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Abstract

This article discusses the quadratization of Markov Logic Networks, which enables
efficient approximate MAP computation by means of maximum flows. The procedure
relies on a pseudo-Boolean representation of the model, and allows handling models of
any order. The employed pseudo-Boolean representation can be used to identify problems
that are guaranteed to be solvable in low polynomial-time. Results on common benchmark
problems show that the proposed approach finds optimal assignments for most variables
in excellent computational time and approximate solutions that match the quality of ILP-
based solvers.

1. Introduction

First-order probabilistic models are a promising paradigm for overcoming the limitations
of classical first-order logic because of their ability to capture the uncertainty often present
in real-world problems. They allow describing relational knowledge compactly, such that
the size of the representation is independent of the number of objects in the domain. The
knowledge in these models can be defined through the use of parfactors (Poole, 2003), which
are templates representing large numbers of factors in a graphical model that describes a
probability distribution over possible world configurations. When the underlying graphical
model is finite, it is possible to ground the first-order model and to perform inference at the
propositional level. For this reason, it is of interest to identify tractable cases of propositional
problems at first-order level as well as finding efficient approximate algorithms for the case
where exact inference is not possible. Although computing typical inference queries on the
propositional model is NP-Hard in general, such problems lend themselves to traditional
optimization approaches.

This article deals with models whose MAP problem can be represented as an optimiza-
tion over a finite number of binary variables. This is the case for Markov Logic Networks
(MLNs), where the parfactors are weighted logic rules that can be propositionalized to
define a Markov Random Field over Boolean random variables. The contributions in this
work stem in great part from representing the parfactors using Boolean polynomials known
as pseudo-Boolean functions. First, it is shown that for models with certain parfactors,
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the MAP computation is equivalent to maximizing a polar or unimodular pseudo-Boolean
function, which can be done in low-polynomial time. This allows to identify MLNs with a
tractable MAP problem. Secondly, it is shown how quadratization techniques for pseudo-
Boolean functions can be generalized to parfactors. One benefit of these transformations
is that they enable using Quadratic Pseudo-Boolean Optimization (QPBO) on the ground
model, a popular algorithm in computer vision that has not yet been evaluated for MLNs.
The literature of such quadratizations is reviewed, and we show that the previous work
discussing the quadratization of MLNs (Fierens, Kersting, Davis, Chen, & Mladenov, 2013)
is equivalent to a particular choice of pseudo-Boolean quadratization within our quadratiza-
tion framework for parfactors. Based on the generalized roof duality (Kahl & Strandmark,
2012), a new quadratization is also introduced.

Experimental evaluation of the quadratization techniques in combination with the QPBO
algorithm show that large benefits in performance can be attained on real-world problems,
and that the more sophisticated quadratization techniques deliver better results than the
one employed by Fierens et al. (2013).

The combination of quadratization and QPBO is shown to be a competitive strategy
for approaching the MAP problem in MLNs.

1.1 Outline

The remainder of this article is organized as follows: The rest of this section reviews the
optimization methods available for MLNs and other related work. In Section 2, the mathe-
matical background, Markov Random Fields and pseudo-Boolean functions are presented,
along with the notation used in this article. Section 3 describes the transformation of par-
factors to pseudo-Boolean form, and discusses cases that can be identified as tractable.
Section 4 presents a general framework for quadratization of parfactors as well as a compar-
ison with an existing approach for MLNs. Different quadratization strategies are discussed.
In Section 5, a thorough computational evaluation of the approach is performed on datasets
from literature as well as new problems. The article concludes with a discussion of the
methods and results in Section 6.

1.2 Related Work

The use of first-order representations provides a compact and flexible way to encode knowl-
edge into a model in the design phase. The trade-off for this convenience is that the ground
models generally have have large treewidths, making MAP estimation and other common
queries NP-hard in general. Because the ground model may have thousands or millions of
variables and interactions, there is a need for fast and memory-efficient optimization algo-
rithms. This section tries to give an overview over the recent most prominent methods for
inference in these models.

Various algorithms based on heuristic random search have been used to approximate
the MAP solution. The Alchemy system (Richardson & Domingos, 2006) implements
a probabilistic hill-climbing algorithm named MaxWalkSat. A lazy variant of MaxWalk-
Sat (Singla & Domingos, 2006b) was also developed, which, by splitting the network into
an active and inactive part, considerably reduces the memory footprint of the algorithm.
The Tuffy system (Niu, Ré, Doan, & Shavlik, 2011) reformulated the algorithm within

686



Quadratization and Roof Duality of Markov Logic Networks

a relational database for faster grounding and additional scalability. It is also capable of
detecting weakly connected components in the ground network, which can be used for paral-
lelizing inference. A further extension of the parallelization of inference in MLNs was based
on a partitioning of the network before grounding found using minimum cuts, which is used
in an importance sampling inference framework (Beedkar, Del Corro, & Gemulla, 2013).
An alternative approach is based on the conversion of ground factors to linear constraints,
such that the MAP problem can be formulated as an integer linear program (ILP). One
advantage of this formulation is that the solution of its linear relaxation gives an optimistic
estimate of optimal cost. The cost of the optimal solution then lies between that of any
particular assignment and the optimistic estimate. To make this approach practical for
larger problems, it is necessary to reduce the number of linear constraints to be considered
by the solver. To this purpose, a cutting plane algorithm for MLNs was presented (Riedel,
2009). This iterative approach ignores constraints that have so far been satisfied by previ-
ous intermediate solutions, and only includes them if they become unsatisfied in the next
iteration. The RockIt system (Noessner, Niepert, & Stuckenschmidt, 2013) further shows
that structurally similar constraints created by the first-order model can be aggregated into
a single one, and presents a parallelization scheme that splits the problem into multiple
ILPs. The combination of these techniques achieves excellent execution times. A third type
of algorithms do not perform queries on a propositionalized network, but operate instead
on a potentially much smaller lifted network. Algorithms for the lifted MAP have seen
significant advances in recent years (Apsel & Brafman, 2012; Sarkhel, Venugopal, Singla, &
Gogate, 2014; Mittal, Goyal, Gogate, & Singla, 2014). However, these approaches can only
applied efficiently for problems with specific types relations and evidence, and will not be
discussed in this article.

For most of the article, we have used a polynomial representation of the potential func-
tions in FOPMs. The use of polynomials for the representation of Bayesian networks was
suggested under the name of network polynomials (Darwiche, 2003). Such polynomials can
be compiled into arithmetic circuits and used for inference (Huang, Chavira, & Darwiche,
2006). This idea is carried to first-order models to create a tractable subset of Markov
Logic Networks (Domingos & Webb, 2012), whose network polynomial can be used to make
queries efficient.

We have also used the fact that the maximization of any pseudo-Boolean function can
be transformed to a maximization of a quadratic pseudo-Boolean function. Because pseudo-
Boolean functions can be interpreted as factor graphs, such a transformation can be seen
as a reduction of the MAP problem in a general binary factor graph to a MAP problem
in a pairwise binary factor graph. A thorough study of reductions of inference problems
in general factor graphs to more restricted factor graph models was presented by Eaton
and Ghahramani (2013). Close to our work is also the idea of pairwise MLNs (Fierens
et al., 2013), which relies on a transformation of logical formulas to compute a quadratic
MLN that is equivalent to an original MLN of higher order. A detailed comparison of this
approach to ours is given in Section 4.4.
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2. Preliminaries

In this section we review the concepts required for the understanding of the rest of the
article and define useful notational conventions.

2.1 First-Order Logic Concepts

First-order logic makes statements about objects in the world. Each object belongs to a
certain domain, where domains can be seen as the semantic type of the object. References to
objects are made by the use of terms. Terms can be either constants, which refer to a specific
object, logical variables, which can represent a range of objects, or functions, which map
terms to other terms. Like objects, logical variables and constants are typed, meaning that
they represent objects from a certain domain. A predicate represents a relation between its
arguments. A predicate applied to specific terms is an atom. Atoms are also called positive
literals and their logical negation negative literals.

A first-order logic formula is an expression involving atoms, connected through connec-
tives (¬,∨,∧,⇒,⇔,=) and quantifiers (∀,∃). Atoms or formulas are said to be a ground
expression if all contained terms are constants.

2.2 Notation and Conventions

An atom P (t1, . . . , tn) is created by applying a predicate P of arity n to a tuple of terms
(t1, . . . , tn). The arguments of a predicate are typed, each having an associated domain.
Ground atoms are represented by x and literals (first-order or ground) are represented by
u; their negation is written as u. Logical variables (logvars) are denoted with capital letters
X,Y, Z. Vectors of atoms, ground atoms, and terms are denoted by a,x, t, respectively;
for instance, a first-order expression F that involves multiple atoms is written as F (a) =
F (a1, a2, . . . , an). To easily go from Boolean to real values, logical True and False are
reinterpreted to represent 1 and 0 where necessary. Replacing a literal by its negated
equivalent, e.g., u by 1 − u, is the complementation operation. Also, the superscript (γ),
with γ ∈ B, can be used to specifically refer to the positive and negated literals, e.g., u(1) = u
and u(0) = ū. Observe that u(γ) = u(1−γ).

The substitution of terms from a set T by different terms T ′ according to a mapping
T → T ′ is denoted by θ. The substitution operation applied to a first-order expression f is
written as fθ.

A ground substitution is a mapping T → C from non-constant terms T to constant terms
C. Given a set of logical variables L, the set of all possible ground substitutions that satisfy
constraints C is written as gr(L : C). In the case where C = ∅, the number of ground
substitutions is the size of the Cartesian product of the domains of L.

2.3 Markov Random Fields

A Markov Random Field is an undirected graphical model defined as

P (x) =
1

Z

N∏
i

πi(xi),
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where the factors πi are nonnegative functions, xi are tuples of binary random variables,
and Z is a normalization constant. Normally πi are exponential functions, and the quantity
−
∑N

i log πi(xi) is referred to as the energy function, whose minimum defines the MAP
state of P (x).

2.4 First-Order Probabilistic Models

First-order probabilistic models are a way of expressing probability distributions, such as
MRFs, with a large degree of structure. These models can be conveniently specified using
parfactors (Poole, 2003). Parfactors are composed of a (parametrized) potential function
and constraints on the valid ground substitutions of the parameters. A parfactor g is
represented as a tuple (C, φ(a)), where C is a set of constraints and φ(a) is the potential of
the parfactor, a real-valued function on first-order atoms a. The potential function can be
given as a table that associates a value to each of the 2n truth states of its atoms (Poole,
2003; de Salvo Braz, 2007) or as a function. Each ground substitution then defines a factor
or clique potential in a Markov Random Field or Bayes Network. The logical variables that
appear in a parfactor are denoted as L, and LV (a) is used to specifically refer to the logical
variables that appear in the atoms. The set of valid ground substitutions of a parfactor with
logical variables L and for constraints C (discussed in Section 2.4.2) is denoted by gr(L : C).
For our purposes, a set of parfactors G defines a Markov Random Field in log-linear form
through the sum of all of its groundings as

P (x) =
1

Z
exp

∑
g∈G

∑
θ∈gr(Lg :Cg)

φg(ag)θ

 , (1)

where x contains the propositional variables that arise from grounding the first-order atoms.

Markov Logic Networks are first-order probabilistic models that use a set of weighted
first-order logic rules to specify a Markov Random Field. The rules are generally specified
manually and capture the available knowledge or intuitions about the domain. The weights
capture the relative importance of the rules and can be set manually or be learnt from data.
Markov Logic Networks can be easily described using parfactors. For this, each weighted
first-order logic rule in a Markov Logic Network is associated to a parfactor with an empty
constraint set and a potential function that takes the value of the weight for satisfying
assignments to the rule, and 0 otherwise. For these models, (1) assigns high probabilities
to world states that satisfy many ground parfactors with a positive weight and few with a
negative weight.

The most common types of queries to (1) are the marginal probabilities for each of the
propositional variables (P (x1), P (x2), . . .) and the most probable configuration of the un-
known variables x∗ = arg maxx P (x), also referred to as the Maximum-a-Posteriori (MAP)
assignment.

In order to be able to ground the models, we take similar assumptions to the original
MLN formulation, namely that domains are assumed to be finite, unique names and do-
main closure. In practice these also allow to assume the logical atoms to be function-free.
However, although potential functions in MLNs are {0, w}-valued, w ∈ R, our formulation
allows potentials to take different values in R for every assignment.
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2.4.1 Evidence

The model may be conditioned on the truth value of certain ground atoms. The symbols
PT and PF represent the sets of ground atoms for a predicate P that are known to be True
and False, respectively. For instance, P (o) ∈ PT denotes that the ground atom P (o) is
known to be True. In case no evidence is available, PT and PF are empty. The set of
ground atoms with predicate P and unknown truth value is represented by PU . If PU is
empty, the predicate is fully observed.

2.4.2 Constraints

The ground substitutions for the logical variables in a parfactor can be subject to constraints.
In our representation, the substitution constraint for each parfactor is the conjunction of a
set of individual constraints associated with that parfactor. Disjunctions of constraints can
be expressed through multiple parfactors under this representation. Constraints are used
for the following cases:

1. Expressing the (in)equality relation between logical variables. For two logical variables
X,Y belonging to the same domain, X = Y and X 6= Y respectively restrict the
ground substitutions to those that map X and Y to either the same or different
constants.

2. Expressing that ground substitutions must map logical variables t to elements in a
set of objects P◦ is denoted as C∈(t, P◦), where P◦ generally is one of the evidence
groups PT , PF , PU for the predicate P .

Constraints can in principle also be expressed in the potential function using fully observed
auxiliary predicates, as normally done in the MLN formalism. For instance, X 6= Y can be
enforced by taking the conjunction between the potential of the parfactor and a new fully
observed atom AreDifferent(X,Y ). Similarly, the constraint C∈(X,PF ) can be represented
by taking the conjunction of the potential with a new atom BelongsToFalseEvidenceP (X).
However, expressing these relationships in the form of constraints simplifies the discussion
in Section 3.

Example 1. That friends have similar smoking behavior can be described by a parfactor
g with potential function Friends(X,Y ) ∧ Smokes(X)→ Smokes(Y ) and constraint X 6=
Y . For people domain {A,B}, the ground substitutions associated to the parfactor are
gr((X,Y ) : {X 6= Y }) = {(X,Y )→ (A,B), (X,Y )→ (B,A)}.

2.5 Pseudo-Boolean Functions

A function f : Bn → R is called a pseudo-Boolean function. Let x = [x1, x2, . . . , xn]

be a vector of n binary variables. Consider also the set of literals, L := {x(1)
1 , . . . , x

(1)
n ,

x
(0)
1 , . . . , x

(0)
n }. A pseudo-Boolean function where terms are expressed with literals in L and

coefficients ei ∈ R, i = 0, . . . , n can be written as

φ(x) = e0 + e1m1(x1) + e2m2(x2) + . . .+ enmn(xn) (2)
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where mi(xi) are monomials over the literals in L,

mi(xi) :=
∏
j

x
(γi,j)
i,j .

If ei ≥ 0 for 0 < i ≤ n in (2), the pseudo-Boolean function is said to be a posiform.
There are many possible posiform representations for a pseudo-Boolean function. Just as
with standard polynomials, the order (or degree) of a pseudo-Boolean function is that of
the term with highest degree. If the pseudo-Boolean function is expressed only over the set
of positive literals, i.e. γi = 1 for all i, it is called a multi-linear polynomial representation

φ(x) = e0 +
∑
i≤n

eixi +
∑

1≤i<j≤n
eijxixj +

∑
1≤i<j<k≤n

eijkxixjxk + . . . ,

where ei, eij , eijk, . . . ∈ R. This representation is unique and can always be obtained from
another representation by eliminating the negated literals using the complementation x(0) =
1 − x(1). Conversely, a posiform can always be obtained for any pseudo-Boolean function.
Complementing any literal in a term eimi(xi) with ei < 0 produces two new terms, one
of the same order with e′i > 0 and one of one order lower and e′′i < 0. By applying this
procedure starting at the highest-order terms, all negative terms can be eliminated.

3. Parfactors with Pseudo-Boolean Potentials

This chapter describes how the potential functions of parfactors can be described and ma-
nipulated in terms of pseudo-Boolean functions, and how equivalent model representations
can be translated to the pseudo-Boolean formulation. This representation allows easy recog-
nition of some cases in which inference in the ground probabilistic model is tractable. These
are detailed in Section 3.3.

3.1 First-Order Pseudo-Boolean Functions

Potential functions in parfactors are defined over first-order atoms. Therefore, we call
a pseudo-Boolean function over first-order atoms a first-order pseudo-Boolean function.
Substitutions are applied to each individual term, so that for a pseudo-Boolean function
φ(a) in form (2) and a substitution θ

φ(a)θ = e0 + e1m1(a1θ) + e2m2(a2θ) + · · ·+ enmn(anθ).

Remark 1. The notions of term and order are different for pseudo-Boolean functions and
in first-order logic. However, we expect the context to generally be clear enough to avoid
confusions.

3.2 Conversion from Other Potential Representations

In general, a potential function with n variables given in the form of a table can be converted
to pseudo-Boolean form by a simple technique (Boros & Hammer, 2002), which creates one
term for each of the at most 2n configurations with a nonzero coefficient in the table.
The number of terms can then be reduced by converting the pseudo-Boolean function to
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a multi-linear polynomial. However, the potentials of Markov Logic Networks are given as
first-order logic sentences and can be expressed in conjunctive normal form. This allows
them to be translated directly into pseudo-Boolean form. Namely, each clause U can be
replaced by ∨

u∈U
u = 1−

∧
u∈U

u, (3)

and all conjunctions can be replaced by products. For the typical case of a single-clause
formula u1∨u2 . . .∨un that takes a value w when satisfied, the equivalent compact pseudo-
Boolean representation is w − wu1u2 . . . un. Of course, the inverse procedure can be used
to transform a potential in this form back to a logic representation.

The Markov Random Field that results from grounding a model like (1) can be repre-
sented as

P (x) =
1

Z
exp (−φT (x)) ,

where the energy function φT is obtained by summing the groundings of the parfactors in
G, and the normalization constant Z is unknown.

3.3 Tractable Classes

The tractability of the MAP estimate of an MLN can be analyzed by considering classes of
tractable pseudo-Boolean functions. First, we discuss classes of polynomial-time optimizable
pseudo-Boolean functions and then the general case.

3.3.1 Classes of Tractable Pseudo-Boolean Functions

This section gives an overview of the relevant tractable classes of pseudo-Boolean functions.
Figure 1 illustrates the relations between these function classes.

• Supermodular functions satisfy f(x1) + f(x2) ≤ f(x1 ∩ x2) + f(x1 ∪ x2), for element-
wise AND/OR operations and binary x1,x2. These functions are maximizable in
strong polynomial time (Orlin, 2009). However, the recognition of supermodularity
for polynomials of order ≥ 4 is co-NP-Complete (Gallo & Simeone, 1989).

• Supermodular functions expressible over quadratic functions can be written as maxi-
mizations over auxiliary variables of quadratic supermodular functions. For instance,
x1x2x3 = maxw x1w + x2w + x3w − 2w, with w ∈ B. For functions with a certain
structure, expressibility can be recognized efficiently (Živnỳ & Jeavons, 2008). How-
ever, it is unknown whether the recognition of expressible functions is easier than the
general supermodularity recognition problem (Živnỳ, Cohen, & Jeavons, 2009). One
may try to obtain the equivalent quadratic supermodular function by solving a linear
program (Ramalingam, Russell, Ladicky, & Torr, 2011).

• Polar functions (Billionnet & Minoux, 1985) are supermodular functions where each
term has a positive coefficient and is composed of only positive or only negative literals,
e.g., x1x2x3 + 2x̄1x̄2 + x̄2x̄4x̄5. They form a strict subset of the set of expressible
functions for orders ≥ 4.
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• Unimodular functions are functions that can be converted to polar functions by switch-
ing a subset of the variables. For instance, f(x1, x2, x3) = x1x̄2x3 + 2x̄1x2 can be
associated to the polar function g(x1, x̃2, x3) = x1x̃2x3 + 2x̄1

¯̃x2 using the switched
variable x̃2 = 1−x2. Undoing the switching operation on the maximizer of this polar
function gives a solution to the original problem. Unimodular functions are recogniz-
able in polynomial time (Crama, 1989). If the switching operations can be used to
make the function supermodular (but not polar) it is a permutable supermodular func-
tion (Schlesinger, 2007), which is mainly interesting for the optimization of functions
with nonbinary discrete variables.

Remark 2. If f is a supermodular function, −f is submodular, and thus the results for the
maximization of a supermodular function and the minimization of a submodular function are
interchangeable. In the overview given in this section, we keep the context of maximization
of supermodular functions, since it reflects that of many of the original publications.

Permutable Supermodular

Supermodular

Expressible

Polar

Unimodular

Permutable Supermodular

Unimodular

Expressible

Polar

Supermodular

Figure 1: Relations between classes of functions. Left: For pseudo-Boolean functions of
any order. Right: The third-order (cubic) case. Shaded regions are optimizable
through maximum flows.

The main interest for expressible supermodular functions is that quadratic supermodular
functions can be optimized by computing a maximum flow in O(n3), which is considerably
faster than the O(n6) complexity of general supermodular maximization. However, the
process of transforming an expressible supermodular function into an equivalent quadratic
representation introduces additional variables. Consequently, if k auxiliary variables are
introduced, the true complexity is O((n+ k)3).

Note that although the recognition of general supermodularity and expressibility are
hard problems, these classes are closed under conical combinations, such that sums of
supermodular functions are also supermodular.

3.3.2 Tractable Parfactor Models

Although inference is NP-hard in general, it is possible to guarantee that certain infer-
ence tasks are tractable by restricting the expressiveness of the formalism of the poten-
tial functions (Domingos & Webb, 2012). Translating results for some of the classes of
pseudo-Boolean functions above, it is possible to easily identify models with tractable MAP
inference. For this, the following result is used

Proposition 1. If all parfactors have expressible potentials, the maximization of the ground
model can be expressed as a maximization over a supermodular quadratic function.
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Proof. It follows from the facts that a) by definition, expressible functions can be written
as a maximization over a supermodular quadratic pseudo-Boolean function and b) sums of
supermodular functions are also supermodular.

Consequently, if all potentials can be converted to a supermodular expressible pseudo-
Boolean function, then the model can be optimized by computing a maximum flow.

This result applies to any potential, not only the {0, w}-valued potentials used in MLNs.
It is hence possible to consider any potentials defined over a table and taking up to 2n

distinct values. However, this flexibility makes it harder to enforce expressibility at design
level. Some classes of logic rules used in MLNs can be guaranteed to be expressible, and
can be used to recognize or design MLNs with a tractable MAP problem.

3.3.3 Polar MLNs

Let S = {a1, a2, . . . , an} be a set of first order atoms, I and J ⊆ {1, 2, . . . , n} and γ ∈ B.
The logic potentials of the form ∧

i∈I
a

(γ)
i ∨

∧
j∈J

a
(1−γ)
j . (4)

can be transformed to an equivalent polar posiform for the following cases

• J = ∅. In this case (4) is a single conjunction and its pseudo-Boolean form is∏
i∈I

a
(γ)
i .

• I ∩ J 6= ∅. Here the conjunctions are in conflict. In this case the disjunction can
be replaced by a sum without changing the underlying truth table of the expression.
The equivalent polar posiform is∏

i∈I
a

(γ)
i +

∏
j∈J

a
(1−γ)
j .

• I ∩ J = ∅ and |J |= 1. It is easy to see that∧
i∈I

a
(γ)
i ∨ a

(1−γ)
j =

∧
i∈I∪{j}

a
(γ)
i ∨ a

(1−γ)
j ,

which can be employed to transform the expression to the previous case.

MLNs for which all parfactors are polar have a tractable MAP problem that can be
computed through a maximum flow.

Example 2. An MLN potential with positive weight and potential (P (X)∧Q(Y )∧T (Z))∨
(R(X)∧ T (Z)) is of the form (4) with γ = 1, I = {P (X), Q(Y ), T (Z)}, J = {R(X), T (Z)}.
Because I ∩ J = {T (Z)} 6= ∅, it has the equivalent polar potential P (X)Q(Y )T (Z) +
R(X)T (Z).
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3.3.4 Unimodular MLNs

Unimodular functions can also be solved efficiently once converted to polar functions. Find-
ing the variables that need to be switched to obtain a polar function can be performed in
polynomial-time (Crama, 1989). This recognition procedure may be more efficient if per-
formed on first-order level, but would require to describe switches of the ground atoms
before grounding. Here we show that the switches of some of the ground variables can also
be represented compactly on first-order level, which makes it possible to decide whether a
model is unimodular without analyzing the ground model. Define the switching operation
as replacing a literal l = P (t)(γ) by expression P̃ (t)(1−γ), where P̃ is a new predicate. The
new literal with the switched predicate is interpreted as referring to switched ground atoms.
However, the representation may become inconsistent if the ground atoms represented by
a switched and a non-switched atom intersect, as a ground atom and its switch can not be
treated as independent variables.

Definition 1 (Shattering). (de Salvo Braz, 2007) A set of parfactors G is shattered if the
groundings of every pair of atoms appearing in the parfactors of G are either identical or
disjoint.

A model can be shattered by partitioning the parfactors (de Salvo Braz, 2007).

Definition 2 (Consistent switch). A shattered model with switched atoms is consistent if
for every pair of atoms with identical groundings, either both or neither of the atoms are
switched.

In a shattered model, inconsistencies can be avoided by ensuring that each switching
operation preserves the consistency. Namely, starting from a shattered model with no
switched atoms, switching atoms with the same groundings ensures that the consistency
requirement is fulfilled at all times. If for some switching sets all parfactors are polar, the
ground model is unimodular and a polar representation is directly available.

Example 3. Consider a model G with parfactors (∅, P (X)Q(Y )T (Z)) and (∅,
Q(X)T (Y )). This model is shattered and we can obtain the switched model G′ with parfac-

tors (∅, P (X)Q̃(Y ) T̃ (Z)) and (∅, Q̃(X) T̃ (Y )). Because after switching the terms in the
parfactors have either only positive or only negative literals and assume only nonnegative
values, the ground model is a polar pseudo-Boolean function.

Unfortunately, the shattering condition is not a strong enough partitioning of the par-
factors to guarantee that any unimodular model can be recognized. For example, the model
with the single parfactor ({X 6= Y }, − F (X,Y )F (Y,X)) is shattered and can be shown to
have a switching set that makes it polar, but it can not be made polar by switching the
atoms. A finer partitioning of the parfactors than the one given by shattering may allow to
represent the desired switching set. However, how to find such a partitioning in the general
case is unknown.

3.4 Non-tractable Case

In the following we discuss the optimization of pseudo-Boolean functions that do not fall
within the described tractable classes. It has been observed that multiple linear program-
ming relaxations of quadratic pseudo-Boolean problems have the same optimum (Boros &
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Hammer, 2002), known as the roof dual bound. This is generally an optimistic bound to
the true optimum of the problem, as linear programming relaxes the integrality constraint
on the variables. The roof dual bound can also be obtained very efficiently by solving
a maximum flow problem on a specially constructed network. In a minimization setting,
this network represents the tightest submodular relaxation of the original quadratic func-
tion (Kahl & Strandmark, 2012). In addition to a lower bound, the solution to the relaxed
problem gives persistencies. Persistencies are assignments to a subset of the variables that
form part of at least one optimal solution. If persistencies are found for the full set of
variables, they form a minimizer of the problem. Otherwise, the problem can be simplified
by fixing the persistencies to their value to produce a smaller problem that preserves the
minimum.

This preprocessing step reduces the size of the problem or solves it completely, and can
be combined with any other optimization method. This approach is known as Quadra-
tic Pseudo-Boolean Optimization (QPBO) (Kolmogorov & Rother, 2007) in the computer
vision literature.

Furthermore, the same network that is used to compute the initial roof dual bound
and the persistencies can be used to search for additional persistencies or an approximate
configuration for the remaining variables by means of the probing (Boros, Hammer, &
Tavares, 2006) and improving (Rother, Kolmogorov, Lempitsky, & Szummer, 2007) tech-
niques. Probing heuristically chooses a variable x from the residual problem and recomputes
the maximum flow under the assumptions of x = 0 and x = 1. Analyzing the value of the
remaining variables under each of these assumptions, it may be possible to find additional
persistencies and improve the lower bound. The improve method fixes a subset of the vari-
ables to any given assignment and efficiently searches for configurations of the remaining
variables that improve the cost with respect to the original assignment. This procedure can
be executed multiple times and is guaranteed to not decrease the quality of the approximate
solution.

The described techniques are only applicable for quadratic problems. The next section
is concerned with models that can not be described by purely pairwise interactions between
the variables. For such models, the use of quadratization techniques can be employed,
which enables the use of the QPBO algorithm and its extensions on such problems. Also,
a connection between this approach and an alternative based on generalized roof duality is
shown in Section 4.2.

4. Quadratization

In this section the quadratization of pseudo-Boolean functions is reviewed and it is then
shown how these methods can be applied to parfactor models. The quadratization procedure
is also known as order reduction.

4.1 Quadratization of a Pseudo-Boolean Function

A quadratization of a pseudo-Boolean function φ(x) is a new function ρ(x,w) such that

φ(x) = min
w

ρ(x,w), (5)
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where ρ(x,w) is a quadratic pseudo-Boolean function defined over auxiliary slack variables
w.

For any φ(x), there always exists a ρ(x,w) satisfying (5) (Rosenberg, 1975; Ishikawa,
2011). Furthermore, if φ(x) belongs to the expressible set of submodular functions described
by Živnỳ et al. (2009), a submodular ρ(x,w) can also be found. After quadratization, the
problem of finding minx φ(x) is replaced by the quadratic problem minx,w ρ(x,w).

Example 4. The function f(x1, x2, x3) = −x1x2x3 has a quadratization

min
w
ρ(x1, x2, x3, w) = min

w
−x1w − x2w − x3w + 2w.

This can be verified by minimizing ρ(x1, x2, x3, w) with respect to w for each assignment
of (x1, x2, x3) ∈ B3 and verifying that it evaluates to −1 at (1, 1, 1) and 0 everywhere else.
Now minx1,x2,x3 f(x1, x2, x3) can be conveniently computed through the quadratic optimiza-
tion minx1,x2,x3,w ρ(x1, x2, x3, w). This quadratization is obtained with the ISH technique
discussed in the following.

In general, a quadratization is not necessarily determined for the whole function at once;
instead, single or multiple terms with a specific algebraic form can be replaced at each step
with an equivalent quadratic representation. Because each of these substitutions introduces
a minimization over independent slack variables, these minimizations can be distributed
over the whole expression, such that the final quadratization is a joint optimization over all
slack variables.

For a given φ(x) there are many possible ways to obtain a quadratization. In practice,
quadratizations should a) have few slack variables, b) have few positive quadratic and
thus non-submodular terms and c) be easily computable. Condition a) is important if the
quadratization needs to be applied many times, e.g., if there are many higher order terms;
b) their number and magnitude is experimentally known to correlate with the complexity of
the resulting optimization (Kolmogorov & Rother, 2007; Gallagher, Batra, & Parikh, 2011);
c) to satisfy the above conditions, finding a quadratization may become more complex. For
instance, finding the quadratization with the smallest number of slack variables is an NP-
complete problem for some approaches (Boros & Hammer, 2002).

4.2 Quadratization Techniques

Quadratization techniques for pseudo-Boolean functions rely on identifying subexpressions
that match a template for which a quadratic form is known. Potentials that are known to
be expressible can be quadratized using the submodularity-preserving functions presented
by Živnỳ and Jeavons (2008). In the following we review existing techniques valid for any
pseudo-Boolean function and introduce a new quadratization.

4.2.1 General Quadratization for Individual Terms (ISH)

This technique can be used to quadratize any individual higher-order term. The general
formulas are given by Ishikawa (2011), and more restricted cases are given by Kolmogorov
and Zabin (2004) and Freedman and Drineas (2005).

697



de Nijs, Landsiedel, Wollherr, & Buss

For binary variables x1, . . . , xd and negative coefficient (a < 0),

ax
(γ1)
1 · · ·x(γd)

d = min
w∈B

aw{S(γ)
1 − (d− 1)}.

Example 4 illustrates this case for the cubic function. For a positive coefficient (a > 0) the
quadratization is

ax
(γ1)
1 · · ·x(γd)

d = a min
w1,...,wnd

∈B

nd∑
i=1

wi(ci,d(−S
(γ)
1 + 2i)− 1) + aS

(γ)
2

with the definitions

S
(γ)
1 =

d∑
i=1

x
(γi)
i , S

(γ)
2 =

d−1∑
i=1

d−1∑
j=i+1

x
(γi)
i x

(γj)
j =

S
(γ)
1 (S

(γ)
1 − 1)

2

nd =

⌊
d− 1

2

⌋
, ci,d =

{
1, if d is odd and i = nd

2, otherwise

The reduction of a negative term can always be performed with a single slack variable,
and results in a quadratic submodular function. For positive terms, the number of slack
variables nd is proportional to 1

2d. In general, the resulting function is not submodular
because the quadratization creates positive quadratic terms. However, because these terms
do not involve slack variables, they may be canceled by existing quadratic terms of opposite
sign. In fact, it can be seen that this quadratization is always submodularity-preserving
for cubic functions (Živnỳ & Jeavons, 2008). On the other hand, if the original function is
not submodular, this quadratization may produce more non-submodular terms and worse
experimental results than other methods.

4.2.2 Asymmetric Quadratization (ASM)

(Gallagher et al., 2011) An asymmetric quadratization for a term ax1x2x3 with a > 0 is
given by

ax1x2x3 = min
w
a(w − x2w − x3w + x1w + x2x3).

This can be obtained by transforming ax1x2x3 into ax2x3−ax1x2x3 and then using the ISH
method. Observe that the left-hand side of the equality is symmetric, but the right-hand
side is not. Reordering the variables thus creates three different quadratizations. Also,
the right-hand side only has two non-submodular terms (compared to three with the ISH
method), one of which does not involve the slack variable w. If there is an existing term with
a negative coefficient and the same variables as the non-submodular term without w, these
can be combined or may cancel out, leaving just a single non-submodular term. Asymmetric
quadratizations can be created for terms of any order using a similar procedure.

The possibility of eliminating non-submodular terms motivates the search for the com-
bination of quadratizations that optimizes a certain cost representing the quality of the
quadratization. It has been shown that the total magnitude of the non-submodular terms
is a good cost function (Gallagher et al., 2011). We call ASM the procedure of minimizing
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this quantity when finding a quadratization for an expression, where each term can select
between one of the asymmetric or the ISH quadratic forms. Note that, on propositional
level, the number of such terms may be very large, resulting in a large optimization problem
for the choice of quadratization per term.

4.2.3 Preprocessing for Positive Terms (FIX)

(Fix, Gruber, Boros, & Zabih, 2011) This approach can be seen as a preprocessing method to
avoid the quadratization ISH for positive terms. It transforms multiple positive higher-order
terms with a common subset of variables into negative higher-order terms. We summarize
this procedure for the case where the common subset of variables consists of a single variable.
Consider a set of terms S that contain a common variable x1, where each H ∈ S has a
positive coefficient αH > 0. Then, it holds that for any assignment to the binary variables
x1, . . . , xn

∑
H∈S

αH
∏
j∈H

xj = min
w∈{0,1}

(∑
H∈S

αH

)
x1w +

∑
H∈S

αH
∏

j∈H\{1}

xj −
∑
H∈S

αHw
∏

j∈H\{1}

xj .

Observe that the last sum is over terms that have the same order as the left-hand side but
with negative sign, and that all positive terms have a lower order. This transformation
is repeatedly applied until all positive higher-order terms have been eliminated. At this
point the ISH quadratization for negative terms is applied, introducing one additional slack
variable per term. There is no method to decide on what common variable to perform the
transformation, and x1 is thus selected arbitrarily.

4.2.4 Generalized Roof Duality (GRD)

This new quadratization method is based on the generalized roof duality theory (Kol-
mogorov, 2012) and its practical implementation (Kahl & Strandmark, 2012). For a non-
submodular, higher-order function φ(x), the approach finds a submodular relaxation τ(x,y)
for which

φ(x) = τ(x,x)

τ(x,y) = τ(y,x) (symmetry)

τ is submodular and expressible. (6)

Under these constraints, the solution of the relaxed problem provides a lower bound and
persistent assignments for some variables, similar to the roof dual relaxation of a quadratic
function. By restricting the search for relaxations over expressible functions, the result
can be optimized by solving a maximum flow problem. The following proposition presents
a link between the submodular relaxations computed by GRD and quadratizations. The
proposition can be used to compute a quadratization of a function such that its roof dual
bound is equivalent to the GRD bound of the function.

Proposition 2. Let τ(x,y) be a relaxation of φ(x) that satisfies (6). Then there exists a
quadratic ρ(x,w) s.t. a) roofdual(ρ(x,w)) ≥ minx,y τ(x,y), and b) minw ρ(x,w) = φ(x).
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Proof. Let ϕ(x,y,w) be a submodular quadratization of τ(x,y). Define

ϕ′(x,y,w,v) =
1

2
(ϕ(x,y,w) + ϕ(y,x,v)).

It is easy to check that minw,v ϕ
′(x,y,w,v) = τ(x,y). Also, because ϕ(x,y,w) is quad-

ratic and submodular, it is easy to see that ϕ(y,x,v) must also be submodular (negative
quadratic terms in multi-linear form). Consequently, ϕ′(x,y,w,v) is submodular.

a) Let ρ(x,w) = ϕ′(x,x,w,w) and verify that

ϕ′(x,y,w,v) = ϕ′(y,x,v,w)

Thus, ϕ′(x,y,w,v) is a relaxation of ρ(x,w) under conditions (6). However, the roof dual
bound is known to be larger than all other submodular relaxations (Kahl & Strandmark,
2012),

roofdual(ρ(x,w)) ≥ min
x,y,w,v

ϕ′(x,y,w,v) = min
x,y

τ(x,y).

b) follows from

min
w

ρ(x,w) = min
w

ϕ′(x,x,w,w) = min
w

1

2
(ϕ(x,x,w) + ϕ(x,x,w)) = τ(x,x) = φ(x).

Condition b) in Proposition 2 ensures that ρ(x) is a quadratization of φ(x), and condition
a) ensures that the roof dual bound of this quadratization is at least that of the relaxation
τ(x,y).

Example 5. For a cubic term x1x2x3 we can compute a third-order submodular relax-
ation using (Kahl & Strandmark, 2012). Because the ISH quadratization is submodularity-
preserving for cubic functions, this method can be used to make the relaxation quadratic,
and then the procedure from Proposition 2 results in

x1x2x3 = min
w1,w2

1

2
(w1x1 + w1x2 − w1x3 − w1 − w2x1 − w2x2 + w2x3

+ w2 + 2x1x2 − x1 − x2 + x3 + 1).

The relaxation obtained using the generalized roof duality theory can be expressed as a
quadratization of the function. In practice, this method allows us to use the GRD approach
to design quadratizations that are specially suited for the potentials at hand.

4.3 Quadratization of MLNs

A quadratization of an MLN expresses its probability distribution using only parfactors
with quadratic pseudo-Boolean potentials and an optimization over slack atoms.

Definition 3 (First-order quadratization). Let φ(a) be a pseudo-Boolean potential φ applied
to first-order atoms a, and construct l = (l1, l2, . . . , l|LV (a)|), li ∈ LV (a) with an arbitrary
ordering. From a quadratization ρ for φ, such that φ(x) = minw ρ(x, w1, w2, . . . , wk) we
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define the first-order quadratization as φ(a) = minb ρ(a, b1, b2, . . . , bk), where bi, for i =
1, 2, . . . , k are slack atoms. Slack atoms are created using a new predicate Bi with arity
|LV (a)| for every slack variable wi as bi = Bi(l1, l2, . . . , l|LV (a)|), with i = 1, 2, . . . , k.

This definition allows to compactly represent the individual quadratizations of many
ground potentials with a similar structure. Also, because no particular form of the original
or quadratic representation is assumed, any quadratization technique can be used. For in-
stance, applying the ISH quadratization on the first-order potential −P (X)Q(X,Z)Q(Y,Z),
as in Example 4, results in the quadratization −P (X)B1(Y,X,Z) − Q(X,Z)B1(Y,X,Z)
−Q(Y,Z)B1(Y,X,Z) + 2B1(Y,X,Z).

To obtain a convenient quadratization of the whole model the following remarks are
useful.

Remark 3. Because each quadratization is performed with new first-order slack predicates,
different parfactors are never grounded to expressions with the same ground slack atom.

Remark 4. Slack predicates are applied to all logical variables appearing in the expression
that is quadratized. Consequently, two ground substitutions θ, θ′ that create the same ground
slack atoms also define minimizations over the same function: bθ = bθ′ ⇒ ρ(a,b)θ =
ρ(a,b)θ′.

With the definition of first-order quadratizations, we can express the quadratization of
the pseudo-Boolean probabilistic first-order logic model with parfactors G as

P (x) =
1

Z
exp

∑
g∈G

∑
θ∈gr(Lg :Cg)

φ(ag)θ


=

1

Z
exp

−∑
g∈G

∑
θ∈gr(Lg :Cg)

−φ(ag)θ


=

1

Z
exp

−∑
g∈G

∑
θ∈gr(Lg :Cg)

min
bg

ρg(ag,bg)θ


=

1

Z
exp

−∑
g∈G

∑
θ∈gr(Lg :Cg)

min
bgθ

ρg(agθ,bgθ)

 (7)

=
1

Z
exp

−min
w

∑
g∈G

∑
θ∈gr(Lg :Cg)

ρg(agθ,bgθ)

 , (8)

which can be optionally expressed as a maximization

P (x) =
1

Z
exp

max
w

∑
g∈G

∑
θ∈gr(Lg :Cg)

−ρg(agθ,bgθ)

 ,
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where w contains all ground slack variables {bgθ|θ ∈ gr(Lg : Cg), g ∈ G}. The step
from (7) to (8) follows because the sets of variables produced by different grounding sub-
stitutions are either identical or disjoint. For different parfactors, the minimizations are
always independent, as implied by Remark 3. For a single parfactor g and two ground-
ings minbgθ ρ(agθ,bgθ) and minbgθ′ ρ(agθ

′,bgθ
′), either bgθ 6= bgθ

′ or bgθ = bgθ
′. In

the first case, we can combine two independent minimizations as minbgθ,bgθ′ ρ(agθ,bgθ) +
ρ(agθ

′,bgθ
′). In the second case, Remark 4 implies minbgθ 2ρ(agθ,bgθ).

4.4 Relation to Pairwise MLNs

The concept of pairwise MLNs (Fierens et al., 2013) and the one presented here both
produce a new model with quadratic parfactors, at the cost of introducing an additional
optimization over slack variables. The pairwise MLN approach shows that any MLN can be
transformed to a “max-equivalent” MLN with only quadratic clauses, where the concept of
max-equivalence is similar to that of (5). To review this approach, first assume that there
are no clauses with more than three literals. In this case, each clause with three literals
is rewritten into new clauses in positive normal form, which are conjunctions of the three
positive literals. From this form, a transformation is suggested that splits the conjunction
of the three positive literals into new rules that involve only up to two atoms and use a new
auxiliary slack atom. For this third-order case, the procedure described above is a special
case of our approach. Namely, we show that it is equivalent to using the ISH quadratization
in Section 4.2.1 on an MLN in pseudo-Boolean form.

Consider an MLN rule with weight α > 0 as the parfactor (∅, (α, P (t1)∧Q(t2)∧R(t3))).
The pairwise MLN approach would transform this into the parfactors with quadratic po-
tential functions

{(α, P (t1) ∧B(t4)), (α,Q(t2) ∧B(t4)), (α,R(t3) ∧B(t4)), (−2α,B(t4))}. (9)

The parfactor can also be represented in pseudo-Boolean form as (∅, (αP (t1)Q(t2)R(t3))).
This allows to use the ISH quadratization presented in Example 4 as

αP (t1)Q(t2)R(t3) = − (−αP (t1)Q(t2)R(t3))

= − min
B(t4)

(−αP (t1)B(t4)− αR(t3)B(t4)− αQ(t2)B(t4) + 2αB(t4))

= max
B(t4)

(αP (t1)B(t4) + αR(t3)B(t4) + αQ(t2)B(t4)− 2αB(t4)).

It can observed that the each of the terms of the potential function correspond one-to-
one to the ones created by the pairwise MLN approach in (9). In fact, decomposing this
parfactor into new ones for each of the quadratic terms would then give the same form as
in pairwise MLN. An analogous procedure for the case where α < 0 shows that for the
special case with three literals, pairwise MLNs are replicated in pseudo-Boolean form by
expressing the formulas in multi-linear form and then using the ISH quadratization for the
third-order case.

Although the ISH quadratization is often recommended in the computer vision literature
for the case where α > 0 (in a maximization setting), it is known not to lead to the
tightest roof dual relaxations when α < 0 (Fix et al., 2011; Gallagher et al., 2011). In the
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experimental section we extend such observations to problems in the domain of probabilistic
logic and verify that other quadratization methods lead to improvements in inference quality.

If the model contains clauses with n > 3 literals, the pairwise MLN approach suggests to
use auxiliary atoms to recursively transform such clauses into new ones with n− 1 literals,
until no clause has more than three literals. For instance, a clause with n = 4 literals is
transformed into two clauses with three literals, one of which has an infinite weight. At this
point, the procedure from above can be applied to each of the third-order clauses, creating
a total of 3 slack atoms.

In contrast, our approach works on the pseudo-Boolean representation of the potential.
In this case, the additional preprocessing to first transform the clause to third-order is not
required, as there are quadratizations for pseudo-Boolean functions of any order. Recall that
clauses can be compactly represented in pseudo-Boolean form using (3). Consequently, the
ISH method can be used to quadratize clauses with n literals with either one or

⌊
n
2

⌋
slack

atoms, depending on the sign and whether the optimization is formulated as a maximization
or a minimization. For the particular case of a clause with four literals only a single
slack atom is required. Because each slack atom can have many propositionalizations,
reducing the number of slack atoms creates a large difference in the number of propositional
slack variables. Finally, our approach does not create ‘hard’ rules, which can lead to bad
conditioning for some optimization algorithms.

4.5 Normalization of the Parfactors before Quadratization

Consider the parfactor (∅, P (X)P (Y )Q(Z) + P (Z)Q(Z)) and true evidence for predicate
Q, QT 6= ∅. Although the potential is cubic in general, there are particular ground
substitutions for which it is quadratic. This is the case for all groundings for which
Q(Z)θ ∈ QT , as for those cases the potential simplifies to P (X)P (Y ) + P (Z). The po-
tential is also quadratic for ground substitutions for which Xθ = Y θ, because it then
becomes P (X)Q(Z) + P (Z)P (Z). Finally, groundings for which Y θ = Zθ have the cubic
potential P (X)P (Z)Q(Z)+P (Z)Q(Z), which factorizes to (P (X)+1)P (Z)Q(Z). For such
groundings, a quadratization exploiting the structure of the potential could be computed.

These examples highlight that the structure of the potentials can change for particular
groundings, and that some might not even require slack variables to become quadratic. This
motivates putting the parfactors in a form for which the potentials have the same structure
for all groundings. The effect of such a normalization is a reduction in the number of slack
variables and the possibility to compute quadratizations tailored to each different form of
the potentials. This can be achieved by combining two types of splittings of the parfactors,
creating an equivalent first-order representation that makes different forms of potentials
explicit at first-order level.

4.5.1 Splitting on Atoms

The first preprocessing method simplifies a parfactor by incorporating evidence for an atom
P (t). It proceeds by replacing the parfactor with three new ones, each with an additional
constraint C∈(t, PT ), C∈(t, PF ), C∈(t, PU ). Because together these constraints cover all pos-
sible ground substitutions for the atom, the new parfactors produce the same groundings
as the original one, and the ground model is not changed. Importantly, the potentials of
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the parfactors with constraints C∈(t, PT ), C∈(t, PF ) can be simplified by replacing the atom
P (t) by True and False, respectively.

Definition 4 (Fixed atoms). An atom a with predicate P is fixed if C∈(t, PT ), C∈(t, PF )
or C∈(t, PU ) is in the constraint set C.

For a parfactor with n atoms, fixing all atoms can create up to 3n new parfactors. In
practice, the number is smaller because a) the potential may become 0 or constant after
the simplification (Shavlik & Natarajan, 2009) or b) some of the sets PT , PF , PU may be
empty and have no groundings associated to it.

4.5.2 Splitting on the Logical Variables

Atoms constructed with the same predicate may ground to the same ground atom under
specific grounding substitutions. For example, the parfactor (∅, P (X)P (Ann)) represents
a quadratic potential for all ground substitutions of X except when θ = {X → Ann},
when it becomes a linear potential. These simplifications can be identified before grounding
by observing the form in which atoms of the same predicate may unify, and splitting the
parfactor accordingly. The example creates the parfactors (X 6= Ann, P (X)P (Ann)) and
(∅, P (Ann)). Splitting on the logical variables can be repeated until the unification of
atoms is no longer possible. This ensures that any valid ground substitution for a parfactor
maps the atoms of the parfactor to distinct ground atoms.

Example 6. Consider the parfactor (∅, P (X,Y )P (X,Z)Q(X)S(Z)) and assume that all
predicates have arguments from domain D. No knowledge is available for P , i.e., (PT = ∅,
PF = ∅, PU = D × D), there is evidence for some groundings of Q, i.e., (QT ⊂ D,
QF = ∅,QU = D \QT ), and full knowledge of the groundings of S, i.e., (ST ⊂ D, SF ⊂ D,
SU = ∅).

We start by splitting the parfactor on the atom S(Z), which is fully observed. The case
where S(Z) is constrained to be True cancels the potential and is left out. Because SU = ∅,
the case with constraint C ∈ (X,SU ) can also be ignored. If S(X) is constrained to be
False, the potential simplifies to P (X,Y )P (X,Z)Q(X). Proceeding similarly for the other
atoms, there remains one parfactor with the simplified potential and additional constraints
C∈(Z, SF ), C∈(X,QU ), C∈((X,Y ), PU ), C∈((X,Z), PU ).

After fixing all atoms, we observe that the two atoms constructed from predicate P
produce the same ground substitutions if Y = Z. Splitting on this condition produces two
new parfactors, where the potential simplifies to P (X,Y )Q(X) for the case where Y = Z.
After both steps, the original parfactor is transformed into two new parfactors:

φ(a) =P (X,Y )P (X,Z)Q(X)

C ={C∈(Z, SF ), C∈(X,QU ), C∈((X,Y ), PU ), C∈((X,Z), PU ), Y 6= Z}
and

φ(a) =P (X,Y )Q(X)

C ={C∈(Y, SF ), C∈(X,QU ), C∈((X,Y ), PU )}
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Note that after the preprocessing step, the potential function has gone from being a quartic
to a cubic function. Computing the quadratization of the potential in the original form
and substituting all possible groundings produces |D|3 ground slack atoms. In contrast,
splitting on the variables results in fewer ground substitutions for the parfactor, since they
are curtailed by each of the constraints (and so is the number of ground slack variables).

4.6 Benefits and Limitations of First-Order Quadratization

Except for the ISH method, the introduced methods compute a quadratization considering
the interactions between the terms in the expression. By considering the interactions, these
methods can create a quadratization whose roof dual relaxation is tighter, producing better
bounds and more persistencies.

However, these methods also need to do additional processing on the problem. When this
processing is performed on a propositional model, it may become very large. For instance,
Gallagher et al. (2011) suggested to implement the ASM method by constructing a second
Markov Random Field in which the variables represent the possible quadratizations for
each term. Also, the approach based on generalized roof duality needs to solve an auxiliary
linear program to find the best submodular relaxation. The FIX approach does not solve
an optimization, but needs to perform multiple transformation steps on the model, and it
is not clear in which order to perform them.

Instead, for MLNs, the general procedure presented in Section 4 can be used to obtain
a quadratic MLN by applying quadratization techniques on individual parfactors. An ad-
vantage of this procedure is that the computational cost of obtaining the quadratization
is independent of the size of the ground problem. Furthermore, the parfactors provide a
compact description of the structure of the ground model, which can be exploited with the
more sophisticated quadratization methods. The auxiliary problems required for some of
the quadratization methods become extremely small when solved for individual parfactors,
but still produce a good quadratic potential for all of the groundings of the parfactor.

On the other hand, the parfactor representation of the model is not unique, and thus the
resulting quadratic MLN may depend on the manipulations performed on the parfactors.
In fact, shattering the model may give a more representative template of the structure of
the ground problem. In this work, we merge parfactors that have the same constraints
after the preprocessing step, but do not take any further steps to partition or combine
the parfactors. In Section 5 we evaluate each of these quadratization methods separately.
However, in practice methods may be combined with no restrictions, and it is possible that
the combination of different methods may give the best results.

4.7 Quadratize-Solve-Simplify-Repeat (QSSR)

When the QPBO algorithm is applied to a general quadratic minimization problem, there
can be variables for which no persistency is found. As discussed in Section 3.4, in those
cases the probe and improve procedures can be used to increase the number of persistencies
or compute an approximate solution. However, their computational cost can make them
inefficient on problems with a large number of unsolved variables. In quadratized models,
this can be mitigated by observing that many of the slack variables are no longer necessary
after computing the persistencies given by the roof duality. This is because fixing a variable
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x to its persistent value in the higher-order problem simplifies or cancels any terms con-
taining x. Thus, constructing a new problem that incorporates the information about the
solved variables can have a much smaller number of slack variables, and be used to obtain
additional persistencies. This procedure of quadratizing the model on the first-order level,
solving the problem partially with the QPBO algorithm and simplifying the higher-order
problem with the obtained persistencies can be repeated until no additional persistencies
are found. We denote this iterative computational procedure by Quadratize-Solve-Simplify-
Repeat (QSSR). When using this algorithm in the experiments, we stop after the problem
has been solved again after the first simplification, as additional iterations generally produce
few additional persistencies in comparison to probing. Kahl and Strandmark (2012) used
a similar procedure of iteratively solving and fixing variables in the context of computing
the generalized roof dual bound.

5. Computational Experiments

The presented quadratization methods are evaluated by their impact on the performance
of the QPBO algorithm and its extensions. The performance of the QPBO-based inference
is also evaluated on problems for which no quadratization is required. Finally we compare
our overall pipeline to existing inference engines.

5.1 Datasets

We evaluate our approach on various standard MLNs and datasets as well as additional
problems. The characteristics of these problems are summarized in Table 1. A first set
of datasets is similar to the ones employed in the evaluation of state-of-the-art engines
Tuffy (Niu et al., 2011) and RockIt (Noessner et al., 2013). The link prediction problem
on the UWCSE dataset (LP) tries to find relations between faculty members and students.
The relational classification (RC) on the Cora dataset determines the category of research
papers. The information extraction (IE) problem models how to obtain dataset records
from parsed sources. The webKB dataset is used to predict to which university department
a website belongs, given its hyperlink relations and contained words (KB). The entity res-
olution (ER) problem on the Cora dataset is obtained from the Alchemy website. The
goal of this problem is to identify citations referring to the same paper. Because no trained
model is available for this problem, it is trained with Alchemy using the first of the five
available splits for evaluation (Singla & Domingos, 2006a). Friends and smokers (F&S) is
a common test model for a social network with friendship relations, smoking habits and
cancer occurrences. Evidence is generated as described by Singla and Domingos (2008) for
a domain size of 200 persons. Because the F&S problem is relatively simple, an additional
problem in which the weights of all formulas are negated is also considered (-F&S).

In order to gain a broader insight into the performance of the inference algorithms on
higher-order problems, we created two additional third-order problems. The first one is
based on the KB problem and the webKB dataset mentioned above (KB3). While the
original KB inference problem uses words contained in the page contents as well as the link
structure to infer page categories, a third-order problem on the webKB dataset is created
by not only querying for the class of each page, but by also jointly inferring the links of
a page, solely from the word tokens appearing on the page. Learning was performed with
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Alchemy, and the size of the problem was reduced such that inference is only performed
over atoms that are True in the ground truth and the same number of randomly sampled
atoms.

The second new third-order problem is the image denoising (ID) model, which tries
to restore a noisy binary image. There are rules indicating that the observed value of a
pixel should correspond to the denoised value and two rules indicating that groups of three
horizontally or vertically neighbouring pixels should take the same value. It is easy to see
that the associated MAP problem for these rules fall within the described cases of MLNs
whose rules can be converted to polar pseudo-Boolean functions described in Section 3.3.2,
and can thus be solved exactly. The unary rules are given weight 1.0. To ensure that the
terms of the smoothing rules do not cancel out, a rule for the ‘on’ pixels is given a weight
of 0.35 and the rule for the ‘off’ pixels 0.3. A 90 × 90 pixels random binary image is used
as evidence, where each pixel has a 50% chance of being on or off.

5.2 Other Engines

We compare our approach with the MAP-inference solvers Alchemy, Tuffy and RockIt.
Alchemy is the original solver for MLNs and, in contrast to the other engines, it does not
use a relational database to ground the model, which can lead to long grounding times.
Alchemy and Tuffy optimize the ground model using MaxWalkSAT, a stochastic search
technique that can be made to scale well with large problems. RockIt uses an ILP solver
and exploits symmetries in the model to reduce the number of constraints. Because the
number of constraints may be very large, it takes an iterative approach where only the
constraints that are violated for the current solution are added to the solver.

To make sure that the problem to be solved is the same for all implementations, some
preprocessing is required. First, formulas with existential clauses are ignored and all formu-
las are converted to conjunctive normal form. Then, because Tuffy internally transforms
formulas with a negative weight to an approximate formula with a positive weight, we ap-
ply the same transformation. Unfortunately, this transformation can not be applied for the
higher-order problems, as it reduces the order of the formula. Lastly, the ER and KB3
problems use a method to compactly specify which ground atoms to query, and assumes
that all other query atoms are False. These query variables, also known as canopies (Singla
& Domingos, 2006a), can be used to eliminate a large number of uninteresting variables,
and can be created using a cheap distance metric (McCallum, Nigam, & Ungar, 2000). Be-
cause neither Tuffy nor RockIt support this input format, they are given the extensive
list of False evidence atoms instead.

5.3 Results on Quadratic Problems

For quadratic problems from literature, we analyze the performance of QPBO and the addi-
tional persistencies computed with the probing extension described in Section 3.4. Table 2
shows that the QPBO algorithm gives a persistent solution for most variables, and even
provides an exact solution for the KB problem. The probe procedure also solves the IE
problem exactly, but still leaves some unsolved variables for the RC and LP problems. In
general, the inference times for these problems are extremely short.
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5.4 Comparison of Quadratization Methods

For the higher-order problems the performance of each of the described quadratization
methods is evaluated. This includes the pairwise MLN approach, which is equivalent to the
ISH quadratization for problems with cubic potentials. The potentials of the parfactors are
expressed as a multi-linear polynomial before quadratizing the model.

First we evaluate the number of persistencies that can be obtained for the different
problems in Table 3. As expected, because of submodularity, the ID problem is completely
solved by all methods. Friends and Smokers creates few non-submodular terms, and can
also be solved exactly by all methods. The remaining problems can not be solved by all
methods, for which in some cases only a small number of variables can be fixed. In general,
it can be observed that the methods that are aware of the other terms in the potential
produce better results than ISH, which applies a fixed transformation. The final probing
step is computationally the most expensive, but may significantly increase the number of
solved variables, and even solve some problems exactly. It should be noted that this step
is important even when an approximate solution for all variables is subsequently obtained
using the improve method. Otherwise, if the number of persistencies is small, the improve
method needs to operate on a model with potentially many more variables, as it also needs
to optimize the slack variables stemming from the remaining higher-order terms.

Table 1: Summary of the characteristics of the described datasets and the associated ground
networks when grounded in their higher-order form and a multi-linear representa-
tion. Trivially satisfied or dissatisfied factors are ignored.

IE KB RC LP ID F&S -F&S KB3 ER

Formulas 1024 106 15 24 4 6 6 66 1331
Domains 4 3 3 8 1 1 1 3 5
Query Predicates 2 1 1 1 1 3 3 2 4
Observed Predicates 16 2 3 21 2 0 0 1 6
Ground atoms 336670 9079 9650 4624 8100 40180 40180 8190 10948
Factors 351001 31283 58485 161806 55800 127982 127982 22627 910670
Higher order factors 0 0 0 0 15840 32220 32220 6736 424580
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Table 3: Percentage of variables solved. Step 1) Initial QPBO result 2) QPBO result after
QSSR simplification 3) Probe. Inference time in seconds for each step in paren-
theses. (†) Did not complete

Step ISH FIX ASM GRD

ID 1 100.0 (0.01) 100.0 (0.01) 100.0 (0.01) 100.0 (0.01)

F&S 1 100.0 (0.02) 100.0 (0.82) 100.0 (0.86) 99.6 (1.0)
2 100.0 (0.0)

-F&S 1 19.4 (1.79) 19.4 (0.9) 99.6 (0.42) 99.6 (1.11)
2 19.4 (1.61) 19.4 (0.78) 99.6 (0.02) 99.6 (0.02)
3 † † 99.6 (2.66) 99.6 (2.54)

KB3 1 55.0 (0.06) 82.4 (0.03) 82.3 (0.02) 60.6 (0.08)
2 56.5 (0.04) 86.8 (0.01) 86.6 (0.01) 62.7 (0.04)
3 65.8 (19.42) 100.0 (0.1) 100.0 (0.05) 96.7 (5.59)

ER 1 92.1 (0.46) 91.9 (1.04) 95.0 (0.47) 95.4 (1.49)
2 92.3 (0.03) 92.3 (0.04) 95.0 (0.02) 96.1 (0.03)
3 92.8 (7.6) 93.0 (162.36) 95.3 (5.57) 96.6 (7.08)

5.5 Approximate Inference

We also compared quality of the approximate solutions with those of other engines and their
total running times. The problems were formulated as minimizations, and the solutions of
all engines evaluated on the same ground model. In Table 4 it can be observed that for
the quadratic problems, most engines achieve optimal costs, which are known from the
optimality guarantee given by QPBO in Table 2 and from the small MIP gap that was
used for RockIt. An exception is the LP problem, where the solver used by RockIt has
problems obtaining a tight bound, and Tuffy and QPBO+I provide better solutions.

For the higher-order problems, the ASM quadratization achieves the best cost and the
lowest computation time for most cases. Using the GRD reduction performs slightly worse,
possibly because for this quadratization the improve step needs to be executed over more

Table 2: Percentage of persistencies given by the QPBO algorithm and after using the
probing technique for different quadratic problems.

IE KB RC LP

Persistencies 99.87 100 90.30 85.58
Persistencies (probe) 100 90.30 86.22
Qpbo time (s) 0.030 0.002 0.006 0.069
Probe time (s) 0.150 0.021 4.800
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variables. Tuffy does not perform very well in the higher order problems, possibly because
the internal transformation it uses is an approximation of the original formula.

It should be noted that computation times are affected by multiple factors. Whereas
Alchemy, Tuffy and our approach make a clear distinction between grounding and in-
ference, RockIt uses a cutting plane algorithm that incrementally grounds factors that
are not satisfied by the current solution, which leads to large speedups when many factors
are easily satisfied or if the solution is largely homogeneous. On the other hand, the ID
problem is an example where this approach produces considerably longer running times.
Another factor is the ability to specify the evidence in the form of canopies, which allows
the relational database to execute the queries for grounding more efficiently.

Table 4: Resulting cost for different engines on various quadratic and higher-order prob-
lems. Alchemy and Tuffy were run for an increasing number of flips until no
significant advances were made. RockIt was run with relative gaps 1 × 10−n,
n = 9, 8, . . . until convergence is achieved within an hour. These are compared
against our method using the ASM and GRD quadratization for the higher-order
problems, using improve on the residual problem until no advances were made
for 20 iterations. Total running times in seconds in parenthesis. (*) Guaranteed
optimal cost by persistencies (†) Did not ground within 1 hour.

Alchemy Tuffy RockIt QPBO+I

IE † -4511.6 (17) -4511.6 (19) -4511.6 (22)
KB -111113.5(162) -111274.1 (115) -111312.4* (27) -111312.4* (6)
RC † -4031.7 (17) -4031.8 (11) -4031.8 (9)
LP -480.8 (119) -686.3 (424) -507.7 (13) -732.6 (9)

ASM+QPBO+I GRD+QPBO+I
ID 1772.7 (442) 1784.2 (25) -1003.8* (244) -1003.8* (5) -1003.8* (6)
F&S -3.8 (159) -4.2* (3) -4.2* (5) -4.2* (6) -4.2* (9)

-F&S -182338.7 (47) -191856.9(3230) -185267.3 (8) -193715.3 (12) -193715.3 (14)
KB3 21.1 (543) -1045.3 (308) -1492.8 (256) -1484.4 (57) -1476.9 (101)
ER -10739.5 (551) -14128.9 (433) -15271.3 (1902) -15430.7 (101) -15430.5 (113)

In Figure 2, the evolution of the cost of the ER problem against the running time of
improve is shown for different quadratizations. For this problem, the methods converge to
a solution with similar costs, but convergence is much faster in the cases where ISH and
GRD quadratizations are used.
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Figure 2: Cost in the higher-order ER model as a function of the time spent on the im-
prove method, using different quadratization techniques. Improve starts after
solving one iteration of the original problem and removing the redundant slacks,
as described in Section 4.7.

6. Conclusions and Future Work

In this article we have discussed the use of pseudo-Boolean functions, quadratization tech-
niques, and MAP inference methods based on roof duality for MLNs. It was shown how
any quadratization method for pseudo-Boolean functions can be employed on MLNs at first-
order level, generalizing a previously existing approach. This enables the use of quadratiza-
tion methods that exploit the structure of the problem without the need to solve a possibly
large auxiliary optimization problem. Various quadratization approaches were adapted to
work with first-order models, including a novel approach that leverages a connection with
the generalized roof duality theory.

Additionally, to the best of our knowledge, this is the first work that discusses the
recognition of (super-)submodularity and expressibility in MLNs. In particular, this allows
to guarantee the expressibility of a restricted set of MLNs. Although the class of potentials
that are guaranteed to be expressible using submodular quadratic functions is limited, such
potentials have seen wide applications in computer vision.

The presented techniques were extensively evaluated on problems from the literature as
well as various additional problems. On higher-order problems, the choice of quadratization
approach was shown to be an important factor in the quality of the results. The methods
that exploit the first-order representation of the problem often enabled QPBO to solve a
larger part of the problem and perform better approximate inference. In all cases, large
parts of the problems could be solved exactly, and the approximate solutions matched
or improved the quality of other solvers. The optimization times for the problems were
observed to be very small, and often much shorter than the rest of the pipeline, for which
we did not optimize. In total, timings show very competitive results in relation to other
state-of-the-art inference engines.
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There are various paths for future work. This work has not explored if performance can
be improved by partitioning the model further than the presented shattering techniques,
or by using other manipulations on the parfactors. Also, the possibility to obtain better
approximate solutions using move making algorithms (Lempitsky, Rother, Roth, & Blake,
2010) was not tested, but such algorithms may leverage the first-order representation for
finding good moves. An additional interesting aspect to consider is to integrate our ap-
proach with cutting plane techniques or lifting techniques, which can be expected to give a
significant performance benefit for problems with a very large number of factors.
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