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Abstract

This paper studies two issues concerning relevance in structured argumentation in the
context of the ASPIC™ framework, arising from the combined use of strict and defeasible
inference rules. One issue arises if the strict inference rules correspond to classical logic. A
longstanding problem is how the trivialising effect of the classical Ex Falso principle can be
avoided while satisfying consistency and closure postulates. In this paper, this problem is
solved by disallowing chaining of strict rules, resulting in a variant of the ASPIC* frame-
work called ASPIC*, and then disallowing the application of strict rules to inconsistent sets
of formulas. Thus in effect Rescher & Manor’s paraconsistent notion of weak consequence
is embedded in ASPIC*.

Another issue is minimality of arguments. If arguments can apply defeasible inference
rules, then they cannot be required to have subset-minimal premises, since defeasible rules
based on more information may well make an argument stronger. In this paper instead
minimality is required of applications of strict rules throughout an argument. It is shown
that under some plausible assumptions this does not affect the set of conclusions. In addi-
tion, circular arguments are in the new ASPIC* framework excluded in a way that satisfies
closure and consistency postulates and that generates finitary argumentation frameworks if
the knowledge base and set of defeasible rules are finite. For the latter result the exclusion
of chaining of strict rules is essential.

Finally, the combined results of this paper are shown to be a proper extension of
classical-logic argumentation with preferences and defeasible rules.

1. Introduction

One tradition in the logical study of argumentation is to allow for arguments that combine
strict and defeasible inference rules. This approach was introduced in Al by Pollock (1987,
1990, 1992, 1994, 1995), was studied in the past also by e.g. Lin and Shoham (1989), Simari
and Loui (1992), Vreeswijk (1997), Prakken and Sartor (1997) and Garcia and Simari (2004)
and is currently studied by e.g. Dung and Thang (2014), Dung (2014, 2016) and in work on
the ASPIC* framework (Prakken, 2010; Modgil & Prakken, 2013, 2014). Strict inference
rules are intended to capture deductively valid inferences, where the truth of the premises
guarantee the truth of the conclusion. Defeasible inference rules are meant to capture pre-
sumptive inferences, where the premises create a presumption in favour of the conclusion,
which can be refuted by evidence to the contrary. Much research in this tradition has shown
that the idea of defeasible inference rules makes sense. For example, Pollock applied it to
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formalize his theory of defeasible epistemic reasons, which includes reasons concerning per-
ception, memory, enumerative induction, the statistical syllogism and temporal persistence.
Moreover, several publications on ASPICT use defeasible inference rules to formalise Walton
(1996)-style presumptive argumentation schemes (Prakken, 2010; Modgil & Prakken, 2014)
and to apply these to legal reasoning (Prakken, Wyner, Bench-Capon, & Atkinson, 2015) or
policy debate (Bench-Capon, Prakken, & Visser, 2011). Finally, Garcia and Simari’s (2004)
Defeasible Logic Programming approach has been applied in many domains.

In this tradition, two issues arise concerning relevance, namely, minimality of argu-
ments and paraconsistency in strict-rule application. We will study both issues in the
context of the ASPICT framework. The choice of ASPIC™ for these purposes is justi-
fied by its framework nature, which allows the study of various classes of instantiations.
Moreover, it has been shown that various other approaches can be reconstructed as in-
stantiations of the ASPIC™ framework. Prakken (2010) showed this for assumption-based
argumentation as reconstructed by Dung, Mancarella, and Toni (2007) as an instance of
abstract argumentation (Dung, 1995), and this result carries over to the original formula-
tion of assumption-based argumentation (Bondarenko, Dung, Kowalski, & Toni, 1997) for
all known semantics except semi-stable and eager semantics (cf. Caminada, Sa, Alcantara,
& Dvorak, 2015). Furthermore, Modgil and Prakken (2013) reconstructed two forms of
classical argumentation with premise attack as studied by Gorogiannis and Hunter (2011)
and several uses of Tarskian abstract logics as studied by Amgoud and Besnard (2013) as
instances of ASPIC™. For these reasons, results in terms of ASPIC™ are representative for
large classes of argumentation systems.

ASPICT is sometimes criticised on the fact that it allows for instantiations with bad
properties but such criticism is besides the point, since it ignores the framework nature
of ASPIC™ (Prakken & Modgil, 2012). Being a framework instead of a concrete system,
ASPIC™ is intended to allow the study of properties of various instantiations, such as
whether they satisfy the rationality postulates of Caminada and Amgoud (2007). It is the
very idea of the framework to allow for ‘bad’ instantiations so that they can be identified.
Therefore, the framework cannot be criticised on the existence of such bad instantiations.
Moreover, there is a growing body of results on ‘good’ instantiations of ASPIC™ (Caminada
& Amgoud, 2007; Prakken, 2010; Modgil & Prakken, 2013; Dung, 2014, 2016; Caminada,
Modgil, & Oren, 2014; Grooters & Prakken, 2014; Wu & Podlaszewski, 2015) and this paper
aims at identifying another class of good instantiations.

One relevance issue discussed in this paper is minimality of arguments. In deductive
approaches to argumentation (e.g., Besnard & Hunter, 2008; Gorogiannis & Hunter, 2011;
Amgoud & Besnard, 2013) arguments are required to have a subset-minimal set of premises.
However, if arguments can apply defeasible inference rules, then this requirement is undesir-
able, since defeasible rules that are based on more information may well make an argument
stronger. For example, Observations done in ideal circumstances are usually correct is
stronger than Observations are usually correct. Note that this remark does not apply to
strict inference rules, so it still makes sense to improve efficiency by requiring that strict
inference rules are only applied to a subset-minimal set of formulas. So far, no system in
the defeasible-rule tradition enforces this requirement. One contribution of this paper is to
do so for the ASPIC™ approach and to show that under some plausible conditions on its
argument ordering, this does not affect the set of conclusions.
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Another aspect of minimality is circularity. So far presentations of ASPIC™ have not
prevented arguments from repeating conclusions of their subarguments. Yet in argumen-
tation theory circular arguments are generally regarded as fallacious, so it makes sense to
exclude them. In this paper we will do so and prove that the results on the rationality postu-
lates are not affected by it. Moreover, we will prove that excluding non-circular arguments
has some computational benefits.

Another relevance issue arises if the strict inference rules are chosen to correspond to
classical logic. Then a longstanding unsolved problem originally identified by Pollock (1994,
1995) is how the trivialising effect of the classical Ex Falso principle can be avoided when
two arguments that use defeasible rules have contradictory conclusions. The problem is
especially hard since any solution should arguably preserve satisfaction of the rationality
postulates of consistency and strict closure (Caminada & Amgoud, 2007).

In a nutshell, the problem is as follows. Suppose two arguments have contradictory
conclusions ¢ and —p. If the strict inference rules include the Ex Falso principle that an
inconsistent set implies any formula, then these two arguments can be combined into an
argument for — for any formula 1. This combined argument can potentially defeat any
argument for 1 by applying the Ex Falso inference rule to their joint conclusions. So when
there are arguments for contradictory conclusions, any other argument is potentially under
threat, which is clearly undesirable, since the conflict about ¢ is in general unrelated to .

Pollock (1994, 1995) thought that he had avoided such ‘trivialising’ arguments by al-
lowing for multiple labellings, but Caminada (2005) showed that Pollock’s solution does
not fully avoid them. The problem is a genuine one, since there arguably is a real need for
argumentation systems that allow for combinations of strict and defeasible inferences and
that, moreover, allow for the full reasoning power of a deductive logic. Although for many
cases less expressiveness may suffice, a full theory of the logic of argumentation cannot
exclude the general case.

To solve the problem, two approaches are possible. One is to change the definitions of
the argumentation framework, while the other is to derive the strict inference rules from
a weaker logic than classical logic. The first approach is taken by Wu (2012) and Wu
and Podlaszewski (2015), who for the ASPICT framework require that for each argument
the set of conclusions of all its subarguments are classically consistent. They show that
this solution works for a restricted version of ASPICT without preferences, but they give
counterexamples to the consistency postulates for the case with preferences.

A second approach to solve the problem is to replace classical logic as the source for
strict rules with a weaker, monotonic paraconsistent logic, in order to invalidate the Ex
Falso principle as a valid strict inference rule. This paper explores this possibility. We first
show that two well-known paraconsistent logics, the system C,, of Da Costa (1974) and
the Logic of Paradox of Priest (1979, 1989), cannot be used for these purposes, since they
induce violation of the postulate of indirect consistency. We then show that using Rescher
and Manor’s (1970) paraconsistent consequence notion satisfies all closure and consistency
postulates and also avoids trivialisation. While thus initially taking the second approach,
we will have to combine it with the first approach (changing the definitions) since it will
turn out that chaining strict rules in arguments has to be disallowed. This change in turn
motivates a new interpretation of Caminada and Amgoud’s (2007) strict-closure postulate
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and the introduction of a new rationality postulate of ‘logical closure’. This contribution of
our paper is based on and extends results of Grooters and Prakken (2014).

After making these contributions, we will argue that in combination they shed light on
the relation between the adapted version of ASPIC™ and classical argumentation as studied
by Besnard and Hunter (2008) and Gorogiannis and Hunter (2011), in which arguments
are essentially classical proofs from consistent and subset-minimal subsets of a classical
knowledge base. For two of their versions of classical argumentation with premise attack
the adapted version of ASPIC™ is shown to a be proper extension with defeasible rules and
preferences. This observation justifies a combined treatment of both issues (minimality of
arguments and paraconsistency) in the same paper.

Caminada, Carnielli, and Dunne (2012) formulated a new set of rationality postulates
in addition to those of Caminada and Amgoud (2007), to characterise cases under which
the trivialisation problem is avoided (called the postulates of non-interference and crash-
resistance). Wu (2012) and Wu and Podlaszewski (2015) prove for their adaptation of
ASPIC™ with consistent arguments that these new postulates are satisfied for complete
semantics. However, we will not attempt to prove Caminada et al.’s (2012) postulates, for
two reasons. First, we want to obtain results for other semantics as well and, second, we will
argue in Section 10 that Caminada et al.’s postulates in fact capture a stronger intuitive
notion than the one we study in this paper.

The remainder of this article is organised as follows. First in Section 2 the ASPIC™
framework is summarised and in Section 3 the rationality postulates of Caminada and Am-
goud (2007) are presented. Then in Section 4 the trivialisation problem is illustrated in
more detail, after which in Section 5 instantiations of ASPIC™ with the paraconsistent log-
ics LP and C,, are studied as an attempt to avoid trivialisation in the face of inconsistency.
It will be shown that these instantiations violate the rationality postulate on indirect con-
sistency. Then in Section 6 Rescher and Manor’s (1970) paraconsistent consequence notion
is introduced as another attempt to avoid trivialisation. It turns out that its embedding
in ASPIC™ requires an adaptation of the ASPIC™ framework into a framework called AS-
PIC*, which disallows chaining of strict rules, which in turn motivates new notions of strict
closure and indirect consistency. Then in Section 7 the first main contribution of this pa-
per is proved: satisfaction of the closure and consistency postulates by the instantiation of
the ASPIC™ framework with Rescher and Manor’s consequence notion. In Section 8 the
second and third main contribution is presented: an equivalence result between versions of
ASPIC* with and without minimality constraints on strict inferences, and proofs that show
that a version of ASPIC™* that excludes circular arguments is well-behaved. In Section 9
we present our fourth main result, namely, that ASPIC* with minimal arguments properly
generalises two versions of classical argumentation. Finally, in Section 10 we discuss our
results and put them in the context of related work.

2. The ASPIC' Framework

In this section, the ASPIC* framework is reviewed. Since it makes use of Dung’s (1995)
theory of abstract argumentation, that theory is first briefly summarised. An abstract
argumentation framework (AF) is a pair (A, D), where A is a set of arguments and D C
A x A is a binary relation of defeat. An argument A defeats argument B if (A, B) € D. A
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set S of arguments defeats an argument B if there is an argument A € S such that A defeats
B. A set S defeats a set S’ if there is an argument A € S’ such that S defeats A. A set of
arguments is said to be conflict-free if it does not attack itself; otherwise it is conflicting.
A set S C A defends an argument A € A iff for each BinA that defeats A there exists a
C € S that defeats B. A set is admissible if it is conflict-free and defends itself by attacking
each argument attacking S. Each argumentation framework has zero or more extensions,
which intuitively are maximal sets of arguments that can be accepted together since they
are conflict-free and defend all their members against attacks. Formally, extensions are
admissible sets with some additional properties. They can be defined according to Dung’s
‘characteristic function’.

Definition 2.1. [Dung’s characteristic function F] Fp : 24 — 24 such that Fp(S) =
{A € A]A is defended by S}.

Henceforth the subscript AF will be omitted if there is no danger of confusion.

Definition 2.2. [Extensions of abstract argumentation frameworks| For any AF =
(A,D) and any E C A:

e F is conflict-free iff there are no A, B in E such that (A, B) € D.
o F is admissible iff E is conflict-free and E defends each A € E.

e E is a complete extension of AF iff E is conflict-free and Fup(E) = E.

FE is a preferred extension of AF iff E is a set-inclusion-maximal complete extension
of AF.

E is a stable extension of AF iff E is conflict-free and for all A ¢ E there exists a
B € FE such that B defeats A.

E is the grounded extension of AF iff E is the set-inclusion-minimal complete exten-
sion of AF.

Finally, for T' € {complete, preferred, grounded, stable}, X is sceptically or credulously
T-justified if X belongs to all, respectively at least one, T' extension. Other notions of
extensions have been proposed in the literature but in this paper we confine ourselves to
these four notions.

The ASPIC™ framework (Prakken, 2010; Modgil & Prakken, 2013) gives structure to
Dung’s arguments and defeat relation. As in the work of Vreeswijk (1997) it defines argu-
ments as directed acyclic inference graphs formed by applying strict or defeasible inference
rules to premises formulated in some logical language. Intuitively, strict rules guarantee the
truth of their consequent if their antecedents are true, while defeasible rules only create a
presumption in favour of the truth of their consequent if their antecedents are true. Argu-
ments can be attacked on their (ordinary) premises and on their applications of defeasible
inference rules. Some attacks succeed as defeats, which is partly determined by preferences.
The acceptability status of arguments is then defined by applying any of Dung’s (1995)
semantics for abstract argumentation frameworks to the resulting set of arguments with its
defeat relation.
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Below the special case with symmetric negation of the version of ASPIC™ defined by
Modgil and Prakken (2013) is presented, but with some minor improvements. Nontrivial
improvements will be indicated below when they are made.

ASPICT is not a system but a framework for specifying systems. As said above, the
framework is intended to allow the study of properties of instantiations, such as whether
they satisfy the rationality postulates of Caminada and Amgoud (2007). To this end it
defines the notion of an abstract argumentation system as a structure consisting of a logical
language £ with a unary negation symbol —, a set R consisting of two disjoint subsets R
and Ry of strict and defeasible inference rules, and a naming convention n in £ for defeasible
rules in order to talk in £ about the applicability of defeasible rules. All these elements are
left undefined in general and have to be specified for each specific instantiation.

Definition 2.3. [Argumentation systems| An argumentation system is a triple AS =
(L, R,n) where:

e [ is a nonempty logical language with a unary negation symbol —.

e R =RsUTRy is a set of strict (Rs) and defeasible (R,4) inference rules of the form
O1y «-vy n — @ and @1, ..., @, = @ respectively (where @;, p are meta-variables
ranging over wif in £), and Rs N Ry = 0.

e n:Ry;— L is a naming convention for defeasible rules.

Informally, n(r) is a wif in £, which says that rule r € R is applicable. We write ) = —¢
just in case ¥ = —p or ¢ = —). Note that — is not part of the logical language £ but a
metalinguistic function symbol to obtain more concise definitions. Furthermore, if there is
no danger for confusion, we will sometimes write the sequence of antecedents of a strict or
defeasible rule as a set.

Example 2.1. An example argumentation system is with

E = {p7 -p,q,q,Tr, T, S, _‘S7t7 _‘ta ry,r2,T1, _\7”2},
Rs = {p,’f'—>8;—>_|7"1}, Rd: {q:>r;t:>_'5}a
n(g=r)=mr and n(t = —s) = ra.

ASPIC™ as a framework abstracts from the origins of the strict and defeasible rules.
Several ways to identify rules are possible. One way, quite usual in Al is to let the rules
express domain-specific knowledge. For example, the strict rules could contain terminolog-
ical knowledge such as ‘bachelors are not married’, and the defeasible rules could contain
defeasible generalisations such as ‘Birds fly’ or defeasible norms such as ‘Thou shalt not lie’.
Another way is to base the rules on general accounts of deductive and defeasible reason-
ing. For example, the strict rules might be chosen to correspond to a monotonic logic and
the defeasible rules might be instantiated with argument schemes (Walton, 1996). These
two ways to identify inference rules are only pragmatically different; formally, the ASPIC™
framework treats rules as inference rule regardless of their origin. In this paper we abstract
from the origin of the defeasible rules and we focus on the choice of strict rules. We are
in particular concerned with instantiations of ASPIC™ in which the strict rules are chosen
to correspond to a monotonic logic (although several results will apply more generally). In
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such instantiations R is defined as follows, given a monotonic consequence notion Fj, for a
logic L:

e Rs={S—¢|Str yand S is finite}

If R is defined in this way over the logical language of L, then we say that R corresponds
to logic L.

Definition 2.4. [Knowledge bases| A knowledge base in an AS = (L,R,n)isaset L C L
consisting of two disjoint subsets /C;, and K, (the necessary and ordinary premises).

Intuitively, the necessary premises are certain knowledge and thus cannot be attacked,
whereas the ordinary premises are uncertain and thus can be attacked.

Definition 2.5. [Consistency and strict closure| For any X C £, let the closure of X
under strict rules, denoted Clg,(X), be the smallest set containing X and the consequent
of any strict rule in Ry whose antecedents are in Clg,(X). Then a set X C L is

o directly consistent iff § 1, p € X such that ¢ = —¢;
o indirectly consistent iff Clr (X) is directly consistent.

Example 2.2. In our example argumentation system, an example of a directly inconsistent
set is {p,—p} and an example of a directly consistent but indirectly inconsistent set is
{p,r,—s}. Finally, an example of a closure under strict rules is Clg, ({p,r}) = {p, 7, s, 1}

Arguments can be constructed step-by-step from knowledge bases by chaining inference
rules into directed acyclic graphs (or trees if no formula is used more than once). In what
follows, for a given argument the function Prem returns all its premises, Conc returns its
conclusion and Sub returns all its sub-arguments, while TopRule returns the last rule used
in the argument.

Definition 2.6. [Argument| An argument A on the basis of a knowledge base K in an
argumentation system (£, R,n) is:

1. ¢ if ¢ € K with:
Prem(A) = {¢};
Conc(A) = ¢;
Sub(4) = {¢};
TopRule(A) = undefined.

2. Ay,... A, = /=Yif Ay,..., A, are arguments such that Rs/ Ry contains the strict /defeasible
rule Conc(A;),...,Conc(4,) —/= 1, with:
Prem(A) = Prem(A;) U...UPrem(4,),
Conc(A) = v,
Sub(A) = Sub(A4;) U...USub(A4,)U{A};
TopRule(A) = Conc(A;),...,Conc(4,) —/= 1.
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Each of these functions Func are also defined on sets of arguments S = {A4;,...,A,} as
follows: Func(S) = Func(A;) U...UFunc(A4,). If an argument only uses strict rules, the
argument is said to be strict, otherwise it is defeasible. If an argument only has necessary
premises, then the argument is firm, otherwise it is plausible. For any argument A we define
Prem, (A) = Prem(A) N K,, and Prem,(A) = Prem(A) N K. The set of all arguments that
just consist of a necessary premise are denoted with NP(.5).

Example 2.3. If our example argumentation system is combined with a knowledge base
with K, = {p} and K, = {q,t}, then the following arguments can be constructed:

Al = p A5: A3:>ﬁ8
A2: q A6: Al,A4—>S

A4: A2:>7“

Argument A; is strict and firm, A and Ag are strict and plausible, and the remaining
arguments are all defeasible and plausible.

In Figure 1 these arguments are visualised. The type of a premise is indicated with a
superscript and defeasible inferences are displayed with dotted lines. The dotted boxes and
thick arrows will be explained below in Example 2.4.

s 1
[ p" s |
S
A6 A1 ! ,
k r2
| |
I--‘--l I__l__|
p P
RES e
Ad A2 A3 A5 A7

Figure 1: Arguments and attacks of Example 2.1. The premises are at the bottom and
the conclusion at the top of the tree. Thin vertical links between boxes are
inferences while the thick diagonal links are attacks. The type of a premise is
indicated with a superscript and defeasible inferences, underminable premises and
rebuttable conclusions are displayed with dotted lines.

Arguments can be attacked in three ways: on their ordinary premises (undermining
attack), on a defeasible inference (undercutting attack) or on the conclusion of a defeasible
inference.

Definition 2.7. [Attack| An argument A attacks an argument B iff A undercuts, rebuts
or undermines B, where:
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e A undercuts argument B (on B’) iff Conc(4) = —n(r) and B’ € Sub(B) such that
B”’s top rule r is defeasible.

e A rebuts argument B (on B') iff Conc(A) = —¢ for some B’ € Sub(B) of the form
1,...,Bl = .
1 »=n

e A undermines argument B (on ¢) iff Conc(A) = —¢ for some ¢ € Premy(B).

Example 2.4. In our running example Ag rebuts As and therefore also Ag rebuts A7 on
As (since A is a subargument of Ay). Note that As does not rebut Ag since Ag has a strict
top rule. Furthermore, A7 undercuts A4 and Ag on A4. In Figure 1 rebuttable conclusions
are visualised with dotted boxes and direct defeat relations are displayed with thick arrows.
Note that the indirect attacks of Ag on A7 and A7 on Ag are not explicitly visualised.

An argument A is a basic fallible argument! iff A € K, or TopRule(A) € R4. A basic
fallible argument is thus an argument that has a defeasible top rule or equates an ordinary
premise and so can be attacked on its final conclusion or inference. The set of all basic
fallible arguments for a set of arguments S is denoted by FA(S).

Argumentation systems plus knowledge bases form argumentation theories. These are
in turn combined with a preference ordering on the set of all arguments constructible in the
theory, to induce structured argumentation frameworks. Like the elements of argumentation
systems, the nature of the ASPICT argument ordering is undefined in general and has to
be specified for each specific instantiation.

Definition 2.8. [Structured Argumentation Frameworks] Let AT be an argumen-
tation theory (AS,K). A structured argumentation framework (SAF ) defined by AT, is a
triple (A, C, <) where A is the set of all finite arguments constructed from K in AS, < is
a binary relation on A, and (X,Y) € C iff X attacks Y.

Unlike Modgil and Prakken (2013) we will not consider versions of ASPIC™ that require
arguments to have consistent premises (except briefly in Section 9 for purposes of compar-
ison). In our approach strict arguments with inconsistent premises will be handled by our
choice to let R, correspond to a paraconsistent logic, which will prevent trivialisation, i.e.,
it will prevent systems that generate arguments for any random conclusion from contradic-
tions. Furthermore, we will leave it to the users whether they want to ensure that there are
no defeasible rules with inconsistent antecedents. This can be left to the user since allowing
defeasible rules with inconsistent antecedents does not cause trivialisation. Furthermore, all
results proved in this paper still hold whether defeasible rules with inconsistent antecedents
are excluded or not.

The notion of defeat can then be defined as follows. Undercutting attacks succeed
as defeats independently of preferences over arguments, since they are meant to express
exceptions to defeasible inference rules. Rebutting and undermining attacks succeed only
if the attacked argument is not stronger than the attacking argument (A < B is defined as
usual as A < B and B £ A).

Definition 2.9. [Defeat] A defeats B iff:

1. This is a renaming of Dung and Thang’s (2014) notion of a basic defeasible argument.
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1. A undercuts B; or
2. A rebuts/undermines B on B’ and A £ B'.

Example 2.5. In our running example Ag defeats A5 and A7 unless Ag < As. Furthermore,
with any preference relation between A4 and Az, even with A7 < A4, we have that A7 defeats
Ay (and thus A7 also defeats Ag).

SAF's generate abstract argumentation frameworks in the sense of Dung (1995), which
can then be used to evaluate arguments and their conclusions:

Definition 2.10. [Argumentation frameworks]

An abstract argumentation framework (AF') corresponding to a SAF = (A, C, <) is a
pair (A, D) such that D is the defeat relation on A determined by SAF.

Let T € {complete, preferred, grounded, stable} and let £ be from the AT defining
SAF. A wif ¢ € L is sceptically T-justified in SAF if ¢ is the conclusion of a sceptically
T-justified argument, and credulously T-justified in SAF if ¢ is not sceptically T-justified
and is the conclusion of a credulously T-justified argument.

Example 2.6. Suppose in our running example that D is such that Ag defeats A5 and A~
while A7 defeats A4 and Ag. The resulting AF is visualised twice in Figure 2. The grounded
extension is {41, A, A3} while there are two preferred extensions Ey = {A;, Aa, Az, A4, Ag}
and Ey = {A1, Ao, A3, A5, A7}. Both preferred extensions are also stable. The two preferred
extensions are visualised in Figure 2: members of an extension are coloured white.

(1) (n2) () (i () (a3)
DEENCO ®) & ® ®)

Figure 2: Two preferred extensions of the Dung AF of Example 2.1.

We finally need the notion of a strict continuation of a set arguments, which we define
in a slightly different way than Modgil and Prakken (2013). The new definition is arguably
simpler but does not affect the proofs of Modgil and Prakken. It identifies arguments that
are formed by extending a set of arguments with only strict inferences into a new argument,
so that the new argument can only be attacked on the arguments that it extends.

Definition 2.11. [Strict continuations| The set of strict continuations of a set of argu-
ments from A is the smallest set satisfying the following conditions:
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1. Any argument A is a strict continuation of {A}.

2. If Ay,..., A, and Sy,..., S, are such that for each ¢ € {1,...,n}, A; is a strict
continuation of S; and Bi, ..., B, are all strict-and-firm arguments, and
Conc(A;),...,Conc(A,),Conc(By),...,Conc(By,) — ¢ is a strict rule in Ry, then
Aq,..., Ay, By, ..., B, — ¢ is a strict continuation of Sy U...US,.

If argument A is a strict continuation of arguments Ay, ..., A,, then A is a strict argument
over {Conc(A4;),...,Conc(Ay)}.

Example 2.7. In our running example all arguments are strict continuations of themselves
while Ag is a strict continuation of {A;, A4} and A7 is a strict continuation of As. Suppose
we temporarily add a strict rule p,s — —ry to Rs. Then Ag = Ay, Ag — —r9 is a strict
continuation of {Ag}.

3. The Rationality Postulates

Extensions of abstract argumentation frameworks are intuitively maximal sets of arguments
that can be rationally accepted together given such frameworks. Dung’s (1995) various
semantics, yielding different types of extensions, can be seen as various alternative ways
to formalize rationality constraints on acceptable sets of arguments. When arguments
have structure, additional rationality constraints can defined for extensions above those of
abstract argumentation semantics. Caminada and Amgoud (2007) proposed the following
rationality postulates for structured argumentation.

Subargument closure: For every extension F, if an argument A is in E then
all subarguments of A are in E.

Closure under strict rules: For every extension E, the set Conc(FE) is closed
under application of strict rules.

Direct consistency: For every extension E, the set Conc(F) is directly con-
sistent.

Indirect consistency: For every extension F, the set Conc(F) is indirectly
consistent.

Note that closure under strict rules and direct consistency together imply indirect consis-
tency.

Modgil and Prakken (2013) identify a set of conditions under which ASPIC™" satisfies
all four postulates. The first condition is that the set of strict rules is either closed under
transposition or closed under contraposition.

Definition 3.1. [Closure under transposition, (Modgil & Prakken, 2013)] A set of
strict rules R; is said to be closed under transposition if for each rule q,..., ¢, — ¥ in R
all the rules of the form ¢1,..., 91, =%, Qis1,...,0n — —p; for any —¢; and —1)? also
belong to Rs. An argumentation theory (AS,K) is closed under transposition if the strict
rules R of AS are closed under transposition.

2. Note that a wff ¢ can have more than one 1 such that ¢ = —. For example, -p = —p and —p = ———p.
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Definition 3.2. [Closure under contraposition, (Modgil & Prakken, 2013)] An
argumentation system is said to be closed under contraposition if for all X C £, all s € X
and all ¢ it holds that if ¢ € Clg, (X) then —¢ € Clg (X\{¢} U {—¢}) for any —¢ and
—1p. An argumentation theory (AS, ) is closed under contraposition if the argumentation
system AS is closed under contraposition.

The second condition states that the argument ordering should have the following prop-
erties:

Definition 3.3. [Reasonable argument ordering, (Modgil & Prakken, 2013)] < is
a reasonable argument ordering if and only if:

e VA, B, if A is strict and firm and B is plausible or defeasible, then B < A;
e VA, B, if B is strict and firm, then B £ A;

o VA, A" B,C, such that C < A, A < B and A’ is a strict continuation of {A}, then
C <A A < B;

e Let {C4,...,C,} be a finite subset of A and for i = 1,...,n let C*/% be some strict
continuation of {Cy,...,C;_1,Ciy1,...,Cy}. Then it is not the case that Vi, ctli<
C;.

Modgil and Prakken (2013) identify several types of argument orderings that are rea-
sonable.
The third condition is axiom consistency.

Definition 3.4. [Axiom consistent, (Modgil & Prakken, 2013)] An argumentation
theory is axiom consistent if and only if Clgr_ (KC,,) is consistent.

Modgil and Prakken (2013) prove that any argumentation theory that satisfies all three
conditions only induces extensions that satisfy all four rationality postulates.

4. The Trivialisation Problem

In this section we illustrate the trivialisation problem in more detail. The following abstract
example illustrates the problems that can arise if the strict rules of an argumentation system
correspond to classical logic, i.e. X — ¢ € Ry if and only if X F ¢ and X is finite (where
F denotes classical consequence).

Example 4.1. Let Ry ={p = ¢; r = —¢; t = s}, £, = 0 and K,, = {p,r,t}, while R,
corresponds to classical logic. Then the corresponding AF includes the following arguments:

A1: p AQZ Al = q
Bi:r By:By=-q C: Ay By — —s
Di:t Dy: Dy =s

Figure 3 displays these arguments and their attack relations. Dotted lines indicate defea-
sible inferences and dotted boxes indicate rebuttable conclusions. Argument C attacks Ds.
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Figure 3: Ilustrating trivialisation

Whether C defeats Dy depends on the argument ordering but plausible argument orderings
are possible in which C' 4 Dy and so C defeats D,. This is problematic, since s can be
any formula, so any defeasible argument unrelated to As or B, such as Do, can, depending
on the argument ordering, be defeated by C. Clearly, this is extremely harmful, since the
existence of just a single case of mutual rebutting attack, which is very common, could
trivialise the system. It should be noted that simply disallowing application of strict rules
to inconsistent sets of formulas does not help, since then an argument for —s can still be
constructed as follows:

Ag: Ay — qV —s
C" Ag,Bg — S

Note that argument C’ does not apply any strict inference rule to an inconsistent set of
formulas.
This example suggests the following formalisation of the property of trivialisation.

Definition 4.1 (Trivialising argumentation systems). An argumentation system AS is
trivialising iff for all p,¢ € L and all knowledge bases K such that {p, 7¢} C K a strict
argument, on the basis of I can be constructed in AS with conclusion 1.

We are then interested in defining classes of non-trivialising argumentation systems.
The argumentation system in our example is clearly trivialising since Rs contains strict
rules ¢, ~¢ — ¢ for all p, ¢ € L.

Example 4.1 does not cause any problems for preferred or stable semantics, since As
and Bs attack each other and at least one of these attacks will (with non-circular argument
orderings) succeed as defeat. Therefore, all preferred or stable extensions contain either
As or By but not both. Since both Ay and Bs attack C (by directly attacking one of its
subarguments), C' is for each preferred or stable extension defeated by at least one argument
in the extension, so C is not in any of these extensions, so D is in all these extensions.
This is intuitively correct since there is no connection between Do and the arguments Ao
and BQ.

In fact, the only semantics defined by Dung (1995) that has problems with Example 4.1
is grounded semantics. Since both As and By defeat each other, neither of them is in the
grounded extension. So that extension does not defend Dy against C' and therefore does
not contain Ds.
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Pollock (1994, 1995) thought that the just-given line of reasoning for preferred semantics
suffices to show that his recursive-labelling approach (which was later in Jakobovits &
Vermeir, 1999 proved to be equivalent to preferred semantics) adequately deals with this
problem. However, Caminada (2005) showed that the example can be extended in ways
that also cause problems for preferred and stable semantics. Essentially, he replaced the
facts p and r with defeasible arguments for p and r and let both these arguments be defeated
by a self-defeating argument. On the one hand, such self-defeating arguments cannot be
in any extension, since extensions are conflict free. However, if a self-defeating argument
is not defeated by other arguments, it prevents any argument that it defeats from being
acceptable with respect to an extension. In our example, if both As and By are defeated
by a self-defeating argument that is otherwise undefeated, then neither As not By is in any
extension, so no argument in an extension defends Dy against C.

A critic of ASPIC™T or Pollock’s approach might argue that the problem is caused by
the combination of strict (i.e., deductive) and defeasible inference rules. Indeed, in clas-
sical argumentation (Besnard & Hunter, 2008; Gorogiannis & Hunter, 2011) the problem
can be easily avoided by requiring that the premises of an argument are consistent. How-
ever, there are reasons to believe that classical logic is too strong to be able to model all
forms of defeasible reasoning; see, for instance, the discussions by Brewka (1991), Ginsberg
(1994) and Prakken (2012). Furthermore, in assumption-based argumentation (ABA) as
reconstructed by Dung et al. (2007), which only has strict inference rules but does not
require them to be classical, and which does not require that the premises of arguments are
consistent, the problem may or may not arise depending on how it is instantiated. When
reconstructed in ASPICT as by Prakken (2010), ABA arguments are built from ordinary
premises K, and strict inference rules Rs. The following example (in the notation of the

ASPICT reconstruction of ABA) shows that the trivialisation problem can also arise in
ABA.

Example 4.2. Take K, = {p, -p, s} and let Ry correspond to classical logic, i.e, S — ¢ €
Rs iff S is a finite set of wif that classically implies . Then the following arguments can
be constructed.

A:p
B:—p
C:AB— —s
D:s

The ‘trivialising’ argument C prevents argument D from being in any extension.

The problem now is to instantiate and/or redefine ASPIC™ in a way that avoids the
trivialising effects of strict inferences from an inconsistent set, while still satisfying the
rationality postulates of Caminada and Amgoud (2007).

5. Instantiating ASPIC" with Two Well-Known Paraconsistent Togics

As said in the introduction, one way to avoid trivialisation is to derive the strict rules
of ASPIC™ from a paraconsistent logic. A logical consequence relation I, is said to be
paraconsistent if it is not ‘explosive’, i.e. when it does not hold for all A and B that
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{A,—A} b, B. In this section we investigate this strategy for two well-known paraconsistent
logics, the Logic of Paradox of Priest (1979, 1989) and the system C,, of Da Costa (1974).
Another well-known paraconsistent logic is the family of relevant logics. However, this logic
is nonmonotonic (Read, 1988, p. 100). This is a problem since the idea of ASPIC™ is that
if the strict rules are based on a logic, this logic is monotonic. For this reason, relevance
logics are not considered in this paper.

5.1 Logic of Paradox

The Logic of Paradox (Priest, 1979, 1989) is obtained by relaxing the assumption of classical
propositional logic that a sentence cannot be both true and false. Sentences in the Logic of
Paradox (LP) can have two truth values instead of one. The set of possible truth values is
{{1},{0},{0,1}}, where {0, 1} is the paradoxical ‘true’ and ‘false’.

The semantics for the propositional version of LP is as follows.

1. (a) 1ev(-A) < 0ecv(A)
(b) 0 € v(—A) & 1 €v(A)

2. (a) lev(AANB)< 1€v(A)and 1€ v(B)
(b) 0 ev(AAB) < 0€cwv(A)or0evB)

3. (a) 1ev(AVvB)&1ewv(A)orlev(B)
(b) 0ev(AVB)<0e€wv(A) and 0 € v(B)

4. (a) lev(A—B)<0€cv(A) orlevB)
(b) 0ev(A— B)<1€v(A) and 0 € v(B)

An interpretation is a model of a formula f if and only if 1 € v(f) holds in that interpreta-
tion. It is a model of a set of formulas if and only if it is a model of every formula in the
set. The semantical notion of logical consequence is defined as follows:

e YFrp A & for all evaluations v either 1 € v(A) or for some B € 3, v(B) = {0}

It has been shown that LP coincides with propositional logic on its tautologies but not on its
valid inferences. In particular, although AA—A — B is a tautology in L P, the corresponding
inferences {A A —A} =rp B and also {A,—A} =rp B are invalid. For a counterexample,
consider an evaluation such that B is strictly false and A, A are undetermined (both true
and false), so A A = A is undetermined as well. Then 0 € v(A A —=A), so by the valuation
postulates 1 € v(A A —A — B). Therefore, {A A -A} Frp B and also {A,—-A} Frp B.
Therefore, the Logic of Paradox is a paraconsistent logic.

It turns out that the postulate of indirect consistency is not satisfied in case the strict
rules of ASPIC™ are instantiated with all valid inferences in the Logic of Paradox, that is,
if S — ¢ € R, iff Sis finite and S rp ¢. The following counterexample was brought to
our attention by Graham Priest (personal communication).

Example 5.1. Take a SAF defined by an argumentation theory with the knowledge base
Ky UK, with £, = 0 and K, = {a,~a V b,7a V ¢,=bV —c}. Further suppose that R,
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corresponds to the Logic of Paradox and that there are no defeasible rules (Rq = 0).
Finally, assume that all arguments with at least one ordinary premise are equally preferred
according to the argument ordering < of SAF.

It is easily checked that K, implies that at least one of a,b or ¢ must be paradoxical.
Therefore, there exists an argument A; : a, ~aVb, maVe, —=bV-c — (aA—a)V(bA—D)V(cA-c).
Since tautologies are preserved in the Logic of Paradox, =(bA—b), ~(aA—a) and ~(cA—c) are
also entailed by K. This implies that there exists an argument As : a, ~aVb, ~aVe, =bV-c —
=((aAN=a) VvV (bA=b)V (cA—c)). These arguments only use strict rules so they can only be
attacked on their premises. However, there does not exist an argument built from X which
has a conclusion —d for a d € K. To show this, for each d € K, a model has to be found
for which v(d) # {0} holds while not 1 € v(—d).

Model 1: to show that it is not the case that —a follows from /C,,.

Take the model v(a) = {1},v(b) = {1} and v(c) = {0,1}. Then it is clear that v(a) =
{1},v(=a Vv b) = {1},v(-a V c) = {0,1} and v(=bV —c¢) = {0, 1}, but not 1 € v(—a).

Model 2: to show that it is not the case that —(—a V b) follows from IC,.

Take again the model v(a) = {1},v(b) = {1} and v(c) = {0, 1}. Then it is clear that v(a) =
{1},v(=a Vv b) = {1},v(-a VvV ¢) = {0,1} and v(=bV —c) = {0, 1}, but not 1 € v(=(—a V b)).

Model 3: to show that it is not the case that —(—a V ¢) follows from IC,.

Take the model v(a) = {1},v(b) = {0,1} and v(c) = {1}. Then it is clear that v(a) =
{1},v(=a Vv b) ={0,1},v(—a V c) = {1} and v(=bV —¢) = {0, 1}, but not 1 € v(—(—a V c)).

Model 4: to show that it is not the case that —(=bV —c) follows from C,.

Take the model v(a) = {0,1},v(b) = {0} and v(c) = {0}. Then it is clear that v(a) =
{0,1},v(=aVb) = {0,1},v(—aVc) = {0,1} and v(=bV —c) = {1}, but not 1 € v(=(=bV—c)).

This means that there are no arguments which defeat one of the arguments A; and As, so
Aj and A, are elements of a complete extension E. This means that (aV—a)V(bV—b)V(cV—c)
and ~((aV—-a)V (bV=b)V (cV—c)) are elements of Conc(E). Therefore, this argumentation
theory does not satisfy the postulate of direct consistency.

5.2 Da Costa’s Basic C-system: C|,

The system C,, of Da Costa (1974) adds the axioms ——A — A and A V —A to positive
logic, a negation free first-order logic (these added axioms are called the ‘Dialectic Double
Negation” (DDN) and ‘Exclusive Middle’ (EM) respectively). C,, is in certain aspects the
dual of intuitionistic logic, since in intuitionistic logic the axiom EM is invalid and the
axiom Non-Contradiction (NC, =(A A —A)) is valid. In C,,, the axiom EM is valid and NC
is invalid. Intuitionistic logic tolerates incomplete situations to avoid inconsistency, while
the C-systems admit inconsistent situations, but incomplete situations are removed. For
example, in C,, it is possible that all three sentences A, = A, ——A are true. However unlike
in the Logic of Paradox, sentences can only have one truth value. Next the semantics and
the proof theory are given which are sound and complete with respect to each other.

The propositional version of C,, has the following bivalent valuation for formulas built
from a logical language L.

1. v(ANB)=1<v(A)=1andv(B)=1
2. v(AVB)=1<v(A)=1lorv(B)=1
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3. V(A= B)=1<v(A)=0o0rv(B)=1
4. v(-A)=1<v(A)=0
5. v(A) =1<v(-—A) =1

An interpretation of a formula f by its valuation form is a model if and only if v(f) =1 in
that interpretation. An interpretation is a model of a set of formulas if and only if it is a
model of every formula in the set. The semantical logical consequence:

o Y Fc, A & for all evaluations v either v(A) = 1 or for some B € ¥, v(B) =0

It is easy to show that {A, ~A} ¥, B, since the following valuation function can be chosen:
v(A), v(=A) =1 while v(B) = 0.

Replacing LP with C,, as the source of strict rules in ASPIC™ still yields counterexam-
ples to direct consistency. (In this example, D denotes the material implication).

Example 5.2. Suppose that the knowledge base is K = K, U K, with £, = () and
Kp = {a,a D b,a D —b} with the following valuation: v(a) = 1, v(a D b) = 1 and
v(a D —b) = 1. Further suppose that R corresponds to C,, and that there are no defeasible
rules (R4 = (). Finally, assume that all basic fallible arguments are equally strong. Then
the following two arguments exist: Ay : a,a D b — b and As : a,a D —b — —b. These
are shown in Figure 4. These two arguments both use a strict rule. This means that
these arguments can only be defeated on their premises. However, none of —a, —(a D b),
—(a D —b) are in Clr,(K), so there are no arguments which defeat A; or A on their
premises. Therefore, A; and Ay will be elements of a complete extension F, which means
that b, =b € Conc(FE).

= v ][]

Figure 4: Arguments of Example 5.2

6. Another Attempt: Instantiating ASPIC* with Weak Consequence

In this section we investigate the use of another paraconsistent consequence notion, the so-
called weak consequence relation originally proposed by Rescher and Manor (1970). Its basic
idea is that a sentence weakly follows from a set S of sentences if it classically follows from at
least one consistent subset of S. This notion is clearly related to classical argumentation, as
we will formally show in Section 9. It also inspired by early consistency-based approaches
to argumentation, such as Krause, Ambler, Elvang-Ggransson, and Fox (1995). To our
knowledge, we are the first to use it in a system with defeasible rules. We first discuss the
weak-consequence notion and then define how it can be used to overcome the trivialisation
problem in ASPICT.
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6.1 Weak Consequence

Weak consequence over a standard propositional language is formally defined as follows.

Definition 6.1 (Weak consequence relation, Fy). I' by « if and only if there is a
maximal consistent subset A of I' such that A F « in classical logic.

Note that the word ‘maximal’ is in fact not required, since according to Lindenbaum’s
Lemma every consistent set of formulas can be extended into a maximally consistent one.
It is easy to see that {a,—a} Fw b does not hold, because {a,—a} is not a maximal
consistent subset of {a, wa}. Therefore, this consequence relation is paraconsistent.
We next discuss three other common properties.

[Reflexivity] If o € T', then I" Fy .

This property holds for Fy,. Each o € T belongs to some maximally consistent subset
A of I'. In classical logic, it holds that if o € A, then A | «. Therefore, it obviously holds
that T’ l_W Q.

[Monotonicity] I by «, then I',IT Fy a.

The monotonicity property can be proven for Fy as follows. There must be a maximal
consistent subset A of I such that A F «. Since A C I' UII, there must exist a maximal
consistent extension of A in ' UII, A/, such that A’ a. Therefore, I',II Fy «.

[Cut] I'a by S and T' Fy a, then T' Fy .

This rule does not hold. For a counterexample, consider the set I' = {a,—a A b}. Then
T'Fw band I',b by a A b, while it is not the case that I" -y a A D.

Since the Cut rule does not hold, a naive instantiation of ASPIC™’s strict rules with
this logic W would not avoid explosion, as shown in the following example:

Example 6.1. Consider the following knowledge base K, = {p, —p, r}, K,, = 0, instantiate
the strict rules with all valid inferences from finite sets in the logic W and let R4 = (). Then
the following arguments can be constructed:

Ai:p As: A —=pV-r
B:-p C:Ay,B— —-r
D:r

Argument C concludes with —r.

The underlying reason for this problem is that the Cut rule does not hold for -y, so that
in our example K, ¥y —r. So if we want ASPIC*’s strict part to behave according to Fyy,
chaining of strict rules should be excluded.? In Example 6.1, the argument C' is not allowed

3. A similar idea was suggested by Martin Caminada in personal communication. We will discuss his idea
in Section 10.
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since As already has a strict top rule. The prohibition of the chaining of strict rules will
prevent trivialisation. To this end, the ASPIC™ notion of an argument must be redefined,
which results in the ASPIC* framework.

6.2 The ASPIC* Framework

We now change the ASPIC* framework into the ASPIC* framework by disallowing the
chaining of strict rules in arguments. We first need to change the definition of an argument:

Definition 6.2. [Argument* in ASPIC*| An argument* A on the basis of a knowledge
base K = (K, <) in an argumentation system (£, R,n, <) is:

1. ¢ if p € K with
Prem(y) = {¢},
Conc(p) = ¢,
Sub(A) = {¢},
TopRule(A) = undefined.

2. Ay,..., A, > ¢ if Ay, ..., A, are arguments* with a defeasible top rule or are from
K and such that there exists a strict rule Conc(A4;),...,Conc(Ay,) — 9 in Rs.
Prem(A) = Prem(A;) U...UPrem(A4,),

Conc(A) =,
Sub(A) = Sub(A4;) U...USub(A4,) U {4},
TopRule(A) = Conc(Ay),...,Conc(4,) — 1.

3. Ay,..., A, = Y if Ay, ..., A, are arguments* such that there exists a defeasible rule
Conc(A1),...,Conc(4,) = ¢ in Ry.

Prem(A) = Prem(A;) U...UPrem(4,),

Conc(A) =,

Sub(A) = Sub(A4;) U...USub(A4,) U {4},

TopRule(A) = Conc(A;y),...,Conc(4,) = .

Arguments* are just a special case of ‘normal’ arguments. Therefore, all definitions for
(sets of ) arguments are the same in case the term argument can be replaced by argument*
without problems. Attack and defeat are just the same for arguments*. Structured and
abstract argumentation frameworks for the ASPIC* framework are just the same except
that they only contain arguments*. Accordingly, the notions of justified and defensible
arguments* and conclusions are still defined as in Section 2.

The new ASPIC* framework motivates a new interpretation of the strict-closure pos-
tulate in case R corresponds to a logic L. The fact that the weak-consequence notion Fyy
does not satisfy the Cut rule shows that closure under Rs does not in general coincide
with closure under the consequence notion of the logic to which R4 corresponds. In fact,
Example 6.1 can be easily extended to a counterexample for Fyy, since —r is in the strict
closure of {p,—p} while {p,—p} P/ —r. This in turn gives a reason to doubt whether full
closure under strict rules is always desirable. Arguably this desirability depends on the
properties of the logic to which R corresponds: if this logic does not satisfy the Cut rule,
then full strict closure is not desirable. Instead, what is desirable in such cases is that
extensions are closed under consequence in the adopted logic for Rs. This is what we will
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prove for ASPIC* when its strict rules correspond to Fyy. To this end we will below restrict
the strict-closure postulate to ‘allowed’ applications of strict rules and we will, moreover,
introduce a new rationality postulate of logical closure.

We think that this analysis is compatible with Caminada and Amgoud’s (2007) reason
for proposing the strict-closure postulate, since arguably their implicit assumption behind
this postulate was that formulas in the strict closure are always ‘reachable’ in that arguments
for them can be constructed from the arguments in the extension:

The idea of closure is that the answer of an argumentation-engine should be
closed under strict rules. That is, if we provide the engine with a strict rule
a — b (...), together with various other rules, and our inference engine outputs
a as justified conclusion, then it should also output b as justified conclusion.
Consequently, b should also be supported by an acceptable argument (emphasis
added by current authors). (Caminada & Amgoud, 2007, p. 294).

This quote is compatible with our new account of strict closure and our new logical-closure
postulate, since if Ry is based on Fyy, the implicit assumption that ‘being in the strict
closure of an extension’ equates ‘supportable by an acceptable argument’ is not satisfied.

To formalise our new interpretation of the strict-closure postulate, new notions of strict
closure and indirect consistency are needed. We first explain some notation. Recall from
Section 2 that for any set S of arguments, F'A(S) denotes the set of basic fallible arguments
in S and NP(S) denotes the set of all necessary premises of any argument in S. The
corresponding notions for ASPIC* will be denoted by FA*(S) and NP*(S). Next, for
any set S of arguments* let S7# be defined as FA*(S) U NP*(S). The set S# contains
those arguments* in S that have no strict top rule, so they are the arguments* in S to
the conclusions of which a strict rule can be applied to form new arguments*. Then strict
closure and indirect consistency can be redefined as follows.

Definition 6.3. [Closure*] For any X C L, let the closure* of X under strict rules,
denoted Clj (X)), be the smallest set containing X and the consequent of any strict rule in

Rs whose antecedents are in X. The set of arguments* S is said to be closed* under strict
rules if and only if Conc(S) = Clj (Conc(S7)).

The new strict closure notion amounts to one-steps application of strict rules.
Definition 6.3 is clarified in the following example.

Example 6.2. Suppose we have the following sets: K, = {p}, K, = {¢,t} and Ry = {¢ =
r,t = —s} and Rg corresponds to classical propositional consequence. Then the following
set S of arguments* can be constructed.

A = P A5: A3:>_\8
As= ¢ Ag= A1, Ay —pAr
A3 = t A7 = A — —sVo

A4 = A2 =T
In this example S#* = {Ai,..., A5} because it is allowed to apply strict rules to these
arguments*. S is not closed* under strict rules, since for example p A ¢ ¢ Conc(S) while
argument™ Ag = Ay, A3 — p A ¢ can be constructed, so p A q € Cl%s(Conc(S#)).
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Definition 6.4. [Indirect consistency*| A set X C L is indirectly consistent™ if there is
not a ¢ € L such that p,~p € Cly (X). Otherwise it is indirectly inconsistent*. A set of
arguments* S is said to be indirectly consistent™ if Conc(S*) is indirectly consistent”.

Henceforth by consistent* we mean indirectly consistent*. The rest of the ASPIC*
framework is the same as in the ASPICT framework.

7. Verifying the Postulates for ASPIC* with Weak Consequence

In this section we investigate a class of instantiations of the just-defined ASPIC* framework
in which the language £ is a (nonempty) propositional language and the set R of strict rules
corresponds to Rescher and Manor’s (1970) notion of weak consequence over this language.
More precisely:

e Rs={S — ¢ |Stw pand S is finite}

Below we will speak of such instantiations of ASPIC* as ‘ASPIC* SAFs with Fy’. The
theorem below states that SAF's avoid trivialisation in the sense of Definition 4.1.

Theorem 7.1. No ASPIC* SAFs with Fyy is defined by an argumentation theory with a
trivialising argumentation system.

It remains to be investigated whether this class of instantiations of ASPIC™* satisfies
Caminada and Amgoud’s (2007) rationality postulates and the newly proposed postulate
of logical closure. To this end, we first formally specify these postulates for ASPIC*.*

Definition 7.1. [Rationality postulates for ASPIC*| Let A = (A,C, <) be an ASPIC*
structured argumentation framework defined by an ASPIC* AT with AS = (£,R,n) and
K =K,UK,. Let AF be the abstract argumentation framework corresponding to A and
let T € {complete, preferred, grounded, stable}. Then:

A satisfies the closure under subarguments postulate iff for all T-extensions E of AF
it holds that if an argument* A is in E then all subarguments* of A are in F;

A satisfies the consistency postulate iff for all T-extensions E of AF it holds that
Conc(E) is consistent™;

A satisfies the strict closure postulate iff for all T-extensions F of AF it holds that
Conc(E) = Cl% (Conc(E*)).

S

e If R, corresponds to logic L, then A satisfies the L-closure postulate iff for all T-
extensions F of AF and all ¢ € £ it holds that if Conc(E) -1, ¢ then ¢ € Conc(FE).

Since all grounded (preferred, stable) extensions are also complete extensions, it suffices
the prove the postulates for complete extensions. Now one way to prove the first three
postulates is to try to adapt the proofs of Modgil and Prakken (2013) for ASPIC™T to

4. Caminada and Amgoud (2007) also propose postulates for the intersection of extensions and their con-
clusion sets, but since their satisfaction directly follows from satisfaction of the postulates for individual
extensions, these postulates will below be ignored.
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ASPIC*. However, a problem here is that in general, if R, corresponds to Fyy, then
closure under transposition and contraposition do not hold in ASPIC*. We first give a
counterexample to closure under transposition.

Example 7.1. Since {a,b,c} by a A b and because of the monotonicity of the logic W, it
holds that {a,b,c,—a} Fw a Ab. This means that a,b,c,~a — a A b is in Rs. However,
there is no maximal consistent subset of {a,b,—=(a A b),—a} that proves —c in classical
logic. Therefore {a,b,=(a A b),—~a} Fw —c and so a,b,—(a A b),~a — —c ¢ Rs. This
means that if the strict rules R in an argumentation system AS of the argumentation
theory AT = (AS,K) are instantiated with the valid inferences in the logic W, then the
argumentation theory AT is not closed under transposition.

A similar counterexample can be given to closure under contraposition.

Example 7.2. Consider a knowledge base with K, = 0 and K, = {a,b,c,—a}. Since
{a,b,c,—a} Fw aAband {a,b, ~(aAb), 7a} Fw —c, it follows that aAb € Clg,({a,b,c,~a}),
but not —¢ € Clgr,({a,b,—~(a A b),—-a}) (because chaining of strict rules is not allowed).
Therefore, if the strict rules Ry in an argumentation system AS of the argumentation
theory AT are instantiated with the valid inferences in the logic W, then AT is not closed
under contraposition.

Therefore, the results of Modgil and Prakken (2013) cannot be directly used for our
purposes. However, in a somewhat different formal setting, Dung and Thang (2014) provide
weaker conditions for satisfying the rationality postulates, which are implied by but do not
imply closure under transposition or contraposition. We will therefore use their results as a
guidance in verifying the postulates for the just-defined class of instantiations of ASPIC*.
Dung and Thang (2014) formulate their results in terms of an adaptation of Amgoud and
Besnard’s (2013) abstract-logic approach to abstract argumentation with abstract attack
and support relations between arguments. After defining their adaptation they apply it to
what they call “rule-based systems”. It turns out that for our purposes we do not need Dung
and Thang’s general abstract framework but that we can instead adapt their definitions for
their rule-based instantiation to ASPIC™*. In doing so, we will for each of our definitions and
results indicate its counterpart for Dung and Thang’s rule-based systems. Our definitions
below implicitly assume a given ASPIC* structured argumentation framework.

Definition 7.1. [Base of an argument*, (cf. Dung & Thang, 2014, Def. 6)] Let A
be an argument* and BA be a finite set of subarguments* of A. BA is a base of A if

e Conc(A) € Cl% (Conc(BA));

s

e For each argument* C', C defeats A if and only if C' defeats BA.
The following example shows the intuitive idea of a base.

Example 7.3. Take K, =0, K, = {a,b}, Rs = {¢ = d} and Ry = {a,b = c¢}. Then the
following arguments* can be constructed: A; : a, As : b, A3 : A1, Ao = cand Ay : A3 — d.
See Figure 5.

Ay can only be attacked on its subarguments* A;, Ao, or A3 because of the strict top
rule. Every argument* that attacks A; or As also attacks As, so every argument® that
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Figure 5: Arguments* of Example 7.3

attacks Ay also attacks Asz. It is easy to see that every argument* that attacks As also
attacks A4. Conc(A4) C Clg,(Conc(As)), so {As} is a base of A4. The same kind of
reasoning applies to the fact that the set {Aj, As, A3} is also a base of Ay.

However note that the set { A1, A2} is not a base of A4, because Az can be rebutted without
Ajq or Ay being attacked.

Definition 7.2. [Generation of arguments*, (cf. Dung & Thang, 2014, Def. 7)]
An argument* A is said to be generated by a set of arguments* .S, if there is a base B of A
such that B C Sub(.S). The set of all arguments* generated by S is denoted by GN(S).

The following lemma follows by definition of GN ().

Lemma 7.2. [(cf. Dung & Thang, 2014, Lemma 1(2))] For every set of arguments*
S, Sub(S) C GN(S).

Theorem 7.3. [(cf. Dung & Thang, 2014, Thm. 1)] Let E be a complete extension,
then GN(E) = E.

Note that Lemma 7.2 and Theorem 7.3 immediately imply the closure* under subarguments*
postulate since for every complete extension E: Sub(E) C GN(FE) = E.

Theorem 7.4. Each ASPIC* SAF satisfies the closure* under subarguments* postulate.

Definition 7.3. [Compact, (cf. Dung & Thang, 2014, Def. 8)] An ASPIC* SAF is
compact if for each set of arguments* S, GN () is closed* under strict rules. This is equal
to Conc(GN(S)) = Cly,_(Conc(GN(S)%)).

The following two theorems can later be combined for proving closure* under subarguments*
postulate.

Theorem 7.5. [(cf. Dung & Thang, 2014, Thm. 2)] Each compact ASPIC* SAF
satisfies the closure* under strict rules postulate.

Theorem 7.6. Each ASPIC* SAF with Fy is compact.

Definition 7.4. [Cohesive, (cf. Dung & Thang, 2014, Def. 9)] An ASPIC* SAF is
cohesive, if for each inconsistent* set of arguments* S, GN(S) is conflicting (attacks itself).
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Theorem 7.7. [(cf. Dung & Thang, 2014, Thm. 3)] Each cohesive ASPIC* SAF
satisfies the consistency™ postulate.

The next two definitions are needed for proving cohesiveness.

Definition 7.5. [Self-contradiction axiom, (cf. Dung & Thang, 2014, Def. 14)] An
ASPIC* SAF is said to satisfy the self-contradiction axiom, if for each minimal inconsistent
set X C L: =X C Cly (X).

Definition 7.6. [Axiom consistent*] An ASPIC* SAF is axiom consistent” if and only
if Cl3_(Ky) is consistent™.

Theorem 7.8. [(cf. Dung & Thang, 2014, Thm. 5)] If a compact, axiom consistent*
ASPIC* SAF has a reasonable argument ordering and satisfies the self-contradiction axiom,
then SAF is cohesive.

Theorem 7.9. Each ASPIC* SAF with Fyy satisfies the self-contradiction axiom.

Combining Theorem 7.5, 7.6, 7.7, 7.8 and 7.9 results in the following important conclu-
sion.

Theorem 7.10. Each ASPIC* SAF with Fy which is axiom consistent* and has a rea-
sonable argument ordering satisfies the strict-closure* and consistency* postulates.

Finally, satisfaction can be proved of the newly proposed postulate of logical closure.
Below, ¢, denotes classical consequence.

Lemma 7.11. Each ASPIC* SAF with Fy satisfies the following property: for any set S
of arguments* it holds that if Conc(S) Fcr ¢, then Conc(S#) Foyr .

Lemma 7.12. Each ASPIC* SAF with Fyy satisfies the following property: for any set
of arguments* it holds that if Conc(F) is strictly closed* and consistent®, then Conc(FE) is
classically consistent.

Theorem 7.13. Each ASPIC* SAF with Fy which is axiom consistent* and has a rea-
sonable argument ordering satisfies the logical closure postulate.

It can be concluded that we have identified a class of instantiations of the new AS-
PIC* framework with Rescher and Manor’s (1970) weak consequence notion that satisfies
the consistency and closure postulates while preventing trivialisation in case of rebutting
arguments. In order to obtain these results, the ASPICT framework had to be adapted
by prohibiting chaining of strict rules, resulting in the new ASPIC* framework and new
notions of strict closure and indirect consistency, plus a new postulate of closure under
logical consequence.

8. Minimality of Arguments

In this section we address two aspects of minimality of arguments. We first explain the issue
of inference rules with non-minimal sets of antecedents in more detail, we then investigate
the effects of requiring strict rules to have minimal antecedent sets, and we finally study
the issue of non-circular arguments.
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8.1 The Issue of Minimality of Antecedent Sets

As said in the introduction, deductive approaches to argumentation (e.g., Besnard & Hunter,
2008; Gorogiannis & Hunter, 2011; Amgoud & Besnard, 2013) require arguments to have a
subset-minimal set of premises. For example, Gorogiannis and Hunter define an argument
as any (S,p) where S is a set of well-formed propositional formulas and p a well-formed
propositional formula, such that:

1. S is consistent in classical propositional logic
2. S implies p in classical propositional logic
3. no proper subset of S implies p in classical propositional logic

(Hunter 2007 explores relaxations of these properties with his notion of ‘approximate argu-
ments’.) However, if arguments can apply defeasible inference rules, then the third require-
ment is undesirable, since defeasible rules that are based on more specific information may
well be stronger. Consider the following example:

Example 8.1. Consider an argumentation system with Ry = 0, Rq = {p = ¢;p,r =
¢;r = —q} and consider a knowledge base with K, = {p,r} and K, = (). The following
arguments can be constructed.

A1: P

Ay Ay = (q
Bli T

Bs: Al,Bl =q
C: By = —¢q

For a real-world example of the two defeasible rules for ¢ consider again the example from
the introduction: Observations done in ideal circumstances are usually correct is on any
reasonable account of rule strength stronger than Observations are usually correct. Now
consider an argument ordering where arguments are compared on specificity. Then we have
that C' < By while Ay and C' are incomparable. Then in all semantics a unique extension
{A1, Ag, By, B2} results, which is the intuitively correct outcome. However, if all arguments
are required to have subset-minimal premises, then By cannot be constructed and the
outcome is different: the grounded extension is { A1, B1} while there are two preferred and
stable extensions, namely, {A1, By, A2} and {A1, By, C}.

The same analysis holds for defeasible versus strict rules. Consider a defeasible rule
p = q and a strict rule p,r — ¢: then we clearly do not want to rule out an argument for
q with premises p and 7, since it could well be stronger than the defeasible argument for ¢
with premise p. However, as noted above, this analysis does not apply to strict inference
rules, since any strict inference guarantees its conclusion given its premises. So it still makes
sense that strict inference rules should only be applied to a subset-minimal set of formulas.
With this requirement, the number of arguments that can be generated can be significantly
reduced in case this restriction is introduced, which can result in a more efficient system.
The following example illustrates the problems that arise without the requirement that
strict rules have subset-minimal sets of antecedents.
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Example 8.2. Suppose the strict rules of an argumentation system are instantiated with
classical logic and consider a knowledge base with IC;, = ) and K, = {p, ¢, 7, s,t,u}. Then
among other things, argument A; : p,q — p A ¢ can be constructed. Since classical logic is
monotonic, all following arguments (and more) for p A ¢ can also be constructed.

As:p,q,mr—pANq  A3:p,q,s —pAgq
Ag:pog,t —pAg As:p,q,u—pAgq
Ag:p,q,m,s =pANq A7:p,qt,u—pAgq

All arguments in the table of Example 8.2 can be considered as redundant given A;.
Recall that for defeasible rules this is different, since more specific defeasible rules for the
same conclusion may well be stronger, as just explained. The problem then is to adapt the
minimality requirement to the setting with defeasible rules and to investigate the extent to
which this affects the conclusions that can be drawn.

8.2 Minimal Arguments* for the ASPIC* Framework

We next investigate whether excluding strict inferences from non-subset-minimal sets of
formulas makes a difference. In line with the focus in this paper we will only prove results
for ASPIC*, but the proofs for their ASPICT counterparts would be entirely similar. In
particular, we want to know whether the conclusions that can be drawn from an argumen-
tation framework are affected in case arguments* are required to be minimal. We will prove
that under a rather weak condition on the argument* ordering the conclusions are the same
in both cases.

First, the above described idea of minimal arguments is formally defined. The main
difference with Definition 6.2 is that clause (2) now disallows application of strict rules with
a non-minimal antecedent set.

Definition 8.1. [Minimal argument*| A minimal argument* A on the basis of a knowl-
edge base K = (K, <) in an argumentation system (£, R,n, <'):

1. ¢ if ¢ € K with
Prem(p) = {¢},

Conc(p) = ¢,
sub(A) = {¢},
TopRule(A) = undefined.

2. Ay,..., A, = ¢ if Ay, ..., A, are minimal arguments* with a defeasible top rule or
are from /C and such that there exists a strict rule Conc(4;),...,Conc(A,) — 9 in R,
and does not exist a strict rule ay,...,a; — ¢ for {ay,...,a;} C Conc({A1,...,A,})
in Rg.

Prem(A) = Prem(A;) U...UPrem(4,),
Conc(A) =,

Sub(A) = Sub(A4;) U...USub(A4,) U {4},
TopRule(A) = Conc(A;y),...,Conc(4,) — 1.
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3. Ay,..., A, = Y if Ay, ..., A, are arguments* such that there exists a defeasible rule
Conc(A1),...,Conc(4,) = ¢ in Ry.

Prem(A) = Prem(A;) U...UPrem(4,),

Conc(A) =,

Sub(A) = Sub(A4;) U...USub(A4,) U {4},

TopRule(A) = Conc(A;),...,Conc(4,) = .

Recall that each of the functions defined in this definition can also be defined for sets of
arguments*.

It is easy to see that our minimality constraint does not exclude the construction of
argument B> in Example 8.1, as desired.

In order to show that non-minimal arguments* are not required to obtain the right
extensions, we first define the notions of a minimal and an extended version of an argument*.
Informally, a minimal version of an argument* A is an argument* A~ that is the same as
A except that in A~ any non-minimal strict rule in A is replaced with a minimal version of
the strict rule, i.e., a strict rule with the same consequent but a subset-minimal antecedent
set. This may lead to the deletion of subarguments* from A, namely, subarguments* for
the deleted antecedents. Conversely, an extended version of a minimal argument* A~ is
any argument that is the same as A~ except that in A zero or more strict rules in A~ are
replaced with non-minimal version of these strict rules. This may lead to the addition of
subarguments*, namely, subarguments* for the added antecedents.

Definition 8.2. [A™ and S7] For any argument* A, an argument* A~ is a minimal
argument* of A iff:

e Ac Kand A~ = A; or
° AisoftheformAl,...,An—><pandA_:A;,...,Aj_—mosuchthat:

— Conc({4;,...,A;}) is a minimal subset of Conc({41,...,A,}) such that
Conc(A;),...,Conc(Aj) = ¢ € Ry; and
— For every k € {i,...,j} it holds that A, is a minimal argument* of Ay;

or

o Ais of the form Ay,...,; A, = ¢ and A~ = A} ,..., A, = ¢ such that for every
1 <14 < nit holds that A; is a minimal argument™ of A;.

For a set of arguments* S, define S~ as all minimal arguments* of S.
Below, when we write A, we mean that argument* A~ is a minimal argument* of A.

Note that A~ is not guaranteed to be unique. For example, argument* A : pAq,qAp — p
has two minimal variants, namely Ay : pA ¢ — pand Ay : g Ap — p.

Obviously, the following structured argumentation frameworks are ASPIC* frameworks
that only contain arguments*.

Definition 8.3. [Minimal SAF, SAF~| Fora SAF = (A,C, <), let SAF~ be the minimal
SAF with SAF~ = (A7,C~,=<7). Where C~ is defined as CN (A~ x A7) and <7 ==
N(A~ x A7).
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Definition 8.4. [Extended argument*, A*| For any argument* A, an argument* A% is
an extended argument® of A iff:

e AcKand AT = A; or

o A=Ay,...,A, = p,and AT = A|,... Al — ¢ such that m > n and for every A}
(1 <i < n) it holds that A} is an extended argument* A of A;; or

o A=A,..., A, = p,and AT = A|,..., Al, = ¢ such that for every A} (1 <i<n)
it holds that A’ is an extended argument* A of A;.

Below, whenever we write AT, we mean that argument* AT is an extended argument* of

A.

Note that A is also an AT and that A is an A=+, In general, AT is not unique.
The following example clarifies the definitions given above.

Example 8.3. Consider a SAF with the following arguments:

Ap:p As:p—gq
Ag:r Ag:p,r—q

Then A;, As and As are minimal arguments*, so SAF~ contains these three arguments*.
A, is the minimal argument* corresponding to A4, so A2 = A, . Now, it is also easy to see
that indeed A4 is an A;. Furthermore Ay is one example of an A;.

For some results that follow, it is needed that for any argument* A, A" cannot be
strictly preferred in the argument ordering over A and that A cannot be strictly preferred
over A~. This is not implied by the current definition of a reasonable argument* ordering.
This is illustrated with an example.

Example 8.4. Consider again Example 8.3, assume that p and r are in K, and assume
the following argument* ordering (where z ~ y means as usual that = < y and y < x):
Ay = Ag; Az = Ay, Ay < A4, This argument* ordering satisfies all properties of a reasonable
argument”™ ordering but is nevertheless counterintuitive, since the only difference between
Ao and Ay is that A4 contains a non-minimal version of a strict rule applied in As: since
strict rules guarantee their consequent given their antecedent, A4 should intuitively not be
strictly preferred over As.

Therefore, we introduce the definition of a tolerable argument* ordering.

Definition 8.5. [Tolerable argument* ordering| < is a tolerable argument* ordering if
and only if:

e For every AT of A, AT < A;

e Forany A~ of A, A=< A".
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Intuitively, an argument* ordering is tolerable if replacing a minimal strict rule with
one of its non-minimal versions cannot make an argument* stronger and if replacing a
non-minimal strict rule with its minimal version cannot make an argument* weaker. For
strict inference rules, which are meant to capture deductively valid inferences, this is a very
natural property, since these operations always amount to adding, respectively, deleting
attackable subarguments*.

The next lemmas are all needed for proving the equivalence of the conclusions that are
drawn from minimal and non-minimal structured argumentation frameworks.

Lemma 8.1. For any argument* A and any extended argument* AT the following holds:
for any A’ € Sub(A) there is an argument* A” € Sub(A™") such that A” = A'*.

This lemma is clarified with the example below.

Example 8.5. Take the following arguments*:

Ai:p—>pVg Ay A1 = s
Bi:p,r—>pVq By:Bi=s

Then it is obvious that Bs is an A5 . Lemma 8.1 states that for every subargument* A’ of
Aj there is a subargument* B’ of A such that B’ = A'*. For example, take A’ to be A;.
Then Bj is the subargument* of Bs such that By = Af.

The preceding result is needed for proving that if argument* A attacks/defeats B, then
the minimal argument* corresponding to A attacks/defeats every extended version of B.

Lemma 8.2. If < is a tolerable argument* ordering and argument* A defeats/attacks B,
then every A~ defeats/attacks every BT.

The following lemma follows from Lemma 8.2.

Lemma 8.3. If < is a tolerable argument* ordering, then for all complete extensions E:
1. If A€ E, then A~ € E for every A™;
2. If B¢ E, then BT ¢ E for all BT.

The following lemma states that Dung’s characteristic function (see Definition 2.1) is a
monotonic bijection from all complete extensions of a SAF~ onto all complete extensions
of SAF. This lemma is based on the results of Dung, Toni, and Mancarella (2010) for the
ABA framework, which will be discussed below. First, the following definition is needed.

Definition 8.6. [S™] For a set of arguments S, let S~ be the set of arguments in S such
that each argument is minimal.

Lemma 8.4. Let SAF~™ = (A™,C™, <7) be the minimal structured argumentation frame-
work corresponding to SAF = (A,C, <) (for the ASPIC* framework), and let AF be the
abstract argumentation framework corresponding to SAF'. Let < be a tolerable argument*
ordering. Also, let C' and C'~ be the sets of complete extensions of SAF and SAF ™ respec-
tively and let Fl4p be Dung’s characteristic function of AF. Then:
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1. Foreach E € C~ : Fop(E)” = E.
2. Foreach Ee€ C: Fap(E~7)=F and E~ € C.

Clause (1) says that the set of acceptable minimal arguments* w.r.t. an extension of a
minimal SAF does not change if also non-minimal arguments* are considered. Clause (2)
says that the set of acceptable arguments* w.r.t. an extension of a non-minimal SAF does
not change if only minimal arguments* are considered.

Below, the main result is stated for the conclusions that can be drawn from SAF's and
SAF~s. This theorem is also based on the results of Dung et al. (2010) for the ABA
framework.

Theorem 8.5. Let SAF~ = (A~,C~, <7) be the minimal structured argumentation frame-
work corresponding to SAF = (A,C, <) (for the ASPIC* framework). Let < be a tolerable
argument* ordering. Take T' € {complete, grounded, preferred, stable} and F' as defined in
Definition 2.1, then:

1. Let E¥ be a T extension in SAF, then £~ is a T extension in SAF ™.
2. Let FE be a T extension in SAF ™, then F(FE) is a T extension in SAF.

By combining all these results it can be concluded that the conclusions that can be drawn
from an ASPIC™ structured argumentation framework are not affected in case arguments*
are required to be minimal.

Our results generalise those of Modgil and Prakken (2013), who prove the same result for
the special case of arguments with minimal sets of premises (their Proposition 28). Other
related work is Dung et al. (2010), which study minimal arguments for assumption-based
argumentation (ABA) as reconstructed by Dung et al. (2007) in terms of Dung’s (1995)
abstract argumentation frameworks. As mentioned above, this version of ABA can be
reconstructed as a special case of the ASPIC™ framework without preferences and defeasible
rules. In fact, Dung et al. (2010) define the notion of a non-redundant argument, which is
more general than the notion of a minimal argument defined in this paper. A non-redundant
argument is in turn defined in terms of a less redundant relation. Then Dung et al. (2007)
prove similar results for ABA as our Theorem 8.5 for ASPIC*. Our above constructions and
proofs are clearly inspired by the work of Dung et al. (2010). However, a purely formal link
with ASPIC* cannot be established, since unlike ABA, ASPIC* does not allow chaining of
strict rules. For this reason we will not make a detailed formal comparison here.

8.3 Disallowing Repetition of Conclusions

We now address a second aspect of minimality, by studying a modification of ASPIC™* in
which circular arguments* are avoided, that is, in which an argument* cannot have the
same conclusion as one of its subarguments*. This requirement is not part of ASPIC™T as
defined by Prakken (2010) and Modgil and Prakken (2013) but it is part of the system
of Vreeswijk (1997), from which the ASPIC-style definition of an argument originates. In
argumentation theory, circular arguments are generally regarded as fallacious, so it seems a
good idea to exclude them. In addition, this has computational benefits, as will be shown
in this section. First Definition 6.2 of an argument* is modified as follows.
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Definition 8.7. [Strongly minimal arguments* in ASPIC*| Strongly minimal arguments*
are defined as arguments* in Definition 8.1 except that the following condition is added to
clauses (2) and (3):

d) € COIlC{(Al, s 7A7L)}

Below we call a structured argumentation framework strongly minimal if its set of
arguments* is defined with Definition 8.7.

Disallowing repetition of conclusions can in general change the extensions, as the fol-
lowing example shows.

Example 8.6. Consider an argumentation theory with K, = K, = 0 and Ry = {= p,=
—p,p = p}. Then there are at least two arguments* for p and at least one for —p:

Ali =P
Ag: Ay =p
B: =-p

If we have an ordering on rules Ry such that = p <= —p < p = p (where & < y means
that y is strictly preferred over x), then with the last-link ordering as defined by Modgil and
Prakken (2013), B defeats A; while Ay defeats B, which yields a grounded extension that
contains neither of these three arguments*. However, if Ay cannot be constructed, then the
grounded extension contains B.

As just noted, excluding circular arguments* not only avoids fallacies but also has com-
putational benefits. In particular, it can be shown that if  and R, are finite, then each
argument* has at most a finite number of attackers. In the words of Dung (1995) this
means that the induced abstract argumentation framework is ‘finitary’. As shown by Dung,
finitary AFs have a number of computational benefits. Among other things, the grounded
extension can be constructed by iterative application of the F' operator (see Definition 2.1
above) on the empty set.

To prove this result, we first introduce some notation relative to a given AT.

e For any r which is defined as S — ¢ € Rs or as S = ¢ € Ry let Cons(r) = ¢.
e For any set 7' C R let Cons(T) = {¢ | ¢ = Cons(r) for some r € T'}.

e Let ¥ ={S - peRs|SCKUCons(Ry)}. Informally, X is the set of all strict rules
that are potentially applicable in the AT, that is, of which the antecedents all belong
to IC or are a consequent of a defeasible rule. Note that this set does not have to be
equal to R, since it might be that all rules in R apply to some set of well-formed
formulas from £ while yet ¢ ¢ Kand there is no defeasible rule with consequent .

e For any Y C £ define XY = {S — ¢ € X | ¢ € Y}. Informally, XY is the set of all
potentially applicable rules for a formula in Y.

We next prove the following lemma.

Lemma 8.6. For any finite Y C £ it holds that &Y is finite.
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Then the following result can be proven.

Theorem 8.7. Let SAF = (A,C, <) be a strongly minimal structured argumentation
framework corresponding to an argumentation theory with a finite IC and R4. Then for any
¢ € L the set {A € A | Conc(A) = ¢} is finite.

Note that this result cannot be proved without the exclusion of arguments that chain
strict rules, since otherwise infinite sets of arguments for the same conclusion p can be
generated by constructing arguments as follows for any n, which provides a counterexample
to Theorem 8.7 in case such arguments are not excluded:

A1 =p
Ag=A1 = —p
A3 = A2 — T Tp

Ap = A — D

It remains to verify the rationality postulates for strongly minimal SAFs. It turns out that
the only result of Section 7 that needs to be reproved is the only-if half of Theorem 7.6.

Theorem 8.8. Each strongly minimal ASPIC* SAF with Fyy is compact.
Combined with the other results of Section 7 this implies that

Theorem 8.9. Each strongly minimal ASPIC* SAF with Fy which is axiom consistent™
and has a reasonable argument* ordering satisfies the closure* and consistency* postulates.

9. ASPIC™ as a Generalisation of Classical Argumentation

In this section we explain that by combining the two main contributions so far, a class of
instantiations of ASPIC”* is obtained that is a proper generalisation in three respects of
two versions of classical argumentation defined by Besnard and Hunter (2008) and Goro-
giannis and Hunter (2011)°. The two versions for which this holds are of particular interest
since they are by Gorogiannis and Hunter proven to be the only two of seven versions of
classical argumentation that satisfy the consistency postulates. The observation can be
explained as follows. Modgil and Prakken (2013) prove that classical argumentation with
two forms of premise attack called direct undercut and direct defeat can be reconstructed as
the following class of instantiations of ASPICT: no defeasible rules, no preference relations
between arguments, only ordinary premises, £ has a negation symbol as defined above in
Definition 2.3, all arguments have indirectly consistent premise sets, and the strict rules
are instantiated with all classically valid inferences from finite sets of premises. Modgil
and Prakken (2013) also prove that requiring arguments to have subset-minimal premises
implying their conclusion does not change this result. Then it should be shown that for
such classical-logic instantiations the prohibition in ASPIC™* to chain strict rules does not
make a difference with ASPICT either. If we can show this, then we have shown that
instantiations of ASPICT in which R, corresponds to Rescher and Manor’s (1970) notion

5. We thank Sanjay Modgil for suggesting this to us in personal communication
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of weak consequence and in which all arguments* are minimal are proper generalisations of
classical argumentation. We will actually prove this for the case with nontrivial preferences
but where the preferences are fully determined by the premises; then the result for the case
with an empty preference relation follows as a special case.

Below with a minimal ASPIC™ or ASPIC* argumentation theory we mean an argumen-
tation theory where all arguments or all arguments* have a subset-minimal set of premises.
Clearly, for arguments* this means that they are also minimal in the sense of Definition 8.1.
Moreover, a c-structured argumentation framework is a notion from Modgil and Prakken
(2013): restricted to the present context it amounts to the requirement on SAFs that all
arguments have classically consistent premises. The notion of a minimal c-structured argu-
mentation framework is defined accordingly.

Theorem 9.1. Let AS be an argumentation system with £ a classical-logic language and
Rs corresponding to classical logic, and let L = K, be a knowledge base in £. Let AS*
be obtained from AS by removing from R all inference rules that are invalid according to
Fyw. Let AT = (AS,K) be a minimal ASPICT argumentation theory and AT* = (AS*,K)
the corresponding minimal ASPIC* argumentation theory. Then let SAF = (A,C, <) and
SAF* = (A*,C*,<*) be, respectively, the minimal c-structured argumentation framework
defined by AT in ASPICT and the minimal structured argumentation framework defined
by AT* in ASPIC* such that:

e For all A,B,C € A: if Prem(A) = Prem(B) then (C < Aiff C < B and A < C iff
B < (C). Likewise for <*.

e For all A*, B* € A*: A* < B* iff A* <* B*
Then for T € {complete, grounded, preferred, stable} it holds that:

1. Let E be a T extension in SAF, then £ N A* is a T extension in SAF* such that
Conc(E) = Conc(E N .A*).

2. Let E be a T extension in SAF™, then F(E) is a T extension in SAF such that
Conc(E) = Conc(F(E)).

A special case of this result is that for the case without defeasible rules, necessary
premises and preferences ASPIC™* with -y gives the same conclusion sets as classical argu-
mentation. Then the first proper extension of classical argumentation is with preferences.
The second proper extension is with the necessary premises IC,, while the third proper ex-
tension is to the case with defeasible rules, by observing that in ASPIC™* any strict rule that
is applied to the conclusion of at least one defeasible subargument* is applied to a subset-
minimal and classically consistent set of formulas that classically implies the consequent of
the strict rule.

10. Summary, Discussion and Conclusion

In this section we summarise and discuss our results and put them in the context of related
work.

6. This is well-defined since by construction of SAF and SAF™ and the fact that Fy draws no inferences
from inconsistent sets it holds that A* C A.
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10.1 Summary of the Results

In this paper we tackled several related issues concerning relevance in structured argumen-
tation. We carried out our investigations in the context of the ASPIC™T framework, which
consolidates and extends one of the main Al approaches to argumentation: modelling com-
bined reasoning with strict and defeasible inference rules. One main contribution of this
paper was to solve the long-standing trivialisation problem first identified by Pollock (1994,
1995). The problem is to tame the trivialising effect of the Ex Falso principle in classical
logic in a way that preserves consistency and closure properties. To solve this problem, we
instantiated the strict rules of ASPICT with Rescher and Manor’s (1970) paraconsistent
logic W. To make this work, we had to disallow chaining of strict rules in arguments since
the logic W does not satisfy the Cut rule; this resulted in the adapted framework ASPIC*
and in a new view on the postulate of strict closure. We argued that what is important is
not whether conclusion sets are closed under strict rules but whether they are closed under
the consequence notion of the logic to which the strict rules correspond. Accordingly, we
modified the notion of strict closure and we introduced a new rationality postulate of logical
closure. We then proved new versions of the consistency and closure postulates for ASPIC*.
We also investigated whether two other well-known paraconsistent logics, the system C,, of
Da Costa (1974) and the Logic of Paradox of Priest (1979, 1989), are suitable sources of
strict rules. We showed that in both cases this would lead to violation of indirect consis-
tency. In future research we want to consider other paraconsistent logics and we want to
more generally study the properties that a paraconsistent logic should satisfy to be useful
as a source for strict rules in ASPIC*.

The second issue studied in this paper was minimality of arguments. We first showed
that under a natural assumption on the argument ordering, restricting strict-rule applica-
tion to subset-minimal sets of formulas does not affect the conclusions drawn in ASPIC™.
This will in many cases make the reasoning more efficient by ignoring irrelevant informa-
tion. We also noted that this result can be easily adapted to ASPICT. We then disallowed
circular arguments in ASPIC* and showed that this may change the status of arguments
but does not affect the satisfaction of the rationality postulates. In addition, we proved that
with a finite set of defeasible rules and a finite knowledge base ASPIC* without circular
arguments has the computationally attractive property that the induced abstract argumen-
tation frameworks are finitary in the sense of Dung (1995). This latter result cannot be
adapted to ASPIC™ since it crucially relies on the prohibition to chain strict rules. All
these results on minimality hold independently of the choice of strict rules.

Finally, we proved that by combining the contributions of this paper a version of ASPIC*
is obtained that is a proper generalisation of two versions of classical argumentation with
premise attack defined by Besnard and Hunter (2008) and Gorogiannis and Hunter (2011).
These two versions are of particular interest since they are by Gorogiannis and Hunter
proven to be the only two of seven versions of classical argumentation that satisfy the
consistency postulates.

It should be noted that in the course of our investigations we have changed the ASPIC'™
framework as originally defined by Prakken (2010). In fact, we are not the first to do so.
Modgil and Prakken (2013) consider four variants of the ASPIC™ framework. First, they
consider versions with and without the constraint that arguments have consistent premises
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and then for both of these variants they define a variant in which conflict-freeness of sets of
arguments is not defined relative to the defeat relation but to the attack relation. Further-
more, Caminada et al. (2014) study a variant of ASPIC™" in which arguments can also be
rebutted on conclusions derived by strict rules, provided that at least one subargument has
an ordinary premise or applies a defeasible rule. Finally, Wu and Podlaszewski (2015) study
a variant of ASPIC™ in which the set of all conclusions of all subarguments of an argument
has to be consistent. Thus the work on ASPICT has resulted in a family of frameworks
based on the same core ideas but making different design choices at specific points, and new
members of this family may result in the future. We think that this is a healthy situation,
since it amounts to a systematic investigation of the effects of different design choices within
a common approach, which each may be applicable to certain kinds of problems.

10.2 Discussion of Related Work

We next discuss related work.

10.2.1 THE ADDITIONAL RATIONALITY POSTULATES OF CAMINADA ET AL. (2012)

As mentioned in the introduction, Caminada et al. (2012) formulate a new set of rationality
postulates in addition to those of Caminada and Amgoud (2007), to characterise cases under
which the trivialisation problem is avoided (called the postulates of non-interference and
crash-resistance). Wu (2012) and Wu and Podlaszewski (2015) prove for their adaptation
of ASPIC™" with consistent arguments and no preferences that these new postulates are
satisfied for complete semantics. They did not investigate other semantics. However, we
will not attempt to prove Caminada et al.’s postulates, for two reasons. First, we want to
obtain results for the case with preferences and for other semantics as well and, second, it
seems to us that Caminada et al.’s postulates in fact capture a stronger intuitive notion
than the one we study in this paper, so that proving satisfaction of the new postulates
would be more than required for the purposes of this paper.

The intuition of Caminada et al.’s notion of trivialisation is as follows. They consider
“knowledge bases”, which are pairs of sets of formulas from £ and sets of defeasible rules.
Two knowledge bases are defined to be disjoint if they are composed from disjoint sets of
atomic formulas from £. Then a knowledge base KBy = (K7, D1) is contaminating if for
every knowledge base KBy = (K2, Dy) the set of extensions (under a given semantics) is
the same for KBy as for KBy U KBy (where (K7, D1) U (Ky, Do) = (K1 U Ko, D1 U D>).
Then a system is said to satisfy crash resistance if there does not exist a contaminating
knowledge base in the system.

Now consider an ASPIC™ or ASPIC* instantiation with IC, = 0, K,, = {p} and a single
defeasible rule = —d, where n(= —d) = d. This instantiation has no stable extensions, since
the argument A == —d defeats itself and is not defeated by any other argument. Then
the knowledge base (), {= —d}) is contaminating, since no syntactically disjoint knowledge
base to which it is added will have extensions. More generally, this situation can arise with
any knowledge base with which there are no stable extensions.

However, in this paper we were not interested in excluding such situations but only
in taming the contaminating effect of the Ex Falso principle. To this end we introduced
a simpler definition of trivialisation in Definition 4.1 and managed to avoid trivialisation
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as thus defined even for stable semantics, since the just-given example is not a case of
trivialisation in the sense of Definition 4.1. We conclude from this that Caminada et al.’s
postulates capture a stronger notion than the notion of paraconsistency (the focus of our
paper). In the future it would be interesting to study whether our class of instantiations
of ASPIC™ satisfies Caminada et al.’s postulates, but this would ideally be preceded by a
study of what exactly is captured by these postulates.

10.2.2 Wu (2012), WU AND PODLASZEWSKI (2015)

In an alternative attempt to solve the trivialisation problem, Wu and Podlaszewski (2015)
introduced the inconsistency-cleaned ASPIC Lite system. This system is similar to the
argumentation formalism treated by Caminada and Amgoud (2007) and can be seen as a
system specified in ASPIC™ in which all arguments are equally preferred. Wu and Pod-
laszewski define an argument to be consistent if the set of conclusions of all its subarguments
is directly consistent. An argumentation framework is inconsistency-cleaned if all incon-
sistent arguments are removed. Wu and Podlaszewski prove that an inconsistency-cleaned
version of the ASPIC Lite satisfies both the original rationality postulates of Caminada
and Amgoud (2007) and the new postulates of Caminada et al. (2012). So it solves the
trivialisation problem while retaining known results on closure and consistency. However,
Wu (2012) and Wu and Podlaszewski (2015) provide a counterexample (originally due to
Leon van der Torre) to satisfaction of the consistency and strict-closure postulates in case
preferences are added and the last-link argument ordering of Prakken (2010) is applied.
This example was originally presented in the ASPIC' Lite system, but here it is translated
into the ASPIC™ framework.

Example 10.1. [(Wu, 2012; Wu & Podlaszewski, 2015)] Given the knowledge base K = ),
Ra={=p;p= ¢;= —pV ~q} and R; is instantiated with all valid inferences in classical
logic. Assume that = p has priority 1 (lowest), = —p V —¢ has priority 2 (middle) and
p = ¢ has priority 3 (highest). In that case, we can construct the following arguments with
associated (last-link principle) preferences. Table 1 depicts some arguments that can be
generated” and Figure 6 shows the defeat relation between these arguments.

Argument Preference Ag
Ay :=p (1)

Ag: = —pV g (2) "
A3 : Al = q (3) A As
A4 : Al,AQ — q (1) A
As: A1, A3 = =(-pV ) (1)

Ag Az, As — —p (2) he

Table 1: Six arguments Figure 6: Partial abstract AF

7. Note that classical reasoning allows the generation of infinitely more arguments but they are all irrelevant
to any of these six arguments.
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Argument Ag is an inconsistent argument. So according to the solution proposed by
Wu and Podlaszewski for the case without preferences, Ag needs to be deleted from the
argumentation framework. Figure 7 shows the resulting argumentation framework.

o A
. A
. A
o A

o A

Figure 7: Inconsistency-cleaned version

There is a complete extension E = { A1, Ay, A3, Ay, As}. It does not satisfy closure under
strict rules because As and As are in E and Ag is not in E. Moreover, direct consistency is
also not satisfied since Az and A4 are both in the complete extension E, but the conclusions
q and p A —¢q are not consistent.

Arguments Az and A4 have opposite conclusions so without preferences A4 would defeat
As. However, with the preference ordering chosen in the counterexample, A, is weaker than
Az so A4 cannot defeat A3. A3 and A4 are also not being attacked on their subarguments.
The fact that these arguments are both in the same complete extension causes the problem.
Every argument that concludes with —p uses A; as a subargument, so this implies that
it is an inconsistent argument and it has to be removed from the framework. Therefore,
Aj is not defeated by any argument, which means that As and A4 are both in a complete
extension. It can be concluded that an inconsistent argument like Ag is really needed to
defeat A3 and A4.

Furthermore, it can be observed that if Ag is not deleted, there are no problems at all.
Figure 6 shows that in that case there is only one complete extension £ = {As}. and it
satisfies both consistency and strict closure. Therefore, in this example, it is undesirable
that Ag is removed.

Consider next the ASPIC* framework as defined in this paper. The same arguments can
be constructed as in the original framework. This way, there is only one complete extension
{A2} and, as explained above, the rationality postulates are all satisfied. The approach
with ASPIC* is therefore more general than the solution of Wu and Podlaszewski (2015),
since it applies to frameworks that include preferences and defeasible rules.

It should be noted that our idea to forbid chaining of strict rules was earlier suggested to
us by Martin Caminada (personal communication). However, he combined his suggestion
with the idea to disallow inconsistent arguments; in that case, the above counterexample to
consistency and strict closure can still be constructed. Apart from this, one could say that
the logic W, which does not satisfy the Cut rule, provides a theoretical foundation for the
idea to disallow chaining of strict rules.

At first sight, it would seem that a system that allows inconsistent arguments is flawed
even if it satisfies the consistency and closure postulates. However, note that such arguments
will never be in any extension. Although as explained above and by Caminada (2005),
inconsistent arguments can sometimes prevent other arguments from being in an extension,
this is only a problem if such arguments are based on the Ex Falso principle, since that
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principle holds as a matter of logic. Among other things, this means that allowing arguments
based on Ex Falso would dramatically increase the number of (counter)arguments, which
would lead to computational problems. By contrast, inconsistent arguments as argument
Ag in Example 10.1 arise because of specific modeling choices in R4 not dictated by logic
and they do not proliferate, so from a logical or computational point of view there is no
need to exclude them.

10.3 Dung’s (2014) Rule-Based Systems

Dung (2014) introduces a formalism of ‘rule-based systems’ (further studied in Dung, 2016),
which essentially is a notational variant of ASPIC™ restricted to literal languages and empty
knowledge bases (necessary or ordinary facts are represented as strict or defeasible rules with
empty antecedents). Dung introduces three new rationality postulates. His postulate for
attack monotonicity informally says that strengthening an argument cannot eliminate an
attack of that argument on another. His postulate of credulous cumulativity informally
means that changing a conclusion of an argument in some extension to a necessary fact
cannot eliminate that extension. Finally, his property of irrelevance of redundant defaults
says that adding redundant defaults should not change the set of extensions.

Dung then investigates the argument orderings studied by Modgil and Prakken (2013) on
whether they satisfy these and the consistency postulates, with both positive and negative
results. While these results are valuable, Dung (2014) unfortunately, somewhat confuses
matters by referring to the orderings studied by Modgil and Prakken as “the ASPIC™
semantics”. Thus he overlooks the distinction between ASPIC™T as a general framework and
instantiations of the framework. The argument orderings studied by Modgil and Prakken are
not inherent to the ASPIC™ framework but are just some example orderings. The ASPIC™
framework and its variants leave every room for other ways to define the argument ordering.
It should be noted that Dung (2016) does not refer to Modgil and Prakken’s orderings as
“the ASPIC™ semantics” any more and thus respects that these orderings are not inherent
to ASPIC™.

For present purposes Dung’s findings are strictly speaking irrelevant since we have not
studied particular argument orderings. In future research it would be interesting to investi-
gate whether the use of particular argument orderings in ASPIC™* satisfies Dung’s postulates
of attack monotonicity and irrelevance of redundant defaults. However, we disagree with
Dung (2014) that credulous cumulativity would be a desirable property. On the contrary,
with Prakken and Vreeswijk (2002, section 4.4) we believe that this property is instead
undesirable, since strengthening a defeasible conclusion to an indisputable fact may make
arguments stronger than before. This can give them the power to defeat other arguments
that they did not have before. This may well result in the loss of the extension from which
the conclusion was promoted to an indisputable fact.

10.4 Conclusion

In this paper we have successfully addressed some open issues concerning relevance in struc-
tured argumentation. We have solved the trivialisation problems that arise when argumen-
tation includes full classical logic and we have created the prospects for reducing computa-
tional complexity by enforcing minimality and non-circularity of arguments while ensuring
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closure and consistency results. All this was done in the context of the ASPIC approach,
resulting in a new variant of the ASPICT framework called ASPIC* and a well-behaved
class of instantiations of the new framework. This class of instantiations was shown to be a
proper generalisation of classical argumentation with preferences and defeasible rules. It is
this class of instantiations and its properties that are the main contribution of this paper.
In our paper we have employed a flexible attitude towards design choices within the ASPIC
approach. We have thus shown that this approach is a fruitful one, provided the distinction
between frameworks and their instantiations is kept in mind.
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Appendix A. Proofs

This appendix contains the proofs of all results reported in the paper.

A.1 Proofs for Section 7

Theorem 7.1 No ASPIC* SAFs with Fy is defined by an argumentation theory with a
trivialising argumentation system.

Proof. To this end, we must show that for any argumentation system AS with a propo-
sitional language and with Ry as just defined, a knowledge base IC in AS can be defined
such that for some {p, ¢} C K and for some 1) € L it does not hold that an argument*
with conclusion 1 can be constructed on the basis of K in AS. Consider any such AS.
We choose K = K, N K, where K, = 0 and K,, = {¢, ~¢} for any formula ¢ from £ (¢ is
guaranteed to exist since £ is assumed nonempty). Then by definition of Fyy it clearly holds
that Kt/ (¢ A —¢) since no consistent subset of K can classically imply a contradiction.
So there exists no strict argument* for (¢ A —¢) on the basis of K in AS. O

Theorem 7.3 Let E be a complete extension, then GN(E) = E.

Proof. First note that according to Definition 7.2 for each set S of arguments* Sub(S) C
GN(S), therefore E C GN(E).

Suppose now that an argument* C' defeats an argument* A € GN(E). Let BA be a base of
A such that BA C Sub(FE), then C defeats BA. Hence C' defeats Sub(E) and so it defeats
E. Since FE is a complete extension, every defeat against E is counter defeated by E. A is
defended by E, so A € E. Therefore GN(E) C E. O

Theorem 7.5 Each compact ASPIC* SAF satisfies the closure* under strict rules postu-
late.

Proof. Let E be a complete extension. The compactness* implies that GN(F) is closed*
under strict rules. From Theorem 7.3 E is closed* under strict rules. O]

Theorem 7.6 Each ASPIC* SAF with Fyy is compact.
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Proof.

[Conc(GN(S)) D CZ%S(GN(S)#)]

Let S be a set of arguments* and o € CZ%S(GN(S)#). It needs to be shown that o €
Conc(GN(S)). Let X be a minimal subset of Conc(GN(S)#) such that o € Clj_(X).
Hence there is a strict argument* Ay over X with conclusion o. Further let Sx be a mini-
mal set of arguments* from GN(S)# s.t. Conc(Sx) = X. Let A be the argument* obtained
by replacing each leaf in Ay (viewed as a directed acyclic graph) labelled by a literal «
from X by an argument* with conclusion o from Sx. Note that this is possible since all
arguments* in Sx are basic fallible arguments* or are just necessary premises. It is obvi-
ous that the conclusion of A is ¢. It is shown that Sx is a base of A. Suppose B is an
argument™ defeating A. Since Ay is a strict argument™* over X, B must defeat a basic fallible
subargument* in Sx. Hence B defeats Sx. Thus A € GN(S). Hence o € Conc(GN(S)).
[Conc(GN(S)) C Cli (GN(S)#)]

Suppose ¢ € Conc(GN(S)), then it has to be shown that o € CZ%S(GN(S)#). o €
Conc(GN(S)) means that there is an argument* A € GN(S) with Conc(A) = o.

Suppose A is of the form = o or o € K, then A € FA*(GN(S)) and thus A € GN(S)*.
Suppose A is of the form — o or o € Ky, then o € Cl}, (0) or 0 € NP*(GN(S)) respec-
tively, so o € Cl, (GN(S)¥).

Suppose A is of the form Ay, ..., A, = o, then A € FA*(GN(S)) and thus A € GN(S)*.
Finally, suppose A is of the form A;i,..., A, — o, then since Ay,..., A, are basic fallible
arguments* Ay, ..., A, € GN(S)¥. Therefore o € CZ%S(GN(S)#).

It can be concluded that o € CZ%S(GN(S)#).

It is proven that the AF is compact. ]

Theorem 7.7 Each cohesive ASPIC* SAF satisfies the consistency* postulate.

Proof. Let E be a complete extension. Suppose E is inconsistent*. From cohesion, it
follows that GN(FE) is conflicting. Theorem 7.3 states that then E is conflicting. This is a
contradiction since F is a complete extension, so F has to be consistent*. ]

Theorem 7.8 If a compact, axiom consistent* ASPIC* SAF has a reasonable argument*
ordering and satisfies the self-contradiction axiom, then SAF is cohesive.

Proof. Let S be an inconsistent™ set of arguments* and take a minimal inconsistent™ subset
S” of Sub(S). Definition 6.4 combined with axiom consistency* and the minimality of S’
causes that S’ # () and only contains basic fallible arguments* or necessary premises. Re-
mark that S’ cannot consist of only necessary premises, because of axiom consistency™.
Further note that Conc(S’) is a minimal inconsistent set. Since AF satisfies the self-
contradiction axiom, for all ¢ € Conc(S’) it holds that —o € Cl% (Conc(S’)). Let B
be the weakest argument* of S’ with Conc(B) = o. Note that B cannot be a neces-
sary premise because of the reasonable argument* ordering and the fact that S’ must
contain basic fallible arguments*. By construction of S’ it holds that S’ C GN(S')*.
Therefore o € Cl3_(Conc(GN (S )7)). Because of the compactness of AF it follows
that =0 € Conc(GN(S’)). Therefore, there is an argument* A € GN(S’) such that
Conc(A) = —o. Hence A attacks B. The base of A is S, so it can be concluded that all basic
fallible subarguments* of A are in S’. B is the weakest argument* of S, so because of the
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reasonable argument* ordering and the fact that all basic fallible subarguments* of A are in
S” implies that A 4 B. This means that A defeats B. Since B € S’ C GN(S') C GN(S),
GN(S) is conflicting. Therefore, AF is cohesive. O

Theorem 7.9 Each ASPIC* SAF with Fy satisfies the self-contradiction axiom.

Proof. 1t has to be proved that for every minimal inconsistent* set X C L it holds that for
each 0 € X, =0 € Clj, (X). Let X be a minimally inconsistent* set and take S = X\o.
Note that S is a maximal consistent* subset of X and that S,o - L (where - denotes
classical entailment). By the deduction theorem for classical logic S+ ¢ O L, which implies
S F —o. Since S is a maximal consistent* subset of X, X Fy —o. This holds for every
o € X, s0o o € Cli (X). It can be concluded that AF" satisfies the self-contradiction
axiom. 0

Lemma 7.11 Each ASPIC* SAF with by satisfies the following property: for any set S
of arguments* it holds that if Conc(S) ¢z, ¢, then Conc(S*) For, .

Proof. Suppose that Conc(S) Fcor ¢. Consider any argument* T; — ¢; in S\ S#. By
definition of -y and choice of R it holds that Conc(7T;) For ¢; for any i. Then since Fop,
satisfies the Cut rule, we have that Conc(S*) ¢, ¢. O

Lemma 7.12 Each ASPIC* SAF with by satisfies the following property: for any set
of arguments* it holds that if Conc(F) is strictly closed* and consistent®, then Conc(FE) is
classically consistent.

Proof. Assume that Conc(FE) is strictly closed* and consistent® and suppose for contradic-
tion that Conc(FE) k¢ ¢, . Consider any subset-minimal S C E such that Conc(S) k¢,
©,—. Then by Lemma 7.11 we have that Conc(S#) Fcr ¢, —¢. Consider any mini-
mal T C S# such that Conc(T) F¢or @, ~p. Note that T' cannot be empty. Then for any
1 € Conc(T) it holds that Conc(T)\{¢} Fcr —. By choice of T" it holds that Conc(T")\ {1}
is classically consistent. But then since Conc(E) is strictly closed* and no argument* in S#
has a strict top rule, there exists an argument* 7" — —) in E for some T C T such that
Conc(7T”) = Conc(T) \ {¢}. But then Conc(FE) is not consistent*. O

Theorem 7.13 Each ASPIC* SAF with by which is axiom consistent* and has a reason-
able argument ordering satisfies the logical closure postulate.

Proof. Suppose Conc(E) Fy ¢ for some complete extension E and consider any subset-
minimal S C E such that Conc(S) Fw ¢. Then by definition of Fy and choice of Ry
it holds that Conc(S) is classically consistent and Conc(S) F¢r ¢. Then by Lemma 7.11
we have that Conc(S#) Fcr ¢. Moreover, Conc(S#) is classically consistent because of
Lemma 7.12 and the fact that any subset of a classically consistent set is also classically
consistent (note that by Theorem 7.10 Conc(FE) is strictly closed® and consistent®, so the
conditions of Lemma 7.12 are fulfilled). But then Conc(S%) Fy ¢ and by choice of R,
there exists a strict rule Conc(S#) — ¢. Since no argument* in S# has a strict top rule,
¢ € Conc(FE) by strict closure* of E. O
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A.2 Proofs for Section 8.2

Lemma 8.1 For any argument* A and any extended argument* AT the following holds:
for any A’ € Sub(A) there is an argument* A” € Sub(A™) such that A” = A'*.

Proof. This proof is a proof by induction on the height of argument* A (viewed as a directed
acyclic graph). Suppose A is an element of K (so the height is 1), then A’ and A™ have to
be equal to A. This means that A” is also equal to A and it is easy to see that A” = A'T.
Suppose that the lemma holds for all arguments* of height i for an i € {1,2,...}. Now it has
to be proven for arguments* of height ¢ + 1. Take an arbitrary argument* A of height i 4+ 1
and take a subargument* A’ of A. Note that A cannot be an element of K since the height
is greater than 1. Therefore, A has to be of the form A;,..., A, — / = ¢. Then there are
two possibilities: either (i) A’ is a subargument* of one of the arguments* Ay,..., A,, or
(ii) A’ is equal to A.

(i). Thereis a j € {1,...,n} such that A’ is a subargument* of A;. A; has a height of 4, so
there must be an A” € Sub(A;r) such that A” = A’f. According to Definition 8.4, A” is a
subargument® of AT,

(ii). A’ is equal to A. Take A” to be A™, then it follows that A” = A’* and A” € Sub(A™).
Now it is proved that for every argument* the lemma holds. O

Lemma 8.2 If < is a tolerable argument* ordering and argument* A defeats/attacks B,
then every A~ defeats/attacks every BT.

Proof.

Attack

(i). Suppose that A undercuts B, so Conc(A) = —mn(r) for a defeasible top rule r of a
B’ C Sub(B). By definition of A~ the conclusion for every A~ is the same as for A. By
Lemma 8.1 it holds that for every BT, there is a subargument* B” € Sub(B™) such that
B" = B'*. Note that B’ and B” both have the same defeasible top rule, since by definition
of BT, only the strict rules can mutate. Then it follows that every A~ undercuts BT on
B”.

(ii). Suppose now that A undermines B, so —Conc(A) is the ordinary premise B’. Every
BT also has this ordinary premise. By definition of A~ (Definition 8.2), the conclusion of
every A~ is the same as for A. Therefore any A~ undermines every BT on B’.

(iii). Suppose that A rebuts B, so —Conc(A) is the conclusion of some basic fallible
argument* B’ € Sub(B). The conclusion for every A~ is the same as for A. By Lemma 8.1,
it holds that for every B*, there is a subargument* B” € Sub(B™") such that B” = B'*.
Note that the conclusions of B’ and B” are the same and that B” also has a defeasible top
rule. Therefore any A~ rebuts B™ on B”.

Defeat

Suppose argument* A defeats B. This means that A attacks B on a subargument* B’.
Then (i) A undercuts B, or (ii) A £ B'.

(i). Suppose that A undercuts B, then it follows that every A~ undercuts B™ on B’ (see
reasoning above for attack (i)). This implies that any A~ defeats every BT.

(ii). Otherwise it has to be the case that A £ B’. Note that, because of the tolerable
argument* ordering, A~ > A. In the proof for attack it is shown that every A~ attacks
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every BT on B”, where B” = B’". The tolerable argument* ordering causes B” < B’.
Therefore for every A~ and B” it holds that A~ £ B”, so every A~ defeats every BT. [

Lemma 8.3 If < is a tolerable argument* ordering, then for all complete extensions F:
1. If A€ E, then A~ € E for every A™;
2. If B¢ E, then B ¢ F for all BT.

Proof. (1). Suppose A € E and let B be an argument* defeating an A~. Then by Lemma
8.2, B defeats A. Therefore, there must be an argument* C € E such that C defeats B.
Hence, A~ is defended by E and thus A~ € E.

(2). Suppose B ¢ E. Then there exists an argument* A such that A defeats B and there
does not exist a C' € E that defeats A. According to Lemma 8.2, A defeats every BT, so
BT is not defended by F and hence B* ¢ E. O

Lemma 8.4 Let SAF~ = (A7,C~,=7) be the minimal structured argumentation frame-
work corresponding to SAF = (A, C, =) (for the ASPIC* framework), and let AF be the
abstract argumentation framework corresponding to SAF'. Let < be a tolerable argument*
ordering. Also, let C and C~ be the sets of complete extensions of SAF and SAF ™ respec-
tively and let F4r be Dung’s characteristic function of AF. Then:

1. Foreach E € C™ : Fap(E)” = E.
2. Foreach F € C: Fap(E~™)=F and E~ € C™.

Proof. Take two sets of arguments* X and Y such that X C Y. Suppose Fap(Y) C
Far(X), then there must be an argument* A that is defended by X but not by Y. Since
X CY, A has to be defended by Y. Therefore, the monotonicity of F4p(E) with respect
to set inclusion is obvious.

(1). It will be shown that Far(F) is indeed a function from C~ into C such that Fap(E)™ =
E by showing that Fup(E) is a complete extension in SAF, if E is a complete extension
in SAF~. Let F be a complete extension in SAF~. First it has to be shown that F is an
admissible set in SAF.

E is conflict-free in A~, so it has to be conflict-free in A. It also defeats each minimal
argument” defeating F and it contains every minimal argument* defended by FE.

For any A € F and any B € A that defeats A, take a B~. Then B~ € A~ defeats A
by Lemma 8.2, so some C' € F defeats B~. But then C also defeats B by Lemma 8.2
combined with the fact that B is a B~. This means that A € A is defended by E. It can
be concluded that F defeats every argument* that defeats E. It was already shown that F
is conflict-free, so £ C A is an admissible set.

For each argument* A € Fyp(E), any A~ has to be defended by E in A~ so every A~ is
in E. Therefore, (Fap(E) — E)~ =0, thus Fap(E)” = E.

Now, it has to be shown that F4r(E) is a complete extension. Let A be defended by
Fap(F) and let B defeat A. Hence, there is a C' € Fup(FE) defeating B. C € Fap(E)
means that C' is defended by FE, thus F defeats every argument* defeating C'. Suppose an
argument™ D defeats C'~, then D also defeats C' by Lemma 8.2. Therefore, £ must defeat
D, so C™ is defended by E. Since F is a complete extension of SAF~, any C~ isin E. C~
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defeats B (Lemma 8.2). Therefore, E defeats B. Thus, A is defended by FE, and therefore
A € Far(E). As a consequence, Fup(F) is complete.

(2). Let E be a complete extension in SAF. It will be shown that E~ is complete in SAF ™.
First it has to be shown that EF~ is an admissible set of A~. Since FE is conflict-free, £~
has to be conflict-free as well.

From Lemma 8.3 and the fact that E is complete in SAF, each minimal version of the
arguments* in F belongs to E. Let A € A~ defeat E~. Hence, there is B € E defeating A.
According to Lemma 8.3 B~ € E, so B~ € E~. Hence, B~ defeats A (Lemma 8.2). Thus,
E~ is admissible.

Each minimal argument* defended by E~ is defended by E and hence belongs to F and so
to E~. E~ is therefore complete.

Since E~ C F and FE is complete, it is clear that Fap(E~) C Fap(E) = E. It is now
shown that each argument* defended by F is also defended by E~. Let A be an argument*
defended by E in SAF and let B be an argument* defeating A. Hence, there is an argument*
C € F defeating B and so each C~ € F defeats B. Hence E~ defeats B. Thus A defended
by to E~ in SAF. It can be concluded that Fap(E~) D Fap(F) =E, i.e. Farp(E™) = E.
[Injective] Take X, Y € C~ such that Fap(X) = Fap(Y). It is obvious that Fap(X)™ =
Farp(Y)™. Then according to the proof for point (1) Farp(X)™ = X and Far(Y)” =Y.
Therefore, it follows that X =Y.

[Surjective] It has to be shown that for all Y € C thereis an X € C~ such that Fap(X) =Y.
Now take X to be Y, then the proof for point (2) provides that X € C~ and that
Fap(X) =Y.

[Bijective] Injectivity and surjectivity provides that F4r is a bijection from C~ onto C. [

Theorem 8.5 Let SAF~ = (A~,C~,<7) be the minimal structured argumentation frame-
work corresponding to SAF = (A,C, <) (for the ASPIC* framework). Let < be a tolerable
argument* ordering. Take T € {complete, grounded, preferred, stable}, then:

1. Let E be a T extension in SAF, then F~ is a T extension in SAF ™.
2. Let E be a T extension in SAF ™, then F(FE) is a T extension in SAF.

Proof.
[T'= complete]
Let C' and C'~ be the sets of complete extensions of SAF and SAF~, respectively. Lemma
8.4 states that F4r is a bijection from C~ to C. This immediately provides that F'(E) € C.
The second point of Lemma 8.4 states that E~— € C~.

[T € {grounded, preferred}|
From Lemma 8.4 it follows immediately that for each E € C~, Fyp(F) is minimal or
maximal with respect to set inclusion in F if and only if ' is minimal or maximal respectively
in C~. Hence F is grounded or preferred in SAF~ if and only if Fap(FE) is grounded or
preferred in SAF, respectively.

[T" = stable]
(1). Take E to be a stable extension in SAF. Suppose for contradiction that £~ is not a
stable extension in SAF~. Then there must be an argument* A € A=, A ¢ E~ such that
A is not defeated by any argument* in E~. However, A ¢ E~ implies A ¢ F since A is
minimal. F is stable, thus there must be an argument* B € E such that B defeats A. But
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then any B~ € E (Lemma 8.3) defeats A. It is clear that B € E~, so this is a contradiction
with the fact that £~ does not defeat A. Therefore, E~ is a stable extension in SAF ™.

(2). Take E to be a stable extension of SAF~. Suppose for contradiction that Fap(FE)
is not a stable extension of SAF. Then there must be an argument* A € A such that
A ¢ Fap(F) and Fap(F) does not defeat A. A ¢ Fap(F) means that A is defended by
E. Therefore, there must be an argument* B € A that defeats A such that there is not a
C € E that defeats B. Since E is stable in SAF~, B € E so E defeats A. This implies
that Fap(E) defeats A, which is a contradiction with the fact that Far(E) does not defeat
A. Therefore, F4r(E) has to be a stable extension of SAF. O

A.3 Proofs for Section 8.3
Lemma 8.6 For any finite Y C £ it holds that XY is finite.

Proof. Note that for any ¢ there is at most a single strict rule — ¢, while since both X and
R, are finite, the set of all sets that equal the set of antecedents of a strict rule for ¢ in X
is also finite. O

Theorem 8.7 Let SAF = (A,C, <) be a strongly minimal structured argumentation frame-
work corresponding to an argumentation theory with a finite I and R4. Then for any ¢ € £
the set {A € A | Conc(A) = ¢} is finite.

Proof. We prove the result by iteratively constructing of the set of all finite arguments*
constructible from IC in AS.

e Ay =K and Ad = A3 = 0;
° AZ'+1 =A; U Ag+1 = Aerl where

— A, ={A=Q= ¢ |Q C A; and Conc(Q) = ¢ € Ry and ¢ & Conc(Q)}.

f={A=Q = ¢|Q C A; and Conc(Q) = ¢ € R, and ¢ ¢ Conc(Q) and for
no B € @ it holds that TopRule(B) € Rs}.

It is easy to see that [J!'_.A; is the set of all constructible finite arguments*.

To prove the theorem, note first that Ay is finite since K is finite and Ag is finite for
any 4 since R is finite. By contrast, A7 is infinite for any ¢ since given our choice of R, to
any set of wif an infinite number of strict rules applies. However, it follows from Lemma 8.6
that for any 7 and any ¢ € £ there exists at most a finite number of arguments* in A7 with
conclusion ¢. Together these observations imply that for any ¢ and any ¢ € L there exists
at most a finite number of arguments* with conclusion ¢ in A;.

It is left to prove that the construction is finite. This follows from the fact that both
K and R4 are finite and the fact that by Definition 8.7 rules cannot be repeated in an
argument*. So at some point, A% = ). But then also A$ +1 = 0 since strict rules cannot be
chained in an argument*. So the construction of the set of all finite arguments* constructible
from K in AS is finite, while for each ¢ € L at each step in the construction only a finite
set of arguments* with conclusion ¢ is created. This proves the theorem. O
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Theorem 8.8 Each strongly minimal ASPIC* SAF with -y is compact.

Proof.

[Conc(GN(S)) 2 CZ%S(GN(S)#)]

Let S be a set of arguments* and o € CZ%S(GN(S)#). It needs to be shown that o €
Conc(GN(S)). Let X be a minimal subset of Conc(GN(S)#) such that o € Cli (X).
Hence there is a strict argument* Ay over X with conclusion o. Further let Sx be a
minimal set of arguments* from GN(S)# s.t. Conc(Sx) = X. There is no problem with
repetition of conclusions here, since if ¢ € X then Ag = 0. Let A be the argument* obtained
by replacing each leaf in Ay (viewed as a directed acyclic graph) labelled by a literal o from
X by an argument* with conclusion o from Sx. Note that if A repeats conclusion ¢ then
we do not need A since then clearly ¢ € Conc(GN(S)) and we are done. Otherwise, the
construction of A is possible since, firstly, all arguments* in Sy are basic fallible arguments*
or are just necessary premises and, second, by definition of GN(S)# it holds that A will
not repeat any conclusion in X. It is obvious that the conclusion of A is o. It is shown that
Sx is a base of A. Suppose B is an argument* defeating A. Since Ag is a strict argument*
over X, B must defeat a basic fallible subargument* in Sx. Hence B defeats Sx. Thus
A e GN(S). Hence o € Conc(GN(S)).

[Conc(GN(S)) C CZ%S(GN(S')#)]

As for Theorem 7.6.

It is proven that the strongly minimal SAF is compact. O

A .4 Proofs for Section 9

Theorem 9.1 Let AS be an argumentation system with £ a classical-logic language and
R corresponding to classical logic, and let K = K, be a knowledge base in L. Let AS*
be obtained from AS by removing from R all inference rules that are invalid according to
Fw. Let AT = (AS,K) be a minimal ASPICT argumentation theory and AT* = (AS*, K)
the corresponding minimal ASPIC* argumentation theory. Then let SAF = (A,C, <) and
SAF* = (A*,C*,<*) be, respectively, the minimal c-structured argumentation framework
defined by AT in ASPIC™T and the minimal structured argumentation framework defined
by AT* in ASPIC* such that:

e For all A,B,C € A: if Prem(A) = Prem(B) then C < Aiff C < B and A <X C iff
B < C. Likewise for <*.

e For all A*, B* € A*: A* < B* iff A* <* B*.
Then for T € {complete, grounded, preferred, stable} it holds that:

1. Let E be a T extension in SAF, then E N A* is a T extension in SAF* such that
Conc(E) = Conc(E N .A*).

2. Let E be a T extension in SAF*, then F(E) is a T extension in SAF such that
Conc(E) = Conc(F(E)).

Proof. First, it is easy to see that A* C A. Next, we show by induction on the structure
of arguments* that for any argument* A € A\ A* there exists an argument* B € A* such
that Prem(A) = Prem(B) and Conc(A) = Conc(B).
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The base case is that A € K. Then B = A. For the inductive case consider A =
By,...,B, — ¢. By the induction hypothesis the arguments* Bj, ..., B; satisfy the con-
ditions. Then for any B;(1 < i < n) of the form B} = B}’,..., B} — ¢; the induction
hypothesis yields that Bzi, ..., B¥" are from K. Then replacing all such B} with Bzi, ..., B
in B,...,B;, — ¢ yields an argument* B satisfying the conditions. Note that the corre-
sponding strict inference rule is in Ry since classical logic satisfies the cut rule and all
arguments* in 4 have consistent premises.

Then it is easy to prove along the lines of the proof of Lemma 8.2 for any argument*
A € A that any argument* attacked/defeated by A is also attacked/defeated by any B and
vice versa, and any argument* attacking/defeating A also attacks/defeats any B and vice
versa. Then the proof of Theorem 9.1 can be completed along the lines of the proof of
Theorem 8.5. O
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