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Abstract

This paper addresses an open challenge in educational data mining, i.e., the problem of
automatically mapping online courses from different providers (universities, MOOCs, etc.)
onto a universal space of concepts, and predicting latent prerequisite dependencies (directed
links) among both concepts and courses. We propose a novel approach for inference within
and across course-level and concept-level directed graphs. In the training phase, our system
projects partially observed course-level prerequisite links onto directed concept-level links;
in the testing phase, the induced concept-level links are used to infer the unknown course-
level prerequisite links. Whereas courses may be specific to one institution, concepts are
shared across different providers. The bi-directional mappings enable our system to perform
interlingua-style transfer learning, e.g. treating the concept graph as the interlingua and
transferring the prerequisite relations across universities via the interlingua. Experiments
on our newly collected datasets of courses from MIT, Caltech, Princeton and CMU show
promising results.

1. Introduction

The large and growing amounts of online education data present both open challenges and
significant opportunities for machine learning research to enrich educational offerings. One
of the most important challenges is to automatically detect the prerequisite dependencies
among massive quantities of online courses, and to support decision making such as curric-
ula planning for students, and to support course and curriculum design by teachers based
on existing course offerings. One example is to find a coherent sequence of courses among
MOOC offerings from different providers that respect implicit prerequisite relations. A
more specific example would be a new student who just enters a university for a MS or
PhD degree. She is interested in machine learning and data mining courses, but finds it
difficult to choose among many courses which look similar or with ambiguous course titles
to her, such as Machine Learning, Statistical Machine Learning, Applied Machine Learn-
ing, Machine Learning with Large Datasets, Scalable Analytics, Advanced Data Analysis,
Statistics: Data Mining, Intermediate Statistics, Statistical Computing, and so on. Com-
pleting all the courses would imply taking forever to graduate, and possibly waste a big
portion of her time due to the overlapping content. Alternately, if she wants to choose a
small subset, which courses should she include? How should she order the included courses

c©2016 AI Access Foundation. All rights reserved.



Liu, Ma, Yang, & Carbonell

E&M

Differential Eq

Algorithms

Num Analysis

Matrix A
Quantum

Calculus

Mechanics

Java Prog

Matrix A Topology

Scalable Algs

Courses in University 1 Courses in University 2

Universal Concepts (e.g. Wikipedia Topics)

Figure 1: The framework of two-level directed graphs: The higher-level graphs have courses
(nodes) with prerequisite relations (links). The lower-level graph consists of uni-
versal concepts (nodes) and pairwise preference in learning or teaching concepts.
The links between the two levels are system-assigned weights of concepts to each
course.

without sufficient understanding about the prerequisite dependencies? Often prerequisites
are explicit within an academic department but implicit across departments. Moreover, if
she already took several courses in machine learning or data mining through Coursera or in
her undergraduate education, how much do those courses overlap with the new ones? With-
out an accurate representation of content overlap between courses and how the overlapped
content reflects the prerequisite relations, it is difficult to help her find the most suitable
courses in a correct order. Universities solve this problem in the old-fashioned way, via
academic advisors, but it is not clear how to address this problem in the context of MOOCs
or cross-university offerings where courses do not have unique IDs and are not described in
a universally controlled or consistent vocabulary.

Ideally, we would like to have a universal graph whose nodes are canonical and discrim-
inant concepts (e.g. “convexity” or “eigenvalues”) being taught in a broad range of courses,
and whose links indicate pairwise preferences in sequencing the teaching of these concepts.
For example, to learn the concepts of PageRank and HITS, students should have already
learned the concepts of eigenvectors, Markov matrices and irreducibility of matrices. This
means directed links from eigenvectors, Markov matrices and irreducibility to PageRank
and HITS in the concept graph. To generalize this further, if there are many directed links
from the concepts in one course (say Matrix Algebra) to the concepts in another course (say
Web Mining with Link Analysis as a sub-topic), we may infer a prerequisite relation be-
tween the two courses. Clearly, having a directed graph with a broad coverage of universal
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concepts is crucial for reasoning about course content overlap and prerequisite relation-
ships, and hence important for educational decision making, such as curriculum planning
by students and modularization in course syllabus design by instructors.

How can we obtain such a knowledge-rich concept graph? Manual specification is obvi-
ously not scalable when the number of concepts reaches tens of thousands or larger. Using
machine learning to automatically induce such a graph based on massive online course ma-
terials is an attractive alternative; however, no statistical learning techniques have been
developed for this problem, to our knowledge. Addressing this open challenge with princi-
pled algorithmic solutions is the novel contribution we aim to accomplish in this paper. We
call our new method Concept Graph Learning (CGL). Specifically, we propose a multi-level
inference framework as illustrated in Figure 1, which consists of two levels of graphs and
cross-level links. Generally, a course would cover multiple concepts, and a concept may
be covered by more than one course. Notice that the course-level graphs do not overlap
because different universities do not have universal course IDs. However, the semantic con-
cepts taught in different universities do overlap, and we want to learn the mappings between
the non-universal courses and the universal concept space based on online course materials.

In this paper we investigate the problem of concept graph learning (CGL) with our new
collections of course syllabi (including course names, descriptions, listed lectures, prerequi-
site relations, etc.) from Massachusetts Institute of Technology (MIT), California Institute
of Technology (Caltech), Carnegie Mellon University (CMU) and Princeton. The syllabus
data allow us to construct an initial course-level graph for each university, which may be
further enriched by discovering latent prerequisite links. As for representing the universal
concept space, we study four representation schemes (Section 2.1), including 1) using the
English words in course descriptions, 2) using sparse coding of English words, 3) using
distributed word embedding of English words, and 4) using a large subset of Wikipedia
categories. For each of these representation schemes, we provide algorithmic solutions to
establish a mapping from courses to concepts, and to learn the concept-level dependen-
cies based on observed prerequisite relations at the course level. The second part, i.e., the
explicit learning of the directed graph for universal concepts, is the most unique part of
our proposed framework. Once the concept graph is learned, we can predict unobserved
prerequisite relations among any courses, including those not in the training set and by dif-
ferent universities. In other words, CGL enables an interlingua-style transfer learning as to
train the models on the course materials of some universities and to predict the prerequisite
relations for the courses in other universities. The universal transferability is particularly
desirable in MOOC environments where courses are offered by different instructors in many
universities. As we mentioned before, the course-level sub-graphs of different universities do
not overlap with each other, and the prerequisite links are only local within each sub-graph.
Thus to enable cross-university transfer, it is crucial to project course-level prerequisite
links in different universities onto the directed links among universal concepts.

The bi-directional inference between the two directed graphs makes our CGL framework
fundamentally different from existing approaches in graph-based link detection (Kunegis &
Lommatzsch, 2009; Liben-Nowell & Kleinberg, 2007; Lichtenwalter, Lussier, & Chawla,
2010), matrix completion (Candès & Recht, 2009; Fazel, 2002; Johnson, 1990) and collabo-
rative filtering (Su & Khoshgoftaar, 2009). That is, our approach requires explicit learning
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of the concept-level directed graph and the optimal mapping between the two levels of links
while other methods do not (see Section 7 for more discussion).

Our main contributions in this paper1 can be summarized as:

1. A novel framework for within- and cross-level inference of prerequisite relations both
at the course-level and at the concept-level;

2. New algorithmic solutions for scalable concept graph learning under various (dense,
sparse and transductive) settings;

3. New data collections from multiple universities with syllabus descriptions, prerequisite
links and lecture materials;

4. The first evaluation for prerequisite link prediction in within- and cross-university
settings.

The rest of the paper is organized as follows: Section 2 introduces the formal definitions
of our framework and optimization objectives; Section 3 provides scalable algorithms for
learning large concept graphs; Section 4 extends our new method to learn a sparse, parsi-
monious concept graph for better interpretability; Section 5 explores how unlabeled course
pairs can be leveraged to significantly improve the prediction performance of the learned
concept graph; Section 6 describes the new datasets we collected for this study and future
benchmark evaluations, and reports our empirical findings; Section 7 discusses related work
and how concept graphs can be deployed to benefit future educational applications; and
Section 8 summarizes the main findings in this study.

2. Framework & Algorithms

Let us formally define our methods with the following notation.

• n is the number of courses in a training set;

• p is the dimension of the universal concept space (Section 2.1);

• X = [x1, x2, . . . , xn]> ∈ Rn×p is a collection of n courses, where xi ∈ Rp is the bag-of-
concepts representation of the i-th course;

• Y ∈ {−1,+1}n×n is a collection of n2 binary indicators of the observed prerequisite
relations between courses, i.e., yij = 1 means that course j is a prerequisite of course
i, and yij = −1 otherwise.

• A ∈ Rp×p is the adjacency matrix of the concept graph, whose elements are the weights
of directed links among concepts. That is, A is the matrix of model parameters we
want to optimize given the training data in X and Y .

1. This journal paper is a substantially extended version of a previous paper (Yang, Liu, Carbonell, & Ma,
2015).
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2.1 Representation Schemes

What is the best way to represent the contents of courses to learn the universal concept
space? We explore different answers with four alternate choices as follows:

1. Word-based Representation (Word): This method uses the vocabulary of course
descriptions plus any listed keywords by the course providers (MIT, Caltech, CMU
and Princeton) as the entire concept (feature) space. We applied standard procedures
for text preprocessing, including stop-word removal, term-frequency (TF) based term
weighting, and the removal of the rare words whose training-set frequency is one.
We did not use TF-IDF weighting because the relative small number of “documents”
(courses) in our datasets do not allow reliable estimates of the IDF part.

2. Sparse Coding of Words (SCW): This method projects the original n-dimensional
vector representations of words (the columns in the course-by-word matrix X) onto
sparse vectors in a smaller k-dimensional space using Non-negative Matrix Factoriza-
tion (Lee & Seung, 1999), where k is much smaller than n. One can view the lower
dimensional components as the system-discovered latent concepts. Intrigued by the
successful application of sparse coding in image processing (Hoyer, 2004), we explored
its application to our graph-based inference problem. By applying an existing sparse
coding algorithm (Kim & Park, 2008) to our training sets we obtained a k-dimensional
vector for each word; by taking the average of word vectors in each course we obtained
the bag-of-concepts representation of the course. This resulted in an n-by-k matrix X,
representing all the training-set courses in the k-dimensional space of latent concepts.
We set k = 100 in our experiments based on cross validation.

3. Distributed Word Embedding (DWE): This method also uses dimension-reduced
vectors to represent words in the courses, similar to SCW. However, the lower dimen-
sional vectors (continuous vector representations) for words are discovered by neural
networks based on word usage w.r.t. contextual, syntactic and semantic information
(Le & Mikolov, 2014). Intrigued by the popularity of DWE in recent research in
Natural Language Processing and other domains (Collobert, Weston, Bottou, Karlen,
Kavukcuoglu, & Kuksa, 2011; Chen, Perozzi, Al-Rfou, & Skiena, 2013), we explored
its application to our graph-based inference problem. Specifically, we deploy English
word embeddings trained on Wikipedia articles (Al-Rfou, Perozzi, & Skiena, 2013), a
domain which is believed to be semantically close to that of academic courses. The
vector representation for each course is obtained by aggregating the vector represen-
tations of words it contains.

4. Category-based Representation (Cat): This method used a large subset of
Wikipedia categories as the concept space. We selected the subset via a pooling strat-
egy as follows: We used the words in our training-set courses to form 3509 queries (one
query per course), and retrieved the top 100 documents per query based on cosine
similarity. We then took the union of the Wikipedia category labels of these retrieved
documents, and removed the categories which were retrieved by only three queries or
less. This process resulted in a total of 10,051 categories in the concept space. The
categorization of courses was based on an earlier highly scalable very-large category
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space work (Gopal & Yang, 2013): the classifiers were trained on labeled Wikipedia
articles and then applied to the word-based vector representation of each course for
(weighted) category assignments.

Each of the above representation schemes may have its own strengths and weaknesses.
Word is simple and natural but rather noisy, because semantically equivalent lexical variants
are not unified into canonical concepts and there could be systematic vocabulary variation
across universities. Also, this scheme will not work in cross-language settings, e.g., if course
descriptions are in English and Chinese. Cat would be less noisy and better in cross-language
settings, but the automated classification step will unavoidably introduce errors in category
assignments. SCW (sparse coding of words) reduces the total number of model parameters
via dimensionality reduction, which may lead to robust training (avoiding overfitting) and
efficient computation, but at the risk of losing useful information in the projection from
the original high-dimensional space to a lower dimensional space. DWE (distributed word
embedding) deploys recent advances in representation learning of word meanings in context.
However, reliable word embedding requires the availability of large volumes of training text
(e.g., Wikipedia articles); the potential mismatch between the training domain (for which
large volumes of data can be obtained easily) and the test domain (for which large volumes
of data are hard or costly to obtain) could be a serious issue. Yet another distinction among
these representation schemes is that Word and Cat produce human-understandable concepts
and links, while SCW and DWE produce latent factors which are harder to interpret by
humans, although methods such as L1 regularization help with interpretability (sec 6.5).

By exploring all the four representation schemes in our unified framework for two-level
graph based inference, and by examining their effectiveness in the task of link prediction
of prerequisite relations among courses, we aim to obtain a deeper understanding of the
strengths and weaknesses of those representational choices.

2.2 The Optimization Methods

We define the problem of concept graph learning as a key part of learning-to-predict prereq-
uisite relations among courses, i.e., for the two-level statistical inference we introduced in
Section 1 with Figure 1. Given a training set of courses with a bag-of-concepts representa-
tion per course as a row in matrix X, and a list of known prerequisite links per course as a row
in matrix Y, we optimize matrix A whose elements specify both the direction (sign) and the
strength (magnitudes) of each link between concepts. We propose two new approaches to
this problem: a classification approach and a learning-to-rank approach. Both approaches
deploy the same extended versions of SVM algorithms with squared hinge loss, but the
objective functions for optimization are different. We also propose a nearest-neighbor ap-
proach for comparison, which predicts the course-level links (prerequisites) without learning
the concept-level links.

2.2.1 The Classification Approach (CGL.Class)

In this method, we predict the score of the prerequisite link from course i to course j as:

Fij = x>i Axj (1)
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Figure 2: The weighted connections from course i to course j via matrix A which encodes
the directed links between concepts

The intuition behind this formula is shown in Figure 2. It can be easily verified that
the quantity x>i Axj is the summation of the weights of all the paths from node i to node
j in this graph, where each path is weighted using the product of the corresponding xik,
Akk′ and xjk′ . In other words, we assume the prerequisite strength between two courses is
a cumulative effect of the prerequisite strengths of all concept pairs.

The criterion for optimizing matrix A given training data xi for i = 1, 2, . . . , n and true
labels yij for all course pairs is defined as:

min
A∈Rp×p

∑
i,j

[
1− yij

(
x>i Axj

)]2

+
+
λ

2
‖A‖2F (2)

where (1 − v)+ = max(0, 1 − v) denotes the hinge function, and ‖ · ‖F denotes the matrix
Frobenius norm. The 1st term in formula (2) is the empirical loss; the 2nd term is the reg-
ularization term, controlling the model complexity based on the large margin principle. We
choose to use the squared hinge loss (1− v)2

+ as the first term to gain first-order continuity
of our objective function, enabling efficient computation using accelerated gradient descent
(Nesterov, 1983, 1988) (Section 3). This efficiency improvement is crucial because we op-
erate on pairs of courses, and thus have a much larger space than in normal classification
(e.g. classifying individual courses).

2.2.2 The Learning-to-Rank Approach (CGL.Rank)

Inspired by the learning-to-rank literature (Joachims, Li, Liu, & Zhai, 2007), we explored
going beyond the binary classifier in the previous approach to one that essentially learns to
rank prerequisite preferences. Let Ωi be the set of course pairs with the true labels yij = 1
for different j’s, and Ω̄i the pairs of courses with the true labels yik = −1 for different k’s,
we want our system to give all the pairs in Ωi higher scores than that of any pair in Ω̄i. We
call this the partial-order preference over links conditioned on course i.
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Let T be the union of tuple sets {(i, j, k)|(i, j) ∈ Ωi, (i, k) ∈ Ω̄i} for all i in 1, 2, . . . , n.
We formulate our optimization problem as:

min
A∈Rp×p

∑
(i,j,k)∈T

[
1−

(
x>i Axj − x>i Axk

)]2

+
+
λ

2
‖A‖2F (3)

Or equivalently, the objective can be rewritten as:

min
A∈Rp×p

∑
(i,j,k)∈T

[
1−

(
XAX>

)
ij

+
(
XAX>

)
ik

]2

+

+
λ

2
‖A‖2F (4)

Solving this optimization problem requires us to extend standard packages of SVM algo-
rithms in order to improve computational efficiency because the number of model parameters
(p2) in our formulation is very large. For example, with the vocabulary size of 15,396 words
in the MIT dataset, the number of model parameters in A is over 237 million. When p
(the number of concepts) is much larger than n (the number of courses), one may consider
solving this optimization problem in the dual space instead of the primal space. However,
even in the dual space, the number of dual variables is still O(n3), corresponding to all the
triplets in T , and the kernel matrix is in the order of O(n6). We are going to address these
computational challenges in Section 3.

2.2.3 The Nearest-Neighbor Approach (kNN)

Different from the two approaches above where matrix A plays a central role, as a different
baseline, we propose to predict the prerequisite relationship for any pair of courses based
on matrices X and Y without A. Let (i′, j′) be a new pair of courses in the test set. We
score each course pair (i, j) in the training set with respect to the new test pair as:〈

xi′ , xi
〉
×
〈
xj′ , xj

〉
∀i, j = 1, 2, . . . , n (5)

where 〈·, ·〉 stands for the inner product between two vectors. By taking the top-scored pairs
in the training set and by aggregating the corresponding yij ’s, we perform the kNN-based
prediction of ˆyi′j′ for the new test pair. If we normalize the vectors, the dot-products in (5)
become the cosine similarity. This approach requires nearest-neighbor search on-demand;
when the number of course pairs in the test set is large, the online computation would be
substantial. Via cross validation, we have found k = 1 (1NN) works best for this problem
on the current datasets.

2.2.4 The Support Vector Machine (SVM)

As another baseline for comparision we also include an SVM with the following objective:

min
w∈Rp

∑
i,j

[
1− yij (xi − xj)>w

]
+

+
λ

2
‖w‖22 (6)

Similar to the kNN approach above and unlike CGL, the SVM optimization in (6) does not
involve learning the matrix A (the directed graph of universal concepts). The feature vector
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for each course pair is simply the pairwise difference in the two vector representations (the
two bags of words) of these courses. Once the model parameter vector w is optimized on
a labeled training set, it can be used to predict the prerequisite relation among any pair of
courses by computing w> (xi − xj) whose sign indicates the direction of the relationship,
and whose magnitude indicates the strength of the relationship. By sorting the scores of
the course pairs for each fixed i in the test set, a ranked list of candidate prerequisites is
obtained for course i.

3. Scalable Algorithms

Though it appears that any gradient-based method is directly applicable to CGL.Rank
according to (4), the optimization is computationally challenging due to the following facts:

(a) The large number of course-level triplets (i, j, k) in T , which can be n3 in the worst
case. This makes the gradient computation w.r.t. the loss term in (4) expensive.

(b) The large size of matrix A in Rp×p. As an example, the number of entries in A for Word
representation on MIT dataset goes to 237 million, making the matrix manipulations
costly both in time and space.

To tackle challenge (a), it is natural for one to consider Stochastic Gradient Descent
(SGD). SGD avoids the expensive summation over all the O(n3) triplets by taking a noisy
(instead of exact) gradient step in each iteration, where each noisy gradient step is computed
solely based on one individual triplet randomly sampled from the training data. Stochastic
optimization has been recently successfully applied to triplet-based loss functions, such as in
collaborative filtering with implicit feedback (Rendle, Freudenthaler, Gantner, & Schmidt-
Thieme, 2009). However, the success of SGD crucially relies on the assumption that each
noisy gradient step is sufficiently cheap, which is not true in our case due to challenge (b).

To tackle challenge (b), one would consider solving the dual problem of CGL.Rank
because the dual space may have a smaller number of coefficients to learn—in our case, the
p2 entries in A are folded in the kernel matrix. However, as the number of dual variables for
CGL.Rank is equal to the number of triplets, i.e., n3 in the worst case, scalable optimization
in the dual space is still hard.

In the following sections, we first address (b) by reformulating the CGL.Rank problem
in (4) in the way that the optimization objective remains to be equivalent but the number
of variables is substantially reduced (from p2 to n2). Then, we address the problem of (a)
with two specific algorithms which have a substantially reduced number of iterations during
the optimization.

3.1 Reduce the Number of Variables

Theorem 3.1 (Variable Reduction). Let the kernel matrix K = XX>, and let 〈·, ·〉 be the
matrix inner product. If A∗ is the minimizer for CGL.Rank in optimization (4) and B∗ is
the minimizer for the following optimization problem

min
B∈Rn×n

∑
(i,j,k)∈T

[
1− (KBK)ij + (KBK)ik

]2

+
+
λ

2

〈
KBK,B

〉
(7)
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then we have A∗ = X>B∗X.

Proof. First, let us introduce a dummy matrix variable F = XAX> ∈ Rn×n, where each
element in F , denoted by Fij , corresponds to our estimated strength of the prerequisite
dependency from course i to course j.

With F we rewrite the unconstrained optimization (4) as a constrained optimization

min
A∈Rp×p,F∈Rn×n

∑
(i,j,k)∈T

(1− Fij + Fik)
2
+ +

λ

2
‖A‖2F

subject to F = XAX>

(8)

Now we are going to show that in optimization (8), the degree of freedom of the optimal
A∗ is actually much smaller than p2.

To achieve this, we introduce a matrix dual variable M ∈ Rn×n corresponding to the n2

equality constraints in F = XAX>. The Lagrangian of (8) can be written as

L (A,F,M) =
∑

(i,j,k)∈T

(1− Fij + Fik)
2
+ +

λ

2
‖A‖2F +

〈
F −XAX>,M

〉
(9)

It is not hard to verity that (8) is a convex optimization with Slater’s condition satisfied,
hence strong duality holds. According to the stationarity condition, the derivative of the
Lagrangian w.r.t. A should vanish to zero in the optimal. That is

∂L (A,F,M)

∂A
=

∂

∂A

(
λ

2
‖A‖2F +

〈
F −XAX>,M

〉)
= λA− ∂

∂A
tr
(
X>M>XA

)
= λA−X>MX

= 0

(10)

=⇒ A∗ = 1
λX
>M∗X. It is worth noticing that while A ∈ Rp×p contains p2 variables, A∗

is completely determined by M∗ ∈ Rn×n which only involves n2 variables (n� p).

Now let us define B ≡ 1
λM ∈ Rn×n. Combining A∗ = 1

λX
>M∗X = X>B∗X with

the constraint F = XAX>, we have F ∗ = KB∗K where K = XX>. Plugging back the
expressions of A∗ and F ∗ to (8) yields optimization (7).

The substantially reduced number of variables in optimization (7) allows us to efficiently
compute and store the gradients in concept graph learning.

3.2 Reduce the Number of Iterations

In this section we introduce two algorithms for optimization (7) which leads to further speed
ups by reducing the total number of iterations.
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3.2.1 Accelerated Gradient Descent

Although gradient descent is readily applicable to (7), the convergence can become slow
as we approach the optimal. The smoothness of our objective function (with the squared
hinge loss) enables us to deploy Nestrerov’s accelerated gradient descent (Nesterov, 1983,
1988), ensuring a faster convergence rate of O(t−2) against the rate of O(t−1) for gradient
descent, where t is the number of gradient steps.

Recall that in Section 3 we have F = XAX> = KBK. Denote by δijk = (1− Fij + Fik)+
and by ei the i-th unit vector in Rn.

The gradient of the objective in (7) w.r.t. B is

∇B =
∑

(i,j,k)∈T

∇ (1− Fij + Fik)
2
+ +

λ

2
∇
〈
F,B

〉
= −2

∑
(i,j,k)∈T

δijk∇ (Fij − Fik) +
λ

2
∇tr

(
BKB>K

)
= −2

∑
(i,j,k)∈T

δijk

[
∇tr

(
BKeje

>
i K
)
−∇tr

(
BKeke

>
i K
)]

+ λKBK

= −2K

 ∑
(i,j,k)∈T

δijk

(
eie
>
j − eie>k

)K + λF

(11)

Despite the large number of course-level triplets in T , matrix
∑

(i,j,k)∈T δijk

(
eie
>
j − eie>k

)
of size n× n can still be computed efficiently since the majority of those triplets are “inac-
tive” (i.e. δijk = 0 for a large number of triplet (i, j, k)) during the optimization. In fact,
the number of operations required for evaluating the δijk’s can be substantially reduced by
maintaining specialized data structures such as the order statistics tree (Cormen, Leiser-
son, Rivest, & Stein, 2001), which has recently been exploited to speed up the gradient
computation of rankSVM (Lee & Lin, 2014; Airola, Pahikkala, & Salakoski, 2011).

Detailed implementation of CGL.Rank with accelerated gradient descent is summarized
in Algorithm 1.

3.2.2 Inexact Newton Method

It often turns out that the bottleneck of gradient computation, after variable reduction, is a
dense matrix-matrix multiplication in the complexity around O(n2.373) (Davie & Stothers,
2013). The multiplication is affordable in our case since the number of courses n we are
dealing with is up to few thousands. However, to scale to substantially larger data collec-
tions, one may need to either consider further pruning the per-iteration complexity through
techniques such as low-rank kernel approximation (Williams & Seeger, 2001), or further re-
ducing the total number of iterations. In this section, we focus on the latter by incorporating
second-order information using Newton’s method.

The Newton’s method we are going to derive is inexact (Dembo, Eisenstat, & Steihaug,
1982). That is, we are about to approximate the Newton direction in each iteration by ap-
proximately solving a linear system via preconditioned Conjugate Gradient method (PCG)
without inverting the Hessian. In fact, we are going to avoid explicitly writing the Hessian
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Algorithm 1 CGL.Rank with Nestrerov’s Accelerated Gradient Descent

1: procedure CGL.Rank.Nestrerov(X,T, λ, η)
2: K ← XX>, B ← 0, Q← 0
3: t← 1
4: while not converge do
5: ∆← 0
6: F ← KBK
7: for (i, j, k) in T do
8: δ̃ijk ← 1− Fij + Fik
9: if δ̃ijk > 0 then

10: ∆ij ← ∆ij + δ̃ijk
11: ∆ik ← ∆ik − δ̃ijk
12: P ← B − η (λF − 2K∆K)
13: B ← P + t−1

t+2 (P −Q)
14: Q← P
15: t← t+ 1

16: A← X>BX
17: return A

during the entire optimization process, since our Hessian H ∈ Rn2×n2
(corresponding to the

n2 model parameters in B ∈ Rn×n) is extremely large.
Denote by ⊗ the Tensor (Kronecker) product operator between matrices, and by eij =

ei ⊗ ej the (i× n+ j)-th unit vector in Rn2
. The Hessian for (7) can be explicitly derived

H = 2 (K ⊗K) Λ (K ⊗K) + λK ⊗K (12)

where Λ is a shorthand for
∑

(i,j,k)∈T (eij − eik) (eij − eik)>.
Denote by “vec” the vectorization operator which concatenates the columns of a matrix

into a single vector. Based on (11) and (12) one can verify it is always true that vec (∇B) ≡
Hvec (B)− 2 (K ⊗K)

∑
(i,j,k)∈T (eij − eik). Therefore, the Newton update is

vec (B)← vec (B)−H−1vec (∇B)

= vec (B)−H−1

Hvec (B)− 2 (K ⊗K)
∑

(i,j,k)∈T

(eij − eik)


= 2H−1 (K ⊗K)

∑
(i,j,k)∈T

(eij − eik)

= 2 [Λ (K ⊗K) + λIn2 ]−1
∑

(i,j,k)∈T

(eij − eik)

(13)

Though it is even intractable to compute the n2×n2 matrix inside the inverse operation
in (13), the updated vec(B) (or matrix B) can be well approximated by solving the following
linear system via PCG iterative method

2
∑

(i,j,k)∈T

(eij − eik) = Λ (K ⊗K) vec (B) + λvec (B) (14)
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The computation bottleneck of PCG lies in matrix-vector multiplication Λ (K ⊗K) vec (B),
which seems expensive and requires a huge dense matrix K⊗K ∈ Rn2×n2

to be stored in the
memory. Interestingly, we can equivalently write the expression as Λvec (KBK) by playing
the “vec” trick for Tensor (Kronecker) product (Van Loan, 2000). After reformulation, the
aforementioned matrix-vector multiplication becomes affordable since vec (KBK) can be
computed in O(n2.373) and Λ is highly sparse.

The above suggests the complexity in each iteration of PCG is as cheap as that in each
gradient step. We also empirically observed that the inexact Newton method only requires
a small constant number (typically 3-5) of Newton updates to reach the optimal, and on
average for each Newton update only 10 PCG iterations suffice to yield good results.

4. Learning a Sparse Concept Graph

Notice the CGL algorithm we studied so far produces a fully dense concept graph A. How-
ever, it is commonly believed that dependencies among the knowledge concepts should be
highly sparse. A sparse concept graph is also desirable for visualization purposes thus al-
lowing more intuitive user-exploration. For these reasons, in this section we modify our
CGL algorithm to produce sparse graphs (sparse-CGL).

It is straightforward to enforce sparsity by replacing the `2-norm over concept graph A
in the original CGL formulation to be the `1-norm defined as ‖A‖1 :=

∑
i,j |aij |. In this

case, the sparse CGL optimization objective can be cast as

min
A∈Rp×p

∑
(i,j,k)∈T

(
1− x>i Axj + x>i Axk

)2

+
+ λ‖A‖1 (15)

Optimization (15) can be viewed as a generalization of LASSO (which is known to produce
sparse solutions), except that we are using a pairwise squared hinge loss and that the coeffi-
cients are in matrix forms. Unlike in LASSO where one optimizes over a vector coefficient,
the parameter space for (15) is a high-dimensional matrix of extremely large size.

Due to the presence of the `1-norm in the objective function, our previous parameter
reduction techniques for CGL can no longer be applied to sparse CGL. In the following, we
are going to focus on directly carrying out optimization w.r.t. A. This is feasible because
storing a large but highly sparse concept graph is much cheaper than in the dense case.

4.1 Efficient Optimization for Sparse-CGL

Although sub-gradient methods can be directly applied to minimizing the non-smooth ob-
jective in (15), they suffer from slow convergence rate through both theoretical and empirical
perspectives. Commonly used optimization solvers for `1 regularization such as the coor-
dinate descent (CD) (Tseng & Yun, 2009; Chang, Hsieh, & Lin, 2008) no longer has the
closed-form solution in our case for each sub-step, and needs as many as p2 steps to go over
even a single cycle of all the model parameters in A.

4.1.1 Proximal Gradient Descent

Among the family of first-order methods, proximal gradient descent (PGD) has been widely
applied to objective functions involving non-smooth components. It enjoys several desir-
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able computational properties, including having the same order of convergence rate as the
gradient descent even when applied to non-smooth objective functions. Each updating step
of PGD can be efficiently performed as long as the proximal operation is efficient.

The proximal operator for sparse CGL in (15) is defined as

proxtk(A) := argmin
Z∈Rp×p

1

2tk
‖A− Z‖22 + λ‖Z‖1 (16)

where tk is the step size for the k-th iteration. The solution for optimization (16) can
be expressed concisely in a closed-form:

proxtk(A) = Sλtk(A) (17)

where Sτ : Rp×p 7→ Rp×p is known as the soft-thresholding operator (parameterized by τ)
applied to each element in A. That is, ∀i, j

[Sτ (A)]ij =


Aij − τ Aij > τ

0 −τ ≤ Aij ≤ τ
Aij + τ Aij < −τ

(18)

With the proximal operator proxtk(A) ≡ Sλtk(A), PGD iteratively applies

A(k) = proxtk

(
A(k−1) − tk∇g(A(k−1))

)
= Sλtk

(
A(k−1) − tk∇g(A(k−1))

)
(19)

until the model converges. In the above expression ∇g(A) denotes the gradient of the first
term in optimization (15), which can be further recast as

∇g
(
A(k−1)

)
= −2

∑
(i,j,k)∈T

δijkxi(xj − xk)> (20)

= −2X>

 ∑
(i,j,k)∈T

δijkei(ej − ek)>
X (21)

= −2X>∆X (22)

For sparse CGL, PGD is guaranteed to reach the global optimal since both the smooth and
non-smooth components in the objective function (15) are convex over A.

4.1.2 PGD with Nesterov’s Acceleration

Similar to the gradient descent for CGL discussed in previous section 3.2.1, the convergence
rate of PGD for sparse-CGL can be further accelerated by applying the Nesterov’s method.
In this case, we replace (19) in PGD with

P (k) = Sλtk

(
A(k−1) − tk∇g

(
A(k−1)

))
(23)

A(k) = P (k) +
k − 1

k + 2

(
P (k) − P (k−1)

)
(24)

1072



Learning Concept Graphs from Online Educational Data

Algorithm 2 Sparse CGL.Rank with Accelerated PGD

1: procedure Sparse.CGL.Rank(X,T, λ, η)
2: A← 0p×p, P ← 0p×p, Q← 0p×p
3: k ← 1
4: while not converge do
5: ∆← 0n×n
6: F ← XAX>

7: for (i, j, k) in T do
8: δ̃ijk ← 1− Fij + Fik
9: if δ̃ijk > 0 then

10: ∆ij ← ∆ij + δ̃ijk
11: ∆ik ← ∆ik − δ̃ijk
12: for j = 1, 2 . . . p do
13: Pj = Sλtk

(
Aj + 2tkX

>∆Xj

)
14: A← P + k−1

k+2 (P −Q)
15: Q← P
16: k ← k + 1

17: return A

where we use P ∈ Rp×p to capture the “momentum” information from historical iterations.
As gradient descent and PGD, the convergence of accelerated PGD is guaranteed for sparse
CGL but with a substantially faster rate.

One might be concerned that in both (19) and (23), the gradient ∇g
(
A(k−1)

)
is a dense

matrix by definition (20) and therefore can be expensive in memory consumption throughout
the optimization. To address this issue, recall the soft-thresholding Sλtk operator is applied

element-wisely to its input. Let P
(k)
i be the i-th column of P (k), we have

P
(k)
i = Sλtk

[
A

(k−1)
i − tk∇g

(
A(k−1)

)
i

]
(25)

= Sλtk

(
A

(k−1)
i + 2tkX

>NXi

)
(26)

The above suggests sequentially threshold A(k−1) − tk∇g
(
A(k−1)

)
via Sλtk column-by-

column, and only store the resulting sparse column vectors (the P
(k)
i ’s) without storing

∇g
(
A(k−1)

)
. Details of accelerated PGD for sparse CGL.Rank is summarized in Alg. 2.

5. Transductive Concept Graph Learning

In real scenarios, the observed course-level prerequisite links are highly sparse. For example,
only 1,173 out of 2,694,681 (0.043%) all possible links has been observed in the MIT data
collection. Meanwhile, we notice that the features of unlabeled course-level links are already
given, and are massively available during the training phase. We argue that transductive
learning should be particular effective in this case for the following reasons:

1. It helps better leverage the unlabeled data by allowing the information to propagate
through both the labeled and unlabeled course pairs.
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2. It makes weaker assumptions about the unlabeled (missing) links. This is in contrast
to our previous CGL formulation where all unobserved links are implicitly treated as
negative examples.

To derive transductive CGL, we start with the following equivalent form of CGL, which can
be derived by eliminatingA in the original CGL optimization via the constraint F = XAX>.

min
F∈Rn×n

∑
(i,j,k)∈T

(1− Fij + Fik)
2
+ +

λ

2
vec(F )>(K ⊗K)−1vec(F ) (27)

By viewing the second term in (27) as the negative log-likelihood, we see that the original
CGL formulation essentially assumes vec(F ) is sampled from a Gaussian prior distribution
with covariance matrix K ⊗K where K = XX>.

To allow transduction over both the labeled and unlabeled course-level links, we propose
to replace the inverse pairwise kernel matrix K⊗K in (27) with its associated graph Lapla-
cian matrix L⊗ in Rn2×n2

(Chung, 1997), following the previous work on label propagation
(Zhu, 2005) and spectral kernel design (Zhang & Ando, 2006). Formally, define

L⊗ := D
− 1

2
⊗ (D⊗ −K ⊗K)D

− 1
2
⊗ (28)

where D⊗ is an n2×n2 diagonal matrix with each of its diagonal elements equal to the cor-
responding row-sum (degree) of K⊗K. When the kernel matrix K has been symmetrically
normalized, it is not hard to show that the above definition (28) reduces to

L⊗ = I −K ⊗K (29)

In this case, vec(F )L⊗vec(F ) becomes the (normalized) manifold regularizer (Zhu, Ghahra-
mani, & Lafferty, 2003) which enforces our predictions in F to be smooth over the graph of
course-level links with adjacency matrix K ⊗K. In particular, we have

vec(F )>L⊗vec(F ) ≡
∑

(i,j),(i′,j′)

kii′kjj′
(
Fi,j − Fi′,j′

)2
(30)

Given two course-level links (i, j) and (i′, j′), recall that kii′ defines the similarity between
i and i′, kjj′ denotes the similarity between j and j′. Hence kii′kjj′ denotes the similarity
between (i, j) and (i′, j′), and minimizing (30) essentially enforces similar course-level links
to share similar prerequisite strength.

With the intuitions above, we cast the optimization for transductive CGL as

min
F∈Rn×n

∑
(i,j,k)∈T

(1− Fij + Fik)
2
+ +

λ

2
vec(F )>L⊗vec(F ) (31)

5.1 Efficient Optimization over the Course-Level Links

It is worth mentioning that though the graph Laplacian matrix L⊗ of course-level links is
extremely large, it is also highly structured. As a result, we are able to carry out operations
involving L⊗ fairly efficiently. Moreover, we are going to show that the explicit storage of
the full graph Laplacian can be avoided during the entire optimization.
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Algorithm 3 trans-CGL.Rank with accelerated GD

1: procedure CGL.Rank.Nestrerov(X,T, λ, η)
2: K ← XX>, F ← rand(n, n), Q← 0n×n
3: t← 1
4: while not converge do
5: ∆← 0n×n
6: for (i, j, k) in T do
7: δ̃ijk ← 1− Fij + Fik
8: if δ̃ijk > 0 then
9: ∆ij ← ∆ij + δ̃ijk

10: ∆ik ← ∆ik − δ̃ijk
11: P ← F − η (λF − λKFK − 2∆)
12: F ← P + t−1

t+2 (P −Q)
13: Q← P
14: t← t+ 1

15: A← X>K−1FK−1X
16: return A

In the following, we describe how gradient computation can be carried out for trans-
CGL. The gradient of the transductive CGL objective in (31) w.r.t. F is

∇F =
∑

(i,j,k)∈T

∇ (1− Fij + Fik)
2
+ + λvec−1 (L⊗vec(F )) (32)

= −2
∑

(i,j,k)∈T

δijk∇ (Fij − Fik) + λvec−1 [(I −K ⊗K) vec(F )] (33)

= −2

 ∑
(i,j,k)∈T

δijkei (ej − ek)>
+ λvec−1 (vec(F ))− λvec−1 [(K ⊗K) vec(F )] (34)

= −2∆ + λF − λKFK (35)

where ∆ :=
[∑

(i,j,k)∈T δijkei (ej − ek)>
]
. In order to obtain the last equality, we have again

applied the vectorization trick (Van Loan, 2000) for Tensor (Kronecker) product to the third
term. Note that the expression of gradient in (35) doesn’t involve any tensor-type operation,
despite the huge Laplacian matrix L⊗ ∈ Rn2×n2

in the original objective function.
Second-order methods, such as the inexact Newton method are applicable to trans-CGL.

We omit the details since the derivations are similar to that for CGL.

5.2 Projecting Back to the Concept-Level Links

The objective for transductive CGL (31) only involves the course-level prerequisite strength
F instead of the concept-level graph A. In order to recover A∗ from the optimal solution
F ∗ for (31), we consider solving the following optimization problem

min
A∈Rp×p

‖A‖22 subject to F ∗ = XAX> (36)
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University # Courses # Prerequisites # Words

MIT 2322 1173 15396

Caltech 1048 761 5617

CMU 83 150 1955

Princeton 56 90 454

Table 1: Datasets Statistics

where the bilinear system F ∗ = XAX> is under-determined as the total number of concepts
p is assumed to be greater than the number of courses n. While there can be multiple feasible
concept graphs associated with F ∗, (36) aims to pick the concept graph with minimum norm
(which usually indicates strong generalization ability).

Solution for optimization (36) can be derived from its stationarity condition, and can
be written in the closed-form as follows

A∗ = X>K−1F ∗K−1X (37)

Details of the accelerated gradient descent for trans-CGL.Rank, including the recovery
step for the concept graph, are summarized in Alg. 3.

6. Experiments

We collected course listings, including course descriptions and available prerequisite struc-
ture from MIT OpenCourseWare, Caltech, CMU and Princeton2. The first two were com-
plete course catalogs, and the latter two required spidering and scraping, and hence we
collected only Computer Science and Statistics for CMU, and Mathematics for Princeton.
This implies that we can test within-university prerequisite discovery for all four—though
MIT and Caltech will be most comprehensive—and cross-university only for university pairs
where the training university contains the disciplines in the test university.

Table 1 summarizes the datasets statistics.

To evaluate performance, we use the Mean Average Precision (MAP) which has been the
preferred metric in information retrieval for evaluating ranked lists, and the Area Under the
Curve of ROC (ROC/AUC or simply AUC) which is popular in link detection evaluations.

6.1 Within-University Prerequisite Prediction

We tested all the methods on the dataset from each university. We used one third of the
data for testing, and the remaining two thirds for training and validation. We conducted
5-fold cross validation on the training two-thirds, i.e., trained the model on 80% of the
training/validation dataset, and tuned extra parameters on the remaining 20%. We repeated
this process 5 times with a different 80-20% spit in each run. The results of the 5 runs were
averaged in reporting results. Figure 3 and Table 2 summarize the results of CGL.Rank,
CGL.Class, 1NN and SVM. All the methods used the English words as the representation
scheme in this first set of experiments.

2. The datasets are available at http://nyc.lti.cs.cmu.edu/teacher/dataset/
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Figure 3: Different methods in within-university prerequisite prediction: All the methods
used words as concepts.

Algorithm Data AUC MAP

CGL.Rank MIT 0.96 0.46

CGL.Class MIT 0.86 0.34

1NN MIT 0.76 0.30

SVM MIT 0.78 0.04

CGL.Rank Caltech 0.95 0.33

CGL.Class Caltech 0.86 0.27

1NN Caltech 0.60 0.16

SVM Caltech 0.74 0.03

CGL.Rank CMU 0.79 0.55

CGL.Class CMU 0.70 0.38

1NN CMU 0.75 0.43

SVM CMU 0.64 0.30

CGL.Rank Princeton 0.92 0.69

CGL.Class Princeton 0.89 0.61

1NN Princeton 0.82 0.58

SVM Princeton 0.71 0.31

Table 2: Results of within-university prerequisite prediction using words as concepts.
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Notice that the AUC scores for all methods are much higher than the MAP scores.
The high AUC scores derive in large part from the fact that AUC gives an equal weight to
the system-predicted true positives, regardless of their positions in system-produced ranked
lists. On the other hand, MAP weighs more heavily the true positives in higher positions of
ranked lists. In other words, MAP measures the performance of a system in a harder task:
Not only the system needs to find the true positives (along with false positives), it also needs
to rank them higher than false positives as possible in order to obtain a high MAP score.
Using a more concrete example, a totally useless system which makes positive or negative
predictions at random with 50% of the chances will have an AUC score of 50%. But this
system will have an extremely low score in MAP because the chance for a true positive to
randomly appear in the top of a ranked list will be low when true negatives dominate in
the domain. Our datasets are from such a domain because each course only requires a very
small number of other courses as prerequisites. Back to our original point, regardless the
popularity of AUC in link detection evaluations, its limitation should be recognized: the
relative performance among methods is more informative than the absolute values of AUC.

As we can see in Figure 3, the relative ordering of the methods in AUC and MAP are
indeed highly correlated across all the datasets. MAP emphasizes positive instances in the
top portion of each ranked list, and hence is more sensible for measuring the usefulness of the
system where the user interacts with the system-recommended ranked list of prerequisites
per query (a course in the test set).

Comparing the results of all the methods, we see that CGL.Rank clearly dominates the
others in both AUC and MAP on most datasets. CGL.Class is the second best, outper-
forming 1NN and SVM. Comparing 1NN and SVM, these two methods are comparable in
AUC on average; however, 1NN is better than SVM in MAP on all the four datasets.

One may wonder why SVM has the relatively poor performance in course-level pre-
requisite prediction and in particular under the MAP metric, given that it works well for
text classification and learning to rank for retrieval in general. We argue that SVM is
suffering from the major difficulty in prerequisite prediction due to the extremely sparse
labeled positive training instances (prerequisite pairs). Recall that in text classification
SVM optimizes one w for each category; however, in prerequisite prediction SVM uses the
same w to generate the ranked lists for all possible queries (i.e., test-set courses). Thus the
labeled training instances per query is extremely sparse on average, resulting in the poor
performance we observed. In other words, SVM generalized too much from the extremely
small set of labeled training instances when optimizing the global w. kNN (or 1NN) on
the other hand, suffers less than SVM because the inference in kNN is based on the local
training instances in the neighborhood of each query, instead of a global generalization for
all queries.3 Nevertheless, neither kNN nor SVM is competitive in comparison with our
proposed CGL methods, which is evident in this set of evaluation results.

3. Notice that SVM, as described in (6), is essentially going to produce identical ranked list of prerequisite
courses for any given course. To see this, consider any given course i, SVM scores the remaining courses
by scorej := (xi − xj)

>w = x>i w − x>j w for different j’s. Since i is given, the first term x>i w can be
ignored during the ranking as it is shared across all the scores. As the result, the ranked list becomes
irrelevant to xi itself. The above analysis holds for any course i hence the ranked list of prerequisites
will be identical for all the courses, leading to a low MAP score. In contrast, CGL scores course j by
scorej = x>i Axj = (Axi)

>xj := w>i xj where the ranking coefficient wi is “personalized” for the i-th
course, and hence is able to produce diverse ranked lists for different courses.
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Figure 4: CGL.Rank with different representation schemes in within-university prerequisite
prediction

6.2 Effects of Representation Schemes

Figure 4 and Table 3 summarize the results of CGL.Rank with the four representation
schemes described in Section 2.1, i.e., Word, Cat, SCW (sparse coding of words) and DWE
(distributed word embedding), respectively. Again the scores of AUC and MAP are not on
the same scale, but the relative performance suggest that Word and Cat are competitive
with each other (or Word is slightly better on some datasets), followed by SCW and then
DWE. In the rest of the empirical results reported in this paper, we focus more on the
performance of CGL.Rank with Word as the representation scheme because it performs
better, and the space limit does not allow us to present all the results for every possible
permutation of method, scheme, dataset and metric.

6.3 Cross-University Prerequisite Prediction

In this set of experiments, we fixed the same test sets which were used in within-university
evaluations, but we alter the training sets across universities, yielding transfer learning re-
sults where the models were trained with the data from a different university than those
where they were tested. By fixing the test sets in both within- and cross-university evalua-
tions we can compare the results on a common basis. The competitive performance of Cat
in comparison with Word is encouraging, given that Wikipedia categories are defined as
general knowledge, and the classifiers (SVM’s) we used for category assignment to courses
were trained on Wikipedia articles instead of the course materials (because we do not have
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Concept Data AUC MAP

Word MIT 0.96 0.46

Cat. MIT 0.93 0.36

SCW MIT 0.93 0.33

DWE MIT 0.83 0.09

Word Caltech 0.95 0.33

Cat. Caltech 0.93 0.32

SCW Caltech 0.91 0.22

DWE Caltech 0.76 0.12

Word CMU 0.79 0.55

Cat. CMU 0.77 0.55

SCW CMU 0.73 0.43

DWE CMU 0.67 0.35

Word Princeton 0.92 0.69

Cat. Princeton 0.84 0.68

SCW Princeton 0.82 0.60

DWE Princeton 0.77 0.50

Table 3: CGL.Rank with four representations

human assigned Wikipedia category labels for courses). This means that the Wikipedia
categories indeed have a good coverage on the concepts being taught in universities (and
probably MOOC courses), and that our pooling strategy for selecting a relevant subset of
Wikipedia categories is reasonably successful.

Table 4 and Figure 5 show the results of CGL.Rank (using words as concepts). Recall
that the MIT and Caltech data cover the complete course catalogs, while the CMU data
only cover the Computer Science and Statistics, and the Princeton data only over the
Mathematics. This implies that we can only measure transfer learning on pairs where the
training university contains the disciplines in the test university. By comparing the red bars
(when the training university and the test university is the same) and the blue bars (when
the training university is not the same as the test university), we see some performance
loss in the transfer learning, which is expected. Nevertheless, we do get transfer, and this
is the first report on successful transfer learning of educational knowledge, especially the
prerequisite structures in disjoint graphs, across different universities through a unified
concept graph. The results are therefore highly encouraging and suggest continued efforts
to improve. Those results also suggest some interesting points, e.g., MIT might have a
better coverage of the topics taught in Caltech, compared to the inverse. And, MIT courses
seem to be closer to those in Princeton (Math) compared with those of CMU.

6.4 CGL vs Sparse-CGL

In this subsection we evaluate the performance of CGL (CGL.Rank) and sparse-CGL (Sec-
tion 4) in course-level prerequisite prediction. The two methods were compared under budget
constraints, by which we mean that the number of allowed links in the system-induced con-
cept graph was controlled as the condition for comparison. In other words, we control the
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Training Test MAP AUC

MIT MIT 0.46 0.96

Caltech MIT 0.13 0.88

Caltech Caltech 0.33 0.95

MIT Caltech 0.25 0.86

CMU CMU 0.55 0.79

MIT CMU 0.34 0.70

Caltech CMU 0.28 0.62

Princeton Princeton 0.69 0.92

MIT Princeton 0.46 0.72

Caltech Princeton 0.43 0.58

Table 4: CGL.Rank in within-university and cross-university settings
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Figure 5: Results of CGL.Rank based on words in the tasks of within-university (red) and
cross-university (blue) prerequisite prediction.

graph sparsity by varying the number of allowed non-zero elements in A 4, and compare
the performance of the two methods conditioned on each fixed degree of graph sparsity.

Figure 6 compares the performance of the two methods on the datasets of MIT, Caltech,
CMU and Princeton, in the task of within-university prediction of course-level prerequisite
relations. The horizontal axis of each graph specifies the number of non-zero elements
allowed in matrix A, ranging from 27 to 212. The vertical axis in each graph is MAP on

4. The concept graph induced by CGL is typically dense, which was sparsified (given the desired sparsity)
by keeping the most dominating elements of A and setting the remaining elements to zero. With sparse-
CGL, on the other hand, sparse graphs were directly induced by the optimization algorithm by adjusting
the values of `1-regularization strength λ.

1081



Liu, Ma, Yang, & Carbonell

the left and AUC on the right for each data set. The CGL curves are in blue, and the
sparse-CGL curves are in red.

Clearly, sparse-CGL consistently outperformed CGL in these experiments over most
budget regions on all the datasets, both in MAP and AUC. These results are highly encour-
aging for effective and efficient interaction or navigation by users over the system-induced
concept graph, where an interpretable and relatively sparse graph is often preferable than
a densely connected graph. The budget constrained graphs would also lead to scalable
curriculum planning and fast computation for on-demand recommendation.

6.5 CGL vs Trans-CGL

In this subsection we compare the course-level prerequisite prediction performance of CGL
(in particular, CGL.Rank) against its transductive extension. The two methods are tested
over the aforementioned four datasets under the words representation scheme. All experi-
ments are conducted under the same 5-fold cross-validation setting as described in 6.1. We
use MAP and AUC as our evaluation metrics and summarize the results in Table 5.

From Table 5 we see that the link prediction performance of trans-CGL dominates that
of CGL. This justifies our previous arguments that making a good use of massive unlabeled
course-level links provided in the training set can help us get better prediction performance.

Meanwhile, we notice that the performance gain obtained by trans-CGL over MIT is
not as large as that over other three institutions. Since the MIT dataset has substan-
tially larger amount of course-level labels, we conjecture that trans-CGL, as many other
transductive/semi-supervised learning approaches in general, is more advantageous when
the available supervision is insufficient (compared to the amount of hidden information in
the unlabeled data). To validate this thought, we repeat the experiments of the two meth-
ods over the down-sampled MIT dataset. That is, we only use a random subset of available
course-level prerequisite links for training, and gradually vary the size of the training subset
to get multiple set of results. The results are summarized in Table 6.

Institution MIT Caltech CMU Princeton

MAP
CGL 0.482 0.477 0.482 0.436

trans-CGL 0.485 0.499† 0.539† 0.445†

AUC
CGL 0.956 0.929 0.801 0.634

trans-CGL 0.957 0.941† 0.818† 0.67†

Table 5: Comparison of the course prerequisite prediction performance between CGL and
trans-CGL over MIT, Caltech, CMU and Princeton. Results of the significance
tests (paired t-tests) between the best method against the other method on each
dataset is denoted by a † for significance at 1% level.

6.6 Experiment Details

We tested the efficiency of our proposed algorithms (based on the optimization formulation
after variable reduction) on a single machine with an Intel i7 8-core processor and 32GB
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Figure 6: Comparison of CGL (blue curves) and sparse-CGL (red curves) in the prediction
of course-level prerequisite relations within MIT, Caltech, CMU and Princeton,
respectively. The x-axis of each graph specifies the budget constraint in log-
scale, which is the number of allowed non-zero elements in matrix A. The y-axis
measures the performance in MAP on the left, and in AUC on the right.
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Training Data
Down-sampling Rate

1
10

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

MAP
CGL 0.183 0.149 0.192 0.231 0.245 0.264 0.254 0.258 0.289

trans-CGL 0.202 0.153 0.213 0.249 0.26 0.285 0.262 0.274 0.307

AUC
CGL 0.843 0.832 0.842 0.872 0.873 0.876 0.873 0.897 0.905

trans-CGL 0.874 0.838 0.845 0.875 0.872 0.892 0.868 0.91 0.914

Table 6: Comparison of the course prerequisite prediction performance between CGL and
trans-CGL over the MIT dataset, as the training size varies from 10% to 50%.

RAM. On the largest MIT dataset with 981,009 training triplets and 490,505 test triplets,
CGL.Rank with gradient descent took 37.3 minutes and 1490 iterations to reach the con-
vergence rate of 10−3. To achieve the same objective value, the accelerated gradient descent
took 3.08 minutes with 401MB memory at 103 iterations, and the inexact Newton method
took only 43.4 seconds with 587MB memory. CGL.Class is equally efficient as CGL.Rank
in terms of run time, though the latter is superior in terms of result quality. As for our 1NN
baseline, it took 2.88 hours since a huge number (2 × 981, 009 × 490, 505) of dot-products
need to be computed on the fly.

The CPU time consumed by trans-CGL.Rank is similar to that by CGL.Rank. As for
sparse-CGL, it took the accelerated proximal gradient method 2.07 minutes to reach the
convergence rate of 10−3 on MIT with 3.9GB peak memory consumption. The resulting
concept graph has 1519 nonzero entries.

7. Discussion and Related Work

Whereas the task of inferring prerequisite relations among courses and concepts, and the
task of inferring a concept network from a course network in order to transfer learned
relations are both new, as are the extensions to the SVM algorithms presented, our work
was inspired by methods in related fields, primarily:

In collaborative filtering via matrix completion the literature has focused on only one
graph, such as a bipartite graph of u users and m preferences (e.g. for movies or products).
Given some known values in the u-by-m matrix, the task is to estimate the remaining values
(e.g. which other unseen movies or products would each user like) (Su et al., 2009). This
is done via methods such as affine rank minimization (Fazel, 2002) that reduce to convex
optimization (Boyd & Vandenberghe, 2004).

Another line of related research is transfer learning (Do & Ng, 2005; Yang, Hanneke,
& Carbonell, 2013; Zhang, Ghahramani, & Yang, 2008). We seek to transfer prerequisite
relations between pairs of courses within universities to other pairs also within universities,
and to pairs that span universities. This is inspired by but different from the transfer
learning literature. Transfer learning traditionally seeks to transfer informative features,
priors, latent structures and more recently regularization penalties (Kshirsagar, Carbonell,
& Klein-Seetharaman, 1990). Instead, we transfer shared concepts in the mappings between
course-space and concept-space to induce prerequisite relations.

Although our evaluations primarily focus on detecting prerequisite relations among
courses, such a task is only one direct application of the automatically induced univer-
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Figure 7: A visualization of concept graph produced by CGL.Rank based on 10,051 aca-
demic Wikipedia categories, 2322 courses and 1173 prerequisite relations in MIT
OpenCourseWare. Each node denotes a concept (i.e. a Wikipedia category), and
the strength of each link encodes the prerequisite strength between a pair of con-
cepts. Concepts of small degrees and links with weak strength are removed via
thresholding for visualization purposes.

sal concept graph. Other important applications include automated or semi-automated
curriculum planning for personal education goals based on different backgrounds of stu-
dents, and modularization in course syllabus design by instructors. Both tasks require the
interaction between humans (students or teachers) and the system-induced concept graph as
well as the system-recommended options and optimal sequences of ordered courses. Figure
7 visualizes a sub-graph in the system-induced concept space based on the course materials
(including partially observed prerequisite structure) from MIT OpenCourseWare: the nodes
are Wikipedia categories (concepts), and the links are system-predicted partial orders for
instructors to follow in teaching those concepts, or for students to follow in learning those
concepts. As one can see, Linear Algebra, Probability Theory and Functional Analysis are
the “hubs” (with a high degree of out-links) in the graph, indicating that those concepts
are more fundamental for one to acquire before pursuing more advanced topics such as
Differential Geometry, Cybernetics and Fourier Analysis.

Let us further illustrate the potential use of CGL.Rank and its further development
for the problem of inferring prerequisite relationships when observed prerequisites among
courses are (almost) not available, e.g., in the context of MOOC. Recall that MOOC courses
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Figure 8: An example of prerequisite course recommendation on Coursera using the con-
cept graph learned from the MIT OpenCourseWare dataset. We map the courses
(red, left) that the student wants to learn to the concept space of Wikipedia cat-
egories, find the prerequisite concepts and then map back to Coursera courses
(red, right). The sizes of the concept nodes in the middle (green) are propor-
tional to aggregated weights of the corresponding links, and the strengths of
course-concept mapping and concept-concept prerequisite relations are shown by
the color intensity of edges (purple).

are offered by different institutions across the world, where cross-provider prerequisite links
among courses are not explicitly available. For instance, among the 900+ courses that
Coursera currently offers, about a half of them do not mention anything about the required
background; as for the remaining half, the mentioned background requirements are often
vague, e.g., “Undergraduate-level networking know-how is recommended” for the course of
Cloud Networking. Such overly generic and vague notions are not sufficiently informative for
students to understand the true prerequisite relationship among courses, and also not very
useful for intelligent systems to learn the prediction of latent prerequisites automatically. 5

The example in Figure 8 illustrates the key idea of applying the CGL.Rank algorithm
to address the problems above. The first column on the left consists of three Coursera

courses that a student wants to take, i.e., “Big Data Analytics for Healthcare” (bigdata-
analytics), “Bioinformatic Methods II”(bioinfomethods2 ) and “Pattern Discovery in Data
Mining”(patterndiscovery), respectively. The second column of nodes are the top-10 uni-
versal concepts (Wikipedia categories) assigned by our classifiers (Section 2.1 Cat) to these
courses, and the color intensity of the edges between the 1st and the 2nd columns reflects

5. Coursera does offer so-called specializations, where each specialization consists of a sequence of courses
on the same topic. It is unclear whether those specializations may serve as prerequisite relations.
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the confidence scores (matrix X) of category assignments. The size of each concept node is
proportional to the aggregated confidence scores of the corresponding edges, indicating the
relative importance of that concept. The third column of nodes are the top-10 prerequisite
concepts (also from Wikipedia categories) of the concepts shown in the 2nd column, and
the color intensity of the edges between the 2st and 3nd columns reflects the automatically
induced strengths of concept-level links (Matrix A) by our CGL.Rank algorithm, which
used the MIT OpenCourseWare data as the training set. The nodes in the 4th column are
the Coursera courses that best cover the prerequisite concepts in the 3rd column; the edges
from the 3rd column are similar to that between the 1st and 2nd columns. Together, the
chained network allows us to make an inference about the connections between the target
courses (the left-most column) and the prerequisite courses (the right-most column).

As the reader can see in Figure 8, many of the courses and prerequisites are highly
relevant and focus on the primary dimension of data analytics, but still constitute an in-
complete set as the second dimension of biotechnology is not represented. We are in the
process of refining our methods before thorough testing can be performed—we offer this
example as work-in-progress indicating current challenges and future directions.

8. Concluding Remarks

We conducted a new investigation on automatically inferring directed graphs at both the
course level and the concept level, to enable prerequisite prediction for within-university
and cross-university settings.

We proposed three approaches: a classification approach (CGL.Class), a learning to rank
approach (CGL.Rank), and a nearest-neighbor search approach (kNN). Both CGL.Class and
CGL.Rank (deploying adapted versions of SVM algorithms) explicitly model concept-level
dependencies through a directed graph, and support an interlingua-style transfer learning
across universities, while kNN makes simpler prediction without learning concept dependen-
cies. To tackle the extremely high-dimensional optimization in our problems (e.g., 2× 108

links in the concept graph for the MIT courses), our novel reformulation of CGL.Rank
enables the deployment of fast numerical solutions. On our newly collected datasets from
MIT, Caltech, CMU and Princeton, CGL.Rank proved best under MAP and ROC/AUC,
and computationally much more efficient than kNN.

We extended the aforementioned CGL algorithm to further produce a sparse concept
graph based on `1-regularization (sparse-CGL), and to leverage the information in massive
unlabeled course pairs based on graph-regularization (trans-CGL). We developed scalable
optimization strategies in support of these new formulations, and conducted experiments
which empirically showed that sparse-CGL was able to give a more interpretable concept
graph, and that trans-CGL significantly and consistently improved the performance of the
ordinary CGL in course prerequisite prediction.

We also tested four representation schemes for course content: using the original words,
using Wikipedia categories as concepts, using a distributed word representation, and using
sparse word encoding. The first two: original words and Wikipedia-derived concepts proved
best. Our results in both the within- and cross-university settings are highly encouraging.
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We envision that the cross-university transfer learning of our approaches is particularly
important for MOOCs where courses come from different providers and across institutions,
where there are seldom any explicit prerequisite links. A rich suite of future work includes:

• Testing on cross-institution or cross-course-provider prerequisite links. We have tested
cross-university transfer learning, but the inferred links are within each target univer-
sity, rather than cross-institutional links. A natural extension of the current work is
to predict cross-institutional prerequisites. For evaluation we will need labeled ground
truth of cross-institutional prerequisites.

• Cross-language transfer. Using the Wikipedia categories and entries in different lan-
guages, it would be an interesting challenge to infer prerequisite relations for courses
in different languages by mapping to the Wikipedia category/concept interlingua.

• Extensions of the inference from single source to multiple sources, from single media
(text) to multiple media (including videos), and from single granularity level (courses)
to multiple levels (including lectures).

• Deploying the induced concept graph for personalized curriculum planning for stu-
dents (as in Section 7) and for syllabus design and course modularization by teachers.
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