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Abstract
Most Relevant Explanation (MRE) is an inference task in Bayesian networks that finds the most

relevant partial instantiation of target variables as an explanation for given evidence by maximizing
the Generalized Bayes Factor (GBF). No exact MRE algorithm has been developed previously
except exhaustive search. This paper fills the void by introducing two Breadth-First Branch-and-
Bound (BFBnB) algorithms for solving MRE based on novel upper bounds of GBF. One upper
bound is created by decomposing the computation of GBF using a target blanket decomposition
of evidence variables. The other upper bound improves the first bound in two ways. One is to
split the target blankets that are too large by converting auxiliary nodes into pseudo-targets so as
to scale to large problems. The other is to perform summations instead of maximizations on some
of the target variables in each target blanket. Our empirical evaluations show that the proposed
BFBnB algorithms make exact MRE inference tractable in Bayesian networks that could not be
solved previously.

1. Introduction

Bayesian networks are probabilistic models that capture the conditional independencies between
random variables as directed acyclic graphs, and provide principled approaches to scientific expla-
nation. Explanation tasks in Bayesian networks can be classified into three categories: explanation
of reasoning, explanation of model, and explanation of evidence (Lacave & Diez, 2002). The goal
of explanation of reasoning in Bayesian networks is to explain the reasoning process used to pro-
duce the results so that the credibility of the results can be established. The goal of explanation of
model is to present the knowledge encoded in a Bayesian network in easily understandable forms
such as visual aids so that experts or users can examine or even update the knowledge. The goal
of explanation of evidence is to explain why some observed variables are in their particular states
using the other variables in the domain.

This research focuses on developing algorithms for solving one of the methods for explaining
evidence in Bayesian networks, the Most Relevant Explanation (MRE) (Yuan & Lu, 2007; Yuan,
Lim, & Lu, 2011b). The idea of MRE is to find a partial instantiation of the target variables that
maximizes the Generalized Bayes Factor (GBF) (Fitelson, 2007; Good, 1985) as an explanation for
the evidence. GBF is a rational function of probabilities that is suitable for comparing explanations
with different cardinalities. MRE is shown both theoretically and empirically to be able to prune
away independent and less relevant variables from the final explanation (Yuan et al., 2011b; Yuan,
Liu, Lu, & Lim, 2009; Pacer, Lombrozo, Griffiths, Williams, & Chen, 2013).

Due to the difficulty of finding a meaningful upper bound for GBF, no exact algorithms have
been developed to solve MRE except exhaustive search. Only local search and Markov chain Monte
Carlo methods have been proposed previously (Yuan et al., 2009; Yuan, Lim, & Littman, 2011a). In
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this paper, we introduce the first non-trivial exact MRE algorithms based on Breadth-First Branch-
and-Bound (BFBnB) search. The key idea of the proposed methods is to decompose the whole
Bayesian network into a set of overlapping subnetworks using a target blanket decomposition of
evidence variables. Each subnetwork is characterized by a subset of evidence variables and its target
blanket which d-separates the evidence variables from other target and evidence variables. An upper
bound for GBF is derived by solving independent optimization problems in the subnetworks. We
also show that the bound can be tightened by merging the target blankets that share target variables.

Then we propose another improved upper bound based on two novel ideas. First, the above
decomposition may lead to large target blankets that prevent the branch-and-bound algorithm from
scaling to large MRE problems. To address this problem, we propose to split large target blankets by
converting auxiliary nodes into pseudo-targets which introduce additional decomposition. Second,
we find that the upper bound can be tightened by identifying and summing out enclosed-targets from
each target blanket. The proposed upper bounds are used in the BFBnB algorithms for pruning the
search space. We evaluated the algorithms in a set of benchmark diagnostic Bayesian networks.
Experimental results show that the proposed algorithms make exact MRE inference tractable in
Bayesian networks that could not be solved previously.

The rest of the paper is organized as follows. The basics of Bayesian networks and the MRE
problem are introduced in Section 2. In Section 3, a novel target blanket upper bound is proposed.
An improved upper bound is discussed in Section 4. The proposed BFBnB algorithms are intro-
duced in Section 5. In Section 6, the experimental results are presented. Finally, discussions and
conclusions are provided in Section 7.

2. Background

In this section, we introduce the basics of Bayesian networks, explanation in Bayesian networks,
and the MRE problem.

2.1 Bayesian Networks and Moral Graph

A Bayesian network (Pearl, 1988; Darwiche, 2009; Koller & Friedman, 2009) is represented as a
directed acyclic graph (DAG). The nodes in the DAG represent random variables. The lack of arcs
in the DAG define conditional independence relations among the nodes. If there is an arc from
node Y to X , we say that Y is a parent of X , and X is a child of Y . We use upper-case letters
to denote variables X or variable sets X, and lower-case letters for values of scalars x or vectors
x. A node Y is an ancestor of a node X if there is a directed path from Y to X . Let AN(X)
denote all the ancestors of X , then the smallest ancestral set AN(X) of node set X is defined
as AN(X) = X ∪ (∪Xi∈XAN(Xi)). In directed graphs, d-separation describes the conditional
independence relation between two sets of nodes X and Y, given a third set of nodes Z, i.e.,
p(X|Z,Y) = p(X|Z). The Markov blanket of X is the smallest node set which d-separates X
from the remaining nodes in the network. The network as a whole represents the joint probability
distribution of

∏
X p(X|PA(X)), where PA(X) is the set of all the parents of X .

The moral graph Gm of a DAG G is an undirected graph with the same set of nodes. There
is an edge between X and Y in Gm if and only if there is an edge between them in G or if they
are parents of the same node in G. In an undirected graph, Z separates X and Y, if Z intercepts
all paths between X and Y. Moral graphs are a powerful construction to explain d-separation.
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Lemma 1 (Lauritzen, Dawid, Larsen, & Leimer., 1990) links d-separation in DAG to separation in
undirected graphs.

Lemma 1. Let X, Y, and Z be disjoint subsets of nodes in a DAG G. Then Z d-separates X from Y
if and only if Z separates X from Y in (GAN(X∪Y∪Z))

m, where (GAN(X∪Y∪Z))
m is the moral graph

of the subgraph of G with node set AN(X ∪ Y ∪ Z).

2.2 Explanation of Evidence in Bayesian Networks

Numerous methods have been developed to explain evidence in Bayesian networks. Some of these
methods make simplifying assumptions and focus on singleton explanations (Heckerman, Breese,
& Rommelse, 1995; Jensen & Liang, 1994; Kalagnanam & Henrion, 1988). However, singleton
explanations may be underspecified and are unable to fully explain the given evidence if the evidence
is the compound effect of multiple causes.

For a domain with multiple interdependent target variables, multivariate explanations are often
more appropriate for explaining the given evidence. Maximum a Posteriori assignment (MAP) finds
a complete instantiation of a set of target variables that maximizes the joint posterior probability
given partial evidence on the other variables. Recently Kwishthout (2013) extended MAP to find a
set of joint assignments as most inforbable explanations. Most Probable Explanation (MPE) (Pearl,
1988) is similar to MAP except that MPE defines the target variables to be all unobserved variables.
The common drawback of these methods is that they often produce hypotheses that are overspecified
and may contain irrelevant variables in explaining the given evidence.

Everyday explanations are necessarily partial explanations (Leake, 1995). Various pruning tech-
niques have been used to avoid overly complex explanations. These methods can be grouped into
two categories: pre-pruning and post-pruning. Pre-pruning methods use the context-specific in-
dependence relations represented in Bayesian networks to prune irrelevant variables (Pearl, 1988;
Shimony, 1993; van der Gaag & Wessels, 1993, 1995) before applying methods such as MAP to
generate explanations. In contrast, post-pruning methods first generate explanations using methods
such as MAP or MPE and then prune variables that are not important. An example is the method
proposed by de Campos et al. (2001).

Several methods aim to directly find more appropriate explanations. The likelihood of evidence
is used to measure the explanatory power of an explanation (Gärdenfors, 1988). Chajewska and
Halpern (1997) extend the approach further to use the value pair of <likelihood, prior probability>
to order the explanations, forcing users to make decisions if there is no clear order between two
explanations. Henrion and Druzdzel (1991) assume that a system has a set of pre-defined expla-
nation scenarios organized as a tree; they use the scenario with the highest posterior probability as
the explanation. Flores et al. (2005) propose to automatically create an explanation tree by greedily
branching on the most informative variable at each step while maintaining the probability of each
branch of the tree above a certain threshold. Nielsen et al. developed another method that uses the
causal information flow (Ay & Polani, 2008) to select variables to expand an explanation tree.

2.3 Most Relevant Explanation

For explanation of evidence in Bayesian networks, we often classify the nodes into three categories:
target, evidence, and auxiliary. The target set M represents variables of interest in the inference.
The evidence set E represents observed information. The auxiliary set represents the variables that
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are not of interest in the inference. MRE, which finds a partial instantiation of M as an explanation
for given evidence e in a Bayesian network, is formally defined as follows (Yuan et al., 2011b).

Definition 1. Let M be a set of targets, and e be the given evidence in a Bayesian network. Most
Relevant Explanation is the problem of finding a partial instantiation x of M that has the maximum
generalized Bayes factor score GBF (x; e) as the explanation for e, i.e.,

MRE (M; e) = argmax
x,∅⊂X⊆M

GBF (x; e), (1)

with GBF defined as

GBF (x; e) =
p(e|x)

p(e|x̄)
1, (2)

where x is the joint value assignment (instantiation) of a subset X of M, and x̄ represents all
alternative explanations of x.

A commonly used measure for selecting explanatory hypothesis is the probability of an expla-
nation given the evidence, as used in MAP and MPE to find the most likely configuration of a set of
target variables. Probability-based methods, however, do not have the intrinsic capability to prune
less relevant facts. Moreover, the probability measure is quite sensitive to the modeling choices,
e.g., simply refining a model can dramatically change the best explanation. In contrast, MRE max-
imizes the rational function of probabilities GBF in Equation 2. This makes it possible to compare
explanations with different cardinalities and to prune the less relevant variables automatically in a
principled way. The search space of MRE is exponential in the number of targets, and the complex-
ity of MRE is conjectured to NPPP -hard (Yuan et al., 2011a), which makes the naive brute force
algorithm impractical.

To further study the properties of generalized Bayes factor, we reformulate GBF as follows.

GBF (x; e) =
p(e|x)

p(e|x̄)
=
p(x|e)p(x̄)

p(x)p(x̄|e)

=
p(x|e)(1− p(x))

p(x)(1− p(x|e))
. (3)

Therefore, we only need the prior and posterior probabilities of a hypothesis in order to compute
its GBF. GBF is hence able to overcome the drawback of Bayes factor (Jeffreys, 1961) in having to
do pairwise comparisons between multiple hypotheses.

Belief update ratio is a useful concept. The belief update ratio of X given e is defined as
follows (Yuan et al., 2011b).

r(X; e) =
p(X|e)

p(X)
. (4)

GBF can be calculated from the belief update ratio as follows.

GBF (x; e) =
p(x|e)(1− p(x))

p(x)(1− p(x|e))
=
r(x; e)− p(x|e)

1− p(x|e)

= 1 +
r(x; e)− 1

1− p(x|e)
. (5)

1. We use p(x) as a shorthand for p(X = x) in this paper.
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2.4 Existing Methods for Solving MRE

Local search methods such as tabu search (Glover, 1990) have been applied to solve MRE (Yuan
et al., 2011a). Tabu search starts with the empty solution set. At each step, it generates the neighbors
of the current solution by adding, changing, or deleting one target variable. Then tabu search selects
the best neighbor which has the highest GBF score and has not been visited before. In tabu search,
the best neighbor can be worse than the current solution. To stop tabu search properly, upper bounds
are set on both the total number of search steps M and the number of search steps since the last
improvement L as the stopping criteria. Another Markov Chain Monte Carlo algorithm integrates
the reversible-jump MCMC algorithm (Green, 1995) and simulated annealing (Kirkpatrick, Gelatt,
& Vecchi, 1983) to find a solution by simulating a non-homogeneous Markov chain that eventually
concentrates its mass on the mode of a distribution of the GBF scores of all solutions. These methods
can only provide approximate solutions whose quality are unknown. Furthermore, the accuracy and
efficiency of these methods are typically highly sensitive to tunable parameters.

2.5 Branch and Bound Algorithms for Solving MPE/MAP

Branch-and-bound algorithms have been developed for solving MAP and MPE by using upper
bounds derived based on the property of optimization criterion or the structure of Bayesian net-
works. A mini-bucket upper bound was used in an AND/OR tree search for solving MPE (Dechter
& Rish, 2003; Marinescu & Dechter, 2009). Recently, an improved mini-bucket upper bound (Mari-
nescu, Dechter, & Ihler, 2014) was proposed to guide AND/OR search for exact MAP inference.
The work in (Choi, Chavira, & Darwiche, 2007) showed that the mini-bucket upper bound can be
derived from a node splitting scheme. To solve MAP exactly, an upper bound is proposed by com-
muting the order of max and sum operations in the MAP calculation (Park & Darwiche, 2003). An
exact algorithm is proposed for solving MAP by computing upper bounds on an arithmetic circuit
compiled from a Bayesian network (Huang, Chavira, & Darwiche, 2006).

3. A Novel Upper Bound Based on Target Blanket Decomposition for Solving MRE

It is difficult to solve MRE problems exactly because of both an exponential search space and the
need for probabilistic inference at each search step. A naive brute-force search method can scale to
Bayesian networks with at most 15 targets. In this work, we develop breadth-first branch-and-bound
algorithms that use a suite of new upper bounds based on target blanket decomposition to prune the
search space. The algorithm makes it possible to solve MRE problems with more targets exactly.

3.1 Search Space Formulation

Assuming there are n targets, and each target has d states, the search space of MRE contains (d +
1)n − 1 possible states (or solutions). We organize the search space as a search tree by instantiating
the targets according to a total order π of the targets. Each state S in the tree contains values of a
subset of the targets V. V is defined as the expanded set of targets. The set of variables U that are
yet to be considered for expansion is defined as unexpanded set; i.e., U = {Ui|Ui ∈ M; ∀Vj ∈
V, Vj <π Ui}; and the set of variables P that have been considered but are not used is defined as
pruned set; i.e., P = M \ {V ∪U}. Figure 1 demonstrates the different target sets for the state
{X1, X4, X6} for a 9-target MRE problem.
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X1 X2 X3 X4 X5 X6 X7 X8 X9

Expanded (V)

Pruned (P)

Unexpanded (U)

Figure 1: Different types of targets of a search state in MRE, i.e., expanded (gray), pruned (white),
and unexpanded (black).
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Figure 2: The search tree of an MRE problem with three targets, i.e., A, B, and C. An example of
sub-tree rooted at {b} is marked as gray.

The search tree has the empty state as the root. Each non-leaf state in the tree has a number of
children states that instantiate one more unexpanded target. Figure 2 shows an example search tree
with three targets A = {a, ā}, B = {b, b̄}, and C = {c, c̄} with π in the same order. Different
branches of the search tree may have different numbers of layers, but all of the states with the same
cardinality appear in the same layer.

It is possible to use dynamic ordering to expand targets that can most improve the GBF score
first. However, it was shown that a static ordering can actually make computing upper bounds much
faster and ultimately make the search more efficient (Yuan & Hansen, 2009). We therefore simply
ordered the targets according to their indices in this work.

3.2 An Upper Bound Based on Target Blanket Decomposition

For MRE inference, an upper bound of a state S should be greater than the GBF score of all de-
scendant states of S. During search, we can keep track of the highest-scoring state and prune the
whole subtree if the upper bound is less than the GBF of the current best solution. In the following
we introduce a novel upper bound for MRE inference.

We first define a concept called target blanket decomposition of evidence variables.

Definition 2. A target blanket decomposition of evidence variables is a tuple< EvdList ,TBList >
that satisfies the following properties: 1) EvdList is a set of exclusive and exhaustive subsets,
i.e.,EvdList = {Ei}, E = ∪iEi and Ei ∩Ej = ∅ for ∀i 6= j. 2) TBList is a set of target blankets,
one blanket TB(Ei) for each evidence subset Ei, such that TB(Ei) is the minimal set of targets
which d-separates Ei from other targets and evidence variables.
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The target blanket decomposition naturally decomposes the whole network into overlapping
subnetworks, with each subnetwork containing an evidence subset Ei and its target blanket TB(Ei).
Target blankets are so named due to their resemblance to Markov blankets, but strictly speaking,
they are not really the Markov blankets of the evidence variables, because there may be auxiliary
variables between them.

For any given target set M and evidence set E, there may exist multiple target blanket decom-
positions that satisfy Definition 2. To see that, note that we can simply merge two or more evidence
subsets and their corresponding target blankets in a decomposition to obtain another decomposi-
tion. However, among all possible decompositions, there is a minimal target blanket decomposition,
which we define as follows.

Definition 3. A minimal target blanket decomposition of evidence variables is a target blanket
decomposition < EvdList ,TBList > in which no proper subset of any Ei in EvdList has a valid
target blanket.

The minimal target blanket decomposition must be unique according to the following theorem.

Theorem 1. The minimal target blanket decomposition of evidence set E is unique.

Proof. Proof by contradiction: assume there are two minimal target blanket decompositions D1

and D2. Based on the property of minimal target blanket decomposition, no evidence subset of D1

can be a proper subset of any evidence subset of D2, and vice versa. There must exist two distinct
evidence subsets ED1

i of D1 and ED2
j of D2 whose overlap Eij is not empty. But then it must

be true that Eij is d-separated from all other target and evidence variables given some subset of
TB(ED1

i ) ∪ TB(ED2
j ), contradicting the definition.

It immediately follows that all non-minimal target blanket decompositions can be generated by
performing merging on the minimal decomposition.

An upper bound on GBF is then derived by multiplying the upper bounds on belief update ratios
calculated on the subnetworks. We first derive an upper bound on the belief update ratio in the
following theorem.

Theorem 2. Let M = {X1, X2, . . . , Xn} be the set of targets, e be the evidence, and < EvdList ,
TBList > be a target blanket decomposition of E, where EvdList = {Ei} and TBList =
{TB(Ei)}. Then, for any subset ∅ ⊂ X ⊆M, the belief update ratio r(x; e) is upper bounded
as follows:

max
x,∅⊂X⊆M

r(x; e) ≤

(∏
i

max
z,Z=TB(Ei)

r(z; ei)

)
· C, (6)

where C =
∏
i p(ei)

/
p(e).
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Proof. From the formulation of r(M; e), we have

r(M; e) = p(M|e)
/
p(M)

= p(e|M)
/
p(e)

=
∏
i

p(ei|TB(Ei))/p(e)

=
∏
i

p(TB(Ei)|ei)p(ei)
p(TB(Ei))

/p(e)

=

(∏
i

r(TB(Ei); ei)p(ei)

)
/p(e). (7)

The third equality is based on the property of target blankets. Thus, we have

r(M; e) =

(∏
i

r(TB(Ei); ei)

)
· C, (8)

where C =
∏
i p(ei)

/
p(e). From Equation 8, we immediately have the following upper bound on

r(m; e),

max
m

r(m; e) ≤

(∏
i

max
z,Z=TB(Ei)

r(z; ei)

)
· C. (9)

For any ∅ ⊂ X ⊂M, X̄ = M\X, let Si = TB(Ei) ∩ X̄ denote the subset of targets to
be summed out in the ith subnetwork, and S̄i = TB(Ei) ∩ X. Thus, we separate TB(Ei) into
two parts, i.e., related or unrelated to the summation on X̄, indexed by I = {i : Si 6= ∅} and
J = {j : Sj = ∅} respectively. Based on the above definition, we have:

p(e|X) =
∑
X̄

p(e|M)p(X̄|X)

=
∑
X̄

(∏
i∈I

p(ei|TB(Ei))

)
p(X̄|X) ·

∏
j∈J

p(ej |TB(Ej))

≤

(∏
i∈I

max
si

p(ei|S̄i ∪ si)

)
·

∏
j∈J

p(ej |TB(Ej))

 . (10)

The last inequality is derived by using maximization instead of averaging on X̄. Since p(e|X) =
r(X; e)p(e), we have the following upper bound on r(x; e) by performing maximization according
to X on both sides of Equation 10:

max
x

r(x; e) = max
x

p(e|x)

p(e)

≤

(∏
i∈I

max
s̄i

max
si

p(ei|si ∪ s̄i)p(ei)

p(ei)

)
·

∏
j∈J

max
z,Z=TB(Ej)

p(ej |z)p(ej)

p(ej)

 · 1

p(e)

=

(∏
i∈I

max
z,Z=TB(Ei)

r(z; ei)

)
·

∏
j∈J

max
z,Z=TB(Ej)

r(z; ej)

 · C. (11)
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Thus, for any ∅ ⊂ X ⊆M, we obtain the final upper bound by combining Equations 9 and 11.

max
x,∅⊂X⊆M

r(x; e) ≤

(∏
i

max
z,Z=TB(Ei)

r(z; ei)

)
· C.

In MRE inference, the evidence e is given, thusC is a constant. Theorem 2 assumes that V = ∅,
which is true at the beginning of search. During the search when V 6= ∅, we have the following
corollary to derive the upper bound on the belief update ratio.

Corollary 3. Let M = {X1, X2, . . . , Xn} be the set of targets, e be the evidence, and < EvdList ,
TBList > be a target blanket decomposition of E, where EvdList = {Ei} and TBList =
{TB(Ei)}. Let U and V be the unexpanded and expanded target sets of state S. Let Ti =
TB(Ei) ∩ V, and T̄i = TB(Ei)\Ti. Then, for any subset ∅ ⊂ X ⊆ U, the belief update ratio
r(x ∪ v; e) is upper bounded as follows.

max
x,∅⊂X⊆U

r(x ∪ v; e) ≤

(∏
i

max
z,Z=T̄i

r(z ∪ ti; ei)

)
· C, (12)

where C =
∏
i p(ei)

/
p(e).

Based on Corollary 3, we can derive an upper bound on GBF in Theorem 4:

Theorem 4. Let M = {X1, X2, . . . , Xn} be the set of targets, e be the evidence, and < EvdList ,
TBList > be a target blanket decomposition of E, where EvdList = {Ei} and TBList =
{TB(Ei)}. Let U and V be the unexpanded and expanded target sets of state S. Let Ti =
TB(Ei) ∩V, and T̄i = TB(Ei)\Ti. Then, for any subset ∅ ⊂ X ⊆ U, the generalized Bayesian
factor score GBF (x ∪ v; e) is upper bounded as follows.

max
x,∅⊂X⊆U

GBF (x ∪ v; e) ≤ 1 +

∏
i

max
z,Z=T̄i

r(z ∪ ti; ei) · C − 1

1− p(v|e)
, (13)

where C =
∏
i p(ei)

/
p(e).

Proof. First, we formulate GBF using the belief update ratio as in Equation 5.

GBF (m; e) = 1 +
r(m; e)− 1

1− p(m|e)
.

For any subset ∅ ⊂ X ⊆ U, p(x ∪ v|e) = p(x|v, e) · p(v|e) ≤ p(v|e). Thus we have

max
x,∅⊂X⊆U

GBF (x ∪ v; e) ≤ 1 +

max
x,∅⊂X⊆U

r(x ∪ v; e)− 1

1− p(v|e)
. (14)

Then using Corollary 3, we obtain the following upper bound on GBF:

max
x,∅⊂X⊆U

GBF (x ∪ v; e) ≤ 1 +

(∏
i

max
z,Z=T̄i

r(z ∪ ti; ei)

)
· C − 1

1− p(v|e)
,

where C =
∏
i p(ei)

/
p(e).
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Figure 3: An example of compiling and splitting target blanket decomposition. E1, E2, and E3 are
evidence nodes. Gray nodes are targets. Others are auxiliary nodes. The original target
blanket TB(E1, E2) is split into TB(E1) and TB(E2) by converting auxiliary node A
into pseudo-target.

Using Equation 13, we can bound all the descendant states of the current state S. Equation 13
shows that in an MRE problem (left), we need to search all of the subsets of targets M to find the
best solution. However, to calculate an upper bound (right), we only need to search a fixed target
set TB(Ei) of each subnetwork, which usually has a small size and is easy to compute. For each
instantiation z of TB(Ei), we calculate r(z; ei) and store it in a table called belief ratio table. There
is one such table for each subnetwork. These tables are computed in a preprocessing step and are
looked up at each step of the search to compute the upper bound of a state.

3.3 Compiling Minimal Target Blanket Decomposition

Theorems 2- 4 are based on factorizing the conditional joint distribution p(e|M) into the product of
a set of conditional distributions

∏
i p(ei|TB(Ei)). Thus finding the target blanket decomposition,

including the evidence subsets and their target blankets, is a key part of the proposed methods.
In the proposed method, we compile the minimal target blanket decomposition based on Lemma 1

by first compiling a moral graph. The moral graph is used to prune out irrelevant parts of the network
and set up the network for separation tests. To compile moral graph, we first generate the smallest
ancestral set containing the target set M and the evidence set E, i.e.,AN(M∪E). Then we compile
the moral graph (GAN(M∪E))

m. Figure 3(B) illustrates an example moral graph compiled from the
Bayesian network with three evidence nodes in Figure 3(A). Using Lemma 1, minimal target blan-
ket decomposition of evidence variables is achieved by doing a depth first graph traversal starting
from each unvisited evidence node in the moral graph (GAN(M∪E))

m. There are three scenarios
when a node is being visited.

• Case 1: When an evidence node is visited, we add the evidence to the current evidence subset
Ei, mark it as visited, and continue to visit its unmarked neighbors.

• Case 2: When a target is visited, we add the target to TB(Ei) and mark it as visited.
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Algorithm 1 Compiling Minimal Target Blanket Decomposition
Input: M – target set; E – evidence set; MGraph – moral graph (GAN(M∪E))

m.
Output: Target blanket decomposition < EvdList ,TBList >, where EvdList = {Ei}, and

TBList = {TB(Ei)}.
1: function COMPILEMINIMALTARGETBLANKETS(M, E, MGraph)
2: EvdList ← ∅;
3: TBList ← ∅;
4: for each node Nd in MGraph do
5: if Nd in E and Nd is not visited then
6: EvdSeti ← ∅;
7: TBSeti ← ∅;
8: SearchStack ← Nd ; . initialize the stack for Depth-first search
9: while SearchStack is not empty do

10: SearchNode ← SearchStack .pop();
11: if SearchNode is visited then
12: continue;
13: end if
14: mark SearchNode as visited;
15: if SearchNode in E then . Case 1
16: EvdSeti .push(SearchNode);
17: SearchStack .push(SearchNode’s unvisited neighbors);
18: else if SearchNode in M then . Case 2
19: TBSeti .push(SearchNode);
20: else if SearchNode is auxiliary node then . Case 3
21: SearchStack .push(SearchNode’s unvisited neighbors);
22: end if
23: end while
24: EvdList .push(EvdSeti );
25: TBList .push(TBSeti );
26: end if
27: mark the targets and auxiliary nodes in MGraph as unvisited;
28: end for
29: end function

• Case 3: When an auxiliary node is visited, we mark it as visited and continue to visit its
unmarked neighbors.

When restarting the search on a new evidence node, we unmark all targets and auxiliary nodes,
because the same targets may occur in different target blankets, e.g., nodeF is shared by TB(E1, E2)
and TB(E3) as shown in Figure 3(B). The algorithm stops when all evidence nodes have been vis-
ited. The above algorithm is summarized in Algorithm 1. Furthermore, we show that Algorithm 1
is guaranteed to find the minimal target blanket decomposition of evidence set E.

Theorem 5. Algorithm 1 is guaranteed to find the minimal target blanket decomposition of evidence
variables.
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Proof. For each evidence E, Algorithm 1 stops a search path if and only if a target is encountered.
All evidence variables that belong to the same evidence subset Ei asE in the minimal target blanket
decomposition must be visited before all search paths terminated. Furthermore, since we start the
search from one of the evidence E in Ei, it must be true that the search stops once the minimal
target blanket TB(Ei) is fully visited.

3.4 Merging Target Blankets

When computing the upper bound, we maximize the belief update ratio r(TB(Ei); ei) in each
TB(Ei) independently. Thus the common targets of two different target blankets TB(Ei) and
TB(Ej) may be set to inconsistent values. Too much inconsistency may result in a loose bound.
We can tighten the upper bound by merging target blankets that share targets. On the other hand,
if the number of targets in any individual target blanket is too large, it will make calculating the
belief update ratio tables inefficient or even infeasible due to excessive memory consumption. We
propose to merge target blankets that share targets under the constraint that the number of targets in
a resulting target blanket cannot exceed a constant K.

We can use an undirected graph to represent the problem of merging target blankets. The nodes
in the graph denote target blankets. If two target blankets share targets, there is an edge between the
two corresponding nodes. The weight of the edge is the number of targets shared by the two target
blankets. This formulation translates the problem of merging target blankets into a graph partition
problem. More specifically, the merging problem can be addressed by recursively solving the mini-
mum bisection problem (Feige & Krauthgamer, 2002) on the undirected graph, which partitions the
vertices into two equal halves so as to minimize the sum of weights of the edges between the two
partitions.

The minimum bisection problem is an NP-hard problem, however. We cannot afford to spend
too much time on computing the upper bound. We therefore use a hierarchical clustering-like greedy
algorithm for merging the target blankets. We first merge any pair of target blankets if one of them
covers the other. Then for all remaining target blankets, we repeatedly merge two target blankets
that share the highest number of targets as long as the number of targets in the resulting target
blanket does not exceed K. The algorithm iterates the above two steps until no target blankets can
be merged. The merge algorithm is summarized in Algorithm 2.

4. An Improved Target Blanket Bound

The above target blanket upper bound has two potential difficulties in scaling to large Bayesian net-
works with many target variables. First, the minimal target blanket decomposition (in Section 3.3)
can lead to large subnetworks with belief ratio tables that are too large to build. Second, the upper
bound can be still loose even after merging target blankets. In this section, we propose another up-
per bound based on two new techniques for improving the scalability and tightness of the previous
bound.

4.1 Splitting Large Target Blankets

The decomposition method in Section 3.3 may lead to large target blankets which prevent the ap-
plication of BFBnB to large scale MRE problems. To address this problem, we notice that in MRE
problems, each subnetwork contains three types of nodes, i.e., targets TB(Ei), evidence Ei, and
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Algorithm 2 Merging Target Blankets
Input: A target blanket decomposition < EvdList ,TBList >, where EvdList = {Ei}, and

TBList = {TB(Ei)}; K – the maximum number of targets in a target blanket.
Output: An updated decomposition < EvdList ,TBList >.

1: function MERGETARGETBLANKETS(EvdList , TBList , K)
2: MergeFlag ← True;
3: while MergeFlag do
4: TBListOld ← TBList ; . TBi denotes TB(Ei)
5: EvdListOld ← EvdList ;
6: for each (TBi , TBj ) pair, where TBi , TBj ∈ TBListOld do
7: if TBi and TBj in TBList then . merge target blankets with subset relation
8: if TBi ⊆ TBj then
9: TBj .merge(TBi );

10: TBList .remove(TBi );
11: Ej .merge(Ei);
12: EvdList .remove(Ei);
13: else if TBj ⊆ TBi then
14: TBi .merge(TBj );
15: TBList .remove(TBj );
16: Ei.merge(Ej);
17: EvdList .remove(Ej);
18: end if
19: end if
20: end for
21: NumTargets ← 0;
22: for each (TBi , TBj ) pair, where TBi , TBj ∈ TBList do
23: if (TBi ∩ TBj ).size() > NumTargets and (TBi ∪ TBj ).size() < K then
24: TBPair ← (TBi , TBj ); . find an TB pair to merge
25: NumTargets ← (TBi ∩ TBj ).size();
26: EvdPair ← (Ei, Ej);
27: end if
28: end for
29: if NumTargets is 0 then
30: MergeFlag ← False;
31: else
32: TBPair .TBi .merge(TBPair .TBj );
33: TBList .remove(TBPair .TBj );
34: EvdPair .Ei.merge(EvdPair .Ej);
35: EvdList .remove(EvdPair .Ej);
36: end if
37: end while
38: end function
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auxiliary nodes Ai, where TB(Ei) marks the boundary of subnetworks, and Ei and Ai are con-
ditionally independent from outside nodes given TB(Ei). Our idea here is to split large target
blankets by converting auxiliary nodes into pseudo-targets which only act as targets in compiling
target blanket decomposition and calculating belief ratio tables. These pseudo-targets add addi-
tional d-separation to the Bayesian network, thus split the large target blankets into smaller ones.
Theorems 4 and 6 guarantee that, after the split, we can still find an upper bound on GBF.

Theorem 6. Let TB(Ei) be the target blanket of the ith subset of evidence Ei, and Ai be the set
of auxiliary nodes in the ith subnetwork of a target blanket decomposition. Assuming that after
converting any subset ∅ ⊂ Y ⊆ Ai into pseudo-targets, the ith subnetwork is decomposed into a
set of target blankets TB(Eij), where TB(Ei) ∪Y=∪jTB(Eij), Ei=∪jEij , and Eij ∩ Eik = ∅
for ∀j 6= k. Then, the belief update ratio r(x; ei) is upper bounded as follows.

max
x,X=TB(Ei)

r(x; ei) ≤
∏
j

max
z,Z=TB(Eij)

r(z; eij) · C, (15)

where C =
∏
j p(eij)

/
p(ei).

Proof. Let X = TB(Ei), for any ∅ ⊂ Y ⊆ Ai we have,

p(ei|X) =
∑
Y

p(ei|X ∪Y)p(Y|X)

=
∑
Y

∏
j

p(eij |TB(Eij))p(Y|X)

≤
∏
j

max
z,Z=TB(Eij)∩Y

p(eij |TB(Eij)\Z, z). (16)

The second equality is based on the property of target blankets.
Since p(ei|X) = r(X; ei)p(ei), we have the following upper bound on r(x; ei),

max
x,X=TB(Ei)

r(x; ei) ≤
∏
j

max
z,Z=TB(Eij)

r(z; eij) · C,

where C =
∏
j p(eij)

/
p(ei).

We introduce a greedy algorithm to convert auxiliary nodes into pseudo-targets incrementally
until the size of each resulting target blanket does not exceedK. In the algorithm, we split the target
blankets whose sizes exceed K using the following steps.

• Step 1: Calculate the degree (i.e., the number of neighboring nodes) of each auxiliary node
Aij in the moral graph, and sort them according to their degrees in descending order.

• Step 2: Convert one auxiliary node into pseudo-target according to its order, and perform
depth-first search in Section 3.3 to compile minimal target blankets decomposition on the
subnetwork.

• Step 3: Stop if the size of each resulting target blanket does not exceed K, or repeat Step 2
until all the auxiliary nodes have been converted.
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Algorithm 3 Splitting Target Blankets
Input: A target blanket decomposition < EvdList ,TBList >, where EvdList = {Ei}, and

TBList = {TB(Ei)}; K – the maximum number of targets in a target blanket. MGraph
– moral graph (GAN(M∪E))

m.
Output: An updated decomposition < EvdList ,TBList >.

1: function SPLITTARGETBLANKETS(EvdList ,TBList , K, MGraph)
2: for each TBi in TBList do
3: if TBi .size() > K then
4: for each Aij in Ai with descending degree do . Ai is the auxiliary node set in TBi

5: convert Aij to pseudo-target;
6: < EvdList i,TBList i >← CompileMinimalTargetBlankets(TBi ,Ei,MGraph);
7: if TBij .size() < K, for any TBij in TBList i then
8: break;
9: end if

10: end for
11: end if
12: end for
13: end function

The above algorithm is summarized in Algorithm 3. An example of splitting target blanket
is illustrated in Figure 3(C). The original target blanket TB({E1, E2}) = {I, F,B,D} is split into
TB(E1) = {A,B,D} and TB(E2) = {A,F, I} by converting auxiliary nodeA into a pseudo-target.

4.2 Tightening the Upper Bound

By combining Theorems 4 and 6, we can see that the splitting process makes the upper bound loose
because of the maximizations on pseudo-targets. In order to maintain or even improve the search
efficiency, we need to re-tighten the bound. The key idea comes from Theorem 4, in which T̄i

contains two types of variables, i.e., pruned-targets and unexpanded targets. In Equation 13, both
pruned-targets and unexpanded targets of state S are maximized to derive the upper bound. Since
the pruned-targets do not occur in the subsequently generated states, maximizing pruned-targets
makes the upper bound loose. However, directly summing the pruned-targets in the subnetworks
will change the structure of target blanket decomposition, thus makes the upper bound invalid.

We notice that certain targets can be summed out instead of being maximized over without
affecting the decomposition. First, we need to define another type of targets called enclosed-target
set H of a target blanket in the following.

Definition 4. In MRE inference, enclosed-targets H of a target blanket are the targets which are
conditionally independent from the variables outside the target blanket given the remaining vari-
ables in the target blanket.

In other words, enclosed-targets are the targets which are blocked (d-separated) from outside
by the rest of the target blanket. From Definition 4, we can see that each enclosed-target only
occurs in one target blanket. As an example in Figure 3(B), J and L are enclosed-targets in
TB(E3)={F, J, L}.
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The idea is then to sum over the enclosed-targets in individual subnetworks TB(Ei) in order to
produce a tighter upper bound. We have the following theorem.

Theorem 7. Let M = {X1, X2, . . . , Xn} be the set of targets, e be the evidence, and < EvdList ,
TBList > be a target blanket decomposition of E, where EvdList = {Ei} and TBList =
{TB(Ei)}. Let U, V, and P be the unexpanded, expanded, and pruned target sets of state S.
Let Ti = TB(Ei) ∩V, and T̄i = TB(Ei)\Ti. Let Hi be the enclosed-target set in TB(Ei) and
His = Hi ∩ P. Then, for any subset ∅ ⊂ X ⊆ U, the belief update ratio r(x ∪ v; e) is upper
bounded as follows.

max
x,∅⊂X⊆U

r(x ∪ v; e) ≤
∏
i

max
z,Z=T̄i\His

r(z ∪ ti; ei) · C, (17)

where C =
∏
i p(ei)

/
p(e).

Proof. For any ∅ ⊂ X ⊆ U, let W = X ∪ V and W̄ = M\W. Similar with Theorem 2, let
Si = TB(Ei) ∩ W̄, I = {i : Si 6= ∅}, and J = {j : Sj = ∅}, we have,

p(e|W) =
∑
W̄

p(e|M)p(W̄|W)

=
∑
W̄

(∏
i∈I

p(ei|TB(Ei))
)
p(W̄|W) ·

∏
j∈J

p(ej |TB(Ej)). (18)

Equation 18 is based on the property of target blankets.
Assuming X̄ = U\X, we have W̄ = P ∪ X̄ and His ⊆ Si ⊆ W̄. Since His only occurs in

TB(Ei), we perform summation on non-empty His in Equation 18 as follows.∑
His

p(ei|TB(Ei))p(His|M\His)

=
∑
His

p(ei,His|TB(Ei)\His)

p(His|TB(Ei)\His)
p(His|M\His)

=
∑
His

p(ei,His|TB(Ei)\His)

= p(ei|TB(Ei)\His), (19)

where p(His|TB(Ei)\His) = p(His|M\His), since His is conditionally independent with other
targets given TB(Ei)\His.

Based on Equation 19, we obtain an upper bound by summing out His from Equation 18 and
replacing the summation on ∪i(Si\His) with maximization.

p(e|W) ≤
∏
i∈I

max
z,Z=Si\His

p(ei|TB(Ei)\Si, z) ·
∏
j∈J

p(ej |TB(Ej)). (20)

Since p(e|W) = r(W; e)p(e), we have the following upper bound on r(x∪v; e) by re-organizing
the partition of TB(Ei), i.e., from Si based partition to Ti based partition.

max
x,∅⊂X⊆U

r(x ∪ v; e) ≤
∏
i∈I

max
z,Z=T̄i\His

r(z ∪ ti; ei) ·
∏
j∈J

max
z,Z=T̄j

r(z ∪ tj ; ej) · C, (21)
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Figure 4: Subproblem graph of compiling belief ratio tables for the incremental algorithm.

where C =
∏
i p(ei)

/
p(e).

Thus, for any ∅ ⊂ X ⊆ U, we obtain the tighter upper bound on r(x ∪ v; e).

max
x,∅⊂X⊆U

r(x ∪ v; e) ≤
∏
i

max
z,Z=T̄i\His

r(z ∪ ti; ei) · C.

By substituting Equation 17 into 14, we have the tightened upper bound on GBF in Theorem 8.

Theorem 8. Let M = {X1, X2, . . . , Xn} be the set of targets, e be the evidence, and < EvdList ,
TBList > be a target blanket decomposition of E, where EvdList = {Ei} and TBList =
{TB(Ei)}. Let U, V, and P be the unexpanded, expanded, and pruned target sets of state S.
Let Ti = TB(Ei) ∩ V, and T̄i = TB(Ei)\Ti. Let Hi be the enclosed-target set in TB(Ei)
and His = Hi ∩ P. Then, for any subset ∅ ⊂ X ⊆ U, the generalized Bayesian factor score
GBF (x ∪ v; e) is upper bounded as follows.

max
x,∅⊂X⊆U

GBF (x ∪ v; e) ≤ 1 +

∏
i

max
z,Z=T̄i\His

r(z ∪ ti; ei) · C − 1

1− p(v|e)
, (22)

where C =
∏
i p(ei)

/
p(e).

The main difference between Theorems 4 and 8 is that Theorem 4 maximizes His in the upper
bound while Theorem 8 sums out His which results in a tighter upper bound.

4.3 Compiling Belief Ratio Tables

The belief ratio tables contain the belief update ratios of all configurations of a series of target
sets generated based on TB(Ei), and are used to calculate upper bounds during MRE inference.
To compile belief ratio tables, we find the set of enclosed-targets Hi by converting each target in
TB(Ei) into an auxiliary node individually. If this does not add new targets or evidence nodes
into the original subnetwork, we add the target into Hi. All the subsets of Hi are used to build
2|Hi| belief ratio tables of TB(Ei), where |Hi| denotes the size of Hi. Let Hij be a subset of Hi,
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then the target set of the belief ratio table is TB(Ei)\Hij . Since the number of belief ratio tables
increases exponentially according to |Hi|, we limit |Hi| to be no larger than N for both time and
space reasons. Different enclosed-targets contribute different amount in tightening the upper bound,
thus we select the top N enclosed-targets from Hi by sorting the enclosed-targets Hij according to
their belief update ratios maxhijr(hij ; ei) in descending order.

To compile belief ratio tables, we need to calculate the belief update ratios of all the configura-
tions of target set TB(Ei)\Hij . A straightforward method is to compile each of the 2|Hi| belief ratio
tables independently. But this is slow because of redundant computation. In this work, we propose
an incremental algorithm which compiles the belief ratio tables gradually from the smallest target set
H̄i=TB(Ei)\Hi. In Figure 4, assuming there are four enclosed-targets, i.e., Hi = {A,B,C,D},
organized in alphabetical order, and each node in the subproblem graph represents a target. We first
compile the belief ratio table of H̄i, then traverse the subproblem graph in breadth-first order. At
each state (node), we compile the belief ratio table by adding the target into the complied belief ratio
table of its parent state. After traversing the subproblem graph, the algorithm compiles all belief
ratio tables. The above algorithm is summarized in Algorithm 4.

In the proposed algorithm, we calculate a hash key HK i of each target blanket based on Hi. The
belief ratio tables of each target blanket are stored in a hash table and the hash keys are calculated
based on the corresponding subset of enclosed-targets Hij .

5. Breadth-First Branch-and-Bound Algorithms

In MRE inference, all of the search nodes are potential solutions except the root node. We can
choose from a variety of search methods to explore the search tree, e.g., depth-first search, best-first
search, and breadth-first search. Since MRE prunes away independent and less relevant targets,
usually the number of targets in the optimal solution is not large. Thus breadth-first search may
reach the optimal solutions faster than other search strategies. That is why we choose breadth-
first search for MRE inference. The breadth-first search may require more memory to store the
unexpanded states in a layer, however.

In order to utilize the proposed upper bounds, our BFBnB algorithms have two major steps:
preprocessing and search. The preprocessing step includes compiling minimal target blanket de-
composition, merging target blankets sharing targets, splitting large target blankets, and creating the
belief ratio tables for each TB(Ei). A suite of upper bounds can be derived by including differ-
ent combinations of the above preprocessing modules. Our empirical results show that the target
blanket upper bounds in Theorems 4 and 8 show excellent performance.

The search step of BFBnB explores the search tree layer by layer while keeping track of the
highest-scoring state, and prunes a state S if its upper bound is less than the current best GBF. The
proposed upper bounds lead to two versions of the BFBnB algorithms, MPBnd and SPBnd. MPBnd
is based on the upper bound in Theorem 4, which maximizes over both the unexpanded targets and
pruned-targets. Thus, in MPBnd, each target blanket TB(Ei) has one belief ratio table which is
computed by calculating the belief update ratios of all configurations of TB(Ei). For each state S,
we search for a configuration in each belief ratio table that is consistent with the expanded targets
ti and has the highest belief update ratio. We then calculate the upper bound of S using Theorem 4.

SPBnd is based on the upper bound in Theorem 8, which sums out part of the pruned-targets
based on the structure of Bayesian networks. Thus, in SPBnd, each target blanket TB(Ei) has
a set of belief ratio tables each of which is derived by calculating the belief update ratios of all
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Algorithm 4 Compile Belief Ratio Tables
Input: M – target set; E – evidence set; e – given evidence; MGraph – moral graph

(GAN(M∪E))
m; A target blanket decomposition < EvdList ,TBList >, where EvdList =

{Ei}, and TBList = {TB(Ei)}; N – the maximum number of enclosed-targets in a target
blanket.

Output: BeliefRatioTable – the belief ratio tables of each target blanket.
1: function COMPILEBELIEFRATIOTABLE(M, E, e, MGraph , EvdList , TBList , N )
2: BeliefRatioTable ← ∅;
3: for each TBi in TBList do
4: Hi ← ∅;
5: for each X in TBi do . generate enclosed-target set Hi

6: change X to auxiliary node;
7: NewTBList ← CompileMinimalTargetBlankets(M, E, MGraph);
8: NewTBi .push(X);
9: if NewTBi == TBi and NewE i == Ei then

10: Hi.push(X);
11: end if
12: reset X to target node;
13: end for
14: Hi ← Hi.top(N ); . select top N nodes according to maxhijr(hij ; ei)
15: SearchQueue ← ∅;
16: BeliefRatioTablei ← ∅;
17: H̄i = TB i\Hi;
18: for each instantiation h̄i of H̄i do
19: BeliefRatioTablei [Hash(∅)].push(GBF (h̄i; e));
20: end for
21: SearchQueue.push(∅); . contain Hij

22: while SearchQueue is not empty do . compile belief ratio table of TB i

23: Hij ← SearchQueue.pop();
24: for each X >π ∀Y in Hij , where X in Hi do . π is the order defined in Hi

25: for each instantiation x of (X ∪Hij ∪ H̄i) do . calculate incrementally
26: BeliefRatioTablei [Hash(X ∪Hij)].push(GBF (x; e));
27: end for
28: SearchQueue.push(Hij ∪X);
29: end for
30: end while
31: BeliefRatioTable .push(BeliefRatioTablei );
32: end for
33: end function

configurations of TB(Ei)\Hij . The algorithm of calculating the belief ratio tables in SPBnd is
summarized in Algorithm 4, which includes the algorithm used in MPBnd as a special case. For
each state S, we calculate a hash key SK based on the pruned-targets and use SK&HK i to index
the belief ratio table of each target blanket. Then, we search for a configuration in each selected
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Algorithm 5 BFBnB Algorithm Based on Target Blanket Upper Bounds
Input: M – target set; E – evidence set; e – given evidence; MGraph – moral graph

(GAN(M∪E))
m; K – the maximum number of targets in a target blanket; N – the maximum

number of enclosed-targets in a target blanket.
Output: BestExplanation – arg maxx,∅⊂X⊆MGBF (x; e).

1: function BFBNBSEARCH(M, E, e, MGraph , K, N )
2: < EvdList ,TBList >← CompileMinimalTargetBlankets(M, E, MGraph);
3: MergeTargetBlankets(EvdList ,TBList , K);
4: SplitTargetBlankets(EvdList ,TBList , K, MGraph);
5: if TBi .size() < K, for any TBi in TBList then
6: return None; . stop the algorithm if the size of a TBi larger than K
7: end if
8: BeliefRatioTable ← CompileBeliefRatioTable(M,E,e,MGraph ,EvdList ,TBList ,N );
9: openList ← all state x of each X ∈M; . initialize openList ;

10: maxGBF ← openList .top();
11: while openList is not empty do
12: x← openList .pop();
13: for each state y of Y ∈ U do . U is the unexpanded set of current state x
14: sucState ← {y} ∪ x;
15: UpperBound ← CalcUpperBound (sucState , BeliefRatioTable);
16: if UpperBound ≤ maxGBF then
17: continue; . use UpperBound to prune the expanded state sucState
18: end if
19: if maxGBF < GBF (sucState; e) then
20: maxGBF ← GBF (sucState; e);
21: BestExplanation ← {y} ∪ x;
22: end if
23: openList .push(sucState);
24: end for
25: end while
26: end function
27: function CALCUPPERBOUND(sucState , BeliefRatioTable)
28: for each BeliefRatioTablei in BeliefRatioTable do
29: BeliefRatioTableHij

← BeliefRatioTablei[Hash(P)&Hash(Hi)];
30: MaxBeliefRatioi ← the maximum belief ratio consistent with v in sucState;
31: end for
32: UpperBound ← 1 +

∏
i MaxBeliefRatioi·C−1

1−p(v|e) ;
33: end function

belief ratio table that is consistent with the expanded targets ti and has the highest belief update
ratio. Finally, we calculate the upper bound of S using Theorem 8.

The BFBnB algorithm is summarized in Algorithm 5. The main difference between MPBnd
and SPBnd is on the methods used to generate the belief ratio table, i.e., Line 8 in Algorithm 5. To
speed up the search process, we sort each belief ratio table of a target blanket in descending order,
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Networks Nodes Leaves States Arcs
Alarm 37 11 2.84 46
Carpo 61 43 2.23 74
Hepar 70 41 2.31 123
Insurance 27 6 3.30 52
Emdec6h 168 117 2.00 261
CPCS179 179 151 2.29 239

Table 1: Benchmark diagnostic Bayesian networks used to evaluate the proposed algorithms.

i.e., higher belief update ratios are closer to the front of the table. Furthermore, in the search tree
of MRE, the expanded targets of a state are guaranteed to be included in its descedant states. Thus
in the proposed method, we record the indices of the best belief update ratios, one for each belief
ratio table, for each expanded state. To calculate the upper bound of a current state, we only need to
search the best belief update ratio from the recorded indices of its parent.

6. Experiments

The proposed algorithms are evaluated on six benchmark diagnostic Bayesian networks listed in Ta-
ble 1, i.e., Alarm (Ala), Carpo (Car), Hepar (Hep), Insurance (Ins), Emdec6h (Emd), and CPCS179
(Cpc) (Beinlich, Suermondt, Chavez, & Cooper, 1989; Binder, Koller, Russell, & Kanazawa, 1997;
Onisko, 2003; Pradhan, Provan, Middleton, & Henrion, 1994). Among them, Alarm, Carpo, Hepar,
and Insurance are networks with fewer than 100 nodes. Emdec6h and CPCS179 are larger net-
works with more than 100 nodes. We listed the number of nodes (Nodes), the number of leaf nodes
(Leaves), the average number of node states (States), and the number of arcs (Arcs) of the Bayesian
networks in Table 1. The experiments were performed on a 2.67GHz Intel Xeon CPU E7 with 512G
RAM running a 3.7.10 Linux kernel.

6.1 Experimental Design

Since the proposed algorithms, MPBnd and SPBnd, are the first nontrivial exact MRE algorithms,
we had to use a naive Breadth-First Brute-Force search algorithm (BFBF) as the baseline; basically
BFBF is BFBnB with the bound set to be infinity. We also included the results of tabu search to
indicate the difficulty of the MRE problems. In MPBnd and SPBnd, we set the maximum number of
targets in a target blanket K to be 18. In SPBnd, we set the maximum number of enclosed-targets
in a target blanket N to be 7. BFBF search can only solve test cases with fewer than 15 targets.
To compare the performance among BFBF, MPBnd, and SPBnd, we perform the experiments on
two test settings, one with exactly 12 targets (12-target setting) and the other with around 20 targets
(difficult-target setting). In the 12-target setting, we randomly generated five test settings of each
network, each setting consisting of all leaf nodes as evidence, 12 of the remaining nodes as targets,
and others as auxiliary nodes. Then for each setting, we randomly generated 20 configurations of
evidence (test cases) by sampling from the prior distributions of the networks.

In the difficult-target setting, we randomly generated five test settings of each network, each
setting consisting of all leaf nodes as evidence, around 20 of the remaining nodes as targets, and
others as auxiliary nodes. The number of targets is selected so that the test cases are too challenging
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#Cases/Time Ala Car Hep Ins Emd Cpc
BFBF 1.7e3 66.1 270.0 1.6e5 212.0 1.3e4
MPBnd 17.0 3.5 14.6 1.6e3 15.1 815.0
SPBnd 2.6 1.5 9.0 72.7 13.1 377.0

T6400
92 100 93 81 95 90

17.3 25.4 44.8 26.3 89.3 108.0

T3200
85 100 91 77 95 90
9.1 13.2 22.6 13.7 45.0 55.1

T1600
79 100 86 74 95 90
4.7 6.9 11.5 7.0 23.2 28.0

T800
76 98 81 73 95 90
2.4 3.6 5.9 3.6 11.8 14.1

T400
72 98 81 73 95 90
1.2 1.8 3.0 1.8 6.1 7.0

Table 2: Comparison of SPBnd, MPBnd, BFBF, and tabu on running time in seconds (sec) as well
as the accuracy of tabu searches on Bayesian networks in the 12-target setting.

for BFBF but are still solvable by MPBnd and SPBnd. Then for each setting, we randomly generated
20 configurations of evidence (test cases) by sampling from the prior distributions of the networks.

In tabu search, we set the number of search steps since the last improvementL and the maximum
number of search steps M according to different network settings. In the 12-target setting, we set L
to be 20 and M to be {400, 800, 1600, 3200, 6400}. In the difficult-target setting, we set L to be 80
and M to be {12800, 25600, 51200}. To evaluate search performance, we compared the solutions
of tabu search and SPBnd, and counted the number of test cases on which tabu search achieved
optimal solutions.

6.2 Evaluation of MPBnd and SPBnd in the 12-Target Setting

In Table 2, we compared the proposed MPBnd and SPBnd algorithms with BFBF and tabu search
on the test cases with 12-target setting. For tabu search, we listed the number of test cases solved
optimally (top) and running time in seconds (bottom) when using different limits on the number of
search steps. The running time of MPBnd and SPBnd includes both preprocessing time and search
time. MPBnd, SPBnd and BFBF were able to solve the test cases exactly. MPBnd is shown to be
significantly faster than BFBF because of the pruning by the upper bound. The running time of
SPBnd is further reduced by using the tightened upper bound. T400 is the fastest algorithm with
the worst accuracy. With the increase of M , the running time of tabu search increased significantly.
However, in most of the networks, tabu search could not solve all the test cases optimally, even
using more running time than MPBnd and SPBnd.

To compare MPBnd, SPBnd and BFBF in detail, we computed the average running time of
individual test settings for MPBnd, SPBnd and BFBF. Then we illustrate the logarithmic running
time pairs, BFBF vs MPBnd and MPBnd vs SPBnd, as points in Figures 5 and 6 respectively.
We also draw the contour lines to mark the difference between the logarithmic running time in
Figures 5 and 6. For example, the contour line marked by -3 in Figure 5 contains the points on
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Figure 5: Distributions of logarithmic running time pairs in milliseconds) of MPBnd and BFBF on
Bayesian networks in the 12-target setting.
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Figure 6: Distributions of logarithmic running time pairs in milliseconds of SPBnd and MPBnd on
Bayesian networks in the 12-target setting.

which MPBnd is 1000 times faster than BFBF. The results show that although the average running
time may change significantly, the ratios of running times between BFBF and MPBnd, and between
MPBnd and SPBnd are relatively stable. MPBnd is roughly 10 to 100 times faster than BFBF.
SPBnd is roughly 3 to 4 times faster than MPBnd.

6.3 Evaluation of MPBnd and SPBnd in the Difficult-Target Setting

In Table 3, we compared the proposed SPBnd algorithm with MPBnd and tabu search on the test
cases in the difficult-target setting. We list the number of targets of each network in the first row of
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#Cases/Time
Ala Car Hep Ins Emd Cpc
20 15 22 17 20 20

MPBnd 173 0.98 478 43.91 225 1,569.2
SPBnd 63 0.13 106 58.72 96 419

T51200
60 100 72 76 86 82

4.06 5.55 17.12 0.96 34.14 6.11

T25600
60 100 65 76 86 82

2.40 2.89 9.38 0.76 17.48 4.2

T12800
60 100 63 76 86 82

1.42 1.50 5.15 0.59 8.93 2.7

Table 3: Comparison of SPBnd, MPBnd, and tabu on running time in minutes (min) as well as
accuracy of tabu searches on Bayesian networks in the difficult-target setting.

the table. For tabu search, we list both the number of test cases solved optimally (top) and running
time in minutes (bottom) on each network. Increasing M from 12800 to 51200 is not helpful in
preventing tabu search from getting stuck in the local optima. Moreover, the performance of tabu
search varies greatly on different test networks. SPBnd is shown to be significantly faster than
MPBnd on most of the networks due to the tightened upper bound. In SPBnd, we need to compile
a series of belief ratio tables for each target blanket, which may consume significant amount of
running time. For example, although the running time is 419 minutes in CPCS179, the search took
only 182.4 minutes. Also from the results, we can see that the running time of MPBnd and SPBnd
depends on not only the number of targets, but also the tightness of upper bound and the Bayesian
network structures, which control the number of pruned states and the size of belief table in each
target blanket TB(Ei) respectively.

To compare SPBnd and MPBnd in more detail, we computed the average running time of indi-
vidual test settings for both of them, and illustrated each running time pair in logarithm as a point in
Figure 7. We also drew the contour lines to mark the difference between SPBnd and MPBnd. The
results showed that the data points of each network form a cluster. SPBnd is again roughly 3 to 4
times faster than MPBnd.

The results in both Figures 6 and 7 showed that for some test cases the running times of MPBnd
and SPBnd are close. There are two possible reasons behind the observation. First, for some
network structures, the enclosed-target sets may not exist in the individual target blankets. Thus in
these cases SPBnd will degenerate to MPBnd. Second, the running time of each test case consists
of two parts, compiling belief ratio tables and performing search. For some test cases, compiling
belief ratio tables may take significant amount of time in SPBnd. We can therefore make the tradeoff
between compiling time and search time by adjusting the maximum number of enclosed-targets N
in a target blanket.

6.4 Scalability of SPBnd

We also evaluated MPBnd and SPBnd on test cases with increasing number of targets from 17 to
25 with an increment of 2 on three Bayesian networks, Hepar, Emdec6h, and CPCS179. For each
target number i, we randomly generated four test settings and 5 test cases of each setting. In the

676



EXACT ALGORITHMS FOR MRE INFERENCE

5 6 7 8
3

4

5

6

7

8

MPBnd (log10ms)

S
P

B
n

d
 (

lo
g

1
0
m

s
)

 

 

Ala

Car

Hep

Ins

Emd

Cpc

0

-0.5

-1

-1.5

Figure 7: Distributions of logarithmic running time (ms) pairs of SPBnd and MPBnd on test cases
in the difficult-target setting.

Time
Targets

17 19 21 23 25

MPBnd
Hep 64.7 101.0 411.3 - -
Emd 63.6 182.4 643.4 - -
Cpc 483.7 - - - -

SPBnd
Hep 24.0 15.0 66.9 243.1 711.9
Emd 36.3 100.8 444.2 - -
Cpc 130.7 94.1 499.6 - -

Table 4: Comparison of SPBnd and MPBnd on running time (min) on test cases with increasing
number of targets. A dash indicates out of time (800m).

Bayesian networks, we set all leaf nodes as evidence, i of the remaining nodes as targets, and others
as auxiliary nodes. We set the time limit of running to be 800 minutes. The results are reported in
Table 4. The results show that the pruning of upper bound slowed down the exponential growth of
running time significantly. SPBnd can handle more complex MRE problems which are out of the
reach of MPBnd. From the results, we can also see that the running time of SPBnd is affected by the
tightness of upper bound and the structures of Bayesian networks, which no longer heavily depends
on the number of targets.

6.5 Importance of Splitting Large Target Blankets

To show the importance of splitting large target blankets, we calculated the percentage of test cases
that need splitting operation at various target settings on three Bayesian networks, Hepar, Emdec6h,
and CPCS179, with increasing number of targets. In this experiment, we only performed the pre-
processing step, so we can handle more than 50 targets. All the target blankets of the test cases in
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Figure 8: Percentage of cases using splitting operation at different target settings.

Figure 8 can be split into smaller ones with size less than K=18 by using the proposed splitting
algorithm. The results in Figure 8 show that the ratio of test cases that needs splitting increases, and
then decreases with the increasing numbers of targets. The reason is that initially the increase in
the number of targets leads to large target blankets. But as the number of targets keeps increasing,
densely distributed targets tend to introduce more d-separation to the Bayesian network and result
in smaller target blankets. In Figure 8, the peaks of the curves located at 22 approximately. On the
networks with a large number of non-leaf nodes, e.g., Emdec6h, the ratio is higher than 0.5 on a
significant number of target settings. This means that without splitting large target blankets most of
MRE problems cannot be solved on the networks with these target settings.

6.6 Effect of Summing Out Enclosed-Targets

In this section, we take Hepar, Emdec6h, and CPCS179 as examples to illustrate how summing out
enclosed-targets tightens the target blanket upper bound. We calculated the log difference between
the upper bound UpBnd and the maximum GBF MaxGBF in each subtree rooted at a search state
for the test cases in the 12-target setting. Normalized histograms of the differences for both using
and not using the tightening are plotted in Figure 9. The x-axis shows log10(UpBnd −MaxGBF ),
and the y-axis shows normalized percentages. Thus smaller log10(UpBnd −MaxGBF ) indicates
tighter upper bound. It is clear from the graph that summing out the enclosed-targets makes the
bound much tighter.

6.7 Convergence of Upper Bound

To gain a better perspective on how the tightened upper bound in Theorem 8 improves over time,
we calculated both the maximum upper bound MaxBound in each layer of the search tree and the
current maximum GBF CurrMax . We also recorded the running time when we finished each search
layer. Figure 10 shows the convergence curves of MaxBound (dotted line) and CurrMax (circled
line) against the search time for one typical test case of each of the three networks, i.e., Hepar,
Emdec6h, and CPCS179, under the 17-target setting in Table 4. Figure 10(A) shows that the upper
bound dropped sharply at the beginning of the search and decreased gradually during the search.
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Figure 9: Tightness of upper bounds. We evaluate the effect of summing out enclosed-targets using
normalized histogram on different Bayesian networks, i.e., Hepar (A), Emdec6h (B), and
CPCS179 (C).
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works, i.e., Hepar (A), Emdec6h (B), and CPCS179 (C).

Figure 10(B) shows that the upper bound dropped sharply at the end of the search and became tight
quickly. Figure 10(C) shows that the upper bound dropped sharply at both the beginning and the
end of the search. These results demonstrate different behaviors how the bound is tightening during
the search.

7. Discussions and Conclusions

The main contributions of this paper are two BFBnB algorithms, i.e., MPBnd and SPBnd, for solv-
ing MRE exactly using upper bounds based on target blanket decomposition of evidence variables.
These are the first non-trivial exact algorithms for solving MRE in Bayesian networks. The key
idea of the proposed method is to decompose the conditional joint probability p(E|M) into a set of
marginal probabilities p(Ei|TB(Ei)). Each marginal probability is related to a subnetwork charac-
terized by a target blanket of a subset of evidence variables. An upper bound on GBF is derived by
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maximizing belief update ratio on the fixed target set TB(Ei) of each subnetwork separately. The
upper bound can be tightened by merging the target blankets sharing the same set of targets.

The above bound can be further improved based on two ideas. First, we proposed to split large
target blankets by converting auxiliary nodes into pseudo-targets, which scales MRE inference to
larger Bayesian networks with more targets. Second, we tightened the upper bound on GBF by
identifying and summing out enclosed-targets from each target blanket TB(Ei). The new upper
bound reduces the search space dramatically. The experimental results show that SPBnd is signif-
icantly faster than the MPBnd and BFBF algorithms. The proposed SPBnd and MPBnd can solve
MRE inference exactly in Bayesian networks which could not be solved previously.

The proposed upper bounds can be calculated efficiently for two reasons. First, each target
blanket TB(Ei) is usually much smaller than the whole target set M. Second, in the original MRE
problem, we need to search all the subsets of target set M to find the best solution. However, to
calculate upper bound, we only need to search on a fixed target set TB(Ei) of each subnetwork.

The proposed MRE upper bound consists of four sources of relaxations, i.e., (1) the relaxation
from p(x,v|e) to p(v|e) in Equation 14, (2) bounding all the descendant states, (3) the inconsistent
values of the sharing nodes of different target blankets, and (4) the maximization on the pruned-
targets of individual search states. The optimal upper bound that can achieved at a state is equal to
the maximum GBF in the subtree rooted at the state. When the size of expanded target set increase,
both p(x,v|e) and p(v|e) become much smaller than 1, and the relaxation of (1) becomes very
tight. Thus, to achieve the optimal upper bound we only need to minimize the impact of (3) and
(4). In this work, we minimized the effect of (3) by merging the target blankets sharing the same set
of targets, and minimized the effect of (4) by identifying and summing out the enclosed-target sets
from each target blanket.

Different from the brute-force algorithm, the search time of MPBnd and SPBnd is no longer
mainly dependent on the size of search space (i.e., the number of targets and the number of states
of each target), but also on the tightness of the upper bound and the structure of Bayesian networks.
For Bayesian networks with a large number of targets, an upper bound can be efficiently generated
as long as the the number of targets in each target blanket is small. In SPBnd, the tightness of
upper bound depends on the number of enclosed-targets and the quality of each enclosed-target Hij

measured by its belief update ratio maxhijr(hij ; ei). If there are no enclosed-targets, the proposed
method SPBnd degenerates to MPBnd.

In this work, the splitting algorithm is designed to split target blankets, whose sizes are larger
than K, based on the separation property of undirected graphs by converting auxiliary nodes into
pseudo-targets. If an evidence node is connected directly with many targets, we may decompose it
using the methods such as node splitting (Choi et al., 2007). This is also one of our future research
directions.
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