
Journal of Artificial Intelligence Research 53 (2015) 699-720 Submitted 03/15; published 08/15

Tree-Width and the Computational Complexity
of MAP Approximations in Bayesian Networks

Johan Kwisthout j.kwisthout@donders.ru.nl

Radboud University Nijmegen

Donders Institute for Brain, Cognition and Behaviour

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

Abstract

The problem of finding the most probable explanation to a designated set of vari-
ables given partial evidence (the MAP problem) is a notoriously intractable problem in
Bayesian networks, both to compute exactly and to approximate. It is known, both from
theoretical considerations and from practical experience, that low tree-width is typically
an essential prerequisite to efficient exact computations in Bayesian networks. In this
paper we investigate whether the same holds for approximating MAP. We define four
notions of approximating MAP (by value, structure, rank, and expectation) and argue
that all of them are intractable in general. We prove that efficient value-approximations,
structure-approximations, and rank-approximations of MAP instances with high tree-width
will violate the Exponential Time Hypothesis. In contrast, we show that MAP can some-
times be efficiently expectation-approximated, even in instances with high tree-width, if
the most probable explanation has a high probability. We introduce the complexity class
FERT, analogous to the class FPT, to capture this notion of fixed-parameter expectation-
approximability. We suggest a road-map to future research that yields fixed-parameter
tractable results for expectation-approximate MAP, even in graphs with high tree-width.

1. Introduction

One of the most important computational problems in Bayesian networks is the MAP prob-
lem, i.e., the problem of finding the joint value assignment to a designated set of variables
(the MAP variables) with the maximum posterior probability, given partial observation of
the remaining variables. The MAP problem is notably intractable; as it is NPPP-hard, it
is strictly harder (given usual assumptions in computational complexity theory) than the
PP-hard inference problem (Park & Darwiche, 2004). In a sense, it can be seen as combining
an optimization problem with an inference problem, both of which potentially contribute
to the problem’s complexity (Park & Darwiche, 2004, p. 113). Even when all variables in
the network are binary and the network has the (very restricted) polytree topology, MAP
remains NP-hard (De Campos, 2011). Only when both the optimization and the inference
part of the problem can be computed tractably (for example, if both the tree-width of the
network is small, the cardinality of the variables is low, and the most probable joint value
assignment has a high probability) MAP can be computed tractably (Kwisthout, 2011).
It is known that, for arbitrary probability distributions and under the assumption of the
Exponential Time Hypothesis, low tree-width of the moralized graph of a Bayesian network
is a necessary condition for the Inference problem in Bayesian networks to be tractable
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(Kwisthout, Bodlaender, & van der Gaag, 2010); this result can easily be extended to MAP,
as we will show in Section 4.

MAP is also intractable to approximate (Abdelbar & Hedetniemi, 1998; Kwisthout,
2011, 2013; Park & Darwiche, 2004). While it is obviously the case that a particular instance
to the MAP problem can be approximated efficiently when it can be computed exactly
efficiently, it is as yet unclear whether approximate MAP computations can be rendered
tractable under different conditions than exact MAP computations. Crucial here is the
question what we mean with a statement as ‘algorithm A approximates the MAP problem’.
Typically, in computer science, approximation algorithms guarantee that the output of the
algorithm has a value that is within some bound of the value of the optimal solution. For
example, the canonical approximation algorithm to the Vertex Cover problem selects an
edge at random, puts both endpoints in the vertex cover, and removes these nodes from
the instance. This algorithm is guaranteed to get a solution that has at most twice the
number of nodes in the vertex cover as the optimal vertex set. However, typical Bayesian
approximation algorithms have no such guarantee; in contrast, they may converge to the
optimal value given enough time (such as the Metropolis-Hastings algorithm), or they may
find an optimal solution with a high probability of success (such as repeated local search
strategies).

In this paper we assess four different notions of approximation relevant for the MAP
problem; in particular value-approximation, structure-approximation, rank-approximation,
and expectation-approximation of MAP. After introducing notation and providing some
preliminaries (Section 2), we show that each of these approximations is intractable under
the assumption that P 6= NP, respectively NP 6⊆ BPP (Section 3). Building on the result
by Kwisthout et al. (2010) we show in Section 4 that bounded tree-width is indeed a
necessary condition for efficient value-approximation, structure-approximation, and rank-
approximation of MAP. In Section 5 we argue that this need not be the case for expectation-
approximation. We introduce the parameterized complexity classes FERT (Fixed Error
Randomized Tractable) and FPERT (Fixed Parameter and Error Randomized Tractable)
as natural extensions to the class FPT. We introduce a MAP variant with some additional
constraints and we show that Constrained-MAP is intractable (PP-hard) in general;
however, Constrained-MAP is in FERT when parameterized by the probability of the
most probable explanation, even when tree-width is high. We conclude the paper in Section
6.

2. Preliminaries

In this section, we introduce our notational conventions and provide some preliminaries on
Bayesian networks, graph theory, and complexity theory; in particular definitions of the
MAP problem, tree-width, parameterized complexity theory, and the Exponential Time
Hypothesis. For a more thorough discussion of these concepts, the reader is referred to
textbooks such as those by Darwiche (2009), Arora and Barak (2009), and Downey and
Fellows (1999).
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2.1 Bayesian Networks

A Bayesian network B = (GB,Pr) is a graphical structure that succinctly represents a joint
probability distribution over a set of stochastic variables. B includes a directed acyclic graph
GB = (V,A), where V models (in a one-to-one mapping) the stochastic variables and A
models the conditional (in)dependences between them, and a set of parameter probabilities
Pr in the form of conditional probability tables (CPTs), capturing the strengths of the
relationships between the variables. The network models a joint probability distribution
Pr(V) =

∏n
i=1 Pr(Vi | π(Vi)) over its variables; here, π(Vi) denotes the parents of Vi in GB.

As notational convention we will use upper case letters to denote individual nodes in the
network, upper case bold letters to denote sets of nodes, lower case letters to denote value
assignments to nodes, and lower case bold letters to denote joint value assignments to sets
of nodes. We will use ‘node’ and ‘variable’ interchangeably.

One of the key computational problems in Bayesian networks is the problem to find the
most probable explanation for a set of observations, i.e., a joint value assignment to a des-
ignated set of variables (the explanation set) that has maximum posterior probability given
the observed variables (the joint value assignment to the evidence set) in the network. If
the network is bi-partitioned into explanation variables and evidence variables this problem
is known as Most Probable Explanation (MPE). The more general problem, where
the network also includes variables that are neither observed nor to be explained (referred
to as intermediate variables) is known as (Partial or Marginal) MAP. This problem is
typically defined formally as follows:

MAP
Instance: A Bayesian network B = (GB,Pr), where V is partitioned into a set of
evidence nodes E with a joint value assignment e, a set of intermediate nodes I, and an
explanation set H.
Output: A joint value assignment h to H such that for all joint value assignments h′ to
H, Pr(h | e) ≥ Pr(h′ | e).

In the remainder, we use the following definitions. For an arbitrary MAP instance
{B,H,E, I, e}, let cansolB refer to the set of candidate solutions to {B,H,E, I, e}, with
optsolB ∈ cansolB denoting the optimal solution (or, in case of a draw, one of the optimal
solutions) to the MAP instance. When cansolB is ordered according to the probability of the
candidate solutions (breaking ties between candidate solutions with the same probability
arbitrarily), then optsol1...m

B refers to the set of the first m elements in cansolB, viz. the m
most probable solutions to the MAP instance. For a particular notion of approximation,
we refer to an (unspecified) approximate solution as approxsolB ∈ cansolB.

2.2 Tree-Width

An important structural property of a Bayesian network B is its tree-width, which can be
defined as the minimum width of any tree-decomposition (or equivalently, the minimal size
of the largest clique in any triangulation) of the moralization GM

B of the network. Tree-
width plays an important role in the complexity analysis of Bayesian networks, as many
otherwise intractable computational problems can be rendered tractable, provided that the
tree-width of the network is small. The moralization (or ‘moralized graph’) GM

B is the
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undirected graph that is obtained from GB by adding arcs so as to connect all pairs of
parents of a variable, and then dropping all directions. A triangulation of GM

B is any
chordal graph GT that embeds GM

B as a subgraph. A chordal graph is a graph that does
not include loops of more than three variables without any pair being adjacent.

A tree-decomposition (Robertson & Seymour, 1986) of a triangulation GT now is a tree
TG such that each node Xi in TG is a bag of nodes which constitute a clique in GT; and
for every i, j, k, if Xj lies on the path from Xi to Xk in TG, then Xi ∩Xk ⊆ Xj. In the
context of Bayesian networks, this tree-decomposition is often referred to as the junction
tree or clique tree of B. The width of the tree-decomposition TG of the graph GT is defined
as the size of the largest bag in TG minus 1, i.e., maxi(|Xi| − 1). The tree-width tw of
a Bayesian network B now is the minimum width over all possible tree-decompositions of
triangulations of GM

B .

2.3 Complexity Theory

We assume that the reader is familiar with basic notions from complexity theory, such
as intractability proofs, the computational complexity classes P and NP, and polynomial-
time reductions. In this section we shortly review some additional concepts that we use
throughout the paper, namely the complexity classes PP and BPP, the Exponential Time
Hypothesis and some basic principles from parameterized complexity theory.

The complexity classes PP and BPP are defined as classes of decision problems that are
decidable by a probabilistic Turing machine (i.e., a Turing machine that makes stochastic
state transitions) in polynomial time with a particular (two-sided) probability of error. The
difference between these two classes is in the bound on the error probability. Yes-instances
for problems in PP are accepted with probability 1/2 + ε, where ε may depend exponentially
on the input size (i.e., ε = 1/cn for a constant c > 1). Yes-instances for problems in BPP
are accepted with a probability that is polynomially bounded away from 1/2 (i.e., ε = 1/nc).
PP-complete problems, such as the problem of determining whether the majority of truth
assignments to a Boolean formula φ satisfies φ, are considered to be intractable; indeed, it
can be shown that NP ⊆ PP. In contrast, problems in BPP are considered to be tractable.
Informally, a decision problem Π is in BPP if there exists an efficient randomized (Monte
Carlo) algorithm that decides Π with high probability of correctness. Given that the error is
polynomially bounded away from 1/2, the probability of answering correctly can be boosted
to be arbitrarily close to 1 while still requiring only polynomial time. While obviously
BPP ⊆ PP, the reverse is unlikely; in particular, it is conjectured that BPP = P (Clementi,
Rolim, & Trevisan, 1998).

The Exponential Time Hypothesis (ETH), introduced by Impagliazzo and Paturi (2001),
states that there exists a constant c > 1 such that deciding any 3Sat instance with n
variables takes at least Ω(cn) time. Note that the ETH is a stronger assumption than
the assumption that P 6= NP. A sub-exponential but not polynomial-time algorithm for
3Sat, such as an algorithm running in O(2

3√n), would contradict the ETH but would not
imply that P = NP. We will assume the ETH in our proofs that show the necessity of low
tree-width for efficient approximation of MAP.

Sometimes problems are intractable (i.e., NP-hard) in general, but become tractable
if some parameters of the problem can be assumed to be small. A problem Π is called
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fixed-parameter tractable for a parameter κ (or a set {κ1, . . . , κm} of parameters) if it can
be solved in time, exponential (or even worse) only in κ and polynomial in the input size
|x|, i.e., in time O(f(κ) · |x|c) for a constant c > 1 and an arbitrary computable function
f . In practice, this means that problem instances can be solved efficiently, even when
the problem is NP-hard in general, if κ is known to be small. In contrast, if a problem
is NP-hard even when κ is small, the problem is denoted as para-NP-hard for κ. The
parameterized complexity class FPT consists of all fixed parameter tractable problems κ−Π.
While traditionally κ is defined as a mapping from problem instances to natural numbers
(e.g., Flum & Grohe, 2006, p. 4), one can easily enhance the theory for rational parameters
(Kwisthout, 2011). In the context of this paper, we will in particular consider rational
parameters in the range [0, 1], and we will liberally mix integer and rational parameters.

3. Approximating MAP

It is widely known, both from practical experiences and from theoretical results, that ‘small
tree-width’ is often a necessary constraint to render exact Bayesian inferences tractable.
However, it is often assumed that such intractable computations can be efficiently approxi-
mated using inexact algorithms; this assumption appears to be warranted by the observation
that in many cases approximation algorithms seem to do a reasonable job in, e.g., estimat-
ing posterior distributions, even in networks with high tree-width where exact computations
are infeasible (Cheng & Druzdzel, 2000; Sontag, Meltzer, Globerson, Weiss, & Jaakkola,
2008). Whether this observation has a firm theoretical basis, i.e., whether approximation
algorithms can or cannot in principle perform well even in situations where tree-width can
grow large, is to date not known.

Crucial in answering this question is to make precise what efficiently approximated ac-
tually pertains to. The on-line Merriam-Webster dictionary lists as one of its entries for
approximate ‘to be very similar to but not exactly like (something)’. In computer science,
this similarity is typically defined in terms of value: ‘approximate solution A has a value
that is close to the value of the optimal solution’. However, other notions of approximation
can be relevant. One can think of approximating not the value of the optimal solution, but
the appearance: ‘approximate solution A′ closely resembles the optimal solution’. Also, one
can define an approximate solution as one that ranks close to the optimal solution: ‘ap-
proximate solution A′′ ranks within the top-m solutions’. Note that these notions can refer
to completely different solutions. One can have situations where the second-best solution
does not resemble the optimal solution at all, whereas solutions that look almost the same
have a very low value as compared to the optimal solution (Van Rooij & Wareham, 2012;
Kwisthout, 2013). Similarly, the second-best solution may either have a value that is almost
as good as the optimal solution, or much worse.

In many practical applications, in particular of Bayesian inferences, these definitions
of ‘approximation’ do not (fully) capture the actual notion we are interested in. For ex-
ample, when trying to approximate the MAP explanation using some sort of randomized
computation, we have no guarantee on the quality of the solution found, however, we may
have a bound on the likeliness of a good solution. The current state-of-the-art approximate
algorithms for MAP (AnnealedMAP, Yuan, Lu, & Druzdzel, 2004; P-Loc, Park & Dar-
wiche, 2001; BP-LS, Park & Darwiche, 2004) all employ this strategy. The added notion of

703



Kwisthout

approximation here, induced by the use of randomized computations, is the allowance of a
bounded amount of error.1

In the remainder of this section we will elaborate on these notions of approximation
when applied to the MAP problem. We will give formal definitions of these approximate
problems and show why all of them are intractable in general. For MAP-approximation
by value and by structure we will interpret known results in the literature. For MAP-
approximation by rank we give a formal proof of intractability; for MAP-approximation
using randomized algorithms we give an argument from complexity theory.

3.1 Value-Approximation

Value-approximating MAP is the problem of finding an explanation approxsolB ∈ cansolB
that has a value, close to the value of the optimal solution. This ‘closeness’ can be defined in
an additive or in a relative manner; additive meaning that the absolute difference between
the probability of the optimal and the approximate solution is smaller than some value ρ;
relative that the ratio between the probability of the optimal and the approximate solution
is smaller than some value ρ. Both problems are intractable in general. Abdelbar and
Hedetniemi (1998) proved NP-hardness of relative value-approximation for any constant
ρ ≥ 1. This result holds for networks with only binary variables, with at most three incoming
arcs per variable, and no evidence. In addition, Kwisthout (2011) showed that it is NP-hard
in general to find an explanation approxsolB with Pr(approxsolB, e) > ε for any constant
ε > 0, and thus that Pr(optsolB, e) − Pr(approxsolB, e) ≤ ρ for ρ > Pr(optsolB, e) − ε.
The latter result holds even for networks with only binary variables, at most two incoming
arcs per variable, a single evidence variable, and no intermediate variables (i.e., when we
approximate an MPE problem).

Definition 3.1 (additive value-approximation of MAP) Let optsolB be the optimal
solution to a MAP problem. An explanation approxsolB ∈ cansolB is defined to ρ-additive
value-approximate optsolB if Pr(optsolB, e)− Pr(approxsolB, e) ≤ ρ.

Result 3.2 (Kwisthout, 2011) It is NP-hard to ρ-additive value-approximate MAP for
ρ > Pr(optsolB, e)− ε for any constant ε > 0.

Definition 3.3 (relative value-approximation of MAP) Let optsolB be the optimal
solution to a MAP problem. An explanation approxsolB ∈ cansolB is defined to ρ-relative

value-approximate optsolB if Pr(optsolB | e)
Pr(approxsolB | e) ≤ ρ.

Result 3.4 (Abdelbar & Hedetniemi, 1998) It is NP-hard to ρ-relative value-approximate

MAP for Pr(optsolB | e)
Pr(approxsolB | e) ≤ ρ for any ρ > 1.

1. Observe that some algorithms always converge to the optimal solution, but may take exponential time
to do so (e.g., MCMC-type approaches). However, we can turn such an algorithm into an expectation-
approximation algorithm by adding a clock that halts computations after time, polynomially in the input
size, and returning the current best solution which may or may not be optimal (Gill, 1977).
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3.2 Structure-Approximation

Structure-approximating MAP is the problem of finding an explanation approxsolB ∈
cansolB that structurally resembles the optimal solution. This is captured using a solution
distance function, a metric associated with each optimization problem relating candidate
solutions with the optimal solution (Hamilton, Müller, van Rooij, & Wareham, 2007). For
MAP, the typical structure distance function dH(approxsolB, optsolB) is the Hamming dis-
tance between explanation approxsolB and the most probable explanation optsolB. It has
been shown by Kwisthout (2013) that no algorithm can calculate the value of even a single
variable in the most probable explanation in polynomial time, unless P = NP; that is, it
is NP-hard to find an explanation with dH(approxsolB, optsolB) ≤ |optsolB| − 1, even if
the variables of the network are bi-partitioned into explanation and evidence variables, and
each variable has at most three possible values.

Definition 3.5 (structure-approximation of MAP) Let optsolB be the optimal solu-
tion to a MAP problem and let dH be the Hamming distance. An explanation approxsolB ∈
cansolB is defined to d-structure-approximate optsolB if dH(approxsolB, optsolB) ≤ d.

Result 3.6 (Kwisthout, 2013) It is NP-hard to d-structure-approximate MAP for any
d ≤ |optsolB| − 1.

3.3 Rank-Approximation

Apart from allowing an explanation that resembles, or has a probability close to, the most
probable explanation, we can also define an approximate solution approxsolB as an expla-
nation which is one of the m best explanations, for a constant m, that is, approxsolB ∈
optsol1...m

B for some m. Note that this explanation may not resemble the most probable
explanation nor needs to have a relatively high probability, only that it is ranked within the
m most probable explanations. We will denote this approximation as a rank-approximation.

Definition 3.7 (rank-approximation of MAP) Let optsol1...m
B ⊆ cansolB be the set of

the m most probable solutions to a MAP problem and let optsolB be the optimal solution. An
explanation approxsolB ∈ cansolB is defined to m-rank-approximate optsolB if approxsolB ∈
optsol1...m

B .

We will prove that it is NP-hard to m-rank-approximate MAP for any constant m. We do so
by a reduction from a variant of LexSat, based on the reduction in Kwisthout, Bodlaender,
and van der Gaag (2011). LexSat is defined as follows:

LexSAT
Instance: A Boolean formula φ with n variables X1, . . . , Xn.
Output: The lexicographically largest truth assignment x to X = {X1, . . . , Xn} that
satisfies φ; the output is ⊥ if φ is not satisfiable.

Here, the lexicographical order of truth assignments maps a truth assignment x = x1, . . . , xn
to a string {0, 1}n, with {0}n (all variables set to false) is the lexicographically smallest, and
{1}n (all variables set to true) is the lexicographically largest truth assignment. LexSat is
NP-hard; in particular, LexSat has been proven to be complete for the class FPNP (Krentel,

705



Kwisthout

X1 X2 X3 X4X0

¬ ¬

X

∨
Vψ

∧ ∨ ¬

Figure 1: Example construction of Bφex from LexSat′ instance φex

1988). In our proofs we will use the following variant that always returns a truth assignment
(rather than ⊥, in case φ is unsatisfiable):

LexSAT′

Instance: A Boolean formula φ with n variables X1, . . . , Xn.
Output: The lexicographically largest satisfying truth assignment x to ψ = (¬X0) ∨ φ
that satisfies ψ.

Note that if φ is satisfiable, then X0 is never set to false in the lexicographically largest
satisfying truth assignment to ψ, yet X0 is necessarily set to false if φ is not satisfiable;
hence, unsatisfying truth assignments to φ are always ordered after satisfying truth assign-
ments in the lexicographical ordering. Note that LexSat trivially reduces to LexSat′ using
a simple transformation. We claim the following.

Theorem 3.8 No algorithm can find an approximation approxsolB ∈ optsol1...m
B , for any

constant m, in polynomial time, unless P = NP.

In our proof we describe a polynomial-time one-Turing reduction2 from LexSat′ to m-
rank-approximated-MAP for an arbitrary constant m. The reduction largely follows the
reduction as presented by Kwisthout et al. (2011) with some additions. We will take the
following LexSat′-instance as running example in the proof: φex = ¬X1 ∧ (X2 ∨ ¬X3);
correspondingly, ψex = (¬X0) ∨ (¬X1 ∧ (X2 ∨ ¬X3)) in this example. We set m = 3 in the
example construct. We now construct a Bayesian network Bφ from ψ as follows (Figure 1).

For each variable Xi in ψ, we introduce a binary root variable Xi in Bφ with possible
values true and false. We set the prior probability distribution of these variables to
Pr(Xi = true) = 1/2 − 2i+1−1

2n+2 . In addition, we include a uniformly distributed variable
Xn+1 in Bφ with m values x1

n+1, . . . , x
m
n+1. The variables X0, . . . , Xn together form the set

X. Note that the prior probability of a joint value assignment x to X is higher than the prior
probability of a different joint value assignment x′ to X, if and only if the corresponding

2. A a function problem f is polynomial-time one-Turing reducible to a function problem g if there exist
polynomial-time computable functions T1 and T2 such that for every x,f(x) = Tl(x, g(T2(x))) (Toda,
1994). One-Turing reductions can be seen as equivalent to many-one reductions, but then applied to
function problems.
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truth assignment x to the LexSat′ instance has a lexicographically larger truth assignment
than x′. In the running example, we have that Pr(X0 = true) = 15/32, Pr(X1 = true) =
13/32, Pr(X2 = true) = 9/32, and Pr(X3 = true) = 1/32, and Pr(X4 = x1

4) = Pr(X4 =
x2

4) = Pr(X4 = x3
4) = 1/3. Observe that we have that Pr(X0) · . . . · Pr(Xi−1) · Pr(Xi) >

Pr(X0) · · · · · Pr(Xi−1) · Pr(Xi) for every i, i.e., the ordering property such as stated above
is attained.

For each logical operator T in ψ, we introduce an additional binary variable in Bφ
with possible values true and false, and with as parents the sub-formulas (or single sub-
formula, in case of a negation operator) that are bound by the operator. The conditional
probability distribution of that variable matches the truth table of the operator, i.e., Pr(T =
true | π(T )) = 1 if and only if the operator evaluates to true for that particular truth
value of the sub-formulas bound by T . The top-level operator is denoted by Vψ. It is readily
seen that Pr(Vψ = true | x) = 1 if and only if the truth assignment to the variables in
ψ that matches x satisfies ψ, and Pr(Vψ = true | x) = 0 otherwise. Observe that the
m-valued variable Xn+1 is independent of every other variable in Bφ. Further note that the
network, including all prior and conditional probabilities, can be described using a number
of bits which is polynomial in the size of φ. In the MAP instance constructed from φ, we set
Vψ as evidence set with Vψ = true as observation and we set X ∪ {Xn+1} as explanation
set.
Proof. Let φ be an instance of LexSat′, and let Bφ be the network constructed from φ
as described above. We have for any joint value assignment x to X that Pr(X = x | Vψ =
true) = α · Pr(X = x) for a normalization constant α > 0 if x corresponds to a satisfying
truth assignment to ψ, and Pr(X = x | Vψ = true) = 0 if x corresponds to a non-satisfying
truth assignment to ψ. Given the prior probability distribution of the variables in X, we
have that all satisfying joint assignments x to X are ordered by the posterior probability
Pr(x | Vψ = true) > 0, where all non-satisfying joint value assignments have probability
Pr(x | Vψ = true) = 0 and thus are ordered after satisfying assignments. The joint value
assignment that has the highest posterior probability thus is the lexicographically largest
satisfying truth assignment to ψ.

If we take the m-th valued variable Xn+1 into account, we have that for every x, the m
joint value assignments to X ∪ {Xn+1} have the same probability since Pr(x, Xn+1 | Vψ =
true) = Pr(x | Vψ = true) · Pr(Xn+1). But then, the m joint value assignments xm to
X ∪ {Xn+1} that correspond to the lexicographically largest satisfying truth assignment x
to ψ all have the same posterior probability Pr(xm | Vψ = true). Thus, any algorithm that
returns one of the m-th ranked joint value assignments to the explanation set X ∪ {Xn+1}
with evidence Vψ = true can be transformed in polynomial time to an algorithm that
solves LexSat′. We conclude that no algorithm can m-rank-approximate MAP, for any
constant m, in polynomial time, unless P = NP. �

Note that, technically speaking, our result is even stronger: as LexSat′ is FPNP-
complete and the reduction described above actually is a one-Turing reduction from LexSat′

to m-rank-approximation-MAP, the latter problem is FPNP-hard. We can strengthen the
result further by observing that all variables (minus Vψ) that mimic operators determin-
istically depend on their parents and thus can be added to the explanation set without
substantially changing the proof above. This implies that m-rank-approximation-MPE is
also FPNP-hard. Lastly, we can strengthen the result by replacing the m-th valued variable
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Xn+1 by dlog2me unconnected binary variables Xn+1 to Xn+dlog2me with uniform prob-
ability. Still, any algorithm returning one of the m-th ranked joint value assignments to
X∪{Xn+1, . . . , Xn+dlog2me} in polynomial time will effectively solve LexSat′ in polynomial
time.

Result 3.9 It is NP-hard to m-rank-approximate MAP for any constant m.

3.4 Expectation-Approximation

The last notion of MAP approximation we will discuss here returns in polynomial time
an explanation approxsolB ∈ cansolB that is likely to be the most probable explanation,
but allows for a small margin of error; i.e., there is a small probability that the answer is
not the optimal solution, and then no guarantees are given on the quality of that solution.
These approximations are closely related to randomized algorithms that run in polynomial
time but whose output has a small probability of error, viz., Monte Carlo algorithms. This
notion of approximation–which we will refer to as expectation-approximation (Kwisthout &
van Rooij, 2013)–is particularly relevant for typical Bayesian approximation methods, such
as Monte Carlo sampling and repeated local search algorithms.

Definition 3.10 (expectation-approximation of MAP) Let optsolB be the optimal so-
lution to a MAP problem and let E be the the expectation function (Papoulis, 1984).
An explanation approxsolB ∈ cansolB is defined to ε-expectation-approximate optsolB if
E(Pr(optsolB) 6= Pr(approxsolB)) < ε.

In order to be of practical relevance, we want the error to be small, i.e., when casted
as a decision problem, we want the probability of answering correctly to be bounded away
from 1/2. In that case, we can amplify the probability of answering correctly arbitrarily
close to 1 in polynomial time, by repeated evocation of the algorithm. Otherwise, e.g., if
the error depends exponentially on the size of the input, we need an exponential number
of repetitions to achieve such a result. Problems that enjoy polynomial-time Monte Carlo
algorithms are in the complexity class BPP; problems that may need exponential time to
reduce the probability of error arbitrarily close to 0 are in the complexity class PP.

As MAP is NP-hard, an efficient randomized algorithm solving MAP in polynomial time
with a bounded probability of error, would imply that NP ⊆ BPP. This is considered to be
highly unlikely, as almost every problem that enjoys an efficient randomized algorithm has
been proven to be in P, i.e., be decidable in deterministic polynomial time.3 On various
grounds it is believed that BPP = P (Clementi et al., 1998), and thus an efficient random-
ized algorithm for MAP would (under that assumption) establish P = NP. Therefore, no
algorithm can expectation-approximate MAP in polynomial time with bounded margin of
error unless NP ⊆ BPP. This result holds also for MPE, which is in itself already NP-hard,
even for binary variables and in-degree 2 (Kwisthout, 2011).4

3. The most dramatic example of such a problem is PRIMES: given a natural number, decide whether
it is prime. While efficient randomized algorithms for PRIMES have been around quite some time
(establishing that PRIMES ∈ BPP), only fairly recently it has been proven that PRIMES is in P (Agrawal,
Kayal, & Saxena, 2004).

4. In fact, it holds for value-approximation, structure-approximation, and rank-approximation of MAP as
well, as all three problems are in themselves NP-hard (see also Abdelbar & Hedetniemi, 1998, p. 35).
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Result 3.11 There cannot exist a randomized algorithm that ε-expectation-approximates
MAP in polynomial time for ε < 1/2− 1/nc for a constant c unless NP ⊆ BPP.

3.5 Discussion

In the previous subsections we showed that all approximation notions we established are in
fact intractable, under various assumptions. The results hold for MAP in general, but can
in many cases be strengthened to hold for MPE (i.e., where the network is two-partitioned
into evidence and explanation variables); in either case, both the cardinality c and in-degree
d of the nodes (and consequently, the size of the CPTs) is bounded. The results hold with
empty (or singleton) evidence sets. The results are summarized in Table 1.

Approximation constraints assumption reference

value, additive c = 2, d = 2, P 6= NP (Kwisthout, 2011, p. 1462)
|E| = 1, I = ∅

value, ratio c = 2, d = 3, P 6= NP (Abdelbar & Hedetniemi, 1998, p. 24)
E = ∅

structure c = 3, d = 3, P 6= NP (Kwisthout, 2013, p. 345)
I = ∅

rank c = 2, d = 2, P 6= NP Section 3.3
|E| = 1, I = ∅

expectation c = 2, d = 2, NP 6⊆ BPP Section 3.4
|E| = 1, I = ∅

Table 1: Summary of intractability results for MAP approximations

4. The Necessity of Low Tree-Width for Efficient Approximation of MAP

In the previous section we have shown that for four notions of approximating MAP, no
efficient general approximation algorithm can be constructed unless either P = NP or NP ⊆
BPP. However, MAP is fixed-parameter tractable for a number of problem parameters;
for example, {tw, c, q}−MAP is in FPT for parameters tree-width (tw), cardinality of the
variables (c = maxi |Ω(Vi ∈ V)|), and probability of the most probable solution (q =
Pr(optsolB, e)). Surely, if we can compute {κ1, . . . , κm}−MAP exactly in FPT time, we can
also approximate {κ1, . . . , κm}−MAP in FPT time. A question remains, however, whether
approximate MAP can be fixed-parameter tractable for a different set of parameters than
exact MAP.

Tree-width has been shown to be a necessary parameter for efficient exact computa-
tion of the Inference problem (and, by a trivial adjustment illustrated in Section 4.3,
also of MAP), under the assumption that the ETH holds (Kwisthout et al., 2010). In
this section, we will show that low tree-width is also a necessary parameter for efficient
approximate computation for value-approximations, structure-approximations, and rank-
approximations. We also argue (in Section 5) that it is not a necessary parameter for
efficient expectation-approximation. In the next sub-section we will review so-called tree-
width-preserving reductions (tw-reductions), a special kind of polynomial many-one reduc-
tions that preserve tree-width of the instances (Kwisthout et al., 2010). In Sub-section
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4.2 we sketch how this notion can be used to tw-reduce Constraint Satisfaction to
Inference. Together with the known result that Constraint Satisfaction instances
with high tree-width cannot have sub-exponential algorithms, unless the ETH fails (Marx,
2007), it was established by Kwisthout et al. that there cannot be a (general-purpose) algo-
rithm that decides Inference on instances with high tree-width in sub-exponential time,
unless the ETH fails. Here, the Inference problem is the problem of deciding whether in
a Bayesian network B with designated sets H and E and a rational number q, it is the case
that Pr(H = h | E = e) > q. More precisely, the following theorem was proved:

Theorem 4.1 If there exists a computable function f such that Inference can be decided
by an algorithm running in time

f(GM
B ) · ‖B‖

o(
tw(GM

B )

log tw(GM
B )

)

for arbitrary Inference instances (B,H,h,E, e, q) with a moralized graph GM
B with tree-

width tw(GM
B ), then the ETH fails.

The reader is referred to Kwisthout et al. (2010) for the full proof.5 In the remainder of
this section, we will show how this proof can be augmented to establish similar results for
MAP, value-approximate MAP, structure-approximate MAP, and rank-approximate MAP
(Sub-sections 4.3 and 4.4).

4.1 Tree-Width-Preserving Reductions

Tree-width-preserving reductions are defined by Kwisthout et al. (2010) as a means to reduce
Constraint Satisfaction to Inference while ensuring that tree-width is preserved
between instances in the reduction, modulo a linear factor.

Definition 4.2 (Kwisthout et al., 2010) Let A and B be computational problems such
that tree-width is defined on instances of both A and B. We say that A is polynomial-
time tree-width-preserving reducible, or tw-reducible, to B if there exists a polynomial-time
computable function g and a linear function l such that x ∈ A if and only if g(x) ∈ B and
tw(g(x)) = l(tw(x)). The pair (g, l) is called a tw-reduction.

We will use this notion to show that Constraint Satisfaction also tw-reduces to MAP,
value-approximate MAP, structure-approximate MAP, and rank-approximate MAP.

4.2 Proof Sketch

The tw-reduction from (binary) Constraint Satisfaction to Inference, as presented by
Kwisthout et al. (2010), constructs a Bayesian network BI from an instance I = (V,D,C)
of Constraint Satisfaction, where V denotes the set of variables of I, D denotes the set
of values of these variables, and C denotes the set of binary constraints defined over V×V.

5. The results by Kwisthout et al. (2010) did not rule out the existence of special-case algorithms, that
assume (and utilize) a particular property of the instance, such as a particular orientation of the arcs
or particular planarity properties of the graph structure, failing when the assumption is violated. The
results in the current paper, that are built on this result, inherit this constraint.
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Figure 2: Example construction of BI from example CSP instance I

The constructed network BI includes uniformly distributed variables Xi, corresponding
with the variables in V, and binary variables Rj , corresponding with the constraints in C.
The parents of the variables Rj are the variables Xi that are bound by the constraints;
their conditional probability distributions match the imposed constraints on the variables
(i.e., Pr(Rj = true | x ∈ Ω(π(Rj))) = 1 if and only if the joint value assignment x to
the variables bound by Rj matches the constraints imposed on them by Rj . Figure 2,
taken from Kwisthout et al., shows the result of the construction so far for an example
Constraint Satisfaction instance with four variables X1 to X4, where C contains four
constraints that bind respectively (X1, X2), (X1, X4), (X2, X3), and (X3, X4).

The tree-width of the thus obtained network equals max(2, tw(GI)), where GI is the
primal graph of I; note that the tree-width of BI at most increases the tree-width of GI by
1. In order to enforce that all constraints are simultaneously enforced, the constraint nodes
Rj need to be connected by extra nodes mimicking ‘and’ operators. A crucial aspect of
the tw-reduction is the topography of this connection of the nodes Rj : care must be taken
not to blow up tree-width by arbitrarily connecting the nodes, e.g., by a log-deep binary
tree. The original proof uses a minimal tree-decomposition of the moralization of BI and
describes a procedure to select which nodes need to be connected such that the tree-width
of the resulting graph is at most the tree-width of GI plus 3. The conditional probability
distribution of the nodes Ak is defined as follows.

Pr(Ak = true | x) =

{
1 if x =

∧
V ∈π(Ak)(V = true)

0 otherwise

For a node Ak without any parents, Pr(Ak = true) = 1. The graph that results from
applying this procedure to the example is given in Figure 3 (also taken from Kwisthout
et al., 2010). Now, Pr(A1 = true | x) = 1 if x corresponds to a satisfying value assignment
to V and 0 otherwise; correspondingly, Pr(A1 = true) > 0 if and only if the Constraint
Satisfaction instance is satisfiable.

4.3 MAP Result

The tw-reduction described in the previous sub-section can be easily modified to a tw-
reduction from Constraint Satisfaction to MAP. We do this by adding a binary node
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R1
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A1 A2 A3 A4 A5 A6

Figure 3: Resulting graph BI after adding nodes Ak and appropriate arcs

VI to the thus obtained graph, with A1 as its only parent and with conditional probability
Pr(VI = true | A1 = true) = 1 and Pr(VI = true | A1 = false) = 1/2 − ε, where ε
is a number, smaller than 1/|D||V|. Consequently, we have that Pr(VI = true) > 1/2 if I
is satisfiable, and Pr(VI = true) < 1/2 if I is not satisfiable; hence, a MAP query with
explanation set H = {VI} will return VI = true if and only if I is satisfiable. We added a
single node to BI , with A1 as only parent, thus increasing the tree-width of BI by at most
1. Hence, Constraint Satisfaction tw-reduces to MAP.

4.4 Approximation Intractability Results

In a similar way we can modify the reduction from Sub-section 4.2 to show that value-
approximations, structure-approximations, and rank-approximations can be tw-reduced
from Constraint Satisfaction, as sketched below.

4.4.1 Value-Approximation

We add a binary node VI , with A1 as its only parent, and with conditional probability
Pr(VI = true | A1 = true) = 1 and Pr(VI = true | A1 = false) = 0. We observe
this variable to be set to true. This enforces that Pr(A1 = true | VI = true) has
a non-zero probability (i.e., I is solvable) since otherwise there is conflicting evidence in
the thus constructed network. Thus, any value-approximation algorithm with explanation
set H = {A1} and evidence e = {VI = true} that can return a solution approxsolB ∈
cansolB with Pr(approxsolB, e) > ε for any constant ε > 0, (that is, approximates additively

for ρ > Pr(optsolB) − ε or relatively for ρ > Pr(optsolB)
ε ) effectively solves Constraint

Satisfaction: if there exists a solution with non-zero probability, the construction dictates
that I must be solvable. Given that we added a single node to BI , with A1 as only parent,
this increases the tree-width of BI by at most 1. Hence, Constraint Satisfaction tw-
reduces to value-approximate MAP.
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4.4.2 Structure-Approximation

Observe from the tw-reduction to MAP in Sub-section 4.3 that, since H consists of a
singleton binary variable, we trivially have that no algorithm can find an explanation
approxsolB ∈ cansolB with dH(approxsolB, optsolB) ≤ |optsolB| − 1 = 0 since that would
solve the MAP query. We can extend this result to hold for explanation sets with size
k for any constant k, i.e., no structure-approximation algorithm can guarantee to return
the correct value of one of the k variables in H in polynomial time in instances of high
tree-width, unless the ETH fails.

Instead of adding a single binary node VI as in the tw-reduction to MAP, we add k
binary nodes V 1

I . . . V
k
I , all with A1 as their only parent and with Pr(V j

I = true | A1 =

true) = 1 and Pr(V j
I = true | A1 = false) = 1/2 − ε for 1 ≤ j ≤ k and with ε as

described in Sub-section 4.3. A MAP query with explanation set H =
⋃

1≤j≤k V
j
I will

then return ∀1≤j≤kV
k
I = true if and only if I is satisfiable; if I is not satisfiable, a MAP

query will return ∀1≤j≤kV
k
I = false as most probable explanation. Hence, any structure-

approximation algorithm that can correctly return the value of one of the variables in H,
effectively solves Constraint Satisfaction. As we added k nodes to BI , with A1 as
their only parent and no outgoing arcs, the tree-width of BI increases by at most 1. Hence,
Constraint Satisfaction tw-reduces to structure-approximate MAP.

4.4.3 Rank-Approximation

We modify the proof of Sub-section 4.3 as follows. In addition to adding a binary node
VI as specified in that section, we also add dlog2me unconnected binary variables MI =

{M1
I . . .M

dlog2me
I } with uniform probability to H; an m-rank-approximate MAP query with

explanation set H = {VI} ∪MI will return VI = true (and MI set to an arbitrary value)
if and only if I is satisfiable. The addition of MI does not increase tree-width, hence,
Constraint Satisfaction tw-reduces to m-rank-approximate MAP.

4.5 Discussion

For efficient exact computation, value-approximation, structure-approximation, and rank-
approximation of MAP we showed that bounded tree-width is a necessary condition, un-
der the assumption of the ETH, for any general-purpose algorithm that accepts arbitrary
instances. This does not rule out the possibility that there may exist special-purpose al-
gorithms that can compute or approximate MAP explanations of specific networks with
a special structure or distribution (as was already concluded by Kwisthout et al. (2010)
for the Inference problem in Bayesian networks). However, as the previous sub-section
shows, the approximation problems are intractable even for extreme lower bounds on the
approximation quality, and by the very nature of the reductions it follows that if we can
effectively approximate MAP explanations by value, structure, or rank, we can decide the
problem exactly as well. This leaves little room for efficient approximation algorithms for
MAP instances with high tree-width when we approximate by value, structure, or rank.
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5. Expectation-Approximation and the Classes FERT and FPERT

In the previous section we showed that we cannot value-approximate, structure-approximate,
or rank-approximate MAP on instances with high tree-width, unless the ETH fails. Now
what about expectation-approximation? It appears that the strategy that was employed in
the previous subsection cannot be used to show a similar result for expectation-approxima-
tion. In fact, we have reasons to believe that efficient expectation-approximation of MAP
indeed depends on a different set of parameters than the other notions of approximation
discussed above, and that bounded tree-width is not necessary for this particular notion
of approximation. This notion of parameterized approximability is not well captured by
the ‘traditional’ fixed parameter tractable class FPT; therefore, we will introduce the pa-
rameterized complexity classes FERT (Fixed Error Randomized Tractable) and FPERT
(Fixed Parameter and Error Randomized Tractable) that characterize this notion of ef-
ficient parameterized expectation-approximation. Intuitively, in contrast to the class FPT,
that parameterizes running time, these classes parameterize the error probability (FERT),
respectively both the running time and the error probability (FPERT).

To the best of our knowledge, there is no previous work that proposes to parameter-
ize the probability of acceptance of a probabilistic Turing machine. Montoya and Müller
(2013) define the class BPFPT that assumes a bounded error which is independent of the
parameterization κ, but where the ‘amount of randomness’ (operationalized by the number
of coins used) is bounded. Arvind and Raman (2002) propose randomized approximation
algorithms for counting problems, where both the running time and the approximation ratio
are parameterized, but the error probability is constant. Both authors, however, assume a
bounded (rather than parameterized) error.

In the next section we will set up the formal machinery for our results. We intro-
duce natural parameterizations of MajSAT, respectively E-MajSAT, that are in FERT,
respectively FPERT. We will show that a restricted variant of MAP indeed is in FERT, pa-
rameterized by the probability of the most probable explanation, and that the Most Frugal
Explanations problem (Kwisthout, 2015) is in FPERT for a number of parameterizations.
We will elaborate on the relation between these classes and the classes BPP, PP, and FPT,
and finally, we will propose a ‘road map’ for future research.

5.1 Parameterizing the Error Bound in Randomized Algorithms

We formally define the complexity class FERT as follows:

Definition 5.1 Let Π be a decision problem and let κ−Π be a parameterization of Π. We
have that κ−Π ∈ FERT if and only if there exists a probabilistic Turing machine M that
halts after time, polynomial in the size of the input x, with the following acceptance criteria.
M accepts Yes-instances of Π with probability 1/2 + min(f(κ), 1/|x|c) for a constant c and
arbitrary function f : R→ 〈0, 1/2]; No-instances are accepted with probability at most 1/2.

Observe that in this definition we demand thatM halts after time, polynomial in the input
size (and independent from the parameterization κ), yet that the probability of acceptance
of Yes-instances may depend on any function of κ. Intuitively, the class FERT characterizes
problems that can be efficiently computed with a randomized algorithm (i.e., in polynomial
time, with error arbitrarily close to 0) if κ is bounded. The canonical parameterized problem
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that is in FERT is {r}−MajSAT, where r denotes the fraction of satisfying truth assign-
ments (or, equivalently, the probability that a random truth assignment accepts). This
follows as a corollary from the following result by Littman, Majercik, and Pitassi (2001):

Lemma 5.2 (adapted from Littman et al., 2001) Let v be the number of accepting
truth assignments to a Boolean formula φ, and let v̂ be the estimate of v found via random
sampling using w samples over the variables of φ. Let ε > 0 be a target approximation
error. The probability that |v − v̂| > ε is less than 2e−2ε2w.

Note that when solving a MajSAT-instance, the target approximation error ε directly
depends on the probability r that a random truth assignment accepts, as the acceptable error
(i.e., the error that still gives the correct answer to the MajSAT instance) in the random
sampling algorithm is ε = |r − 1/2|. So, if the probability of acceptance of a random truth
assignment is polynomially bounded away from 1/2, we can guarantee an arbitrarily small
error using only polynomially many samples using a straightforward randomized algorithm.

Corollary 5.3 {r}−MajSAT ∈ FERT.

When we allow both parameterization of the running time and of the probability of accep-
tance, we get the complexity class FPERT defined as follows:

Definition 5.4 Let Π be a decision problem and let {κ1, κ2}−Π be a parameterization of
Π. We have that {κ1, κ2}−Π ∈ FPERT if and only if there exists a probabilistic Turing
machine M that halts after time O(f1(κ1) · |x|c1), that accepts Yes-instances of Π with
probability 1/2 + min(f2(κ2), 1/|x|c2), and accepts No-instances with probability at most 1/2.
Here, f1 : R→ R and f2 : R→ 〈0, 1/2] are arbitrary computable functions and c1 and c2 are
constants.

We can also define a canonical problem in FPERT, based on the observation that {p}-SAT
is in FPT (Flum & Grohe, 2006, here parameter p denotes the number of variables in the
formula) and on Corollary 5.3:

E-MajSAT
Instance: Let φ be a Boolean formula with n variables xi, i = 1, . . . , n, n ≥ 1,
furthermore we partition the variables into sets XE and XM.
Question: Is there a truth assignment to XE such that the majority of the truth
assignments to XM satisfy φ?
Parameter: κ1 = p;κ2 = r; here p is the number of variables in the set XE; we define r
as follows. Let rxE denote the ratio of accepting truth assignments to XM given a
particular truth assignment xE to XE. We then define r = minxE(|1/2− rxE |).

Informally, r describes the minimum absolute distance to 1/2 of the fraction of accepting
truth assignments for any truth assignment xE to XE. Observe that we can try (brute-
force) all truth assignments to XE and, for each truth assignment, expectation-approximate
whether that truth assignment is such that the majority of truth assignments to XM satisfy
φ. This algorithm runs in time O(2p · nc) for a constant c, and has a probability at least
1/2 + f(r) of answering correctly (using a polynomial number of samples).

Corollary 5.5 {p, r}−E-MajSAT ∈ FPERT.
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5.2 Parameterized Expectation-Approximation of MAP

Proving that a problem κ−Π is in FPT is normally done constructively, i.e., by giving a
deterministic algorithm that decides Π in time O(f(κ) · |x|c) for a constant c > 1. Similarly,
proving that κ−Π is in FERT is done by giving a randomized algorithm6 that decides Π in
polynomial time with error at most 1/2−min(f(κ), 1/|x|c). We did not succeed in giving such
an algorithm for MAP in general, however, we can prove that a restricted variant of MAP
is in FERT when parameterized only by the probability of the most probable explanation,
despite that this restricted variant remains PP-complete in general and that bounded tree-
width is a necessary parameter to approximate this problem by value, structure, or rank:

ConstrainedMAP
Instance: As in MAP. In addition, we demand that E = ∅, H consists of a singleton
node H with no outgoing edges, and Ω(H) = {true, false}.
Question: Is Pr(H = true) > 1/2?
Parameter: q = Pr(H = true).

PP-completeness of Constrained-MAP follows from a trivial modification of the PP-
completeness proof of Inference as described by Kwisthout (2009, Lemma 2.7 and Lemma
2.9). Furthermore, given that the reductions from Constraint Satisfaction to MAP,
value-approximate MAP, structure-approximate MAP, and rank-approximate MAP respect
the same restrictions as imposed to Constrained-MAP, the necessity of bounded tree-
width follows.

To show that {q}−Constrained-MAP is in FERT, for the parameter q = Pr(H =
true), we give the following approximation algorithm. Observe that H is a binary sink
node (i.e., has no outgoing edges) and that B has no evidence. A simple forward sampling
strategy (Henrion, 1986) can approximate the distribution of H by sampling values for
the variables in the network according to the probability distribution in the CPTs. We
thus estimate Pr(H) by taking samples; we decide upon approxsolB using this estimation.
Note that the degree of error given a particular number of samples depends directly on the
probability q. To be precise, using the Chernoff bound we can compute than the number
of samples N needed to have a degree of error lower than δ is 1/(q − 1/2)2 ln 1/

√
δ. This gives

us a fixed-parameter randomized tractable algorithm for parameter {q}.

Corollary 5.6 {q}−Constrained-MAP ∈ FERT.

Another parameterized problem that can be shown to be fixed-error, fixed parameter
randomized tractable is the Most Frugal Explanations heuristic approach to MAP, intro-
duced by Kwisthout (2015). This heuristic (that either marginalizes or samples over inter-
mediate variables, based on some subjective partition of these intermediate variables (into
a set I+ and a set I−) according to their expected contribution to deciding upon the MAP
explanation) can be expectation-approximated tractably when the tree-width of the net-
work is low, the cardinality of the variables is small, the set I+ is small, and the probability
distribution is such that a few samples over I− suffice to decide upon the MFE explanation
with high probability. The first three parameters ensure bounded running time, whereas

6. We will refer to such an algorithm as a fixed-error randomized tractable algorithm.
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Figure 4: Inclusion properties for the complexity classes P, BPP, FERT, FPERT, FPT,
para-NP, para-PP, and para-NPPP

the final parameter ensures bounded probability of error. Hence, {tw, c, |I+|} ∪ {b}−MFE
is in FPERT, where tw denotes the tree-width of the network, c denotes the cardinality of
the variables, |I+| denotes the number of variables we marginalize (not sample) over, and b
denotes some parameter describing a bias towards a particular explanation. In addition it
can be shown that {|H|, c, |I+|} ∪ {b}−MFE is in FPERT, where |H| denotes the size of the
explanation set.

Corollary 5.7 {tw, c, |I+|}∪{b}−MFE ∈ FPERT and {|H|, c, |I+|}∪{b}−MFE ∈ FPERT.

5.3 The Relation Between FERT, FPERT, and Other Complexity Classes

The complexity class FERT introduced here is the randomized analog of FPT. Rather than
parameterizing the running time (as an arbitrary function of κ and polynomially in the
input size), here we parameterize the probability of acceptance of Yes-instances. BPP, FERT,
and para-PP form natural analogs of P, FPT, and para-NP, respectively. The class FPERT
parameterizes both the running time and the probability of acceptance, using two parameter
sets κ1 and κ2. We thus have that BPP ⊆ FERT ⊆ PP, that FERT ⊆ FPERT, and that
FPT ⊆ FPERT. Obviously, FPERT ⊆ para-NPPP, as every ‘slice’ {κ1, κ2}−Πκ1 ∈ NPPP (see
Flum & Grohe, 2006, for a discussion of ‘slices’ of parameterized problems). The inclusion
relations are depicted in Figure 4.

It is conjectured that BPP = P (Clementi et al., 1998); however, it is not clear whether
this conjecture can be transposed to the parameterized world; that is, whether it can be
conjectured that FERT = FPT. It is known that {q, |I|}−MAP and {q, tw}−MAP are fixed
parameter tractable (Kwisthout, 2011); as Constrained-MAP is a special case of MAP,
these results also hold for Constrained-MAP. However, in the intractability proof above
neither |I| nor tw is bounded. To the best of our knowledge there is no parameterized
complexity result known (in either direction) for {q}−Constrained-MAP.
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5.4 Efficient MAP Approximation: A Road-map for Future Research

We have established that a particular, constrained version of MAP can be efficiently ap-
proximated under expectation-approximations if the probability of the MAP explanation
is high (where the tree-width of the instance may be unbounded). A next step would be
to investigate the parameterized approximability of current state-of-the-art approximation
algorithms for MAP and show under which parameterization regimes these algorithms can
be shown to be in FERT or FPERT.

From a different perspective, it is interesting to further explore the parameterization
of the error in randomized algorithms and (for example) establish an analog for the W-
hierarchy for these parameterizations. That allows us to derive more fine-grained negative
parameterization results, in a similar way as proving W[1]-hardness leads to more fine-
grained negative results than proving para-NP-hardness.

6. Conclusion

In this paper we analyzed whether low tree-width is a prerequisite for approximating MAP
in Bayesian networks. We formalized four distinct notions of approximating MAP (by value,
structure, rank, or expectation) and argued that approximate MAP is intractable in general
using either of these notions. In case of value-approximation, structure-approximation, and
rank-approximation we showed that MAP cannot be approximated using these notions
in (non-trivial) instances with high tree-width, if the ETH holds. However, we showed
that a constrained version of MAP, despite being PP-hard in general, can be tractably
expectation-approximated when the most probable explanation has a high probability. We
proposed the complexity classes FERT and FPERT that capture the parameterization of the
error (respectively error and running time), rather than running time. With these results
we contributed to a fuller understanding of what does and does not make state-of-the-art
approximation algorithms for MAP feasible in practice.
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