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Abstract

Two essential tasks in managing description logic knowledge bases are eliminating prob-
lematic axioms and incorporating newly formed ones. Such elimination and incorporation
are formalised as the operations of contraction and revision in belief change. In this paper,
we deal with contraction and revision for the DL-Lite family through a model-theoretic
approach. Standard description logic semantics yields an infinite number of models for
DL-Lite knowledge bases, thus it is difficult to develop algorithms for contraction and revi-
sion that involve DL models. The key to our approach is the introduction of an alternative
semantics called type semantics which can replace the standard semantics in characterising
the standard inference tasks of DL-Lite. Type semantics has several advantages over the
standard one. It is more succinct and importantly, with a finite signature, the semantics
always yields a finite number of models. We then define model-based contraction and
revision functions for DL-Lite knowledge bases under type semantics and provide represen-
tation theorems for them. Finally, the finiteness and succinctness of type semantics allow
us to develop tractable algorithms for instantiating the functions.

1. Introduction

Description logic (DL) (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003)
knowledge bases (KBs) are subject to frequent change. For instance, outdated or incorrect
axioms have to be eliminated from the KBs and newly formed ones have to be incorporated
into them. Therefore a mandatory task for managing DL KBs is to deal with such changes.
In the field of belief change, extensive work has been done on formalising various kinds of
changes over KBs. In particular, elimination of old knowledge is called contraction and
incorporation of new knowledge is called revision. To deal with changes to DL KBs, it
makes sense to take advantage of the existing techniques in belief change. In fact, many
have investigated contraction and revision over DL KBs (DL contraction and DL revision
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for short) (Qi et al., 2006; Qi & Du, 2009; Qi et al., 2008; Ribeiro & Wassermann, 2009;
Wang et al., 2015).

The dominant approach in belief change is the so called AGM framework (Alchourrén,
Gérdenfors, & Makinson, 1985; Gérdenfors, 1988). In this framework, the KB to which
changes are made is called a belief set which is a logically closed set of formulas. An AGM
contraction function — takes as input a belief set K and a formula ¢ and returns as output
a belief set K —¢ that does not entail ¢. Taking the same inputs, an AGM revision function
x returns a belief set K *¢ that entails ¢. The framework also provides rationality postulates
which capture the intuitions behind rational contraction and revision. The hallmark of this
framework is that the so called representation theorems are proved which ensure that AGM
contraction and revision functions are not only sound but also complete with respect to the
rationality postulates.

Regardless of its wide acceptance, a limitation of the AGM framework is that it has a
minimal requirement on the underlying logic, that the logic subsumes classical propositional
logic. This means the underlying logic must fully support all the truth functional logical
connectives such as negation and disjunction. Since most DLs are not so, the AGM frame-
work is incompatible with DLs and cannot be applied directly to deal with changes over
DLs KBs. The incompatibility is the major difficulty in defining DL contraction and revi-
sion. Additionally, DL revision is more involved than AGM revision. AGM revision aims
to resolve any inconsistency caused while incorporating a new formula. Since a meaning-
ful DL KB has to be both consistent and coherent (i.e, absence of unsatisfiable concepts),
DL revision has to resolve not only inconsistency but also incoherence. Finally, despite
its mathematical elegance, the AGM framework has been grappled with the issue of com-
putational efficiency which is crucially important for DL KBs. Therefore, DL contraction
and revision should lead to tractable instantiations and at the same time respecting the
rationality postulates of AGM contraction and revision.

Due to the many difficulties, existing works on DL contraction and revision are not fully
satisfactory. None of them provides representation theorem for their contraction or revision
function except the work by Ribeiro and Wassermann (2009) which inherits the represen-
tation results from a more general work (Hansson & Wassermann, 2002).! In defining DL
revision, many did not appreciate its incoherence resolving nature, as their revisions cannot
guarantee coherence of the outputs (Qi et al., 2006; Ribeiro & Wassermann, 2009; Wang
et al., 2015). Qi and Du (2009) appreciate the incoherence resolving nature, but the pos-
tulates they provided for capturing properties of their revision function are not formulated
appropriately to capture the rationales behind incoherence resolving.

In this paper, we provide DL contraction and revision that overcome these limitations.
Specifically, we define contraction and revision functions for logically closed DL-Litecoe and
DL-Liteg KBs. DL-Litecyre and DL-Liteg are the main languages of the DL-Lite family
(Calvanese et al., 2007). In defining the functions we take a model-theoretic approach

1. Hansson and Wassermann (2002) proved a series of representation theorems for contraction and revision
functions under monotonic and compact logics. Since Ribeiro and Wassermann (2009) considered the
same contraction and revision functions for DLs which are monotonic and compact, the representation
results of Hansson and Wassermann (2002) also hold for these contraction and revision functions. Since
our approach in defining contraction and revision are different from Hansson and Wassermann (2002),
we can not inherit their representation results and have to prove them from scratch.

330



DL-LiTE CONTRACTION AND REVISION

similar to that of Katsuno and Mendelzon (1992). Instead of DL models the functions are
based on models of a newly defined semantics for DL-Lite called type semantics. Given
that type semantics is equivalent to DL semantics with respect to major DL-Lite reasoning
tasks, models of type semantics (i.e., type models) are more succinct than DL models. More
importantly, given a finite signature, any DL-Lite KB has a finite number of type models,
whereas it usually has an infinite number of DL models.

We fully appreciate the incoherence resolving nature of DL revision and reflect it in both
the definition of the revision functions and the postulates capturing their properties. We
are able to prove AGM-style representation theorems for all our contraction and revision
functions. Such theorems are crucial because they guarantee the functions defined in our
method behave properly (in the sense of satisfying a set of commonly accepted postulates)
and all properly behaved functions can be defined through our method. In addition to
the rigorous mathematical properties, we provide tractable algorithms for instantiating the
contraction and revision functions.

Some of the material in this paper was presented previously by Zhuang, Wang, Wang,
and Qi (2014).

2. DL-Lite

DL-Litecore is the core language of the DL-Lite family. It has the following syntax
B— A|3R C— B|—-B R— P| P E— R|-R

where A denotes an atomic concept; P an atomic role, P~ the inverse of the atomic role P; B
a basic concept which is either an atomic concept or an unqualified existential quantification;
C a general concept which is either a basic concept or its negation; R a basic role which
is either an atomic role or its inverse; and E a general role which is either a basic role or
its negation. We also include in the language the nullary predicates | and T that denote
universal false and universal truth respectively. We assume the set of all basic concepts,
denoted as B, and the set of all basic roles, denoted as R, are finite. For an inverse role
R = P~, we write R~ to represent P.

A DL-Litesore KB consists of a TBox and an ABox. We sometime denote a KB as
(T, A) where T is the TBox of the KB and A is the ABox of the KB. A TBox is a finite set
of concept inclusions of the form B C C', BC 1, and T C C. That is only basic concept
or T can appear on the left-hand side of a concept inclusion. An ABox is a finite set of
concept assertions of the form A(a) and role assertions of the form P(a,b), where A is an
atomic concept, P an atomic role, and a, b individuals. We assume the set of all individuals,
denoted as D, is finite. Throughout the paper, individual names are denoted by lower case
Roma letters (a,b,...).

A major extension of DL-Lite.ore is DL-Liter. It extends DL-Litecore with role inclu-
sions of the form R C E. That is only basic roles can appear on the left-hand side of a role
inclusion. A concept or role inclusion is also called a TBox axiom and a concept or role
assertion is also called an A Box axiom. Throughout the paper, TBox and ABox axioms are
denoted by lower case Greek letters (¢,,...).

The semantics of a DL-Lite language is given in terms of interpretations. An interpre-
tation 7 = (AZ , 'I) consists of a nonempty domain AZ and an interpretation function £
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that assigns to each atomic concept A a subset AT of AZ, to each atomic role P a binary
relation PZ over AZ, and to each individual a an element a of AZ. The interpretation
function is extended to general concept, general roles, and special symbols as follows:

1T =9
T =A%

i
=y
N

Il
>
N

X
>
N
—
%

The set of all interpretations is denoted as ). An interpretation Z satisfies a concept
inclusion B C C if BT C C7, a role inclusion R C E if RT C EZ, a concept assertion A(a)
if aZ € A%, and a role assertion P(a,b) if (aZ,b%) € PZ.

7 satisfies a KB K (a TBox 7 or an ABox \A) if 7 satisfies all axioms in K (resp. T,
A). T is a model of a KB I (a TBox 7, an ABox A, or an axiom ¢) written Z = K, (resp.
IET,ITEA TIIE¢)ifit satisfies K (resp. T, A, or ¢). We denote the models of a
KB K (a TBox T, an ABox A, or an axiom ¢) as |K| (resp. |T|, |A|, or |¢]). Two axioms
¢ and 1 are logically equivalent, written ¢ = 1, if they have identical set of models. A
KB K (a TBox 7, an ABox A, or an axiom 1) entails an axiom ¢, written K = ¢ (resp.
TEo¢, A= ¢, or ¢ |= ¢), if all models of K (resp. T, A, or 1) are also models of ¢. A KB
(a TBox, an ABox or an axiom) is consistent if it has at least one model and inconsistent
otherwise. We use K, 71, A, to denote respectively the (unique) inconsistent KB, TBox,
and ABox. We use = ¢ to denote that ¢ is a tautology (e.g., A T A) and [~ ¢ that ¢ is not
one.

The closure of a TBox T, denoted as cl(T), is the set of all TBox axioms ¢ such that
T = ¢. We say that a TBox T is closed if T = cl(T). The closure of a DL-Lite TBox is
finite. Actually, the size of ¢l(7) is quadratic with respect to the size of 7 (Pan & Thomas,
2007). The closure of an ABox A with respect to a TBox T, denoted as cl1(.A), is the set
of all ABox axioms ¢ such that (7,.A) = ¢. We say that an ABox A is closed with respect
to T if A = clr(A). The closure of an ABox with respect to a TBox in DL-Lite is finite and
can be computed efficiently through a chase procedure (Calvanese et al., 2007). In Section
4 and Section 5, all TBoxes and ABoxes are assumed to be closed.

A basic concept B is satisfiable with respect to a TBox 7T if there is a model Z of 7 such
that BZ is non-empty and unsatisfiable otherwise. It is easy to see that B is unsatisfiable
with respect to T if and only if B C L € cl(T). A TBox is coherent if all basic concepts
are satisfiable and incoherent otherwise.?

In defining contraction and revision functions for DL-Lite KBs, we need to refer to the
notion of conjunction of axioms. Given a set of axioms {¢1,...,¢,}, their conjunction is
denoted as ¢1 A --- A ¢,,. An interpretation is a model of ¢1 A --- A ¢, if it satisfies all the
conjuncts that is [¢p1 A -+ A dp| = @1 N -+ N [y ].

2. In DL literatures, often coherence comes with the absence of unsatisfiable atomic concepts. Since in
DL-Lite unsatisfiable non-atomic concepts like IR are also unexpected we use the stricter condition for
coherence.
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3. Type Semantics

In this section, we provide an alternative semantics for DL-Lite, namely type semantics.
In short, type semantics takes the semantics underlying propositional logic (i.e., proposi-
tional semantics) as the basis and equips it with extra facilities to take care of the non-
propositional behaviours of DL-Lite.

We first introduce a simplified version of type semantics called ct-type semantics (“ct”
stands for “Core TBox”), which is sufficient for characterising the standard inference tasks of
DL-Litecore TBoxes. An important consideration in defining the semantics is succinctness,
that is the defined semantics should avoid any redundancy. With this consideration, ct-
type semantics has no facility other than those required for characterising the inference
tasks of DL-Lites,re TBoxes. Accordingly, as DL-Lite.ore TBoxes do not allow inferences
that involve role inclusions or ABox axioms, ct-type semantics is incapable of characterising
such inferences. Next, we extend ct-type semantics with the facilities for role inclusions
which results in another simplified version of type semantics called t¢-type semantics (“t”
stands for “TBox”). The semantics is sufficient for characterising the standard inference
tasks of DL-Liteg TBoxes. Again, for the sake of succinctness, t-type semantics is intended
to capture the inference tasks for DL-Liteg TBoxes only, thus is incapable of characterising
those involving ABox axioms. For these inferences, we introduce a-type semantics (“a”
stands for “ABox”). The semantics is sufficient for DL-Liter ABoxes (with a background
TBox). It is also a simplified version of type semantics, but is not built upon ct-type or
t-type semantics. Finally, we introduce the full version of type semantics, which is sufficient
for DL-Litep KBs. The semantics includes all facilities of t-type and a-type semantics.
Figure 1 shows the hierarchy of type semantics.

type

t-type

ct-type

a-type

Figure 1: Each rectangle represents a semantics, with the largest representing type seman-
tics. A rectangle containing one or more smaller ones indicates the represented
semantics of the larger rectangle subsumes those of the smaller ones.
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The propositional origin and the assumption of finite signature guarantee the finiteness
of type semantics. As mentioned, an important consideration in defining type semantics is
succinctness. The more succinct a semantics is the more efficient the computations involv-
ing its models. Type semantics can replace ct-type semantics, t-type semantics, and a-type
semantics in characterising DL-Litecor. TBoxes, DL-Litex TBoxes, and DL-Liter ABoxes;
t-type semantics can replace ct-type semantics in characterising DL-Liteco.. TBoxes. How-
ever, it will be a waste of computational power to use type semantics to characterise for
instance DL-Liteg TBoxes as its facilities for ABox axioms are redundant for DL-Liteg
TBoxes. The same holds in using t-type semantics for characterising DL-Litec,- TBoxes as
the facilities of t-type semantics for role inclusions are redundant for DL-Lites,.. TBoxes.
The finiteness and succinctness are significant advantages of type semantics over DL se-
mantics when DL-Lite KBs need to be represented model-theoretically and the related
computational tasks involve their models.

Depending on the application scenarios, changes to DL-Lite KBs may be applied to
(1) the whole KB or restricted to either (2) the TBox or (3) the ABox with a background
(unchanged) TBox. If we take a model-theoretic approach in addressing the changes, then
the most suitable semantics for scenario (1) is type semantics; that for scenario (2) is ct-type
or t-type semantics; and that for scenario (3) is a-type semantics.

3.1 Characterising DL-Lite.,,. TBoxes

We start with ct-type semantics. Standard inference tasks for DL-Lite TBoxes such as
checking satisfiability, subsumption, equivalence, disjointness, and consistency can be re-
duced to that of checking whether an entailment relationship holds between some TBox
axioms. Given a TBox T, a basic concept B is satisfiable in T if and only if 7 does not
entail B C 1; A is subsumed by B in 7 if and only if 7 entails A C B; A and B are
equivalent in 7 if and only if 7 entails A C B and B C A; A is disjoint with B in T if and
only if 7 entails A C =B; and T is inconsistent if and only if 7 = T C L. For this reason,
in defining ct-type (t-type) semantics, it suffices to focus on the entailment relationships
between DL-Litecore (resp. DL-Liteg) TBox axioms.

In propositional semantics or standard DL semantics, we have the notion of interpreta-
tions. Analogously, in type semantics, the central notion is that of types.? The definition of
type will be given in Section 3.4. For ct-type semantics, we only need a simplified version,
called ct-type. A ct-type 7 is a possibly empty set of basic concepts (i.e., 7 C B). For
example, if B = {3R, IR, A}, then {IR, A} is a ct-type and for simplicity we sometimes
write it as IRA.* We denote the set of all ct-types as QL. If we consider basic concepts as
propositional atoms, and concept inclusion B C C' as propositional formula =BV C, then a
ct-type is nothing but an interpretation (represented by atoms interpreted as true) in propo-
sitional logic. Given a DL-Liteqore TBox T, we use ||T||% to denote the set of propositional
models of the corresponding propositional formulas of 7. Note that |77} C QL.

Many entailment relationships between DL-Lite.,.e TBox axioms are propositional in
the sense that the entailments also hold when we treat the axioms as propositional formulas

3. The notion of types is mentioned in the work of Kontchakov et al. (2010), which have similar structures
as ct-types in this paper but cannot capture role inclusions or ABox axioms.

4. We work with DL-Lite throughout the paper. Since DL-Lite does not allow quantified existential quan-
tifications such as R.C, the ct-type IRA cannot be confused with the concept IR.A
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and consider propositional semantics. For example, the entailment from A £ B and BC C
to A C C also holds for the corresponding propositional formulas =A VvV B, =BV C, and
= AV C, under propositional semantics. As expected there are entailments that are not
propositional. The following example shows a common pattern of the non-propositional
entailments. Note that, R C 1 and 3R~ C L entail one another but, under propositional
semantics, the corresponding propositional formulas =34R and —3dR~ do not. The reason
is simple. For DLs, a role R represents a binary relation and the axiom 3R C 1 and
JR~ C 1 both indicate the relation is empty. Propositional logic does not have the facility
for binary relations and entailments involving such relations, thus can not characterise the
entailments.

Then it is clear, for ct-type semantics, we need all facilities of propositional semantics
to characterise the propositional entailments and an extra one to characterise the non-
propositional ones. We capture such facilities by the conditions under which a ct-type
satisfies a DL-Lite.o,re TBox. In DL semantics, interpretations satisfying a TBox is called
models of the TBox. Analogously, a ct-type satisfying a DL-Lites,, TBox is called a ct-
model of the TBox.

Definition 1 A ct-model 7 of a DL-Lite.ore TBox T is a ct-type such that
1. 7 €||T| and

2. if TE3JIRC L then IR & 7.

For a ct-type to satisfy a TBox 7T, firstly it has to be a propositional model of 7 and secondly
if 7 entails 3R C 1, then it can not contain the basic concept JR. The first condition
guarantees the proper handling of propositional entailments and the second guarantees
that of non-propositional entailments.

Example 1 Consider a fragment of (slightly modified) NCI KB concerning heart diseases
and their associated anatomic locations, which consists of concepts Heart_Disease (HD),
Cardiovascular_System (CS), Respiratory_System (RS), and Organ_System (OS), as well as
a role that relates diseases to their primary locations Disease_Has_Primary_Anatomic_Site
(Loc). Let DL-Litecore TBox T consist of the following concept inclusions: HD C Jloc,
Jloc™ C CS, HD C -0S, RSC 0OS, CS C OS, and RS C —CS.

Some ct-models of T are 71 = {HD,3Loc}, 7 = {3Loc™,CS,0S}, and 3 = {RS, OS}.
If concept inclusion ILoc™ C RS is in T, then T = 3Loc C L and T | Jloc™ C L, and
neither 11 nor T is a ct-model of T .

We denote the set of ct-models of a TBox T as |T|.. The ct-models of a conjunction of
axioms @1 A ¢ A -+ - ¢y, denoted as |¢1 A ¢ A -+ - dyL, is defined as

|1 Ao A nll = {1, b2, ., dn bl

The ct-models of a negated (conjunctions of) axiom(s) —¢, denoted |—=¢|t, is defined as
Qe \ [0l
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The notions of entailment, logical equivalence, and consistency under ct-type semantics are
defined in the same manner as DL semantics. Under ct-type semantics, a TBox 7 entailing
a conjunction ¢ of axioms is written as T =, ¢.

To make the non-propositional behaviour of ct-type semantics explicit, we propose the
following notion of role-complete set of ct-types. A set of ct-types M is role-complete if, for
all R € R, whenever there is a ct-type 7 in M such that 3R € 7, then there is a ct-type 7’/
in M such that 3R~ € 7' (7 and 7/ may be identical). Roughly speaking, role-completeness
indicates that the set of ct-types M have complete information about each role R. We can
show that the set of ct-models for any DL-Lite.,.. TBox is role-complete.

Proposition 1 Let T be a DL-Litecore TBox. Then |T| is role-complete.

Now we show some connections between the DL models and the ct-models of a DL-
Litecore TBox. Let Z be a DL interpretation. For each element d in the domain of Z, d
induces a unique ct-type as follows

7(Z,d)={B € B|d e B*}.

We call 7(Z, d) the ct-type induced by d in Z. T is a model of some TBox if and only if each
ct-type induced by Z is a ct-model of the TBox.

Proposition 2 Let T be a DL-Lite.ore TBox and Z a DL interpretation. Then T € |T| iff
7(Z,d) € |T|L for each d € AT.

Moreover, for each ct-model 7 of a TBox, a DL model of the TBox can be constructed from
7 by reversing the inducing process.

Proposition 3 Let T be a DL-Litecore TBox and T a ct-model of T. Then there are Z € |T |
and d € AT such that 7(Z,d) = 7.

Through these connections, we can prove that the entailments over DL-Lite.,,. TBoxes
axioms induced by ct-type semantics are identical to those induced by DL semantics.

Theorem 1 Let T be a DL-Litecore TBox and ¢ a conjunction of DL-Litecore TBox axioms.
Then T = ¢ iff T E. ¢.

Thus ct-type semantics is as effective as DL semantics in characterising the standard infer-
ences tasks of DL-Litesy-e TBoxes. In comparison with DL semantics, ct-type semantics has
the clear advantage of being finite and more succinct. While a DL-Litecye TBox usually
has an infinite number of DL models it always has a finite number of ct-models.

Proposition 4 Let T be a DL-Litecore TBox. Then T has at most 2" ct-models, for n the
number of basic concepts.

If we are working with a coherent TBox 7T, then ct-type semantics shares one more
property with DL semantics, that is the set of ct-models of T is identical to the intersection
of the set of ct-models of each axiom in 7. The property turns out to be essential for
developing algorithms for eliminating and incorporating axioms over DL-Lite KBs. It allows
us to deal with each axiom one by one in a model-theoretic setting.
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Theorem 2 Let T be a DL-Litecore TBox such that T = {¢1,...,¢n}. If T is coherent,
then |T|. = |p1lb N -0 [@lL.

As we have shown, ct-type semantics shares many crucial properties with DL semantics,
however it differs from the DL one in dealing with unions of axioms.

Theorem 3 Let T be a DL-Litecore TBox and ¢,1p DL-Litecore TBox axioms. If |T| C
|6] U || then | T C ||k U |¥L but the converse does not necessarily hold.

For a counter example, suppose B is {A,B,C,D}, T is {A C D}, ¢ is A C B, and ¢
is C T D. Let’s work out their ct-models. A ct-type does not satisfy A T D only if it
contains A but not D, so we can get the ct-models of T by eliminating all such unsatisfying
ct-types from the set of ct-types, that is |T|L = Q. \ {AB, AC, ABC}. Similarly, a ct-type
does not satisfy both A C B and C' C D only if it contains A and C' but not B or D, so
|6t U o]t = Q. \ {AC}. Note that we have |T]% C [¢|L U |¢|L. Now let a DL interpretation
T be such that AT = {a,b}, AT = {a}, B = {b}, CT = {b}, and DT = {a}. Since T |= T,
IWFAC B,andT [~ C C D, we have |T| € |¢|U|¢|. Roughly speaking, the reason for such
behaviour is that type semantics (and all its simplified versions) is a variant of propositional
semantics and it lacks the first-order structure in DL semantics. Identification of such
behaviour turns out to be crucial in proving the representation theorem for our contraction
functions.

Most DLs have the inexpressibility problem that some sets of DL interpretations have no
syntactic representation. It is no exception for DL-Lite.yr under ct-type semantics. Given
a set of ct-types M, there may not be a DL-Lite.,.. TBox T whose set of ct-models is M.
In such cases, we define a corresponding DL-Lite.,.. TBox for M to be one that has the
minimal set of ct-models including M.

Definition 2 Let M be a set of ct-types. A DL-Litecore TBox T is a corresponding DL-
Litecore TBox for M iff M C |T|L and there is no DL-Litecore TBox T such that M C
1T 1L C [TIE

Given a set of ct-types, we may have several corresponding TBoxes. Let B consists
of {3R,3R~, A} and M a set of ct-types consists of A, (), and FR. Note that there is a
ct-type in M that contains 4R but none of them contains 3R~. By Proposition 1, any
TBox whose set of ct-models contains M must have a ct-model that contains R~. Since,
for the current set of basic concepts B, there are four ct-types containing 3R~ which are
JdR™, dR™ A, dR™dR, and IR~ AJdR, we have four corresponding TBoxes for M which are
{AC-3R,AC 3R ,JRC 3R },{AC—~3R,IR"  C A JRC 3R}, {AC 3R, ALC
—-3dR~,3R~ C 3R}, and {FR~ C A,3R~ C IR}, each having M and one of the above
ct-types as its ct-models.

As shown in the example, if R is in some ct-types of M but IR~ is not, then we have
several ways of generating a corresponding TBox. Intuitively if M has both of the concepts,
then we don’t have that many choices but one for generating a corresponding TBox. Clearly,
such M is role-complete and we can show that role-completeness is sufficient to guarantee
the uniqueness of corresponding TBox.

Theorem 4 Let M be a set of ct-types. If M is role-complete, then there is a unique
corresponding DL-Liteq,.e TBox for M.
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3.2 Characterising DL-Litegx TBoxes

Ct-type semantics is able to characterise the entailments over DL-Lite.,.. TBox axioms,
but not those over DL-Litegr ones, as they involve role inclusions. In this subsection, we
present t-type semantics which is able to do so.

To characterise entailments involving role inclusions, we need to introduce the copy
B’ of the set of basic concepts B and the copy R’ of the set of basic roles R. So, if
B={A,3R,3R"} and R = {R, R}, then B’ = {A’, (3R)",(3R™)'} and R' = {R',(R™)'}.
We also need the notion of extension of a DL-Liteg TBox. Let T be a DL-Liteg TBox.
Then its extension, denoted as 7T, is the TBox obtained by adding to 7 a new concept
inclusion for each concept inclusion B C C in 7 and a new role inclusion R’ C E’ for each
role inclusion R C FE in 7. Note that if C = =B, then C’ denotes —B’; and if E = —R,
then E’ denotes —R'.

A t-type T is a possibly empty set of basic concepts, basic roles, and their copies (i.e.,
T CBURUB UR). Intuitively, a t-type combines two ct-types (for pairs of individuals)
and a set of roles (between these pairs of individuals). For any pair of individuals a, b such
that (a,b) is a relation captured by a role R, the B part of a t-type aims to characterise
the constraints to a (in the same way as a ct-type characterises the constraints to each
individual); the B’ part aims to characterises the constraints to b (in the same way as
a ct-type characterises the constraints to each individual); and the R U R’ part aims to
characterise the constraints to R (which a ct-type does not have to consider). We denote
the set of all t-types as QL.

If we consider basic concepts, basic roles, and their copies as propositional atoms, and
concept inclusion B E C and role inclusion R C FE as propositional formulas =B VvV C and
- RV E, then a t-type is nothing but an interpretation (represented by atoms interpreted
as true) in propositional logic. For a DL-Liteg TBox T, we use || T||% to denote the set of
propositional models of the corresponding propositional formulas of 77. Note that || 7|% C
Q.

DL-Litecyre permits non-propositional entailments, so does DL-Liter. While there is
only one group of non-propositional entailments for DL-Litegye, four more can be identified
for DL-Liteg. (1) Apart from implying 3R~ C L, 3R C 1| also implies RC -R and R~ C
—R™. (2) The role inclusion R C S implies the concept inclusion 3R C 35, IR~ C 35,
and the role inclusion R~ C S~. (3) The role inclusion R C =S implies R~ C =S~. (4)
The concept inclusion 3R E =35 implies the role inclusion R C —S.

In the following, we give the conditions under which a t-type satisfies a DL-Liteg TBox
T. We call such t-types t-models of the TBox.

Definition 3 A t-model 7 of a DL-Litegr TBox T is a t-type such that
T e |TI
if TE3RC L then 3R ¢ 7 and (3R) & T;

~

if T E RC S then 3R € 7 implies S € 7, and (3R)" € T implies (3S)' € 7;
if ReT then AR € 7 and (3IR™) € 7;

Gvo e

Rer iff (R7) €1 for each R € R.
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For a t-type to satisfy 7, firstly it has to be a propositional model of 7, this takes care
of the propositional entailments. Then conditions 2-5 take care of the four groups of non-
propositional entailments summarised earlier. Conditions 4 and 5 are required for any t-type
to be a t-model (independent from the TBox), and are referred to as model conditions for
t-type semantics. Note that the use of copies of basic concepts and basic roles are necessary.
Consider a TBox 7 with two axioms 3R~ C A and A C —35~. 7 entails 3R~ C =35~ and
R C =S (by (3) and (4)). We would expect the t-models of T also satisfy R = —S. If copies
are discarded, a t-type 7 = {3R, 35, R, S} would be a t-model of 7 (omitting R’ and (IR)’
in Definition 3), yet 7 clearly does not satisfy R C —S. This cannot be resolved by adding
a condition in Definition 3 (for details refer to the proof of Lemma 7 in Appendix B).

Example 2 (cont’d Example 1) Consider another role that associates diseases to some
anatomic sites, Disease_Has_Associated_Anatomic_Site (Das), and the DL-Liter TBox T ob-
tained by adding the role inclusion Loc C Das to T .

Some t-models of T are 7; = {HD, 3Loc, 3Das, Loc, Das, (Loc™)’, (Das™)’, (3Loc™)’, (3Das™)’,
(CS), (0S)'}, 74 = {3Loc™,3Das ™, CS, 0S, Das ™, (Das)’, (3Das)'}, and 74 = {RS, OS}.

Given a DL-Liteg TBox T, we denote the set of t-models of 7 as |T|t. The t-models
of a conjunction of DL-Liter TBox axioms are denoted and defined in the same manner as

ct-type semantics. The t-models of a negated (conjunction of) axiom(s) —¢,”> denoted as
| =L, is defined as

{r € QL \ |¢|. | T satisfies model conditions}.

The notions of entailment, logical equivalence, and consistency under t-type semantics are
defined in the same manner as DL semantics. Under t-type semantics, a TBox T entailing
a conjunction ¢ of axioms is written as T =L ¢.

As for DL-Lite.y., we can establish a connection between the DL models and t-models
of a DL-Liteg TBox. Let Z be a DL interpretation and d,e a pair of (not necessarily
distinct) elements in the domain of Z. Then Z, d and e induce a t-type as follows

7(Z,d,e)={BeB|decB}U{ReR]|(de)c RI}U
{B'eB' |ec BEYU{R € R'| (e,d) € R?}.
We call 7(Z,d,e) the t-type induced by d and e in Z. We can show that for each DL

interpretation Z, 7 is a DL model of some TBox if and only if each t-type induced by Z is
a t-model of the TBox.

Proposition 5 Let T be a DL-Litex TBox T and I a DL interpretation. Then I € |T]|
iff 7(Z,d,e) € |T|L for each pair of d,e € AT.

Moreover, given a t-model 7 of a TBox 7, a DL model of T can be constructed from 7 by
reversing the inducing process.

5. For simplicity, we assume that Definition 3 does not apply to tautologies and define, for any tautological
axiom ¢, |¢[ = QL and | @[ = .
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Proposition 6 Let T be a DL-Liter TBox and 7 a t-model of T. Then there is T € |T]|
and d,e € AT such that 7(Z,d,e) = T.

Through these connections, we can prove that t-type semantics induces the same set of
entailments over DL-Litegr TBox axioms as that induced by DL semantics.

Theorem 5 Let T be a DL-Liteg TBox and ¢ a conjunction of DL-Liter TBox arioms.
Then T E ¢ iff T EL ¢.

Extended with roles and copies of basic concepts, the number of t-types is more than
that of ct-types. However, compared with DL semantics, t-type semantics still has the
advantage of being finite and more succinct.

Proposition 7 Let T be a DL-Liteg TBox. Then T has at most 22" 2™ t-models, for n
the number of basic concepts and m that of basic roles.

For sets of ct-types, we proposed a condition called role-complete. The condition char-
acterises the property of ct-type semantics such that the set of ct-models for any DL-Lite ope
TBox is role-complete, and any role-complete set of ct-types corresponds to a unique DL-
Litecore TBox. Now we give the corresponding role-complete condition for sets of t-types.
A set of t-types M is role-complete if all t-types in M satisfy the model conditions for
t-type semantics, and for all R € R, whenever there is a t-type 7 in M such that dR € 7
or (3R) € 7, then there is a t-type 7/ in M such that {R, R’} N7’ # 0 (7 and 7/ may be
identical).

For a set of t-types M, the corresponding DL-Litegr TBoxes of M are defined in the same
way as for a set of ct-types. Also it can be shown analogously that |T|L is role-complete
for any DL-Liteg TBox 7 and M being role-complete guarantees the existence of a unique
corresponding DL-Liteg TBox.

Theorem 6 Let M be a set of t-types. If M is role-complete, then there is a unique
corresponding DL-Liteg TBox for M.

Moreover, properties of ct-type semantics on conjunctions and unions of axioms (i.e., The-
orem 2 and Theorem 3) also hold for t-type semantics.

So far we have shown that t-type semantics possesses every property of ct-type semantics,
except the number of possible models. What about their connections? In fact, t-type
semantics generalises ct-type semantics in the sense that for a DL-Litec,. TBox T, the
ct-models of T are exactly the B-projections of the t-models of T.

Proposition 8 Let T be a DL-Litecore TBox. Then |T|L={rnB|1€|T|L}.

Hence, t-types contain more information than ct-types, and they are more than enough to
capture the semantics of DL-Lite.,.. TBoxes.

Finally, we extend the notion of coherence to sets of t-types. A set of t-types M is
coherent if and only if all t-types in M satisfy the model conditions for t-type semantics,
and M does not satisfy B T 1 or R C —R for each B in B and each R in R (i.e.,
M Z|BC 1|t and M € |[RC —R|!). If M is a coherent set of t-types, then every basic
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concept and role are contained in some t-types of M. Therefore a coherent set of t-types
is always role-complete. It will be clear that, in defining contraction and revision functions
for DL-Liteg TBoxes, the sets of t-types we will encounter are always coherent thus are
role-complete which means we always have unique corresponding TBoxes. We let T, be a
function that takes as input a set of t-types M and is such that if M is coherent, then
T-(M) is the closure of the corresponding DL-Liteg TBox, otherwise 7,.(M) = T .

3.3 Characterising DL-Liteg ABoxes (with a Background TBox)

T-type semantics extends ct-type semantics with the ability of characterising entailments
involving role inclusions. Both of them, however, are incapable of characterising entailments
over ABox axioms. In this subsection, we introduce a-type semantics which is able to do
so. As for TBoxes, we can also reduce the standard inferences tasks of ABoxes to that of
checking an entailment relationships between some ABox axioms. Thus in defining a-type
semantics, it suffices to focus on such entailment relationships.

Although our focus is on entailments over ABox axioms, it is important to note that
such entailments are induced by a background TBox. For example, if A(a) entails B(a),
then it must be that the background TBox entails A C B. For the sake of simplicity, we
sometimes denote an ABox A as Ay to indicate that the background TBox is 7.

A TBox captures subsumption relationships between concepts (i.e., concept inclusions)
and those between roles (i.e., role inclusions) whereas an ABox captures assertions over
individuals (i.e., concept assertions) and pairs of individuals (i.e., role assertions). In an
ABox, an individual can be asserted to be an element of a basic concept and a pair of
individuals can be asserted to an element of a basic role. To this end, we introduce a
copy B® of B for each a in D and a copy R*® of R for each pair of a,b in D. So, if
B ={A3R,3IR"}, R = {R, R}, and D = {a,b}, then B* = {A% 3R* (IR7)*}, B® =
{Ab, E|Rb7 (aRf)b}’ Rab — {Rab7 (Rf)ab}7 Rba — {Rba’ (Rf)ba}7 Roa — {Raa’ (Rf)aa}, and
R = {Rbb, (R‘)bb}. An a-type T is a possibly empty set of such copies of basic concepts
and roles (i.e., 7 C U,ep B* UUypep R®). We denote the set of all a-types as Q2.

For any DL-Liteg TBox T, we let 7% be the TBox that consists of for each concept
inclusion B C C'in T and each individual ¢ in D, a concept inclusion B* C C?%, and for each
role inclusion R C F in T and each pair of individuals a, b in D, a role inclusion R* C E®.
If we consider copies of basic concepts and roles as propositional atoms, concept inclusion
B C C as propositional formula =B V C, role inclusion R C E as propositional formula
- RV E, concept assertion A(a) as propositional formula A%, (i.e., an atomic formula) and
role inclusion P(a,b) as propositional formula P, (i.e., an atomic formula) then an a-type
is nothing but an interpretation (represented by atoms interpreted as true) in propositional
logic. For a DL-Litegr ABox A1 we use || A7||% to denote the set of propositional models of
the corresponding propositional formulas of 7 and A. Note that || Ar||¢ C QZ.

Since entailments over axioms of an ABox A7 have a lot to do with axioms of the
background TBox 7, we have to embed some facilities of t-type semantics® into a-type
semantics. With these considerations, the conditions under which an a-type satisfies a
DL-Liteg ABox A7 is defined as follows and we call such a-types a-models of the ABox.

6. Note that conditions 1-5 in Definition 4 are adapted from those in Definition 3.
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Definition 4 An a-model 7 of a DL-Liteg ABox At is an a-type such that
1.7 € || ATl

2. if T =3RC L then (3R)* & T for each a € D;

o

if T E RC S then (3R)* € T implies (35)* € T for each a € D;
if R% € 1 then (3R)* € 7 and (3R™)® € 7;

:R

5. R® ¢ 1 iff (R™)% € 1 for each R € R and each pair of a,b € D.
Similarly, conditions 4 and 5 are referred to as model conditions for a-type semantics.

Example 3 (cont’d Example 2) Consider DL-Liteg KB K = (T,.A) where A consists
of a concept assertion HD(d) and a role assertion Loc(d,s). An a-model of Ar is 7" =

{HD?, (3Loc)?, (3Das)?, Loc?®, Das?, (Loc™)*¢, (Das™)*¢, (Loc™)®, (3Das™)*, CS%, 0S*}.

We denote the set of a-models of a DL-Liteg ABox At as |A7|¢ The a-models of a
conjunction ¢ A ¢ A - - - ¢, of DL-Liteg ABox axioms with respect to a background TBox
T, denoted as [(¢1 A P2 A -+ pp)7|%, is defined as

(1 A P2 A n)Tly = {b1, P25 - Pu 77

The a-models of a negated (conjunction of) axiom(s) —¢ with respect to a background TBox
T, denoted as |—¢+|%, is defined as

07 (3 \ |77

where |)7|% is the set of a-models of an empty ABox when the background TBox is 7.
The notions of entailment, logical equivalence, and consistency under a-type semantics are
defined in the same manner as DL semantics. Under a-type semantics, an ABox A7 entailing
a conjunction ¢ of ABox axioms is written as Ay =% ¢.

We can establish a connection between the DL models and the a-models of a DL-Liteg
ABox, and this connection is a tighter one. Compared with ct-type and t-type semantics, a-
type semantics contains information about individuals, thus is closer to a DL interpretation.
For this reason, each DL interpretation Z induces exactly one a-type. The inducing process
is as follows.

T(I) ={B e B°|ceD,cf € BEYU{R® e R® | ¢,be D, (cf,bF) € RTY.

We call 7%(Z) the a-type induced by Z. We can show that for each DL interpretation Z, Z
is a model of a KB K = (T,.A) if and only if Z is a model of 7 and the a-type induced by
7 is an a-model of the ABox A7.

Proposition 9 Let K = (T,.A) be a DL-Litegx KB and I a DL interpretation. Then
Ze|K|iff Z€|T| and 7*(Z) € |Ar|e.

Moreover, given an a-model 7 of a ABox A7, a DL model of the KB K = (T,.4) can be
constructed from 7 by reversing the inducing process.
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Proposition 10 Let K = (T,.A) be a DL-Liteg KB and 7 an a-type. If T € |Ar|?%, then
there is T € |K| such that 7*(Z) = 7.

Through these connections, we can show that a-type semantics induces the same set of
entailments over DL-Liteg ABox axioms (with a background TBox) as that induced by DL
semantics.

Theorem 7 Let K = (T,.A) be a DL-Liteg KB, ¢ a conjunction of DL-Liteg ABox azioms.
Then K |= ¢ iff AT =2 ¢.

Although we include multiple copies of basic concepts and roles to capture DL-Liter
ABoxes, the semantics is still more superior than DL semantics in terms of finiteness and
succinctness.

Proposition 11 Let A be a DL-Liteg ABox. Then At has at most gnm-+nl a-models, for
n the number of individuals, m that of basic concepts, and | that of basic roles.

Moreover properties of ct-type and t-type semantics on conjunctions and unions of TBox
axioms also hold for a-type semantics on ABox axioms.

It is important to note that, if the TBoxes 7 and 7' are not equivalent, then the a-
models of A7 may be different from those of A+ (i.e., |[A7|y # |Ap[¢). Thus to identify
the corresponding ABoxes for a set of a-types we have to fix the background TBox.

Definition 5 Let 7 be a DL-Liteg TBox and M a set of a-types. Then a corresponding
DL-Liter ABox for M with respect to T is a DL-Liteg ABox A such that M C |Ar|% and
there is no DL-Liter ABox A’ such that M C |A%|2 C |AT]¢.

Note that if an ABox A is an empty set, then the set of a-models of A7+ is not the set
of all a-types, as we still have the background TBox to restrict the set of satisfying a-types.
For a set of a-types M and a DL-Liteg TBox T, we say M is consistent with 7 if all a-types
in M are a-models of the empty ABox with 7 as the background TBox (i.e., M C |d7]%).
We can show that for a set of a~-types M, consistency with the background TBox ensures
the existence and uniqueness of corresponding DL-Liter ABox for M with respect to 7.

Theorem 8 Let T be a DL-Liteg TBox T and M a set of a-types. If M is consistent with
T, then there is a unique corresponding DL-Liter ABox for M with respect to T .

We let AZ— be a function that takes as input a set of a-types M and is such that if M
is consistent with 77, then A7 (M) is the closure of the corresponding DL-Liter ABox with
respect to 7, otherwise A7 (M) is the inconsistent ABox A .

3.4 Characterising DL-Litegx KBs

We have shown that t-type and a-type semantics are capable of characterising respectively
entailments over the TBox of a KB and those over the ABox. Intuitively, by combining the
two we can characterise entailments over the KB. In fact this is how the full version of type
semantics is defined.
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Recall that a t-type is any subset of BU B UR UR' where B’ and R’ are copies of B
and R and an a-type is any subset of ,cp B* U U, pep R where B* and R are copies
of B and R for each individual a and each pair of individuals a,b. A type 7 is the union of
a pair of t-type and a-type, that is 7 € BUB' URUR' UJ,ep B*U Uaben R®. We denote
the set of all types as €Q,.

Note that for any type 7, its t-type part 7 can be obtained by intersecting 7 with BUB'U
RUTR’ and its a-type part 7, can be obtained by intersecting 7 with |, B*U Ua,bED R,
A type 7 satisfies a KB K = (7, .A) if and only if 7 is a t-model of 7 and 7, is an a-model
of Ay. We call such types type models of K.

Definition 6 A type model T of a DL-Liter KB K = (T, .A) is a type such that 7, € |T|.
and 1, € |Ar|%.

We denote the set of type models of a DL-Liteg KB K as |K|,. The type models of
a conjunction and a negation of DL-Liteg axioms’ are denoted and defined in the same
manner as ct-type semantics. The notions of entailment, logical equivalence, and consis-
tency under type semantics are defined in the same manner as DL semantics. Under type
semantics, a KB K entailing an DL-Liteg axiom ¢ is written as K =, ¢.

We can establish a connection between the DL models and the type models of a KB.
Let Z be a DL interpretation. For each pair of (not necessarily distinct) elements d, e in the
domain of Z, d and e induce a type as follows.

T(Z,d,e) =1(Z,d,e) UTZ).

We call 7%(Z,d, e) the type induced by d and e in Z. Note that 7(Z,d, e) induces a t-type
and 7%(Z) induces an a-type which forms receptively the t-type and the a-type part of the
induced type. We can show that for each DL interpretation Z, Z is a model of some KB if
and only if each type induced by Z is a type model of the KB.

Proposition 12 Let K be a DL-Liteg KB and Z a DL interpretation. Then I € |K| iff
(Z,d,e) € |K|. for each pair d,e € AT,

Also we can construct a DL model of some KB from each type model of the KB.

Proposition 13 Let K be a DL-Liter KB. If T € |K|,, then there is T € |K| and d,e € AT
such that 7*(Z,d,e) = T.

Through these connections, we can show that type semantics induces the same set of en-
tailments over DL-Liter axioms as that induced by DL semantics.

Theorem 9 Let IC be a DL-Liteg KB and ¢ a conjunction of DL-Liteg axioms. Then
K¢ iff K o,

Since type semantics is obtained by combining t-type and a-type semantics, it inherits
the finiteness and succinctness properties from the two.

7. A DL-Liter axioms is either a DL-Liter TBox axiom or DL-Liter ABox axiom.
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Proposition 14 Let K be a DL-Liteg KB. Then K has at most 202m+0 42 yyne models,
for n the number of individuals, m that of basic concepts, and | that of basic roles.

Now we give the corresponding role-complete condition for sets of types. A set of types
M is role-complete if all types in M satisfy the model conditions for t-type semantics
and a-type semantics, and for any R € R, whenever there is a type 7 in M such that
dR € 7, (3R)' € 7, or (IR)* € 7 for some a € D, then there is a type 7" in M such that
{R,R',R*}N 7’ # () for some b,c € D (7 and 7’ may be identical, and any pair among a, b, ¢
may be identical).

For a set of types M, the corresponding KB is defined in the same way as ct-type
semantics. Also it can be shown analogously that ||, is role-complete for any DL-Liter
KB K and M being role-complete guarantees the existence of a unique corresponding DL-
Liteg KB.

Theorem 10 Let M be a set of types. If M is role-complete, then there is a unique corre-
sponding DL-Liter KB for M.

By now we have introduced all versions of type semantics, ranging from the simplest
ct-type to the most comprehensive one presented in this subsection. Assuming the same
signature, we have Qf C Q! Q2 C Q,, and Q¢ U QL C Q,. Their characterising abilities
which are depicted in Figure 1 match these subset relationships.

4. Axiom Elimination

In this section, we deal with the elimination of axioms from DL-Lite KBs. There are several
application scenarios for such elimination, which are (1) to eliminate axioms from a TBox
while no ABox is considered; (2) to eliminate axioms from an ABox while a background
TBox is assumed and remains unchanged; and (3) to eliminate axioms from a KB while
both of its TBox and ABox are considered and subject to change. As discussed in the
previous section, although type semantics can be used in all scenarios, it will be a waste of
computational power to use it for scenarios (1) and (2) for which the simpler ct-type, t-type
and a-type semantics can be used. We will only pursue scenario (1) as the other two can
be handled in the same manner. The only difference is that in those scenarios we have to
switch the underlying semantics to a-type and to type semantics.

Our strategy for axiom elimination is to define a contraction function — that takes as
input a logically closed TBox T and a conjunction of TBox axioms ¢ and returns as output
a TBox T —¢ such that ¢ is not entailed. For convenience, T is called the original TBox, ¢
the contracting axiom, and T —¢ the contracted TBoz.

In defining the contraction functions, our approach is inspired by that of Katsuno and
Mendelzon (1992). However, we take a more general approach in which no explicit ordering
over models is assumed and instead of propositional models we work with t-type models.
Also we assume the original TBox is coherent.

We only present contraction functions for DL-Liteg TBoxes as those for DL-Litecore
ones can be defined and instantiated analogously. Thus KBs, TBoxes, ABoxes, and axioms
are assumed to be DL-Liter ones throughout this section.
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4.1 Eliminating Axioms from a TBox

Intuitively, if the model set of a TBox contains some counter-models of an axiom ¢ (i.e,
models of =¢) then the TBox does not imply ¢. Thus, to eliminate an axiom ¢ from a TBox
T we can first add some counter-models of ¢ to those of T to form an intermediate model
set then obtain the corresponding TBox of the model set. Since the intermediate model set
contains counter-models of ¢, we can be sure that the obtained TBox does not entail ¢.

Note that to apply this approach, a decision has to be made on which counter-models
to add. The extralogical information required for making the decision could be provided
by a domain expert of the KB. To study the theoretical properties we assume there is a
selection function that plays the role of decision making. A limiting case is when the set of
counter-models is empty that is the contracting axiom is a tautology. As it is not possible
to stop a TBox from implying a tautology, a convenient and reasonable way is to do nothing
and return the original TBox. In line with this intuition, a selection function should return
the empty set in such cases. Formally, v is a selection function if and only if for any set of
t-types M, v(M) is a non-empty subset of M unless M is empty.

Selection function has to be further restricted to handle the special case when 7 does not
entail ¢. In this case, the model set of T contains counter-models of ¢. Intuitively, if asked
to eliminate an axiom that is not entailed by the TBox then nothing has to be done and
the original TBox should be returned as the outcome. In line with this intuition, a selection
function is required to be faithful such that if the intersection of models of 7 and those of
—¢ is not empty, then the selection function picks the intersecting models and no others.
Formally, a selection function + is faithful with respect to a TBox T if v(M) = |T|L N M
whenever [Tt N M # (), for any set of t-types M.

With the above considerations, our contraction function called T-contraction function
is defined as follows. Recall that 7, is a function that takes as input a set of t-types M
and is such that if M is coherent, then 7,.(M) is the closure of the corresponding DL-Liteg
TBox, otherwise 7,.(M) = T,.

Definition 7 A function — is a T-contraction function for a TBox T iff for all conjunctions
of TBox axioms ¢
T=¢=T(ITh U~r(=¢l}))

where v is a faithful selection function for T .

Note that each r-model in the intermediate model set |T|% U ~v(|—=¢|.) satisfies the model
conditions for t-type semantics, and since the original TBox 7T is assumed to be coherent,
|T1E U~(]=¢|t) which includes models of 7 must be coherent.

Now we present properties of T-contraction functions. It is commonly accepted that
the AGM postulates for contraction best capture the desirable properties of contraction
functions. In the following, we adapt the AGM postulates and some of their alternatives
to the current contraction problem where T is a closed TBox and ¢, are conjunctions of
TBox axioms.

(T-1) T+¢ = cl(T~9)
(T-2) T 6 C T
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(T=3) If T }£ ¢, then T-¢ =T
(T=4) If £ ¢, then T=¢ [~ ¢

(T=5) T C c((T~¢) U{o})

(Tde) T = o and [T=6]; C [¢[L U ¢} then T-¢ = ¥
(T6) If ¢ = ¢, then T=¢ = T 1)

According to the postulates, a contraction function is syntax-insensitive (7'-6) and
produces a closed TBox (7'-1) which does not entail the contracting axiom unless it is a
tautology (T'-4). The produced TBox is not larger than the original one (7-2). If the
contracting axiom is not entailed, then nothing has to be done (7-3).

The AGM origin of (T-5) is called Recovery and is the main postulate for formalising
the minimal change principle for contraction. It requires the information loss during con-
traction to be minimal such that the original TBox can be recovered through expanding
the contracted TBox by the contracting axiom. Recovery has been criticised by many re-
searchers among which Hansson (1991) argued that it is an emerging property rather than
a fundamental postulate for contraction. One evidence is that other than the contraction
itself, its satisfaction relies also on properties (viz, AGM-compliance) of the underlying logic
(Ribeiro et al., 2013). In particular most of the DLs including DL-Lite are incompatible
with Recovery.

Due to the controversy of Recovery, many have proposed alternative postulates for
capturing the minimal change principle. In the quest of a proper postulate for DL-Lite, we
notice that Recovery can be replaced by the following postulate of Disjunctive Elimination
(Fermé et al., 2008):

IfYve Kand ¢ V¢ € K—¢ then ¢ € K—-¢.

Disjunctive Elimination captures the principle of minimal change by stating the condition
for retaining a formula during a contraction. That is if a formula is in the original belief set
and its disjunction with the contacting formula is retained during the contraction then the
formula is retained. Since disjunction of axioms is not permitted in DL-Lite, in adapting the
postulate we describe the disjunction in terms of their models, thus the postulate (T'-de).
Notice that we use t-models instead of DL models in (7'-de). Due to the property of t-type
semantics on unions of axioms, we have |T=¢| C |¢| U || implies |T=a|L C |p|L U || but
not vice versa. Thus using DL models instead of t-models enforces a stricter condition for
retaining 1 which means less number of axioms will be retained after the contraction. It is
obvious that the principle of minimal change favours the use of t-models.

We can show that a T-contraction function satisfies (T'—1)—(7-4), (T'—-de), and (T'-6)
and all functions satisfying these postulates are T-contraction functions. In other words,
the set of postulates fully characterises the properties of a T-contraction function.

Theorem 11 A function — is a T-contraction function for a TBox T iff — satisfies (T—1)—
(T'-4), (T'-de), and (T-6).
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By now we have presented the definition of T-contraction functions and their properties.
It is should be clear that a T-contraction function cannot be seen as an update operator in
KB update literatures. Such operators (e.g., Winslett’s operator, see Winslett, 1990) usually
apply a fixed rule or update semantics (e.g., WIDTIO) in determining the update outcome.
For T-contraction functions, the rule for deciding the contraction outcome is simulated by
the associated selection function. It is important to note that, we intentionally leave open
the details of the selection function except that we require it to be faithful. Thus it is
flexible enough to simulate any rules that respect the faithfulness condition. In fact, our
T-contraction function represents a general framework for dealing with changes to DL KBs
and it subsumes many update operators in the sense that the rules such operators applied
can be simulated by some faithful selection functions. In the remaining of this section, we
provide an algorithm called TCONT which implements one such operator.

Algorithm 1: TCONT

Input: TBox 7 and conjunction of TBox axiom ¢
Output: TBox 7;5_

if ¢ is a tautology or T = ¢ then

L return 7, :=T;

Let 7 = PickCounterModel(¢);

foreach ¢) € T do

L if 7 [£L ¢ then

N =

[=2 L B

| T =T\ {¢}
return 7, :=T;

N |

TCONT takes as input a TBox 7 and a conjunction of TBox axioms ¢, and return as
output a TBox. TCONT first checks if ¢ is a tautology or not implied by 7 (line 1) in which
case T is returned (line 2). Otherwise the procedure PickCounterModel is applied which
picks a counter-model 7 of ¢ (line 3). Then TCONT checks the counter-model against each
axiom in 7 (line 4). If an axiom is not satisfied by 7 (line 5) then it is removed from 7
(line 6). Finally, whatever is left of 7 is returned (line 7).

The procedure PickCounterModel takes a conjunction of TBox axioms ¢ and return
a counter-model of ¢. Essential, its goal is to obtain a t-model 7 of =¢ and this can be
achieved for example through the following two steps: (1) Consider one conjunct ¢ in ¢,
and if ¢y = BE D with B, D € B, let 7 contain B but not D; otherwise if ¢y = B CE =D
(or 1 = R C =S with R, S € R), let 7 contain both B and D (resp., both R and S);
otherwise if ¢; = R C S, let 7 contain R but not S (or contain 3R but not 35). (2) Add
other elements to 7 so that it satisfies model conditions for t-type semantics.

TCONT runs in polynomial time with respect to the size of 7 and ¢. In particular,
checking whether ¢ is a tautology or 7 entails ¢ takes polynomial time (line 1), the procedure
PickCounterModel as shown above runs in linear time, and each satisfiability check (line 5)
runs in linear time.

Proposition 15 Let T be a TBox and let ¢ be a conjunction of TBox axioms. Then
TCONT(T,¢) terminates and returns a TBox in polynomial time with respect to the size of
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T and ¢ and if = is a function such that T—¢ = TCONT (T, ¢), then — is a T-contraction
function.

Example 4 (cont’d Example 2) The logical closure of T contains axiom, among others,
dLoc™ C =RS, which is derived from dLoc™ C CS and RS C —~CS.

To contract ¢ := dLoc™ T —=RS from T, TCONT takes both T and ¢ as input. In
line 3, suppose a counter-model 7 = {3Loc™,3Das™,CS,RS,0S} is selected. T does not
satisfy Loc™ C —=RS or RS C —CS, and hence these two axioms (and only these two) are
eliminated from the closure.

5. Axiom Incoporation

In this section, we deal with the incorporation of axioms into DL-Lite KBs. Similar to
axioms elimination, there are three application scenarios that are often encountered, which
are (1) to incorporate axioms into a TBox while no ABox is considered; (2) to incorporate
axioms into an ABox while a background TBox is assumed and remains unchanged; and
(3) to incorporate axioms into a KB while both of its TBox and ABox are considered and
subject to change. From previous discussions, it is best to use ct-type or t-type semantics
for scenario (1), a-type semantics for scenario (2), and for scenario (3) we have to use the
full version of type semantics. We will focus on the scenarios (1) and (2). In managing DL
KBs, scenario (3) is less common and it has been handled in (Wang et al., 2015) through a
similar approach.®

Similar to axiom elimination, our strategy is to define a revision function * that takes
as input a logically closed TBox T (or ABox A7) and a conjunction of TBox axioms (resp.
ABox axioms) ¢ and returns as output a TBox T * ¢ (resp. ABox A7 * ¢) such that ¢
is entailed. For convenience, 7 (or At) is called the original TBox (resp. ABoz), ¢ the
revising axiom, and T x ¢ (resp. A7 * ¢) the revised TBoz (resp. ABoz). In defining such
functions, we assume the original TBox is coherent; the original ABox is consistent with
the background TBox? and the background TBox is itself coherent.

In the AGM framework, revision can be constructed indirectly through contraction via
the Levi identity (Levi, 1991). Formally, let = be a contraction function for a belief set K,
a revision function * for K can be defined as K x¢ = Cn((K—--¢)U{¢}) for all formulas ¢.
Since the syntax of DL-Lite does not permit axiom negation the approach is not applicable
for DL-Lite. We will define revision functions directly in a model-theoretic approach. As
for contraction the approach is inspired that of Katsuno and Mendelzon (1992) and is based
on type semantics.

We only present revision functions for DL-Liter as those for DL-Lite.yr can be defined

and instantiated analogously. Thus KBs, TBoxes, ABoxes, and axioms are assumed to be
DL-Liter ones throughout the section.

8. They also proposed an alternative semantic characterisation for DL-Lite but used structures that could
be exponentially larger than a type. Hence, a polynomial time algorithm is not available.
9. To be consistent with the background TBox, the ABox itself has to be consistent.
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5.1 Incorporating Axioms into a TBox

We start with the revision function for incorporating axioms into a TBox. Before presenting
the function, we need to clarify a fundamental difference between AGM revision and revision
over DL TBoxes (TBox revision for short). AGM revision aims to incorporate new beliefs
while resolving any inconsistency. TBox revision goes beyond inconsistency resolving. In
addition to consistency, meaningful DL TBoxes have to be coherent, thus TBox revision has
to resolve both the inconsistency and incoherence caused in incorporating new axioms.

Now we give the intuitions behind our revision function. If the model set of a TBox 7
is the subset of that of an axiom ¢ then T entails ¢. Thus to incorporate an axiom ¢ into
a TBox T, we can pick some models of ¢ to form an intermediate model set then obtain its
corresponding TBox. Since the intermediate model set is the subset of that of ¢, we can be
sure that the obtained TBox entails ¢.

Note that to apply this approach, a decision has to be made on which models of ¢ to
pick. As for contraction, a selection function is assumed. Previously, for contraction, a
selection function returns the empty set in the limiting case when the contracting axiom
is a tautology. Now the limiting case is when the revising axiom is incoherent. As it is
not possible to return a coherent TBox that entails an incoherent axiom, a convenient and
reasonable way is to do nothing and return the inconsistent TBox. Formally, we define
that, a function ~ is a selection function if and only if for any set of t-types M, v(M) is a
non-empty subset of M unless M is incoherent.

To illustrate the new definition of selection function, suppose in revising 7 by ¢, ¢ is
an incoherent axiom. As discussed, in this case, the revision fails. Since ¢ is incoherent, its
set of t-models must be incoherent. The definition of selection function guarantees that an
empty set of t-types is picked which means the revision outcome is the expected inconsistent
TBox for indicating failure of the revision.

The faithfulness condition also has to be modified from the contraction case. A selection
function v is faithful with respect to a TBox 7T if it satisfies

1. if M is coherent, then |T|. N M C ~(M), and
2. if |T|L N M is coherent, then v(M) = |T|L N M.

In revising 7 by ¢, condition 1 deals with the case when models of T overlaps with those
of ¢ which means 7 U {¢} is consistent. In line with the principle of minimal change, in
this case, the selection function has to pick all the overlapping models to preserve as many
as possible the original TBox axioms. Condition 2 deals with the case that not only the
overlapping exists but also it is coherent. Since in this case 7 U {¢} is not only consistent
but also coherent, the revision boils down to a set union operation (i.e., cl(7 U {¢})). The
selection function therefore picks all the overlapping models and no others.

To illustrate the new notion of faithfulness, suppose in revising 7 by ¢, the t-models of
¢ overlap with those of T (i.e., |¢|l. C |T|!) and the set of overlapping t-models is coherent.
Since there is no incoherence to resolve, the most intuitive way to deal with this revision is
to add ¢ to T without making any further change, that is to have the union of ¢ and 7 as

10. In fact we can concentrate on incoherence resolving when ABox is not considered. By its definition, a
coherent TBox must be consistent. Inconsistency resolving is thus a part of incoherence resolving.
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the revision outcome. Since the set of t-models of this union is |¢|% N |74 and the revision
outcome is obtained by taking the corresponding TBox of the t-types picked by a selection
function, it is clear that in this revision the more intuitive selection function should picked
all t-types in |¢|.N|T|L and no other. In our terms, we call such a selection function faithful.

In addition to faithfulness, the selection function has to guarantee the t-types picked
are coherent, thus we introduce the following condition. We say a selection function ~ is
coherent preserving if for all coherent sets of t-types M, (M) is coherent.

With the above considerations, our revision function called T-revision function is defined
as follows.

Definition 8 A function x is a T-revision function for a TBox T iff for all conjunctions
of TBox axioms ¢

T+é=T.(v(I¢]))

where v is a faithful and coherent preserving selection function.

Now we present properties of T-revision functions. Since AGM revision deals with
inconsistency, AGM revision postulates are formulated to capture the rationale behind
the inconsistency resolving process. TBox revision also deals with incoherence, thus the
postulates for TBox revision have to capture the rationale behind not only inconsistency
but also incoherence resolving. By replacing conditions on consistency with coherence,
AGM revision postulates are reformulated as follows for TBox revision, where 7T is a closed
TBox and ¢, conjunctions of TBox axioms.

Tx1)T *x¢=cl(T x9)

2) T+¢ ¢

T %
T * 3) If ¢ is coherent, then T x ¢ C cl(T U {¢})

5) If ¢ is coherent, then T * ¢ is coherent

(T'+1)
(T *2)
(T'+3)
(T % 4) If T U {¢} is coherent, then cl(T U {p}) C T * ¢
(T'+5)
(T*6)If ¢ =1p, then T x =T * ¢
(T f)

T %
T
T+ f) If ¢ is incoherent, then 7 x ¢ = T

According to the postulates, the revised TBox is closed (7" % 1), it entails the revising
axiom (T * 2); if the revising axiom is coherent, then the revised TBox entails no axiom
other than those entailed by the original TBox and the revising axiom (7"*3); if the revising
axiom causes no incoherence then the revised TBox is the closure of the original TBox and
the revising axiom (7" *4). The revised TBox is coherent whenever the revising axiom is so
(T *5); Also the revision function is syntax-insensitive (7'%6). Since the revising axiom has
to be in the revised TBox, if the revising axiom is itself incoherent then the revised TBox
must be so. The failure postulate (7" % f) requires that in such case we simply return the

inconsistent TBox. The purpose of TBox revision is to incorporate an axiom and resolve
any incoherence caused. If the input axiom is itself incoherent, then the revision is doomed
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to be a failure. When it fails there is no ground to argue what a proper revision outcome
is, so it comes down to what convention to take. Following AGM revision, we take the
convention of returning the inconsistent TBox. The AGM origin of (1" x f) which states if
the revising formula is inconsistent then return the inconsistent belief set, is deducible from
the other AGM postulates thus is not postulated explicitly in the AGM framework.

We can show that a T-revision function satisfies (7 1)—(7 * 6), and (T * f) and all
functions satisfying these postulates are T-revision functions. In other words, the set of
postulates fully characterises the properties of a T-revision function.

Theorem 12 A function x is a T-revision function for a TBox T iff x satisfies (T % 1)—
(T %6) and (T * f).

As for T-contraction function, a T-revision function is not an update operator, rather
it represents a general framework for incorporating axioms into DL-Lite TBox. As with
T-contraction function, a T-revision function subsumes many update operators. In the
following, we provide an algorithm called TREVI which implements one such operator.

Algorithm 2: TREVI
Input: TBox 7 and conjunction of TBox axioms ¢
Output: TBox ’7;5*

if ¢ is incoherent then
L return 7:;‘ =T

// N is the set of atomic concepts and atomic roles in BUR
3 foreach F' € N do

4 if TU{¢} &= F C —F then

5 Let 7 = PickSatModel(¢, F');
6 foreach ¢ € T do

7 if 7 [£L ¢ then

. L | T =T\ {wk

[

return 7:; =c(TU{o});

©

TREVI takes as input a TBox T and a conjunction of TBox axioms ¢, and return as
output a TBox. TREVI starts by checking whether ¢ is incoherent (line 1), and if so it
returns the inconsistent TBox (line 2). Otherwise, it checks for each atomic concept and
each atomic role if it is unsatisfiable under the union of 7" and ¢ (line 3-4). The union is
incoherent if and only if one such concept or role is unsatisfiable. For each unsatisfiable
concept or role F', the procedure PickSatModel is applied which picks a t-model 7 of ¢ that
includes F' (line 5). Then TREVI checks 7 against each axiom in 7 (line 6). If an axiom
is not satisfiable under 7 (line 7), then it is removed from 7 (line 8). Finally, the closure of
the union of whatever are left of 7 and ¢ is returned (line 9).

The procedure PickSatModel takes a conjunction of TBox axiom ¢ and an atomic con-
cept or role F' and return a t-model of ¢ that includes F'. This can be achieved for example
through the following four steps: (1) Let 7 contain F, and extend 7 so that it satisfies {¢}!!

11. Recall that given a TBox T, 71 represents the extension of 7.
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propositionally. (2) If ¢ = R C S for some R, S € R and 7 contains 3R (or (3R)’), then let
7 contain 35 (resp., (35)"). (3) Further extend 7 so that it satisfies model conditions for
t-type semantics. (4) Repeat steps (1)—(3) till 7 no longer changes.

TREVI runs in polynomial time with respect to the size of 7 and ¢. In particular,
checking coherence of ¢ (line 1) takes polynomial time, each concept or role satisfiabil-
ity check (line 4) takes polynomial time, procedure PickSatModel as shown above takes
polynomial time, and each satisfiability check (line 7) takes linear time.

Proposition 16 Let T be a TBox and let ¢ be a conjunction of TBox azxioms. Then
TREVI(T, ¢) terminates and computes a TBox in polynomial time with respect to the size
of T and ¢ and if * is a function such that T x ¢ = TREVI(T,®), then % is a T-revision
function.

Example 5 (cont’d Example 2) Adding ¢ = 3Das™ T RS to T introduces incoherence,
i.e., TU{¢} EJLoc™ C L, due to JLoc™ C CS, RS C —CS, and Loc C Das in T.

To revise T with ¢, TREVI takes both T and ¢ as input. In line 5, suppose t-type
7 = {3Lloc™,3Das™,CS,RS, OS} is picked. T does not satisfy ILoc™ C —RS or RS C —CS,
and hence these two axioms (and only these two) are eliminated from the closure of T to
achieve a coherent union with ¢.

5.2 Incorporating Axioms into an ABox

Now we turn to the revision function for incorporating axioms into an ABox. When dealing
with TBox revision, we argued that since meaningful TBox is coherent, an essential task of
the revision is incoherence resolving. Coherence is no longer an issue here, as we assume the
background TBox is coherent and it remains unchanged throughout the revision process.
Therefore we only need to concern with inconsistency resolving. Also note that we are
working with a-type semantics now.

The idea for defining T-revision function can also be used here. First, we pick some
models of the revising ABox axiom to form an intermediate model set, then return its
corresponding ABox as the revised ABox. The decision making on which models to pick is
again modelled by a selection function. Formally, a function « is a selection function if and
only if for any set of a-types M, (M) is a non-empty subset of M unless M is empty.

Recall that by A7 we mean an ABox A with a background TBox 7. In revising Ay
by an axiom ¢, a special case is when the models of A+ overlap with those of ¢ indicating
the KB (7, AU{¢}) is consistent. Since there is no inconsistency to resolve, we can simply
return the union A7 U {¢} as the revised ABox. In line with this intuition, a selection
function has to pick all the overlapping models and no other and we say the selection
function is faithful. Formally, a selection function ~ is faithful with respect to an ABox A
if y(M) = |A7|% N M whenever |A7|2 N M # (.

With the above considerations, our revision function called A-revision function is defined
as follows. Recall that A7 is a function that that takes as input a set of a-types M and
is such that if M is consistent with 7, then A7 (M) is the closure of the corresponding
DL-Liteg ABox with respect to T, otherwise A7 (M) is the inconsistent ABox A .
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Definition 9 A function * is an A-revision function for an ABox At iff for all conjunctions
of ABox axioms ¢

A7+ ¢ = AL (v({e}7]1)

where 7y is a faithful selection function.

Now we present properties of A-contraction functions. The AGM postulates for revision
are commonly accepted to capture the desirable properties of revision. In the following,
we adapt them to the current revision problem where A7 is a closed ABox, and ¢, are
conjunctions of ABox axioms.

As incoherence resolving is out of the picture, the adapted postulates are like their AGM
origins concern with inconsistency resolving. According to the postulates, the revised ABox
is closed (A x 1); it entails the revising axiom (A x 2); it entails no axiom other than those
entailed by the original ABox and the revising axiom (A * 3); it is the closure of the union
of the original ABox and the revising axiom if the revising axiom causes no inconsistency
(A x4), and it is consistent whenever the revising axiom is so (A % 5); Also the revision
function is syntax-insensitive (A% 6). In the limiting case that the revising axiom ¢ is itself
inconsistent, since it is not possible to have a revised ABox that entails ¢ and at the same
time be consistent, we take the convention to return the inconsistent ABox as the revised
ABox (A x f).

We can show that an A-revision function satisfies (A * 1)—(A % 6) and (A  f) and all
functions satisfying these postulates are A-revision functions. In other words, the set of
postulates fully characterises the properties of an A-revision function.

Theorem 13 A function * is an A-revision function for an ABox At iff * satisfies (Ax1)—
(Ax6), and (A* f).

As for T-contraction and T-revision functions, an A-revision function is not an update
operator, rather it represents a general framework for incorporating axioms into DL-Lite
ABoxes. As with T-contraction and T-revision functions, an A-revision function subsumes
many update operators. In the following, we provide an algorithm called AREVI which
implements one such operator.

AREVI takes as input a TBox 7, an ABox A, and a conjunction of ABox axioms ¢,
and return as output an ABox. AREVI first checks if ¢ is inconsistent with 7 (line 1) in
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Algorithm 3: AREVI
Input: TBox 7, ABox A, and conjunction of ABox axioms ¢
Output: ABox A}

1 if ¢ is inconsistent with T then

2 L return A% := A ;

3 if ¢ is consistent with (T, A) then

L return A7 := clr (AU {¢});

Let 7 = PickModel(¢);

foreach ¢ € A do

L if 7 =% ¢ then

I

0 I O O«

L A=A\ {¢}
9 return A:; =cr(AU{o});

which case the inconsistent ABox is returned (line 2). Otherwise, if the revising axiom is
consistent with the original ABox and the background TBox then the union of the axiom
and the original ABox is returned (lines 3-4). Otherwise the procedure PickModel is applied
which picks an a-model 7 of ¢ (line 5). Then AREVI checks the a-model against each axiom
in A (line 6). If an axiom is not satisfied by 7 (line 7) then it is removed from A (line 8).
Finally, whatever is left of A is combined with ¢ and their logical closure is returned (line
9).

The procedure PickModel takes an ABox axiom ¢ and returns an a-model of ¢. This can
be achieved for example through the following five steps: (1) Let 7 contain the propositional
forms of all conjuncts of ¢ (recall that the propositional form of an ABox axiom A(a) is A%).
(2) Extend 7 so that it satisfies 7% propositionally. (3) If T = R C S for some R, S € R
and 7 contains (3R)* for some a € D, then let 7 contain (35)%. (4) Further extend 7 so
that it satisfies model conditions for a-type semantics. (5) Repeat steps (2)—(4) till 7 no
longer changes.

Proposition 17 Let A1 be an ABox and ¢ be a conjunction of ABox azioms. Then
AREVI(T, A, ¢) terminates and computes an ABozx in polynomial time with respect to the
size of AUT and ¢ and if = is a function such that Ay« ¢ = AREVI(T, A, ), then x is
an A-revision function.

AREVI runs in polynomial time with respect to the size of T, A and ¢. In particular,
checking consistency between ¢ and 7 (line 1) and between ¢ and (7,.4) (line 3) both take
polynomial time. The procedure PickModel as shown above runs in polynomial time, and
each satisfiability check (line 7) takes linear time.

Example 6 (cont’d Example 3) Adding ¢ = RS(s) to A introduces inconsistency, due
to azioms Loc(d, s) in A, 3Loc™ C CS and RS C =CS in T.

To revise A1 with ¢, AREVI takes T, A, and ¢ as inputs. In line suppose a-type T =
{HD4, (3Loc)?, (3Das)¢, Das?®, (Das™)*?, (3Das~)*,RS*,0S°} is picked. T does not satisfy
Loc(d, s), and hence this assertion (and only this one) are eliminated from the closure of
A7 to achieve a consistent union with ¢.
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6. Related Work

In dealing with changes to DL KBs, many are like us considering it as a belief change prob-
lem (Qi et al., 2006; Qi & Du, 2009; Qi et al., 2008; Ribeiro & Wassermann, 2009; Wang
et al., 2015). Qi et al. (2006) gave a weakening based approach for revising ALC KBs. The
idea is to weaken the TBox axioms until all inconsistencies are resolved. Qi and Du (2009)
and Wang et al. (2015) adapted Dalal’s (1988) and Satoh’s operators (1988) respectively
for revising DL KBs. The main issue with these works is that their revision postulates
are not formulated appropriately to capture the rationales of incoherence resolving. More-
over, the adapted revision operators cannot guarantee coherence of the revision outcome.
In contrast to our approach, Qi et al. (2008) and Ribeiro and Wassermann (2009) studied
contraction and revision over TBoxes and KBs that are not necessarily closed. In partic-
ular, Qi et al. (2008) adapted kernel revision (Hansson, 1994). Ribeiro and Wassermann
(2009) adapted partial meet contraction and revision (Hansson, 1999) kernel contraction
and revision (Hansson, 1994), and semi-revision (Hansson, 1997).

Due to the popularity of DL-Lite, many have worked on the problem of updating DL-
Lite KBs (De Giacomo et al., 2009; Calvanese et al., 2010; Kharlamov & Zheleznyakov,
2011; Kharlamov et al., 2013; Lenzerini & Savo, 2011, 2012). The “update” however has
very different meaning from the update operation in belief revision literatures (Katsuno &
Mendelzon, 1991). In these works, it can be interpreted as both contraction and revision
and they mainly focused on issues with the expressibility of the update outcome. We also
tackled the expressibility issues while assuming type semantics. Due to the succinctness
and finiteness of type semantics, the issue can be settled relatively easy. Of these works
that are more comparable to ours, Lenzerini and Savo (2011) dealt with instance level
update, that is the TBox remains unchanged and the ABox undergoes changes. Later
Lenzerini and Savo (2012) extended the approach to updating inconsistent KBs. The main
idea is to first obtain ABoxes (called repairs) that are consistent with the background
TBox; differ minimally from the original ABox; and accomplish the insertion or deletion
of certain axioms. Then the intersection of these repairs are taken as the update outcome.
The problem setting is similar to that for A-revision functions. Although they targeted a
more expressive DL-Lite (i.e., DL-Lite4 ;q), when considering DL-Liter their idea can be
simulated by our A-revision function. By restricting the associated selection function, an
A-revision function can always return the same outcome as their approach.

Grau et al. (2012) studied operations that contract and revise at the same time. A
constraint which states the set of axioms to be incorporated and those to be eliminated is
first specified. Then the operation maps a KB to another that satisfies the constraint. The
operation reduces to a revision and contraction function after making empty the so called
eliminating set and the incorporating set respectively. However, they did not identify the
postulates that characterise the contraction and revision functions. When working with
DL-Lite, such functions can be simulated by our T-contraction and T-revision function.

In a more general setting, Ribeiro et al. (2013) identified properties of a monotonic logic
under which a contraction function can be defined that satisfies the Recovery postulate. By
their result, DL-Lite is not one such logic, which is consistent with ours (i.e., Theorem 11).
Axiom negation is not supported by most DLs but is required in defining revision functions
through contraction functions via the Levi identity. Flouris, Huang, Pan, Plexousakis, and
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Wache (2006) proposed several notions of negated axioms for DLs. They also explored the
notions of inconsistent and incoherent TBoxes and emphasised the importance of resolving
incoherence in addition to inconsistency.

Similar to T-revision function, a group of works usually referred to as ontology debugging
also deals with unsatisfiable concepts (e.g., Kalyanpur et al., 2006). The method they used
are based on the notion of Minimal Unsatisfiability Preserving Sub-TBoxes (MUPS). For
each unsatisfiable concept B, the MUPS based method first computes all the MUPSs for
B, then it computes a minimal hitting set for the MUPSs. The incoherence is then resolved
by removing axioms in the minimal hitting set. TREVI deals with the same problem in a
more efficient way. Roughly speaking each minimal hitting set for the MUPSs corresponds
to a t-model formed in line 5 of TREVI, thus we can avoid the computations of the MUPSs
and their minimal hitting sets which is a significant saving in computational power.

7. Conclusion

Due to the diversity of DLs, it is difficult if not impossible to come up with generalised
contraction and revision functions that work best for all DLs. Each DL is unique that
they deserve to be treated individually to make the most out of their uniqueness. A dis-
tinguishing feature of DL-Lite is that it only allows a restricted version of existential and
universal quantifiers. By taking advantage of this feature, we developed type semantics for
DL-Lite that resembles the underlying semantics for propositional logic. We then defined
and instantiated contraction and revision functions for DL-Lite KBs whose outcomes are
obtained by manipulating type models of the KBs and the contracting and revising axioms.

Our first contribution is the development of type semantics for DL-Lite. Given that type
semantics is equivalent to DL semantics in characterising the standard inference tasks of
DL-Lite, it outperforms DL semantics in terms of finiteness and succinctness. Our second
contribution is the axiomatic characterisation for the contraction and revision functions.
The key in obtaining the result for T-revision functions is the reformulation of AGM revision
postulates from inconsistency centred to incoherence centred. As TBox revision deals not
only with inconsistency but also incoherence, postulates for TBox revision must capture
the rationales behind incoherence resolving. Our third contribution is providing tractable
algorithms that instantiate the contraction and revision functions.

For future work, we plan to study contraction and revision for DLs that are more
expressive than DL-Lite. Since these DLs may allow unrestricted existential and universal
quantifiers, concepts can be formed through unbound nesting of quantifies. The semantic
characterisation of this kinds of concepts through type semantics may not be possible. We
need some other techniques that are tailored to these DLs.
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Appendix A

Before presenting the proofs for the technical results, we introduce some notions that will
simplify the presentation of the proofs.

First, given an ABox A, we write P~ (a,b) € A to mean P(b,a) € A.

Now we present the notion of chase. Given a DL-Liteg (DL-Lite.yr.) ABox A and TBox
T, the chase of A w.r.t. T, denoted chaser(A) is defined procedurally as follows: initially
take chaser(A) := A, then exhaustively apply the following rules:

o if A(s) € chaser(A), A C A € T, and A'(s) & chaser(A), then chaser(A) :=
chaser(A)U{4'(s)};

o if A(s) € chaser(A), AC 3R € T, and there is no ¢ such that R(s,t) € chaser(A),
then chaser(A) := chaser(A) U {R(s,v)} where v is a fresh constant that has not
appeared in chaser(A) before;

e if R(s,t) € chaser(A), 3R C A € T, and A(s) & chaser(A), then chaser(A) :=
chaser(A) U {A(s)};

e if R(s,t) € chaser(A), IR C 3S € T, and there is no t such that S(s,t) € chaser(A),
then chaser(A) := chaser(A) U {S(s,v)} where v is a fresh constant that has not
appeared in chaser(A) before;

o if R(s,t) € chaser(A), RC S € T, and S(s,t) € chaser(A), then chaser(A) =
chaser(A) U{S(s,t)}.

Note that in the above rules, R and S can be a role or the inverse of a role. It is well
known that an ABox A induces a unique interpretation Z4 such that the domain of Z4
consists of all the constants in A; for each concept name A, AZA = {d | A(d) € A}; and
for each role name P, PZA = {(e, f) | P(e, f) € A}. In the proofs, we slightly misuse the
notation to let A denote also the interpretation induced by .A. In this way, chases(A) can
also be used to denote an interpretation.

Finally, we present the notions of positive inclusions, negative inclusions, and closures of
negative inclusions. We call TBox axioms of the forms B C D and R C S positive inclusions
(PIs), and call axioms of the forms B T =D and R T =S negative inclusions (NIs), where
B,D € B and R,S € R. Given a DL-Liteg (DL-Litecye) TBox T, the closure of NIs for
T, denoted cln(T), is defined inductively as follows:

e All NIs in 7 are in cln(T);
e If ByC By €T and By C —Bs or B3 C =By is in ¢ln(T), then By C —Bs € cln(T);

e If R C RyeT and 3Ry C —~B or BL —3Ry is in cln(T), then 3R; C =B € cln(T);

If R C Ry €T and 3R, C —Bor BLC —3R; isin cin(T), then IR] C =B € cln(T);

If RYERy €T and Ry C —R3 or R3 C =Ry is in cln(T), then Ry C —R3 € cIn(T);

If JRC 3R or 3R~ C —-3R~ or RC —R is in ¢ln(T), then all three are in cln(T).

358



DL-LiTE CONTRACTION AND REVISION

It is clear from the above definition that 7 |= ¢in(7). The following result is shown in
(Calvanese et al., 2007) which provides a method to build DL models using chase. The
result will be used to prove Propositions 3 and 6.

Lemma 1 Let (T,A) be a DL-Litegr (DL-Litecore) KB. If A is a model of cln(T), then
chaser(A) is a model of (T, A).

Proof for Proposition 1
If there is 7 € |T|% such that 3R € 7 for some R € R, then by condition 2 of Definition 1,
T = 3R C L. Thus, there is a model Z of T such that RZ # (. Suppose (d,e) € RT, let
7' =7(Z,e). Then, 3R~ € 7. Also, by Proposition 2, 7’ € | T|L.
O
Proof for Proposition 2
For the if direction, it suffices to show for each d € AT and each axiom B C C in T,
d € BY implies d € CT. Let 7 = 7(Z,d). Suppose d € BZ, then by the definition of 7 we
have B € 7. Since 7 is a ct-model of T, 7 satisfies B C C propositionally. If C is a basic
concept, then B € 7 implies C' € 7; otherwise C' = =D is a negated basic concept, and
B € 7 implies D ¢ 7. In both cases, by the definition of 7, d € CZ.
For the only if direction, let 7 = 7(Z,d) for an arbitrary d € AZ. We first show that
7 € || T||L. For each concept inclusion B C C in T, assume B € 7, then d € B, If C is
a basic concept, Z being a model of 7 implies d € C%, which in turn implies C € 7. If
C = —D is a negated basic concept, then with a similar argument, d ¢ D¥ and D ¢ 7. That
is, 7 satisfies B C C propositionally. That is, 7 € || T||f. For the second half of Definition 1,
if T =3RC L then RT = (). Clearly, 3R ¢ 7. We have shown that 7 € |T..
O

Before proving Proposition 3, we first show the following lemma as a preparation.

Lemma 2 For a DL-Litecore TBox T, each ct-model T of T satisfies T € ||cln(T)||L.

Proof: Towards a contradiction, suppose there exists a ct-model 7 of 7 and an NI « in
cln(T) such that 7 does not satisfy «a propositionally. We show that 7 must violate some
NI in 7 (which contradicts to the fact that 7 is a ct-model of 7). We prove this through
induction. For convenience, we assume the inclusions in cIn(7) are added inductively
following the definition.

For initialization, if « is in T then 7 violates some NI in 7. For induction steps, we show
that if v is added to cln(T') due to another axiom § already in cln(7T), 7 violates 8. There are
two cases: (1) Suppose « is By C —Bs, added due to PI B; C By in 7 and NI By C —Bj3
(or B3 C —Bsg) in ¢ln(T). Then, by the fact that 7 does not satisfy « propositionally,
{B1,Bs} C 7. Also, as 7 satisfies By C By in 7, By € 7. Hence, 7 violates NI By C —Bj3
(B3 C =B3). (2) Suppose « is 3R C —3R, added due to 3R~ T =3R™ in cln(T). Then, by
the fact that 7 does not satisfy « propositionally, IR € 7. As 3R~ T -3JR~ 3R LC L, by
condition 2 in Definition 1, 7 violates NI 3R~ C —-3dR™.

O

Proof for Proposition 3
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We construct an interpretation Z, from 7 using chase: Let d be a constant, N¢ be the
set of all concept names, and

A ={A(d) | A€ Nent}U
{R(d,eq,r) | 3R € T,eq R is a fresh constant}.

Take Z, = chaser(A;). We want to show that Z; is a model of 7 and 7(Z,,d) = .

To show the former, by Lemma 1, we only need to show that A, is a model of cln(T).
Towards a contradiction, suppose it is not the case, then there is an axiom B T —D in
cln(T) that is violated by A,. This is the case when A, = B(s) and A, = D(s) for some
constant s in A.. There are essentially four cases (note that B and D are symmetric):

(i) Suppose B and D are both concept names, then A, = B(s) and A; |= D(s) only if
s =d, B(d) € A;, and D(d) € A;. From the construction of A, {B,D} C 7 and thus 7
does not propositionally satisfy B C —D. That is, 7 & ||cIn(T)||L, which violates Lemma 2.

(ii) Suppose B = IR for some R and D is a concept name, then A; = B(s) only if
s =d and R(d,t) € A; for some t, and A, |= D(d) only if B(d) € A.. Thus, {B,3R} C 7
and thus 7 does not propositionally satisfy B C ~3R. Again, 7 & ||cln(T)||%, which violates
Lemma 2.

(iii) Suppose B = 3R for some R and D = 35 for some S with R # S, then A, = B(s)
and A, = D(s) only if R(s,t) € A; and S(s,u) € A, for some ¢,u. This is only when s = d
and t,u are fresh constants. In this case, {3R,3S} C 7 and 7 does not propositionally
satisfy AR C —3S, which again violates Lemma 2.

(iv) Suppose B = 3R for some R and D = 3R, then A, = B(s) only if R(s,t) € A, for
some t. This is only when s = d and t is a fresh constant; or t = d and s is a fresh constant.
In the former case, 3R € 7, and in the latter case, 3R~ € 7. Since IR T L € cln(T),
TEIRC L and T = 3IR™ C L. Both cases violate the fact that 7 € | 7|} and condition 2
in Definition 1.

We have shown that A; is a model of ¢ln(T), and thus Z; is a model of T.

Now it remains to show that 7(Z,,d) = 7. Since it is clear that 7(A.,d) = 7, from the
definition of chase, 7(A;,d) C 7(Z;,d). We only need to show that 7(Z.,d) C 7(A;,d).
This is equivalent to show that Z; \ A, does not contain any assertion of the form A(d) or
R(d, s) such that no assertion R(d,t) € A, (as otherwise, A or IR, respectively, will be in
T7(Zr,d) \ 7(Ar, d) according to the definition of 7(Z-, d)). Towards a contradiction, suppose
there is such an assertion in Z; \ A,. From the chase rules, it can happen only if some chase
rule is applicable to an assertion g of the form B(d) or S(d,t). Let g be the first of such
assertions that triggers a chase rule. By the chase rules, we observe that g must be in A-.

e Suppose g = B(d), then from the construction of A;, B € 7. If g triggers a chase
rule with B £ A € T, then by condition 1 in Definition 1, 7 propositionally satisfies
B C A, and hence A € 7 and A(d) € A, which is a contradiction to (the applicability
of) the chase rule; otherwise, g triggers a chase rule with B C 3R € T, then by
condition 1 in Definition 1, 7 € ||B € JR||!, and thus 3R € 7 and R(d,u) € A, for
some u, which again contradicts the chase rule.

e Suppose g = S(d,t), then from the construction of A,, 35 € 7. If g triggering a
chase rule with 45 C A, then by condition 1 in Definition 1, 7 propositionally satisfies
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ISC A As3Ser, Ac7and A(d) € A, which contradicts to the chase rule. If ¢
triggering a chase rule with 35 C 3R, then 7 propositionally satisfies 35 C 3R, and
thus 3R € 7 and R(d,u) € A; for some u, which is again a contradiction.

We have shown that Z; \ A, does not contain any assertion of the form A(d) or R(d,s).
Thus, 7(Z-,d) = 7(A;,d) = 7.

O
Proof for Theorem 1

If |T| # 0, then there is a model Z € |T|. Let d € AL, and 7 = 7(Z,d). From
Proposition 2, 7 € |T|. That is, |T|. # 0. Conversely, suppose |T|, # 0, let 7 € |T|L.
From Proposition 3, there is a model Z of 7. That is, |T| # 0. Thus, |T| is empty if and
only if |T|% is empty. If |T| and |T|L are both empty, the statement trivially holds. In what
follows, we assume that | 7| and |T|% are both non-empty.

For the if direction, we want to show that if 7 [£ ¢ then |T|% € |¢|%. Then, there
is a model Z of T such that Z does not satisfy ¢. That is, there is a TBox axiom in the
conjunction ¢ that is not satisfied by Z. Without loss of generality, assume ¢ contains only
this (single) TBox axiom. Suppose ¢ is B C C. Then, there is an domain element d € A?
such that d € BY and d ¢ C*. Let 7 = 7(Z, d). Since Z is a model of T, from Proposition 2,
7 is a ct-model of 7. If C is a basic concept, then B € 7 implies d € B and d ¢ C*, which
in turn implies C &€ 7. If C' = =D is a negated basic concept, then with a similar argument,
B € 7 implies D € 7. That is, 7 does not propositionally satisfy B C C and 7 ¢ ||¢||%. We
have shown that |T|L Z |#|L.

For the only if direction, we want to show that if |T|, Z |#|% then T }£ ¢. Since
ITIE € |#]L, there is a ct-type 7 € |T|! and 7 & |¢|.. From Proposition 3, there exists a
model Z of 7 and a domain elements d € AZ such that 7(Z,d) = 7. We only need to show
that Z is not a model of ¢. Suppose otherwise, Z is a model of ¢, then by Proposition 2, 7
must be a ct-model of ¢, which contradicts the fact 7 & |¢|.. Thus, Z is not a model of ¢,
and we have shown that 7 £ ¢.

O
Proof for Theorem 2

For each 7 € |T|%, by condition 1 in Definition 1, 7 propositionally satisfies ¢; for i =
1,...,n. Moreover, as T is coherent, by the monotonicity of DL-Lite, there exists no R € R
such that ¢; = IR C L. Hence, T € |¢;|! fori=1,...,n. That is, |T]L C [¢1]LN - N |onlL.
Conversely, for each 7 € |¢1]5N---N|¢y|%, by condition 1 in Definition 1, 7 € || T||f. Further,
as T is coherent, there exists no R € R such that 7 = 3R C L. Hence, 7 € |T|t. That is,
61t gl C [T

O
Proof for Theorem 3

For each 7 € |T !, by Proposition 3, there is a model Z € | 7| and some d € AT such that
7(Z,d) = 7. Since |T| C |¢| U |[¢|, T € |¢| or T € |¢|. Suppose without loss of generality
that Z € |¢|, then by Proposition 2, 7(Z,d) € |¢|.. That is, 7 € |#|'.. We have shown that
T C [6lt U .

O

Before presenting the proof for Theorem 4, we first show Lemmas 3 and 4 regarding
the union of TBoxes (or equivalently, conjunction of TBox axioms). In a similar way as

361



ZHUANG, WANG, WANG, & QI

for Lemma 2, we can show the following lemma. The difference is that we cannot assume
each ct-type 7 € |T1|L N | T2 satisfies 7 € |71 U T3|%, and thus cannot apply condition 2 in
Definition 1 in the proof.

Lemma 3 For two DL-Litecore TBox T1 and T3, and a role-complete set M of ct-types with
M C|Ti|L N | Tzl it holds that M C |cln(Ti U Tz)|JL.

cr

Proof: Towards a contradiction, suppose there exists a ct-type 7 € M and an NI « in
cln(T1UTz) such that T does not satisfy « propositionally. We show that some ct-type 7" € M
exists that violates some NI in 77 U 73, which contradicts to the fact that M C |T1|L N |Tz|%
(as 7 € |T1|L. N |73t implies that 7/ satisfies all the NIs in 77 U 73 propositionally). Similar
as the proof of Lemma 2, we prove this through induction.

For initialization, if o is in 77 U T3 then let 7/ = 7 and 7’ violates some NI in 77 U 7s.
For induction steps, we show that if « is added to cln(71 U 7T2) due to another axiom /3
already in ¢ln(7; U Tz2), we show that some 7”7 € M exists that violates 8 (and eventually
take 7/ = 7" when £ is in 71 U73). There are two cases: (1) Suppose « is By C —Bs, added
due to PI By C By in T1UT3 and NI By = = B3 (or Bs C —Bs) in cln(7; UT3). Then, by the
fact that 7 does not satisfy « propositionally, {B1, B3} C 7. Also, as 7T satisfies By C By in
T1 UTs, By € 7. Hence, let 77 = 7 and 7" violates NI By C = B3 (B3 C —Bs). (2) Suppose
a is IR C —3R, added due to 3R~ T —3R™ in cln(7; U T3). Then, by the fact that 7 does
not satisfy a propositionally, 3R € 7. As M is role-complete, there exists some 7 € M
with 3R~ € 7”. Hence, 7" violates NI 3R~ C —3R".

O

Lemma 4 Let M be a set of ct-types, and ¢1, ¢a be two conjunctions of DL-Litecore TBox
axioms. Suppose M is role-complete, then M C |¢p1|% N |pall implies M C |¢1 A ¢oll.

Proof: For each 7 € M, we want to show that 7 € |1 A ¢2|'. To this end, we construct a
model of 1 Aga. Let T; be the set of axioms (as conjuncts) in ¢; for i = 1,2, A; be as in the
proof of Proposition 6, and Z, = chaser;uT;(A+). We can show that Z; is a model of 73 U7
and 7(Z;,d) = 7 in a similar way as in the proof of Proposition 3 (by using Lemma 3 instead
of Lemma 2). Except for case (iv): Suppose A, violates 3R C —3R € cIn(7; U T2). Note
that, different from the proof of Proposition 3, we cannot assume either 3R C =3R € cln(T;)
nor 3R T —3R € cln(7T2) (That is, we cannot apply condition 2 in Definition 1). Yet we can
still derive contradiction. A, violates 3R C —3R only if R(d,t) € A; with t being a fresh
constant or R(s,d) € A, with s being a fresh constant. In the former case, 3R € 7, and
7 does not propositionally satisfy IR C =3R. That is, 7 & ||cin(T; U T3)||%, which violates
Lemma 3. In the latter case, 3R~ € 7. Since M is role-complete, 3R € 7 for some 7/ € M.
Hence, 7" does not propositionally satisfy 3R C =3R. That is, 7/ ¢ ||cIn(T1 U T3)||%, which
again violates Lemma 3.

Now, we have shown that Z; is a model of ¢1 A ¢2 and 7(Z;,d) = 7. By Proposition 2,
T € |¢1 A ¢alL.

(]

Proof for Theorem 4

Suppose there are two TBoxes 71 and 7Tz corresponding to M. That is, M C |Ti|%
and M C |T3|t. From Lemma 4, M C |71 U T3/!. By the minimality requirement of a
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corresponding TBox, |71 U Tzl ¢ |T;|L for i = 1,2. That is, |71 U Tz|, = || for i = 1,2.
By Theorem 1, 77 is equivalent to 7.

O
Proof for Proposition 5

For the if direction, it suffices to show for each d € AT and each concept inclusion B C C
in 7, d € B implies d € C%; and additionally, for each e € AZ (not necessarily d # e)
and each role inclusion R C E in T, (d,e) € R? implies (d,e) € EL. Let 7 = 7(Z,d, e).
Suppose d € BT, then by the definition of 7 we have B € 7. Since 7 is a t-model of T,
T propositionally satisfies B C C. If C' is a basic concept, then B € 7 implies C' € T;
otherwise C' = =D is a negated basic concept, and B € 7 implies D ¢ 7. In both cases,
by the definition of 7, d € CZ. For role inclusion R C E, suppose (d,e) € R%, then by the
definition of 7 we have R € 7. As 7 is a t-model of T, 7 propositionally satisfies R C E. If
E is a role then FE € 7; otherwise ¥ = =5 is a negated role and S ¢ 7. In both cases, by
the definition of 7, (d,e) € EZ.

For the only if direction, let 7 = 7(Z,d, e) for some arbitrary d,e € AZ. We first show
that 7 satisfies condition 1 of Definition 3. For each concept inclusion B C C'in T, assume
B € 7, then by the definition of 7, d € B. If C is a basic concept, Z being a model of T~
implies d € CZ, which in turn implies C' € 7. If C = =D is a negated basic concept, then
with a similar argument, d ¢ D? and D ¢ 7. That is, 7 propositionally satisfies B C C.
In a similar way, for each concept inclusion B’ C €’ in 71 with B’,C’ € B, we can show
that 7 satisfies B’ C C’. For each role inclusion R C F in T, assume R € 7. Then, by the
definition of 7, (d,e) € RT. Since T is a model of T, (d,e) € EZ. If E is a role then E € 7;
otherwise E' = =S is a negated role and S ¢ 7. Thus, 7 propositionally satisfies |R C E.
Similarly, 7 satisfies R’ T E’ for each role inclusion R’ T E’ in 71. We haven shown that
- e ITIIE

We next show that 7 satisfies conditions 2-5 of Definition 3. For condition 2, if 7 =
JR C L then R? = (). Clearly, d € (3R)* and e ¢ (3R™)%. By the definition of 7, IR & 7
and (3R™) ¢ 7. For condition 3, if 7 = R C S then (3R)? C (39)%. Suppose 3R € T,
which by the definition of 7 implies d € (3R)*. Then, d € (35)%, and thus 3S € 7. Similarly,
suppose (IR) € 7, which implies e € (3R)Z. Hence, e € (35)%, and thus (35)" € 7. For
condition 4, if R € 7 then by the definition of 7, (d, e) € RZ, which implies d € (3R)* and
e € (3R™)L. By the definition of 7, 3R € 7 and (3R~)" € 7. Condition 5 is clearly satisfied
by the definition of 7(Z, d, e).

We have shown that 7 satisfies all the conditions in Definition 3, that is, 7 € | T|L.

O

Before proving Proposition 6, we first show Lemma 5. Note that cin(7) is obtained
from cln(T) by adding a copy for each axiom in cln(7), and ||cin(T)|| is the set of t-types
that are the propositional models of cln(7)T.

Lemma 5 For a DL-Liteg TBox T, each t-model T of T satisfies T € ||cln(T)]|L.

Proof: Towards a contradiction, suppose there exists a t-model 7 of 7 and an NI « in
cln(T)' such that 7 does not propositionally satisfy o. We show that 7 must violate some
NI in 7, through induction. Here we only consider « being a NI in ¢ln(7), and the case of
a being a copy of some NI in cln(T), i.e., a € cln(T)T\ cln(T), can be shown similarly.
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For initialization, if « is in 7 then 7 violates some NI in 7. For induction steps, we
show that if « is added to cln(T) due to another axiom S already in cln(T), T violates .

(1) Suppose « is By C —Bs, added due to PI B; C By in 7 and NI By C —B3 (or
Bs C —Bs) in ¢ln(T). Then, by the fact that 7 does not propositionally satisfy «,
{B1,B3} C 7. Also, as 7 satisfies Bj C By in T, By € 7. Hence, 7 violates NI
By E —B3 (B3 E —By).

(2) Suppose « is IR} C —B, added due to PI Ry C Ry in 7 and NI 3Ry T —B (or
B C —3Ry) in cIn(T). Then, by the fact that 7 does not propositionally satisfy «,
{3R1,B} C 7. Also, by condition 3 in Definition 3, 3Ry € 7. Hence, 7 violates NI
3R, C B (B C —3R,).

(3) Suppose « is 3R] T —B, added due to PI Ry C Ry in 7 and NI 3R, C —B (or
B C —=3R, ) in cIn(T). Then, by the fact that 7 does not propositionally satisfy «,
{3Ry,B} C 7. Also, by condition 3 in Definition 3, 3R, € 7. Hence, 7 violates NI
3R; T -B (BC —-3R;).

(4) Suppose « is Ry C —R3, added due to PI Ry C Ry in 7 and NI Ry C —R3 (or
R3 C —Ry) in cIn(T). Then, by the fact that 7 does not propositionally satisfy «,
{R1,R3} C 7. Also, as 7 satisfies Rf C Ry in 7, Ry € 7. Hence, 7 violates NI
Ry E —R3 (R3 E —Ry).

(5) Suppose a is 3R C —3R, added due to NI IR~ C —3R~ (or R C —R) in cln(T).
Then, by the fact that 7 does not propositionally satisfy a, 4R € 7. As AR~ C
-3JR~ F3JRC L (RC -R = 3JRC 1), by condition 2 in Definition 3, 7 violates NI
JR~ C —-3dR™ (RC —R).

(6) Suppose ais R C =R, added due to NI 3R T —=3R (or 3R~ C —3R™) in ¢ln(T). Then,
by the fact that 7 does not propositionally satisfy o, R € 7. Also, by condition 4
in Definition 3, 3R € 7. AsJRC -dJREJRC L (3R~ C -3R- E3JRLC 1), by
condition 2 in Definition 3, 7 violates NI 3R C —3R (3R~ C —-3R").

d
Proof for Proposition 6
We construct an interpretation Z, from 7 using chase: Let d, e be two distinct constants,
N¢ and N, be the set of concept names in B and B', respectively, and

A; ={A(d)|Ae Nent} U{A(e) | A e Non7} U{R(d,e) | RERNT}IU
{R(d, far) | IR € BNT,R & T, far is a fresh constant} U
{R(e, fer) | BR) € BNT,R™ &7, fer is a fresh constant}.

Take Z,; = chaser(A;). We want to show that Z; is a model of 7 and 7(Z;,d,e) = 7.

To show the former, by Lemma 1, we only need to show that A. is a model of ¢ln(T).
Towards a contradiction, suppose it is not the case, then there is an axiom B C =D or
R C =S in ¢ln(T) that is violated by A;.

(1) Suppose A; violates B C —D, this is the case when A, = B(s) and A, = D(s) for
some constant s in A,. There are essentially four cases:
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(i) Suppose B and D are both concept names, then A, = B(s) and A; | D(s) only
if s=dors=e, B(s) € A;, and D(s) € A.. If s = d then from the construction of A,
{B,D} C 7 and thus 7 does not propositionally satisfy B T —D; otherwise if s = e then
{B',D’} C 7 and 7 does not propositionally satisfy B’ = —=D’. Both cases violate Lemma 5.

(ii) Suppose B = 3R for some R and D is a concept name, then A; |= B(s) only if s = d
or s =e, and R(s,t) € A; for some t. A; = D(s) only if D(s) € A;. Suppose without loss
of generality that s = d (similar as in (i), the case where s = e can be shown in the same
way). If t = e then from the construction of A;, R € 7, and by condition 4 in Definition 3,
R € 7; otherwise, t is a fresh constant, and IR € 7. In both cases, {B, 3R} C 7 and thus
7 does not propositionally satisfy B C —-3R, which again violates Lemma 5.

(iii) Suppose B = 3R for some R and D = 3S for some S such that R # S, then
A; = B(s) and A, = D(s) only if R(s,t) € A; and S(s,u) € A, for some ¢, u. This is only
when (a) s = d or s = e, and t,u are fresh constants; or (b) s =d and t = u = ¢; or (c)
s=eand t =wu=d. In case (a), suppose w.o.l.g s = d, then {IR,3S} C 7 and 7 does not
propositionally satisfy IR C =35, which violates Lemma 5. In case (b), {R,S} C 7, and
by condition 4 in Definition 3, {3R,3S} C 7, which again violates Lemma 5. In case (c),
{R™,S7} C 7. By condition 4 in Definition 3, {(3R)’, (3S)'} C 7, and hence 7 does not
propositionally satisfy (3R)’ C —(3S)’. It again violates Lemma 5.

(iv) Suppose B = 3R for some R and D = 3R, then A; = B(s) only if R(s,t) € A,
for some t. This is only when (a) s = d or s = e, and ¢ is a fresh constant; or (b) t = d
ort =e, and s is a fresh constant; or (¢) s =dand ¢t =e; or (d) s=eand t =d. In
case (a), suppose w.l.o.g. s = d, then 3R € 7. In case (c), R € 7, and by condition 4 in
Definition 3, 3R € 7. In both cases, 7 does not propositionally satisfy 3R C —3R, which
violates Lemma 5. In case (b), suppose w.l.o.g. t = d, then 3R~ € 7. In case (d), R~ € T,
and by condition 4 in Definition 3, 3R~ € 7. Since 7 = IR~ C L, it violates condition 2
in Definition 3.

(2) Suppose A, violates R C =S, this is the case when A, = R(s,t) and A; = S(s,t)
for some constants s,t in A,. This is the case only if (a) s =d and t = e, (b) s = e and
t=d,(c) R=Sand s=dors=ewithta fresh constant, or (d) R=Sandt=dort=e
with s a fresh constant. In case (a), {R,S} C 7, and 7 does not propositionally satisfy
R C =S. In case (b), {R7,S"} C 7, and by condition 5 in Definition 3, {R/, S’} C 7.
Hence, 7 does not propositionally satisfy R’ C —S’. In neither case, 7 € ||cin(T)||% and it
violates Lemma 5. In case (c¢), T E RC =R, that is, T E3JRC L. If s = d then 3R € 7,
and otherwise if s = e then (3R)" € 7, it violates condition 2 in Definition 3. Similarly, in
case (d), T =3R™ C L. If t = d then 3R~ € 7, and otherwise if ¢ = e then (3R™)" € 7, it
again violates condition 2 in Definition 3.

We have shown that A, is a model of ¢ln(T), thus Z; is a model of T.

Now it remains to show that 7(Z;,d,e) = 7. Since it is clear that 7(A;,d,e) = 7, from
the definition of chase, 7(A;,d,e) C 7(Z-,d,e). We only need to show that 7(Z;,d,e) C
7(A;,d,e). This is equivalent to show that Z; \ A; does not contain any assertion of the
form A(d), A(e), R(d,e), R(d,s) or R(e,s) with s being a fresh constant such that no
assertion R(d,t) € A, or respectively R(e,t) € A, (as otherwise, A, A’, R, 3R, (3R),
respectively, will be in 7(Z;,d,e) \ 7(A;,d, e) according to the definition of 7(Z;,d,e)).
Towards a contradiction, suppose there is such an assertion in Z, \ A;. From the chase
rules, it can happen only if some chase rule is applicable to an assertion g of the form B(d),
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B(e), S(d,e), S(d,t) or S(e,t) with ¢ being a fresh constant in the chase. Let g be the first
of such assertions that triggers a chase rule, then by the chase rules, ¢ must be in A,.

e Suppose g = B(d), then from the construction of A;, B € 7. If g triggers a chase
rule with B C A € T, then by condition 1 in Definition 3, 7 propositionally satisfies
B C A, and hence A € 7 and A(d) € A., which is a contradiction to (the applicability
of) the chase rule; otherwise, g triggers a chase rule with B C 3R € T, then by
condition 1 in Definition 3, 7 propositionally satisfies B C JR, and thus IR € 7
and R(d,u) € A, for some u, which is again contradicts the chase rule. The case of
g = B(e) is shown similarly, by replacing 7 propositionally satisfying B C A with 7
propositionally satisfying B’ C A’, and 7 propositionally satisfying B C dR with 7
propositionally satisfying B’ C (IR)’.

e Suppose g = S(d,e), then from the construction of A;, S € 7. From conditions 4
and 5 in Definition 3, 35 € 7, (3S7) € 7, and (S7) € 7.

— If g triggers a chase rule with S T R € T, then by condition 1 in Definition 3, 7
propositionally satisfies S C R, R € 7 and R(d,e) € A;, which contradicts the
chase rule.

— If g triggers a chase rule with S~ C R € T, then by condition 1 in Definition 3, 7
propositionally satisfies (S7)' C R/, and R’ € 7. By condition 5 in Definition 3,
R~ € 7 and R™(d,e) € A;, which contradicts the chase rule.

— If g triggers a chase rule with 35 C A, then 7 propositionally satisfies 35 C A.
As3S e 7, Ae 1 and A(d) € A-, which contradicts the chase rule.

If g triggers a chase rule with 35S~ C A, then 7 propositionally satisfies (357)" C
A As (3S7) er, Al € 7 and A(e) € A;, which contradicts the chase rule.

— If g triggers a chase rule with 35 C 3R, then 7 propositionally satisfies 45 C
JR. As 3S € 7, 3R € 7. Hence, R(d,u) € A, for some u, which again is a
contradiction.

Similarly we can show the case of g triggering a chase rule with 35~ C 3R.

e Suppose g = S(d,t) with ¢ being a fresh constant, then from the construction of A,
iS5 e .

— If g triggers a chase rule with S C R € T, then R(d,t) is added. By condition 3
in Definition 3, 3R € 7, and again by the construction of A;, R(d,u) € A, for
some u. From the chase rules, R(d,t) behaves not differently from R(d,u) in the
chase. Thus, we could equally consider g = R(d,u) for our discussion. That is,
the application of the chase rule with S C R € 7 has no effect to the proof.

— If g triggering a chase rule with 45 C A, then by condition 1 in Definition 3,
T propositionally satisfies 35S C A. As 35 € 7, A € 7 and A(d) € A;, which
contradicts to the chase rule.

— If g triggering a chase rule with 35 C 4R, then 7 propositionally satisfies 35 C
3R, and thus 3R € 7 and R(d,u) € A; for some u, which is again a contradiction.

The case of g = S(e,t) can be shown in a similarly way.

366



DL-LiTE CONTRACTION AND REVISION

We have shown that Z; \ A, does not contain any assertion of the form A(d), A(e), R(d,e),
R(e,d), R(d,s) or R(e,s). Thus, 7(Z-,d,e) = 7(A;,d,e) =T.

O
Proof for Theorem 5

If |T| # 0 then there is a model Z € |T|. Let d,e € AT and 7 = 7(Z,d,e). By
Proposition 5, 7 € |T|t. That is, |T|! # (). Conversely, suppose |T |t # 0, let 7 € |T|. By
Proposition 6, there is a model Z of 7. That is, |T| # 0. If both | 7| and |T |\ are empty,
the statement trivially holds. In what follows, we assume both |7| and |T|%. are non-empty.

For the if direction, we want to show that if 7 [ ¢ then |T|L & |¢]L. Then, there
is a model Z of T such that Z does not satisfy ¢. Similar as in the proof of Theorem 1,
we can assume w.l.o.g. that ¢ contains a single TBox axiom. If the axiom is of the form
B C C. Then, there is an domain element d € A’ such that d € B? and d ¢ C%. Let
7 = 7(Z,d,d). Since Z is a model of T, from Proposition 5, 7 € |T|.. If C is a basic
concept, then B € 7 implies d € BT and d ¢ C%, which in turn implies C & 7. If C = -D
is a negated basic concept, then with a similar argument, B € 7 implies D € 7. That is, 7
does not propositionally satisfy B C C. By condition 1 of Definition 3, 7 ¢ |¢|L. Suppose
¢ is of the form R C E. Then, there are domain elements d,e € AT such that (d,e) € R?
and (d,e) ¢ FX. Let 7 = 7(Z,d,e). Again, from Proposition 5, 7 € |T|%.. If E is a role,
then R € 7 implies (d,e) € RT and (d,e) ¢ EZ, which in turn implies £ ¢ 7. If E = =S
is a negated role, then with a similar argument, R € 7 implies S € 7. That is, 7 does not
propositionally satisfy R C E. By condition 1 of Definition 3, 7 ¢ |¢|.. We have shown
that in both cases |T|L Z |¢|L.

For the only if direction, we want to show that if [T]% & |¢|L then T [~ ¢. Since
ITIE Z |p|L, there is a t-type 7 € |T|% such that 7 ¢ |$|t. From Proposition 6, there exist a
model Z of 7 and domain elements d, e € AT such that 7(Z,d, e) = 7. We only need to show
that Z is not a model of ¢. Suppose otherwise, Z is a model of ¢, then by Proposition 5, 7
must be a t-model of ¢, which contradicts to the fact 7 & |¢|t. Hence, Z is not a model of
¢, and we have shown that T [~ ¢.

(]

Before presenting the proof for Theorem 6, we first show Lemma 6 and Lemma 7. The
two lemmas extend Lemma 3 and Lemma 4 respectively to DL-Liteg.

Lemma 6 For two DL-Liteg TBox Ti and T2, and a role-complete set M of t-types with
M C TN (T2, it holds that M C |cln(Ty U Tz)|J.
Proof: Towards a contradiction, suppose there exists a t-type 7 € M and an NI « in
cln(TiUT3)! such that 7 does not propositionally satisfy o.. We show that some t-type in M
exists that violates some NI in 75/ U7, which contradicts to the fact that M C |77|%N|T3[%.
Similar as the proof of Lemma 5, we prove this through induction. Here we only present the
case where o is a NI in ¢ln(7;U7z), and the case of a being a copy of some NI in cln(T;UTz),
ie., a € cn(Ti UT)\ cn(Ti U Ts), can be shown similarly. Without loss of generality,
we assume axioms are added to cln(7; U 73) incrementally according to the definition and
copies (e.g., B' C (") are added immediately after the original axioms (B C B) are added.
For initialization, if « is in 7-1T U 7'2T then 7 violates some NI in TIT U ’T;. For induction
steps, we show that if a is added to cin(7; U 72)" due to another axiom S already in
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cln(T1 UT2)T, we show that some 7/ € M exists that violates 8. The proof for cases (1)-(4)
are the same as the proof of Lemma 5, where we simply let 7/ = 7.

For cases (5), suppose « is AR C —3R, added due to NI 3R~ C -3R~ (or RC —R) in
cIn(TiUT2). Note that (3R™) C —~(3R™)’ (resp., R’ C —R') is also in cIn(T1UT3)". Then, by
the fact that 7 does not propositionally satisfy a, 3R € 7. As M is role balance, there exists
7€ M with Re 7" or R € 7. If R € 7/, by conditions 4 and 5 in Definition 3, (3R™)" € 7/,
and 7’ violates NI (3R™)' C —(3R™)' (resp., R C —R). If R’ € 7/, by conditions 4 and 5
in Definition 3, R~ € 7/ and IR~ € 7/, and again 7’ violates NI 3R~ C —-3R~ (resp.,
R' C —R).

For case (6), suppose a is R C =R, added due to NI 3R C —3R (or 3R~ C —-3R7) in
cln(T1 U T2)f. Note that (3R)' T =(3R)’ (resp., (3R™)' C ~(3R™)') is also in cln(T; U T2)'.
Then, by the fact that 7 does not propositionally satisfy «, R € 7. By conditions 4
and 5 in Definition 3, 3R € 7 and (3R™)" € 7. Hence, 7 violates NI 3R T —3R (resp.,
(3R") C~(3RY).

(]

Lemma 7 Let M be a set of t-types and ¢1, P2 be two conjunctions of DL-Liteg TBox
axioms. Suppose M is role-complete, then M C ||t N |pall implies M C |p1 A daolt.

Proof: For each 7 € M, we want to show that 7 € |1 A ¢2|L. To this end, we construct
a model of ¢1 A ¢ from 7 in the same way as in the proof of Proposition 6. Let 7; be
the set of axioms in ¢; for ¢ = 1,2, A, be constructed in the same way as in the proof of
Proposition 6, and take Z, = chaser,uT,(Ar). We can show that Z. is a model of 77 U T3
and 7(Z;,d,e) = 7 in a similar way as in the proof of Proposition 6 (using Lemma 6 instead
of Lemma 5), except for cases (1) (iv) and (2).

In case (1) (iv), suppose A; violates 3R T —3R in cIn(71 U T2). Different from the
proof of Proposition 6, we cannot assume IR C —3R in either ¢ln(7T7) or ¢ln(7Tz2), and thus
cannot apply condition 2 in Definition 3. Yet we can still derive contradiction. A, violates
JR C —=JR only if AR € 7 or IR~ € 7. In the former case, 7 does not propositionally satisfy
JR C —3R. That is, 7 & |cIln(T1 U T3)||%, which violates Lemma 6. In the latter case, since
M is role-complete, 3R € 7’ for some t-type 7/ € M. Hence, 7" does not propositionally
satisfy 4R C —3R, which again violates Lemma 6.

In case (2), suppose A; violates R C =S in cIn(71U73). This is the case when {R, S} C 7,
{R™,S"}Cr,or R=Sand {3R,3R",(3R)',(3R™)'} N7 # (). The first two cases can be
shown in the same way as in the proof of Proposition 6. For the third case where R = 5,
different from the proof of Proposition 6, we cannot assume R T —R in either cIn(7;) or
cln(7T2), and thus cannot apply condition 2 in Definition 3. Note that from the facts that
{3R,3R~,(3R),(3R™)'} N7 # 0 and that M is role-complete, there exists some t-type
7€ M with Re 7 or R € 7. If R € 7/ then 7' does not propositionally satisfy R C —R;
otherwise if R~ € 7/, 7’ does not propositionally satisfy R’ C —R’. In both cases, Lemma 6
is violated.

Now, we have shown that Z; is a model of 73 U73 and 7(Z;,d, e) = 7. By Proposition 5,
T € [¢1 A falr.

[l
Proof for Theorem 6
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The theorem be proved similarly to Theorem 4, and the proof is based on Lemmas 6
and 7.

O
Proof for Proposition 8

For each ct-type 7 € |T|%, by Proposition 3, there is a model Z of T and some d € AT
such that 7(Z,d) = 7. Let 7’ be the t-type such that 7" = 7(Z,d,d). Then, from the
definitions of 7(Z,d) and 7(Z,d,d), 7 = 7/ N B. Also, by Proposition 5, 7/ € |T|.. That is,
Te{rNB|7e|T|t}, and hence |T|E C{rnB |7 € |T|L}.

Conversely, for each ct-type 7 € {rNB | 7 € |T|.}, there is a t-type 7" € |T|%. such
that 7 = 7/ N B. By Proposition 6, there is a model Z of 7 and some d,e € AT such that
7(Z,d,e) = 7'. Tt is easy to see that 7 = 7(Z, d) from the definitions of 7(Z, d) and 7(Z, d, e).
By Proposition 2, 7 € |T|t. That is, {rNB |7 € |T|t} C |T|.

O

The following theorem generalises Theorem 2 to DL-Liteg.

Theorem 14 Let T be a DL-Liteg TBox such that T = {¢1,...,¢n}. If T is coherent
then | T, = 1] N -+ N [¢nlr.

Proof: For each 7 € |T|L, 7 satisfies conditions 4 and 5 in Definition 3. Also, fori =1,...,n,
by condition 1 in Definition 3 w.r.t. 7, 7 propositionally satisfies ¢;. That is, 7 satisfies
condition 1 w.r.t. ¢;. Further, as T is coherent, by the monotonicity of DL-Lite, there exists
no R € R such that ¢; = 3dR C L, and 7 trivially satisfies condition 2 w.r.t. ¢;. Moreover,
if ¢, E RC S, then 7T = R C S, and by condition 3 in Definition 3 w.r.t. 7, 7 satisfies
condition 3 w.r.t. ¢;. Hence, 7 € |¢;|% for i = 1,...,n. That is, |T|L C |¢1|L N -+ N |dnlt.

Conversely, for each 7 € |¢1]L N -+ N |¢y|L, we can construct a model Z of T from 7 in
the same way as in the proofs of Proposition 6 and Lemma 7 such that Z induces 7. By
Proposition 5, 7 € |T|L. That is, [¢1]L N --- N |én|l € |TE.

O

Proof for Proposition 9

For the if direction, since Z is a model of T, it suffices to show that Z is a model of A,
i.e., for each concept assertion A(a) € A, aZ € A%, and for each role assertion P(a,b) € A,
(a®,b) € PL. Let 7 = 7%(Z), then 7 € || A7 and 7 propositionally satisfies A®. That is,
A® € 7. From the definition of 7, a € AZ. Similarly, 7 propositionally satisfies P and
P ¢ 1, and hence (a”,b%) € PZ. We have shown T € |K]|.

For the only if direction, we only need to show the second half of the statement since
T € |K|implies Z € |T|. Let 7 = 7%(Z), and we want to show that 7 € | A7|%. For condition 1
of Definition 4, we can show 7 satisfies 7% in the same way as in the proof of Proposition 5.
For each A(a) € A and each P(a,b) € A, since a € AT and (a®,b) € PZ, A* € 7 and
P ¢ 7. That is, T propositionally satisfies A. We haven shown that 7 € || A7||¢. Further,
it can be shown that 7 satisfies conditions 2-5 of Definition 4 in a similar manner as in the
proof of Proposition 5 (roughly, by replacing Definition 3 with Definition 4, d with each
a € D, e with each b € D, B with B%, B’ with B®, R with R®, 3R with (3R)?, (3R)’ with
(3R)?, and so on).

O

Before presenting the proof for Proposition 10, we first show Lemma 8. The lemma can

be proved in the same manner as Lemma 5. Note that cIn(7)% is the TBox that consists
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of a copy of each concept inclusion in cln(7T) for each individual in D, and a copy of each
role inclusion in ¢ln(7T) for each pair of individuals in D.

Lemma 8 For a DL-Liteg KB K = (T,.A), each a-model T of Ay is a propositional model
of eln(T)*.

Proof for Proposition 10
Similar as before, we construct an interpretation Z, from 7 using chase: Let N& be the
set of concept names in B* (with a € D), and

A* ={A(a) |a € D,A* e N4 N7} U {R(a,b) |a,be D,R* e R* N7} U
{R(a, far) | a € D,(3R)* € B*N1,R® & 1 for any b € D, f, g is a fresh constant}.

Take Z, = chaser(A%). We want to show that Z; is a model of K and 7*(Z;) = 7.

To show the former, we first show that A C A2. For each concept assertion A(a) € A, as
T is an a-model of K, 7 propositionally satisfies A%. That is, A* € 7 and hence A(a) € A%.
Similarly, for each role assertion P(a,b) € A, P® € 7 and P(a,b) € A2. We have shown
that A C A%. To show that Z, is a model of K, we want to show that Z. is a model of
(T,A%). By Lemma 1, we only need to show that A% is a model of ¢in(7). This can be
shown in a similar way as in the proof of Proposition 6 (roughly, by replacing Definition 3
with Definition 4, Lemma 5 with Lemma 8, d with each a € D, e with each b € D, B with
B®, B’ with B®, R with R®, 3R with (3R)%, (3R)" with (3R)®, and so on).

Now it remains to show that 7%(Z;) = 7. Again, we only need to show that 7%(Z;) C
T7%(A%). This again can be shown in a similar way as the proof of Proposition 6.

O
Proof for Theorem 7

If |KC] # 0 then there is a model Z € |K|. Let 7 = 7%(Z). By Proposition 9, 7 € |Ar|%.
That is, |A7|¢ # 0. Conversely, suppose |Ar|¢ #£ 0, let 7 € | Ar|% By Proposition 10,
there is a model Z of K. That is, || # (. If both |K| and |A7|* are empty, the statement
trivially holds. In what follows, we assume both || and |A7|¢ are non-empty.

For the if direction, we want to show that if I [~ ¢ then |A7|® Z |¢|¢. Then, there
is a model Z of K such that Z does not satisfy ¢. Let 7 = 7%(Z). From Proposition 9,
T € |A7|%. Similar as in the proof of Theorem 1, we can assume w.l.o.g. that ¢ contains a
single ABox assertion. Suppose ¢ is of the form A(a). Then, a ¢ AZ. From the definition
of 7%(Z), A* € 7, and hence 7 € ||¢||?. By condition 1 of Definition 4, 7 ¢ |¢|?. Suppose ¢
is of the form P(a,b). Then, (a,b?) ¢ PZ. Again, from the definition of 7%(Z), P® ¢ T,
and hence 7 ¢ |¢|?. In both cases, |AT|¢ Z |¢]2.

For the only if direction, we want to show that if |A7|¢ Z |4|? then K = ¢. Since
|A7|® & |p|%, there is an a-type T € |Ar|¢ such that 7 &€ |¢|¢. From Proposition 10, there
exist a model Z of K such that 7%(Z) = 7. We only need to show that Z is not a model of
¢. Suppose otherwise, Z is a model of ¢, then by Proposition 9, 7 must be an a-model of
¢, which contradicts to the fact 7 ¢ |¢|%. Hence, Z is not a model of ¢, and we have shown
that K £ ¢.

([l
Proof for Theorem 8

Let A = {A(a) | A% € 7 for each 7 € M} U {P(a,b) | P® € 7 for each 7 € M}. We

want to show that A is the unique corresponding ABox for M w.r.t. 7.
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We first show that A is a corresponding ABox. To show that M C |A7|?, we need to
show for each a-type 7 € M, 7 satisfies conditions 1-5 in Definition 4. As M is consistent
with 7, 7 € |07]|%. Hence, 7 is a propositional model of 7%, and 7 satisfies conditions 2-5.
Also, from the construction of A, 7 satisfies A? for each A(a) € A and satisfies P? for each
P(a,b) € A. That is, 7 € || Ar]||%. We have shown that M C | Ar|2.

Further, for any ABox A’ such that M C [A%|¢ and for each a-type 7 € M, since
T € ||A||¢, T satisfies A® for each concept assertion A(a) € A’ and satisfies P for each
role assertion P(a,b) € A’. Note that this holds for each a-type in M. From the construction
of A, A" C A. That is, |[A7|} C [A%[¢. Thus, A is a corresponding ABox. Also, based on
the above observation, any corresponding ABox must be equivalent to A.

O

The following theorem can be proved similar to Theorem 14. Since only one TBox is
concerned, the proof does not require Lemmas 6 and 7.

Theorem 15 Let K = (T, A) be a DL-Litex KB such that A = {¢1,...,¢n}. Then
ATl = Hoi}rli -0 {n}rlr.

Proof for Proposition 12

Let K = (T,.A). For the if direction, it suffices to show that (i) for each d € AT and
each concept inclusion B C C in T, d € B implies d € CZ; (ii) for each e € AT (not
necessarily d # e) and each role inclusion R C E in T, (d,e) € R? implies (d,e) € EZ;
(iii) for each concept assertion A(a) € A, aZ € AZ, and for each role assertion P(a,b) € A,
(a®,bF) € PL. Let 7 = 7*(Z,d,e) = 7(Z,d,e) UT%T). Conditions (i) and (ii) are shown in
the proof of Proposition 5. That is, Z € |T|. Then, condition (iii) is shown in the proof of
Proposition 9.

For the only if direction, let 7 = 7%(Z,d,e) for some arbitrary d,e € AZ. That is,
7 =7(Z,d,e) UT%Z). We want to show that 7(Z,d,e) € |T|L and 7%(Z) € |Ar|%, which
have been shown in the proofs of Propositions 5 and 9, respectively.

]

Proof for Proposition 13

Let £ = (T,.A). We construct an interpretation Z, from 7 using chase: Let A, and
A? be defined as in the proofs of Propositions 6 and 10, and Z, = chaser (A, U A%). We
want to show that Z; is a model of K and 7%(Z-,d,e) = 7. To show the former, we have
A C A2 from the proof of Proposition 10, and we only need to show that Z; is a model of
(T, A;UA%). By Lemma 1, it suffices to show that A, U.A% is a model of ¢ln(T ), which has
been shown in the proofs of Propositions 6 and 10. To show later, that is 7%(Z;,d,e) = T,
we only need to show that 7%(Z;,d,e) C 7%(A:,d,e). By the definition of 7*(Z.,d,e), it
suffices to show that 7(Z;,d,e) C 7(A-,d,e) and 7%(Z;) C 7*(A%), which again has been
shown in the proofs of Propositions 6 and 10.

O

Proof for Theorem 9

It can be shown in the same way as in the proof for Theorem 7 that |K| is empty if and
only if ||, is empty. In what follows, we assume both || and ||, are both non-empty.

For the if direction, we want to show that if K = ¢ then ||, € |¢|,. Then, there is a
model Z of K such that Z does not satisfy ¢. Similar as in the proof of Theorem 1, we can
assume w.l.o.g. that ¢ contains a single TBox axiom or a single ABox assertion. Suppose
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¢ is of the form B C C or R C F, then in the same way as the proof of Theorem 5, we can
construct 7 = 7%(Z, d, e) for some d,e € AT such that 7 € |K|, and 7 & |¢|,. Suppose ¢ is
of the form A(a) or P(a,b), then in the same way as the proof of Theorem 7, we can show
that 7 € ||, and 7 & |¢],.

The only if direction can be shown in the same way as in the proof for Theorem 7.

O

Before presenting the proof for Theorem 10, we first show Lemma 9 and Lemma 10.

The two extend Lemmas 6 and 7 respectively to DL-Liter KBs.

Lemma 9 For two DL-Liter TBox 71 and Ta, and a role-complete set M of types with
M C|Ti|r N |T2|r, all the types in M must satisfy cln(T1 U T2)T U cln(T1 U T2)°.

Proof: Towards a contradiction, suppose there exists a type 7 € M and an NI a in ¢ln(7; U
T2)T Ucln(T1 UT3)® such that 7 does not propositionally satisfy . We show that some type
in M exists that violates some NI in 7'1Jr U ’7’2T U T* U T3, which contradicts to the fact that
M C |Ti|» N |T2|r. It can be shown in a similar way as the proof of Lemma 6. When an
axiom in cln(7; U T3)' is concerned, the proof is as that of Lemma 6. When an axiom in
cln(Ti U T2)® is concerned, the proof is adapted by replacing B with B?, B’ with B’, R
with R%, 3R with (3R)?, (3R)" with (IR)®, and so on.

g

Lemma 10 Let M be a set of types and ¢1, P2 be two conjunctions of DL-Liteg axioms.
Suppose M is role-complete, then M C |¢1|, O |2l implies M C |1 A pa2ly-

Proof: For each type 7 € M, we want to show that 7 € |p1 A ¢2|,. To this end, we
construct a model of ¢; A ¢ from 7 in the same way as in the proof of Proposition 13. Let
T and A be the sets of respectively TBox axioms and ABox axioms in both ¢; and ¢9,
be the set of ABox axioms in A, and A% be as in the proof of Proposition 13, and take
Z; = chaser (AU A, UA%). We can show that Z, is a model of (T,A) and 7*(Z;,d,e) =7
in a similar way as in the proofs of Lemma 7 and Proposition 13. By Proposition 12,
T € o1 A P2r.

O
Proof for Theorem 10

The theorem can be proved similarly to Theorem 4 and the proof is based on Lemma 9

and Lemma 10.

O

The following theorem can be proved similar to Theorem 14.

Theorem 16 Let K be a DL-Liteg KB such that K = {¢1,...,én}. If K is coherent then
|K|r = ‘¢1|r M- ‘¢n|r

Proof for Theorem 11

For one direction, suppose — is a T-contraction function for a TBox 7 and the as-
sociated selection function is y. We need to show — satisfies (I'-1)—(T'-4), (T'-de), and
(T=6). (T-1),(T-2), (T+4) and (T-6) follow directly from the definition of T-contraction
function. We only show the proof for (7'-3) and (T'—de).
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(T-3): Suppose T [~ ¢. Then |T |t € |¢|t which implies |T|L N |~¢|L # 0. Thus by the
faithfulness of 7, we have v(|=¢[.) C |T|t. Thus T-¢ = T.(|TILU~(|=¢[%)) = T-(|TIL) = T.

(T'=de): We prove its contrapositive. Suppose 7 |= ¢ and T=¢ [~ 1. Then we have
ITIE C [9ff and |T=@ft € [l Tt remains o show [T=@f: Z 9l U [glE. Assume |T=g|t C
|6t U |¢lt. Since by the definition of T-contraction function, |T|L U ~(|=¢[t) C |T=¢lL,
we have |T]L U~y (|=¢lL) C |6t U ||l which implies for each p € v(|=¢|L), p € [1|. Thus
ITIEU~(=0L)) C |¢|L. Tt then follows from the definition of corresponding TBoxes that
IT1UA(=el) S IT=6l € [¥];, a contradiction!

For the other direction, suppose — is a function for a TBox 7 that satisfies (7'-1)—
(T-4), (T~de), and (T'=6). Let v be defined as

Y(1=0l7) = 1=l N T =9l

for all conjunctions of TBox axioms ¢. For a set of t-types M, if there is no conjunction of
TBox axiom ¢ such that |—~¢|l = M, then define v(M) = M N |T|L whenever M N |T |t # ()
and M otherwise. We need to show that (1) v is a faithful selection function for 7 and (2)
T=¢ =T.(ITl; Ur(I=¢l7))-

Part (1): For 7 to be a faithful selection function, it has to be a function first. And this
follows directly from the definition of v and (7-6).

To prove + is a selection function, suppose M = (. We need to show y(M) = (. If
a TBox axiom ¢ is a tautology, then we have |=¢|L. = () = M. Thus v(M) = v(|-¢|L) =
|-t N T=¢|t = 0. Now suppose M # (). We need to show (M) # 0. By the definition of
7, the result trivially holds if there is no conjunction of TBox axioms ¢ such that |=¢[L = M.
If there is ¢ such that |-¢|L = M, then since |—¢|l # () implies [~ ¢, it follows from (T-4)
that [T=glt 1 [=ft £ 0. Thus 1(M) = 4(|0lt) = [~6lt N [T=6: £0.

To prove 7 is faithful with respect to T, suppose M N |T|L # (. We need to show
y(M) = MN|T|t. Again, the result trivially holds if there is no conjunction of TBox axioms
¢ such that |-¢|L = M. If there is ¢ such that |-¢|L = M, then since |=¢|L N |T|L # 0
implies 7 £ ¢, it follows from (7-3) that |T=¢|L = |T|.. Thus v(M) = ~(]-¢[t) =
=Ly NVT =0l = =l N [T];.

Part (2): Since (7—1) implies T—¢ is closed and 7, is a function that returns closed
TBoxes, it suffices to show |7, (|T|L U~(|=@[L)|L = [T oL

It follows from (T-2) that T—¢ C T which implies |T|. C |T=¢|%L. Tt follows from the
definition of 7 that y(|=¢|L) C |[T—¢[t. So we have |T|L U~(|=¢|L) C |T—¢|. which implies
by the definition of corresponding TBoxes that |7, (|T|. U~(|=¢[L))|L C |T=¢|L.

It remains to show |T=¢|% C |T.(|T|L U ~v(|=¢[t))L. Assume to the contrary that
[T=¢lt Z |T-(ITIE U~(=alt))Et. Let ¢ be a conjunction of TBox axioms such that
[Ylk = IT.(|TIE U y(|=¢lL))t. Then T E ¢ and T-¢ W~ . It follows from (T-de)
that [T=¢l; € |6 U Pl = 6 UIT(IT Ur(=gl))l Let u € [T=¢f, if u € |o]
then u € ||t U |T-(|TIL U ~v(|=9|L))]t and if u € |-¢[L, then by the definition of ~,
u € y(|=¢[t). Thus in either case, u € |p[L U |T.(|T|L U~(|=a|L))|L which implies |T=¢|L C
61 U 1T (1L UA(~gIL) L = [8]E UL, a contradiction!

(]
Proof for Proposition 15

The complexity results have been explained earlier. Let = be a function such that

T—¢ = TCONT(T,¢) for any TBox T and conjunction of axioms ¢. We need to show —
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is a T-contraction function. By Theorem 11 it suffices to show — satisfies (T-1)-(T'-4),
(T'=de), and (T'=6). (T'-2), (T'-3) and (T-6) are trivially satisfied.

Let 7 be the counter-model picked in line 3 of TCONT'. Since all axioms of 7 that violet
7 are removed in line 6, we have 7 € |§|! for all § € T—¢. Suppose T—¢ = {d1,...,0,}
Then by Theorem 14, we have |§1]LN- N6, |t = | T=¢|% which implies 7 € |T=¢|L. Then it
is obvious that 7=¢ [~ ¢, so (T'—4) is satisfied. For (T'=1), suppose ) € T and T —¢ |= 9.
We need to show ¢ € T=¢. Since T—¢ = ¢ implies |T=9¢|L C |o|L and 7 € |T=¢|%, we
have 7 € [yl that is 7 L ¢. Thus ¢ is not removed in line 6 which means ¢ € T-=4.
For (T'-de), suppose ¢ € T and |[T=¢|. C |¢|- U |[¢|L. Then it follows from 7 & |l
and 7 € |[T=¢[% that 7 € [|%. Thus ¢ is not removed in line 6 of TCONT which means
P eT=¢.

([l
Proof for Theorem 12

For one direction, suppose * is a T-revision function for a TBox 7 and the associated
selection function is 7. We need to show x satisfies (T * 1)—(T % 6) and (7" x f).

(T'x1), (T'*2), (T'%6), and (T * f) follow immediately from the definition of T-revision.
We only show the proof for (T * 3)—(T % 5).

(T % 3): Suppose ¢ is coherent. It follows from the definition of T-revision function that
Y(|¢lL) C |T * ¢|L. Since v is faithful with respect to T, we have |T|L N |¢|L C y(|¢[L). Thus
ITIELN|g|L C |T * ¢|t which implies T * ¢ C cl(T U {¢}).

(T % 4): Suppose T U {¢} is coherent. Then |T|% N |¢|L is coherent. It follows from the
faithfulness of v that v(|¢|L) = |T|L.N|¢[L. By the definition of T-revision function, we have
Y(|olL) C|T * ¢|t. So we have |T|L N |¢|L C |T * ¢|L which implies T * ¢ = cl(T U {¢}).

(T'*5): Suppose ¢ is coherent. Since v is coherent preserving, v(|$|.) is coherent. By the
definition of T-revision function, we have y(|¢|L) C |T * @|t. Thus |T * ¢|. is also coherent
which implies T * ¢ is coherent.

For the other direction, suppose * is a function for a TBox 7 that satisfies (7% 1)—(T *6)
and (T * f). Let v be defined as

v(Il) = 1T = ¢l;

for all conjunctions of TBox axioms ¢. For a set of t-types M, if there is no conjunction
of TBox axioms ¢ such that |¢|. = M, then define v(M) = 0 if M is incoherent; y(M) =
MAN|TIEif MN|T|E is coherent; and (M) = M if M is coherent and M N|T ¢ is incoherent.
We need to show that (1) v is a faithful and coherent preserving selection function for 7
and (2) T+ 6 = T,(+(16]"))-

Part (1): For v to be a faithful and coherent preserving selection function, it has to be
a function first. And this follows directly from the definition of 7 and (7" % 6). Let M be a
set of t-types. Suppose M is coherent. We need to show (M) # ). By the definition of ~,
the result trivially holds if there is no conjunction of TBox axioms ¢ such that |¢|L = M.
If there is ¢ such that |¢|. = M, then we have by (T % 5) that |T * ¢|% is coherent. So we
have 1(j61t) = T = |t # 0.

Suppose M is incoherent. We need to show v(M) = (). By the definition of v, the result
trivially holds if there is no conjunction of TBox axioms ¢ such that |¢|l. = M. If there is ¢
such that |¢|L = M, then it follows from (T f) that | T*¢|. = (. Thus v(|¢|L) = [T *¢|t = 0.
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For faithfulness, suppose M is coherent. We need to show |T * ¢|L N M C v(M). By
the definition of -y, the result trivially holds if there is no conjunction of TBox axioms ¢
such that |p|l = M. If there is ¢ such that |¢|L = M, then it follows from (T * 3) that
T 56 C c(T U {g}) which implies |T o[\ N |6lf C |T x oft. Since v(|lt) = |T o,
we have |T * ¢|L N ||l C v(|¢|L). Now suppose |T * ¢|. N M is coherent. We need to
show v(M) = |T x ¢|L. N M. Again the result trivially holds if there is no conjunction of
TBox axioms ¢ such that |¢|% = M. If there is ¢ such that |¢|L. = M, then it follows from
(T % 3) and (T % 4) that T * ¢ = cl(T U{¢}) which implies |T * ¢|L. N |p|t. = |T * ¢|L. Since
A(6IL) = T 5 6, we have [T+ gIt. 1 |Bff = +(|0|L)-

For coherent preserving, suppose M is coherent. We need to show (M) is coherent.
Again the result trivially holds if there is no conjunction of TBox axioms ¢ such that
|6t = M. If there is ¢ such that |¢|l = M, then it follows from (T * 5) that T x ¢ is
coherent which implies |7 * @[ is coherent. Since y(|¢[L) = |T x ¢|%, v(|¢|) is coherent.

Part (2): By the definition of v, we have y(|§|t) = |T * ¢|%. Since it follows from (7 1)
that T x ¢ is closed, we have by the definition of 7, that T x ¢ = T.(|T * ¢|%) = T-(v(|o[L)).

([l
Proof for Proposition 16

The complexity results have been explained earlier. Let % be a function such that
Tx¢ = TREVI(T,¢) for all TBox T and conjunction of TBox axioms ¢. We need to show
* is a T-revision function. By Theorem 12, it suffices to show x satisfies (7'* 1)—(7" * 6) and
(T f). (Tx1), (T*2), (T «6), and (T * f) are trivially satisfied.

For (T % 3), if T U {¢} is inconsistent then cl(7T U {¢}) includes all axioms thus the
postulates holds trivially. So suppose T U {¢} is consistent. Then |7 U {¢}|% # 0 and
T U{o}L C |T]L. As no new axiom is added to 7 throughout TREVI, we have |T U
{6}t C |[REVI(T,¢)[t which implies TREVI(T,$) C cl(T U{¢}). For (T *4), suppose
T U {¢} is coherent. Then the condition in line 4 is never fulfilled thus no axioms get
removed which means TREVI(T,¢) = cl(T U {¢}). Now we focus on (T *5). Given
a t-type 7 and an atomic concept or role F', by the definition of t-model if ' € 7 then
7L B E L. It is not hard to see that {ry,..., 7} U(|TEN|¢|L) C |TREVI(T, )| for
the t-models of ¢ picked at line 5 of TREVI. Due to line 4-8 of TREVI, if F is such that
ITIEN ¢t EL F E L then there is 7 € {71,...,7,} such that F' € 7 which means for any
F we have {71,..., 7o} U(|TILN|o|L) L F C L which implies | TREVI(T,¢)|L L F C L.
Thus TREVI(T,¢) is coherent.

(|
Proof for Theorem 13

For one direction, suppose * is an A-revision function for A7 and the associated selection
function is v. We need to show * satisfies (A * 1)—(A % 6), and (A x f).

(Ax1), (A%2), (A%6), and (A= f) follow immediately from the definition of A-revision
function. We only show the proof for (A % 3)—(A % 5).

(Ax3), (Ax4): If [(AU{é})T|¢ =0, then the two postulates hold trivially. So suppose
(AU {¢})7|¢ # 0 which implies [A7|* N [{p}7|¢ # 0. Since v is faithful, we have |Ar|¢ N
Ho}re = v({o}r]%). Then it follows from the definition of A-revision function that
Ar 6= AT (4({8}712)) = AT (L7120 [{0}r12) = cl(Ar U {6}).

(A % 5): Suppose [{¢}7]% # 0. Then by the definition of v, v(|{¢}7]%) # 0. Since it
follows from the definition of A-revision function that v(|{¢}7]%) C | A7 *p|%, | A7 *d|* # (.
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For the other direction, suppose * is a function for an ABox A7 that satisfies (A 1)
(A*6), and (A f). Let v be defined as

T(Herrlr) = [(AT * d)7l7

for all conjunctions of ABox axioms ¢. For a set of a-types M, if there is no conjunction
of ABox axioms ¢ such that [{¢}7|? = M, then define v(M) = M N |Ar|¢ whenever
MN|A7|% # 0 and M otherwise. We need to show that (1) 7 is a faithful selection function
for A7 and (2) Ay = ¢ = AT (4([{6}71%)).

Part (1): For v to be a faithful selection function, it has to be a function first. And this
follows directly from the definition of v and (Ax6). Let M be a set of a-types. Suppose M #
(). We need to show v(M) # (). By the definition of v, the result trivially holds if there is no
conjunction of ABox axioms ¢ such that [{¢}7|¢ = M. If there is ¢ such that |{¢} 1| = M,
then we have by (A x5) that |(A7 * ¢)7|% # 0. So we have y([{¢}7|%) = |(AT * @) 7|2 # 0.
Suppose M = (). We need to show (M) = ). For any axiom ¢ that is inconsistent with
T, we have |[{¢}7|¢ = 0. Tt follows from (A x f) that in this case |(A7 * ¢)7|¢ = 0, thus
Y({o}71%) = [(A7 * ¢)7|* = 0. For faithfulness, suppose |A7|% N M # (), we need to show
(M) = M N |Ar|¢. The result holds trivially if there is no ¢ such that [{¢}7|¢ = M
If there is ¢ such that [{¢}7|* = M, then we have |Ar|? N |{¢}7]% # O which implies
AU {o}r|% # 0. So it follows from (A x 3) and (A x4) that |clr (AU {p}7)|% = | A = ¢|%.
Thus y([{¢}77) = [(A7 * @)7[7 = [cl(AU{o} 1)} = |AT]F N [{o} 77

Part (2): By the definition of 7, we have y([{¢}7|¢) = |(A7*¢)7|%. Since it follows from
(Ax1) that Ax¢ is closed, we have by the definition of A7 that A7x¢ = AT (|(A7r*¢p)T|?) =
AT (v({o}717))-

(Il
Proof for Proposition 17

The complexity results have been explained earlier. Let % be a function such that
A7 x ¢ =AREVI(Ar, ¢) for all ABox A7 and conjunction of ABox axioms ¢. We need to
show % is an A-revision function. By Theorem 13, it suffices to show * satisfies (A*1)—(A*6)
and (Ax f). (Ax1), (Ax2), (A*6), and (A x* f) are trivially satisfied.

For (A x 3), suppose ¢ is inconsistent with 7 or is consistent with (77,.4). Then line 2
and line 3 of AREVI(T, A, ¢) guarantee that the postulate holds. So suppose ¢ is consistent
with 7 but is inconsistent with (7,.4). Since no new axiom is added to A in lines 6-8, in line
9 the returned ABox must be a subset of clr(A7U{¢}). For (Ax4), suppose ¢ is consistent
with (7,.A). Then line 4 of AREVI(T, A, ¢) guarantees that clyr(Ar U {¢}) = A1 * ¢.
For (A *5), suppose ¢ is consistent with 7. Then if ¢ is consistent with (7, .4), the ABox
returned in line 4 must be consistent, and if ¢ is inconsistent with (7,.4), lines 6-8 guarantee
that all axioms in A that are inconsistent with ¢ is removed, thus the ABox returned in
line 9 is also consistent.

([
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