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Abstract

Visualization of high-dimensional data, such as text documents, is useful to map out
the similarities among various data points. In the high-dimensional space, documents
are commonly represented as bags of words, with dimensionality equal to the vocabulary
size. Classical approaches to document visualization directly reduce this into visualizable
two or three dimensions. Recent approaches consider an intermediate representation in
topic space, between word space and visualization space, which preserves the semantics
by topic modeling. While aiming for a good fit between the model parameters and the
observed data, previous approaches have not considered the local consistency among data
instances. We consider the problem of semantic visualization by jointly modeling topics
and visualization on the intrinsic document manifold, modeled using a neighborhood graph.
Each document has both a topic distribution and visualization coordinate. Specifically, we
propose an unsupervised probabilistic model, called Semafore, which aims to preserve the
manifold in the lower-dimensional spaces through a neighborhood regularization framework
designed for the semantic visualization task. To validate the efficacy of Semafore, our
comprehensive experiments on a number of real-life text datasets of news articles and
Web pages show that the proposed methods outperform the state-of-the-art baselines on
objective evaluation metrics.

1. Introduction

Text documents come in various flavors, such as Web pages, news articles, blog posts, emails,
or messages on social media such as Twitter. While much is in English, there are increasing
amounts of content in various languages as well. With the backdrop of the growth in vol-
ume, diversity, and complexity of various corpora, we need more useful tools to analyze the
wealth of text content. One form of analysis which we will look into in this paper is visu-
alization. There are different types of visualizations, be it of the temporal or longitudinal,
networked, or other natures. What we are interested in is a form of visualization where we
can represent a collection of documents as coordinates on the same low-dimensional space,
so as to learn of the similarities and differences among documents based on their distances
on the visualization space.

Visualization of high-dimensional data is an important exploratory data analysis task,
which is actively studied by various academic communities. While the HCI community is
interested in the presentation of information, as well as other interface aspects (Chi, 2000),
the machine learning community is interested in the quality of dimensionality reduction
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(Van der Maaten & Hinton, 2008), i.e., how to transform the high-dimensional represen-
tation into a lower-dimensional representation that can be shown on a scatterplot. This
visualization form is simple, and widely applicable across various domains.

Consider therefore the problem of visualizing documents on a scatterplot. Commonly,
a document is represented as a bag of words, i.e., a vector of word counts. This high-
dimensional representation would be reduced into coordinates on a visualizable 2D (or 3D)
space. One pioneering technique is Multidimensional Scaling (MDS) (Kruskal, 1964). The
goal is to preserve the distances in the high-dimensional space in the low-dimensional embed-
ding. When applied to documents, a visualization technique for generic high-dimensional
data, e.g., MDS, may not necessarily preserve the topical semantics. Words are often am-
biguous, with issues such as polysemy, when the same word carries multiple senses, and
synonymy, when different words carry the same sense. Because the dimensions in the origi-
nal representation (which are words) may not accurately capture this ambiguity, this affects
the quality of the reduced representation (which is the visualization space) as well.

To model semantics in documents in a way that can resolve some of this ambiguity, the
current popular approach is by topic modeling, such as PLSA (Hofmann, 1999) or LDA
(Blei, Ng, & Jordan, 2003). Each document is associated with a probability distribution
over a set of topics. Each topic is a probability distribution over words in the vocabulary. In
this way, polysemous words can be separated into different topics, and synonymous words
can be grouped into the same topic.

Topic modeling itself is another form of dimensionality reduction: from word space to
topic space. The word space refers to a document’s original representation, which is usually
a bag of words. The topic space refers to the simplex of topic distributions. A document’s
probability distribution over topics is effectively the representation of this document in
this topic space. However, a topic model by itself is not designed for visualization. While
one possible visualization is to plot documents’ topic distributions on a simplex, a 2D
visualization space could express only three topics, which is very limiting.

Given its success in modeling semantics in documents, we therefore ask the question
of whether and how best to do both forms of dimensionality reductions (visualization and
topic modeling) for documents. The end goal is to arrive at a visualization of documents
that is consistent with both the semantic representation (topics), as well as the original
representation (words). This coupling is a distinct task from topic modeling or visualization
respectively, as it enables novel capabilities. For one thing, topic modeling helps to create
a richer visualization, as we can now associate each coordinate on the visualization space
with both topic and word distributions, providing semantics to the visualization space.
For another, the tight integration potentially allows the visualization to serve as a way
to explore and tune topic models, allowing users to introduce feedback (Hu, Boyd-Graber,
Satinoff, & Smith, 2014) to the model through a visual interface (Choo, Lee, Reddy, & Park,
2013). These capabilities support several use case scenarios. One potential use case is a
document organizer system. The visualization could potentially help in assigning categories
to documents, by showing how closely related documents have been labeled. Another is
an augmented retrieval system. Given a query, the results may include not just relevant
documents, but also other similar documents (neighbors in the visualization).
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1.1 Problem Statement

We refer to the task of jointly modeling topics and visualization as semantic visualization.
The input is a set of documents D. For a specified number of topics Z and visualization
dimensionality (assumed to be 2D, without losing any generality), the goal is to derive,
for every document in D, a latent coordinate on the visualization space, and a probability
distribution over the Z topics. While we focus on documents in our description, the same
approach would apply to visualization of other data types for which latent factor modeling,
i.e., topic model, makes sense.

A straightforward way is to undergo two-step reductions. In the first reduction, the
original representation for documents are reduced into topic distributions using topic mod-
eling. In the second reduction, documents’ topic distributions are further reduced into
visualization coordinates. This approach may have some value compared to direct reduc-
tion from word space to visualization space. However, it is not ideal, because the disjoint
reductions could mean that errors may propagate from the first to the second reduction,
and the resulting visualization may not faithfully capture the original representation.

A better way to solve this problem is to join up the two reductions into a single, joint
process that produces both topic distributions and visualization coordinates. This approach
was first pioneered by PLSV (Iwata, Yamada, & Ueda, 2008), which also showed that the
joint approach outperformed the disjoint approach. PLSV derives the latent parameters
by maximizing the likelihood of observing the documents. This goal is concerned with the
“error” between the model and the observation.

In the literature, it is found that algorithms that ensure “smoothness” tend to perform
better at learning tasks (Zhou, Bousquet, Lal, Weston, & Schölkopf, 2004). Smoothness
concerns preserving the observed proximity between documents. This objective arises nat-
urally from the assumption that the intrinsic geometry of the data is a low-rank, non-linear
subspace within the high-dimensional space. Therefore, preserving neighborhood structure
is important for learning tasks. This assumption is well-accepted in the machine learning
community (Lafferty & Wasserman, 2007), and finds application in both supervised and
unsupervised learning (Belkin & Niyogi, 2003; Zhou et al., 2004; Zhu, Ghahramani, Laf-
ferty, et al., 2003). Recently, there is a preponderance of evidence that this assumption also
applies to text data in particular (Cai, Mei, Han, & Zhai, 2008; Cai, Wang, & He, 2009;
Huh & Fienberg, 2012). We therefore propose to incorporate this assumption into a new
unsupervised, semantic visualization model.

1.2 Overview

We propose an unsupervised probabilistic model that jointly derives topic distributions and
visualization coordinates on the intrinsic geometry of the data. Our proposed model is called
Semafore, which stands for SEmantic visualization with MAniFOld REgularization. We
build a neighborhood regularization framework into a semantic visualization model. The
framework involves new issues to resolve, including the regularization function, and the
space in which regularization should take place.

The model is evaluated on a series of real-life, publicly available datasets, which are
also benchmark datasets used in document classification task. An advantage of a statistical
method, such as ours, is that it is not dependent on a specific language. Two of the datasets
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are in English, and one is in Brazilian Portuguese. While our model is unsupervised (class
label is neither required nor used in learning), to objectively quantify the visualization qual-
ity, we leverage on the class label information. It is a common assumption that documents
of the same class are expected to be neighbors on the original space (Belkin, Niyogi, &
Sindhwani, 2006; Zhou et al., 2004; Zhu et al., 2003), which suggests that they should also
be close on the visualization space. We investigate the effectiveness of Semafore in placing
documents of the same class nearby on the visualization space, and systematically compare
it to existing baselines without one or more of our properties, namely: joint modeling of
topic and visualization, or neighborhood regularization.

1.3 Contributions

While visualization and topic modeling are, separately, well-studied problems, the interface
between the two, semantic visualization, is a relatively new problem, with very few previous
work. In this work, we make the following contributions.

• We propose incorporating neighborhood structure in semantic visualization. In this
respect, we propose a probabilistic model Semafore, with two integrated compo-
nents. One is a kernelized semantic visualization model, enabling the substitution of
the kernel functions that relate visualization coordinates to topic distributions (see
Section 3.3). The other is a neighborhood graph regularization framework for semantic
visualization as described in Section 4.1.

• Realizing the neighborhood graph regularization involves an exploration of how to
incorporate the appropriate forms of the neighborhood structure. In this respect,
we investigate the effects of neighborhood graph construction techniques such as k-
nearest neighbors (k-NN), ε-ball, and disjoint minimum spanning trees (DMST), as
well as different edge weight estimations such as heat-kernel (see Section 4.2) in the
context of semantic visualization.

• In Section 5, we describe the requisite learning algorithms based on maximum a
posteriori (MAP) estimation using expectation-maximization (EM), in order to fit
the parameters for the various regularization functions and kernels that we propose.

• Our final contribution is the evaluation of Semafore’s effectiveness on a series of real-
life, public datasets described in Section 6, which shows that Semafore outperforms
existing baselines on a well-established and objective visualization metric.

In our prior work (Le & Lauw, 2014b), we proposed the problem and described the pre-
liminary model. In this extended article, there are significant technical changes that provide
a significantly more comprehensive discussion of the model. For instance, we now discuss
the Student-t kernel, in addition to the previously introduced Gaussian kernel. Further-
more, we investigate the efficacies of different neighborhood graph constructions, including
the ε-ball and DMST graphs, in addition to the previously introduced kNN graph. The
graph weights are also enhanced through investigation of heat kernel, in addition to the
simple-minded binary scheme previously. As discussed in Section 6.3, these enhancements
collectively result in statistically significant improvements over the previous model. Beyond
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the technical enhancements, we also provide more comprehensive model analysis and empir-
ical validation, including richer quantitative and qualitative discussions of the visualizations
and the resulting topic models, as well as a metric to measure topic interpretability based
on pairwise mutual information.

2. Related Work

In this section, we discuss the different aspects of our work, identify the related papers in
the literature, and point out the key conceptual differences.

2.1 Visualization and Dimensionality Reduction

One way to perform visualization is by using a generic dimensionality reduction technique.
Such techniques come in several flavors, depending on the objective. Principal component
analysis (PCA) (Jolliffe, 2005) identifies the components that explain most of the variance
in the data. Related to PCA is singular value decomposition (SVD) (Golub & Van Loan,
2012). Comparatively, independent component analysis (ICA) (Comon, 1994) identifies
the components that are independent of one another, whereas linear discriminant analysis
(Fisher’s LDA) (Fisher, 1936) identifies the components that most discriminate between
known class labels. Being generic, these techniques are more frequently applied to feature
extraction, as they are not optimized for visualization. They focus more on the properties of
the components (e.g., orthogonality, independence) rather than on the intrinsic relationship
among data instances. Furthermore, as they are based on linear projections, they may not
capture non-linearities in the data well.

Another category of techniques, which is more directly related to visualization, is the
embedding approach. It aims to preserve the high-dimensional similarities or differences
in the low-dimensional embedding. One pioneering such work is multidimensional scaling
(MDS) (Kruskal, 1964). Given a set of pairwise distances δij between data points i and j,
MDS determines coordinates xi and xj respectively, such that the embedded visualization
distance ||xi − xj || approximates δij as much as possible. For MDS, the distance to be
preserved δij is frequently the linear distance, measuring the distance along a straight line
between two points in the input space. Instead of this linear distance, Isomap (Tenenbaum,
De Silva, & Langford, 2000) seeks to preserve the geodesic distance, by finding shortest paths
in a graph with edges connecting neighboring data points. LLE (Roweis & Saul, 2000) seeks
to preserve linear distances, but only among the neighboring points and avoiding the need to
estimate pairwise distances between widely separated data points. Recently there are also
works applying a similar concept to embedding but using probabilistic modeling, such as
PE (Iwata, Saito, Ueda, Stromsten, Griffiths, & Tenenbaum, 2007), SNE (Hinton & Roweis,
2002), t-SNE (Van der Maaten & Hinton, 2008), and GTM (Bishop, Svensén, & Williams,
1998). Yet others are based on semi-definite programming (Shaw & Jebara, 2007, 2009).
Alternatively, several embedding techniques do not aim to preserve relationship among
data instances, but rather other properties such as local minima (Kim & Torre, 2010).
Importantly, all these techniques are not optimized for semantic visualization, as they do
not model topics at all. The coordinates do not reflect any semantic meaning, other than
reflecting the optimization objective.
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There are only a few related works so far that seek to address the semantic visualization
task directly. The closest previous work that does both topic modeling and visualization
in a single generative process is Probabilistic Latent Semantic Visualization (PLSV) (Iwata
et al., 2008), which also shows that a joint approach outperforms a separate approach. Just
as PLSV builds upon the foundation of the topic modeling technique Probabilistic Latent
Semantic Analysis (PLSA) (Hofmann, 1999) by incorporating visualization coordinates, so
do we build upon the foundation of PLSV by incorporating RBF kernels (Section 3.3) and
neighborhood structure (Section 4).

There are also related works that share a similar objective, but do not share the same
paradigm of visualization or topic modeling. For instance, LDA-SOM (Millar, Peterson, &
Mendenhall, 2009) first conducts topic modeling using Latent Dirichlet Allocation (LDA)
(Blei et al., 2003), and then separately embeds the documents’ topic distributions on a
Self-Organizing Map (SOM) (Kohonen, 1990). However, this is not a joint model, and
SOM uses a different visualization space than the Euclidean space that we are interested
in. For another instance, SSE (Le & Lauw, 2014a) builds on the Spherical Admixture
Model (SAM) (Reisinger, Waters, Silverthorn, & Mooney, 2010) belonging to the class of
spherical topic models targeted at spherical (unit vector) reprepresentations of topics and
documents, which are not directly comparable or equivalent with the simplex representation
and multinomial modeling (probability distribution over words) adopted in this work as well
as PLSV.

By semantic visualization, we refer to the task of joining visualization and topic model-
ing. A related, but different, task is topic visualization, where the objective is to visualize
the topics, in terms of which keywords are dominant for each topic (Chaney & Blei, 2012;
Chuang, Manning, & Heer, 2012), which topics are dominant in a corpus (Wei, Liu, Song,
Pan, Zhou, Qian, Shi, Tan, & Zhang, 2010), and how topics are related to one another
(Gretarsson, O’donovan, Bostandjiev, Höllerer, Asuncion, Newman, & Smyth, 2012).

2.2 Topic Modeling

Topic model involves statistical modeling of text (documents and words) in order to discover
some abstract concepts or “topics” that occur in a corpus. Beginning with latent semantic
indexing (Dumais, Furnas, Landauer, Deerwester, Deerwester, et al., 1995), topic model
evolves into the modern probabilistic treatments, such as Probabilistic Latent Semantic
Analysis (PLSA) (Hofmann, 1999) and Latent Dirichlet Allocation (LDA) (Blei et al.,
2003). Intuitively, a topic captures a collection of words that tend to co-occur because
they describe the same concept. This has the appeal of producing highly interpretable
statistical models that let users make semantic sense of the corpus. Other than text-only
document corpora, topic models have also been applied to cases where links are observed
in addition to text (McCallum, Wang, & Corrada-Emmanuel, 2007).

Meanwhile, the assumption that the intrinsic geometry of the data is a non-linear low
dimensional subspace within the high-dimensional space finds application in both supervised
and unsupervised (Belkin & Niyogi, 2003) learning algorithms. It is especially prevalent in
semi-supervised learning (Zhou et al., 2004; Zhu et al., 2003) as a way to bridge labeled
and unlabeled data. Regularization as a technique to realize this assumption has a long
history (Belkin et al., 2006). The specific form of the regularization function varies among
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applications. The study of this assumption for unsupervised topic models begins with
LapPLSI (Cai et al., 2008), which introduces regularization to PLSA (Hofmann, 1999),
by minimizing the Euclidean distance between neighboring documents’ topic distributions.
Follow-up work introduce other distance functions (Cai et al., 2009; Wu, Bu, Chen, Zhu,
Zhang, Liu, Wang, & Cai, 2012). While these previous work focus on maintaining proximity
of similar documents, DTM (Huh & Fienberg, 2012) adds a new criterion to also maintain
the distance among different documents. Our work is different in that we also need to
contend with the visualization aspects, and not just topic modeling.

2.3 Semantic Similarity

Other than topic models, there are alternative mechanisms to learn the semantic relationship
between documents. One way is by measuring the semantic similarity among documents
or words. For instance, in vector space model, documents may be represented as a term
vector, and their similarity may be expressed in terms of cosine similarity (Turney, Pantel,
et al., 2010). Other than word occurrences alone, there could also be additional signals
of semantic similarity. For instance, working with Wikipedia corpus, the categories and
links are also took into account to determine the similarity among articles (Gabrilovich
& Markovitch, 2009; Ponzetto & Strube, 2007). Our work differs from these in several
important respects. First, our objective is not in the similarity value per se, but rather in
determining lower-dimensional embedding coordinates, which would allow visualization as
one application. Second, our method is based on probabilistic modeling of latent variables,
akin to topic modeling, instead of operating on the vector space model representation of
documents.

3. Semantic Visualization

We introduce the problem formulation for semantic visualization in Section 3.1. Our focus in
this paper is on the effects of the neighborhood graph structure on the semantic visualization
task. We figure that the clearest way to showcase these effects is to design a neighborhood
preservation framework over and above an existing generative process, such as PLSV (Iwata
et al., 2008), which we will review in Section 3.2. In Section 3.3, we describe an innovation
over the semantic visualization model, which is an abstraction of the mapping between the
topic space and the visualization space using radial basis function (RBF) kernels. This
allows the exploration of various kernels, of which we identify two for further exploration.
For ease of following the discussion, we include a table of notations in Table 1.

3.1 Problem

For the task of semantic visualization, the input is a corpus of documents D = {d1, . . . , dN}.
Every dn is a bag of words, and wnm denotes the mth word in dn. The total number of
words in dn is Mn. The objective is to learn, for each dn, a latent distribution over Z
topics {P(z|dn)}Zz=1. Each topic z is associated with a parameter θz, which is a probability
distribution {P(w|θz)}w∈W over words in the vocabulary W . The words with the highest
probabilities for a given topic capture the semantic of that topic.
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Notation Description

dn a specific document

xn latent coordinate of dn in the visualization space

Mn number of words in document dn
z a specific topic

φz coordinate of topic z in the visualization space

θz word distribution of topic z

W the vocabulary (the set of words in the lexicon)

N total number of documents in the corpus

Z total number of topics (user-defined)

χ the collection of xn’s for all documents

Φ the collection of φz’s for all topics

Θ the collection of θz’s for all topics

Ψ the collective set of parameters {χ,Φ,Θ}

Table 1: Notations.

In semantic visualization, there is an additional objective for semantic visualization,
which is to learn, for each document dn, its latent coordinate xn on a low-dimensionality
visualization space. Similarly, each topic z is associated with a latent coordinate φz on
the visualization space. A document dn’s topic distribution is then expressed in terms
of the Euclidean distance between its coordinate xn and the different topic coordinates
Φ = {φz}Zz=1. Intuitively, the closer is xn to a topic’s φz, the higher is P(z|dn) or the
probability of topic z for document dn.

In the following sections, we systematically describe the various components of our
solution. The generative process that links the latent variables (coordinates) and the words
in the documents is described in Section 3.2. The specific relationship between documents
and topics’ coordinates constitutes a specific mapping function, which we model as an RBF
kernel in Section 3.3. In the following Section 4, we discuss how to incorporate neighborhood
structure into semantic visualization.

3.2 Generative Process

We now describe the generative process of documents based on both topics and visualization
coordinates. Below we review PLSV whose graphical model is shown in Figure 1. Our
eventual complete model is a generalization of this model, involving enhancements through
kernelization (Section 3.3) and neighborhood structure preservation (Section 4).

The generative process is as follows:

1. For each topic z = 1, . . . , Z:

(a) Draw z’s word distribution: θz ∼ Dirichlet(α)

(b) Draw z’s coordinate: φz ∼ Normal(0, β−1I)

2. For each document dn, where n = 1, . . . , N :

(a) Draw dn’s coordinate: xn ∼ Normal(0, γ−1I)
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Figure 1: Graphical model of PLSV.

(b) For each word wnm ∈ dn:

i. Draw a topic: z ∼ Multi({P(z|xn,Φ)}Zz=1)

ii. Draw a word: wnm ∼ Multi(θz)

Here, α is a Dirichlet prior, I is the identity matrix, β and γ control the variance of the
Normal distributions. The parameters χ = {xn}Nn=1, Φ = {φz}Zz=1, Θ = {θz}Zz=1, collectively
denoted as Ψ = 〈χ,Φ,Θ〉, are learned from documents D based on maximum a posteriori
estimation. The log likelihood function is shown in Equation 1.

L(Ψ|D) =

N∑
n=1

Mn∑
m=1

log
Z∑

z=1

P(z|xn,Φ)P(wnm|θz) (1)

We reiterate that our focus here is on incorporating neighborhood graph structure into
semantic visualization. By building a neighborhood graph regularization framework into
an existing generative process, i.e., PLSV, we can clearly observe that any improvement
over PLSV arises from the neighborhood graph regularization. In this sense, our work
is in the tradition of introducing neighborhood graph regularization to probabilistic topic
modeling (Huh & Fienberg, 2012; Cai et al., 2008, 2009), where the contributions relate
to the neighborhood graph regularization, rather than the generative process. That said,
there is one significant difference to PLSV, which is our flexibility in allowing various kernel
functions, which we will discuss next.

3.3 RBF Kernels

In the Step 2(b)i of the above generative process, the topic z of a word is drawn from
the distribution {P(z|xn,Φ)}Zz=1. This distribution relates the coordinates of topics in
the visualization space Φ = {φz}Zz=1 and the coordinate xn of a document dn with the
document’s topic distribution {P(z|dn)}Zz=1.

This relationship can be formulated as a mapping problem where we want to find a
function G which maps a point in visualization space to a point in the topic space. However,
the form of G cannot be known exactly because both visualization space and topic space
are latent spaces and G may be different across different domains. Therefore, to compute
the topic distributions, we need a way to approximate G.

To build a function approximation of the unknown function G, we use the abstraction
of Radial Basis Function (RBF) neural networks (Bishop, 1995) because feedforward mul-
tilayered RBF neural networks with one hidden layer can serve as a universal approximator
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nzθ
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Figure 2: Topic distribution is expressed as a function of visualization coordinates using
Radial Basis Function (RBF) network.

to arbitrary continuous functions (Park & Sandberg, 1991). This property provides the
confidence that the model would have the ability to approximate any existing relationship
between visualization space and topic space with arbitrary precision. Unlike PLSV (Iwata
et al., 2008) that defined a specific mapping function, our approach generalizes the seman-
tic visualization model by defining the mapping problem in terms of kernelization, which
admits several mapping functions within the family of RBF kernels.

In our context, Radial Basis Function (Buhmann, 2000) will relate coordinate variables
based on distances which defines a kernel function Λ(||xn −φz||) in terms of how far a data
point (e.g., xn) is from a center (e.g., φz). The kernel function Λ may take on various forms,
e.g., Gaussian, multi-quadric, inverse quadratic, polyharmonic spline. To express P(z|dn)
as a function of xn, we consider the normalized architecture of RBF network, with three
layers as shown in Figure 2. The input layer consists of one input node (xn). The hidden
layer consists of Z number of normalized RBF activation functions. Each is centered at
φz and computes Λ(||xn−φz ||)∑Z

z′=1 Λ(||xn−φz′ ||)
. The linear output layer consists of Z output nodes.

Each output node yz(xn) corresponds to P(z|dn), which is a linear combination of the RBF
functions, as shown in Equation 2. Here, wz,z′ is the weight of influence of the RBF function

of z′ on the P(z|dn), with the constraint
∑Z

z′=1wz,z′ = 1.

P(z|dn) = yz(xn) =

∑Z
z′=1wz,z′ · Λ(||xn − φz′ ||)∑Z

z′=1 Λ(||xn − φz′ ||)
(2)

While Equation 2 is the general form, to instantiate a specific mapping function, we
need to determine both the assignment of wz,z′ and the form of the function Λ. For wz,z′ ,
we will experiment with a special case wz,z′ = 1 when z = z′ and 0 otherwise.

For the kernel function Λ, one variation we consider is Gaussian, which yields the func-
tion in Equation 3, where Φ refers to the collective set of φz’s. Note that here we set variance
of Gaussian to 1. However, its true value is not really important because a different variance
value just produces a re-scaled visualization with the scaling factor equal to that variance.
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P(z|dn)Gaussian = P(z|xn,Φ)Gaussian =
exp(−1

2 ||xn − φz||2)∑Z
z′=1 exp(−1

2 ||xn − φz′ ||2)
(3)

Another variation of Λ being considered is Student-t. This distribution is also used by
t-SNE (Van der Maaten & Hinton, 2008) in the context of non-semantic, direct embed-
ding to mitigate the effects of crowding. Due to mismatched dimensionalities, the points
are crunched together in the center of the visualization, which prevents gaps from forming
between the clusters. Therefore, we hypothesize that using Student-t as radial basis func-
tion, which yields the function in Equation 4, can help to improve the performance of our
model if crowding becomes an issue. Note that the Student-t distribution with one degree
of freedom yields a radial basis function having the form similar to the inverse quadratic.

P(z|dn)Student−t = P(z|xn,Φ)Student−t =
(1 + ||xn − φz||2)−1∑Z

z′=1(1 + ||xn − φz′ ||2)−1
(4)

The Gaussian function (Equation 3) was also used previously in the baseline PLSV
(Iwata et al., 2008) that we will compare to. Its inclusion helps to establish parity for
comparative purposes, both to investigate the effectiveness of the alternative Student-t
kernel (described above), as well as that of the neighborhood regularization (described in
the next section).

4. Neighborhood Graph Regularization Framework

There are recent works (Cai et al., 2008, 2009; Huh & Fienberg, 2012) trying to preserve the
local neighborhood structure when learning low-dimensional topic representations of docu-
ments. These works assume that documents are sampled from a nonlinear low-dimensional
subspace that are embedded in a high-dimensional space. Therefore, the local neighborhood
structure is important for revealing the hidden topics of documents and should be preserved
when learning topic representations of documents (Bai, Guo, Lan, & Cheng, 2014). In the
generative process for semantic visualization described in Section 3, the document parame-
ters are sampled independently, and may not necessarily reflect the underlying local neigh-
borhood structure. We therefore seek to realize this assumption for semantic visualization.
In particular, we assume that when two documents di and dj are close in the original space,
then their parameters ψi and ψj of the low-rank representation are similar as well. Coupled
with the kernelized semantic visualization model described in Section 3, the neighborhood
preservation approach described in this section constitutes our proposed model, Semafore,
which stands for SEmantic visualization with MAniFOld REgularization.

4.1 Neighborhood Regularization

The neighborhood structure can be represented by a neighborhood graph. Given a set of
data points in the Euclidean space, a neighborhood graph is constructed with the input
data points as vertices. By definition, edges are symmetric, i.e., ωij = ωji, and weighted.
The collection of edge weights are collectively denoted as Ω = {ωij}.

For the moment, we will assume that we have the neighborhood graph, and address
the issue of how this neighborhood graph may be incorporated into our semantic visualiza-

1101



Le & Lauw

tion framework. In actuality, the neighborhood graph construction itself is an important
component, whose construction is described in detail in Section 4.2.

One effective means to incorporate a neighborhood structure into a learning model is
through a regularization framework (Belkin et al., 2006). This leads to a re-design of the
log-likelihood function in Equation 1 into a new regularized function L (Equation 5), where
Ψ consists of the parameters (visualization coordinates and topic distributions), and D and
Ω are the documents and neighborhood structure.

L(Ψ|D,Ω) = L(Ψ|D) + λ · R(Ψ|Ω) (5)

The first component L is the log-likelihood function in Equation 1, which reflects the
fit between the latent parameters Ψ and the observation D. The second component R is a
regularization function, which reflects the consistency between the latent parameters Ψ of
neighboring documents in the neighborhood structure Ω. λ is the regularization parameter,
commonly found in neighborhood based algorithms (Belkin et al., 2006; Cai et al., 2008,
2009), which controls the extent of regularization (we will experiment with different λ’s in
experiments).

4.1.1 Proposed Regularization Function

We now turn to the definition of the R function. The intuition is that the data points that
are close in the high-dimensional space, should also be close in their low-rank representa-
tions, i.e., local consistency, also known as smoothness. One function that satisfies this is
R+ in Equation 6. Here, F is a distance function that operates on the low-rank space.
Minimizing R+ leads to minimizing the distance F(ψi, ψj) between neighbors (ωij = 1).

R+(Ψ|Ω) =
N∑

i,j=1;i �=j

ωij · F(ψi, ψj) (6)

The above level of local consistency is still insufficient, because it does not regulate how
non-neighbors (i.e., ωij = 0) behave. For instance, it does not prevent non-neighbors from
having similar low-rank representations. Another valid objective in visualization is to keep
non-neighbors apart, which is satisfied by another objective function R− in Equation 7. R−
is minimized when two non-neighbors di and dj (i.e., ωij = 0) are distant in their low-rank
representations. The addition of 1 to F is to prevent division-by-zero error.

R−(Ψ|Ω) =
N∑

i,j=1;i �=j;ωij=0

1− ωij

F(ψi, ψj) + 1
(7)

We hypothesize that neither objective is effective on its own. A more complete objective
would capture the spirits of both keeping neighbors close, and keeping non-neighbors apart.
Therefore, we put Equation 6 and Equation 7 together using summation and maximize the
objective function as shown in Equation 8. Note that the coefficient 1

2 in Equation 8 is for
simplifying the formula of the derivative of R∗(Ψ|Ω).

R∗(Ψ|Ω) = −1

2
(R+(Ψ|Ω) +R−(Ψ|Ω)) (8)
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Figure 3: Example of how the same topic distribution may have different visualization co-
ordinates. Any points on the red line have same topic distributions.

Summation preserves the absolute magnitude of the distance, and helps to improve the
visualization task by keeping non-neighbors separated on a visualizable Euclidean space.
Taking the product is unsuitable, because it constrains the ratio of distances between neigh-
bors to distances between non-neighbors. This may result in the crowding effect, where
many documents are clustered together, because the relative ratio may be maintained, but
the absolute distances on the visualization space could be too small.

Other than the proposed regularization function above, it is also possible to consider
other regularization functions. For instance, we have also experimented with modifying the
regularization function adapted from Discriminative Topic Model (DTM) (Huh & Fienberg,
2012), which addressed topic modeling but not semantic visualization. Note that while in
the original DTM formulation, the distance function F(ψi, ψj) operates in the topic space,
we adapt it for semantic visualization by redefining the distance function F(ψi, ψj) so that
it will operate in the visualization space instead. This modified DTM formulation is shown
to underperform the proposed regularization function above (Le & Lauw, 2014b).

4.1.2 Enforcing Neighborhood Structure: Visualization vs. Topic Space

We now turn to the definition of F(ψ1, ψ2). In neighborhood-based models (Belkin et al.,
2006; Cai et al., 2008, 2009), there is only one low-rank representative space. For semantic
visualization, there are two: topic and visualization spaces. We look into where and how
to enforce the neighborhood graph structure.

At first glance, they seem equivalent. After all, they are representations of the same
documents. However, this is not necessarily the case. Consider a simple example of two
topics z1 and z2 with visualization coordinates φ1 = (0, 0) and φ2 = (2, 0) respectively.
Meanwhile, there are three documents {d1, d2, d3} with coordinates x1 = (1, 1), x2 = (1, 1),
and x3 = (1,−1). If two documents have the same coordinates, they will also have the
same topic distributions. In this example, x1 and x2 are both equidistant from φ1 and φ2,
and therefore according to Equation 3, they have the same topic distribution P(z1|d1) =
P(z1|d2) = 0.5, and P(z2|d1) = P(z2|d2) = 0.5. If two documents have the same topic
distributions, they may not necessarily have the same coordinates. d3 also has the same
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topic distribution as d1 and d2, but a different coordinate. In fact, any coordinate of the
form (1, ?) will have the same topic distribution. This example is illustrated in Figure 3.

This suggests that enforcing neighborhood structure on the topic space may not nec-
essarily lead to having data points closer on the visualization space. We postulate that
regularizing the visualization space is more effective. There are also advantages in com-
putational efficiency to doing so, which we will describe further shortly. Therefore, we
define F(ψi, ψj) as the squared Euclidean distance ||xi − xj ||2 between the corresponding
visualization coordinates.

4.2 Neighborhood Graph

We discuss how the neighborhood graph may be approximated, which concerns the two
issues of how the graph edges are defined, as well as how they are weighted. The neighbor-
hood graph is constructed in the original data space where we represent each document as a
tf-idf vector (Manning, Raghavan, Schütze, et al., 2008). We also experiment with different
vector representations, including word counts and term frequencies, and find tf-idf to give
the best results. The distance between two document vectors is measured using Euclidean
distance.

4.2.1 Graph Construction

There have been research studies on the properties and methods for construction of neigh-
borhood graphs (Zemel & Carreira-Perpiñán, 2004; Carey & Mahadevan, 2014). Since the
construction of neighborhood graph is a critical step that may affect the performance of
various graph-based algorithms, this problem itself is a research issue of independent in-
terest. Our scope is in exploring how some well-established graph construction techniques
may apply to the case of semantic visualization. We will investigate these various graph
construction methods empirically in Section 6.

In the following, we briefly review two categories of graph construction methods.

1. Neighborhood-based Graphs. In this formulation, edges are formed between data points
that are deemed to be sufficiently close to each other. This admits different definitions
of “sufficient closeness”. The most common definitions found in the literature include
the two below.

(a) ε-ball: The neighborhood graph contains an edge connecting two documents di
and dj , if di and dj have a distance less than a threshold ε.

(b) k-nearest neighbors (k-NN) graph: The neighborhood graph contains an edge
connecting two documents di and dj , if di is in the set Nk(dj) of the k−nearest
neighbors of dj , or dj is in the set Nk(di).

ε-ball and k-NN both have strongly data-dependent parameters (i.e., ε and k) and it is
not straightforward to choose the best value for these parameters. Neither guarantees
that the graph would be connected. They also need to be carefully selected or tuned,
as to some extent they also affect the “balance” between the contribution of neighbors
R+ and non-neighbors R− to the neighborhood regularization R∗ in Equation 8. In
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Appendix A, we explore empirically how these graph parameters can help to maintain
this balance within the neighborhood regularization function.

ε-ball suffers from another issue that it tends to produce many edges for the points
located at high-density regions, and thus has little restriction on the maximum degree
of a vertex. k-NN does not suffer from that problem and is one of the most commonly
used types of graphs.

In our subsequent development and experiments, we will experiment with both ε-ball
and k-NN graph as there may be some variance in the performance of different graph
construction techniques for different datasets (Hein, Audibert, & Luxburg, 2007; Ting,
Huang, & Jordan, 2010; Coifman & Lafon, 2006).

2. Minimum Spanning Tree-based Graphs. While ε-ball and k-NN are quite sensitive
to noise and sparsity, graph construction based on combining multiple minimum
spanning trees can help to reduce sensitivity to noise of the output graph (Zemel
& Carreira-Perpiñán, 2004). There are two variations based on this approach.

(a) Perturbed Minimum Spanning Trees (PMST): PMST builds a neighborhood
graph by generating T > 1 perturbed copies of the whole dataset according
to the local noise model and fitting an MST to each perturbed copy. A weight
eij ∈ [0, 1] will be assigned to the edge between points xi and xj equal to the
average number of times that edge appears on the trees.

(b) Disjoint Minimum Spanning Trees (DMST): DMST produces a neighborhood
graph by finding a deterministic collection of r minimum spanning trees that
satisfies the property that no tree in the collection uses any edge of other trees.
The neighborhood graph is the union of all edges of trees and contains r(N − 1)
edges.

As the representative of this category, we use DMST, which is deterministic and easier
to construct than PMST while showing similar efficacies.

4.2.2 Graph Weighting

The next issue is how to assign weights to the edges in the neighborhood graph. In this
respect, we consider two variations of edge weights.

1. Simple Minded :

ωij =

{
1, if only if di and dj are connected,

0, otherwise.
(9)

This is the simplest approach where we use binary weighting to assign the weights
to the edges. However, this approach to assign uniform weights to edges can be
sensitive to errors, because of the “cliff effect” from 1 immediately to 0. Moreover,
since the weights are not smoothed, it could result in some loss of information. We
hypothesize that among the connected nodes, there may still be some differences in
terms of degrees of similarity, which are expressed by their mutual distances. This
motivates the second approach below.
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2. Heat Kernel :

ωij =

{
exp(− ||di−dj ||2

τ ), if only if di and dj are connected,

0, otherwise.
(10)

An alternative approach is using the Heat Kernel function (Belkin & Niyogi, 2001;
Jebara, Wang, & Chang, 2009). Heat Kernel has the advantage over Simple Minded by
allowing smoother weights for the edges, which helps address the issues of sensitivity
and loss of information. However, while Simple Minded is not parameterized, Heat
Kernel has one parameter that needs to be determined (i.e., τ). Note that for τ = ∞,
Heat Kernel degenerates into Simple Minded, i.e., the former is the more general
formulation. The exact value of τ is not important in our model because it would
effectively be absorbed by the regularization parameter. For simplicity, we set τ = 2.

5. Model Fitting

We now discuss how the parameters of the model described in Sections 3 and 4 can be
learned. One well-accepted framework to learn model parameters using maximum a pos-
teriori (MAP) estimation is the Expectation-Maximization or EM algorithm (Dempster,
Laird, & Rubin, 1977).

For our model, the regularized conditional expectation of the complete-data log likeli-
hood in MAP estimation with priors is:

Q(Ψ|Ψ̂) =
N∑

n=1

Mn∑
m=1

Z∑
z=1

P(z|n,m, Ψ̂) log
[
P(z|xn,Φ)P(wnm|θz)

]

+
N∑

n=1

log(P(xn)) +

Z∑
z=1

log(P(φz)) +

Z∑
z=1

log(P(θz))

+ λ · R(Ψ|Ω),
where Ψ̂ is the current estimate. P(z|n,m, Ψ̂) is the class posterior probability of the nth

document and the mth word in the current estimate. P(θz) is a symmetric Dirichlet prior
with parameter α for word probability θz. P(xn) and P(φz) are Gaussian priors with a zero
mean and a spherical covariance for the document coordinates xn and topic coordinates φz.
We set the hyper-parameters to α = 0.01, β = 0.1N and γ = 0.1Z following PLSV (Iwata
et al., 2008).

In the E-step, P(z|n,m, Ψ̂) is updated as follows:

P(z|n,m, Ψ̂) =
P(z|x̂n, Φ̂)P(wnm|θ̂z)∑Z

z′=1 P(z
′|x̂n, Φ̂)P(wnm|θ̂z′)

.

In the M-step, by maximizing Q(Ψ|Ψ̂) w.r.t θzw, the next estimate of word probability
θzw is as follows:

θzw =

∑N
n=1

∑Mn
m=1 I(wnm = w)P(z|n,m, Ψ̂) + α∑W

w′=1

∑N
n=1

∑Mn
m=1 I(wnm = w′)P(z|n,m, Ψ̂) + αW

,
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where I(.) is the indicator function. φz and xn cannot be solved in a closed form, and are
estimated by maximizing Q(Ψ|Ψ̂) using quasi-Newton (Liu & Nocedal, 1989).

The computation fo the gradients of Q(Ψ|Ψ̂) w.r.t φz and xn depend on the specific
kernel used (see Section 3.3).

• For the Gaussian kernel, we have the following gradients:

∂Q(Ψ|Ψ̂)

∂φz
=

N∑
n=1

Mn∑
m=1

(
P(z|xn,Φ)− P(z|n,m, Ψ̂)

)
(φz − xn)− βφz,

∂Q(Ψ|Ψ̂)

∂xn
=

Mn∑
m=1

Z∑
z=1

(
P(z|xn,Φ)− P(z|n,m, Ψ̂)

)
(xn − φz)− γxn + λ · ∂R(Ψ|Ω)

∂xn
.

• For the Student-t kernel, we have the following gradients:

∂Q(Ψ|Ψ̂)

∂φz
=

N∑
n=1

Mn∑
m=1

2
(
P(z|xn,Φ)− P(z|n,m, Ψ̂)

)
(φz − xn)

1 + ||xn − φz||2 − βφz,

∂Q(Ψ|Ψ̂)

∂xn
=

Mn∑
m=1

Z∑
z=1

2
(
P(z|xn,Φ)− P(z|n,m, Ψ̂)

)
(xn − φz)

1 + ||xn − φz||2 − γxn + λ · ∂R(Ψ|Ω)
∂xn

.

The gradient of R(Ψ|Ω) w.r.t. xn is computed depending on the form of the regu-
larization function R(Ψ|Ω). When we use the proposed regularization function R∗(Ψ|Ω)
described in Section 4.1.1, we have the following gradient:

∂R(Ψ|Ω)
∂xn

=
∂R∗(Ψ|Ω)

∂xn

= −1

2

∑
j=1;j �=n

(
4ωnj(xn − xj)

)− ∑
j=1;j �=n

(
4(1− ωnj)

(xn − xj)

(F(ψn, ψj) + 1)2
)
.

As mentioned earlier, there is an efficiency advantage to regularizing on the visualiza-
tion space. R(Ψ|Ω) does not contain the variable φz if we do regularization on visualization

space. The complexity of computing all ∂R(Ψ|Ω)
∂xn

is O(N2). In contrast, if we do regulariza-
tion on topic space, we have to take the gradient of R(Ψ|Ω) w.r.t to φz. That contributes

towards a greater complexity of O(Z2×N2) to compute all ∂R(Ψ|Ω)
∂θz

. Therefore, regulariza-
tion on topic space would run much slower than on visualization space.

6. Experiments

The main objective of our experiments is to evaluate the effectiveness of neighborhood reg-
ularization for semantic visualization model. After describing the experimental setup, we
first examine the different design choices of the model relating to kernel, graph construc-
tion, and regularization function. Thereafter, we compare Semafore against the baseline
methods that also aim to address both visualization and topic modeling, quantitatively and
qualitatively, first in terms of visualization and then in terms of topic modeling.
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6.1 Experimental Setup

In this section, we give a description of benchmark datasets as well as suitable metrics that
are used for evaluation.

6.1.1 Datasets

We use three real-life, publicly available datasets (Cardoso-Cachopo, 2007) for evaluation.

• 20News contains newsgroup articles (in English) from 20 classes.

• Reuters8 contains newswire articles (in English) from 8 classes.

• Cade12 contains web pages (in Brazilian Portuguese) classified into 12 classes.

These are benchmark datasets used for document classification. While our task is fully
unsupervised, the ground-truth class labels are useful for an objective evaluation. We
create balanced classes by sampling fifty documents from each class, following the practice
in PLSV (Iwata et al., 2008). This results in, for one sample, 1000 documents for 20News,
400 for Reuters8, and 600 for Cade12. The vocabulary sizes are 5.4K for 20News, 1.9K for
Reuters8, 7.6K for Cade12. As the algorithms are probabilistic, we generate five samples
for each dataset. For each sample, we conduct five independent runs. Therefore, the result
reported for each setting is the average over a total of 25 runs.

6.1.2 Metrics

For a suitable metric, we return to the fundamental principle that a good visualization
should preserve the relationship between documents (in high-dimensional space) in the
lower-dimensional visualization space. User studies, even when well-designed, could be
overly subjective and may not be repeatable across different users reliably. Therefore, for a
more objective evaluation, we rely on two types of quantitative analysis:

• Classification: This evaluation relies on the ground-truth class labels found in the
datasets. This is a well-established practice in many clustering and visualization
works in machine learning. The basis for this evaluation is the reasonable assumption
that documents of the same class are more related than documents of different classes.
Therefore a good visualization would place documents of the same class as neighbors
on the visualization.

For each document dn, we hide its true class cn, and generate a prediction for
its class Ĉt(n) by taking the majority class among its t-nearest neighbors, as de-
termined by Euclidean distance on the visualization space. Classification accuracy
Classification Acc(t) is defined as the fraction of documents whose predicted class
Ĉt(n) matches the true class cn. More specifically, we have:

Classification Acc(t) =
1

N

N∑
n=1

δ(Ĉt(n) = cn),
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where δ is the delta function that equals 1 if the prediction matches and 0 otherwise.

The same metric is used in PLSV (Iwata et al., 2008). While accuracy is computed
based on documents’ coordinates, the same trends will be produced if computed based
on topic distributions (due to their coupling through the kernels described in Sec-
tion 3.3).

• Neighborhood Preservation: This evaluation does not rely on the ground-truth class
labels but on the local neighborhood structure in the input data. The assumption is
that a good visualization would be able to preserve the local structure in the input
data as much as possible. If two documents are neighbors in the input data, they
should still be neighbors in the visualization space.

For every document dn, we compute sets of t-nearest neighbors Yt(n) and Xt(n) of
document dn in the input data and the visualization respectively. The neighborhood
preservation accuracy Preservation Acc(t) is then defined as the average fraction of
the overlap size of Yt(n) and Xt(n) over the size of Yt(n) (i.e. t), where n = 1, . . . , N .
More specifically, we have:

Preservation Acc(t) =
1

N

N∑
n=1

|Yt(n) ∩ Xt(n)|
t

,

where |Yt(n) ∩ Xt(n)| is the size of the overlap set Yt(n) ∩ Xt(n).

A similar measure can be found in the literature (Akkucuk & Carroll, 2006), where
it is called the “rate of agreement in local structure” or “agreement rate” and is used
to measure how well the local structure is preserved between the input data and the
low dimensional embedding. It is also used for tuning the parameters of a non-linear
dimensionality reduction method (Chen & Buja, 2009).

In the subsequent experiments, we let t vary in the range [5, 50] with the step size
5 and report the accuracies. Since different methods may behave differently at different
t’s, choosing a specific t for comparison may be unfair for some methods. Moreover, a
method that consistently does well for different t’s would also have a “smoother” local
structure. Therefore, when comparing various methods, we present the preservation or
classification accuracies averaged across t ∈ [5, 50], denoted Preservation Acc(Avg) and
Classification Acc(Avg) respectively.

6.2 Parameter Study

In this section, we study the effects of graph parameters on our model. Specifically, the
parameters concern the graph construction, including the number of neighbors k in k-NN
graph, the distance threshold ε in ε-ball graph, and the number of minimum spanning trees
r in DMST. For each type of graph, we use the Simple Minded weight. For the following
figures, the regularization function is R∗ with λ = 10 and the number of topics Z = 20.
We use neighborhood preservation accuracy Preservation Acc(t) to show the effects of
graph parameters because this metric does not need ground-truth class labels, which are
not always available for tuning these graph parameters.
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Figure 4: Preservation accuracy of Semafore when using k-NN graph with different neigh-
borhood size k for (a) 20News, (b) Reuters8, and (c) Cade12.

Figure 5: Preservation accuracy of Semafore when using DMST graph with different num-
ber of minimum spanning trees r for (a) 20News, (b) Reuters8, and (c) Cade12.

Figure 6: Preservation accuracy of Semafore when using ε-ball graph with different values
of distance threshold ε for (a) 20News, (b) Reuters8, and (c) Cade12.
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In Figure 4, we show the performance of our model with different neighborhood size k in
k-NN graph for different datasets. For every k, we vary t and plot the Preservation Acc(t).
Figure 4 shows that the optimum k for 20News, Reuters8, and Cade12 is 10, 10, and 5
respectively. We compute the average accuracy Preservation Acc(Avg) and it confirms
that the optima are indeed at those k values. From now on, we will use k=10 for 20News
and Reuters8, and k=5 for Cade12 when k-NN graph is used.

For DMST graph, we plot the Preservation Acc(t) for different number of minimum
spanning trees r with different datasets in Figure 5. It is difficult to see which r is the best in
the figure because the differences between them are not much. The Preservation Acc(Avg)
is computed and it shows that for all three datasets, the optimum is about at r=5,6,7.
Subsequently, we will use r=6 for DMST graphs for all three datasets.

For ε-ball graph, in Figure 6 we plot the Preservation Acc(t) for different values of ε
in the range [1.32, 1.40]. We choose that range because ε=1.32 and ε=1.40 roughly give an
average number of neighbors of 5 and 100 respectively. The Preservation Acc(Avg) shows
that the optimum ε for 20News, Reuters8, and Cade12 is 1.34, 1.35, and 1.33 respectively.

6.3 Model Analysis

In this section, we study the various design choices involved in designing the Semafore

model, before finally concluding on the eventual synthesis of design choices to be used for
comparison against the baselines. To keep the discussion focused and organized, in each of
the following sub-section, we vary a single design choice, in order to isolate its effects. When
unvaried, the model has the following setup by default: the number of topics is Z = 20,
the graph construction method is k-NN, the graph weighting method is simple minded, the
RBF kernel is Gaussian, and the regularization function is R∗ with λ = 10.

6.3.1 Neighborhood Graph Construction

We investigate three graph construction methods: k-NN, ε-ball and DMST, which are repre-
sentatives of neighborhood-based and minimum spanning tree-based methods respectively.
For each graph, its parameter is tuned as shown in Section 6.2. For the regularization
parameter λ, we try different settings of λ on each dataset. It so happens that λ = 10
performs the best for all the graph construction methods across the three datasets.

In Figure 7, we run Semafore with different types of graph on the three datasets and
report the Preservation Acc(Avg) at different number of topics Z. The results show that
different types of graph behave differently with different datasets. In 20News, ε-ball and
DMST give our model highest performance. Since the difference between the two are not
statistically significant, we choose to use DMST for subsequent experiments on 20News.
For Reuters8, since ε-ball outperforms the others (significant at 0.05 level), it is going to
be the default choice for subsequent experiments. For Cade12, the choice is DMST, which
is slightly better than k-NN (statistically significant for Z = 10, 40, 50).

6.3.2 Neighborhood Graph Weighting

We now compare two variations of graph weighting methods, namely: Simple Minded and
Heat Kernel methods. In this experiment, we use k-NN graph with specific k’s for different
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Figure 7: The effects of different graph construction methods on our model’s performance.

Figure 8: The effects of different graph weighting schemes on our model’s performance.
The graph used in this experiment is k-NN graph with specific k’s for different
datasets as studied in Section 6.2.

Figure 9: The effects of Gaussian and Student-t RBF kernels on our model’s performance.
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20News Reuters8 Cade12

Regularization function R∗ R∗ R∗
Graph construction DMST ε-ball DMST

Graph weighting Heat Kernel Heat Kernel Simple Minded

RBF kernel Student-t Student-t Student-t

Table 2: Synthesized Model for Each Dataset.

datasets as studied in Section 6.2. The regularization parameter λ is set to 10 after trying
various settings and picking the best one.

In Figure 8, we compare Simple Minded method and Heat Kernel method to see their
influences on our model at different number of topics Z. We observe that Heat Kernel
is significantly and consistently better than Simple Minded method across all the cases
in 20News and Reuters8. The difference is statistically significant at 0.01 level. One
explanation is that Heat Kernel assigns smoother weights to the graph edges, and thus is
more robust than Simple Minded. For Cade12, Simple Minded is slightly better, though
the differences are statistically significant at 0.05 level only for Z = 40. Subsequently, we
will use Heat Kernel for 20News and Reuters8, and Simple Minded for Cade12 as part of
the final synthesis.

6.3.3 RBF Kernel

As described in Section 3.3, we express topic distributions as a function of visualization
coordinates using RBF network as an abstraction. In this section, we show how different
RBF kernels affect our model’s performance. The two kernels we are exploring are Gaussian
(Equation 3) and Student-t (Equation 4). We tune the regularization term λ for each kernel
and see that the best one for the two kernels are λ = 10.

Figure 9 shows the results for different number of topics Z. Student-t kernel has a slight
edge over Gaussian kernel consistently across different number of topics. The difference is
small, but is statistically significant (at 0.05 level) in a majority of the cases (for 20News
at Z = 10, 20, 30, 50, for Reuters8 at Z = 30, and for Cade12 at Z = 10, 30, 50). The slight
improvement could be a sign that crowding problem does exist in the model. Student-t
kernel would be even more useful when there is more extreme crowding issues, such as
when the number of documents to be visualized is even larger. Subsequently, due to its
slight edge, we will use Student-t as part of the final synthesis. As we will see shortly, using
Student-t within the synthesized model results in a significant improvement overall.

6.3.4 Synthesised Semafore Model

Based on the model analysis in the preceding paragraphs, we combine the design choices
into a final synthesis model called Semafore. The synthesized model is slightly different
for different datasets, as listed in Table 2.

We now conduct another set of experiments to verify that those synthesized models
would produce a noticeable improvement over the earlier version (kNN + Simple Minded
+ Gaussian Kernel) that appeared in our earlier work (Le & Lauw, 2014b), underlining
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Figure 10: Our synthesized models with different properties compared to the earlier version
(kNN + Simple Minded + Gaussian Kernel) that appeared in our earlier work
(Le & Lauw, 2014b).

the utility of the subsequent enhancements. Figure 10 shows that this is indeed the case.
Based on the standard deviations shown in the figures, the improvements are very clear
in 20News and Reuters8 but not so clear in Cade12. Paired samples t-test indicate that
the improvement is significant at 0.05 level or lower in all cases, except for the cases where
Z = 10, 20 in Cade12. We will use these synthesized models in the comparisons against the
baseline methods in the following section.

6.4 Comparison of Visualizations

We now compare our proposed model with several baselines. First, we outline the set of
comparative methods. Thereafter, we discuss quantitative evaluation (in terms of accuracy),
as well as qualitative evaluation (in terms of example visualizations). Finally, we will show
that the gains in visualization quality does not come at the expense of topic modeling.

As semantic visualization seeks to ensure consistency between topic model and visualiza-
tion, the comparison focuses on methods producing both topics and visualization coordinates
which are listed in Table 3.

• Semafore is our proposed method that incorporates neighborhood structure into
semantic visualization.

• PLSV (Iwata et al., 2008) is the state-of-the-art, representing the joint approach
without neighborhood structure preservation.

• PE (LDA) represents the pipeline approach involving topic modeling with LDA (Blei
et al., 2003), followed by visualizing documents’ topic distributions with PE (Iwata
et al., 2007). This pipeline is better than the LDA/MDS that appeared in our earlier
work (Le & Lauw, 2014b). There are other pipeline methods, shown inferior to PLSV
(Iwata et al., 2008), which are not reproduced here to avoid duplication.
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Visualization Topic model Joint model Neighborhood

Semafore

PLSV

PE (LDA)

t-SNE (LDA)

Table 3: Comparative Methods.

• t-SNE (LDA) is another pipeline approach that first uses LDA (Blei et al., 2003) to
learn topic model and then use t-SNE (Van der Maaten & Hinton, 2008) to visualize
documents’ topic distributions.

For completeness, we also conduct experiments for comparing our method with t-SNE
and Laplacian EigenMaps (LE) (Belkin & Niyogi, 2003) (direct visualization, without topic
modeling). To keep the discussion focused, we show them in Appendix B, as we do not
consider t-SNE and LE as comparative baselines because these two methods only model
visualization, but not topics.

6.4.1 Accuracy

In this section, we compare our model with several baselines in terms of classification
accuracy (Figure 11) and neighborhood preservation accuracy (Figure 12). In the two
figures, only the standard deviations for Semafore are shown.

Classfication Accuracy. Figure 11(a), 11(c) and 11(e) show the Classfication Acc(t)
at different t’s for Z = 20 for 20News, Reuters8, and Cade12 respectively. At any t, the
comparison shows outperformance by Semafore over the baselines consistently. All four
methods show the same behavior that their performances decrease when t increases. As t
increases, they may lose accuracy in predicting labels for documents near to the border of
each “cluster”.

Now, we vary the number of topics Z. In Figure 11(b), we show the performance in
Classfication Acc(Avg) on 20News. Figure 11(d) and 11(f) show the same for Reuters8
and Cade12 respectively. From these figures, we draw the following observations about the
comparative methods:

• Semafore performs the best on all datasets across various numbers of topics (Z).
Semafore beats PLSV by 25% to 51% on 20News, by 6–13% on Reuters8, and by
22–32% on Cade12. These margins of performance with respect to PLSV are statisti-
cally significant at 0.01 significant level or lower in all cases. This effectively showcases
the utility of neighborhood regularization in enhancing the quality of visualization.
By preserving local consistency, Semafore achieves a good accuracy even at small
number of topics (e.g., 10).

• PLSV performs better than PE (LDA) and t-SNE (LDA), which shows that there
is utility to having a joint, instead of separate, modeling of topics and visualization.
PE (LDA) and t-SNE (LDA) are worse than PLSV because it embeds documents by
using two-step reductions that optimize separately two different objective functions.
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Therefore, the errors from the previous step may propagate to the next, without an
opportunity for correction. This may cause distortions in the visualization.

• In some cases, PLSV, PE (LDA) and t-SNE (LDA) tend to have decreasing accura-
cies when the number of topics increases. This may be because when number of topic
increases, the topic distributions and the word probabilities may overfit the data and
thus the accuracy is reduced. In contrast, Semafore shows a quite stable perfor-
mance across different numbers of topics. This may be explained by the utility of
neighborhood regularization, which helps to prevent overfitting when the number of
topics increases.

Neighborhood Preservation Accuracy. While having better classification accuracy,
Semafore also preserves well the local structure of the input data in the visualization space.
The Preservation Acc(t) results in Figure 12(a), 12(c) and 12(e) show that Semafore is
consistently better than the other baselines in terms of neighborhood preservation across
different t’s and different datasets. In Figure 12(b), 12(d) and 12(f), we vary the number
of topics Z and report the Preservation Acc(Avg) results. Semafore beats PLSV by
41% to 76% on 20News, by 24–36% on Reuters8, and by 29–45% on Cade12 in terms
of neighborhood preservation accuracy. The improvements of Semafore over PLSV are
statistically significant at 0.01 significant level or lower in all cases.

The above accuracy results are based on visualization coordinates. We have also com-
puted accuracies based on topic distributions, which have similar trends.

6.4.2 Visualizations

To provide an intuitive appreciation, we briefly describe a qualitative comparison of visual-
izations. For each method on each dataset, a visualization is shown as a scatterplot (best
seen in color). Each document has a coordinate, and is assigned a shape and color based
on its class. Each topic also has a coordinate, drawn as a black, hollow circle. A legend is
provided, mapping each symbol to the corresponding class label.

Note that this is an illustrative, rather than a comparative discussion, as an objective
evaluation should not rely on eyeballing alone. However, as we have shown the quantitative
results in the preceding section, in this section, we focus on the qualitative study of the
output visualizations.

20News. Figure 13 shows a visualization of 20News dataset. Semafore’s Figure 13(a)
shows that the different classes are well separated. There are distinct clusters of blue squares
and purple diamonds at the top for hockey and baseball classes respectively, clusters of
orange triangles and pink asterisks at the bottom for cryptography and medicine, etc.
Beyond individual classes, the visualization also places related classes nearby. Computer-
related classes are found on the lower left. Politics and religion are on the lower right.

Comparatively, Figure 13(b) by PLSV shows crowding at the center. For instance,
motorcycle (green dashes) and autos (red dashes) are mixed at the center without a good
separation. Figure 13(c) by PE (LDA) is worse. PE (LDA) does not give good separation
for not similar classes. It mixes autos (red dashes) and space (green circles) together at
the center. Medicine (pink asterisks) is also mixed with other classes in PE (LDA) while
Semafore and PLSV give a good separation for it. Figure 13(d) is visualization by t-
SNE (LDA). Although t-SNE (LDA) can separate well hockey (blue squares) and baseball
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Figure 11: Classification Accuracy Comparison.
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Figure 12: Preservation Accuracy Comparison.
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(purple diamonds) classes, it is not able to detect their semantic similarities (as baseball
and hockey are both about sports). In addition, it still mixes documents of different classes
together at the center and on the upper right.

Reuters8. Figure 14 shows the visualization outputs for Reuters8 dataset. Semafore
in Figure 14(a) is better at separating the eight classes into distinct clusters. In an anti-
clockwise direction from the top, we have navy blue diamonds (money-fx ), red dashes
(interest), red squares (crude), light blue pluses (earn), green triangles (acq), purple crosses
(ship), blue asterisks (grain), and finally orange circles (trade).

In comparison, PLSV in Figure 14(b) shows that several classes are intermixed at the
center, including red dashes (interest), orange circles (trade), and navy blue diamonds
(money-fx ). PE (LDA) in Figure 14(c) is also worse when it mixes differentiated classes
such as red dashes (interest) and navy blue diamonds (money-fx ) together. t-SNE (LDA)
in Figure 14(d) seems have better cluster separation but still mix documents with different
classes together such as red squares (crude) and green triangles (acq) on the upper right.
Green triangles (acq) also mix with light blue pluses (earn) on the left in the visualization
by t-SNE (LDA).

Cade12. Figure 15 shows the visualization outputs for Cade12. This is the most
challenging dataset. Even so, Semafore in Figure 15(a) still achieves a better separation
between the classes, as compared to PLSV in Figure 15(b). Particularly, Semafore gives
better separation for esportes (green triangles) as well as compras-on-line (orange circles)
than PLSV and PE (LDA). t-SNE (LDA) shows quite good clusters for esportes (green
triangles) as well as compras-on-line (orange circles) but it also merges many different
classes together as in the clusters on the right and on the upper right.

6.5 Comparison of Topic Models

One question is whether Semafore’s gain in visualization quality over the closest baseline
PLSV is at the expense of the quality of its topic model. To investigate this, we will
compare the topic models of Semafore and PLSV, which share a core generative process.
For parity, in this comparison, we only include the joint models, whereby the visualization
coordinates affect the topic models as well.

The metric we use to measure the quality of topic models is pairwise mutual information
or PMI. It measures topic interpretability, based on coocurrence frequencies of the top words
in each topic in a large external corpus. Although other metrics such as perplexity or held-
out likelihood can show the generalization ability of a learned topic model on unseen test
data, these traditional metrics do not capture whether topics are coherent (Chang, Gerrish,
Wang, Boyd-Graber, & Blei, 2009). Therefore, in this comparison, we rely on PMI, which
can measure the quality of topic words in terms of their interpretability to a human. To
human subjects, interpretability is closely related to coherence (Newman, Lau, Grieser, &
Baldwin, 2010), i.e., how much the top keywords in each topic are “associated” with each
other. After an extensive study of evaluation methods for coherence, Newman et al. (2010)
identify Pointwise Mutual Information (PMI) as the best measure, in terms of having the
greatest correlation with human judgments.

PMI is based on term cooccurrences. For a pair of words wi and wj , PMI is defined

as log
p(wi,wj)

p(wi)p(wj)
. For a topic, we average the pairwise PMI’s among the top 10 words of
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Figure 13: Visualization of documents in 20News for number of topics Z = 20. Each point
represents a document and the shape and color represent document class. Each
topic is drawn as a black, hollow circle.
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Figure 14: Visualization of documents in Reuters8 for number of topics Z = 20. Each
point represents a document and the shape and color represent document class.
Each topic is drawn as a black, hollow circle.
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Figure 15: Visualization of documents in Cade12 for number of topics Z = 20. Each point
represents a document and the shape and color represent document class. Each
topic is drawn as a black, hollow circle.
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Figure 16: Topic Interpretability of Semafore and PLSV in terms of PMI Score (higher
is better).

that topic. For a topic model, we average PMI across the topics. Intuitively, PMI is higher
(better), if each topic features words that are highly correlated with one another.

Key to PMI is the use of an external corpus to estimate p(wi, wj) and p(wi). Following
Newman et al. (2009), we use Google Web 1T 5-gram Version 1 (Brants & Franz, 2006),
a huge corpus of n-grams generated from 1 trillion word tokens. p(wi) is estimated from
the frequencies of 1-grams. As recommended by Newman et al., p(wi, wj) is estimated from
the frequencies of 5-grams. We obtain PMI for the English-based 20News and Reuters8,
but not for Cade12 because we do not possess a large-scale n-gram corpus specifically for
Brazilian Portuguese.

In Figure 16, we plot the PMI score for various number of topics Z. Semafore performs
better than PLSV across most of the topics settings. In Figure 16(a) for 20News, except for
the case at Z = 10, all cases of Semafore’s outperformance are significant at 0.05 level or
lower. In Figure 16(b) for Reuters8, all cases of Semafore’s outperformance are significant
at 0.05 level or lower except for the Z = 30. These results show that Semafore improves
visualization while not sacrificing the topic interpretability of learned topics.

For a greater appreciation of the quality of the output topic models, in Appendix C, we
show several examples of topic models for Z = 20, for both Semafore and PLSV, in terms
of the top keywords with the highest probabilities for each topic.

7. Conclusion

In this paper, we address the semantic visualization problem, which jointly conducts topic
modeling and visualization of documents. We propose a new framework to incorporate
neighborhood structure within a probabilistic semantic visualization model called Semafore.
The model is carefully designed to reflect the context of semantic visualization, leading to
a number of design choices related to the RBF kernel for mapping topic and visualiza-
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tion spaces, the approximation of neighborhood graph through construction and weighting,
as well as the appropriate regularization functions and spaces. Experiments on real-life
datasets show that Semafore significantly outperforms the baselines in terms of visualiza-
tion quality and accuracy, while having a similar, if not slightly better topic model. This
provides evidence that neighborhood structure, together with joint modeling of topics and
visualization, is important for semantic visualization.

Appendix A. Balancing Contributions of Neighbors and Non-neighbors
to Regularization

As mentioned in Section 4.2, the balance between the contribution of neighbors R+ and
non-neighbors R− to the neighborhood regularization R∗ in Equation 8 may require careful
tuning of the graph parameters (i.e., ε or k). For example, in the case of using k-NN graph
and N total number of documents, we would have kN terms in the neighbor regularization
R+, and (N−k)N terms in the non-neighbor regularizationR−. Supposing thatN increases
significantly, there might be imbalance if k were to remain unchanged. Therefore, as N
changes, k should also be tuned accordingly to maintain this balance. For a simplistic
point, the ratio between kN and (N − k)N would remain roughly the same if both N and
k grow by similar factors. In practice, we recommend tuning k carefully.

We run additional experiments to validate the above argument on the 20News dataset.
Our basic point is that as N changes, k can be tuned to still show significant improvement
due to the neighborhood graph regularization. The closest baseline is PLSV, both empir-
ically in terms of classification accuracy, as well as conceptually as PLSV shares a similar
generative process but with a different kernel and without neighborhood regularization.
Hence, we compare the performance of our method Semafore (with k-NN graph, heat
kernel weighting, and Student-t kernel) to PLSV on various data sizes at Z = 20 topics.

• Figure 17(a) is for dataset of size N = 500, and Semafore runs with k = 10.

• Figure 17(b) is for dataset of size N = 1000, and Semafore runs with k = 10.

• Figure 17(c) is for dataset of size N = 5000, and Semafore runs with k = 50.

We note that there is a 10X difference between the smallest and the largest datasets.
Yet the relative outperformance of Semafore over PLSV by around 15% to 20% is evident
across the three datasets. This supports the case that k can be tuned to produce a positive
effect using neighborhood graph regularization.

Appendix B. Additional Comparisons

As mentioned in Section 6.4, for completeness, we include here additional comparisons to
visualization methods that do not also aim at topic modeling. In particular, we include two
methods. First, we include t-SNE (Van der Maaten & Hinton, 2008), which is also used
in the composite t-SNE (LDA). Second, we include Laplacian EigenMaps (LE) (Belkin &
Niyogi, 2003), which takes as input the neighborhood graph. Figure 18 and Figure 19
show the classification accuracy and preservation accuracy of Semafore , t-SNE and LE
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Figure 17: Classification accuracy comparison on 20News with various data sizes (Z = 20).

Figure 18: Classification accuracy comparison.

Figure 19: Preservation accuracy comparison.
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when varying t. Semafore outperforms LE in all cases. For t-SNE, Semafore outper-
forms t-SNE for Reuters8. However, for 20News and Cade12, it is more difficult to tell
whether Semafore or t-SNE is better. t-SNE tends to have decreasing accuracy as t in-
creases. This is expected because t-SNE is known to focus on preserving the local structure
(Van der Maaten & Hinton, 2008). When t is small, we basically consider only the local
structure of the visualization. When t increases, we consider the more global structure of the
visualization and Semafore outperforms t-SNE significantly. Overall, Semafore is more
stable than t-SNE as t changes, which indicates that Semafore tries to balance preserving
the local and global structure better than t-SNE. We emphasize that this comparison is for
information purpose only, as we do not regard t-SNE and LE as comparative baselines.

Appendix C. Topic Model Examples

We showcase the topic models derived by Semafore and PLSV. For 20News, Table 4 shows
the topics of Semafore, and Table 5 shows the topics of PLSV. For Reuters8, Table 6
shows the topics of Semafore, and Table 7 shows the topics of PLSV. For Cade12, Table 8
shows the topics of Semafore, and Table 9 shows the topics of PLSV.

For each method, we show the list of twenty topics. For each topic, we produce the
top ten words with the highest probabilities. As shown by the top words, the topics do
correspond strongly to some of the classes. For example, topic s19 in Table 4 for 20News is
about Christianity, which corresponds to the soc.religion.christian class. Topic s4 is about
cars and motorcycles, corresponding to rec.autos and rec.motorcycles. Topic s12 is probably
concerning the categories of rec.sport.baseball and/or rec.sport.hockey.

Overall, we observe that the quality of topic words are comparable across the compar-
ative methods. Note that there is no direct correspondence between the topics of different
methods (e.g., the first topic of Semafore may not correspond to the first topic of PLSV).
Through manual inspection, we can see that there are some related topics, e.g., s4 and p6,
or s12 and p7. However, the sets of topics and the set of keywords for each topic are not
identical. This is borne out in the slight difference in terms of PMI scores.

This qualitative study helps to show that Semafore improves the visualization quality,
while still maintaining at least the same quality of topic words, if not better. This supports
the conclusion reached by the quantitative comparisons in the main manuscript.
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Table 4: Semafore’s Topic Model for 20News (for 20 topics)
Topic ID Top 10 Words

s0 space, system, -rcb-, book, computer, university, list, post, price, science

s1 article, year, good, write, guy, well, time, head, question, leave

s2 gun, law, kuwait, people, death, fbus, article, control, weapon, child

s3 window, file, program, widget, application, type, will, resource, call, function

s4 car, bike, speed, engine, drive, lock, turn, mile, front, change

s5 will, power, place, work, rate, write, sound, lead, good, interested

s6 write, article, thing, time, people, better, start, problem, will, good

s7 write, time, people, friend, pay, public, article, tax, opinion, money

s8 people, claim, write, system, person, moral, evidence, objective, read, state

s9 image, datum, graphic, send, file, format, package, software, mail, include

s10 armenian, fire, jew, child, kill, start, people, turkish, door, israel

s11 system, board, will, datum, time, work, tape, test, copy, command

s12 game, team, year, player, win, play, will, hit, season, hockey

s13 will, post, space, good, time, include, cost, option, launch, people

s14 drive, card, window, appear, disk, ram, driver, memory, work, color

s15 mr., president, stephanopoulo, state, group, consider, party, question, issue, press

s16 write, article, well, will, thing, work, point, include, time, help

s17 key, article, chip, food, write, people, government, encryption, thing, algorithm

s18 price, buy, apple, computer, dealer, fit, model, problem, sell, monitor

s19 god, jesus, will, christian, religion, faith, truth, bible, belief, church

Table 5: PLSV’s Topic Model for 20News (for 20 topics)
Topic ID Top 10 Words

p0 write, people, christian, belief, time, faith, god, religion, life, will

p1 god, will, jesus, kuwait, atheist, church, christian, man, religion, sin

p2 armenian, appear, art, turkish, tartar, 1st, village, armenia, 1.40, genocide

p3 will, key, write, time, article, government, system, thing, chip, hit

p4 mr., stephanopoulo, president, will, party, state, door, time, meeting, open

p5 write, fire, article, gun, system, -rcb-, start, people, fbus, claim

p6 car, will, bike, engine, drive, well, dealer, battery, change, front

p7 game, win, year, will, team, play, season, good, goal, playoff

p8 player, team, write, hockey, game, fan, article, year, will, guy

p9 space, system, datum, will, april, nasa, security, university, computer, list

p10 graphic, image, file, ftp, send, format, package, system, datum, object

p11 image, datum, program, window, version, file, software, tool, support, user

p12 drive, jumper, master, ndet loop, slave, rate, gun, function, crime, set

p13 window, file, card, will, program, color, driver, support, disk, bit

p14 people, write, state, article, law, government, country, rights, jew, will

p15 write, article, thing, people, good, will, time, lot, year, day

p16 work, drive, tape, scsus, problem, simm, controller, write, memory, article

p17 widget, -rcb-, window, -lcb-, application, resource, set, visual, type, file

p18 price, will, write, system, computer, article, apple, chip, monitor, board

p19 will, vote, comp, newsgroup, suit, problem, os2, sco, post, mail
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Table 6: Semafore’s Topic Model for Reuters8 (for 20 topics)
Topic ID Top 10 Words

s0 company, pipeline, raise, crude, march, spokesman, refinery, capacity, corp, post

s1 pct, bank, day, stg, today, reuter, money, market, mln, bill

s2 offer, share, company, board, group, acquire, stock, dlr, acquisition, receive

s3 exchange, currency, dollar, west, finance, baker, monetary, germany, continue, interest

s4 share, reuter, dlr, mln, buy, company, corp, pay, stock, group

s5 price, opec, market, bpd, official, february, month, output, saudus, january

s6 rate, bank, pct, cut, fund, prime, point, reserve, issue, lower

s7 billion, foreign, import, increase, dlr, trade, economic, export, will, country

s8 bank, billion, market, government, fall, stock, economy, rise, surplus, deficit

s9 will, company, sell, pct, vessel, operation, week, billion, shipping, unit

s10 strike, port, union, spokesman, cargo, employer, worker, sector, redundancy, court

s11 oil, export, dlr, industry, year, pct, future, company, report, price

s12 reuter, pct, report, national, week, brazil, today, increase, pay, april

s13 trade, japan, japanese, reagan, state, tariff, unite, market, washington, official

s14 grain, mln, soviet, crop, tonne, year, usda, production, fall, analyst

s15 trade, talk, gulf, gatt, bill, yeutter, round, reuter, call, negotiation

s16 certificate, reuter, cost, government, program, agreement, agriculture, will, study, loan

s17 year, official, import, will, state, price, government, china, land, rise

s18 mln, ct, loss, net, shr, dlr, profit, qtr, reuter, year

s19 oil, mln, will, barrel, dlr, crude, source, level, petroleum, day

Table 7: PLSV’s Topic Model for Reuters8 (for 20 topics)
Topic ID Top 10 Words

p0 will, oil, company, reuter, industry, canada, price, shell, raise, sell

p1 rate, currency, dollar, exchange, baker, west, will, bank, reuter, treasury

p2 bank, pct, day, import, year, rate, export, february, expect, reuter

p3 share, company, corp, offer, stock, board, will, reuter, dlr, buy

p4 rate, bank, pct, prime, cut, point, interest, market, lower, savings

p5 market, bank, stock, price, japan, ministry, rise, official, gulf, bond

p6 reuter, pct, week, report, year, march, mark, american, commission, figure

p7 mln, ct, loss, net, dlr, shr, year, profit, qtr, reuter

p8 mln, pct, billion, stg, dlr, reuter, market, january, revise, rise

p9 billion, dlr, rate, market, surplus, currency, reserve, trading, dollar, foreign

p10 oil, opec, price, bpd, pipeline, mln, crude, official, dlr, output

p11 crude, dlr, barrel, corp, capacity, refinery, oil, company, offer, group

p12 reuter, official, state, cut, gulf, government, today, action, force, tell

p13 oil, government, indonesium, price, foreign, bank, billion, reserve, company, industry

p14 certificate, company, mln, year, grain, cooperative, program, dlr, government, cost

p15 year, trade, agriculture, reuter, grain, agreement, gatt, yeutter, financial, agricultural

p16 strike, port, union, spokesman, employer, brazil, cargo, worker, redundancy, sector

p17 trade, japan, japanese, reagan, tariff, unite, washington, state, nakasone, semiconductor

p18 grain, mln, crop, tonne, soviet, year, official, china, pct, offer

p19 trade, country, minister, talk, state, meeting, economic, exchange, issue, baldrige
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Table 8: Semafore’s Topic Model for Cade12 (for 20 topics)
Topic ID Top 10 Words

s0 sp, aulas, tecnologia, rj, sao, area, janeiro, particulares, areas, fisica

s1 terra, jun, gif, busca, virtual, brasil, forum, tempo, noticias, revistas

s2 trabalho, seguranca, saude, medicina, ocupacional, prevencao, ppra, pcmso, imagem, imagens

s3 peixes, cade, lazer, pesca, agua, rio, praia, hotel, sao, doce

s4 agar, vida, personal, fisica, base, tratamento, tem, pode, sistema, trainer

s5 sao, br, rio, sul, criancas, www, escola, mail, http, atendimento

s6 links, page, home, fotos, pagina, dicas, download, tenis, informacoes, jogos

s7 internet, informatica, acesso, mg, br, servicos, provedor, mail, revista, horizonte

s8 servicos, sao, paulo, entregas, entrega, sp, cesta, express, empresa, servico

s9 pesca, sp, grupo, brasil, eventos, video, mg, informacoes, turismo, danca

s10 astronomia, pagina, jose, foi, bem, espaco, tem, veja, filosofia, correio

s11 mp, banda, musicas, rock, musica, page, letras, bandas, pagina, site

s12 historia, cultura, mundo, site, page, brasil, informacoes, rs, livro, arte

s13 noticias, jornal, cidade, sp, sao, regiao, demolay, ordem, rio, capitulo

s14 empresas, informacoes, informacao, dados, atraves, textos, mail, equipe, unicamp, centro

s15 engenharia, servicos, projetos, empresa, consultoria, quimica, instituto, pesquisa, rio, manutencao

s16 site, informacoes, brasil, associacao, educacao, pagina, organizacao, centro, brasileira, direitos

s17 software, web, empresa, sistemas, sistema, br, marketing, desenvolvimento, windows, dados

s18 virtual, online, venda, produtos, cade, shopping, internet, loja, compras, cursos

s19 futebol, informacoes, fotos, clube, historia, paulo, sao, quake, pagina, cade

Table 9: PLSV’s Topic Model for Cade12 (for 20 topics)
Topic ID Top 10 Words

p0 engenharia, projetos, servicos, trabalho, empresa, consultoria, seguranca, sp, medicina, sao

p1 sao, ong, rio, instituto, personal, educacao, organizacao, sp, paulo, fins

p2 sao, br, desenvolvimento, sistema, tratamento, mail, sistemas, clientes, informacoes, empresa

p3 aulas, formula, quimica, particulares, informacoes, matematica, pilotos, fotos, fisica, site

p4 jornal, tenis, noticias, esportes, sp, informacoes, sao, esporte, fotos, links

p5 musica, page, rock, bandas, links, home, pagina, musicas, music, fotos

p6 pesca, demolay, sp, peixes, sao, fotos, ordem, capitulo, paulo, jitsu

p7 mp, musicas, nacionais, agar, internacionais, rock, formato, site, page, pagina

p8 pesquisa, tecnologia, informacoes, cade, ciencia, geografia, pesquisas, area, instituto, pagina

p9 site, pagina, internet, mail, clique, veja, br, pode, foi, links

p10 astronomia, informacoes, cultura, site, pagina, brasil, home, page, fotos, historia

p11 banda, fotos, rock, letras, page, musicas, pagina, site, home, mp

p12 internet, provedor, acesso, mg, informatica, software, servicos, belo, horizonte, manutencao

p13 futebol, clube, sao, paulo, campeonato, historia, informacoes, pagina, turismo, tricolor

p14 noticias, terra, internet, brasil, informatica, online, jornal, virtual, servicos, busca

p15 links, page, quake, home, pagina, fotos, dicas, mp, download, informacoes

p16 grupo, banda, karate, pagina, page, informacoes, fotos, home, rio, historia

p17 produtos, virtual, shopping, cade, venda, online, sao, rio, loja, compras

p18 br, sao, informacoes, marketing, mail, empresa, internet, www, fax, site

p19 vida, dia, sao, foi, terra, panico, jose, tem, planetas, grande
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