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Abstract

Finding high quality plans for large planning problems is hard. Although some current
anytime planners are often able to improve plans quickly, they tend to reach a limit at
which the plans produced are still very far from the best possible, but these planners fail
to find any further improvement, even when given several hours of runtime.

We present an approach to continuing plan quality optimisation at larger time scales,
and its implementation in a system called BDPO2. Key to this approach is a decomposition
into subproblems of improving parts of the current best plan. The decomposition is based
on block deordering, a form of plan deordering which identifies hierarchical plan structure.
BDPO2 can be seen as an application of the large neighbourhood search (LNS) local search
strategy to planning, where the neighbourhood of a plan is defined by replacing one or more
subplans with improved subplans. On-line learning is also used to adapt the strategy for
selecting subplans and subplanners over the course of plan optimisation.

Even starting from the best plans found by other means, BDPO2 is able to continue
improving plan quality, often producing better plans than other anytime planners when
all are given enough runtime. The best results, however, are achieved by a combination of
different techniques working together.

1. Introduction

The classical AI planning problem involves representing models of the world (initial and
goal states) and available actions in some formal modelling language, and reasoning about
the preconditions and effects of the actions. Given a planning problem, a planning system
(or planner, for short) generates a sequence of actions, whose application transforms the
world from the initial state to a desired goal state. Thus, planning makes an intelligent
system autonomous through the construction of plans of action to achieve its goals.

A key concern in automated planning is producing high quality plans. Planners using
optimal or bounded suboptimal (heuristic) search methods offer guarantees on plan quality,
but are unable to solve large problems. Fast planners, using greedy heuristic search or other
techniques, on the other hand, can solve large problems but often find poor quality plans.
The gap between the capabilities of these two kinds of planners means that producing high
quality plans for large problems is still a challenge. An example of this gap is shown in
Figure 1. We seek to address this gap by proposing a new approach to continuing plan
improvement, that is able to tackle large problems and works at varying time scales.

Anytime search tries to strike a balance between optimal (or bounded suboptimal) and
greedy heuristic search methods. Anytime search algorithms do so by finding an initial
solution, possibly of poor quality, quickly and then continuing to search for better solutions
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Figure 1: Illustration of the plan quality gap. The dashed line represents the best (lowest-
cost) plan for 156 problems from Genome Edit Distance (GED) domain (Haslum, 2011)
found by different non-optimal planners, including anytime planners. The solid line repre-
sents the corresponding highest known lower bound. The difference between these two is
the optimality gap. The ‘?’ points represent plans found by optimal planners, while the
vertical bars show the optimality gap obtained by a problem-specific algorithm (GRIMM).

the more time they are given. Anytime search algorithms such as, for example, RWA*
(Richter, Thayer, & Ruml, 2010) or AEES (Thayer, Benton, & Helmert, 2012b) have been
successfully used in anytime planners. However, these planners are often not effective at
making use of increasing runtime beyond the first few minutes. Xie, Valenzano, & Müller
(2010) define the “unproductive time” of a planner as the amount of time remaining when
it finds its best plan, out of the total time given. They show that in four IPC-2011 domains
(Barman, Elevators, Parcprinter, and Woodworking), the unproductive time of the LAMA
planner (which uses RWA*), given 30 minutes per problem, is more than 90%.

We have observed similar results, as shown in Figure 2. The figure shows the average
IPC quality score as a function of time for several anytime planners and plan optimisation
methods, including the LAMA planner. (A full description of the experiment setup, and
results for even more anytime planners, is presented in Section 3, from page 392.) LAMA
finds a first solution quickly: for 92.3% of the problems it solves (within a maximum of 7
hours CPU time per problem), the first plan is found in less than 10 minutes. The quality of
LAMA’s plans improve rapidly early on, but the later trend is one of “flattening out”, i.e.,
decreasing increase. (The drop at the beginning is due to the figure showing the average
plan quality over solved problems: as initial, low-quality, plans for more problems are found
the average drops, before increasing again as better plans are found.) Between 1 and 7
hours CPU time, LAMA improves the plans for 21.3% of solved problems. Yet for a further
51.6% of problems better plans exist, and are found by other methods. In the same time
interval, LAMA’s average plan quality score increases by only 2.7%, while an increase of
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Figure 2: Average IPC quality score as a function of time per problem, on a set of 182
large-scale planning problems. The quality score of a plan is cref/c, where c is the cost
of the plan and cref the “reference cost” (least cost of all plans for the problem); hence
a higher score represents better plan quality. Anytime planners (LAMA, IBaCoP2) start
from scratch, while post-processing (PNGS, BDPO) and bounded-cost search (IBCS, Beam-
Stack Search) methods start from a set of base plans. Their curves are delayed by 1 hour to
account for the maximum time given to generating each base plan. The experiment setup
and results for additional planners are described in Section 3.1 (page 392).
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Figure 3: General framework of BDPO2

at least 14.6% is possible. Memory-limited branch-and-bound algorithms, like Beam Stack
Search (Zhou & Hansen, 2005) may run indefinitely, but find improvements very slowly.
The increase in average plan quality made by BSS over the entire time depicted in Figure
2 is only 1.8%.

Plan optimisation approaches based on post-processing start with a valid plan and seek
to improve it. Figure 2 shows results for Plan Neighbourhood Graph Search (Nakhost
& Müller, 2010). PNGS searches for shortcuts in a subgraph of the state space of the
problem, constructed around the current plan. (The PNGS implementation used in this
experiment also applies Nakhost’s and Müller’s “action elimination” technique.) Applying
PNGS results in substantial plan quality improvements quickly – 94.8% of improved plans
are found in less than 10 minutes – but then stops, as it runs out of memory.

In summary, this experiment shows that current anytime plan optimisation methods
become unproductive as runtime increases, or suffer from a very slow rate of plan quality
improvement.

We present a post-processing approach to plan optimisation, and its implementation in
a system called BDPO2. (The source code for BDPO2 is provided as an on-line appendix
to this article.) As a post-processor, BDPO2 does not work on its own: it depends on other
methods providing an initial plan. In the experiment, the set of input plans (referred to as
“base plans”) are the best plans found by LAMA after 1 hour, or the plan found by IBaCoP2
in the 2014 IPC. What Figure 2 shows is that switching to our approach after some time can
overcome the limitation of current anytime planning techniques, and continue to improve
plan quality as allotted time increases. The best result, as shown, is obtained by chaining
several techniques together, applying first PNGS on the base plans, and then BDPO2 on
the best result produced by PNGS. This result could not be achieved by previous anytime
planning approaches alone.

BDPO2 uses Large Neighborhood Search (LNS), a local search technique. The local
search explores a neighbourhood around the current solution plan for a better quality valid
plan. In LNS, the neighbourhood of a solution defined by “destroy” and “repair” methods,
which together replace a part of the current solution, while keeping the rest of it unchanged.
In BDPO2, the destroy step selects a subsequence of some linearisation of a deordering of
the current plan (we call this a “window”) and the repair step applies a bounded-cost
planner to the subproblem of finding a better replacement for this subplan. This focus
on solving smaller subproblems makes local search, and LNS in particular, scale better
to large problems. The size and structure of the neighborhood, however, plays a crucial
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role in the performance of local search (Hoffmann, 2001). In our setting, the neighbour-
hood is determined by the strategies used to select windows and subplanners. The destroy
methods used in LNS algorithms often contain an element of randomness, and the local
search may accept moves to lower-quality solutions (Ropke & Pisinger, 2006; Schrimpf,
Schneider, Stamm-Wilbrandt, & Dueck, 2000). In contrast, we explore the neighbourhood
systematically, examining candidate windows generated and ordered by several heuristics,
and accept only moves to strictly better plans. We also introduce into LNS the idea of
delayed restarting, meaning that we search for and combine multiple local improvements
before restarting the next iteration from the new best plan. We have found that delayed
restarts allow better exploration of subplans from different parts of the current plan, and
helps avoid local minima that otherwise occur when the system attempts to re-optimise the
same part of the plan in successive iterations.

The BDPO2 framework, shown in Figure 3, broadly consists of four components: plan
decomposition, LNS (i.e., the repeated destroy and repair steps), windowing, and on-line
adaptation. The first step, decomposition, uses deordering to produce a partially ordered
plan. Deordering enables the windowing strategies to find subplans that are easier to
improve on, leading to much better anytime performance. We use block deordering (Siddiqui
& Haslum, 2012), which simultaneously decomposes a given plan into “coherent” subplans,
called blocks, and relaxes ordering constraints between blocks. Block deordering removes
some of the inherent limitations of existing, step-wise deordering techniques, and is able
to deorder sequential plans in some cases where no step-wise deordering is possible. The
windowing component is a collection of strategies for extracting windows from the block
deordered plan, and ranking policies which order the windows so that the system attempts
to optimise more “promising” windows first.

BDPO2 extends our earlier system, BDPO (Siddiqui & Haslum, 2013b), mainly by using
a variety of alternatives for each task: where BDPO used a single windowing strategy (with
no ranking) and a single subplanner, BDPO2 uses portfolios of window generation and
ranking strategies and several subplanners. This improves the capability and robustness of
the system, since no single alternative (windowing strategy, subplanner, etc.) dominates
all others across all problems. Furthermore, we take advantage of the fact that the system
solves many subproblems over the course of the local search to learn on-line which are the
best alternatives for the current problem. In particular, we use the UCB1 multi-armed
bandit learning policy (Auer, Cesa-Bianchi, & Fischer, 2002) for subplanner selection, and
a sequential portfolio of window ranking policies.

The remainder of this article is structured as follows: Section 2 describes block deorder-
ing. The theory of block deordering presented here is slightly different from our earlier
account (Siddiqui & Haslum, 2012), allowing for more deordering in some cases and bet-
ter contrasting it with traditional partially ordered plan semantics. Section 3 presents an
overview of the BDPO2 system and main empirical results, while Sections 4 and 5 give
more details of the windowing and on-line adaptation components, respectively, including
empirical analysis of their impact on the performance of the system as a whole. Section 6
reviews related work, and Section 7 presents conclusions and outlines ideas for future work.
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2. Plan Decomposition

Our approach to continuing plan quality improvement is based on optimising a plan by
parts, one at a time. Every subplan that we consider for local optimisation is a subsequence
of some linearisation of a partially ordered plan. Therefore, a key step is removing unnec-
essary ordering constraints from the, typically sequential, input plan. This process is called
plan deordering. The importance of deordering is demonstrated by one of our experiments
(presented in Section 3.6, page 402), in which we apply BDPO2 to input plans that are
already of high quality: The total plan quality improvement (measured by the increase in
the average IPC plan quality score) achieved by BDPO2 without any deordering is 28.7%
less than that achieved with BDPO2 using our plan deordering technique.

The standard notion of a valid partially ordered plan requires all unordered steps in the
plan to be non-interfering (i.e., for two subsequences of the plan to be unordered, every
interleaving of steps from the two must form a valid execution). This limits the amount of
deordering that can be done, in some cases to the extent that no deordering of a sequential
plan is possible. (An example of this situation is shown in Figure 6 on page 381.) To
remedy this, we have introduced block deordering (Siddiqui & Haslum, 2012), which creates
a hierarchical decomposition of the plan into non-interleaving blocks and deorders these
blocks. This makes it possible to deorder plans further, including in some cases where
conventional, “step-wise”, deordering is not possible. (Again, an example can be found in
Figure 6 on page 381.) In this section, we present a new, and slightly different account of the
theory and practice of block deordering. First, it relaxes a restriction on block deordered
plans, thereby allowing more deordering of some plans. Second, it contrasts the semantics
of block decomposed partially ordered plans with the traditional partially ordered plan
semantics in a clearer way.

Sections 2.1–2.3 describe necessary background, while Sections 2.4–2.6 introduce block
decomposed partially ordered plans and the block deordering algorithm.

2.1 The Planning Problem, Sequential Plan and its Validity

We consider the standard STRIPS representation of classical planning problems with action
costs. A planning problem is a tuple Π = 〈M,A, C, I, G〉, where M is a set of atoms
(alternatively called fluents or propositions), A is a set of actions, C : A → R0+ is a cost
function on actions, which assigns to each action a non-negative cost, I ⊆ M is the initial
state, and G ⊆M is the goal.

An action a is characterised by a triple 〈pre(a), add(a),del(a)〉, where pre(a), add(a),
and del(a) are the preconditions, add and delete effects of a respectively. We also say that
action a is a consumer of an atom m if m ∈ pre(a), a producer of m if m ∈ add(a), and
a deleter of m if m ∈ del(a). An action a is applicable in a state S if pre(a) ⊆ S, and
if applied in S, results in the state apply(a, S) = (S \ del(a)) ∪ add(a). A sequence of
actions π = 〈ai, ai+1, ..., aj〉 is applicable in a state Si if (1) pre(ak) ⊆ Sk for all i ≤ k ≤ j,
and (2) Si+1 = apply(ai, Si), Si+2 = apply(ai+1, Si+1), and so on; the resulting state is
apply(π, Si) = Si+j+1.

A valid sequential plan (also totally ordered plan) πseq = 〈a1, ..., an〉 for a planning
problem Π is a sequence of actions that is applicable in I and such that G ⊆ apply(πseq, I).
The actions of πseq must be executed in the specified order.
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2.2 The Partially Ordered Plan and its Validity

Plans can be partially ordered, in which case actions can be unordered with respect to
each other. A partially ordered plan (p.o. plan) is a tuple, πpop = 〈S,≺〉, where S is a
set of steps (each of which is labelled by an action from A) and ≺ represents a strict (i.e.,
irreflexive) partial order over S. The unordered steps in πpop can be executed in any order.
≺+ denotes the transitive closure of ≺. An element 〈si, sj〉 ∈≺ (also si ≺ sj) is a basic
ordering constraint iff it is not transitively implied by other constraints in ≺. For a plan
step s, we use pre(s), add(s) and del(s) to denote the preconditions, add and delete effects
of the action associated with s. We also use the terms producer, consumer, deleter, and
cost for plan steps, referring to their associated actions. We include in S two more steps,
sI and sG. sI is ordered before all other steps, consumes nothing and produces the initially
true atoms, while sG is ordered after all other steps, consumes the goal atoms and produces
nothing.

A linearisation of πpop is a total ordering of the steps in S that respects ≺. A p.o. plan
πpop is valid (for a planning problem Π) iff every linearisation of πpop is a valid sequential
plan (for Π). In other words, a p.o. plan can be viewed as a compact representation of a
set of totally ordered plans, namely its linearisations.

Every basic ordering constraint, si ≺ sj , in πpop has a set of associated reasons, denoted
by Re(si ≺ sj). These reasons explain why the ordering is necessary for the plan to be
valid: If Re(si ≺ sj) is non-empty, then some step precondition may be unsatisfied before
its execution in some linearisations of πpop that violate si ≺ sj . The reasons are of three
types:

PC(m) (producer–consumer of atom m): The first step, si, produces m which is a precon-
dition of the second step, sj . Thus, if the order is changed, and sj executed before si,
the precondition of sj may not have been established when it is required.

CD(m) (consumer–deleter of m): The second step, sj deletes m, which is a precondition of
si. Thus, if the order is changed, m may be deleted before it is required.

DP(m) (deleter–producer of m): The first step, si deletes m, which is produced by the
second step, sj . If the order is changed, the add effect of the producer step may be
undone by the deleter, causing a later step to fail. It is, however, not necessary to
order a producer and deleter if no step that may occur after the producer in the plan
depends on the added atom.

Note that an ordering constraint can have several associated reasons, including several
reasons of the same type but referring to different atoms. The producer–consumer relation
PC(m) ∈ Re(si ≺ sj) is usually called a causal link from si to sj for m (McAllester &
Rosenblitt, 1991), and denoted by a triple 〈si,m, sj〉. A causal link 〈si,m, sj〉 is threatened
if there is any deleter of m that may be ordered between the last producer of m before sj
and sj , since this implies a possibility of m being false when required for the execution of
sj . The formal definition is as follows.

Definition 1. Let πpop = 〈S,≺〉 be a p.o. plan, and 〈sp,m, sc〉 be a causal link in πpop.
〈sp,m, sc〉 is threatened if there is a step sd that deletes m such that neither (1) sc ≺+ sd
nor (2) ∃s′p : m ∈ add(s′p) ∧ sd ≺+ s′p ≺+ sc is true.
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As mentioned above, a p.o. plan, πpop = 〈S,≺〉 for a planning problem Π is valid iff
every linearisation of πpop is a valid sequential plan for Π. However, the following theorem
gives an alternative, equivalent, condition for p.o. plan validity.

Theorem 1 (e.g., Nebel & Bäckström, 1994). A p.o. plan is valid iff every step precondition
can be supported by a causal link such that there is no threat to that causal link.

This condition is the same as Chapman’s (1987) modal truth criterion, that

∀sc ∈ S, ∀m ∈ pre(sc) :

∃sp ∈ S : (PC(m) ∈ Re(sp ≺ sc)∧
∀st :

(
m ∈ del(st)⇒

(
sc ≺+ sd ∨ ∃s′p :

(
m ∈ add(s′p) ∧ sd ≺+ s′p ≺+ sc

)))
.

2.3 Deordering

The process of deordering converts a sequential plan into a p.o. plan by removing ordering
constraints between steps, such that the steps of the plan can be successfully executed in
any order consistent with the partial order and still achieve the goal (Bäckström, 1998). We
will refer to this as step-wise deordering, to distinguish it from the block decomposition and
deordering that we introduce later in this section. Since current state space search planners
can produce sequential plans very efficiently, deordering plays an important role in efficient
generation of p.o. plans.

Let πpop = 〈S,≺〉 be a valid p.o. plan. A (step-wise) deordering of πpop is a valid plan
π′pop = 〈S,≺′〉 such that (≺′)+ ⊂≺+. That is, π′pop is the result of removing some basic
ordering constraints without invalidating the plan. A sequential plan πseq = 〈a1, ..., an〉 can
be represented as a p.o. plan with one step si ∈ S for each action ai in πseq and an ordering
si ≺ sj whenever i < j, so that no two steps in S which are unordered. Thus, deordering a
sequential plan is no different from (further) deordering a p.o. plan.

Computing a (step-wise) deordering with a minimum number of ordering constraints is
NP-hard (Bäckström, 1998), but there are several non-optimal algorithms (e.g., Pednault,
1986; Veloso, Pérez, & Carbonell, 1990; Régnier & Fade, 1991). We have used a variant of
the explanation-based generalisation algorithm by Kambhampati and Kedar (1994). The
algorithm works in two phases: In the first phase it constructs a validation structure, which
has exactly one causal link 〈sp,m, sc〉 for each precondition m of each step sc. sp is chosen
as the earliest producer of m preceding sc in the input plan, with no intervening threatening
step (i.e., that deletes m) between sp and sc. (The algorithm by Veloso, Pérez and Carbonell
is similar, but selects the latest producer instead.) In the second phase, the algorithm builds
a partial ordering, keeping only those orderings in the original plan which either correspond
to causal links in the validation structure or that are required to prevent a threatening step
from becoming unordered w.r.t. the steps in such a causal link.

Kambhampati and Kedar’s deordering algorithm, due to its greedy strategy, does not
guarantee optimality. An example where it fails to transform a totally ordered plan to
a least-constrained plan is shown in Figure 4. However, a recent study found that the
algorithm did produce optimal step-wise plan deorderings of all plans on which it was
tested (Muise, McIlraith, & Beck, 2012).

However, our motivation for plan deordering is to find a deordering that is adequate for
generating useful candidate subplans for local optimisation. More important than achieving
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Figure 4: An example on which Kambhampati and Kedar’s (1994) algorithm fails to find
the least constrained plan. (Derived from Figure 14 in Bäckström’s 1998 article on plan
deordering.) Figure (a) is a sequential input plan, (b) is the plan produced by the algorithm
after choosing the earliest producer (for the validation structure) of the preconditions p and
q of D, and (c) is the minimally ordered version of (a). For simplicity, the goal atoms
produced by the steps A, B, C and D are not shown in the figure.

an optimal step-wise deordering is overcoming the inherent limitation of step-wise deorder-
ing, which only allows plan steps to be unordered when they are non-interfering. Block
deordering, described in the next two sections, can remove further orderings from input
plans by forming blocks, which helps generate a decomposed plan that is more suitable for
extracting subplans for local optimisation.

2.4 Block Decomposition

In a conventional p.o. plan, whenever two subplans are unordered every interleaving of steps
from the two forms a valid execution. This limits deordering to cases where individual steps
are non-interfering. To remove this restriction, we have proposed block decomposed partial
ordering, which restricts the interleaving of steps by dividing the plan steps into blocks, such
that the steps in a block must not be interleaved with steps not in the block. However,
steps within a block can still be partially ordered. This is illustrated with an example in
Figure 5. The figure shows the difference in linearisations between a p.o. plan and a block
decomposed p.o. plan. b, a, c, d is a valid linearisation in the standard partial ordering but
not in the block decomposed p.o. plan. The formal definition of a block is as follows.

Definition 2. Let πpop = 〈S,≺〉 be a p.o. plan. A block w.r.t. ≺, is a subset b ⊂ S of steps
such that for any two steps s, s′ ∈ b, there exists no step s′′ ∈ (S\b) such that s ≺+ s′′ ≺+ s′.

A decomposition of a plan into blocks can be recursive, i.e., a block can be wholly
contained in another. However, blocks cannot be partially overlapping. Two blocks are
ordered bi ≺ bj if there exist steps si ∈ bi and sj ∈ bj such that si ≺ sj and neither block is
contained in the other (i.e., bi 6⊂ bj and bj 6⊂ bi).

Definition 3. Let πpop = 〈S,≺〉 be a p.o. plan. A set B of subsets of S is a block
decomposition of πpop iff (1) each b ∈ B is a block w.r.t. ≺ and (2) for every bi, bj ∈ B,
either bi ⊂ bj, bj ⊂ bi, or bi and bj are disjoint. A block decomposed plan is denoted by
πbdp = 〈S,B,≺〉.
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Figure 5: A normal p.o. plan (left) represents the set of all sequential plans that are lin-
earisations of the plan steps, in this example 〈a, b, c, d〉, 〈b, a, c, d〉, 〈b, c, a, d〉, and 〈b, c, d, a〉.
A block decomposed p.o. plan (shown on the right with dashed outlines for blocks) allows
unordered blocks to be executed in any order, but not steps from different blocks to be
interleaved. Thus, only 〈a, b, c, d〉, 〈b, c, a, d〉, and 〈b, c, d, a〉 are possible linearisations of
this plan.

The semantics of a block decomposed plan is defined by restricting its linearisations (for
which it must be valid) to those that respect the block decomposition, i.e., that do not
interleave steps from disjoint blocks. If bi ≺ bj , all steps in bi must precede all steps in bj
in any linearisation of the block decomposed plan.

Definition 4. Let πbdp = 〈S,B,≺〉 be a block decomposed p.o. plan for planning problem
Π. A linearisation of πbdp is a total order ≺lin on S such that (1) ≺⊆≺lin and (2) every
b ∈ B is a block w.r.t. ≺lin. πbdp is valid iff every linearisation of πbdp is a plan for Π.

Blocks behave much like (non-sequential) macro steps, having preconditions, add and
delete effects that can be a subset of the union of those of their constituent steps. This
enables blocks to encapsulate some plan effects and preconditions, reducing interference
and thus allowing more deordering. The following definition captures those preconditions
and effects that are visible from outside the block, i.e., those that give rise to dependencies
or interference with other parts of the plan. These are what we need to consider when
deciding if two blocks can be unordered. (Note that a responsible step is a step in a block
that causes it to produce, consume or threaten an atom.)

Definition 5. Let πbdp = 〈S,B,≺〉 be a block decomposed p.o. plan, and b ∈ B be a block.
The block semantics are defined as:

• b adds m iff b does not have precondition m, and there is a responsible step ŝ ∈ b with
m ∈ add(ŝ), such that for all s′ ∈ b, if s′ deletes m then s′ ≺ ŝ.

• b has precondition m iff there is a responsible step ŝ ∈ b with m ∈ pre(ŝ), and there
is no step s′ ∈ b such that there is a causal link 〈s′,m, ŝ〉 without an active threat.

• b deletes m iff there is a responsible step ŝ ∈ b with m ∈ del(ŝ), and there is no step
s′ ∈ b with “ŝ ≺ s′” that adds m.

Note that if a block consumes a proposition, it cannot also produce the same proposition.
The reason for this is that taking the “black box” view of block execution, the proposition
simply persists: it is true before execution of the block begins and remains true after it has
finished. If the steps within a block are totally ordered, the preconditions and effects of a
block according to Definition 5 are nearly the same as the “cumulative preconditions and
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effects” of an action sequence defined by Haslum and Jonsson (2000), the only difference
being that a consumer block cannot also be a producer of the same proposition.

A conventional p.o. plan, to be valid, must not contain any threat to a causal link. In
contrast, a block decomposed p.o. plan allows a threat to a causal link to exist in the plan,
as long as the causal link is protected from that threat by the block structure. A causal
link is protected from a threat iff either (i) the causal link is contained by a block that does
not contain the threat, or (ii) the threat is contained by a block that does not contain the
causal link and does not delete the threatened atom (i.e., encapsulates the delete effect). A
threat to a causal link is active if the link is not protected from it, otherwise inactive. The
formal definition is as follows.

Definition 6. Let πbdp = 〈S,B,≺〉 be a block decomposed p.o. plan, and st ∈ S be a threat
to a causal link 〈sp,m, sc〉 in πbdp. 〈sp,m, sc〉 is protected from st ∈ S iff there exist a block
b ∈ B such that either of the following is true: (1) sp, sc ∈ b; st /∈ b; or (2) st ∈ b, sp, sc /∈ b,
and m /∈ del(b).

An example of how the block decomposition protects a causal link can be seen in Figure
7(i) on page 382.

The following theorem provides an alternative criterion for the validity of a block de-
composed p.o. plan, in analogy with the condition for a conventional p.o. plan given in
the theorem cited above. The only difference is that a block decomposed p.o. plan allows
threats to causal links, as long as those threats are inactive. Let πbdp = 〈S,B,≺〉 be a block
decomposed p.o. plan. Analogously with Chapman’s modal truth criterion, this condition
can be stated as follows:

∀sc ∈ S, ∀m ∈ pre(sc)

∃sp ∈ S : (m ∈ add(sp)∧
∀st ∈ S : (m ∈ del(st) ∧ st 6≺+ sp ∧ sc 6≺+ st ⇒ 〈sp,m, sc〉 is protected from st)).

Theorem 2. A block decomposed p.o. plan is valid iff every step precondition is supported
by a causal link that has no active threat.

Proof. Let πbdp = 〈S,B,≺〉 be a block decomposed p.o. plan of a planning problem Π. Let
us first prove the ‘if’ part, i.e., that if every step precondition is supported by a causal
link that has no active threat then every linearisation of πbdp is a valid plan for Π. Let
πseq = 〈. . . , sc, . . .〉 be an arbitrary linearisation of πbdp with a total order ≺seq on S, where
m ∈ pre(sc). Then, according to the validity criteria for a sequential plan, we have to show
that m must be satisfied before the execution of sc in πseq. Since every step precondition
is supported by a causal link in πbdp that has no active threat, m must be supported by a
causal link 〈sp,m, sc〉 that has no active threat. Moreover, since ≺⊆≺seq then sp ≺seq sc.
Let st be a threat to 〈sp,m, sc〉 in πbdp. Clearly, sp ≺seq st ≺seq sc is the only possibility
that may cause m to be unsatisfied before the execution of sc. Since 〈sp,m, sc〉 has no active
threat, 〈sp,m, sc〉 is protected from st, and therefore, according to Definition 6, either (1)
sp, sc ∈ b and st /∈ b, or (2) st ∈ b, sp, sc /∈ b, and m /∈ del(b), must hold. If (1) is true,
then sp ≺seq st ≺seq sc can not occur in any valid linearisation of πbdp, since it interleaves
steps sp, sc ∈ b with st /∈ b, and thus b is not a block w.r.t. ≺seq. In the second case, since
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m /∈ del(b) then there must be a producer of m, s′p ∈ b, such that st ≺seq s
′
p. Moreover,

since sp, sc /∈ b, sp ≺seq st ≺seq sc can only be true if sp ≺seq st ≺seq s
′
p ≺seq sc. This also

makes m true before the execution of sc in πseq.

Let us now prove the ‘only if’ part, i.e., that if πbdp is valid then every step precondition
is supported by a causal link that has no active threat. Let sc ∈ S, m ∈ pre(sc), and
πseq = 〈. . . , sc, . . .〉 be a linearisation of πbdp with a total order ≺seq on S. We consider two
possible situations: (1) there is no producer s′ from which a causal link 〈s′,m, sc〉 in πbdp

can be constructed, or (2) there is at least one such producer that can construct the causal
link with sc for the atom m but that causal link has an active threat in πbdp. We will show
that none of the above situations can happen as long as πbdp is valid. According to situation
(1), there is no s′ in πseq as well such that s′ ≺seq sc. This causes m to be unsatisfied before
the execution of sc in πseq, i.e., πseq become invalid. Consequently, πbdp become invalid
(since one of its linearisation is invalid), which contradicts with our assumption. Therefore,
there must exist at least one producer s′ that can construct a causal link 〈s′,m, sc〉 in πbdp.
Now, for situation (2), assume sp is the last producer of m before the execution of sc in
πseq, i.e., ∀s′p ∈ S \ sp : m ∈ add(s′p) ⇒ (s′p ≺seq sp ∨ sc ≺seq s

′
p). Let sp be the producer

in the causal link 〈sp,m, sc〉 in πbdp (which is possible, since sp is not ordered after sc in
πbdp). Assume 〈sp,m, sc〉 has an active threat st in πbdp. Since 〈sp,m, sc〉 has an active
threat st (i.e., 〈sp,m, sc〉 is not protected from st), then neither (i) sp, sc ∈ b; st /∈ b, nor
(ii) st ∈ b; sp, sc /∈ b, and m /∈ del(b), is true. Therefore, sp ≺seq st ≺seq sc is a possible
linearisation of πbdp. Moreover, since there is no more producer of m in between sp and sc,
m must be unsatisfied before the execution of sc, i.e., πseq becomes invalid. Consequently,
πbdp is invalid since one of its linearisations is invalid. Therefore, 〈sp,m, sc〉 must not have
any active threat.

2.5 Block Deordering

Block deordering (Siddiqui & Haslum, 2012) is the process of removing orderings between
plan steps by adding blocks to a block decomposed p.o. plan. It may also add to the plan
some new ordering constraints, but those are transitively implied by the other ordering
constraints. Block deordering can often remove ordering constraints where step-wise de-
ordering can not. This is because the no-interleaving restriction among the blocks affords
us a simplified, “black box”, view of blocks that localises some interactions, in which only
the preconditions and effects of executing the block as a whole are important. Thus, it al-
lows further deordering by being able to ignore some dependencies and effects that matter
only internally within the block. In addition to providing more linearisations, by improving
deordering, the blocks formed by block deordering often correspond to coherent, more “self-
contained” subplans, and form the basis for the windowing strategies (described in detail
in Section 4) that we use to generate candidate subplans for local optimisation.

This subsection presents the conditions under which adding blocks to a block decom-
position allows the removal of basic ordering constraints. The complete block deordering
algorithm is presented in the next subsection.

As a simple example of block deordering, Figure 6(i) shows a sequential plan for a small
Logistics problem. This plan can not be deordered into a conventional p.o. plan, because
each plan step has a reason to be ordered after the previous. Block deordering, however,
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Figure 6: A sequential plan and a block deordering of this plan with two unordered blocks
b1 and b2. Ordering constraints are labelled with their reasons: producer–consumer (PC),
i.e., causal link, deleter–producer (DP), and consumer–deleter (CD). Note that no ordering
constraint in the sequential plan can be removed without invalidating it. Thus, step-wise
deordering of this plan is not possible.

is able to break the ordering s3 ≺ s4 by removing the only reason PC(at P1 A) based on
the formation of two blocks b1 and b2 as shown in Figure 6(ii). Neither of the two blocks
delete or add the atom “at P1 A” (although it is a precondition of both). This removes
the interference between them, and allows the two blocks to be executed in any order but
without any interleaving. Therefore, the possible linearisations of the block decomposed
p.o. plan are only 〈s1, s2, s3, s4〉 and 〈s4, s1, s2, s3〉. Note that if b2 is ordered before b1,
then b1 can be optimised by removing step s3.

Besides the necessary orderings between a pair of steps in a plan due to reasons PC,
CD, and DP (stated in Section 2.2), a valid block decomposed p.o. plan must maintain one
more type of necessary ordering, called threat protection ordering. If removing an ordering
sx ≺+ sy causes a block containing both steps to have delete effect, which it did not have
with this ordering, and that delete effect causes a causal link outside the block to become
unprotected (not satisfying either of the two conditions of Definition 6), then sx ≺+ sy is a
threat protection ordering, which may not be removed. A threat protection ordering can be
introduced during the block deordering process, and once introduced can not be removed.
This is demonstrated in Figure 7, where removing this kind of ordering leads to an invalid
block decomposed p.o. plan. The threat protection ordering is defined formally as follows.

Definition 7. Let πbdp = 〈S,B,≺〉 be a block decomposed p.o. plan, and 〈sp,m, sc〉 be a
causal link that is protected from st ∈ S in πbdp. Let b ∈ B; st, s

′ ∈ b; sp, sc /∈ b; m ∈ add(s′);
m /∈ del(b); and st ≺+ s′. st ≺+ s′ is a threat protection ordering if breaking this ordering
causes m ∈ del(b) and that causes 〈sp,m, sc〉 to become unprotected from st.
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Figure 7: Two block decompositions of a plan containing five steps: s1, s2, s3, s4, and s5.
In decomposition (i), there are three (transitively reduced) necessary orderings: s1 ≺ s2,
s2 ≺ s3, and s4 ≺ s5, where Re(s1 ≺ s2) = {DP(m), DP(n)}, Re(s2 ≺ s3) = {PC(m)},
and Re(s4 ≺ s5) = {PC(n)}. This decomposition is valid since every step precondition is
satisfied by a causal link without active threats. The threat from s1 to causal link 〈s4, n,
s5〉 is inactive, since the link is protected by block bx = {s1, s2, s3} which contains s1 but
does not delete m, and is disjoint from the causal link. By forming two blocks, by = {s1}
and bz = {s2, s3} it would be possible to remove s1 ≺ s2, as shown in (ii), since 〈s2, m, s3〉
is then protected from s1 by bz. However, in this decomposition the delete effect of block bx
becomes del(bx) = {m, n}, and the block therefore no longer protects 〈s4, n, s5〉. Therefore,
this decomposition and deordering is invalid. The ordering s1 ≺ s2 is a threat protection
ordering, which must not be broken. Note that in (i) s2 has no consumers of its produced
atom n, yet acts as a white knight for 〈s4, n, s5〉 to protect n from the deleter s1.

The notion of threat protection ordering was missing from our earlier block deordering
procedure (Siddiqui & Haslum, 2012), which relied (implicitly) on the stronger restriction
that the delete effects of a block do not change due to subsequent deordering inside the block.
Explicitly checking only the necessary threat protection orderings allows more deordering
inside created blocks to take place.

To remove a basic ordering, si ≺ sj , from a block decomposed p.o. plan πbdp = 〈S,B,≺〉,
we create two blocks, bi and bj , where si ∈ bi, sj ∈ bj , and bi ∩ bj = ∅. Note that one of the
two blocks can consist of a single step. Both blocks must be consistent with the existing
decomposition, i.e., B ∪ {bi, bj} must still be a valid block decomposition, in the sense of
Definition 2. In the remainder of this subsection, we define four rules which state conditions
on blocks bi and bj that allow different reasons for the ordering si ≺ sj to be eliminated.
Since the ordering si ≺ sj can exist for several reasons (including several reasons of the
same type, referring to different atoms), it is only if blocks bi and bj can be found that
allow us to remove every reason in Re(si ≺ sj) that the ordering between the steps can be
removed.

Rule 1. Let πbdp = 〈S,B,≺〉 be a valid block decomposed p.o. plan, si ≺ sj be a basic
ordering whose removal does not cause any threat protection ordering to be removed, and
PC(m) ∈ Re(si ≺ sj). Let bi be a block, where si ∈ bi, sj /∈ bi, and ∀s′ ∈ bi : si ⊀ s′. PC(m)
can be removed from Re(si ≺ sj) if m ∈ pre(bi) and ∃sp /∈ bi such that sp can establish a
causal link to bi and to sj.
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Figure 8: Formation of a block {s,p} and addition of a causal link 〈r,m,q〉 in (ii) in order
to remove the reason PC(m) behind the basic ordering constraint p ≺ q from (i). Different
situations, (iii and iv), where a threat, t, may be active to 〈r,m,q〉.

As an explanation of Rule 1, if PC(m) ∈ Re(si ≺ sj), then bi must not produce m. Since
si produces m and is not followed by a deleter of m within bi (because si ≺ sj is a basic
ordering and sj /∈ bi) the only way for this to happen is if bi consumes m. Since the plan is
valid, there must be some producer, sp /∈ bi, that necessarily precedes the step (in bi) that
consumes m. Note that sp ≺+ sj . Then adding the causal link PC(m) to Re(sp ≺ sj) (i.e.,
adding 〈sp, sj〉 to ≺ if not already present) allows PC(m) to be removed from Re(si ≺ sj).

Theorem 3. Deordering according to Rule 1 preserves plan validity.

Proof. Let πbdp = 〈S,B,≺〉 be a valid block decomposed p.o. plan. Therefore, according to
Theorem 2, every step precondition of πbdp is supported by a causal link that has no active
threat. Let p ≺ q be a basic ordering constraint (where p, q ∈ S), bp, bq ∈ B be the blocks
that meet the conditions for removing PC(m) ∈ Re(p ≺ q), and bp, bq are not ordered for
any other ordering constraints. We will show that removing PC(m) from Re(p ≺ q) results
in a new plan, π′bdp = 〈S,B′,≺′〉, that meets the condition of Theorem 2, and therefore
remains valid.

Assume PC(m) ∈ Re(p ≺ q) is removed, and the precondition of q is now supplied by the
step r based on the newly established causal link 〈r,m,q〉 after deordering and formulating
bp = {s,...,p}, bq = {q} in π′bdp, as shown in Figure 8 (ii). We have to show that 〈r,m,q〉
has no active threat in π′bdp, and therefore, π′bdp is valid. Assume, there is an active threat,

t, to 〈r,m,q〉 in π′bdp. Then, of course, t ⊀+ r and q ⊀+ t. We will examine every other
situation, where t can be an active threat to 〈r,m,q〉.

Situation (1): assume s ⊀+ t, as shown in Figure 8 (iii). Since t is not an active threat
to 〈r,m,s〉 in πbdp, then according to Theorem 2, either t is contained by a block that does
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Figure 9: Formation of blocks for removing the reason CD(m) behind the basic ordering
p ≺ q.

not delete the threatened atom and does not contain 〈r,m,s〉, or 〈r,m,s〉 is contained by a
block b′ = {r, s, ...} that does not contain t. For the first case, it also holds true in π′bdp, and
therefore, t can not be an active threat to 〈r,m,q〉. For the second case, b′ can not partially
overlap with bp = {s,...,p}, therefore, either bp ⊇ b′ or b′ ⊇ bp. If bp ⊇ b′, bp must contain r,
which can not happen according to the PC removing criteria (i.e., r /∈ bp must hold) stated
in Rule 1. If b′ ⊇ bp, then b′ must contain at least r, s, and p, because b′ can not partially
overlap with bp = {s,...,p}. Since t is also not an active threat to 〈p,m,q〉 in πbdp, 〈p,m,q〉
must be contained by some block b′′ = {p, q, ...} that does not contain t. Now, since b′ and
b′′ can not partially overlap, b′ or b′′ (whichever is bigger) must contain at least r, s, p, and
q, for which b′ or b′′ (whichever is bigger) protects 〈r,m,q〉 from t.

Situation (2): assume t ⊀+ p, also shown in Figure 8 (iii). Since t is also not an active
threat to 〈p,m,q〉 in πbdp, like before, we can show that either t is contained by a block that
encapsulates the threatened atom (i.e., does not delete m) and does not contain 〈p,m,q〉,
or 〈p,m,q〉 is contained by a block b′ = {r, s, p, q, ...} that does not contain t. In both cases,
〈r,m,q〉 is protected from t.

Situation (3): assume s ≺+ t ≺+ p shown in Figure 8 (iv). This is only possible if t ∈ bp,
since t can not interleave with the steps in bp if t /∈ bp. Therefore, t ∈ bp, which causes
〈r,m,q〉 to be protected from t. This is because bp does not contain 〈r,m,q〉 and does not
delete m (since m ∈ add(p) and t ≺+ p).

Therefore, we can conclude that t can never be an active threat to 〈r,m,q〉 under any
situation.

Rule 2. Let πbdp = 〈S,B,≺〉 be a valid block decomposed p.o. plan, si ≺ sj a basic ordering
whose removal does not cause any threat protection ordering to be removed, and CD(m) ∈
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Re(si ≺ sj). Let bi and bj be two blocks, where si ∈ bi, sj ∈ bj, and bi ∩ bj = ∅. Then
CD(m) can be removed from Re(si ≺ sj) if bi does not consume m.

Theorem 4. Deordering according to Rule 2 preserves plan validity.

Proof. Let πbdp = 〈S,B,≺〉 be a valid block decomposed p.o. plan, and p ≺ q be a basic
ordering constraint, where p, q ∈ S with CD(m) ∈ Re(p ≺ q). In order to meet the
condition of Rule 2, let us assume bp is a block that includes r and p such that 〈r,m,p〉 is a
causal link and every other consumer of m in bp (if they exist) is ordered after r in πbdp (as
shown in Figure 9 (i)). Therefore it meets the condition that bp must not consume m. Also,
assume bq is a block that contains {q} and bp, bq are not ordered for any other ordering
constraints. Therefore, CD(m) ∈ Re(p ≺ q) as well as p ≺ q are removed, which results a
new plan π′bdp = 〈S,B′,≺′〉. We will show that π′bdp is valid according to Theorem 2.

Since πbdp is valid, there is no active threat to any causal link in πbdp according to
Theorem 2, but due to the deordering of p ≺ q, the deleter q becomes a new threat only to
the causal link 〈r,m,p〉 in π′bdp. However, 〈r,m,p〉 is contained by bp that does not contain
q, and therefore, according to Definition 6, 〈r,m,p〉 is protected from q, i.e., q becomes an
inactive threat. As a result, π′bdp remains valid.

Rule 3. Let πbdp = 〈S,B,≺〉 be a valid block decomposed p.o. plan, si ≺ sj a basic ordering
whose removal does not cause any threat protection ordering to be removed, and CD(m) ∈
Re(si ≺ sj). Let bi and bj be two blocks, where si ∈ bi, sj ∈ bj, and bi ∩ bj = ∅. Then
CD(m) can be removed from Re(si ≺ sj) if bj does not delete m.

Theorem 5. Deordering according to Rule 3 preserves plan validity.

Proof. Let πbdp = 〈S,B,≺〉 be a valid block decomposed p.o. plan, and p ≺ q be a basic
ordering constraint, where p, q ∈ S with CD(m) ∈ Re(p ≺ q). In order to meet the condition
of Rule 3, let us assume bq is a block that includes q and s such that DP(m) ∈ Re(q ≺ s)
and every other deleter of m in bq (if they exist) is ordered before s in πbdp (as shown in
Figure 9 (ii)). Therefore it meets the condition that bq must not delete m. Also, assume bp
is a block that contains {p}, and bp, bq are not ordered for any other ordering constraints.
Therefore, CD(m) ∈ Re(p ≺ q) as well as p ≺ q is removed, which results a new plan
π′bdp = 〈S,B′,≺′〉. We will show that π′bdp is valid according to Theorem 2.

Since πbdp is valid, there is no active threat to any causal link in πbdp according to
Theorem 2, but due to the deordering of p ≺ q, the deleter q becomes a new threat only to
the causal link 〈r,m,p〉 in π′bdp. However, q is contained by bq that does not contain 〈r,m,p〉,
and does not delete m; therefore, according to Definition 6, 〈r,m,p〉 is protected from q, i.e.,
q becomes an inactive threat. As a result, π′bdp satisfies the condition of Theorem 2 and
therefore remains valid.

Rule 4. Let πbdp = 〈S,B,≺〉 be a valid block decomposed p.o. plan, si ≺ sj a basic ordering
whose removal does not cause any threat protection ordering to be removed, and DP(m) ∈
Re(si ≺ sj). Let bj be a block, where sj ∈ bj but si /∈ bj. Then DP(m) can be removed from
Re(si ≺ sj) if bj includes every step s′ such that PC(m) ∈ Re(sj ≺ s′).

Theorem 6. Deordering according to Rule 4 preserves plan validity.
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Figure 10: Formation of blocks for removing the reason DP(m) behind the basic ordering
p ≺ q.

Proof. Let πbdp = 〈S,B,≺〉 be a valid block decomposed p.o. plan, and let p ≺ q be a basic
ordering constraint (where p, q ∈ S). Let bq be a block that includes all the steps – r and
s such that 〈q,m,r〉, 〈q,m,s〉 are the causal links in πbdp (as shown in Figure 9 (ii)). Hence,
it meets the condition of Rule 4. Also, assume bp is a block that contains {p} and bp, bq
are not ordered for any other ordering constraints. As a result, DP(m) ∈ Re(p ≺ q) as well
as p ≺ q is removed, which results a new plan π′bdp = 〈S,B′,≺′〉. We will show that π′bdp

satisfies the condition of Theorem 2 and therefore remains valid.

Since πbdp is valid, there is no active threat to any causal link in πbdp according to
Theorem 2, but due to the deordering of p ≺ q, the deleter p becomes a new threat to the
only causal links 〈q,m,r〉 and 〈q,m,s〉 in π′bdp. However, those causal links are contained by
bq that does not contain p, and therefore, according to Definition 6, are protected from p,
i.e., p becomes an inactive threat. As a result, π′bdp remains valid.

Even when, by applying the four rules above, we can find blocks bi and bj that remove
all reasons for an ordering si ≺ sj , thus permitting the ordering to be removed, it is not
guaranteed that the two blocks bi and bj will be unordered. They may be ordered because
bi contains some step other than si that is ordered before some step in bj (whether sj or
another). Even if they are not, if there is a block b ∈ B that contains bi (or bj but not both),
and b is still ordered before bj (resp. after bi) due to some constraint in ≺+ other than
〈si, sj〉, then blocks bi and bj will still be ordered, in the sense that bi will appear before bj
in any linearisation consistent with the block decomposition.
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2.6 Block Deordering Algorithm

The previous subsection described four conditions (Rules 1–4) under which adding blocks
to a decomposition allows reasons for ordering constraints, and thus ultimately the ordering
constraints themselves, to be removed while preserving plan validity. Next, we describe the
algorithm that uses these rules to perform block deordering, i.e., to convert a sequential
plan πseq into a block decomposed p.o. plan πbdp.

The algorithm is divided into two phases. First, we apply a step-wise deordering pro-
cedure to convert πseq into a p.o. plan πpop = (S,≺′). We have used Kambhampati and
Kedar’s (1994) algorithm for this, because it is simple and has been shown to produce very
good results (Muise et al., 2012), even though it has no optimality guarantee.

After the step-wise plan deordering, we extend ordering to blocks: two blocks are ordered
bi ≺ bj if there exist steps si ∈ bi and sj ∈ bj such that si ≺ sj and neither block is contained
in the other (i.e., bi 6⊂ bj and bj 6⊂ bi). In this case, all steps in bi must precede all steps in bj
in any linearisation of the block decomposed plan. We also extend the reasons for ordering
(PC, CD and DP) to ordering constraints between blocks, with the set of propositions
produced, consumed and deleted by a block given by Definition 5. Recall that a responsible
step is a step in a block that causes it to produce, consume or delete a proposition. For
example, if b produces p, there must be a step s ∈ b that produces p, such that no step in
the block not ordered before s deletes p; we say step s is “responsible” for b producing p.

The next phase is block deordering, which converts the p.o. plan πpop = (S,≺) into a
block decomposed p.o. plan πbdp = (S,B,≺′). This is done by a greedy procedure, which
examines each basic ordering constraint bi ≺ bj in turn and attempts to create blocks that
are consistent with the decomposition built so far and that will allow this ordering to be
removed. The core of this algorithm is the Resolve procedure (Algorithm 1). It takes as
input two blocks, bi and bj , that are ordered (one or both blocks may consist of a single step),
and tries to break the ordering by extending them to larger blocks, b′i and b′j . The procedure
examines each reason for the ordering constraint and extends one of the blocks to remove
that reason, following the rules given in the previous subsection. After this, the sets of
propositions produced, consumed and deleted by the new blocks (b′i and b′j) are recomputed
(following Definition 5) and any new reasons for the ordering constraint that have arisen
because of steps that have been included are added to Re(b′i ≺ b′j). This is repeated
until either no reason for the ordering remains, in which case the new blocks returned by
the procedure can safely be unordered, or some reason cannot be removed, in which case
deordering is not possible (signalled by returning null). The function Intermediate(bi, bj)
returns the set of steps ordered between bi and bj , i.e., {s | bi ≺+ s ≺+ bj}. Where Algorithm
1 refers to a “nearest” step s′ preceding or following another step s, it means a step with a
smallest number of basic ordering constraints between s′ and s.

If we applied the Resolve procedure to each basic ordering constraint we would obtain
a collection of blocks with which we can break some orderings. But this collection is not
necessarily a valid decomposition, since some of the blocks may have partial overlap. To
find a valid decomposition, we use a greedy procedure. We repeatedly examine each basic
ordering constraint bi ≺ bj and call Resolve to find two extended blocks b′i ⊇ bi and b′j ⊇ bj
that allow the ordering to be removed. In each iteration, constraints are checked in order
from the beginning of the plan. A block, once added into πbdp, will not be removed to
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Algorithm 1 Resolve ordering constraints between a pair of blocks.

1: procedure Resolve(bi, bj)
2: Initialise b′i = bi, b

′
j = bj .

3: while Re(b′i ≺ b′j) 6= ∅ do
4: for each r ∈ Re(b′i ≺ b′j) do
5: if r = PC(p) then

// try Rule 1
6: Find a responsible step s ∈ b′i and a nearest s′ 6∈ b′i that consumes

p such that s′ ≺+ s.
7: if such s′ exists then
8: Set b′i = b′i ∪ {s′} ∪ Intermediate(s′, b′i).
9: else return null

10: else if r = DP(p) then
// try Rule 4

11: Find a responsible step s ∈ b′j and all s′ 6∈ b′j such that
each 〈s, p, s′〉 is a causal link.

12: if such s′ exists then
13: Set b′j = b′j ∪ {s′} ∪ Intermediate(b′j , s

′).
14: else return null
15: else if r = CD(p) then

// try Rule 3
16: Find a responsible step s ∈ b′j and a nearest s′ 6∈ b′j that produces p,

such that s ≺+ s′.
17: if such s′ exists then
18: Set b′j = b′j ∪ {s′} ∪ Intermediate(b′j , s

′).
19: else

// try Rule 2
20: Find a responsible step s ∈ b′i and a nearest s′ 6∈ b′i that produces

p, such that s′ ≺+ s.
21: if such s′ exists then
22: Set b′i = b′i ∪ {s′} ∪ Intermediate(s′, b′i).
23: else return null.
24: Recompute Re(b′i ≺ b′j).
25: return (b′i, b

′
j).

accommodate another block that partially overlaps with the existing block throughout the
procedure, even if the later (rejected) block could produce more deordering than the one
created earlier. Since the choice of deordering to apply is greedy, the result is not guaranteed
to be optimal. If b′i or b′j cannot be added to the decomposition (because one or both of
them partially overlaps with an existing block), we consider all blocks ordered immediately
after bi, and check if all these orderings can be broken simultaneously, using the union of the
blocks returned by Resolve for each ordering constraint. (Symmetrically, we also check the
set of blocks immediately before bj , though this is only very rarely useful.) As an additional
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heuristic, we discard the two blocks if there is a basic ordering constraint between a step
that is internal to one of the blocks (i.e., that has both preceding and following steps within
the block) and a step outside the block.

If the ordering can be removed, the inner loop exits and the ordering relation is updated
with any new constraints between b′i and blocks ordered after bj and between b′j and blocks
ordered before bi. This is done by checking for the three reasons (PC, CD and DP) based
on the sets of propositions produced, consumed and deleted by b′i and b′j . The inner loop
is then restarted, with ordering constraints that previously could not be broken checked
again. This is done because removing ordering constraints can make possible the resolution
of other constraints, since removal of orderings can change the set of steps intermediate
between two steps.

The main loop repeats until no further deordering consistent with the current decom-
position is found. Each iteration runs in polynomial time, but we do not know of an upper
bound on the number of iterations. Note, however, that our procedure is anytime, in the
sense that if interrupted before running to completion, the result at the end of the last com-
pleted iteration is still a block deordering of the plan. In BDPO2, we use a time-limit of 5
minutes for the whole deordering procedure. However, for almost every problem considered
in our experiments (described in Section 3.1), block deordering finishes in a few seconds
(except for a few problems in the Visitall domain, for which it takes a couple of minutes).

In summary, deordering makes the structure of a plan explicit, showing us which parts
are necessarily sequential (because of dependency or interference) and which are indepen-
dent and non-interfering. Block deordering improves on this by creating an on-the-fly
hierarchical decomposition of the plan, encapsulating some dependencies and interferences
within each block. Considering blocks, instead of primitive actions, as the units of partial
ordering thus enables deordering plans to a greater extent, including in cases where no de-
ordering is possible using the standard, step-wise, partial order plan notion. The impact of
block decomposition on the anytime performance of our plan quality optimisation system
is discussed in Section 3.6.

3. System Overview

BDPO2 is a post-processing-based plan quality optimisation system. Starting with an initial
plan, it seeks to optimise parts of the plan, i.e. subplans, replacing them with lower-cost
subplans. We refer to the subplans that are candidates for replacement as windows. When
a better plan has been found and certain conditions are met, it starts over from the new
plan. This can be viewed as a local search, using the large neighborhood search (LNS)
strategy, in which the neighborhood of a plan is defined as the set of plans that can be
reached by replacing a window with a new subplan. The local search is plain hill-climbing:
each move is to a strictly better neighbouring plan. As in other LNS algorithms, searching
for a better plan in the neighbourhood is done by formulating local optimisation problems,
which are solved using bounded-cost subplanners.

Block deordering, described in the previous section, helps identify candidate windows
by providing a large set of possible plan linearisations; the block decomposition is also used
by some of our windowing strategies. Each window is a subsequence of some linearisation
of the block deordered input plan. However, we represent a window in a slightly different
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way, by a partitioning of the blocks into the part to be replaced (w), and those ordered
before (p) and after (q) that part.

Definition 8. Let πbdp = (S,B,≺) be a block decomposed p.o. plan. A window in πbdp

is a partitioning of B into sets p, w, q, such that πbdp has a linearisation consistent with
{bp ≺ bw ≺ bq | ∀bp ∈ p, bw ∈ w, bq ∈ q}.

Each window defines a subproblem, which is the problem of finding a plan that can
fill the gap left by removing the steps in w from a linearisation of πbdp consistent with the
window. This problem is formally defined as follows.

Definition 9. Let πbdp = (S,B,≺) be a block decomposed p.o. plan for planning problem
Π, 〈p, w, q〉 a window in πbdp, and s1, . . . , s|p|, s|p|+1, . . . , s|p|+|w|, s|p|+|w|+1, . . . , sn a lineari-
sation of πbdp consistent with that window. The subproblem corresponding to 〈p, w, q〉,
Πsub, has the same atoms and actions as Π. The initial state of Πsub, Isub, is the result of
progressing the initial state of Π through s1, . . . , s|p| (i.e., applying s1, . . . , s|p| in I), and the
goal of Πsub, Gsub, is the result of regressing the goal of Π through sn, . . . , s|p|+|w|+1.

Theorem 7. Let πbdp = (S,B,≺) be a block decomposed p.o. plan for planning prob-
lem Π, 〈p, w, q〉 a window in πbdp, Πsub the subproblem corresponding to the window,
and s1, . . . , s|p|, s|p|+1, . . . , s|p|+|w|, s|p|+|w|+1, . . . , sn the linearisation that Πsub is constructed
from. Let π′w = s′1, . . . , s

′
k be a plan for Πsub. Then s1, . . . , s|p|, s

′
1, . . . , s

′
k, s|p|+|w|+1, . . . , sn

is a valid sequential plan for Π.

Proof. The proof is straightforward. The subsequence s1, . . . , s|p| is applicable in the initial
state of Π, I, and, by construction of Πsub, results in the initial state of Πsub, Isub. Hence
s1, . . . , s|p|, s

′
1, . . . , s

′
k is applicable in I, and, again by construction of Πsub, results in a state

sG that satisfies the goal of Πsub, Gsub. Since Gsub is the result of regressing the goal of Π,
G, through s|p|+|w|+1, . . . , sn in reverse, it follows that this subsequence is applicable in sG,
and applying it results in a state satisfying G. (For the relevant properties of regression,
see, for example, Ghallab, Nau, & Traverso, 2004, Section 2.2.2.)

The subproblem corresponding to a window 〈p, w, q〉 always has a solution, in the form
of a linearisation of the steps in w. To improve plan quality, however, the replacement
subplan must have a cost that is strictly lower than the cost of w, C(w). This amounts to
solving bounded-cost subproblems. The subplanners we have used for this in BDPO2 are
described in Section 3.3. We return to the question of when and how multiple windows
within the same plan can be simultaneously replaced in Section 3.5.

Algorithm 2 describes how BDPO2 performs one step of the local search, by exploring
the neighbourhood of the current plan. The first step is to block deorder the current plan
(line 3). Next, optimisation using a bounded-cost subplanner is tried systematically on
candidate windows (lines 4–19), until a restart condition is met (line 18), until no more
local improvements are possible, or until a time limit is reached. A point of difference
with other LNS algorithms is that we have used delayed restart, meaning that exploration
of the neighbourhood can continue after a better plan has been found. This helps avoid
local minima, by driving exploration to different parts of the current plan. The restart
conditions, and the impact they have on the local search, are described in Section 3.4.
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Algorithm 2 The neighbourhood exploration procedure in BPDO2.

1: procedure BDPO2(πin, tlimit, banditPolicy, rankPolicy, optSubprob)
2: Initialize: telapsed = 0, πlast = πin, trialLimit[1...n] = 1, windowDB = ∅
3: πbdp = BlockDeorder(πin)
4: while telapse < tlimit and πlast is not locally optimal do
5: if more windows needed then
6: ExtractMoreWindows(πbdp,windowDB, optSubprob)

7: p = SelectPlanner(banditPolicy)
8: w = SelectWindow(p, rankPolicy, trialLimit,windowDB)
9: if w = null and no more windows to extract then trialLimit[p] += 1

10: if w = null then continue
11: wnew, searchResult = OptimiseWindow(p, w)
12: UpdateWindowDB(p, w,wnew, optSubprob, searchResult,windowDB)
13: if C(wnew) < C(w) then
14: πnew = Merge(πbdp,windowDB)
15: if C(πnew) < C(πlast) then πlast = πnew

16: UpdateBanditPolicy(p, w,wnew, searchResult, banditPolicy)
17: UpdateRankPolicy(p, searchResult, rankPolicy)
18: if C(πlast) < C(πin) and restart condition is true then
19: return BDPO2 (πlast, tlimt − telapsed, banditPolicy, rankPolicy, optSubprob)

20: return πlast

A key design goal of the procedure is to avoid unproductive time, meaning spending
too much time in one step or trying to optimise one window while other options that could
lead to an improvement are left waiting. Therefore, all steps are done incrementally, with
a time limit on any step that could take an unbounded time.

A database (windowDB) stores each unique window extracted from the block deordered
plan, and records its status (how many times optimisation of this window has been tried
with each subplanner and the result), and structural summary information about the win-
dow. The window database is populated incrementally (lines 5–6), by applying different
windowing strategies with a limit on the time spent and the number of windows added.
The limits we have used are 120 seconds and 20 windows, respectively. This balances time
between window extraction and optimisation, to prevent the procedure spending unproduc-
tive time. The windowing strategies are described in Section 4. We also compute a lower
bound on the cost of any replacement plan for the window, using the admissible LM-Cut
heuristic (Helmert & Domshlak, 2009). A window is proven optimal if the current sub-
plan cost equals this bound, or a previous attempt to optimise the window exhausted the
bounded-cost search space. Already optimal windows are, of course, excluded from further
optimisation. More windows are added to the database when the number of windows eligi-
ble to be selected for optimisation by any one subplanner (defined in the next paragraph)
drops below a threshold. We have used 75% of the current window database size as the
threshold.
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The subplanner to use is selected using the UCB1 multi-armed bandit policy (Auer et al.,
2002), which learns over repeated trials to select more often the subplanner that succeeds
more often in finding improvements. The next window to try is chosen, among the eligible
ones in the database, according to a ranking policy. Windows eligible for optimisation by
the chosen subplanner are those that (1) are not already proven optimal; (2) have not been
tried with the chosen subplanner up to its current trial limit; and (3) do not overlap with
any improved window already found. The ranking policy is a heuristic aimed at selecting
windows more likely to be improved by the chosen subplanner. We use several ranking
policies and switch from one to the next when the subplanner fails to find an improvement
for a number of consecutive tries, since this indicates the current ranking policy may not be
recommending the right windows for the current problem. The threshold we have used for
switching the ranking policy is 13. (This is 2/3 of the maximum number of windows added to
the window database in each call to ExtractMoreWindows.) The ranking policies are
described in Section 4.6. The subplanner is given a time limit, which is increased each time
it is retried on the same window. We have used a limit of 15 seconds, increasing by another
15 seconds for each retry. A limit on the number of times it can be retried on the same
window is kept for each subplanner. Initially set to 1, the limit is increased only when the
subplanner has been tried on every window in the database (excluding windows that have
already been proven optimal or that overlap with windows for which a better replacement
has been found) and no strategy can generate more new windows (line 9). If a lower-cost
replacement subplan for the window is found, this together with all improvements already
found in the current neighbourhood are fed into the Merge procedure, which tries to
combine several replacements to achieve a greater overall plan cost reduction. The Merge
procedure is described in Section 3.5.

When the procedure restarts with a new best plan, the learned bandit policy for sub-
planner selection and the current ranking policy (for each subplanner) are carried over to
the next iteration. We also keep a database of the subproblems (defined by their initial
state and goal) whose plan cost has been proven optimal, to avoid trying fruitlessly to op-
timise them further. The window database, which contains only information specific to the
current input plan, is reset.

The remainder of this section is organised as follows: The next two sections describe the
settings that we have used for our experiments and an overview of main results, respectively.
We then describe the subplanners used in BDPO2 (Section 3.3), the restart conditions
(Section 3.4) and the Merge procedure (Section 3.5). Section 3.6 discusses the impact of
block deordering on the performance of the system. The windowing strategies and ranking
policies are described in Section 4, while more details of the on-line adaptation methods
used are presented in Section 5.

3.1 Experiment Setup

Before presenting the overview of results, we outline below the three different experimental
setups that we have used. For experiment setup 2 and 3 we used 182 large-scale instances
from 21 IPC domains. The selection of domains and instances is described below. For
experiment 1, we included additional medium-sized instances for a total of 219 instances
from the same 21 domains. We used all domains from the sequential satisficing track of
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the 2008, 2011, and 2014 IPC, except for the CyberSec, CaveDiving and CityCar domains.
(The CyberSec domain is too slow for our system to parse. The other two have conditional
effects, which our implementation does not handle.) We also used the Alarm Processing for
Power Networks (APPN) domain (Haslum & Grastien, 2011). The plans used as input to
BDPO2 are the plan produced by IBaCoP2 (Cenamor, de la Rosa, & Fernández, 2014) in
the 2014 IPC for the problems from that competition, and the best plan found by LAMA
(Richter & Westphal, 2010, IPC 2011 version) in 1 hour CPU time for all other problems.
We refer to these as the base plans. For experiments 2 and 3, we selected from each domain
the 10 last instances for which a base plan exists. (In some domains less than 10 instances
are solved by LAMA/IBaCoP2, which is why the total is 182 rather than 210.) For domains
that appeared in more than one competition, we used instances only from the IPC 2011 set.

All experiments were run on 6-Core, 3.1GHz AMD CPUs with 6M L2 cache, with an 8
GB memory limit for every system. When comparing the anytime performance of BDPO2
and other systems that require an input plan, we count the time to generate each base plan
as 1 hour CPU time. This is the maximum time allocated to generating each base plan;
most of them were found much more quickly.

In our first experiment, we did not use the BDPO2 system. Instead, we ran each of two
subplanners, PNGS and IBCS, for up to 30 seconds on every subproblem corresponding to
a window extracted (by our six windowing strategies) from all base plans, excluding only
subproblems for which the window was proven optimal by the lower bound obtained from
the admissible LM-Cut heuristic (Helmert & Domshlak, 2009). This experiment provided
information to inform the design of the combined window extraction procedure, the window
ranking policies, and other aspects of the system. We do not present its results here, but
will refer to it later when we discuss these system components in detail.

In experiment 2, we compare BDPO2 and eight other anytime planners and plan optimi-
sation systems: LAMA (Richter & Westphal, 2010, IPC 2011 version); AEES (implemented
in the Fast Downward code base; cf. Thayer et al., 2012b); IBCS (as described in Section
3.3); Beam-Stack Search (BSS) (Zhou & Hansen, 2005); PNGS, including “Action Elim-
ination” (Nakhost & Müller, 2010); IBaCoP2 (Cenamor et al., 2014); LPG (Gerevini &
Serina, 2002); and Arvand (Nakhost & Müller, 2009). BDPO2 uses PNGS and IBCS as
subplanners, and is configured as described above. AEES uses LM-Cut (Helmert & Domsh-
lak, 2009) as its admissible heuristic, and the FF heuristic, with and without action costs
for its inadmissible estimates. BSS uses the LM-Cut heuristic. Our implementation of BSS
does not use divide-and-conquer solution reconstruction, and was run with a beam width
of 500. The other systems are described further in Section 6.

Each system was run for up to 7 hours CPU time per problem. BDPO2 and PNGS
both use the base plans as input, and IBCS and Beam-Stack Search both use the base
plan cost as the initial cost bound. As mentioned above, we allocated 1 hour CPU time
for generating each base plan. Therefore, when comparing these systems with planners
starting from scratch (LAMA, AEES, IBaCoP2, LPG and Arvand), we add a 1 hour “start
up” delay to their runtime. Beam-Stack Search is much slower than the other planners used
in the experiment. Therefore, we ran it for up to 24 hours CPU time, and in reporting its
results we divide its runtime by 4. In other words, the results shown are for a hypothetical
implementation of Beam-Stack Search that does the same amount of search, but faster by
a constant factor of 4.
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Experiment 3 uses the same setup as experiment 2, except that the input to BDPO2 is
the best plan found by running PNGS for up to 1 hour CPU time, with an 8 GB memory
limit, on the base plans. (As mentioned previously, in the vast majority of cases PNGS runs
out of memory in much less time than that, but in a few cases it does run up to the 1 hour
limit.) We use this setup primarily to run different configurations of BDPO2 to analyse
the impact of different designs (e.g., the planner selection and window ranking policies,
immediate vs. delayed restart, and so on) in a setting where input plans are already of good
quality. When comparing the anytime result of BDPO2 in this experiment to the other
systems, we add 2 hours to its runtime.

3.2 Overview of Results

Figure 11 shows a headline result, in the form of the average plan quality achieved by
BDPO2 and other systems as time-per-problem increases. The IPC quality score of a plan
is calculated as cref/c, where c is the cost of the plan and cref is the cost of the best plan
for the problem instance found over all runs of all systems used in our experiments. Thus,
a higher score reflects a lower-cost plan. The results in Figure 11 are from experiment 2
and 3, described in the previous section. It is the same as shown in Figure 2 (on page 371),
but including results for all the compared anytime planning systems. None of the planners
starting from scratch find a solution to all 182 problems: LAMA solves 155 problems,
IBaCoP2 144, Arvand 134, AEES 87 and LPG 49. For these planners, the average quality
score shown in Figure 11 is the average over only those problems for which they have, at
that time, found at least one plan. (As previously mentioned, this is also the reason why the
average quality sometimes falls: when a first plan, of low quality, for a previously unsolved
problem is found, the average can decrease.) In other words, this metric is unaffected by
the differences in coverage. Likewise, none of the post-processing or bounded cost search
methods improve on all base plans: BDPO2 finds a plan of lower cost than the base plan
for 147 problems, PNGS for 133, IBCS for 66 and Beam-Stack Search for 14. For these
systems, the average quality shown in Figure 11 is taken over all 182 problems, using the
base plan quality score for those problems that a system has not improved on.

The majority of the compared systems show a trend similar to that of LAMA, i.e.,
improving quickly early on but then flattening out and ultimately stagnating. The reasons
vary: Memory is a limiting factor for some algorithms, notably PNGS, which exhausts the
8 GB available memory before reaching the 7 hour CPU time limit for 93.7% of problems,
and LAMA, which does the same for 67% of problems. AEES runs out of memory on just
over 50% of problems. On the other hand, planners that use limited-memory algorithms,
such as Beam-Stack Search, LPG and Arvand (both of which use local search), never run
out of memory and thus could conceivably run indefinitely. However, the rate at which they
find plan quality improvements is small: From 4 to 7 hours, the average quality produced by
LPG and Arvand increases by 0.0049 and 0.0094, respectively. (The latter excludes three
problems that were solved by Arvand for the first time between 4 and 7 hours; including
those brings the average down, making the increase less than 0.002.) The increase in average
quality achieved by BDPO2, starting from the high-quality plans generated by PNGS from
the base plans, over the same time interval is 0.0115.
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Figure 11: Average IPC quality score as a function of time per problem, on a set of 182
large-scale planning problems. The quality score of a plan is cref/c, where c is the cost of the
plan and cref is the least cost of all plans for the problem; hence a higher score represents
better plan quality. The LAMA, AEES, LPG, Arvand and IBaCoP2 planners start from
the scratch, whereas the post-processing (PNGS, BDPO2) and bounded cost search (IBCS,
Beam-Stack Search) methods start from a set of base plans; their curves are delayed by 1
hour, which is the maximum time allocated to generating each base plan. The experimental
setup is described in detail in Section 3.1.
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Domains
BDPO2

BDPO2 LAMA AEES Arvand LPG IBCS BSS PNGS IBaCoP2
on PNGS
= < ? = < ? = < ? = < ? = < ? = < ? = < ? = < ? = < ? = < ?

Appn 50 20 40 10 40 10 40 10 70 20 20
Barman 100 90 10
Childsnack 100 30 70 10
Elevators 60 60 10 10 10 10 20 20
Floortile 67 78 22 11 11 11 33
GED 30 20 80 70 10 10
Hiking 50 70 20 40 30 50 10
Maintenance 100 100 29
Nomystery 100 100 100 100 50 50 50 50 50 50 50 50
Openstacks 88 88 12 12
Parcprinter 100 22 100 22 33 11 11 33 22 33 67 22 67 11
Parking 43 43 14 43 43 29
Scanalyzer 75 12 38 12 75 12 12
Sokoban 100 100 33 33 67
Tetris 80 40 60 20
Thoughtful 80 30 50 20 20
Tidybot 43 29 71 29 43 43 29 14 14
Transport 60 60 40 40
Visitall 60 60 30 30 10 10
Woodworking 70 30 50 20 20 10
Overall 66 24 4 47 12 3 18 14 8 1 1 1 2 1 8 1 12 2 3 13 1 8 2 1

Table 1: For each plan improvement method, the percentage of instances where it found a
plan of cost matching the best plan (=); found a plan strictly better than any other method
(<); and found a plan that is known to be optimal, i.e., matched by the highest lower bound
(?). The percentage is of the same instances in each domain shown in Figure 12. (Zeros are
omitted to improve readability.) “BDPO2 on PNGS” is the result of BDPO2 in experiment
3; the other results are from experiment 2 (see Section 3.1).

We draw two main conclusions: First, BDPO2 achieves the aim of continuing quality
improvement even as the time limit grows. In fact, it continues to find better plans, though
at a decreasing rate, even beyond the 7 hour time limit used in this experiment. Second, the
combination of PNGS and BDPO2 achieves a better result than either does alone. Partly
this is because they work well on different sets of problems and the figure is showing an
average, but BDPO2 sometimes produces a better result when started with the best plan
found by PNGS also in domains where BDPO2 already outperforms PNGS when both start
from the same base plans (e.g., Elevators and Transport). However, we have also seen the
opposite in some domains (e.g., Floortile and Hiking), where starting BDPO2 with a worse
input plan often yields a better final plan. This can be seen in Figure 12, which provides
a more detailed view. It shows for each problem the cost of the best plan found by each
system at the 7 hour total time limit, scaled to the interval between the base plan cost
and the highest known lower bound (HLB) on any plan for the problem. (Lower bounds
were obtained by a variety of methods, including several optimal planners; cf. Haslum,
2012.) 18 of the 182 problems are excluded from Figure 12: in 3 cases, the base plan cost
already matches the lower bound, so no improvement is possible; for another 15 problems,
no method improves on the base plans within the stipulated time. (The Pegsol domain
does not appear in the graph, because all base plans but one are optimal, and no method
improves on the cost of the last one.)
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Figure 12: Best plan cost, normalised to the interval between the cost of the base plan
and the corresponding highest known lower bound, achieved by different anytime plan
optimisation methods in experiment 2, and by BDPO2 in experiments 2 & 3 (see Section
3.1).
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Table 1 provides a different summary of the information in Figure 12, showing for each
domain and system the percentage of instances for which it found a plan with a cost (1)
matching the best plan for that instance; (2) strictly better than any other method; and
(3) matching the lower bound, i.e., known to be optimal. In aggregate, the combination
of BDPO2 after PNGS over the base plans achieves the best result on all three measures.
However, in 5 domains (GED, Hiking, Openstacks, Parking, and Tidybot), LAMA finds
more plans that are strictly better than any other method. We tried using LAMA as
one of the subplanners in BDPO2, but this does not lead to better results overall. In some
domains, such as OpenStacks and GED, the smallest improvable subplan is often the whole,
or almost the whole, plan, and LAMA finds an improvement of the plan only after searching
for a longer time. Although BDPO2 increases the time limit given to subplanners with each
retry, the average time limit, across all local optimisation attempts in this experiment, is
only 18.48 seconds. Thus, our strategy of searching for quick improvements of plan parts
does not work well in these domains.

3.3 Subplanners Used for Window Optimisation

The subplanners used by BDPO2 are used to find a plan for the window subproblem, as
stated in Definition 9, with a cost less than the cost of the current window, C(w). We have
considered three subplanners:

(1) Iterated bounded-cost search (IBCS), using a greedy search with an admissible heuris-
tic for pruning.

(2) Plan neighbourhood graph search (PNGS), including the “action elimination” tech-
nique (Nakhost & Müller, 2010).

(3) Restarting weighted A? (Richter et al., 2010), as implemented in the LAMA planner.

However, in the experimental setups described in the previous section, BDPO2 uses only
two subplanners, IBCS and PNGS. There are two reasons for choosing these two: First,
they show good complementarity across domains. For example, IBCS is significantly bet-
ter than PNGS in the APPN, Barman, Floortile, Hiking, Maintenance, Parking, Sokoban,
Thoughtful and Woodworking domains, while PNGS is better in the Elevators, Scanalyzer,
Tetris, Transport and Visitall domains. Second, the learning policy that we use for sub-
planner selection learns faster with a smaller number of options. Therefore, adding a third
subplanner will only improve the overall performance of BPDO2, given a limited time per
problem, if that subplanner complements the other two well, i.e., it performs well on a
significant fraction of instances where both the other two do not. On the set of benchmark
problems used in our experiment, this was not the case. (A different set of benchmarks
could of course yield a different outcome.) An experiment comparing the effectiveness of all
three subplanners, individually as well as the combination of IBCS and PNGS under the
learning policy, in BDPO2 is presented in Section 5.2 on page 420.

To solve the bounded-cost problem, IBCS uses a greedy best-first search guided by the
unit-cost FF heuristic, pruning states that cannot lead to a plan within the cost bound
using the f-value based on the admissible LM-Cut heuristic (Helmert & Domshlak, 2009).
It is implemented in the Fast Downward planner. The search is complete: if there is no plan
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within the cost bound, it will prove this by exhausting the search space, given sufficient
time and memory. The bounded-cost search can return any plan that is within the cost
bound. To get the best subplan possible within the given time limit, we iterate it: whenever
a plan is found, as long as time remains, the search is restarted with the bound set to be
strictly less than the cost of the new plan.

PNGS (Nakhost & Müller, 2010) is a plan improvement technique. It searches a sub-
graph of the state space around the input plan, limited by a bound on the number of states,
for a lower cost plan. If no better plan is found the exploration limit is increased (usually
doubled); this continues until the time or memory limit is reached. Like with IBCS, we
iterate PNGS to get the best subplan possible within the given time limit. If it improves
the current subplan, the process is repeated around the new best plan.

LAMA (Richter & Westphal, 2010) finds a first solution using greedy best-first search.
It then switches to RWA? (Richter et al., 2010) to search for better quality solutions.

3.4 Restart

The restart condition determines a trade-off between exploring the neighbourhood of the
current solution and continuing the local search into different parts of the solution space.
The most obvious choice, and the one used in other LNS algorithms, is to restart with the
new best solution as soon as one is found. We call this immediate restart. However, we have
found that continuing to explore the neighbourhood of the current plan even after a better
plan has been found, and merging together several subplan improvements, as described in
Section 3.5 below, often produces better results. We call this delayed restart.

Setting the right conditions for when to make a delayed restart is critical to the success
of this approach. We have used a disjunction of two conditions: First, if the union of
improved windows found in the neighbourhood covers 50% of the steps in the input plan.
Recall that when we continue the exploration loop (Algorithm 2) after an improvement has
been found, windows that overlap with any already improved window are excluded from
further optimisation. This drives the procedure to search for improvements to different
parts of the current plan, and helps avoid a certain “myopic” behaviour that can occur
with immediate restarts: When restarting with the new best plan, we get a new block
decomposition and a new set of windows; this can lead to attempting to re-optimise the
same part of the plan that was just improved, even over several restarts, which may lead to a
local optimum that is time-consuming to escape. The second condition is that 39 consecutive
subplanner calls have failed to find any further improvement. The threshold of 39 is three
times the threshold for switching the ranking policy (cf. description of Algorithm 2 at the
beginning of this section). This means that after 39 attempts we have tried to optimise
the 13 most promising windows, among the remaining eligible ones, recommended by all
ranking policies, without success. This suggests there are no more improvable windows
to be found, or that none of our ranking policies are good in the current neighbourhood.
Making a restart at this point allows the exploration to return to parts of the plan that
intersect already improved windows, thus increasing the set of eligible windows.

The average plan quality, as a function of time-per-problem, achieved by BDPO2 using
immediate restart and delayed restart based on the conditions above is shown by the top
two lines in Figure 13 (page 403). In this experiment, both configurations were run using
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Algorithm 3 Merge Improved Windows

1: procedure Merge(πbdp,windowDB)
2: Initialise π̂bdp = πbdp

3: W = improved windows from windowDB sorted by cost reduction (C(w)−C(wnew))
4: while W 6= ∅ do
5: (〈p, w, q〉, wnew) = pop window with highest C(w)− C(wnew) from W
6: π̂bdp = ReplaceIfPossible(π̂bdp, 〈p, w, q〉, wnew)
7: W = RemoveConflictingWindows(W, π̂bdp)

8: return π̂bdp

the same setup as experiment 3, described in Section 3.1 on page 392. As can be seen,
delayed restart yields better results overall. Compared to BDPO2 with immediate restart,
it achieves a total improvement that is 12% higher. However, we found immediate restart to
work better for a few instances, especially in the Visitall and Woodworking domains, where
BDPO2 with immediate restart found a better final plan for nearly 20% of the instances.

The average number of iterations (i.e., steps in the LNS) done by BDPO2 using the
delayed restart condition is 3.48 per problems across all the domains considered in the
experiment; the highest average in a single domain is 8.7, in Thoughtful solitaire. With
immediate restart the average over all domains increases to 4.87. In other words, both
configurations of BDPO2 spend significant time exploring the neighbourhood of each plan.
The anytime performance curve in Figure 13 shows that the additional time spent in each
neighbourhood when using delayed restarts pays off.

3.5 Merging Improved Windows

Delayed restarting would not have any benefit without the ability to simultaneously replace
several improved windows in the current plan. The improved windows are always non-
overlapping (because once a better subplan for a window is found, windows that overlap
with it are no longer considered for optimisation) but their corresponding subproblems may
have been generated from different linearisations of the block deordered plan. Because of
this, the replacement subplans may have additional preconditions or delete effects that the
replaced windows did not, or lack some of their add effects. Thus, there may not be a
linearisation that permits two or more windows to be simultaneously replaced.

The Merge procedure shown in Algorithm 3 is a greedy procedure. It maintains at all
times a valid block deordered plan (π̂bdp), meaning that each precondition of each block
is supported by a causal link with no active threat. (Recall that a “block” in this context
can be block that consists of a single step.) Initially, this is the input plan (πbdp), for
which causal links, and other ordering constraints, are computed by block deordering. The
procedure gets the improved windows (W ) from the window database, and tries to replace
them in the current plan π̂bdp in order of their contribution to decreasing plan cost, i.e.,
the cost of the replaced window (C(w)) minus the cost of the new subplan (C(wnew)).
The first replacement always succeeds, since, by construction of the subproblem, there
is a linearisation of the input plan in which wnew is valid (cf. Theorem 7). Subsequent
replacements may fail, in which case Merge proceeds to the next improved window in W .
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Since replacing a window with a different subplan may impose new ordering constraints,
any remaining improved windows that conflict with partial order of the current plan are
removed from W .

The ReplaceIfPossible function takes the current plan (π̂bdp), and returns an up-
dated plan (which becomes the current plan), or the same plan if the replacement is not
possible. The replacement subplan (wnew) is made into a single block whose steps are to-
tally ordered. The preconditions and effects of this block, and those of the replaced window
(w), are computed according to Definition 5 (page 378). For any atom in pre(wnew) that
is also in w, the existing causal link is kept; likewise, causal links from an effect in add(w)
that are are also in add(wnew) are kept. These links are unthreatened and consistent with
the order, since the plan is valid before the replacement. For each additional precondition
of the new subplan, m ∈ pre(wnew) \ pre(wi), and for each causal link 〈bp,m, bc〉 in π̂bdp

where the producer is in the replaced window (bp ∈ w), the consumer is not (bc 6∈ w), and
the atom of the link is not produced by the replacement subplan (m 6∈ add(wnew)), a new
causal link must be found. Given a consumer (bc) and an atom it requires (m ∈ pre(bc)),
the procedure tries the following two ways of creating an unthreatened causal link:

(C1) If there is a block b′ ≺+ bc with m ∈ add(b′), and for every threatening block (i.e.,
b′′ with m ∈ del(b′′)), either b′′ ≺ b′ or bc ≺ b′′ can be added to the existing plan ordering
without contradiction, then b′ is chosen, and the ordering constraints necessary to resolve
the threats (if any) are added.

(C2) Otherwise, if there is a block b′ with m ∈ add(b′) that is unordered w.r.t. bc, and for
every threatening block either b′′ ≺ b′ or bc ≺ b′′ can be enforced, then b′ is chosen, and the
causal link (implying the new ordering b′ ≺ bc) and threat resolution ordering constraints
(if any) are added to the plan.

The two are tried in order, C1 first and C2 only if C1 fails. If neither rule can find the
required causal link, the replacement fails. wnew may also threaten some existing causal
links in π̂bdp that w did not. For each threatened link, 〈bp,m, bc〉, the procedure tries to
resolve the threat in three ways:

(T1) If the consumer bc was ordered before w in the linearisation of the corresponding
subproblem (bc ∈ p), and bc ≺ wnew is consistent, the threat is removed by adding this
ordering.

(T2) If the producer bp was ordered after w in the linearisation of the corresponding sub-
problem (bp ∈ q), and wnew ≺ bp is consistent, the threat is removed by adding this ordering.

(T3) If a new, unthreatened causal link supplying m to bc can be found by one of the two
rules C1 or C2 above, the threatened link is replaced with the new causal link.

The rules are tried in order, and if none of them can resolve the threat, the replacement
fails.

Some non-basic ordering constraints between blocks not in w may disappear when w
is replaced with wnew; likewise, some ordering constraints between w and the rest of the
plan may become unnecessary, because wnew may not delete every atom that w deletes and
may not have all preconditions of w, and thus can be removed. This may make pairs of
blocks b, b′ in the plan that were ordered before the replacement unordered, and thus create
new threats. All such new threats are checked by ReplaceIfPossible, and if found are
resolved by restoring the ordering constraint that was lost.
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Lemma 8. If the current plan π̂bdp is valid, and wnew solves the subproblem corresponding
to window 〈p, w, q〉, the plan returned by ReplaceIfPossible is valid.

Proof. The procedure ensures that every precondition of every step is supported by a causal
link with no active threat: such a link either existed in the plan before replacement (and
any new threats to it created by the replacement are resolved by ordering constraints), or
was added by the procedure. Thus, if the replacement succeeds, the resulting plan is valid
according to Theorem 2. If the replacement fails, the plan returned is the current plan,
π̂bdp, unchanged, which is valid by assumption.

Theorem 9. If the input plan, πbdp is valid, then so is the plan returned by Merge.

Proof. Immediate from Lemma 8 by induction on the sequence of accepted replacements.

3.6 The Impact of Plan Decomposition

The neighbourhood explored in each step of the LNS in BDPO2 is defined by substituting
improved subplans into the current plan. Each subplan considered for local optimisation is
a subsequence of some linearisation of the block deordering of the current plan. Obviously,
we can also restrict windows to be consecutive subsequences of the totally ordered input
plan; in fact, similar approaches to plan optimisation have adopted this restriction (Ratner
& Pohl, 1986; Estrem & Krebsbach, 2012; Balyo, Barták, & Surynek, 2012). In this section,
we address the question of how much the block deordering contributes to the performance
of BDPO2.

In the preliminary experiment (setup 1, as described in Section 3.1 on page 392) we
observed that more than 75% of the subproblems for which an improved subplan was found
correspond to a non-consecutive part of the sequential input plan. However, this in it-
self does not prove that optimising only the 25% of subplans that can be found without
deordering would not lead to an equally good end result.

Therefore, we conducted another experiment, using the same setup as experiment 3 (de-
scribed in Section 3.1). In this experiment, we ran BDPO2 separately with different degrees
of plan decomposition: (1) With block deordering (as in the default BDPO2 configuration,
the one used in experiments 2 and 3 presented in Section 3.2 on page 394). (2) With stan-
dard, i.e., step-wise, plan deordering only. In this configuration, we used Kambhampati
and Kedar’s (1994) algorithm (described in Section 2.3) for plan deordering. (3) Without
any deordering, i.e., passing the totally ordered input plan directly to the LNS process.
In addition, each of these configurations was run once with immediate restarting and once
with delayed restarting, as described in Section 3.4.

Figure 13 shows the average IPC plan quality score as a function of time-per-problem
achieved by each of these configurations of BDPO2. It shows a simple and clear picture:
With immediate restart, LNS applied to block deordered plans outperforms LNS applied
to step-wise deordered plans, which in turn outperforms its use on totally ordered plans.
The total improvement, as measured by the increase in the average IPC plan quality score,
achieved by BDPO2 without deordering is 28.7% less than what is achieved by the best
configuration. We can also see that deordering is an enabler for delayed restarting: With
block and step-wise deordering, delayed restarting further boosts the performance of LNS
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Figure 13: Average IPC quality score as a function of time per problem for BDPO2 applied
to the totally ordered input plan; the standard (step-wise) deordering of the plan; and the
block deordering of the plan. For each plan type, the system was run in two configura-
tions: once with delayed restarting and once with immediate restarting (cf. Section 3.4 on
page 399). This experiment was run with setup 3, as described in Section 3.1 on page 392.
The time shown here is only the runtime of BDPO2 (i.e., without the 2 hour delay for
generating the input plans, as shown in Figure 11). Note also that the y-axis is truncated:
All curves start from the average quality of the input plans, which is 0.907.
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plan optimisation by 12% and 14.7%, respectively, while on totally ordered plans it has no
significant effect.

Deordering increases the number of linearisations and therefore enables many more
distinct candidate windows to be created. However, recall that BDPO2’s neighbourhood
exploration procedure (Algorithm 2) interleaves incremental window generation with opti-
misation attempts; many of the windows that could be generated from the current plan may
never be generated before a restart occurs. Thus, the average number of windows generated
in each iteration does not reflect the difference in performance. (With block deordering, the
average number of windows generated is 277.23, of which 183.19 remain after filtering, while
on the totally ordered plans it is 376.8, and 149.94 after filtering; both are using immediate
restart.) But deordering helps the windowing strategies generate windows that are more
easily optimised. Recall that neighbourhood exploration will retry the same subplanner on
the same window (with a higher time limit) only after all windows have been tried by that
subplanner. The average number of optimisation attempts, using either subplanner, on each
window selected for optimisation at least once, is around 1.7 when either block deordering
or standard deordering is used on the input plan. Without any deordering, however, the
average number of attempts is higher, and very high in a few domains: leaving out the
highest 5% of neighbourhoods encountered, the average is slightly more than 2; in more
than 10% of the plan neighbourhoods the average number of attempts is over 5, and in a
few cases more than 10. In other words, generating windows from a totally ordered plan
causes the procedure to spend, on average, more time on each window before an improving
plan is found.

On the other hand, as noted in Section 3.2, in some domains subplanners need more
runtime to find better plans for improvable windows, and the BDPO2 configuration without
deordering does find a better plan than the default configuration for 26 of the 182 problems.
In the current BDPO2 system, the subplanner time limit is increased only when a window
is retried. A procedure that either attempts candidate windows more likely to be improved
(for example, as indicated by the window ranking policies described in Section 4.6) more
frequently, or varies the amount of time given to optimise each window may perform better.
The optimal amount of deordering to do on each plan may well be different from prob-
lem to problem. But averaged across the set of benchmark problems, more deordering is
unarguably better than none.

4. Windowing Strategies and Ranking of Windows

A window is a subplan of some linearisation of the block deordered plan, extracted in order
to attempt local optimisation. This section describes the strategies we use to generate and
rank windows, and an experimental evaluation of their impact on our system’s performance.

Recall from Definition 8 (page 390) that a window is represented by a triple 〈p, w, q〉,
where w is the set of blocks to be replaced, and p and q are the sets of blocks ordered
before and after w, respectively, in the linearisation. A block decomposed p.o. plan can
have many linearisations, producing many possible windows – typically far too many to
attempt to optimise them all. A windowing heuristic is a procedure that extracts a reduced
set of windows, hopefully including the most promising ones, in a systematic way. We
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Figure 14: A block deordered plan and its transformation into extended blocks: blocks b1
and b3 are merged into a single block, as are blocks b5 and b6.

Windowing heuristics
Generated Not filtered out Improved Impr./Gen.

Basic Ext. Basic Ext. Basic Ext. Basic Ext.

Rule-based 108 35 59 22 23 9 0.21 0.26
Cyclic thread 59 47 45 31 15.5 11 0.26 0.23

Causal followers 72 45 41 20 15.5 7 0.22 0.16

Table 2: The total number (in thousands) of windows that were generated, not filtered out,
and finally improved, using different windowing heuristics over different block types (basic
and extended). The number of possible windows over the sequential input plans, before
even considering deordering, is over 1.47 million. The rightmost pair of columns shows the
rate of success, meaning the fraction of improved windows out of the generated windows.
The numbers are from the results of experiment 1 (described in Section 3.1 on page 392).

present three windowing heuristics, called the rule-based, cyclic thread, and causal followers
heuristics. Each of them is described in detail in the following subsections.

Each heuristic is applied over two types of block – basic and extended – one at a time.
Basic blocks are the blocks generated by a block deordering. (For the purpose of windowing,
any step that is not included in a block created by block deordering is considered to be
a block on its own.) Extended blocks are created by merging basic blocks in the block
deordered plan that form complete non-branching subsequences. If block bi is the only
immediate predecessor of block bj , and bj the only immediate successor of bi, they are
merged into one extended block. Algorithm 4 shows the procedure for extended block
formation. (IP(b) denotes the set b’s immediate predecessors, while IS(b) is b’s immediate
successors.)

Algorithm 4 Computing extended blocks.

1: Bext ← Bbasic

2: while ∃bi, bj ∈ Bext : IP(bj) = {bi}, IS(bi) = {bj} do
3: Bext ← Bext ∪ {bi · bj} \ {bi, bj}

The process is further illustrated by an example in Figure 14. Note that blocks b5
and b2 are not merged into one extended block. This is because although b5 is the only
immediate successor of b2, b2 is not the only immediate predecessor of b5. Extended blocks
are useful because they allow some windowing heuristics to capture larger windows. Our
experiment results show that windows of different sizes are more useful in different domains:
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Algorithm 5 Extract More Candidate windows

/* global array strategy[1..6] stores the state of each windowing strategy */
1: procedure ExtractMoreWindows(πbdp,windowDB, optSubprob)
2: W = ∅
3: tlimit = initial time limit Tincrement

4: while telapsed < tlimit or |W | < nWindowsLimit do
5: i = NextWindowingStrategy()
6: if i = null then break /* all windowing strategies are exhausted */

7: W = strategy[i].GetWindows(πbdp,windowDB, optSubprob,
nWindowsLimit− |W |, tlimit − telapsed)

8: if telapsed ≥ tlimit and W = ∅ then tlimit += Tincrement

9: windowDB.Insert(W )

For example, larger windows are more likely to be improved in the Pegsol, Openstacks and
Parcprinter domains, while optimising smaller windows is better in the Elevators, Transport,
Scanalyzer and Woodworking domains.

A windowing strategy is a windowing heuristic applied to a block type. Thus, we use
a total of six different strategies. Each of these strategies contributes some improvable
windows that are not generated by any of the other strategies (cf. Section 4.4, and in
particular Table 3 on page 411). Thus, all of them are, in this sense, useful. On the other
hand, the size of the set of windows that each generates and the fraction of improvable
windows in this set varies between the strategies, and in that sense some are more useful
than others.

Table 2 shows results from our first experiment, in which we systematically tried two
subplanners (PNGS and IBCS) on every window generated (and not filtered out) by any
windowing strategy over 219 input plans. The table shows the total number (in thousands)
of windows that were generated, that remain after filtering, and that were finally improved
by at least one of the two subplanners. In this experiment, windows were filtered out only
if the window cost matched the lower bound given by the admissible LM-Cut heuristic
(Helmert & Domshlak, 2009). The experiment setup is further described in Section 3.1 (on
page 392). The first observation is that all strategies are very selective. The number of
windows that could potentially be generated, even without considering deordering, i.e., only
by taking all subsequences of the totally ordered input plans, is over 1.47 million. Thus,
even the most prolific strategy generates less than a tenth of the possible windows. Second,
we used the rate of success, meaning the fraction of windows generated that were improved
by any of the subplanners used in the experiment, to order the strategies. The order is as
follows:

1. Rule-based heuristic over extended blocks.

2. Cyclic thread heuristic over basic blocks.

3. Cyclic thread heuristic over extended blocks.

4. Causal followers heuristic over basic blocks.

5. Rule-based heuristic over basic blocks.

6. Causal followers heuristic over extended blocks.
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The neighbourhood exploration procedure (Algorithm 2 on page 391) adds windows to
the database incrementally, by calling the ExtractMoreWindows procedure shown in
Algorithm 5. This procedure selects the next strategy to try, cycling through them in
the order above, and asks this strategy to generate a specified number of windows, in
a limited time. Each strategy keeps its own state (what part of the heuristic has been
applied and up to what part of the plan), so that the next time it is queried it can resume
generating new windows. When all windows that are possible under a given strategy have
been generated, we say the strategy is exhausted. The windowing strategies discard (1)
windows that are known to be optimal, either because their cost matches the lower bound
given by the admissible LM-Cut heuristic (Helmert & Domshlak, 2009), or because they
are in the stored set of optimally solved subproblems, and (2) windows that overlap with an
already improved window. These windows are not eligible for optimisation (cf. Section 3),
so generating them is redundant. If the selected strategy finishes without generating enough
windows and time remains, the next not-yet-exhausted strategy in the order is queried, and
so on, until either |W | = nWindowsLimit or time is up. If no windows are generated, and
some strategies are still not exhausted, the time limit is increased.

4.1 Rule-Based Windowing Heuristic

Our first version of BDPO (Siddiqui & Haslum, 2013b) used a single windowing strategy,
based on applying a fixed set of rules over extended blocks. Because this strategy comple-
ments the new windowing heuristics well, we have kept it in BDPO2.

Each rule when applied to a block b in a block deordered plan πbdp selects a set of
blocks from to go into the replaced part (w) based on their relation to b. To ensure that
the window is consistent with the block deordering (i.e., has a consistent linearisation, as
stated in Definition 8 on page 390), any blocks that are constrained to be ordered between
blocks in the window must also be included. We call these the intermediate blocks, formally
defined as follows.

Definition 10. Let πbdp = 〈S,B,≺〉 be a block decomposed p.o. plan. The intermediate
blocks of B ⊆ B are IB(B) = {b | ∃ b′, b′′ ∈ B : b′ � b � b′′}.

Let b be a block in πbdp, and let Un(b) be the set of blocks that are not ordered w.r.t. b,
IP(b) the immediate predecessors of b, and IS(b) its immediate successors. The rules used
by the windowing heuristic are:

1. w′ ← {b}.
2. w′ ← {b} ∪ IP(b).

3. w′ ← {b} ∪ IS(b).

4. w′ ← {b} ∪Un(b).

5. w′ ← {b} ∪Un(b) ∪ IP(b).

6. w′ ← {b} ∪Un(b) ∪ IS(b).

7. w′ ← {b} ∪Un(b) ∪ IP(b) ∪ IS(b).

8. w′ ← {b} ∪Un(b) ∪ IP({b} ∪Un(b)).

9. w′ ← {b} ∪Un(b) ∪ IS({b} ∪Un(b)).
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Figure 15: Window formation by applying the 1st rule of the rule-based windowing heuristic
over block b1, i.e., w ← {b1}, p ← Un(b1). The unordered block b2 is placed in its
predecessor set. Note that this window can be optimised by removing s3 because this step
has no causal link to its successors.

10. w′ ← {b} ∪Un(b) ∪ IP({b} ∪Un(b)) ∪ IS({b} ∪Un(b)).

Given the blocks selected by one of the rules above, the partitioning of blocks into 〈p, w, q〉
is made by setting w = w′ ∪ IB(w′) and assigning to p any block that is ordered before
or unordered with w, and to q any block ordered after w. Figure 15 shows an example of
rule-based windowing, where the 1st rule is applied to block b1. Applied to all blocks, the
above rules can produce duplicates; of course, only unique windows are kept.

The first rules, which include fewer blocks, generally produce smaller windows, while
the later rules tend to produce larger window (though there is no exact relation, since the
number of actions in a block varies). The heuristic applies all rules to each block in the
block deordered plan πbdp in turn. Rules are applied in the order 1,10,2,9,3,8,4,7,5,6, i.e.,
starting with the first, the last, the second, the second last, and so on. The blocks are
ordered by size (descending), with ties broken by their order in the input plan (in opposite
direction for extended blocks).

Recall that ExtractMoreWindows repeatedly asks each windowing strategy to gen-
erate a limited number of windows. The ordering of blocks and rules described above helps
to ensure that the heuristic generates a varied set of windows, including both small and
large, covering different parts of the current plan, each time it is queried.

4.2 The Cyclic Thread Windowing Heuristic

To discover new windowing heuristics, we noted some key changes in the decomposed plan
structure that frequently occur when a plan is improved. One significant observation is
that if multiple steps of an input plan have the same add effects, then those steps together
with the steps necessarily ordered in between them form a subplan that can often be im-
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proved. We call this cyclic behavior. In one experiment, we found that cycles of this type
are either removed from the plan or replaced with different cycles in more than 87% of
the improvements across most domains. The definition of cyclic behavior is based on an
individual atom. Intuitively, an atom has cyclic behavior if it has multiple producers (as
defined below).

Definition 11. Let πbdp = 〈S,B,≺〉 be a block decomposed p.o. plan, and Pm ⊆ S be the
set of producers of an atom m, i.e., ∀s∈Pmm ∈ add(s). m has cyclic behavior iff |Pm| > 1.

Note that Pm contains the init step sI iff m ∈ I. However, since a window never contains
the initial step sI, candidate windows are formed from extended producers instead. A step
s /∈ {sI, sG} is an extended producer of atom m iff s produces m, or s consumes m and
there is no s′ 6= sI that produces m and ordered before s in the block deordered plan. The
formal definition is as follows.

Definition 12. Let πbdp = 〈S,B,≺〉 be a block decomposed p.o. plan. A step s ∈ S is an
extended producer of an atom m iff s /∈ {sI, sG} and:
1. m ∈ add(s) or
2. m ∈ pre(s) and ∀k∈S\sI if m ∈ add(k) then s ≺+ k.

In order to form candidate windows with respect to an atom m having cyclic behavior,
we first extract all the blocks that contain at least one extended producer of an atom m.
A cyclic thread (cf. Definition 14) is then formed by taking a linearisation of those blocks,
consistent with the input plan.

Definition 13. Let πbdp = 〈S,B,≺〉 be a block deordering of a sequential plan πseq, and
bx, by ∈ B are two blocks such that bx ∩ by = ∅. Let 〈bx, by〉 be a linearisation of {bx, by}.
〈bx, by〉 is consistent with πseq if at least one step in bx appears before a step in by in πseq.

The way we linearise the blocks so that it is consistent with the input plan is clarified
by the following example. Assume bx : {sa, sc} and by : {sb, sd} are two blocks that we
have to linearise, and that the orderings of their constituent steps in the input plan is
sa ≺in sb ≺in sc ≺in sd. The linearisation starts with the block that contains the first
element of ≺in, i.e., bx in this case (since it contains sa); ≺in is then updated to ≺in \bx, and
the linearisation continues in the same fashion until ≺in is empty. The resulting linearisation
of the example blocks will be 〈bx, by〉. If multiple (nested) blocks contain the first element
of ≺in, the innermost one is picked. The formal definitions of thread and cyclic thread are
as follows.

Definition 14. Let πbdp = 〈S,B,≺〉 be a block deordering of a sequential plan πseq, EPm ⊆ S
be the set of extended producers of an atom m, and Bm ⊆ B be the set of blocks, where
each element of Bm contains at least one element of EPm. The thread of m, Tm, is the
linearisation of blocks in Bm such that the linearisation is consistent with πseq. The thread
is called cyclic iff m has cyclic behavior.

For example, in the plan shown in Figure 15(i), atom (at t1 A) has cyclic behaviour,
since it holds in the initial state and is added by step s3. Its extended producers are s1, s3
and s4, so the cyclic thread is T(at t1 A) = 〈b1,b2〉.
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Finally, candidate windows are formed by taking a consecutive subsequence of blocks
(and intermediate blocks, as necessary) from a cyclic thread. Like in rule-based windowing,
blocks that are unordered with respect to the window are assigned to the set of blocks that
will precede the window.

Definition 15. Let Tm = b1, ..., bk be a cyclic thread of an atom m. The cyclic thread-based
windows over the cyclic thread Tm are Wl,m = {B ∪ IB(B) | B = bi, ..., bi+l is a consecutive
subsequence of Tm}, while the unordered blocks are always placed in its predecessor set.

Also like the rule-based windowing heuristic, the cyclic thread heuristic generates win-
dows in an order that aims to ensure it returns a varied set of windows each time it is
called. It first identifies all cyclic threads in the block deordered plan and then generates
a stream of candidate windows from one cyclic thread after another. As mentioned, each
candidate window is formed by taking a consecutive subsequence of blocks (and the inter-
mediate blocks as required to form a consistent window) from the cyclic thread. Given a
thread of |Tm| blocks, subsequences are generated according to the following order of sizes:
1, |Tm|, 2, |Tm| − 1, . . . , |Tm|/2. In other words, the subsequence lengths are ordered as the
smallest, the biggest, the second smallest, the second biggest, and so on. For each size in
this order, all windows are generated moving from the beginning to the end of the thread.

4.3 Causal Followers Windowing Heuristic

The third strategy that we have use to obtain a broader range of potentially improvable
windows is similar to the cyclic thread heuristic in that it creates windows that are sub-
sequences of a linearisation of blocks connected by a particular atom, but different in that
these connections are via causal links.

Definition 16. Let πbdp = 〈S,B,≺〉 be a block decomposed p.o. plan, and ≺c be the set of
causal links in ≺. The causal followers of an atom m for a producer p ∈ S are CF〈m,p〉 =
{p, sj , ..., sk|{〈p,m, sj〉, ..., 〈p,m, sk〉} ⊆ ≺c} \ {sI, sG}. The causal followers of m (for all
producers), CFm, is the sequence 〈CF〈m,p1〉, ...,CF〈m,pn〉〉, where p1, ..., pn is a linearisation
of all the producers of m.

In other words, the causal followers of an atom m is a list of sets of steps. In each
set of steps, one is the producer s and the others are consumers sj of m, and s has a
causal link to every sj for m, i.e., PC(m) ∈ Re(s ≺ sj). For example, the atom (at t1 B)
in the block deordered plan in Figure 15(i) appears in two causal links, both with the
same producer: 〈s1, (at t1 B), s2〉 and 〈s1, (at t1 B), s3〉. Thus, the causal followers are
CF(at t1 B) = 〈{s1, s2, s3}〉.

From the block deordered plan we extract the sequence of sets of blocks corresponding
to the causal follower steps, according to the definition below. For example, the sequence
of causal follower blocks of CF(at t1 B) in the plan in Figure 15(i) is CFB(at t1 B) = 〈{b1}〉,
since all steps in CF(at t1 B) are contained in block b1.

Definition 17. Let πbdp = 〈S,B,≺〉 be a block decomposed p.o. plan, and CF〈m,p〉 be
the causal followers of an atom m with respect to a producer p ∈ S. The causal follower
blocks with respect to a producer p ∈ S of an atom m, CFB〈m,p〉, is the set of blocks,
where each block contains at least one element of CF〈m,p〉. The causal follower blocks of m
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Basic block Ext. block Rule-based Cyclic thread Causal followers

Exclusive 66.52% 8.14% 24.50% 6.09% 17.78%
All 91.86% 33.48% 63.22% 34.01% 66.34%

Table 3: Percentage of improvable windows found using the two block types and three
windowing heuristics, out of the total number of improvable windows found using all blocks
types and windowing heuristics. The first row gives the percentage of improvable windows
found by one block type but not the other (or by one windowing heuristic but not the
others), while the second row gives the percentage of all improvable windows found by one
block type (or windowing heuristic). The results are from the first experiment, described
in Section 3.1.

(for all producers), CFBm, is the sequence 〈CFB〈m,p1〉, ...,CFB〈m,pn〉〉, where p1, ..., pn is a
linearisation of all the producers of m in πbdp.

Candidate windows are formed by taking consecutive subsequences of the sequence of
causal follower blocks (with intermediate blocks, as necessary). The formal definition is
given below. Like in the other windowing heuristics, blocks that are unordered with respect
to the window are assigned to the set of blocks that will precede the window.

Definition 18. Let πbdp = 〈S,B,≺〉 be a block decomposed p.o. plan, and CFBm =
〈CFB〈m,p1〉, ...,CFB〈m,pn〉〉 be the causal follower blocks of m. The causal followers-based
windows over CFBm are Wl,m = {B ∪ IB(B) | B = CFB〈m,pi〉 ∪ ... ∪ CFB〈m,pi+l〉 is a
consecutive subsequence of CFBm of length l}, while the unordered blocks are always placed
to its predecessor list.

The order in which windows are generated by the causal followers heuristic is based
on the same principle as in the cyclic thread heuristic. It generates a stream of candidate
windows from the causal follower blocks CFBm associated with each atom m in turn. These
windows are consecutive subsequences of sets of blocks from CFBm, of lengths chosen
according to the pattern 1, l, 2, l − 1, ..., (l/2), where l is the length of CFBm.

4.4 The Impact of Windowing Heuristics

No one single windowing heuristic or block type, nor any combination of them, is guaranteed
to find all improvable windows. The first row of Table 3 shows the percentage of improvable
windows found using one block type but not the other (or by one windowing heuristic but
not the others), out of the total number of improvable windows found using all blocks types
and windowing heuristics. (The results are from the first experiment, described in Section
3.1). It shows that every windowing heuristic and block type contributes some improvable
windows that are not found by other strategies. For example, 24.5% of improvable windows
are found only by the rule-based windowing heuristic (using both basic and extended blocks).
On the other hand, 36.78% of all improvable windows are not found by this heuristic. Each
of the windowing heuristics has its strengths and limitations. The rule-based heuristic,
for example, can only generate windows that contain sequences of extended blocks up to
a fixed length, while the cyclic thread and causal followers heuristics only make windows
from blocks connected by a single atom.
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Figure 16: Average IPC quality score as a function of time for separate runs of BDPO2 using
each of the three windowing heuristics alone, all three heuristics combined, and random
window generation. Each run is done using the same setup as experiment 3, described in
Section 3.1 (on page 392). The x-axis here shows only the runtime of BDPO2 (i.e., without
the 2 hour delay for generating the input plans, as shown in Figure 11). Note also that the
y-axis is truncated: The average quality of the input plans is 0.907.
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Figure 16 shows the impact of different windowing heuristics on the anytime performance
of BDPO2, as measured by the average IPC plan quality score achieved as a function of time-
per-problem. In this experiment, we ran BDPO2 with each of the three windowing heuristics
alone, and with all three combined in a sequential portfolio, as described at the beginning
of this section. (The combined portfolio of windowing heuristic is the same configuration
of BDPO2 that is presented in the experimental results in Section 3.2, page 394.) We also
compare these with a non-heuristic, random windowing strategy, in which each window
is formed by taking a random subsequence of blocks from a random linearisation of the
block deordered plan. Subsequences are chosen so that the distribution of window sizes
(measured by the number of actions in the window) is roughly the same as that produced
by the combined heuristics. The experiment uses setup 3 (described in Section 3.1 on page
392), i.e., the input plans to BDPO2 are already of high quality. (Their average IPC plan
quality score is 0.907.)

As predicted by the data in Table 3, using any of the three windowing heuristics on
its own results in a much worse system performance, since each fails to find a substantial
fraction of improvable windows. In fact, random window generation is better than any
of the heuristics on their own. However, the combined portfolio of heuristics outperforms
random windowing by a good margin: the total quality improvement achieved with the
random windowing strategy is 17.1% less than that of the best BDPO2 configuration. This
demonstrates that the heuristics capture information that is useful to guide the selection of
windows.

4.5 Possible Extensions to the Windowing Strategies

Since a window is formed by partitioning plan steps into three disjoint sets of blocks, the
number of possible windows is exponential. The challenge for a good windowing heuristic is
to extract a reduced set that contains windows more likely to be improved. Every windowing
strategy has some limitations. Hence, there is always a scope for developing new windowing
heuristics or extending the existing ones; one such extension is discussed in this section.

The combination of strategies we use may miss some improvable windows. For example,
a long sequence of blocks that do not form part of a cyclic thread or causal followers sequence
with respect to a single atom will not be captured by these heuristics. An example of this is
shown in Figure 17, where three candidate windows, W1, W2 and W3, found by the causal
followers windowing heuristic are not improvable separately. In this situation, forming a
window as the union of separate windows, found by one or several strategies, can overcome
the limitations of those strategies. In the example, the union of W1 and W2 is improvable.
This type of composite windows could be formed in the later stages of the plan improvement
process, after all the individual windowing heuristics have been exhausted. However, the
number of composite windows that can be created from a large set of candidate windows is
combinatorial and thus optimising all of them will take a long time.

4.6 Window Ranking

Although the windowing strategies generate only a fraction of all possible windows, the
number of candidate windows is still often large (cf. Table 2). In order to speed up the
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Figure 17: Three candidate windows, W1, W2, and W3, found by the causal followers
windowing heuristic for atoms (at t1 B), (in p1 t2), and (in p2 t3) respectively. None of
them are improvable. However, the composite window formed by merging W1 and W2 is
improvable by substituting the delivery of package p1 (from location B to C) provided by
truck t2 with truck t1. This is because the atom (at t2 C) is not required by any of its
successors (i.e., the goal in this example).

plan improvement process, it is helpful to order windows so that those more likely to be
improved are optimised first. This is the role of window ranking.

Ranking windows is made difficult by the fact that the properties of improvable windows
vary from one to another, and a lot from domain to domain. For example, as mentioned at
the beginning of this section, larger windows are more likely to be improved in the Pegsol,
Openstacks and Parcprinter domains, while smaller windows are better for the Elevators,
Transport, Scanalyzer, and Woodworking domains. In the Sokoban domain, on the other
hand, medium-sized windows are better. Moreover, an improvable window may not be
improved by a particular subplanner within the given time bound. We have noted that in
some domains, e.g., Pegsol or Scanalyzer, subplanners require, on average, more time to
find a lower-cost plan.

We have developed a set of window ranking policies by examining structural properties
of the generated candidate windows generated and the results of our first experiment (cf.
Section 3.1) in which we ran two subplanners (IBCS and PNGS) on each generated window
with a 30 second time limit, excluding only windows whose cost is already shown to be
optimal by the admissible LM-Cut heuristic (Helmert & Domshlak, 2009). Investigating
the properties of improved and unimproved windows, we identified four metrics that work
relatively well across domains:
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Figure 18: Fraction of improvable windows, across all domains, out of the selected top
windows from the ranked orders generated by each of the ranking policies (see text).

(1) The total number of causal links whose producers reside in a window and whose con-
sumers are outside the window, divided by the length of the window – the lower the
value the higher the rank. We call this property “outgoing causal links per length”.

(2) The total number of causal links whose consumers reside in a window and whose pro-
ducers are outside the window, divided by the length of the window – the lower the
value the higher the rank. We call this property “incoming causal links per length”.

(3) The gap between the cost of a window and the lower bound on the cost of any plan for
the corresponding subproblem given by the admissible heuristic – the higher the value
the higher the rank.

(4) The number of pairwise ordering (of steps) disagreements between a window 〈p, w, q〉
and the sequential input plan – the lower the value the higher the rank. To calculate
this we first take the linearisation of 〈p, w, q〉 that is used to generate the corresponding
subproblem. Then, for every pair of plan steps, if the ordering between them in the
linearisation is not the same as in the input plan we call this a pairwise ordering
disagreement. The lower the total number of such disagreements is for a window, the
higher its rank. In other words, if the ordering of steps in a window is very different
from the input plan then it is less likely to be improved.
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Figure 19: Fraction of improvable windows in the Parking domain, out of the selected top
windows from the ranked orders generated by each of the ranking policies (see text).

We can infer from the first two ranking policies that the more disconnected a window is
from other blocks in the decomposed plan the more likely it is to be improved. Figure 18
compares these ranking policies with the performance of a random ordering of the windows.
On average across all domains, all four ranking policies are good at picking out improvable
windows. For example, if we take the top 25 windows from the order generated by the
“incoming causal links per length” policy, nearly 74% of those windows are improvable (by
at least one subplanner), while the top 25 windows from the random order contain only
61% improvable windows. The random ranking in Figure 18 is the best result out of three
separate random rankings for each of the values on the x-axis. As expected, it exhibits
roughly the same ratio of improvable windows over all ranges (from 25 to 400). Nearly 61%
of the selected windows, across all domains, are improvable. However, the performance of
individual ranking policies varies by domain, and for each policy we find some domain in
which it is not good. For example, Figure 19 shows ranking results for instances of the
Parking domain only: Here, the “outgoing causal links per length” policy does not work
well. Considering the top 90 windows in the ranked order, it is even worse than random.
However, the other ranking policies are quite beneficial in this domain.

BDPO2 uses the first three ranking policies in a sequential portfolio (as explained in
Section 3). For each subplanner, BDPO2 uses a current ranking policy to select the next
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Figure 20: Average IPC plan quality score as a function of time in two separate runs: with
and without window ranking. In the second case, the order of the candidate windows is
randomised. Each run is done using experimental setup 3, as described in Section 3.1 on
page 392. The time shown here is the runtime of BDPO2 only (excluding the 2 hour delay
for generating the input plans, as shown in Figure 11). Also, the y-axis is truncated: All
curves start from the average quality score of the input plans, which is 0.907.

window for the chosen subplanner (from those eligible for optimisation by that subplanner).
If no improvement is found by that subplanner in a certain number of attempts (13, in our
current configuration), the system switches a different ranking policy, to produce a different
ordering of the candidate windows for that subplanner.

The use of window ranking has a beneficial effect on the anytime performance of the
plan improvement process, as shown in Figure 20. We achieve higher quality scores, and in
particular, achieve them faster, when using window ranking compared to random ranking.
In this experiment, we ran BDPO2 once with the portfolio of ranking policies, as described
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above, and once with windows chosen for optimisation in a random order. The experiment
used the same setup as experiment 3 (described in Section 3.1 on page 392).

We tried many alternative methods of combining the ordered lists generated by different
ranking policies, in order to achieve a ranking with more stable performance across domains.
The problem of combining rankings, often called rank aggregation, has been studied in many
disciplines, such as social choice theory, sports and competitions, machine learning, infor-
mation retrieval, database middleware, and so on. Rank aggregation techniques range from
quite simple (based on rank average or number of pairwise wins) to complex procedures
that in themselves require solving an optimisation problem. We tried five simple but popu-
lar rank aggregation techniques, namely Borda’s (1781) method, Kemeny’s (1978) optimal
ordering, Copeland’s (1951) majority graph, MC4 (Dwork, Kumar, Naor, & Sivakumar,
2001), and multivariate Spearman’s rho (Bedo & Ong, 2014). The result of those experi-
ments, however, is that rank aggregation does not produce better, or more stable, window
rankings, especially in cases where one individual policy is relatively bad. Hence our choice
of using the ranking policies in a cyclic portfolio instead.

5. On-line Adaptation

The LNS approach to optimisation by repeatedly solving local subproblems gives us the
opportunity for adapting the process on-line to the current problem. We have noted that
different subplanners, windowing strategies, and ranking policies work better in different
domains. For example, Figure 21 shows the fraction of local improvements found by each
of three subplanners in different domains. As can be seen, the IBCS subplanner is more
productive, compared to PNGS and LAMA, in the APPN, Barman, Maintenance, Parking,
Sokoban, and Woodworking domains. PNGS, on the other hand, is better in the Scanalyzer
and Visitall domains, and LAMA in the Elevators and Openstacks domains. Therefore, if we
can learn over the course of the local search the relative success rate of different subplanners
on the current problem, the system will perform better. In a similar fashion, window
generation strategies and ranking policies may also be adapted to the current problem, so
that the system is more likely to select subplans for optimisation that are improvable.

We use an on-line machine learning technique – the multi-armed bandit (MAB) model,
to be specific – to select the subplanner for each local optimisation attempt. This tech-
nique, and its impact on the anytime performance of BPO2 is described in the following
subsections.

For window selection, on-line adaptation is limited to switching between alternative
ranking policies. The window selected for optimisation by a subplanner is the top one
in the order given by the current ranking policy for that subplanner (cf. Section 4.6).
As long as improvements are found among these windows, we can consider the current
policy to be useful. When a subplanner reaches a certain number of attempts with no
improvements found, we switch to using the next policy for that subplanner. The number
of windows in each neighbourhood that are optimised is typically small compared to the
number of candidate windows generated. On average across all problems in experiment 3
(cf. Section 3.1 on page 392) optimisation by at least one subplanner is tried on 24.8% of
generated windows. Because of this, adapting the ranking policy has more influence over
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Figure 21: The percentage of improved windows found by each of the subplanners (PNGS,
IBCS, and LAMA), out of the total number of improved windows found by all the subplan-
ners. In this experiment, BDPO2 was run three times, each time with one subplanner. The
setup was the same as for experiment 3 (described in Section 3.1 on page 392).

which windows are tried than adapting the windowing strategies. The effect of adaptive
window ranking on the anytime performance of BDPO2 is shown in Figure 20 (page 417).

5.1 Bandit Learning

The multi-armed bandit (MAB) model is a popular machine learning formulation for dealing
with the exploration versus exploitation dilemma. In a MAB problem, an algorithm is
presented with a sequence of trials. In each round, the algorithm chooses one from a set of
alternatives (often called “arms”) based on the past history, and receives a reward for this
choice. The goal is to maximise the total reward over time. A bandit learning algorithm
balances exploiting the arms with the highest observed average reward with exploring poorly
understood arms to discover if they can yield better reward.

MAB has found numerous applications in diverse fields (e.g., control, economics, statis-
tics, and learning theory) after the influential paper by Robbins (1952). Many policies have
been proposed for the MAB problem under different assumptions, for example, with inde-
pendent (Auer et al., 2002) or dependent arms (Pandey, Chakrabarti, & Agarwal, 2007),
exponentially or infinitely many arms (Wang, Audibert, & Munos, 2008), finite or infinite
time horizon (Jones & Gittins, 1974), with or without contextual information (Slivkins,
2014), and so on.

We cast the problem of selecting the subplanner for each local optimisation attempt as a
multi-armed bandit problem. The goal of this is to maximise the total number of improved
windows over time. We use a learning algorithm based on the optimistic exploration strat-
egy, which chooses an arm in the most favorable environments that has a high probability of
being the best, given what has been observed so far. This strategy is often called “optimism
in the face of uncertainty”. At each trial t, and for each arm k, the strategy is to use past
observations and a probabilistic argument to define high-probability confidence intervals
for the expected reward µk. The most favorable environment for arm k is thus the upper
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confidence bound (UCB) on µk. A simple policy based on this strategy is to play the arm
having the highest UCB.

A number of algorithms have been developed for optimistic exploration of bandit arms,
such as UCB1, UCB2 and UCB1-NORMAL by Auer et al. (2002), UCB-V by Audibert,
Munos and Szepesvári (2009), and KL-UCB by Garivier and Cappé (2011). We use the
UCB1 algorithm for planner selection. The UCB1 algorithm selects at each trial t the arm

with highest upper confidence bound Bk,t = µ̂k,t +
√

2 ln t
nk

, the sum of an exploitation term

and an exploration term, respectively. µ̂k,t is the empirical mean of the rewards received
from arm k up to trial t, and nk is the number of times arm k has been tried so far. The

second term,
√

2 ln t
nk

, is a confidence interval for the average reward, within which the true

expected reward falls with almost certain probability. Hence, Bk,t is a upper confidence
bound. The UCB1 algorithm can achieve logarithmic regret uniformly over the number of
trials and without any preliminary knowledge about the reward distributions (Auer et al.,
2002).

Applied to subplanner selection in BDPO2, the algorithm works as follows: First, we
select each subplanner p once, to initialise the average reward µ̂p. After each optimisation
attempt, we give a reward of 1 to the chosen subplanner if it found an improvement and a
reward of 0 otherwise. We could use some other scheme for assigning rewards rather than
simply 0 and 1, for example, making the reward proportional to the amount of improvement
(or time taken to find it). However, we have observed that assigning varying rewards
to subplanners makes the bandit learning system more complicated, and does not help
in achieving better overall result. Next, we select for each attempt a subplanner p that

maximises the upper confidence bound of p, Bp,t = µ̂p +
√

2 ln t
np

, as explained above. Here,

np is the number of times p has been tried so far, and t is the total number of optimisation
attempts (by all subplanners) done so far. We can see that Bp,t grows with t but shrinks
when t and np increase uniformly. This ensures that each alternative is tried infinitely often
but still balances exploration and exploitation. In other words, the more we try p, the
smaller the size of the confidence interval and the closer Up gets to its mean value µ̂p. But
p cannot be tried once Up becomes smaller than µp∗ , where p∗ is the planner with the best
average reward.

5.2 The Impact of Bandit Learning

The response of the bandit policy for subplanner selection is shown in Figure 22. The figure
shows the fraction of the total number of optimisation attempts that one subplanner, IBCS,
was selected, and the fraction of the total number of window improvements found by that
subplanner. Since BDPO2 in this experiment uses only two subplanners, IBCS and PNGS,
the corresponding fraction for PNGS is 1 − y. As an example, in the third problem (from
the left) in the APPN domain, 100% of window improvements are found by IBCS, and the
bandit policy selects this subplanner for 84% of the total number optimisation attempts.
PNGS is chosen for the other 16%, but finds no improvement. We can see that the bandit
policy selects the more promising subplanner more often across the problems. However,
the bandit policy is somewhat conservative, because it ensures that we do not rule out
any subplanners that fare poorly early on. Moreover, as the current plan is improved it
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Figure 22: The response of the bandit policy to subplanner success rates. The exploitation
ratio is the fraction of the total number of optimisation attempts for which the IBCS
subplanner was chosen, out of the total number of attempts by both subplanners. The
improvement ratio is the fraction of the total number of improved windows found by IBCS,
out of total number of improved windows found by both subplanners. Since IBCS and
PNGS are the only two subplanners used in this experiment, the corresponding ratios for
PNGS are the opposite (i.e., 1 − y). The experiment was run with the same setup as
experiment 2, described in Section 3.1 on page 392.

becomes harder to find further improvements (within the given time bound), so the average
reward for both subplanners decreases. This forces the bandit policy to switch between the
subplanners more often.

Figure 23 shows the impact of combining the subplanners using the UCB1 bandit policy,
compared to simply alternating between subplanners or using each subplanner alone, on the
anytime performance of BDPO2. In this experiment we ran BDPO2 once with each of IBCS,
PNGS and LAMA as the only subplanner, once combining two of them (IBCS and PNGS)
using a simple alternation policy, which selects each of the two in turn, and once combining
the two using the bandit policy. Each run was done with experiment setup 3 (as described
in Section 3.1 on page 392), i.e., with input plans of a high quality. (The IPC plan quality
score of each plan is calculated as before; see page 394). The average score of the input
plans is 0.907.) As expected, combining the IBCS and PNGS subplanners in some fashion
leads to more quality improvement across the entire time scale than achieved by running
BDPO2 with any individual subplanner. The figure also shows that combining multiple
subplanners using the bandit policy is a better strategy than simply alternating between
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Figure 23: Average IPC quality score as a function of time per problem in five different
runs of BDPO2: using only each one of the three subplanners, using two of them (IBCS
and PNGS) combined with the UCB1 bandit policy, and without (using simple alternation
instead). This experiment was run with setup 3 as described in Section 3.1 (on page 392).
Note that the y-axis is truncated: All curves start at the average quality of the input plans,
which 0.907. The time shown here is the runtime of BDPO2 only, excluding the 2 hour
delay for generating the input plans shown in Figure 11).
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them. The total quality improvement achieved by BDPO2 using the alternation policy is
6.8% less than that by BDPO2 using the bandit policy.

6. Related Work

We survey four areas of related work: Anytime search algorithms and post-processing ap-
proaches, which have in common with our approach the aim of continuing plan quality
improvement; uses of local search in planning; and finally, uses of algorithm portfolios in
planning.

6.1 Anytime Search

Large state-space search problems, of the kind that frequently arise in planning problems,
often cannot be solved optimally because optimal search algorithms exhaust memory before
finding a solution. Anytime search algorithms try to deal with such problems by finding a
first solution quickly, possibly using a greedy or suboptimal heuristic search, then continue
(or restart) searching for a better quality solution. Anytime algorithms are attractive be-
cause they allow users to stop computation at any time, i.e., after a “good enough” solution
has been found, or after “too long” a wait. This contrasts with algorithms that require the
user to decide in advance on a deadline, a suboptimality bound, or some other parameter
that fixes the trade-off between time and solution qualty.

Bounded suboptimal search is the problem of finding a solution with cost less than or
equal to a user specified factor w of optimal. Weighted A* (WA*) search (Pohl, 1970)
and Explicit Estimation Search (EES) (Thayer & Ruml, 2011) are two algorithms of this
kind that have been most used in planning. Iteratively applying any bounded suboptimal
search algorithm with a lower value of w whenever a new best solution is found provides an
anytime improvement of plan quality. Restarting WA* (Richter et al., 2010) does this, using
a schedule of decreasing weights. RWA* is used by the LAMA planner (Richter & Westphal,
2010) LAMA finds the first plan using a greedy best-first search (Bonet & Geffner, 2001).
It also uses several search enhancements, like preferred operators and deferred evaluation
(Richter & Helmert, 2009). EES conducts a bounded suboptimal best-first search restricted
to expanding nodes that may lead to a solution with a cost no more than a given factor w
times optimal. Among the open nodes in this set, it expands the one estimated to have the
fewest remaining actions between it and a goal. It uses both an admissible heuristic for plan
cost and more informative but inadmissible estimates to guide the search. AEES (Thayer
et al., 2012b) is an anytime version of EES. To achieve an anytime behavior, AEES lowers
the value of w whenever a new best solution is found.

The bounded-cost search (Stern, Puzis, & Felner, 2011) problem, of which the subprob-
lems solved in our approach are an example, requires finding a solution with a cost less
than or equal to a user-specified cost bound C. The aim of a bounded-cost search algo-
rithm is to find such a solution as quickly as possible. Iteratively applying any bounded-cost
search algorithm with a bound less than the cost of the best solution found so far provides
anytime quality improvement. This is what the IBCS algorithm, used as one of the sub-
planners in BDPO2, does. The BEES and BEEPS algorithms (Thayer, Stern, Felner, &
Ruml, 2012a) adapt EES to the setting of bounded cost search. These algorithms expand
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the best open node among those whose inadmissible cost estimate is at most C, falling back
to to expanding the node with the best admissible estimate only if the set is empty.

Branch-and-bound algorithms explore the search space in some systematic fashion, using
an admissible heuristic (lower bound on cost) to prune nodes that cannot lead to a solution
better than the best found so far. Branch-and-bound can be implemented with a linear-
memory, depth-first search strategy as well as on top of other strategies. In the experiment
reported in Section 3.2 (page 394) we used Beam-Stack Search (BSS) (Zhou & Hansen,
2005) as a bounded-cost search algorithm by providing as an initial upper bound the cost of
the base plan for each problem. BSS combines backtracking branch-and-bound with beam
search, which behaves like a breadth-first search but limits the size of the open list in each
layer by a user-specified parameter, known as the beam width. When forced to backtrack,
BSS reconstructs nodes pruned from the open list so that the search is complete. The beam
width parameter can be used to control the memory consumption of BSS so that it never
exceeds available memory. For planning problems, however, whose state spaces are often
dense in transpositions and where accurate admissible heuristics are expensive to compute,
repeatedly reconstructing paths to unexplored nodes becomes time-consuming.

Anytime search planners aim to provide continuing improvement of plan quality given
more time, and often succeed in doing that in the early stages of the search. However, as we
have observed in the results of our experiments, these algorithms often “stagnate”, reaching
a point where they do not find any better plans even after several hours of CPU time. (cf.
Figure 11 on page 395 and Section 3.2 on page 394.) For example, in our experiment LAMA
and AEES found better plans for only 8.7% and 6.1%, respectively, of the total number of
problems between 3 hours and 6 hours CPU time, while BDPO2 found better plans for
30.4% of the problems during the same time interval. Memory is one limiting factor, but
not the only one. For almost half the problems, AEES ran for a full 7 hours CPU time
without running out of memory, yet found very few improved plans. BSS found plans with
a cost less than the initial upper bound (the cost of the base plans) for only 14 out of 182
problems even after 24 hours CPU time per problem.

6.2 Local Search

Local search explores a space by searching only a small neighbourhood of a current element
in the search space for one that is, in some way, better, then moving to the neighbour and
repeating the process. Compared to systematic search algorithms, the advantage of local
search is that it needs much less memory. Therefore, local search algorithms are widely
used to solve hard optimisation problems. However, local search algorithms cannot offer
any guarantees of global optimality, or bounded suboptimality. In planning, local search has
been used mainly to find plans quickly, and rarely to improve plan quality, though some of
the post-processing methods discussed in the next section can be viewed as local searches.

FF (Hoffmann & Nebel, 2001) is a forward-chaining heuristic state space search planner.
The heuristic used by FF estimates the distance from a state to the nearest goal state. FF
uses a local search strategy, called enforced hill-climbing, that in each state uses a breadth-
first search to find a “neighbour” state (which may be several steps away from the current
state) with a strictly better heuristic value, i.e., that is believed to be closer to the goal.
It then commits to that state and starts a new search for a neighbour with a better yet
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heuristic value. If the local search fails, due to getting trapped in a dead end, FF falls back
on a complete best-first search algorithm. The RW-LS planning algorithm (Xie, Nakhost,
& Müller, 2012) is similar to FF’s hill-climbing approach, but uses a combination of greedy
best-first search and exploration by random walks to find a better next state in each local
search step. Nakhost and Müller (2009) developed a planning system, called Arvand, that
uses random walk-based local exploration in conjunction with the FF search heuristic. They
showed that Arvand outperforms FF on hard problems in many domains. The execution
of Arvand consists of a series of search episodes. Each episode starts with a set of random
walks from the initial state. The endpoint of each random walk is evaluated using the
heuristic function to choose the next state. The search episode then continues with a set
of random walks from this state. This process repeats until either the goal is reached,
or enough transitions are made without heuristic progress, in which case the process is
restarted. The IPC 2011 and 2014 versions of Arvand apply post-processing to improve the
quality of each generated plan. The post-processing techniques are Action Elimination and
Plan Neighborhood Graph Search (Nakhost & Müller, 2010); they are discussed in the next
subsection. Because Arvand’s search is randomised, the system can continue generating
alternative plans, which are then optmised, indefinitely, storing at all times the best plan
generated so far. This provides a certain anytime capability. It is in this manner that it
was used in the experiment reported in Section 3.2 on page 394.

The LPG planner (Gerevini & Serina, 2002) is based on local search in the space of
“action graphs”, which represent partial plans. The neighbourhood is defined by operators
that modify an action graph, such as inserting or removing actions. The function that
evaluates nodes in the neighbourhood combines terms that estimate both how far an action
graph is from becoming a valid plan, termed “search cost”, and the expected quality of
the plan it may become. The choice of neighbour to move to also involves an element of
randomness. LPG also performs a continuing search for better plans; in this, it is similar to
the anytime search algorithms discussed in the last subsection. Whenever it finds a plan,
the local search restarts with a partial plan obtained by removing some randomly selected
actions from the current plan. A numerical constraint forcing the cost of the next plan to
be lower is also added. This provides some guidance towards a better quality next plan.

There is a close relationship between local search approaches to planning and plan repair
or adaptation methods (Garrido, Guzman, & Onaindia, 2010). The LPG planner originated
as a method of plan repair (Gerevini & Serina, 2000), and iterative repair methods can also
be used for plan generation (Chien, Knight, Stechert, Sherwood, & Rabideau, 2000).

A key difference between our use of local search and its previous uses in planning is that
we carry out a local search only in the space of valid plans. This permits the neighbourhood
evaluation to focus exclusively on plan quality. Searching a space of partial plans (repre-
sented by states) as done in FF, or incomplete (invalid) plans, as done in LPG, requires
neighbourhood evaluation to consider how close an element is to becoming a valid plan, and
balancing that with quality.

The large neighbourhood search (LNS) strategy formulates the problem of finding a
good neighbor as an optimisation problem, rather than simply enumerating and evaluating
neighbours. This allows a much larger neighbourhood to be considered. LNS has been used
very successfully to solve hard combinatorial optimisation problems like vehicle routing with
time windows (Shaw, 1998) and scheduling (Godard, Laborie, & Nuijten, 2005). Theoretical
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and experimental studies have shown that the increased neighborhood size may improve the
effectiveness (quality of solutions) of local search algorithms (Ahuja, Goodstein, Mukherjee,
Orlin, & Sharma, 2007). If the neighbourhood of the current solution is too small then it
is difficult to escape from local minima. In this case, additional meta-heuristic techniques,
such as Simulated Annealing or Tabu Search, may be needed to escape the local minimum.
In LNS, the size of the neighborhood itself may be sufficient to allow the search process to
avoid or escape local minima.

In the LNS literature, the neighborhood of a solution is usually defined as the set of
solutions that can be reached by applying a “destroy” heuristic and a “repair” method.
The destroy heuristic selects a part of the current solution to be removed (unassigned),
and the repair method rebuilds the destroyed part, keeping the rest of the current solution
fixed. The destroy heuristic often includes an element of randomness, enabling the search
to explore modifications to different parts of the current solution. The role of the destroy
heuristic in our system is played by the windowing strategies, which select candidate win-
dows (subplans) for re-optimisation. We explore these windows systematically. Some LNS
algorithms (e.g., Ropke & Pisinger, 2006; Schrimpf et al., 2000) allow the local search to
move to a neighbouring solution with a lower quality (e.g., using simulated annealing). We
consider only strictly improving moves. However, in difference to previous LNS algorithms,
we do not immediately move to a better plan and restart neighbourhood exploration after a
local improvement has been found. Instead, we use delayed restarting, which allows a better
solution to be found in one local search step by destroying and repairing multiple parts of
the current plan. Experimentally, we found that delayed restarting produces better quality
plans, and produces them faster, than immediate restarts (cf. Section 3.4 on page 399).

6.3 Plan Post-Processing

By a post-processing method, we mean one that takes a valid plan as input and attempts to
improve it, by making some modifications. This is also related to plan repair and adaptation
(Chien et al., 2000; Fox, Gerevini, Long, & Serina, 2006; Garrido et al., 2010), but with
the key difference that plan repair or adaptation starts from a plan that is not valid for
the current situation and focuses on making it work; the discrepancy between the current
state or goals and those the plan was originally built for provide guidance to where repairs
are needed. In contrast, post-processing for plan optimisation may require modifications
anywhere in the current plan.

Nakhost and Müller (2010) proposed two post-processing techniques – Action Elimina-
tion (AE) and Plan Neighborhood Graph Search (PNGS). Action elimination identifies and
removes some unnecessary actions from the given plan. PNGS constructs a plan neigh-
borhood graph, which is a subgraph of the state space of the problem, built around the
path through the state space induced by the current plan by expanding a limited number of
states from each state on that path. It then searches for the least-cost plan in this subgraph.
If this finds a plan better than the current, the process is repeated around the new best
plan; otherwise, the exploration limit is increased, until a time or memory limit is exceeded.
Furcy’s (2006) Iterative Tunneling Search with A* (ITSA*) is similar to PNGS. ITSA*
explores an area, called a tunnel, of the state space using A* search, restricted to a fixed
distance from the current plan. These methods can be seen as creating a neighborhood
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that includes only small deviations from the current plan, but anywhere along the plan. In
contrast, BDPO2 focuses on one section of the decomposed plan at a time, often grouping
together different parts of the input plan, but puts no restriction on how much that section
changes; hence, it creates a different neighbourhood. Our experiments show that the best
results are obtained by exploring both neighbourhoods. For example, PNGS often finds
plan improvements quickly, but running it for an additional 6 hours improves its average
IPC plan quality score, over that of the best plans it finds in the first hour, only by 0.01%.
Running instead BDPO2, using PNGS as the only subplanner and taking the best plans
found by PNGS in 1 hour as input, improves the average plan quality score by 3% in 6
hours.

Ratner and Pohl (1986) used local optimisation for shortening solutions to sequential
search problems. To select the subpath to optimise, they used a sliding window of a pre-
defined size dmax over consecutive segments of the current path. Estrem and Krebsbach
(2012) instead used a form of windowing heuristic: They select for local optimisation pairs
of states on the current path that maximise an estimate of redundancy, based on the ratio
between the estimated distances between the two states, given by a state space heuristic,
and the cost of the current path. Balyo, Barták and Surynek (2012) used a sliding window
approach to minimise parallel plan length (that is, “makespan”, assuming all actions have
unit duration). Rather than take segments of a single path in the state space, we use block
deordering of the input plan to create candidate windows for local optimisation. As shown
by the experimental results, this is very important for the success of BDPO2: The total
improvement of average plan quality achieved without deordering was 28.7% less than that
achieved by BDPO2 using block deordering of input plans (cf. Section 3.6 on page 402).

The planning-by-rewriting approach (Ambite & Knoblock, 2001) also uses local modifi-
cations of partially ordered plans to improve their quality. Plan modifications are defined by
domain-specific rewrite rules, which have to be provided by the domain designer or learned
from many examples of both good and bad plans. Hence, this technique can be effective for
solving many problem instances from the same domain. Using a planner to solve subprob-
lems may be more time-consuming than applying pre-defined rules, but makes the process
automatic. However, if we consider solving many problems from the same domain it may be
possible to reduce average planning time by learning (generalised) rules from the subplan
improvements we discover and using these where applicable to avoid invoking a subplanner.

6.4 Portfolio Planning and Automatic Parameter Tuning

A portfolio planning system runs several subplanners in sequence (or in parallel) with short
timeouts, in the hope that at least one of the component planners will find a solution in
the time allotted to it. Portfolio planning systems are motivated by the observations that
no single planner dominates all others in all domains, and that if a planner does not solve
a planning task quickly, often it does not solve it at all. Therefore, many of todays most
successful planners run a sequential portfolio of planners (Coles, Coles, Olaya, Celorrio,
Linares López, Sanner, & Yoon, 2012).

Gerevini, Saetti and Vallati (2009) introduced the PbP planner, which learns a portfolio
over a given set of planners for a specific domain, as well as domain-specific macro-actions.
Fast Downward Stone Soup (FDSS, Helmert, Röger, Seipp, Karpas, Hoffmann, Keyder,
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Nissim, Richter, & Westphal, 2011) uses a fixed portfolio, computed to optimise performance
on a large sample of training domains, for all domains. IBaCoP2 (Cenamor et al., 2014)
dynamically configures a portfolio using a predictive model of planner success.

Another recent trend is the use of automatic algorithm configuration tools, like the
ParamILS framework (Hutter, Hoos, Leyton-Brown, & Stützle, 2009), to enhance planner
performance on a specific domain. ParamILS does a local search in the space of configura-
tions, using a suite of training problems to evaluate performance under different parameter
settings. The combinatorial explosion caused by many parameters with many different val-
ues is managed by varying one parameter at a time. ParamILS has been used to configure
the LPG planner (Vallati, Fawcett, Gerevini, Hoos, & Saetti, 2011) and the Fast Down-
ward planner (Fawcett, Helmert, Hoos, Karpas, Röger, & Seipp, 2011). The PbP2 portfolio
planner (Gerevini, Saetti, & Vallati, 2011), successor to PbP, includes a version of LPG
customised to the domain with ParamILS in the learned portfolio.

BDPO2, of course, uses a portfolio of subplanners, and, as we have shown, selecting the
right subplanner for the current problem is important (cf. Section 5). Much more important,
however, is the focus on subproblems that our approach brings: comparing Figures 11 (page
395) and 23 (page 422), it is clear that using even a single subplanner within BDPO2 is
more effective than using any of the subplanners on its own. The multiple window ranking
policies used in BDPO2 (cf. Section 4.6) can also be viewed as a simple sequential portfolio.
Compared to previous portfolio planners, the iterated use of subplanners, windowing strate-
gies and other components in our approach offers a possibility to learn the best portfolio
or configuration on-line; that is, rather than spend time on configuring the system using
training problems, we can learn from the experience of solving several subproblems, while
actually working on optimising the current plan.

Finally, although we have not explored it in great depth, our results suggest that com-
bining different anytime search and post-processing methods, in what is effectively a kind of
sequential portfolio (such as running BDPO2 on the result of running PNGS on the result
of LAMA or IBaCoP2, as in the results of experiment 3, shown in Figure 2 on page 371),
often achieves better quality final plans than investing all available time into any single
method.

7. Conclusions and Future Work

Plan quality optimisation, particularly for large problems, is a central concern in automated
planning. Anytime planning, which aims to deliver a continuing stream of better plans
given more time, is an attractive idea, offering the flexibility to stop the process at any
point, such as when the best plan found is “good enough” or the wait for the next plan
becomes “too long”. We have presented an approach to anytime plan improvement, and its
realisation in the BDPO2 system. This approach is based on the large neighbourhood local
search strategy (Shaw, 1998), using windowing heuristics to select candidate windows from a
block deordering of the current plan, for local optimisation using off-the-shelf bounded-cost
planning techniques.

Experiments demonstrate that BDPO2 achieves continuing plan quality improvement
even at large time scales (several hours CPU time), when other anytime planners stagnate.
Key to achieving this is our focus on optimising subproblems, corresponding to windows.
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As mentioned in Section 4.5, extending the windowing heuristics and improving the on-line
learning of effective window rankings is one way to improve the approach. Also, com-
plementing the window ranking, which estimates how “promising” a window is, with an
estimate of how “difficult” windows are to optimise, and using this to inform the time allo-
cated to subplanners, which is currently uniform for all windows, may contribute to better
performance. The best result, however, is achieved by chaining several techniques together
(for example, applying BDPO2 to the best plan found by PNGS applied to the best plan
found by LAMA or IBaCoP2). This result cannot be achieved by any of the previous any-
time planning approaches alone. Thus, another area of future work is to examine in greater
depth what is the best way to combine different plan improvement methods, and how this
can be learned on-line while optimising a plan. For example, we have conducted a study
of the optimal time to switch from base plan generation, using LAMA, to post-processing
using PNGS or BDPO, as a function of the total runtime (Siddiqui & Haslum, 2013a).

As we have demonstrated experimentally, the block deordering step is essential for the
good performance of BDPO2 (cf. Section 3.6 on page 402). Block deordering creates a
decomposition of the plan into non-interleaving blocks while removing ordering constraints
between blocks. This lifts a limitation of conventional, “step-wise”, deordering, which
requires all unordered steps in the plan to be non-interfering. As we have shown, a validity
condition for block decomposed partially ordered plans can be stated that is almost the
same as Chapman’s (1987) modal truth criterion, but allowing threats to a causal link to
remain unordered as long as the link is protected by the block structure (Theorem 2 on
page 379). Therefore, block deordering can yield less order-constrained plans, including in
some cases where no conventional deordering is possible.

The plan structure uncovered by block decomposition can also have other uses. Re-
cently it was used in the planner independent macro generation system BloMa (Chrpa &
Siddiqui, 2015) to find longer macros that capture compound activities in order to improve
planners’ coverage and efficiency. In some domains (e.g., Barman, ChildSnack, Scanalyzer,
Parcprinter, Gripper, Woodworking, etc.), block deordering often identifies structurally sim-
ilar subplans, which also have symmetric improvement patterns. This could potentially be
exploited in learning plan rewrite rules (Ambite, Knoblock, & Minton, 2000). The structure
of block deordered plans, which often comprises a nested, hierarchical decomposition into
meaningful subplans, is reminiscent of Hierarchical Task Network (HTN) representations.
Hence, block deordering technique could potentially be applied to generating (or helping to
generate) HTN structures in a domain independent way, reducing the knowledge-engineering
effort. Recent work by Scala and Torasso (2015) extends deordering to plans for planning
domains with numeric state variables, identifying numeric dependencies that capture the
additional reasons for necessary orderings. Defining the conditions on blocks sufficient to
encapsulate these dependencies would allow block deordering also of numeric plans. There
may be a synergy between block deordering and numeric planning, since numeric depen-
dencies often involve groups of plan steps, rather than a single producer–consumer pair.
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