ai−1[G′i−1]〉 in ΠC. We show by induction over i
that (*) {πc | c ∈ Gi} ⊆ si. For i = n, where Gn = GC, this shows that sn ⊇ GπC as desired.

Induction base case, i = 0: Here, (*) follows directly from definition because, the top
case having fired on G0, for all c ∈ G0 we have that c ⊆ I , and hence πc ∈ IπC = s0.

For the induction step, assume that (*) is true up to i. We show that it holds for i + 1.
By construction, Gi is the recursive subgoal (Gi+1 \ G′i) ∪ [

⋃
c∈G′i

R(c, ai)]
C. Denote the left

half of this expression by LH := Gi+1 \ G′i , and the right half by RH := [
⋃

c∈G′i
R(c, ai)]

C.

318

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

By induction hypothesis, we have (∗) {πc | c ∈ LH ∪ RH} ⊆ si. Consider now Gi+1
and si+1. First, those atomic subgoals not achieved by (ai, G′i), namely Gi+1 \G′i , are tackled
by LH: By (∗) {πc | c ∈ LH} = {πc | c ∈ Gi+1 \ G′i} ⊆ si. As the planning is delete-free
this immediately yields {πc | c ∈ Gi+1 \G′i} ⊆ si+1. Second, those atomic subgoals that are
achieved by (ai, G′i), namely G′i , clearly will be true in si+1 as well: This is simply because
add(a[G′i]) = {πc | c ∈ G′i}.

It remains to show that ai[G′i] is applicable in si. By the definition of ΠC, its precon-
dition is [

⋃
c∈G′i

(pre(a) ∪ (c \ add(a)))]πC. As R(c, a) = pre(a) ∪ (c \ add(a)), this equals
[
⋃

c∈G′i
R(c, a)]πC. The latter is exactly pre(ai[G′i]) = {πc | c ∈ RH}, so we are done by

(∗) {πc | c ∈ RH} ⊆ si which concludes the proof.

Theorem 5 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π containing
all singleton conjunctions. Then any nc-C-relaxed plan πCFF

nc can be sequentialized to form a relaxed
plan for ΠC

nc.

Proof: Denote Π = (F ,A, I ,G). Recall the definition of πCFF
nc , as πCFF = π(GC), with π

being a partial function on conjunction sets G that is defined on GC and satisfies π(G) =
∅ ∀c ∈ G : c ⊆ I
π((G \ G′) ∪ G′r

C) ∪ {(a, G′)} where a ∈ A,
∅ 6= G′ ⊆ {c | c ∈ G, R(c, a) 6= ⊥, hC(R(c, a)) = hC(c)− 1},
and hC(G′r) = hC(G′)− 1 else

with G′r defined as G′r := {R(c, a) | c ∈ G′}.
The proof of Theorem 4 remains valid exactly as written, except that now RH =

{R(c, a) | c ∈ G′i}C. We need to show that ai[G′i] is applicable in si. By the definition of ΠC
nc,

its precondition is {pre(a)∪ (c \ add(a)) | c ∈ G′i}πC. As R(c, a) = pre(a)∪ (c \ add(a)), this
equals {R(c, a) | c ∈ G′i}πC. The latter is exactly pre(ai[G′i]) = {πc | c ∈ RH}, so again we
are done by (∗) {πc | c ∈ RH} ⊆ si.

Theorem 6 Let Π = (F ,A, I ,G) be a planning task, and C a set of conjunctions in Π containing
all singleton conjunctions. Then a C-relaxed plan exists if and only if an nc-C-relaxed plan exists
if and only if hC < ∞.

Proof: Denote Π = (F ,A, I ,G). We show the claim in two parts, (a) a C-relaxed plan
exists if and only if hC < ∞, and (b) an nc-C-relaxed plan exists if and only if hC < ∞. We
consider first part (a).

The “only if” direction is a corollary of Theorems 3 and 4: If hC = ∞, then by Theorem 3
h1(ΠC) = ∞ so a relaxed plan for ΠC does not exist, which by Theorem 4 implies that a
C-relaxed plan cannot exist either.

For the “if” direction, say that hC < ∞. We need to show that there exists a C-relaxed
plan. To this end, we consider a simpler version of the equation defining πCFF (Equa-
tion 11), restricting the choice of G′ to singletons G′ = {c}. After easy simplifications, we
get: π(G) =

∅ ∀c ∈ G : c ⊆ I
π((G \ {c}) ∪ R(c, a)C) ∪ {(a, {c})} where a ∈ A,

c ∈ G, R(c, a) 6= ⊥, and hC(R(c, a)) = hC(c)− 1 else

319

FICKERT & HOFFMANN & STEINMETZ

Recall, here and in all equations below, that the function π is partial, which defines a C-
relaxed plan only if it is defined on (the atomic conjunctions of) the global goal GC.

Observe that, in the previous equation, as we always support only a single atomic
subgoal anyhow, there is no need to recurse over sets of atomic subgoals. We can instead
recurse over single atomic subgoals, and replace the initializing and recursive calls, now
over sets of atomic subgoals, by the union over a call to each of their elements. This results
in the characterization given by Equation 12: πCFF =

⋃
c∈GC π(c), with π being a partial

function on conjunctions c that satisfies π(c) =
∅ c ⊆ I⋃

c′∈R(c,a)C π(c′) ∪ {(a, {c})} where a ∈ A,
R(c, a) 6= ⊥, and hC(R(c, a)) = hC(c)− 1 else

Note the similarity to Equation 8 (page 285): We are now back to a more common notation
for relaxed plan extraction (over C instead of singleton facts), extracting best supporters
one-by-one.

Towards proving our claim, we now transform the equation in a way making the link
to hC obvious. Instead of the union operations in the initial and recursive calls, which
enumerate all atomic subgoals contained in a given set of facts (G respectively R(c, a)), we
can recurse directly over these fact sets, G, and introduce a third case performing the union
over all atomic conjunctions contained in G. We hence get the characterization given by
Equation 13: πCFF = π(G), with π being a partial function on fact sets G that satisfies
π(G) = 

∅ G ⊆ I
π(R(G, a)) ∪ {(a, G)} where a ∈ A,

R(G, a) 6= ⊥, and hC(R(G, a)) = hC(G)− 1 G ∈ C⋃
G′⊆G,G′∈C π(G′) else

Compare this to Equation 3 defining hC: h(G) =
0 G ⊆ I
1 + mina∈A,R(G,a) 6=⊥ h(R(G, a)) G ∈ C
maxG′⊆G,G′∈C h(G′) else

The bottom cases in both equations are in obvious correspondence. On G with h(G) < ∞,
the middle cases are in correspondence, too, in the sense that the choice of action occur-
rences in Equation 13 is exactly the choice of minimizing actions in Equation 3: if hC(G) <
∞, then the actions minimizing 1 + hC(R(G, a)) are those where hC(R(G, a)) = hC(G)− 1.
So, on finite-value subgoals, the subgoaling structure of the two equations coincides, and
in particular, if hC < ∞, then there exists a solution π to Equation 13 such that π is defined
on G. Therefore, Equation 12 has a solution defined on all c ∈ GC. As Equation 12 captures
a restricted version of πCFF, applying the same conditions to a smaller choice of action oc-
currences, this implies that there exists a C-relaxed plan as desired, concluding part (a) of
the proof.

For part (b), the “only if” direction follows in the same manner as a corollary of Theo-
rems 3 and 5. The “if” direction also follows in the same manner, because the only differ-
ence lies in the definition of G′r, but for singleton G′ that difference disappears: for G′ = {c}

320

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

we have G′r = {R(c, a)} in πCFF
nc , vs. G′r = R(c, a) in πCFF. The atomic conjunctions con-

tained in these expressions are the same. Hence, restricting the choice of G′ to singletons,
the equation defining πCFF

nc simplifies to Equation 12 exactly as above, and from there the
proof is identical.

Example 9 We construct an example where it is of advantage to select a smaller set of supported
subgoals G′, even though a larger set – a strict superset – would be feasible. The construction
extends our abstract example (Example 3).

Consider the planning task Π = (F ,A, I ,G) defined as follows. F = {g1, g2, p, q1, q2, r1,
r2, r′1, r′2, q′1

1, . . . , q′1
N , q′2

1, . . . , q′2
N}, I = {q1, q2}, G = {g1, g2}. A consists of: (abbreviating

each action a in the form a : precondition facts→ positive and negative effect literals)

• Achieving the goals. a[g1]: p, q1 → g1. a[g2]: p, q2 → g2.

• Achieving p. a1[p]: r1 → p. a2[p]: r2 → p.

• Achieving preconditions for p. a[r1]: r′1 → r1,¬q2. a[r2]: r′2 → r2,¬q1.

• Achieving preconditions for ri. a[r′1]: → r′1. a[r′2]: → r′2.

• Reachieving q1. a[r2, q1]: q′1
1, . . . , q′1

N → r2, q1. For 1 ≤ i ≤ N: a[q′1
i]: → q′1

i.

• Reachieving q2. a[r1, q2]: q′2
1, . . . , q′2

N → r1, q2. For 1 ≤ i ≤ N: a[q′2
i]: → q′2

i.

In this construction, achieving r1 ∧ q1 takes 2 steps, while achieving r1 ∧ q2 takes N + 1 steps; and
symmetrically, achieving r2 ∧ q2 takes 2 steps, while achieving r2 ∧ q1 takes N + 1 steps. We now
use these properties to construct a case where any smallest-possible nc-C-relaxed plan πCFF

nc must
use a1[p] to achieve p for g1, and use a2[p] to achieve p for g2, thus relying on non-maximal sets
of best-supported subgoals during relaxed plan extraction. The same arguments apply to C-relaxed
plans πCFF which, in this example, behave identically.

Say that C contains the singleton conjunctions as well as cpq1 = p ∧ q1, cpq2 = p ∧ q2,
cr1q2 = r1 ∧ q2, and cr2q1 = r2 ∧ q1.

Constructing an nc-C-relaxed plan according to Definition 3 (page 287), we start by πCFF
nc =

π({g1, g2}) requiring to support each of the two (atomic-singleton-conjunction) goal facts. This
can be done only by (a[g1], {g1}) and (a[g2], {g2}) respectively. After using these in the bottom
case of Equation 11, we get the recursive subgoal G = {cpq1, cpq2} (as well as the subsumed
conjunctions p, q1, q2 which are irrelevant to the following discussion). Each of a1[p] or a2[p]
can support each of these conjunctions. Indeed, each of them is a best supporter for each of these
conjunctions.

To see this, observe first that we have hC(cpq1) = 3 e. g. via a[r′1], a[r1], a1[p]; and hC(cpq2) = 3
e. g. via a[r′2], a[r2], a2[p]; as is clear from this already, ai[p] is a best supporter for cpqi. Re-
garding the cross-over combinations, R(cpq2, a1[p]) = cr1q2; as a[r1] deletes q2, this can only
be regressed via a[r1, q2], leading to the subgoal {q′2

1, . . . , q′2
N} whose hC value clearly is 1, so

hC(R(cpq2, a1[p])) = 2 = hC(cpq2) − 1 as desired. Similarly, R(cpq1, a2[p]) = cr2q1 whose hC

value is 2 as desired.
So, at the subgoal G = {cpq1, cpq2}, we can choose among six action occurrences, using either

of a1[p] or a2[p] to support either of G′12 := {cpq1, cpq2}, G′1 := {cpq1}, or G′2 := {cpq2}.

321

FICKERT & HOFFMANN & STEINMETZ

Now, while the cross-over combinations are suitable as far as hC is concerned, they are not
suitable to obtain shortest relaxed plans. Say we include cpq2 into the supported subgoal set for
a1[p]. Then the regressed subgoal is cr1q2, requiring us to use a[r1, q2] as well as the N actions a[q′2

i],
so N + 1 actions in total. On the other hand, using a1[p] to support cpq1, the regressed subgoal
is {r1, q1} – two singleton conjunctions – which can be supported using the action occurrences
(a[r′1], {r′1}), (a[r1], {r1}) (recall here that q1 is true initially). Similarly, using a2[p] to support
cpq1 incurs cost N + 1 while using a2[p] to support cpq2 incurs cost 2.

Getting back to our choice at the subgoal G = {cpq1, cpq2}, if we use (a1[p], G′1), we can
thereafter use (a2[p], G′2) and get an nc-C-relaxed plan of cost 8: 2 for previously achieving the
facts gi, 2 for these two occurrences achieving cpqi, 4 for afterwards achieving the facts ri. Similarly
if we use (a2[p], G′2) first. If, however, we start with any other action occurrence, then we incur
cost N + 1 for at least one of the cpqi, exceeding the optimal cost 8 for sufficiently large N. In
particular, while the action occurrence (a1[p], G′12) is feasible, and supports a strict superset of the
atomic subgoals supported by (a1[p], G′1), it leads to a strictly larger relaxed plan.

Theorem 7 C-SubgoalSupport is NP-complete.

Proof: Membership is obvious by guess and check. For hardness, we show a polynomial
reduction from the Hitting Set problem with a set B of subsets b ⊆ E of a finite set of
elements E, the question being whether there exists a hitting set of size at most L.

Denote E = {e1, . . . , en}. We construct a planning task Π = (F ,A, I ,G) as follows.
F := E ∪ {p0, p1, p2} ∪ {g1, . . . , gn}, I := {p0}, G := {g1, . . . , gn}. The action set A con-
tains a[p1] with precondition p0, add p1, and empty delete, as well as a[p2] with precon-
dition p1, add p2, and empty delete. The action set furthermore contains an action a[ei]
for every ei ∈ E, with pre(a[ei]) = {p0}, add(a[ei]) = {ei}, and del(a[ei]) = {p2} ∪ {ej |
ex. b ∈ B : {ei, ej} ⊆ b}. Finally, the action set contains the actions a[g1], . . . , a[gn] where
pre(a[gi]) = {ei, p2}, add(a[gi]) = {gi}, and the delete is empty. We set C := {{p} | p ∈
F} ∪ B ∪ {{ei, p2} | ei ∈ E}.

We think of hC now in terms of a (C-)relaxed planning graph (RPG), where layer t
corresponds to the conjunctions g with hC(g) ≤ t. None of the conjunctions b ∈ B can
be achieved, as there exists no action through which b can be regressed. However, all the
facts ei ∈ E can be achieved in isolation. Consider layer 1 of the RPG. The key property we
exploit below is that (*) any subset E′ = {e1, . . . , ek} ⊆ E is feasible at layer 1, i. e. hC(E′) ≤ 1,
iff there does not exist b ∈ B s.t. b ⊆ E′. From right to left, if b ⊆ E′ then E′ is infeasible
simply because hC(b) = ∞. Vice versa, say there does not exist b ∈ B s.t. b ⊆ E′. Then
c′ ⊆ E′, c′ ∈ C is just the set of singleton conjunctions {ei}, and we get hC(E′) = 1 as each
{ei} is achieved by a single action.

At RPG layer 1, we can apply a[p2]. As each ei is already present, we get each of the
conjunctions {e1, p2}, . . . , {en, p2} at layer 2. With this, the a[gi] actions become feasible, so
that the goal is reached at layer 3.

Consider now relaxed plan extraction. To get the goal, we must select all a[gi] actions.
Say all those are selected in sequence. Then we get the subgoal {{e1, p2}, . . . , {en, p2}} at
layer 2 (plus the subsumed singleton conjunctions, which we omit for readability). The
only action through which these can be regressed is a[p2]: recall that the a[ei] actions delete
p2. But what is the maximal subset G′ := {{ei1 , p2}, . . . , {eik , p2}} ⊆ {{e1, p2}, . . . , {en, p2}}
that we can choose to support?

322

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

Any such subset yields the new generated subgoal {ei1 , . . . , eik , p1} at RPG layer 1. Here
p1 is achieved by a[p1] which does not interact with anything so is not critical: hC({ei1 , . . . , eik ,
p1}) = hC({ei1 , . . . , eik}). Denote E′ := {ei1 , . . . , eik}. Then the action occurrence (a[p2], G′)
is C-feasible at RPG layer 1 iff E′ is feasible at RPG layer 1. By (*), the latter is the case iff
there does not exist b ∈ B s.t. b ⊆ E′. But then, consider E \ E′. By construction, this is a
hitting set iff E′ is feasible: if E \ E′ is a hitting set then no b can be fully contained in E′, and
if no b is fully contained in E′ then E \ E′ must hit every b. Setting K := n− L, we thus get
that there exists a C-feasible G′ with |G′| ≥ K iff there exists a feasible E′ with |E′| ≥ n− L
iff there exists a hitting set of size ≤ n− (n− L) = L. This concludes the proof.

21 22 23 24 25 26 27 28 29 210
150

170

190

210

230

250

270

290

310

330

350

370

hCFF
nc

hCFF

hFF(ΠC
ce)

hFF(ΠC)

hCFF
|G′|=1A
hCFF
|G′|=1

hFF arb
hFF rnd

21 22 23 24 25 26 27 28 29 210
150

170

190

210

230

250

270

290

310

330

350

370

(a) Search-only coverage (b) Inclusive coverage

Figure 7: Total coverage.

Appendix B. Coverage when Including C-Learning into the Time Limit

We give the same coverage plots as in Section 5.4, but imposing a 30-minute limit on C-
learning and search together (“inclusive” in Figures 7, 8, and 9). For convenience, we also
include the search-only plots from Section 5.4.

References

Alcázar, V., Borrajo, D., Fernández, S., & Fuentetaja, R. (2013). Revisiting regression in
planning. In Rossi, F. (Ed.), Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI’13), pp. 2254–2260. AAAI Press/IJCAI.

Baier, J. A., & Botea, A. (2009). Improving planning performance using low-conflict relaxed
plans. In Gerevini, A., Howe, A., Cesta, A., & Refanidis, I. (Eds.), Proceedings of the
19th International Conference on Automated Planning and Scheduling (ICAPS’09), pp. 10–
17. AAAI Press.

323

FICKERT & HOFFMANN & STEINMETZ

21 22 23 24 25 26 27 28 29 210
0

5

10

15

20

21 22 23 24 25 26 27 28 29 210
0

5

10

15

20

Maintenance search-only Maintenance inclusive

21 22 23 24 25 26 27 28 29 210
0

5

10

15

20

21 22 23 24 25 26 27 28 29 210
0

5

10

15

20

Parcprinter search-only Parcprinter inclusive

Figure 8: Coverage in individual domains.

Bonet, B., & Geffner, H. (1999). Planning as heuristic search: New results. In Biundo, S.,
& Fox, M. (Eds.), Proceedings of the 5th European Conference on Planning (ECP’99), pp.
60–72. Springer-Verlag.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129(1–2),
5–33.

Bonet, B., & Helmert, M. (2010). Strengthening landmark heuristics via hitting sets. In
Coelho, H., Studer, R., & Wooldridge, M. (Eds.), Proceedings of the 19th European Con-
ference on Artificial Intelligence (ECAI’10), pp. 329–334, Lisbon, Portugal. IOS Press.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning. Ar-
tificial Intelligence, 69(1–2), 165–204.

Cai, D., Hoffmann, J., & Helmert, M. (2009). Enhancing the context-enhanced additive
heuristic with precedence constraints. In Gerevini, A., Howe, A., Cesta, A., & Refani-
dis, I. (Eds.), Proceedings of the 19th International Conference on Automated Planning and
Scheduling (ICAPS’09), pp. 50–57. AAAI Press.

Coles, A. J., Coles, A., Fox, M., & Long, D. (2013). A hybrid LP-RPG heuristic for modelling
numeric resource flows in planning. Journal of Artificial Intelligence Research, 46, 343–
412.

324

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

21 22 23 24 25 26 27 28 29 210
0

5

10

15

20

21 22 23 24 25 26 27 28 29 210
0

5

10

15

20

Tetris search-only Tetris inclusive

21 22 23 24 25 26 27 28 29 210
0

5

10

15

20

21 22 23 24 25 26 27 28 29 210
0

5

10

15

20

Thoughtful search-only Thoughtful inclusive

Figure 9: Coverage in individual domains.

Do, M. B., & Kambhampati, S. (2001). Sapa: A domain-independent heuristic metric tem-
poral planner. In Cesta, A., & Borrajo, D. (Eds.), Proceedings of the 6th European Con-
ference on Planning (ECP’01), pp. 109–120. Springer-Verlag.

Domshlak, C., Hoffmann, J., & Katz, M. (2015). Red-black planning: A new systematic
approach to partial delete relaxation. Artificial Intelligence, 221, 73–114.

Fox, M., & Long, D. (2001). Hybrid STAN: Identifying and managing combinatorial opti-
misation sub-problems in planning. In Nebel, B. (Ed.), Proceedings of the 17th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-01), pp. 445–450, Seattle, Wash-
ington, USA. Morgan Kaufmann.

Gerevini, A., Saetti, A., & Serina, I. (2003). Planning through stochastic local search and
temporal action graphs. Journal of Artificial Intelligence Research, 20, 239–290.

Haslum, P. (2009). hm(P) = h1(Pm): Alternative characterisations of the generalisa-
tion from hmax to hm. In Gerevini, A., Howe, A., Cesta, A., & Refanidis, I. (Eds.),
Proceedings of the 19th International Conference on Automated Planning and Scheduling
(ICAPS’09), pp. 354–357. AAAI Press.

325

FICKERT & HOFFMANN & STEINMETZ

Haslum, P. (2012). Incremental lower bounds for additive cost planning problems. In
Bonet, B., McCluskey, L., Silva, J. R., & Williams, B. (Eds.), Proceedings of the 22nd
International Conference on Automated Planning and Scheduling (ICAPS’12), pp. 74–82.
AAAI Press.

Haslum, P., & Geffner, H. (2000). Admissible heuristics for optimal planning. In Chien, S.,
Kambhampati, R., & Knoblock, C. (Eds.), Proceedings of the 5th International Conference
on Artificial Intelligence Planning Systems (AIPS-00), pp. 140–149, Breckenridge, CO.
AAAI Press, Menlo Park.

Helmert, M. (2004). A planning heuristic based on causal graph analysis. In Koenig, S.,
Zilberstein, S., & Koehler, J. (Eds.), Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS’04), pp. 161–170, Whistler, Canada. Mor-
gan Kaufmann.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26, 191–246.

Helmert, M., & Geffner, H. (2008). Unifying the causal graph and additive heuristics. In
Rintanen, J., Nebel, B., Beck, J. C., & Hansen, E. (Eds.), Proceedings of the 18th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS’08), pp. 140–147. AAAI
Press.

Hoffmann, J. (2005). Where ‘ignoring delete lists’ works: Local search topology in planning
benchmarks. Journal of Artificial Intelligence Research, 24, 685–758.

Hoffmann, J. (2011). Analyzing search topology without running any search: On the con-
nection between causal graphs and h+. Journal of Artificial Intelligence Research, 41,
155–229.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

Hoffmann, J., Steinmetz, M., & Haslum, P. (2014). What does it take to render h+(πc)
perfect?. In ICAPS 2014 Workshop on Heuristics and Search for Domain-Independent
Planning (HSDIP’14).

Keyder, E., & Geffner, H. (2008). Heuristics for planning with action costs revisited. In
Ghallab, M. (Ed.), Proceedings of the 18th European Conference on Artificial Intelligence
(ECAI-08), pp. 588–592, Patras, Greece. Wiley.

Keyder, E., & Geffner, H. (2009). Trees of shortest paths vs. Steiner trees: Understanding
and improving delete relaxation heuristics. In Boutilier, C. (Ed.), Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 1734–1739,
Pasadena, California, USA. Morgan Kaufmann.

Keyder, E., Hoffmann, J., & Haslum, P. (2012). Semi-relaxed plan heuristics. In Bonet,
B., McCluskey, L., Silva, J. R., & Williams, B. (Eds.), Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling (ICAPS’12), pp. 128–136. AAAI
Press.

Keyder, E., Hoffmann, J., & Haslum, P. (2014). Improving delete relaxation heuristics
through explicitly represented conjunctions. Journal of Artificial Intelligence Research,
50, 487–533.

326

COMBINING h+ WITH hm : A DIRECT CHARACTERIZATION

Marques-Silva, J., & Sakallah, K. (1999). GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5), 506–521.

McDermott, D. V. (1999). Using regression-match graphs to control search in planning.
Artificial Intelligence, 109(1-2), 111–159.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering
an efficient SAT solver. In Proceedings of the 38th Conference on Design Automation
(DAC-01), Las Vegas, Nevada, USA. IEEE Computer Society.

Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime plan-
ning with landmarks. Journal of Artificial Intelligence Research, 39, 127–177.

Steinmetz, M., & Hoffmann, J. (2016). Towards clause-learning state space search: Learning
to recognize dead-ends. In Schuurmans, D., & Wellman, M. (Eds.), Proceedings of the
30th AAAI Conference on Artificial Intelligence (AAAI’16). AAAI Press.

Valenzano, R. A., Sturtevant, N. R., Schaeffer, J., & Xie, F. (2014). A comparison of
knowledge-based GBFS enhancements and knowledge-free exploration. In Chien,
S., Do, M., Fern, A., & Ruml, W. (Eds.), Proceedings of the 24th International Conference
on Automated Planning and Scheduling (ICAPS’14). AAAI Press.

van den Briel, M., Benton, J., Kambhampati, S., & Vossen, T. (2007). An LP-based heuristic
for optimal planning. In Bessiere, C. (Ed.), Proceedings of the Thirteenth International
Conference on Principles and Practice of Constraint Programming (CP’07), Vol. 4741 of
Lecture Notes in Computer Science, pp. 651–665. Springer-Verlag.

327

