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Abstract

Recently, Halpern and Leung suggested representing uncertainty by a set of weighted
probability measures, and suggested a way of making decisions based on this representation
of uncertainty: mazimizing weighted regret. Their paper does not answer an apparently
simpler question: what it means, according to this representation of uncertainty, for an
event E to be more likely than an event E’. In this paper, a notion of comparative
likelihood when uncertainty is represented by a set of weighted probability measures is
defined. It generalizes the ordering defined by probability (and by lower probability) in
a natural way; a generalization of upper probability can also be defined. A complete
axiomatic characterization of this notion of regret-based likelihood is given.

1. Introduction

Recently, Samantha Leung and I (Halpern & Leung, 2012) suggested representing uncer-
tainty by a set of weighted probability measures, and suggested a way of making decisions
based on this representation of uncertainty: maximizing weighted regret. However, we did
not answer an apparently simpler question: given this representation of uncertainty, what
does it mean for an event E to be more likely than an event E’? This is what I do in this
paper. To explain the issues, I start by reviewing the Halpern-Leung approach.

It has frequently been observed that there are many situations where an agent’s un-
certainty is not adequately described by a single probability measure. Specifically, a single
measure may not be adequate for representing an agent’s ignorance. For example, there
seems to be a big difference between a coin known to be fair and a coin whose bias an agent
does not know, yet if the agent were to use a single measure to represent her uncertainty,
in both of these cases it would seem that the measure that assigns heads probability 1/2
would be used.

One approach that has been suggested for representing ignorance is to use a set P of
probability measures. This idea is an old one, apparently going back to the work of Boole
(1854, ch. 16-21) and Ostrogradsky (1838); some authors (e.g., Campos & Moral, 1995;
Couso, Moral, & Walley, 1999; Gilboa & Schmeidler, 1993; Levi, 1985; Walley, 1991) have
additionally required the set P to be convex (so that if u; and pe are in P, then so is
a1 + bug, where a,b € [0,1] and a 4+ b = 1). This approach has the benefit of representing
uncertainty in general, not by a single number, but by a range of numbers. This allows us
to distinguish the certainty that a coin is fair (in which case the uncertainty of heads is
represented by a single number, 1/2) from knowing only that the probability of heads could
be anywhere between, say, 1/3 and 2/3.
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But this approach also has its problems. For example, consider an agent who believes
that a coin may have a slight bias. Thus, although it is unlikely to be completely fair, it
is close to fair. How should we represent this with a set of probability measures? Suppose
that the agent is quite sure that the bias is between 1/3 and 2/3. We could, of course, take
P to consist of all the measures that give heads probability between 1/3 and 2/3. But how
does the agent know that the possible biases are exactly between 1/3 and 2/3. Does she
not consider 2/3 + € possible for some small €? And even if she is confident that the bias is
between 1/3 and 2/3, this representation cannot take into account the possibility that she
views biases closer to 1/2 as more likely than biases further from 1/2.

There is also a second well-known concern: learning. Suppose that the agent initially
considers possible all the measures that gives heads probability between 1/3 and 2/3. She
then starts tossing the coin, and sees that, of the first 20 tosses, 12 are heads. It seems that
the agent should then consider a bias of greater than 1/2 more likely than a bias of less than
1/2. But if we use the standard approach to updating with sets of probability measures
(Halpern, 2003), and condition each of the measures on the observation, since the coin
tosses are viewed as independent, the agent will continue to believe that the probability of
the next coin toss is between 1/3 and 2/3. The observation has no impact as far as learning
to predict better. The set P stays the same, no matter what observation is made.

There is a well-known solution to these problems: putting a measure of uncertainty on
these probability measures in P. This idea too has a long history. One special case is to put
a “second-order” probability on these probability measures; see (Good, 1980) for discussion
of this approach and further references. For example, an agent can express the fact that
the bias of a coin is more likely to be close to 1/2 than far from 1/2. In addition, the
problem of learning can be dealt with by straightforward conditioning. But this approach
leads to other problems. Essentially, it seems that the ambiguity that an agent might feel
about the outcome of the coin toss seems to have disappeared. For example, suppose that
the agent has no idea what the bias is. The obvious second-order probability to use is the
uniform probability on possible biases. While we cannot talk about the probability that the
coin is heads (there is a set of probabilities, after all, not a single probability), the expected
probability of heads is 1/2. Why should an agent that has no idea of the bias of the coin
know or believe that the expected probability of heads is 1/27 Of course, if one had to use
a single probability measure to describe uncertainty, symmetry considerations dictate that
it should be the one that ascribes equal likelihood to heads and tails; similarly, if one had
to put a single second-order probability on the set of possible biases, uniform probability
seems like the most obvious choice. Moreover, if our interest is in making decisions, then
maximizing the expected utility using the expected probability again does not take the
agent’s ignorance into account. Kyburg (1988) and Pearl (1987) have even argued that
there is no need for a second-order probability on probabilities; whatever can be done with
a second-order probability can already be done with a basic probability.

Nevertheless, when it comes to decision-making, it does seem useful to use an approach
that represents ambiguity, while still maintaining some of the features of having a second-
order probability on probabilities. This idea goes back to at least Gérdenfors and Sahlin
(1982, 1983). Walley (1997) suggested putting a possibility measure (Dubois & Prade, 1998;
Zadeh, 1978) on probability measures; this was also essentially done by Cattaneo (2007),
Chateauneuf and Faro (2009), and de Cooman (2005). All of these authors and others, such
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as Klibanoff et al. (2005), Maccheroni et al. (2006), and Nau (1992), proposed approaches
to decision making using their representations of uncertainty.

Leung and I similarly suggested putting weights on each probability measure in P. Since
we assumed that the weights are normalized so that the supremum of the weights is 1, these
weights can also be viewed as a possibility measure. If the set P is finite, we can also
normalize so as to view the weights as being second-order probabilities. As with second-
order probabilities, the weights can vary over time, as more information is acquired. For
example, we can start with a state of complete ignorance (modeled by assuming that all
probability measures have weight 1), and update the weights after making an observation
ob, we take the weight of a measure Pr to be the relative likelihood of ob if Pr were the
true measure. (See Section 2 for details.) With this approach, called likelihood updating by
Halpern and Leung (2012), if there is a true underlying measure generating the data, over
time, the weight of the true measure approaches 1, while the weight of all other measures
approaches 0. Thus, this approach allows learning in a natural way. If, for example, the
actual bias of the coin was 5/8 in the example above, no matter what the initial weights, as
long as 5/8 had positive weight, then its weight would almost surely converge to 1 as more
observations were made, while the weight of all other measures would approach 0. This,
of course, is exactly what would happen if we had a second-order probability on P. The
weights can also be used to represent the fact that some probabilities in the set P are more
likely than others.

Like essentially all others who considered a representation of uncertainty based on a set
of probability with weights, Leung and I also suggested a way of using this representation
to make decisions. However, our approach was different than those suggested earlier. We
based our approach on regret, a standard approach to decision-making that was introduced
(independently) by Niehans (1948) and Savage (1951). If uncertainty is represented by
a set P of probability measures, then regret works as follows: for each act a and each
measure Pr € P, we can compute the expected regret of a with respect to Pr; this is
the difference between the expected utility of ¢ and the expected utility of the act that
gives the highest expected utility with respect to Pr. We can then associate with an act
a its worst-case expected regret of a, over all measures Pr € P, and compare acts with
respect to their worst-case expected regret. With weights in the picture, we modify the
procedure by multiplying the expected regret associated with measure Pr by the weight of
Pr, and compare acts according to their worst-case weighted expected regret. This approach
to making decisions is very different from the others mentioned above that incorporate a
likelihood on probabilities. Moreover, using the weights in the way means that we cannot
simply replace a set of weighted probability measures by a single probability measure; the
objections of Kyburg (1988) and Pearl (1987) do not apply.

Leung and I (Halpern & Leung, 2012) show that this approach seems to do reasonable
things in a number of examples of interest, and provide an axiomatization of decision-making
with this approach. Since sets of weighted probabilities are certainly intended to be a way
of representing uncertainty, it seems natural to ask whether they can be used to represent
relative likelihood in a direct way. Surprisingly, this is something largely not considered in
earlier papers using sets of weighted probabilities, since their focus was on decision-making
(although the work of Nau discussed in Section 3 is an exception).
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Representing relative likelihood is straightforward if uncertainty is represented by a
single probability measure: E is more likely than E’ exactly if the probability of E is greater
than the probability of E’. When using sets of probability measures, various approaches
have been considered in the literature. The most common takes E to be more likely than
E' if the lower probability of E is greater than the lower probability of E’, where the lower
probability of E' is its worst-case probability, taken over the measures in P (see Section 3).
We could also compare E and E’ with respect to their upper probabilities (the best-case
probability with respect to the measures in P). Another possibility is to take E to be
more likely than E’ if Pr(E) > Pr(E’) for all measures Pr € P; this gives a partial order
on likelihood.! But what should we do if uncertainty is represented by a set of weighted
probability measures?

In this paper, I define a notion of relative likelihood when uncertainty is represented
by a set of weighted probability measures that generalizes the ordering defined by lower
probability in a natural way; I also define a generalization of upper probability. We can then
associate with an event F/ two numbers that are analogues of lower and upper probability. If
uncertainty is represented by a single measure, then these two numbers coincide; in general,
they do not. The interval can be thought of as representing the degree of ambiguity in
the likelihood of E. Indeed, in the special case when all the weights are 1, the numbers
are essentially just the lower and upper probability (technically, they are 1 minus the lower
and upper probability, respectively). Interestingly, the approach to assigning likelihood is
based on the approach to decision-making. Essentially, what I am doing is the analogue of
defining probability in terms of expected utility, rather than the other way around. The
approach can be viewed as generalizing both probability and lower probability, while at
the same time allowing a natural approach to updating.

Why we should be interested in such a representation? If all that we ever did with prob-
ability was to use it to make decisions, then arguably this wouldn’t be of much interest; my
work with Leung already shows how sets of weighted probabilities can be used in decision-
making. The results of this paper add nothing further to that question. However, we often
talk about the likelihood of events quite independent of their use in decision-making. There
are clearly many examples in physics. The issue arises in Al applications as well: a typical
explanation of why we did A rather than B is that we thought some event E was more
likely than F'. And computations of expectation, which clearly involve a representation of
uncertainty, arise in many Al applications. Thus, having an analogue of probability seems
important and useful in its own right.

The rest of this paper is organized as follows. After reviewing the relevant material
from (Halpern & Leung, 2012) in Section 2, I define regret-based likelihood in Section 3,
and compare it to lower probability. I provide an axiomatic characterization of regret-based
likelihood in Section 4, and show how it relates to the axiomatic characterization of lower
probability. I conclude in Section 5.

1. There is a long tradition of considering partially ordered notions of likelihood; see (Halpern, 1997) and
the references therein, and the work of Walley (1991).
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2. Weighted Expected Regret: A Review

Consider the standard setup in decision theory. We have a state space S and an outcome
space O. An act is a function from S to O; it describes an outcome for each state. Suppose
that we have a utility function « on outcomes and a set P™ of weighted probability measures.
That is, PT consists of pairs (Pr, ap,), where ap, is a weight in [0, 1] and Pr is a probability
on S. Let P = {Pr : Ja((Pr,a) € PT)}. For each Pr € P there is assumed to be
exactly one a, denoted apy, such that (Pr,a) € PT. It is further assumed that weights
have been normalized so that there is at least one measure Pr € P such that ap, = 1.
Finally, Pt is assumed to be weakly closed, so that if (Pr,,a,) € Prt forn =1,2,3,.. .,
(Prp, an) — (Pr,ap;), and ap, > 0, then (Pr,ap;) € PT. (I discuss below why I require
P+ to be just weakly closed, rather than closed.)

The assumption that at least one probability measure has a weight of 1 is convenient
for comparison to other approaches; see below. However, making this assumption has no
impact on the results of this paper; as long as we restrict to sets where the weight is bounded,
all the results hold without change. This assumption is, of course, incompatible with the
weights being probabilities. Note that the assumption that the weights are probabilities
runs into difficulties if we have an infinite number of measures in P; for example, if P
includes all measures on heads from 1/3 to 2/3, as discussed in the Introduction, using a
uniform probability, we would be forced to assign each individual probability measure a
weight of 0, which would not work well for our later definitions.

Where are the weights in P coming from? In general, they can be viewed as subjective,
just like the probability measures. However, as Leung and I (Halpern & Leung, 2012)
observed, there is an important special case where the weights can be given a natural
interpretation. Suppose that, as in the case of the biased coin in the Introduction, we make
observations in a situation where the probability of making a given observation is determined
by some objective source. Then we can start by giving all probability measures a weight of 1.
Given an observation ob (e.g., sequence of coin tosses in the example in the Introduction),
we can compute Pr(ob) for each measure Pr € P; we can then update the weight of Pr
to be Pr(ob)/suppyep Pr'(ob). Thus, the more likely the observation is according to Pr,
the higher the updated weight of Pr relative to other probability measures in P.2 (The
denominator is just a normalization to ensure that some measure has weight 1.) With this
approach to updating, if there is a true underlying measure generating the data, then as an
agent makes more observations, almost surely, the weight of the true measure approaches
1, while the weight of all other measures approaches 0.> In addition, this approach gives
an agent a natural way of determining weights for each probability measure in P. While,
in general, this means that the agent may need to carry around a lot of information (not

2. The idea of putting a possibility on probabilities in P that is determined by likelihood also appears in the
work of Moral (1992), although he does not consider a general approach to dealing with sets of weighted
probability measures.

3. The “almost surely” is due to the fact that, with probability approaching 0, as more and more observa-
tions are made, it is possible that an agent will make misleading observations that are not representative
of the true measure. This also depends on the set of possible observations being rich enough to allow
the agent to ultimately discover the true measure generating the observations; for example, an agent will
never learn the distributions of outcomes of a die she never gets to observe the die when it lands 5 or 6.
Since learning is not a focus of this paper, I do not make this notion of “rich enough” precise here.
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only a possibly infinite set of probabilities, but a weight associated with each one), if the
set P has a reasonable parametric representation, then the weight can often be evaluated
in terms of the parameters, so should admit a compact representation (see Example 3.2).

The weight associated with a probability Pr can be viewed as an upper bound on an
agent’s confidence that Pr actually describes the situation. That is why an agent who has
no idea of what is going on is modeled as starting by placing weight 1 on all probability
measures. 1 believe that having the weights will allow agents to express nuances that they
consider important, and that such weights will not be hard to elicit. Whether this is the
case is really an empirical question, one which I believe deserves further exploration, but is
beyond the scope of this paper.

I now review the definition of weighted regret, and introduce the notion of absolute
(weighted) regret. I start with regret. The regret of an act a in a state s € S is the
difference between the utility of the best act at state s and the utility of a at s. Typically,
the act a is not compared to all acts, but to the acts in a set M, called a menu. Thus, the
regret of a in state s relative to menu M, denoted reg™ (a, s), is supy e u(a'(s)) — u(a(s)).4
There are typically some constraints put on M to ensure that sup,/c,, u(a’(s)) is finite—this
is certainly the case if M is finite, or the convex closure of a finite set of acts, or if there is a
best possible outcome in the outcome space O. The latter assumption holds in this paper,
so I assume throughout that sup, ¢, u(a’(s)) is finite.

For simplicity, I assume that the state space S is finite. Given a probability measure
Pr on S, the expected regret of an act a with respect to Pr relative to menu M is just
regM (a) = 3" cg reg™ (a, s) Pr(s). The (exzpected) regret of a with respect to P and a menu
M is just the worst-case regret, that is,

reg (a) = sup regpL(a).
PreP
Similarly, the weighted (expected) regret of a with respect to PT and a menu M is just the
worst-case weighted regret, that is,

wrps(a) = sup ap.regp,(a).
PreP
Thus, regret is just a special case of weighted regret, where all weights are 1.

Note that, as far weighted regret goes, it does not hurt to augment a set P* of weighted
probability measures by adding pairs of the form (Pr, 0) for Pr ¢ P. But if we start with a set
P of unweighted probability measures, the set PT = {(Pr,1) : Pr € P}U{(Pr,0) : Pr ¢ P} is
not closed in general, although it is weakly closed. There may well be a sequence Pr,, — Pr,
where Pr,, ¢ P for all n, but Pr € P. But then we would have (Pr,,0) € P converging to
(Pr,0) ¢ P*. This is exactly why I required only weak closedness. Note for future reference
that, since P is assumed to be weakly closed, if wr%ﬂ (a) > 0, then there is some element
(Pr, ap;) € P such that wrdl, (a) = ap,regpi(a).

Weighted regret induces an obvious preference order on acts: act a is at least as good

as a’ with respect to P and M, written a =51 , @, if wrl (a) < wri, (a/). As usual, I

4. Recall that if X is a set of real numbers, sup X, the supremum of X, is the smallest real numbers that
is greater than or equal to all the elements of X. If X is finite, then the sup is the same as the max.
But if X is, say, the interval (0,1), then sup X = 1. Similarly, inf X is the largest real number that is
less than or equal to all the elements in X.
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write a >;fi7M a if a i;ﬁ’M a’ but it is not the case that o t;‘eﬂ’M a. The standard notion
of regret is the special case of weighted regret where all weights are 1. I sometimes write
a i;f?M a’ to denote the unweighted case (i.e., where all the weights in P* are 1).

In this setting, using weighted regret gives an approach that allows an agent to transition
smoothly from regret to expected utility. It is well known that regret generalizes expected
utility in the sense that if P is a singleton {Pr}, then wri (a) < wr¥(a’) iff EUpy(a) >
EUp.(a’) (where EUp,(a) denotes the expected utility of act a with respect to probability
Pr); this follows from the observation that, given a menu M, there is a constant cj; such
that, for all acts a € M, wr%r} (a) = cpr — EUpy(a). (In particular, this means that if P
is a singleton, regret is menu independent.) If we start with all the weights being 1, then,
as observed above, the weighted regret is just the standard notion of regret. As the agent
makes observations, if there is a measure Pr generating the uncertainty, the weights will
get closer and closer to a situation where Pr gets weight 1, with the weights of all other
measures dropping off quickly to 0, so the ordering of acts will converge to the ordering
given by expected utility with respect to Pr.

There is another approach with some similar properties, which again starts with uncer-
tainty being represented by a set P of (unweighted) probability measures. Define wep(a) =
infprep EUpy(a). Thus wep(a) is the worst-case expected utility of a, taken over all Pr € P.
Then define a =™ a’ if wep(a) > wep(a’). This is the maxmin expected utility rule, quite
often used in economics (Gilboa & Schmeidler, 1989). There are difficulties in getting a
weighted version of maxmin expected utility (Halpern & Leung, 2012) (discussed further in
Section 3); however, Epstein and Schneider (2007) propose another approach that can be
combined with maxmin expected utility. They fix a parameter o € (0,1), and update P
after an observation ob by retaining only those measures Pr such that Pr(ob) > «. For any
choice of a < 1, we again end up converging almost surely to a single measure, so again
this approach converges almost surely to expected utility.

I conclude this section with a discussion of menu dependence. Maxmin expected utility
is not menu dependent; the preference ordering on acts induced by regret can be, as the
following example illustrates.

Example 2.1: Take the outcome space to be {0,1}, and the utility function to be the
identity, so that (1) = 1 and u(0) = 0. As usual, if E C S, 1g denotes the indicator
function on E, where, for each state s € S, we have 1g(s) = 1if s € E, and 1g(s) =0
if s §é E. Let § = {81,82,83,84}, E1 = {81}, E2 = {52}, E3 = {52,33}, M1 = {lEl,lEz},
M2 = {1E1;1E271E3}7 and P = {PI‘l,PI‘Q}, where Prl(sl) = Pr1(33) = Pr1(34) = 1/3,
Pra(s2) = 1/4, and Pra(s3) = 3/4. A straightforward calculation shows that reg%ll(lEl) =
0, Tegljyrll(lEz) = 1/37 Tegl]yrlg(lEl) = 1/47 Tegl]yrlg(lEQ) =0, 7’69%21(1&) = 1/3? regé%(l,%) =
2/3, reg}]\,?z(lEl) =1, and regPMré(lEQ) = 3/4. Thus, 1/4 = regf],\;/ll(lEl) < reg%/‘ll(lEQ) =1/3,
while 1 = regé\;@(lgl) > reg%z(l@) = 3/4. The preference on 1g, and 1g, depends on
whether we consider the menu M; or the menu Ms. 1

Suppose that there is an outcome o* € O that gives the maximum utility; that is,
u(0*) > u(o) for all o € O. If 6" is the constant act that gives outcomes o* in all states,
then 0* is clearly the best act in all states. If there is such a best act, an “absolute”,
menu-independent notion of weighted expected regret can be defined by always comparing
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to 0*. That is, define

reg(s, a) = u(o®) — U(G(S));

regp,(a) = Yses(u(0®) — ula(s)) Pr(s) = u(o”) — EUp(a);

regp(a) = supprep Y ses(u (0*) — u(a(s)) Pr(s) = u(0") — infprep (EUp, (a);

wrp+(a) = supprep apr 2 oses(u(0") — ula(s)) Pr(s) = supprep ape(u(0®) — EUpr(a)).

If there is a best act, then I write a »=p+ @' if wrp+(a) < wrp+(a’); similarly in the
unweighted case, I write a =p o’ if wrp(a) < wrp(a’).

Conceptually, we can think of the agent as always being aware of the best outcome o*,
and comparing his actual utility with a to u(o*). Equivalently, the absolute notion of regret
is equivalent to a menu-based notion with respect to a menu M that includes 6* (since if
the menu includes 0%, it is the best act in every state). As we shall see, in our setting, we
can always reduce menu-dependent regret to this absolute, menu-independent notion, since
there is in fact a best act: 1g.

3. Relative Ordering of Events Using Weighted Regret

In this section, I consider how a notion of comparative likelihood can be defined using sets
of weighted probability measures.

As in Example 2.1, take the outcome space to be {0, 1}, the utility function to be the
identity, and consider indicator functions. It is easy to see that EUp,(1g) = Pr(E), so that
with this setup, we can recover probability from expected utility. Thus, if uncertainty is
represented by a single probability measure Pr and we make decisions by preferring those
acts that maximize expected utility, then we have 1g = 1g iff Pr(E) > Pr(E').

Consider what happens if we apply this approach to maxmin expected utility. Now we
have that 15 =%™ 1/ iff infp,ep Pr(E) > infp,ep Pr(E’). In the literature, infp,ep Pr(E),
denoted P.(FE), is called the lower probability of E, and is a standard approach to de-
scribing likelihood. The dual upper probability, supp,cp Pr(E), is denoted P*(E). An easy
calculation shows that

P*(E)=1-P.(E),

where, as usual, E denotes the complement of E. The interval [P.(E), P*(E)] can be
thought of as describing the uncertainty of F; the larger the interval, the greater the ambi-
guity.

What happens if we apply this approach to regret? First consider unweighted regret.
If we restrict to acts of the form 1p, then the best act is clearly 1g, which is just the
constant function 1. Thus, we can (and do) use the absolute notion of regret here, and
for the remainder of this paper. We then get that 1E =57 1g iff supp,ep(l — Pr(E)) <
supp,cp(L — Pr(E")) iff supp,cp Pr(E) < suppycp Pr(E); that is,

1p =% 15 iff P*(E) < P*(E)).
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Moreover, easy manipulation shows that supp,cp(1 — Pr(E)) = 1 — infp,ep Pr(E) = 1 —
P.(E). It follows that
g =59 1
it (1—=P«(E)) <(1-"P(F))
iff  P.(FE) > P.(E)
i 1 = 1

That is, both regret and maxmin expected utility put the same ordering on events.
The extension to weighted regret is immediate. Let Pt (E), the (weighted) regret-based
likelihood of E, be defined by taking

Prtg(E) = sup ap, Pr(E).
PrepP

If P* is unweighted, so that all the weights are 1, I write Pyey(E) to denote supp,cp Pr(E).
Note that Prey(E) =1 —Pi(E), so

Preg(E) < Preg(E/) iff P*(E) > P*(E/)'

That is, the ordering induced by Py, is the opposite of that induced by Ps. So, for example,
Preg(0) = 1 and Prey(S) = 0; smaller sets have larger regret-based likelihood. However, since
an act with smaller regret is viewed as better, the ordering on acts of the form 1g induced
by regret is the same as that induced by maxmin expected utility.

Regret-based likelihood provides a way of associating a number with each event, just
as probability and lower probability do. Moreover, just as lower probability gives a lower
bound on uncertainty, we can think of P,Z"eg(E ) as giving an upper bound on the uncertainty.
(It is an upper bound rather than a lower bound because larger regret means less likely,
just as smaller lower probability does.) The naive corresponding lower bound is given by
infp,ep apy Pr(F). This lower bound is not terribly interesting; if there are probability
measures Pr’ € P such that apy is close to 0, then this lower bound will be close to 0,
independent of the agent’s actual feeling about the likelihood of E. A more reasonable
lower bound is given by the expression P/ (E) = 1 — P}t (E) (recall that the analogous
expression relates upper probability and lower probability). The intuition for this choice
is the following. If nature were conspiring against us, she would try to prove us wrong
by making ap, Pr(E) as large as possible—that is, make the weighted probability of being
wrong as large as possible. On the other hand, if nature were conspiring with us, she would
try to make ap, Pr(F) as large as possible, or, equivalently, make 1 — ap, Pr(E) as small

as possible. Note that this is different from making ap, Pr(F) as large as possible, unless
apy = 1 for all Pr € P. An easy calculation shows that

1- PT_’EQ (E) = 1- SUPprep ®Pr PI‘(E)
= infpep(l — ap, Pr(E)).

This motivates the definition of Bffeg.

The following lemma clarifies the relationship between these expressions, and shows that
[Py (E), P, (E)] really does give an interval of ambiguity.

Lemma 3.1: infp,ep ap, Pr(E) <1 - Py (E) < P (E).
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Proof: Clearly

Plrrg73 ap; Pr(E) = Plr%fp apr(1 — Pr(E)).

Since, as observed above,

1—PL,(E)= inf (1 —ap,Pr(E
73reg( ) Plrrép( ap 1"( ))7

and for all Pr € P, we have

1—ap, Pr(E) > ap;(1 — Pr(E)),
it follows that infp.ep ap, Pr(E) <1 — P (E).
Since, by assumption, there is a probability measure Pr’ € P such that apy = 1, it
follows that
1-Pr

reg (E) 1- Supprep Xpr PI‘(E)
1—-Pr'(F)

Pr'(E)

SUppep apr Pr(E)
P;Eg (E).

INIA A

In general, equality does not hold in Lemma 3.1, as shown by the following example. The
example also illustrates how the “ambiguity interval” can decrease with weighted regret, if
the weights are updated as Leung and I (Halpern & Leung, 2012) suggested.

Example 3.2: Suppose that the state space consists of {h,t} (for heads and tails); let Prg
be the measure that puts probability 3 on h. Let Py = {(Prg,1):1/3 < 3 <2/3}. That is,
we initially consider all the measures that put probability between 1/3 and 2/3 on heads. We
toss the coin and observe it lands heads. Intuitively, we should now consider it more likely
that the probability of heads is greater than 1/2. Indeed, applying likelihood updating, we
get the set P;" = {(Prg,38/2) : 1/3 < 8 < 2/3}; the probability measures that give h higher
probability get higher weight. In particular, the weight of Pry/3 is still 1, but the weight of
Pry /3 is only 1/2. (The weight of Prg is the likelihood of observing heads according to Prg,
which is just 8, normalized by the likelihood of observing heads according to the measure
that gives heads the highest probability, namely 2/3.) If the coin is tossed again and this
time tails is observed, we update further to get Py = {(Prg,48(1 — B)) : 1/3 < B < 2/3}.
Before going on, it is worth noting here how the simple parametric form of Par leads to
simple parametric forms for P;" and 772+ .

An easy calculation shows that [E&reg (h), Pg:reg (R)] = [1/3,2/3], [P} (h), Pffreg (h)] =

1,regret

[1/3,3/8], and [Py, (h), Py, (h)] = [11/27,16/27]. In more detail, since Prg(h) = § and

Prg(t) = 1 — 3, so we have the following:
® P0eg(h) = supgeqi/s03 (1 — B) = 2/3.
o PY,.,(h) = inf § € [1/3,2/3)(1 — §) = 1/3.
o P y(h) = SUpge1/3,2/3) (36/2)(1—B). Taking the derivative shows that (33/2)(1— )
is maximized when § = 1/2, so P{,,,(h) = 3/8.
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) B?,reg(h) = infgep/3,2/3(1 — (38/2)B). Now 1 — (33/2)f is minimized, when (33/2)8
is maximized; for 3 € [1/3,2/3], this happens when 8 = 2/3, so P . (h) = 1/3.

. ngreg(h) = Supgeqi/3,2/3 46(1—B)(1—B). Taking the derivative shows that 43(1 —-B)?
is maximized when 8 = 1/3, in which case it is 16/27.

o P, (h) = infaepi/39/3(1 — 48(1 — B)B). Now 1 — 45%(1 — ) is minimized when

2,reg
432(1— B) is maximized; for § € [1/3,2/3], this happens when 8 = 2/3, so B%Teg(h) =
11/27.

It is also easy to see that infp, 43(1 — 8) Pra(t) = infgepr /3275 48(1 — 8)? = 8/27, so

in

+
PI'E%Z 4/6(1 - /B)Prﬁ(t) <1l- ,P;,_reg(t) < PQ,reg(h)'

Thus, for 73; , we get strict inequalities for the expressions in Lemma 3.1. 1

The width of the interval [Pf, (E), Pt (E)] can be viewed as a measure of the ambiguity
the agent feels about E, just as the interval [P.(E), P*(E)]. Indeed, if all the weights are 1,
the two intervals have the same width, since Px(E) = 1—P7E (E) and P*(E) = 1 - P}, (E)
in this case.

However, weighted regret has a significant advantage over upper and lower probability.
If the true bias of the coin is, say 5/8, then if the set P,j represents the uncertainty after
k steps, as k increases, almost surely, [Bzreg(h),PZ reg(?)] Will be a smaller and smaller
interval containing 1 —5/8 = 3/8. More generally, using likelihood updated combined with
weighted regret provides a natural way to model the reduction of ambiguity via learning.

It is worth at this point comparing the approach to representing likelihood taken here
to the work of Nau (1992). Nau starts with a preference order on lotteries (functions from
some finite state space S to the reals) satisfying certain axioms, and derives from that what
he calls confidence-weighted (lower and upper) probabilities. Roughly speaking, rather than
just associating with each event its lower and upper probability, Nau can associate with
each event F, confidence ¢ € [0,1], and probability p € [0,1] the set P_, of probabilities
that give event E lower probability p with confidence at least c. If ¢ > ¢, then Py, C Peyp
(every probability measures that gives F lower probability p with the higher confidence
¢ will also give it lower probability p with confidence ¢, but the converse may not hold).
Similarly, we can consider the probability measures that give E upper probability p with
confidence c. With a set P of unweighted probabilities, an agent’s uncertainty regarding an
event E can be characterized by a single interval [P,(E), P*(E)]. In Nau’s framework, an
agent’s uncertainty regarding E can be characterized by a family of intervals [P.(E), P(E)],
indexed by the confidence ¢, where P.(FE) is the largest p such that E has lower probability
with confidence ¢, and P¢(FE) is defined similarly. Clearly these intervals are nested; if
¢ > ¢, then [Py (E),P¢(E)] contains [P.(E),P¢(E)]. Thus, Nau’s approach provides a
more “fine-grained” representation of uncertainty than the single intervals [P, (E), P*(E)] or
[Py (E), Pit,(E)]. To some extent, this distinction is due to the fact that Nau’s preference
order on lotteries is only a partial order; the preference order induced by max=min expected
utility regret is total. However, note that even though P.x, P*, Pfeg, and Bi‘eg all put a

total order on events, when considering both P, and P* or both Pvi‘;g, and Ejeg together,
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we can also obtain a partial order on events; in particular, these approaches can express
ambiguity.

One benefit of the regret-based approach is that it provides a natural way of updating.
Nau does not consider updating; it would be interesting to see if an analogue of likelihood
updating could be defined axiomatically in Nau’s framework, perhaps in the spirit of the
characterization that Leung and I (Halpern & Leung, 2012) gave for likelihood updating in
the context of regret.

One concern with the use of regret has been the dependence of regret on the menu;
Nau’s approach, and other approaches to decision-making that are not based on regret, do
not require a menu. While there is evidence from the psychology literature suggesting that
people are quite sensitive to menus, it is also worth noting that when dealing with likelihood,
there is a sense in which we can work with the absolute notion of weighted regret without
loss of generality: if we restrict to indicator functions, then a preference relative to a menu
can always be reduced to an absolute preference. Given a menu M consisting of indicator
functions, let Fyy = U{E : 1g € M}; that is, E)s is the union of the events for which the
corresponding indicator function is in M. The following property shows that, when restrict
to indicator functions, regret satisfies satisfies an axiom similar in spirit to Nau’s (1992)
cancellation axiom.

Proposition 3.3: If M is a menu consisting of indicator functions, and 1g,,1p, € M,
then 1E1 t;;e‘ghM 1E2 iff 1E1 + 1EM t;’fg 1E2 + 1EM'

Proof: Let M’ be any menu consisting of indicator functions that includes 1g, + 15,
lp, +15 ., and 1s. Recall that 1p, +15 =t g, + 1g,, 1 +15,, i;;‘{’PjL 1p, +15, ;
the absolute notion of regret is equivalent to the menu-based notion, as long as the menu
includes the best act, which in this case is 1g. It clearly suffices to show that, for all states

s €S and all acts 1p € M,
regM(lE,s) = regM'(lE + 1EM’S)'

This is straightforward. There are two cases, depending on whether s € E;;.

If s € E)p, then, by definition, there is some act 1z € M such that s € E’, so
supgens u(a(s)) = u(l). Clearly sup,epr u(a(s)) = u(l), since 1g € M’. Moreover,
15,,(s) = 0,50 (1g + 15, )(s) = 1g(s). Thus, for s € Ep,

reg'(1p,s) = supyepr u(a(s)) — u(lp(s))
= supgen u(a(s)) — u((le + 1z, )(s))
= regM (1 + 1%, )

For s ¢ F, we have a(s) = 0 for all a € M and 1g(s) = 0, so sup,es ula(s)) —u(lg(s)) =
0. On the other hand, sup,eyr u(a(s)) = u(l), and u((1g + 15, )(s)) = u(l), so again

supgenr u(a(s)) — u((lp + 15, )(s)) = 0. Thus, we again have reg™ (15, s) = reg™ (1 +
1= ,s). 1
En
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4. Characterizing Weighted Regret-Based Likelihood

The goal of this section is to characterize weighted regret-based likelihood axiomatically.
In order to do so, it is helpful to review the characterizations of probability and lower
probability. For ease of exposition in this discussion, I assume that the sample space is
finite and all sets are measurable.

A probability measure on a finite set S maps subsets of S to [0, 1] in a way that satisfies
the following three properties:

Prl. Pr(S) = 1.
Pr2. Pr(0) =0.°
Pr3. Pr(EUE') = Pr(E) + Pr(E') if ENE' = 0.

These three properties characterize probability in the sense that any function f : 2% — [0, 1]
that satisfies these properties is a probability measure.
Lower probabilities satisfy analogues of these properties:

LP1. P.(S) = 1.
LP2. P,(()) = 0.
LP3. P,(EUE') > P.(E)+ P.(E) it ENE' =,

However, these properties do not characterize lower probability. There are functions that
satisfy LP1, LP2, and LP3’ that are not the lower probability corresponding to some set
of probability measures. (See (Halpern & Pucella, 2002, Proposition 2.2) for an example
showing that analogous properties do not characterize P*; the same example also shows
that they do not characterize P;.)

Various characterizations of P, (and P*) have been proposed in the literature (Anger &
Lembcke, 1985; Giles, 1982; Huber, 1976, 1981; Lorentz, 1952; Williams, 1976; Wolf, 1977),
all similar in spirit. I discuss one due to Anger and Lembcke (1985) here, since it makes
the contrast between lower probability and regret particularly clear. The characterization
is based on the notion of set cover: a set E is said to be covered n times by a multiset
M if every element of E appears at least n times in M. It is important to note here that
M is a multiset, not a set; its elements are not necessarily distinct. (Of course, a set is a
special case of a multiset.) Let LI denote multiset union; thus, if M; and M, are multisets,
then M U My consists of all the elements in M7 or Ms, which appear with multiplicity that
is the sum of the multiplicities in M; and My. For example, using the {{...}} notation to
denote a multiset, then {{1,1,2}} U {{1,2,3}} = {{1,1,1,2,2,3}}.

If E C S, then an (n, k)-cover of (E,S) is a multiset M that covers S k times and
covers ' n+k times. Multiset M is an n-cover of E if M covers E n times. For example, if
S =1{1,2,3}, then {{1,1,1,2,2,3}} is a (2, 1)-cover of ({1},5), a (1,1)-cover of ({1,2},5),
and a 3-cover of {1}.

We will be interested in whether a multiset of the form Ey U . ..U E,, is an (n, k)-cover
of (E,S). This is perhaps best thought of in terms of indicator functions. E1 U ... U E,,

5. This property actually follows from the other two, using the observation that Pr(SU@) = Pr(S) + Pr(0);
I include it here to ease the comparison to other approaches.
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is an (n, k)-cover of (E,S) if and only if 1z, + -+ 1, > nlg + klg. The use of equali-
ties and inequalities involving sums of indicator functions in axiomatic characterizations of
uncertainty has a long history; for example, they were used by Scott (1964) to characterize
qualitative probability. Set covers are just a special case of such inequalities. Typically, such
axioms make it possible to apply results from linear programming to prove characterization
results. As we shall see, that will be the case here too.

Consider the following property:

LP3. For all integers m,n, k and all subsets Ey,...,E, of S, if By U...UE,, is an (n,k)-
cover of (E,S), then k + nP.(E) > X", Pu(E;).5

There is an analogous property for upper probability, where > is replaced by <. It is easy
to see that LP3 implies LP3’ (since E U E" is a (1,0) cover of (E U E’,S)). It follows
by a straightforward induction from LP3’ that if Ey,..., E,, are pairwise disjoint, then
P(E1U...UEy) > P«(E1) + -+ Pu(E1). LP3 generalizes this property to allow for sets
that are not necessarily disjoint. The soundness of LP3 for lower probability follows using
the same techniques as given below for the soundness of the property REG3. As Anger
and Lembcke (1985) show, LP3 is just the property that is needed to characterize lower
probability.

Theorem 4.1: (Anger & Lembcke, 1985) If f : 2% — [0,1], then there exists a set P of
probability measures with f = Py if and only if f satisfies LP1, LP2, and LP3.

Moving to regret-based likelihood, clearly we have
REG1. P (S) =0.
1.

REG2. P}, (0)

The whole space S has the least regret; the empty set has the greatest regret. Again, we see
that regret-based likelihood inverts the standard ordering of probability; larger regret-based
likelihood corresponds to probability.

In the unweighted case, since P, (E) = P*(E), REG1, REG2, and the following ana-
logue of LP3 (appropriately modified for P*) clearly characterize Ppey:

REG3'. For all integers m,n,k and all subsets E1,...,E,, of S, if 1 U...UE,, is an
(n, k)-cover of (E,S), then k 4+ nPreg(E) < 311 Preg(E;).

Note that complements of sets (E1,..., Eny, E) are used here, since regret is minimized if
the probability of the complement is maximized. This need to work with the complement
makes the statement of the properties (and the proofs of the theorems) slightly less elegant,
but seems necessary.

It is not hard to see that REG3’ does not hold for weighted regret-based likelihood.
For example, suppose that S = {a,b,c} and P* = ((Pr1,2/3), (Pra,2/3), (Prs, 1)), where,
identifying the probability Pr with the tuple (Pr(a),Pr(b), Pr(c)), we have

e Pr; =(2/3,0,1/3);

6. Note that LP3 implies LP2, using the fact that () LI () is a (1,0)-cover of (@, .5).
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e Pry =(1/3,0,2/3);
e Pr3=(1/3,1/3,1/3).

Then P, ({a,b}) = PL,({b,c}) = 4/9, while Preg({b}) = 2/3. Since {a,b} U {b,c} is a
(1,1)-cover of ({b},{a,b,c}), REG3' would require that

Pl ({a,b}) + PL,({b,c}) > 1+ P, ({b}),

which is clearly not the case.
We must thus weaken REG3’ to capture weighted regret-based likelihood. It turns out
that the appropriate weakening is the following:

REGS3. For all integers m,n and all subsets E1, ..., E,, of S, if E;U...UE,, is an n-cover
of F, then nP;’;g( ) <> reg( i)

Although REG3 is weaker than REG3', it still has some nontrivial consequences. For
example it follows from REG3 that P} is anti-monotonic. If £ C E’, then E is a 1-cover

reg

of E', so by REG3, we must have P, (E) > 73;*;9( "). Since E U E' is trivially a 1-cover of

EU E’ it also follows that Pt (E) + P;t, (E) > PL,(EUE). REG3 also implies REG1,
since () (= S) is an n-cover of itself for all n.

I can now state the representation theorem. It says that a representation of uncertainty
satisfies REG1, REG2, and REGS3 iff it is the weighted regret-based likelihood determined
by some set P*. The set PT is not unique, but it can be taken to be mazimal, in the
sense that if weighted regret-based likelihood with respect to some other set (P')* gives
the same representation, then for all pairs (Pr,a’) € (P’)T, there exists a > o such that
(Pr,a) € P*. This (unique) maximal set PT can be viewed as the canonical representation
of uncertainty.

Theorem 4.2: If f : 25 — [0,1], then there exists a weakly closed set Pt of weighted
probability measures with f = 73;*;9 if and only if f satisfies REG1, REG2, and REGS3;
moreover, P can be taken to be mazimal.

Proof: Clearly, given a weakly closed set PT of weighted probability measures, the function
P, satisfies REG1 and REG2. To see that it satisfies REG3, suppose that EyU...UE,y, is
an n-cover of E. If PE (F) = 0, then REG3 trivially holds. If Pt (E) > 0, then since P*
is weakly closed, there must be some probability Pr € P such that Pﬂgg( ) = ap, Pr(E).
Since E1U...UE,, is an n-cover of E, it is easy to see that Pr(E1)+---+Pr(E,,) = nPr(E),
so apy Pr(E1)+- - -+ap, Pr(Ey,) = nap, Pr(E). But ap, Pr(E) = P, (E), by construction,
and ap, Pr(E;) < PE (E;), i =1,...,n. Thus, nPt (E) < Y, PL (E;).

For the opposite direction, suppose that f : 2° — — [0, 1] satisfies REG1, REG2, and
REGS3. Let P = A(S), the set of all probability measures on S, and for Pr € P, define

apy = sup{f : BPr(F) < f(E) for all E C S}.

Note that, for all Pr € P, we have 0Pr(E) < f

( [0,1], and
1Pr(0) = f(0) = 1. Tt follows that ap, € [0,1

E) for all E C S, since f(F) €
] = {(Pr apr) :

for all Pr € P. Let PT
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Pr € A(S)}. It is easy to see that PT is weakly closed. Moreover, if we can show that P+
represents f (i.e., f = 77;*;9), it is immediate that PT is maximal among all sets of weighted
probability measures that represent f. Thus, it suffices to show that there exists Pr € A(S)
such that (1) ap, = 1 (since this is one of the conditions on sets of weighted measures) and
(2) f(E) = PL,(E) for all EC S.

The proof of this result makes critical use of the following variant of Farkas’ Lemma
(Farkas, 1902) (see also Schrijver, 1986, pg. 89) from linear programming, where A is a

matrix, b is a column vector, and z is a column vector of distinct variables:

Lemma 4.3: If Az > b is unsatisfiable, then there exists a row vector 3 such that
1. >0
2. BA=0
3. b > 0.

Intuitively, 5 is a “witness” of the fact that Ax > b is unsatisfiable. This is because if there
were a vector x satisfying Az > b, then 0 = (fA)x = S(Az) > Bb > 0, a contradiction.

To prove the first claim, suppose that S = {s1,...,sy}. I now construct a set of linear
equations in the variables x1, ...,z such that a solution to the equations guarantees the
existence of a probability measure Pr € A(S) such that ap, = 1. Intuitively, we want
z; to be Pr(s;). Since we must have Pr(E) < f(E) for all E C S,7 for each E C S, we
have the inequality 3 ;... ¢p ¥ < f(E). Note that since f(0)) = 1, the equation when
E=0isz1+---+xy < 1. In addition, we require that x; > 0 for s = 1,..., N, and that
x1+---+axny = 1. It suffices to require that x1+-- -4z, > 1, since, as I observed earlier, the
equation corresponding to E = () already says x1 + -+ - + x, < 1. To apply Farkas’ Lemma
all the inequalities need to involve >, so this collection of inequalities must be rewritten as:

— 2 {isigEy Ti = —f(E), forall EC S
z; >0, fori=1,...,N
r1+---+ay > 1.

This system of inequalities can be expressed in the form Ax > b. Note that A is a matrix all
of whose entries are either —1, 0, or 1, and, in the first 2V — 1 rows (the lines corresponding
to equations for each E C S), all the entries are either 0 or —1, while in the final N + 1
rows, all the entries are either 0 or 1.

A solution of this system of inequalities provides the desired Pr. But if this systems has
no solution, then by Farkas’ Lemma, there exists a nonnegative vector £ such that A =0
and 8b > 0. Since all the entries of A are either —1, 0, or 1, it follows from standard
observations (cf., Fagin, Halpern, & Megiddo, 1990, Lemma 2.7) we can take /3 to a vector
of all whose entries are rational.® Since we can multiply each term in 3 by the product

7. I use C to denote strict subset.

8. There is a slight subtlety here since § also has to satisfy b > 0, and b may involve irrational numbers
(since f(E) may be irrational for some sets E). However, if there is a nonnegative 3 that satisfies A = 0
and $b > 0, then there is a nonnegative 3 that satisfies B4 = 0 and 8b’ > 0, where b" consists only of
rational entries and b’ < b. Thus, there is a vector 8 with rational entries such that 34 = 0 and b’ > 0,
so b > 0.
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of the denominators of the entries of 3, we can assume without loss of generality that the
entries of 8 are natural numbers.

Since A has 2V + N rows, f3 is a vector of the form (3, ... Ponin). Let Ay, Aon
be the rows of A; each of these is a vector of length N. Since SA = 0, that means that

Br1A1 + -+ Pon yAgn v = 0. Suppose for now that Byn, ..., Bonvyy_1 (the coefficients
for the rows corresponding to the inequalities z; > 0 for i = 1,..., N) are all 0; as I show
below, this assumption can be made without loss of generality.

With this assumption, we can rewrite the equations as S1A1+... Bon 1 Aoy | = —Bonv  yAon -
If Eq,..., Eyv_y are the subsets of S that correspond to the equations for Aq,..., Aynv_q,
respectively, this equation says that 31 copies of E1, B2 copies of Es, ..., and By~ _; copies

of Eyn_y form a Byn | y-cover of S. (Recall that Ayn y is a row of all —1’s, so —Ayn | cor-
responds to S.) Thus, by REG3, B1f(E1) + -+ fonv 1 f(Ean_1) > Bon N f(0) = Bon -
But Farkas’ Lemma requires that b > 0, where, by construction, b; = —f(E;) for i =
L....2VN -1, b =0fori =2N,....2N + N — 1, and bonv = 1. Thus, we must have
—(B1f(Er)+- -4 Bon 1 f(Eon_1)) > —Pan . Clearly, this gives a contradiction. Thus, we
can conclude, as desired, that the equations are solvable, and that there exists a probability
measure Pr such that ap, = 1.

It remains to show that we can assume without loss of generality that BzN, ceey 52N+N -1
are all 0. Note that since § > 0, they must all be nonnegative. I prove by induction on
Ban + -+ 4 Bon 1 that if there is a vector § > 0 such that A = 0 and b > 0, then
there is such a vector with Son 4 -+ 4+ Bonv y_1 = 0.

So suppose that there is a solution 3 with Bon + -+ + Bonv y_1 > 0. Suppose without
loss of generality that Son > 0. Recall that Ayn corresponds to the inequality x; > 0.
Choose j € {0,...,2V — 1} such that Bj > 0 and s; ¢ Ej. There must be such a j, for
otherwise we would not have SA = 0. Let j’ be such that Ej = E; U {s1}. Define a vector
B’ such that By = Bov — 1, B} = p; — 1, B;-, = Bj+1,and B = g if i ¢ {j,5',2"}.
It is easy to check that 8'A = 0 and that Box + -+ + Boyn, g < Bov + -+ Bovyy_1-
It remains to show that 8’0 > 0. Since E; C Ej, we must have f(E;) > f(Ejy), so
p'b=pb+ f(E;) — f(E;) > b > 0. This completes the inductive step of the argument.

Now we must show the second required property holds, namely, that f(E) = P/ (E) for

all E C S. By construction, ap, Pr(E) < f(F) for all E C S, so it suffices to show that there

is some Pr € P such that ap, Pr(E) = f(F). For this, it suffices to show that there exists a
measure Pr such that Pr(E) = 1, and for each E' C S, we have f(E)Pr(E’) < f(E’), since
then ap, = f(F), so ap; Pr(E) = f(E), as desired.

To show that such a measure exists, we again construct a set of linear inequalities

much as above, and apply Farkas’ Lemma. Using the same notation as above, suppose for

simplicity that E = {s1,...,sy}, where M < N. Now the required inequalities just involve
the variables z1,...,z;:
- =
- Z{i:sieﬁﬂf/} x; > —f(E")/f(E), for all E' C S such that ENE #(

x; >0, fori=1,...,.M
1+ F+zy > 1
Again, the requirement that xy + - - - + zp; < 1 follows from the equation for E.

If this system of inequalities is satisfiable, then we have the required probability measure,
so suppose that it is not satisfiable. Again, writing this system of equations as Ax > b, by
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Farkas’ Lemma, there exists a nonnegative vector 5 such that A = 0 and 8b > 0. We now
proceed much as before. Again, we can assume that 5 is a vector of natural numbers. If
we assume for now that BQM, ceey B2M+M ~! (the coefficients for the rows corresponding to
the inequalities x; > 0 for ¢ = 1,..., N) are all 0, then the fact that SA = 0 means that
we have Bon 5, cover of E. We get a contradiction to REG3 in an almost identical way to
above. This completes the argument. I

As T said earlier, the set P guaranteed to exist by Theorem 4.2 is not unique, although
it is canonical, in the sense of being the unique maximal set of weighted probability measures
that represents f. We might wonder if we can actually get uniqueness by imposing a few
extra requirements, particularly since Leung and I were able to do so in our representation
theorem. The answer seems to be no. To explain why, it is helpful to review some material
from (Halpern & Leung, 2012).

Define a sub-probability measure p on S to be like a probability measure (i.e., a function
mapping measurable subsets of S to [0, 1] such that p(TUT") = p(T) 4+ p(7"”) for disjoint
sets T and T"), without the requirement that p(S) = 1. We can identify a weighted
probability distribution (Pr, «) with the sub-probability measure a Pr. Conversely, given a
sub-probability measure p, there is a unique pair (o, Pr) such that P = aPr: we simply
take @ = p(S) and Pr = p/a. Thus, in the sequel, I identify a set of sub-probability
measures with a set of weighted probability measures.

A set B of sub-probability measures is downward-closed if, whenever p € B and q < p,
then q € B.

One advantage of considering sub-probability measures is that while it is not clear what
it would mean for a set of weighted probabilities to be convex (indeed, it is not obvious what
should count as a convex combination of (Pr,«) and (Pr’,)), it is quite clear what counts
as a convex combination of sub-probability measures. Moreover, a convex combination of
sub-probability measures is itself a sub-probability measure.

Call a set of subprobability measures regular if it is convex, downward-closed, closed,
and contains at least one proper probability measure. (The latter requirement corresponds
to having ap, = 1 for some Pr € PT.) Leung and I provide a set of axioms for preference
orders, and show that a family of preference orders >;; indexed by menus satisfies these
axioms iff there is a unique regular set of weighted probability measures PT such that, for
all @ =7 b iff wr%ﬂ(a) < wr%+ (b). Thus, we might hope that we can get uniqueness by
imposing a regularity requirement. It is easy to see that the canonical maximal set PT
constructed in the proof of Theorem 4.2 is regular, which lends some credence to this hope.
Unfortunately, as the following example shows, regularity does not suffice for uniqueness.

Example 4.4: Let S = {51, 52}, and let f be defined on 2% by taking f({s1}) = 1/4 and
f({s2}) =1 (and f(S) = 0 and f(@) = 1). A sub-probability measure p on S can be
identified with the pair (p(s1),p(s2)), which makes it easy to think about sub-probability
measures on S geometrically. A set of sub-probability measures is just a region in IR?
contained in the triangle bounded by the lines x = 0, y = 0, and y = 1 — 2. A set PT
of subprobability measures is downward closed if, whenever it contains a point (z,y), it
contains all (z’,y’) in the rectangle defined by the points (0,0), (z,0), (0,y), and (x,y).
With this intuition, let Pgr be the set of subprobabilities in the quadrilateral bounded
byx=0,y=0,y=1—xz,and y = 1/4 (the region marked by vertical lines in Figure 1). It
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is not hard to show that 730+ is the maximal set of weighted probabilities representing f. It
is clearly regular. Since it contains the subprobability (1,0), it follows that P reg({52}) = 1.
It is also easy to see that, since (0,1/4) € Py and p(s2) < 1/4 for all p € Py, we have that
,P(—)i,_reg<{31}) - 1/4

But now let 731+ consist of all sub-probabilities in the triangle bounded by x = 0, y = 0,
and y = 1fo (the region marked by horizontal lines in Figure 1). Clearly P is a strict
subset of of PSF , but it is clear from the figure that it is also regular. Moreover, since it
contains the points (i,O) and (0,1), it also represents f. Indeed, it easily follows from
the geometry of the situation that there are uncountably many regular sets of weighted
probabilities representing f; for all z € [0, %], the regular set bounded by the lines z = 0,

y =0,y =1, and the line from (2, 1) to (1,0).

Y
1]
1 o301
4 R zaz)
N
0 3 1
1

Figure 1: Regular sets of weighted probability measures that represent f.

Intuitively, the problem here is that a function on S does not contain enough information
to uniquely determine a regular set of weighted probability measures. It is not clear whether
there are natural further conditions that can be imposed that we lead to uniqueness. It
seems that the closest that we can come to uniqueness is to consider the maximal set. |l

5. Conclusion

I have defined an approach for associating with an event E a numerical representation of
its likelihood when uncertainty is represented by a set of weighted probability measures.
The representation consists of a pair of a numbers, which can be thought of as upper and
lower bounds on the uncertainty. The difference between these numbers can be viewed
as a measure of ambiguity. The two numbers coincide when uncertainty is represented
by a single probability. Moreover, if each probability measure gets weight 1, then the
two numbers can essentially be viewed as the lower and upper probabilities of E (more
precisely, 1 — P.(E) and 1 —P*(E)). Thus, the approach can be viewed as a generalization
of lower and upper probability to the case of weighted probability measures, with regret-
based likelihood corresponding to upper probability. The definitions show that there is
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an interesting connection between regret-based approaches and minimization/maximization
approaches when it comes to defining likelihood; this connection breaks down when it comes
to more general utility calculations (Halpern & Leung, 2012).

The main technical result of the paper is a complete characterization of the likelihood
in the case where the state space is finite. The notion of likelihood can easily be extended
to the case of an infinite state space (of course, an integral has to be used instead of a sum
to calculate expected utility). I conjecture that the characterization theorem will still hold
with essentially no change, although I have not checked details carefully.

Of course, it would be useful to get a better understanding of this numerical represen-
tation, to see if it really captures an agent’s feelings about both the ambiguity and the risk
associated with an event, and to understand its technical properties. I leave this to future
work.
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