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Abstract

The famous archetypical NP-complete problem of Boolean satisfiability (SAT) and its PSPACE-

complete generalization of quantified Boolean satisfiability (QSAT) have become central declara-

tive programming paradigms through which real-world instances of various computationally hard

problems can be efficiently solved. This success has been achieved through several breakthroughs

in practical implementations of decision procedures for SAT and QSAT, that is, in SAT and QSAT

solvers. Here, simplification techniques for conjunctive normal form (CNF) for SAT and for

prenex conjunctive normal form (PCNF) for QSAT—the standard input formats of SAT and QSAT

solvers—have recently proven very effective in increasing solver efficiency when applied before

(i.e., in preprocessing) or during (i.e., in inprocessing) satisfiability search.

In this article, we develop and analyze clause elimination procedures for pre- and inprocessing.

Clause elimination procedures form a family of (P)CNF formula simplification techniques which

remove clauses that have specific (in practice polynomial-time) redundancy properties while main-

taining the satisfiability status of the formulas. Extending known procedures such as tautology,

subsumption, and blocked clause elimination, we introduce novel elimination procedures based

on asymmetric variants of these techniques, and also develop a novel family of so-called covered

clause elimination procedures, as well as natural liftings of the CNF-level procedures to PCNF. We

analyze the considered clause elimination procedures from various perspectives. Furthermore, for

the variants not preserving logical equivalence under clause elimination, we show how to recon-

struct solutions to original CNFs from satisfying assignments to simplified CNFs, which is impor-

tant for practical applications for the procedures. Complementing the more theoretical analysis, we

present results on an empirical evaluation on the practical importance of the clause elimination pro-

cedures in terms of the effect on solver runtimes on standard real-world application benchmarks. It

turns out that the importance of applying the clause elimination procedures developed in this work

is empirically emphasized in the context of state-of-the-art QSAT solving.
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1. Introduction

Boolean satisfiability (SAT) is the problem of determining whether a given propositional logic for-

mula has a solution. SAT has become an important declarative approach to formulate and solve

various NP-hard problems—a general coverage of modern satisfiability research is provided by

Biere, Heule, van Maaren, and Walsh (2009). Contrasting the classical worst-case view on NP-

completeness as intractability (Cook, 1971; Garey & Johnson, 1979), central to the success of the

SAT-based approach are major advances in robust implementations of decision procedures for SAT,

i.e., SAT solvers. Modern SAT solvers are routinely used in a vast number of different industrial

and artificial intelligence applications (Claessen, Eén, Sheeran, & Sörensson, 2008; Marques-Silva,

2008), giving rise to a high demand for new techniques for further improving the robustness and

efficiency of current state-of-the-art SAT solvers.

As SAT is the archetypical problem for NP, the quantified Boolean satisfiability (QSAT) problem

of evaluating quantified Boolean formulas (QBF), the well-known extension of SAT, is archetyp-

ical for PSPACE, offering a powerful framework for modelling a very large range of important

computational problems in artificial intelligence, knowledge representation, verification, and syn-

thesis (Benedetti & Mangassarian, 2008). During the last decade, much effort has been spent in

the development of efficient QSAT solvers. Despite several success stories, much research effort is

needed for QSAT solving to reach the level of maturity of modern SAT solvers. Due to the wide

range of possible QSAT applications, developing more efficient QSAT solver technology is indeed

an important on-going quest. A major part of this quest is to lift techniques proven effective in SAT

solving to the more general framework of QSAT solving and to analyze their impact.

Simplification techniques applied both before (i.e., in preprocessing) and during search have

proven integral in enabling efficient conjunctive normal form (CNF) level SAT solving for real-

world application domains. Indeed, there is a large body of work on preprocessing CNF formu-

las (Freeman, 1995; Le Berre, 2001; Lynce & Marques-Silva, 2001; Bacchus, 2002; Ostrowski,

Grégoire, Mazure, & Saı̈s, 2002; Brafman, 2004; Subbarayan & Pradhan, 2005; Gershman & Strich-

man, 2005; Eén & Biere, 2005; Van Gelder, 2005; Fourdrinoy, Grégoire, Mazure, & Saı̈s, 2007a,

2007b; Jin & Somenzi, 2005; Han & Somenzi, 2007; Piette, Hamadi, & Saı̈s, 2008; Järvisalo, Biere,

& Heule, 2010; Manthey, Heule, & Biere, 2013; Heule, Järvisalo, & Biere, 2013b) based on, for

examples, variable elimination and equivalence reasoning. Further, while many SAT solvers rely

mainly on Boolean constraint propagation (that is, unit propagation) during search, it is possible to

improve solving efficiency by applying additional simplification techniques also during search. This

dynamic interplay between simplification and search is captured by the inprocessing SAT solving

paradigm (Järvisalo, Heule, & Biere, 2012b). Inprocessing SAT solvers have been recently shown

to push further the efficiency of SAT solving, as witnessed for example by LINGELING (Biere,

2013), one of the most successful SAT solvers in the recent SAT Competitions (Järvisalo, Le Berre,

Roussel, & Simon, 2012; SAT Competitions Organizing Committee, 2014). Importantly, when

scheduling combinations of simplification techniques during search, even quite simple ideas, such

as removal of subsumed clauses, can bring additional gains by enabling further simplifications by

other techniques.

Motivated by the impact of preprocessing in SAT, some preprocessors for QSAT have started to

emerge, and have proven advantageous for the evaluation of representative QSAT benchmarks (Samu-

lowitz, Davies, & Bacchus, 2006; Bubeck & Kleine Büning, 2007; Giunchiglia, Marin, & Nariz-

zano, 2010; Mangassarian, Le, Goultiaeva, Veneris, & Bacchus, 2010; Pigorsch & Scholl, 2010). In
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fact, there is high promise for achieving further advances to the efficiency of QSAT solvers through

adding stronger simplification techniques to the solving flow. Intuitively, this is due to the fact

that, in light of simplification and preprocessing techniques, real-world SAT and QSAT instances

tend to notably differ in their size characteristics. Real-world application SAT instances still solv-

able with state-of-the-art SAT solvers today can contain up to tens of millions of variables and

clauses (Järvisalo et al., 2012), which restricts the use of theoretically interesting polynomial-time

simplification techniques in practical applications due to the shear size of the input CNF formulas

the solvers must be able to cope with. In contrast, QSAT instances are often relatively small, be-

cause the language of QBF enables more succinct encodings via quantification. Despite their small

size, QBFs can be very challenging for state-of-the-art solvers to solve. Hence there is more room

for successful applications of computationally intensive (but still polynomial-time) simplification

rules. Inprocessing for QSAT has hardly been considered so far; the solver STRUQS (Pulina &

Tacchella, 2009) combines search-based solving with variable elimination what may be considered

as a step in this direction.

The focus of this article is on preprocessing and simplification techniques for SAT and QSAT

solving. This work is motivated on one hand by the possibilities of improving SAT and QSAT

solving efficiency further by integrating additional simplification techniques to the solving process

before and/or during search, and on the other hand by understanding the relationships between

different simplification techniques. Especially, we concentrate on developing and analyzing clause

elimination procedures for CNF (for SAT) and PCNF formulas (for QSAT)—the standard input

formats of SAT and QSAT solvers.

Clause elimination procedures form a specific family of simplification techniques which focus

on removing redundant clauses—with respect to specific redundancy properties—from CNF for-

mulas in a satisfiability-preserving way. More precisely, a clause elimination procedure based on

a redundancy property P is a procedure which, given a CNF (or PCNF) formula F , removes it-

eratively until fixpoint from F clauses which have P . For any well-defined redundancy property

P , it holds that for any clause C which has P in a (P)CNF formula F , F and F without C are

satisfiability-equivalent. In other words, F is satisfiable whenever F without C is satisfiable.

However, the most general redundancy property, simply requiring satisfiability-equivalence un-

der clause elimination, is not applicable in practice, since checking whether a clause is C redundant

under this property is co-NP-complete (Liberatore, 2005). In connection to practically relevant

clause elimination procedures, in the context of this work of specific interest are clause elimina-

tion procedures that are based on polynomial-time checkable redundancy properties. As simple

examples in the context of SAT, two such well-known redundancy properties are tautology and

subsumption. The corresponding clause elimination procedures are tautology elimination and sub-

sumption elimination (Eén & Biere, 2005). The more sophisticated redundancy property of blocked

clauses (Kullmann, 1999) allows for blocked clause elimination (Ostrowski et al., 2002; Järvisalo

et al., 2010).

As extensions of the known procedures, in this work we introduce novel elimination procedures

based on asymmetric variants of the techniques. In the asymmetric variants, a clause in a CNF is

first augmented with certain literals so that the satisfiability of the CNF is preserved. The original

clause is replaced by the augmented one. If the augmented clause turns out to have a redundancy

property, then it is eliminated from the CNF. Otherwise, the original clause is restored. We also

develop a novel family of so-called covered clause elimination procedures. For applications to the
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more general setting of QSAT, we develop natural liftings of the CNF-level procedures to PCNF,

which turn out—naturally—to be somewhat more involved.

We analyze the resulting clause elimination procedures from various perspectives. One prop-

erty is reduction power, that is, the ability to remove clauses and thus reduce the size of the CNF

formula. The relative reduction power of two clause elimination procedures reveals the potential

strengths of the procedures, subject to practical realizations of the more powerful procedures being

fast enough to speed up the total solving time. Another orthogonal property we consider is BCP-

preservance, that is, the ability to preserve all possible unit propagations that can also be done on

the original CNF. BCP-preservance amounts to the question of whether different clause elimina-

tion procedures maintain arc consistency on the clausal level w.r.t. the original CNF formula. A

third property we consider, confluence, implies that a procedure has a unique fixpoint; for practi-

cal realizations, knowledge of whether a simplification procedure is confluent is of interest. For

non-confluent procedures, well-working elimination-ordering heuristics have to be developed. The

fourth property we consider is whether the procedures maintain logical equivalence with respect to

the original CNF, that is, preserve the set of satisfying assignments. Maintaining logical equivalence

is most often not necessary for applications in which only a single solution is sought for. However,

for simplification techniques which maintain only satisfiability but not logical equivalence, it is im-

portant to develop algorithms for fast reconstruction of a satisfying assignment to the original CNF

from an assignment to the simplified instance. Motivated by this, for the variants which do not pre-

serve logical equivalence, we show how to efficiently reconstruct solutions to original CNFs from

satisfying assignments to simplified CNFs.

Complementing the analysis of the properties and relationships between the considered clause

elimination procedures, we also provide empirical results on the practical implications of the clause

elimination procedures in terms of runtime improvements with state-of-the-art SAT and QSAT

solvers on real-world application benchmarks. The empirical results show that the clause elimi-

nation procedures developed in this work have a clear positive effect on the performance of various

state-of-the-art QSAT solvers, while the impact on the performance of inprocessing SAT solving is

less announced.

The rest of this article is organized as follows. After preliminaries on SAT, QSAT, and re-

lated necessary concepts (Section 2), we present an overview of the results on the properties of

clause elimination procedures (Section 3). Technical analysis of the clause elimination procedures

for SAT and QSAT are presented in Sections 4–6, followed by a section on solution reconstruc-

tion (Section 7). Before concluding, results from an empirical evaluation of the procedures are

presented in Section 8.

This article extends and thoroughly revises work presented earlier at the 17th International Con-

ference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2010) (Heule,

Järvisalo, & Biere, 2010, 2013a) and at the 23rd International Conference on Automated Deduc-

tion (CADE 2011) (Biere, Lonsing, & Seidl, 2011). The variants of quantified covered clause

elimination (in Section 6) have not been published previously in detail. Further, model reconstruc-

tion for the variants of covered clause elimination (in Section 7) are new. Compared to the earlier

publications, the empirical evaluation presented in this article is extended and updated with more

recent state-of-the-art solvers and benchmarks. Definitions of some of the clause elimination pro-

cedures, and the related analysis, have been updated to better reflect the current insights into these

procedures. Furthermore, discussions, examples, and background have been extended.
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2. Preliminaries

In this section we review necessary background concepts: Boolean satisfiability, resolution, Boolean

constraint propagation, as well as their counterpart in the more general context of quantified Boolean

formulas.

2.1 Boolean Satisfiability

For a Boolean variable x, there are two literals, the positive literal, denoted by x, and the negative

literal, denoted by x̄. A clause is a disjunction of literals and a CNF formula is a conjunction of

clauses. A clause can be seen as a finite set of literals and a CNF formula as a finite set of clauses.

The set of literals occurring in a CNF formula F is denoted by lits(F ). A unit clause contains

exactly one literal. A clause is a tautology if it contains both x and x̄ for some variable x. Given a

CNF formula F , a clause C1 ∈ F subsumes (another) clause C2 ∈ F in F if and only if C1 ⊂ C2.

Then C2 is subsumed by C1.

A truth assignment for a CNF formula F is a function τ that maps variables in F to {t, f}. If

τ(x) = v, then τ(x̄) = ¬v, where ¬t = f and ¬f = t. A clause C is satisfied by τ if τ(l) = t for

some l ∈ C . An assignment satisfies F if it satisfies every clause in F . An assignment falsifies a

clause C if it assigns all literals that occur in C to f.

Two CNF formulas are logically equivalent if they have the same set of satisfying assignments

over the common variables.

2.1.1 RESOLUTION AND BCP

The classical resolution proof system (Robinson, 1965) for CNF formulas consists of the resolution

rule, which states that, given two clauses C1 and C2 with l ∈ C1 and l̄ ∈ C2, the clause C =
(C1 \{l})∪ (C2 \{l̄}), called the resolvent of C1 and C2, can be inferred by resolving on the literal

l. This is denoted by C = C1 ⊗l C2. The resolution rule not only forms a complete proof system

for SAT, but it is also important as an inference rule used in preprocessing CNF formulas.

Boolean constraint propagation (BCP) or unit propagation is based on applying unit resolution,

i.e., the special case of the resolution rule in which one of the clauses C1 and C2 is a unit clause.

BCP is a central propagation mechanism applied within the typical DPLL and CDCL-based SAT

solvers. For a CNF formula F , BCP propagates all unit clauses, that is, repeats the following until

fixpoint:

If there is a unit clause (l) ∈ F , remove from F \ {(l)} all clauses that contain the

literal l, and remove the literal l̄ from all clauses in F .

The resulting formula is referred to as BCP(F ). It is easy to see that BCP has a unique fixpoint for

any CNF formula. In other words, BCP is confluent.

If (l) ∈ BCP(F ) for some unit clause (l) /∈ F , we say that BCP of F assigns the literal l to t

(and the literal l̄ to f). If (l), (l̄) ∈ BCP(F ) for some literal l /∈ F (or, equivalently, ∅ ∈ BCP(F )),
we say that BCP derives a conflict on F . For notational convenience, for a partial assignment τ
over the variables in F , let BCP(F, τ) := BCP(F ∪ Tτ ∪ Fτ ), where Tτ = {(x) | τ(x) = t} and

Fτ = {(x̄) | τ(x) = f}. In words, BCP(F, τ) denotes the formula obtained by adding to F unit

clauses corresponding to the variable assignments in τ .
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2.2 Quantified Boolean Formulas

A quantified Boolean formula G in prenex conjunctive normal form (PCNF) has the structure Π.F
with quantifier prefix Π and propositional matrix F in conjunctive normal form. The quantifier

prefix Π is an ordered partition Q1 . . . Qn of the variables in F . The size of the quantifier prefix

Π = Q1 . . . Qn, denoted by |Π|, is |Q1| + . . . + |Qn|. An element Qi of Π is called a scope or

quantifier block. The function quant(Qi) assigns either a universal quantifier ∀ or an existential

quantifier ∃ to scope Qi in such a way that quant(Qi) 6= quant(Qi+1). For convenience we also

write Qx1, . . . , xn for a scope S = {x1, . . . , xn} with quant(S) = Q and Q ∈ {∀,∃}. The

quantifier level of a variable x with x ∈ Qi is i, i.e., one plus the number of the preceding scopes.

In the following, we assume that each variable of F occurs exactly once in the prefix. We say that a

variable x is universal (existential) in QBF Π.F if x ∈ S in Π and quant(S) = ∀ (quant(S) = ∃).

The notions of literals, clauses, and tautologies follow those for SAT. The function var(l) returns x
if l is of the form x or x̄. If l = x then l̄ = x̄ else l̄ = x. For a literal l with var(l) ∈ S, quant(l) =

quant(S). For a clause C , its existential and its universal literals are given by LQ(C) = {l ∈ C |
quant(l) = Q} with Q ∈ {∀,∃}. For literals l, l′ with var(l) ∈ Qi and var(l′) ∈ Qj , l ≤ l′ if i ≤ j.

Let G = Π.F be a QBF and l a literal. Then G[l] denotes the QBF which is obtained from G by

deleting each clause C with l ∈ C , by removing each occurrence of l̄, and by substituting the scope

Qi with var(l) ∈ Qi by Qi\{var(l)}.

The truth value of a QBF G = Π.F is recursively defined as follows.

• If F = ∅ then G is satisfiable, if ∅ ∈ F then G is unsatisfiable.

• If quant(Q1) = ∀ and x ∈ Q1, then G is satisfiable iff G[x] and G[x̄] is satisfiable.

• If quant(Q1) = ∃ and x ∈ Q1, then G is satisfiable iff G[x] or G[x̄] is satisfiable.

This definition of QBF semantics indicates that the ordering of the variables in the prefix impacts

the truth value of a formula. The prefix ordering introduces an ordering between the variables such

that a variable x has to be assigned before a variable y if x < y. This restriction is specific to

QBF and is does not apply to propositional logic where variables can be assigned in any order. The

following example illustrates the consequences of swapping quantifiers.

Example 1. The QBF G = ∀x∃y.((x ∨ ȳ) ∧ (x̄ ∨ y)) is satisfiable, whereas the QBF G′ =
∃y∀x.((x ∨ ȳ) ∧ (x̄ ∨ y)) obtained from G by swapping ∀x and ∃y in the prefix is unsatisfiable.

Intuitively, the semantics of QBF can also be considered as a two-player game (Schaefer, 1978)

with an existential player and a universal player. The former controls the existentially quantified

variables with the goal to satisfy the formula and the latter controls the universally quantified vari-

ables with the goal to falsify the formula. The moves are performed according to the order of the

variables in the quantifier prefix from the left to the right. Obviously, the universal player takes

advantage of the CNF structure, because conflicts can be easily detected. To reduce this bias while

preserving the benefits of the CNF, approaches realizing duality-aware reasoning have been pre-

sented (Zhang, 2006; Klieber, Sapra, Gao, & Clarke, 2010; Goultiaeva & Bacchus, 2013; Goulti-

aeva, Seidl, & Biere, 2013; Sabharwal, Ansótegui, Gomes, Hart, & Selman, 2006).

2.2.1 QBF MODELS

In the context of QSAT there are different definitions of models (satisfying assignments). The

choice of one particular definition is motivated by the actual application and underlying formal
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framework. In a theoretical setting, satisfiability models of QBFs were presented as sets of Skolem

functions (Kleine Büning & Bubeck, 2009). A Skolem function fy models the values an existential

variable y can take to satisfy the matrix with respect to the universal variables on which y depends.

In general, a Skolem function fy for one particular y is not unique. Replacing y by fy produces a

semantically equivalent formula. This definition of satisfiability models is the theoretical founda-

tion of certificate extraction for QBFs from resolution proofs (Balabanov & Jiang, 2011; Niemetz,

Preiner, Lonsing, Seidl, & Biere, 2012). In the context of the game-based view on the QBF seman-

tics, a similar approach for extracting winning strategies was introduced by Goultiaeva, Van Gelder,

and Bacchus (2011). An approach to directly produce Skolem functions by symbolic skolemiza-

tion (Benedetti, 2005a) was implemented to verify results of the solver SKIZZO (Benedetti, 2005b).

Skolem function extraction from so-called QRAT proofs was recently proposed by Heule, Seidl,

and Biere (2014b).

In certain applications related to preprocessing in QSAT, it is necessary to explicitly distinguish

variable assignments which satisfy the matrix. Recursive semantics and satisfiability models are

too coarse and hence not suitable for that purpose. Instead, tree-like models for QBFs can be

applied (Samer, 2008; Samulowitz et al., 2006). In a tree-like model, every path from the root

of the tree to a leaf comprises a variable assignment which satisfies the matrix. Assignments to

universal variables are reflected by branches in the tree. Tree-like models are the formal foundation

of preprocessing techniques in QSAT such as hyper binary resolution (Samulowitz et al., 2006) and

failed literal detection (Van Gelder, Wood, & Lonsing, 2012) and are also relevant for theoretical

work such as dependency schemes (Samer, 2008).

The different notions of models give rise to different definitions of equivalence in the theory of

QSAT. In analogy with SAT, equivalence of two QBFs G1 and G2 can be checked by comparing

the sets of tree-like models of G1 and G2, respectively. Such explicit comparison is impossible if

recursive semantics is applied. For example, the definition of recursive semantics (Kleine Büning

& Bubeck, 2009) distinguishes only between different assignments to the free variables in the QBF,

i.e., variables which occur in the matrix but which are not explicitly quantified in the prefix. In this

paper, we only consider closed QBFs without free variables.

Two QBFs G and G′ are satisfiability-equivalent if and only if the following holds: G is satis-

fiable if and only if G′ is satisfiable. For simplicity, in the context of QSAT we write “equivalent”

instead of “satisfiability-equivalent”.

2.2.2 Q-RESOLUTION

Many techniques used in SAT can be transferred to QSAT with certain adaptions to preserve sound-

ness. In the following, we introduce some of these techniques which are important for the rest of

the paper.

For defining Q-resolution (Kleine Büning, Karpinski, & Flögel, 1995), a lifting of the resolution

rule to QSAT, we first review the concept of universal reduction (UR) (Kleine Büning et al., 1995;

Cadoli, Giovanardi, & Schaerf, 1998).

Definition 1. A universally reduced clause C ′ is obtained from a clause C by applying universal

reduction until fixpoint, i.e.,

C := C\{l ∈ C | quant(l) = ∀, and there is no l′ ∈ C with quant(l′) = ∃ and l < l′}.
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The removal of a universally quantified literal l from a clause which does not contain any existen-

tially quantified literals with a higher level than l is called universal reduction.

It can be easily shown that the application of universal reduction is confluent and preserves

satisfiability of a formula, provided that it is applied to non-tautological clauses only. Based on

the universal reduction rule, Q-resolution is a combination of resolution for propositional logic and

universal reduction.

Definition 2. The Q-resolvent C1 ⊗l C2 of two non-tautological clauses C1 and C2 with l ∈ C1,

l̄ ∈ C2, and quant(l) = ∃ is defined as (C ′
1 \ {l})∪ (C ′

2 \ {l̄}) where C ′
1 and C ′

2 are the universally

reduced clauses obtained from C1 and C2, respectively. The literal l is called the pivot element.

The construction rule of Q-resolvents, enhanced with the universal reduction rule, forms the

quantified resolution calculus which is sound and refutationally-complete for QSAT (Kleine Büning

et al., 1995): a QBF G is unsatisfiable if and only if the empty clause can be derived from G by

Q-resolution and universal reduction. When combining universal reduction (as in Definition 1) and

Q-resolution (as in Definition 2), the restriction of Q-resolution to non-tautological clauses is crucial

for soundness, as the following example shows.

Example 2. Consider the satisfiable QBF G = ∀a∃x.C1 ∧ C2, where C1 = (a ∨ ā ∨ x) and

C2 = (x̄). Universal reduction cannot reduce literals from C1 and C2. Furthermore, C1 and C2 do

not have a Q-resolvent since C1 is tautological. If the restriction of Q-resolution to non-tautological

clauses is ignored, then a Q-resolvent of C1 and C2 is C = C1⊗xC2 = (a∨ā). Universal reduction

reduces C to the empty clause, which erroneously determines G as unsatisfiable.

2.2.3 UNIT AND PURE LITERALS FOR QSAT

The unit literal rule for QSAT, which is part of the definition of BCP for QSAT (QBCP) given in

the following, is obtained by extending from SAT to QSAT as follows. The variable of a unit literal

is required to be existentially quantified, because universal reduction immediately reduces a clause

containing only a universal literal to the empty clause. By taking universal reduction into account,

we arrive at the following rule for unit propagations in QSAT.

Definition 3. An existentially quantified literal l is unit in QBF G = Π.F if {l, l1, . . . , lm} ∈ F
with quant(li) = ∀ and l < li. If l is unit in G, then G is equivalent to G[l].

Obviously, if a QBF G contains a non-tautological clause with universally quantified literals

only, then G is unsatisfiable. Note that unit literal elimination allows to ignore the quantifier order-

ing during the evaluation, i.e., to assign a variable that is not a member of the outermost quantifier

block.

Another important rule allowing to assign a variable not occurring in the outermost quantifier

block is quantified pure literal elimination.

Definition 4. A literal l is pure in a QBF G = Q1 . . . Qn.F if l ∈
⋃

C∈F and l̄ 6∈
⋃

C∈F . Then G is

equivalent to G[l] if quant(l) = ∃ and equivalent to G[l̄] if quant(l) = ∀.

In addition to unit propagation through which BCP for SAT is defined, the QSAT-specific vari-

ant of BCP (QBCP) includes quantified pure literal elimination and universal reduction (UR) ap-

plied until fixpoint. Both the elimination of universal pure literals and universal reduction increase
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the deductive power of QBCP. In other words, the successive application of these rules together with

unit propagation allows to identify unit clauses which would be missed if only unit propagation was

applied.

3. Overview of Contributions

In this section, we give an overview of our main results. For this overview, we present several

important definitions of basic clause elimination techniques. Further, we introduce several measures

of comparison, such as the notion of relative reduction power, which allow a detailed analysis of the

various techniques.

3.1 Clause Elimination Procedures for SAT and QSAT

Generally speaking, a clause elimination procedure based on a redundancy property P is a proce-

dure which, given a CNF (or PCNF) formula F , removes iteratively until fixpoint from F clauses

which have P . For any well-defined redundancy property P , it should hold that for any clause

C that has P in a (P)CNF formula F , F and F \ {C} are satisfiability-equivalent. In connection

to practically relevant clause elimination procedures, in the context of this work of specific inter-

est are clause elimination procedures which are based on polynomial-time checkable redundancy

properties. As simple examples in the context of SAT, two such well-known redundancy proper-

ties are tautology and subsumption, which give the corresponding clause elimination procedures of

tautology elimination and subsumption elimination.

Definition 5 (Tautology Elimination). For a given formula F , tautology elimination (TE) repeats

the following until fixpoint: If there is a tautological clause C ∈ F , let F := F \ {C}. The CNF

formula resulting from applying TE on F is denoted by TE(F ).

Definition 6 (Subsumption Elimination). For a given formula F , subsumption elimination (SE)
repeats the following until fixpoint: If there is a subsumed clause C ∈ F , let F := F \ {C}. The

CNF formula resulting from applying SE on F is denoted by SE(F ).

A third earlier defined—but somewhat more involved—polynomial-time checkable redundancy

property is that of a clause being blocked1 (Kullmann, 1999), which gives the corresponding tech-

nique of blocked clause elimination (BCE). Blocked clause elimination has been recently shown to

be surprisingly effective in simulating various structure-based simplification mechanisms purely on

the CNF-level (Järvisalo, Biere, & Heule, 2012a), further motivating the technique both from the

theoretical and the practical perspectives.

Definition 7 (Blocked Clause Elimination for SAT). Given a CNF formula F , a clause C , and a

literal l ∈ C , the literal l blocks C w.r.t. F if for each clause C ′ ∈ F with l̄ ∈ C ′, C ∪ (C ′ \ {l̄}) is

a tautology. Given a CNF formula F , a clause C is blocked w.r.t. F if there is a literal that blocks

C w.r.t. F . For a CNF formula F , blocked clause elimination (BCE) repeats the following until

fixpoint: If there is a blocked clause C ∈ F w.r.t. F , let F := F \ {C}. The CNF formula resulting

from applying BCE on F is denoted by BCE(F ).

1. Kullmann defines a blocking literal l ∈ C as a literal for which it holds that all resolvents C ⊗l D with l̄ ∈ D are

tautologies. Our definition is slightly different in that it implies that binary tautologies are blocked clauses, in contrast

to Kullmann’s definition. Apart from that detail, the two definitions are equivalent.
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Example 3. Consider the following CNF formula, having a structure that is often observed in CNF

encodings of graph coloring problems. The formula encodes a graph with two vertices v and w and

an edge between them using three colors. The variable vi (or wi) has the interpretation that vertex

v (or w) gets color i.

FBCE = (v1 ∨ v2 ∨ v3) ∧ (w1 ∨ w2 ∨ w3) ∧ (v̄1 ∨ w̄1) ∧ (v̄2 ∨ w̄2) ∧ (v̄3 ∨ w̄3) ∧

(v̄1 ∨ v̄2) ∧ (v̄1 ∨ v̄3) ∧ (v̄2 ∨ v̄3) ∧ (w̄1 ∨ w̄2) ∧ (w̄1 ∨ w̄3) ∧ (w̄2 ∨ w̄3).

The first two clauses encode that v and w have at least one color. The next three clauses force that v
and w cannot have the same color. The last six clauses denote that v and w have at most one color.

It is easy to check that these last six clauses are blocked in FBCE, since for each of these clauses,

both of the two literals block the clause. Thus BCE will remove these last six binary clauses from

FBCE. Thus the formula BCE(FBCE) does not include the at-most-one-color constraints over the

nodes v and w, and hence, in contrast to FBCE, BCE(FBCE) has satisfying assignments in which

v or w are assigned multiple colors. However, given such a satisfying assignment, there is a simple

linear-time algorithm (see Section 7 for details) for reconstructing a satisfying assignment to FBCE,

i.e., an assignment in which v and w are both assigned only a single color.

In this work, we focus on a total of eight different clause elimination procedures for CNF formu-

las as well as for PCNF formulas, based on clause elimination techniques that remove tautological,

subsumed, blocked, and covered clauses. For each of these elimination techniques, we consider

the plain as well as what we call the asymmetric variant. For (plain) tautology elimination (TE),

we introduce asymmetric tautology elimination (ATE). For (plain) subsumption elimination (SE),

we have the asymmetric variant ASE, and for (plain) blocked clause elimination (BCE), the asym-

metric variant ABCE, respectively. Additionally, we develop a novel family (including the plain

(CCE) and asymmetric (ACCE) variants) of so-called covered clause elimination procedures. For

the context of QSAT, we propose natural liftings of these CNF-level clause elimination procedures.

While for the redundancy properties tautology and subsumed the corresponding CNF-level clause

elimination procedures are directly applicable by ignoring the quantifier prefix, the PCNF-level pro-

cedures based on the properties blocked and covered require more care as it is necessary to take the

quantifier prefix into account.

Due to somewhat involved definitions, we postpone the definitions for clause elimination proce-

dures based on the covered property until Section 6 in which we analyze there procedures in detail.

Similarly, liftings of the blocked and covered clause elimination procedures to QSAT are defined in

Sections 5 and 6, respectively. However, let us already here define the concept of asymmetric clause

elimination procedures, generalizing any (plain) clause elimination procedure. This is motivated by

the fact that, as will be shown, the asymmetric variants can achieve more simplification than the

plain procedures.

The asymmetric variant of a clause elimination technique relies on the clause extension rule of

asymmetric literal addition (ALA).

Definition 8 (Asymmetric Literal Addition). Given a clause C and a CNF formula F , literal l is

an asymmetric literal for clause C if there exist a clause C ′ ∈ Fl̄ \{C} such that C ′ \{l̄} subsumes

C . For a clause C and a CNF formula F , ALA(F,C) denotes the unique clause resulting from

repeating the following until fixpoint: If l1, . . . , lk ∈ C and there is a clause (l1 ∨ . . . ∨ lk ∨ l) ∈
F \ {C} for some literal l, let C := C ∪ {l̄}.
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Example 4. Consider the formula F = (a∨ b∨ c)∧ (a∨ b∨ d)∧ (a∨ c∨ d̄). ALA(F, (a∨ b∨ c))
first adds the asymmetric literals d̄ and d using (a∨ b∨ d) and (a∨ c∨ d̄), respectively. Afterwards,

it can add the asymmetric literals ā and b̄ using (a ∨ b ∨ d) and c̄ using (a ∨ c ∨ d̄). The fixpoint of

ALA(F, (a ∨ b ∨ c)) is (a ∨ ā ∨ b ∨ b̄ ∨ c ∨ c̄ ∨ d ∨ d̄).

It is easy to show that the replacement of a clause C occurring in a CNF F by ALA(F,C)
preserves logical equivalence regardless of whether F is a quantifier free propositional formula or

the matrix of a QBF. In other words, ALA is agnostic of the quantifier prefix.

As concrete examples, asymmetric tautology elimination, asymmetric subsumption elimination,

and asymmetric blocked clause elimination are defined as follows.

Definition 9. A clause C is an asymmetric tautology if and only if ALA(F,C) is a tautology.

Asymmetric tautology elimination (ATE) repeats the following until fixpoint: If there is a clause

C ∈ F for which ALA(F,C) is a tautology, let F := F \ {C}.

Example 5. Consider the formula F = (a∨ b∨ c)∧ (a∨ b∨ d)∧ (a∨ c∨ d̄) from Example 4. For

this F , ALA(F, (a ∨ b∨ c)) = (a∨ ā∨ b∨ b̄∨ c∨ c̄∨ d∨ d̄) is a tautology, and hence removed by

ATE from F .

As stated by the following lemma, ATE performs what could be called asymmetric branch-

ing on clauses—referred to as UP-redundancy by Fourdrinoy et al. (2007a, 2007a) and Piette

et al. (2008)—which is used for example in the technique of clause distillation (Jin & Somenzi,

2005). This gives an alternative characterization of ATE in terms of Boolean constraint propaga-

tion.

Lemma 1. ALA(F,C) is a tautology if and only if BCP on (F \ {C}) ∪
⋃

l∈C{(l̄)}) derives a

conflict.

The definitions of asymmetric subsumption elimination and asymmetric blocked clause elimi-

nation are analogous to that of asymmetric tautology elimination.

Definition 10. Asymmetric subsumption elimination (ASE) repeats the following until fixpoint: If

there is a clause C ∈ F for which ALA(F,C) is subsumed in F , let F := F \ {C}.

Example 6. Consider the formula FASE = (a∨ b∨ c)∧ (a∨ b∨ d)∧ (a∨ c∨ d̄). ASE can remove

(a∨ b∨ c) from F , because ALA(FASE, (a∨ b∨ c)) = (a∨ b∨ c∨d∨ d̄) is subsumed by (a∨ b∨d)
or (a ∨ c ∨ d̄).

Definition 11. For a given CNF formula F , a clause C ∈ F is asymmetric(ally) blocked if

ALA(F,C) is blocked w.r.t. F . Asymmetric blocked clause elimination (ABCE) repeats the fol-

lowing until fixpoint: If there is an asymmetric blocked clause C ∈ F for which ALA(F,C) is

blocked w.r.t. F , let F := F \ {C}.

Example 7. Consider the formula FABCE = (ā∨ b∨ c)∧ (b∨ c∨ d̄)∧ (a∨ d)∧ (b̄∨ d̄)∧ (c̄∨ d̄).
ABCE can eliminate (ā∨ b∨ c), because ALA(FABCE, (ā∨ b∨ c)) = (ā∨ b∨ c∨ d) which b and

c are blocking literals. Also, ABCE can remove all clauses in FABCE.

It turns out that clause elimination procedures that preserve logical equivalence in the case of

SAT, do not have to consider any information on quantifier ordering in the case of QSAT, i.e., these
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rules are the same for SAT and QSAT. Procedures which preserve only satisfiability equivalence in

SAT, however, would become unsound if the quantifier ordering were ignored and, therefore, the

restrictions imposed by the prefix have to be considered in the definition of such procedures. This

results in the quantified variants of blocked clause elimination (QBCE) and asymmetric blocked

clause elimination (AQBCE), both detailed in Section 5, as well as the quantified variants of cov-

ered clause elimination (QCCE) and asymmetric covered clause elimination (AQCCE) detailed in

Section 6).

3.2 Analyzing Clause Elimination Procedures

We will present detailed analysis on the relationships between the considered clause elimination

procedures, in terms of the achieved level of simplification (relative reduction power), the level of

equivalence maintained by the procedures (in terms of the sets of models of original and simplified

formulas), confluence (i.e., whether the procedures have a unique fixpoint), as well as the level

of constraint propagation maintained when applying the procedures. We will now formally define

these concepts and give an overview of the results. Detailed proofs for these results are presented

in Sections 4–6. Analysis of the procedures in terms of these properties are later (in Section 8)

complemented with an empirical evaluation on the effect of the clause elimination procedures on

runtimes of state-of-the-art SAT and QSAT solvers.

A relevant aspect of simplification techniques is the question of how much a specific technique

reduces the size of CNF (and PCNF) formulas. In this paper we analyze the relative reduction power

of the considered clause elimination procedures based on the clauses removed by the procedures.

For this we apply the following natural definition of reduction power.

Definition 12 (Relative reduction power). Assume two clause elimination procedures S1 and S2

that take as input an arbitrary CNF formula F and each produce as output a CNF formula that

consists of a subset of F that is satisfiability-equivalent to F .

• S1 at least as powerful as S2 if, for any F and any output S1(F ) and S2(F ) of S1 and S2 on

input F , respectively, we have that S1(F ) ⊆ S2(F );

• S2 is not as powerful as S1 if there is an F for which there are outputs S1(F ) and S2(F ) of

S1 and S2, respectively, such that S1(F ) ⊂ S2(F );

• S1 is more powerful than S2 if

(i) S1 is at least as powerful as S2, and

(ii) S2 is not as powerful as S1.

Our definition of relative reduction power takes into account non-confluent elimination proce-

dures, that is, procedures that do not generally have a unique fixpoint and that may thus have more

than one possible output for a given input. It should be noted that the result of a non-confluent

simplification procedure can be very unpredictable due to the non-uniqueness of results.

The definition of relative reduction power extends naturally to QSAT by considering the size

reduction of the matrix of a QBF. Hence, for natural liftings2 QS1 and QS2 of two CNF-level clause

elimination procedures S1 and S2 to QBFs, it will hold that if S1 is more powerful than S2, then

QS1 is more powerful than QS2.

2. A lifting QS1 of S1 is considered natural if QS1 behaves exactly like S1 when restricted to QBFs without universally

quantified variables.
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ATE

TE

ASE

SE (Q)BCE

A(Q)BCE

(Q)CCE

A(Q)CCE

logical equivalence

preserving

satisfiability-equivalence

preserving

SE: Subsumption elimination (same for SAT and QSAT).

TE: Tautology elimination (same for SAT and QSAT).

ASE: Asymmetric subsumption elimination (same for SAT and QSAT).

ATE: Asymmetric tautology elimination (same for SAT and QSAT).

(Q)BCE: (Quantified) blocked clause elimination.

(Q)CCE: (Quantified) covered clause elimination.

A(Q)BCE: Asymmetric (quantified) blocked clause elimination.

A(Q)CCE: Asymmetric (quantified) covered clause elimination.

Figure 1: Relative reduction power hierarchy of clause elimination procedures. An edge from X to

Y means that X is more powerful than Y. A solid edge means no corner cases. A dashed

edge means that the property does not hold for the corner case that the formula contains

only tautologies. A dotted edge means that the property does not hold for the corner case

that the formula contains the empty clause. A missing edge from X to Y means that X

is not as powerful as Y. However, notice that transitive edges are missing from the figure

for clarity. The Q in the prefix of a clause elimination technique indicates that there are

differences in the QSAT and SAT variant.

Our analysis results in a relative reduction power hierarchy (Figure 1) for the considered elim-

ination procedures. For example, we show that for each of the known plain techniques, the asym-

metric variants are more powerful. In this sense, the novel variants are proper generalizations of

the known plain techniques. It also turns out that the most powerful technique is the asymmetric

variant of covered clause elimination. The figure is slightly different from earlier work (Heule et al.,

2010). The changes are based on our renewed view of subsumption: a tautology is subsumed by

any clause.3 This view is justified by the fact that if C ∈ F subsumes another clause C ′ ∈ F in

a CNF F due to C ⊂ C ′, then C ′ is logically entailed by F . Since a tautological clause C ′ ∈ F
is trivially entailed by F , we regard C ′ to be subsumed by any other clause C ∈ F . We note that

there is only one single corner case: if a formula contains only tautologies, then tautology elimina-

tion can remove all tautologies, while subsumption elimination can remove all, but one. Using this

definition, subsumption elimination techniques are as powerful as tautology elimination techniques.

Additionally, we consider the properties listed in Table 1 for further analysing the clause elimi-

nation procedures for SAT. It is easy to see that TE and SE are confluent and BCP-preserving, and

also that for any CNF formula F , TE(F ) and SE(F ) are logically equivalent to F . Furthermore,

for any QBF Π.F , tautology elimination and subsumption elimination, as well as their asymmetric

3. Donald Knuth convinced us of this view in personal communication on July 21, 2014.
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Table 1: Properties of clause elimination procedures for SAT.

Preserves logical eq. BCP-preserving Confluent

Subsumption-based

SE yes yes yes

ASE yes no no

Tautology-based

TE yes yes yes

ATE yes no no

Blocked clause

BCE no no yes

ABCE no no no

Covered clause

CCE no no yes

ACCE no no no

variants, do not use any information on the variable ordering, i.e., S(Π.F ) := Π.S(F ) for any

S ∈ {TE,SE,ATE,ASE}. It also holds that BCE is confluent (Järvisalo et al., 2010).

While each of the techniques preserves satisfiability (and are thus sound), it turns out that the

variants of blocked clause elimination and covered clause elimination do not preserve logical equiv-

alence; this is the motivation for demonstrating in Section 7 how one can efficiently reconstruct

original solutions based on satisfying assignments for CNFs simplified using these variants. A

further property of simplification techniques is BCP-preservance, which implies that relevant unit

propagation (restricted to the remaining variables in the simplified CNF formula) possible in the

original CNF is also possible in the simplified CNF under any partial assignment. This property is

solver-related and very much practically relevant, since BCP is an integral part of a vast majority

of SAT solvers today.

Definition 13 (BCP-preserving). For a formula F , a preprocessing procedure S preserves BCP
on F if under any partial assignment τ over the variables in F and for any formula S(F ) resulting

from applying S on F , we have that

(i) for any literal l occurring in S(F ), (l) ∈ BCP(F, τ) implies (l) ∈ BCP(S(F ), τ)

(ii) ∅ ∈ BCP(F, τ) implies ∅ ∈ BCP(S(F ), τ) (the empty clause is obtained, that is, BCP
derives a conflict).

S is BCP-preserving if S preserves BCP on every CNF formula.

Notice that our definition is similar to deductive power as defined by Han and Somenzi (2007).

Also notice that BCP-preserving implies that logical equivalence is also preserved. Interestingly, it

turns out that BCP-preserving is quite a strict property, as only the plain SE and TE have it.

We note that if a procedure S is not BCP-preserving, and a procedure S′ is more powerful

than S, then we immediately have that S′ is not BCP-preserving. Similarly, if S does not preserve

logical equivalence, then S′ does not preserve logical equivalence either. Furthermore, by viewing

CNF formulas as PCNF formulas where all variables are existentially quantified, showing that a

CNF-level procedure S is not BCP-preserving or is not confluent typically directly implies the same
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negative result for the lifting of S to PCNF formulas. Indeed, this is the case for the procedures

considered in this article. Furthermore, since the quantifier structure does not impose restrictions on

the behavior of S ∈ {TE,SE,ATE,ASE}, the positive results on BCP-preservance and confluence

also directly translate to the level of PCNF formulas. Hence we focus the analysis of the procedures

from these perspectives on the CNF-level.

In the following, we proceed by giving detailed analysis of each of the variants of tautology, sub-

sumption, blocked clause, and covered clause based elimination procedures by considering equiv-

alence preserving techniques first followed by a discussion of satisfiability preserving techniques.

Finally, experimental results on the practical effectiveness of the procedures are presented in Sec-

tion 8.

4. Logical Equivalence Preserving Clause Elimination Techniques

We start our analysis by shortly considering clause elimination procedures which preserve logical

equivalence, namely, the well-known tautology and subsumption elimination, and their asymmetric

variants.

Lemma 2. ATE is more powerful than TE.

Proof. ATE is at least as powerful as TE due to C ⊆ ALA(F,C): if C is a tautology, so is

ALA(F,C). Moreover, let F = (a∨b)∧(b̄∨c)∧(a∨c). Since ALA(F, (a∨c)) = (a∨ā∨b∨b̄∨c∨c̄),
ATE can remove (a ∨ c) from F , in contrast to TE.

Proposition 1. ATE is not confluent.

Proof. Consider the formula F = (ā∨b)∧(ā∨c)∧(a∨c̄)∧(b̄∨c)∧(b∨c̄). Now, ALA(F, (ā∨b)) =
ALA(F, (ā ∨ c)) = ALA(F, (b ∨ c̄)) = (a ∨ ā ∨ b ∨ b̄ ∨ c ∨ c̄). ATE can remove either (ā ∨ b) or

both (ā ∨ c), (b ∨ c̄).

Proposition 2. For any CNF formula F , ATE(F ) is logically equivalent to F .

Proof. For any clause C removed by ATE, (F \ {C}) ∪
⋃

l∈C{(l̄)} is unsatisfiable. This implies

that F \ {C} |= C , that is, F \ {C} logically entails C .

Proposition 3. ATE is not BCP-preserving.

Proof. Consider the “standard” CNF translation of x = If-Then-Else(c, t, e) as the formula

(x̄ ∨ c̄ ∨ t) ∧ (x ∨ c̄ ∨ t̄) ∧ (x̄ ∨ c ∨ e) ∧ (x ∨ c ∨ ē) ∧ (x ∨ ē ∨ t̄) ∧ (x̄ ∨ e ∨ t).

Notice that ATE can remove (x ∨ ē ∨ t̄) and (x̄ ∨ e ∨ t). However, after removing these clauses,

BCP will no longer assign x to t under the truth assignment τ(e) = τ(t) = f. Also, BCP will no

longer assign x to f under the truth assignment τ(e) = τ(t) = t.

Next we consider the asymmetric variants of tautology elimination and subsumption elimination.

Proposition 4. ASE is more powerful than SE.

141
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Proof. ASE is at least as powerful as SE since for any CNF formula F , (i) for every clause C ∈ F ,

C ⊆ ALA(F,C), and (ii) if C is subsumed then any clause C ′ ⊇ C is subsumed. Moreover,

consider the formula F = (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (b ∨ c̄). In contrast to SE, ASE can remove

(a ∨ b ∨ d), because ALA(F, (a ∨ b ∨ d)) = (a ∨ b ∨ c ∨ d) is subsumed by (a ∨ b ∨ c).

In connection with Proposition 4, we note that, under the UP-redundancy terminology, it was

equivalently observed by Fourdrinoy et al. (2007a) that, essentially, removing asymmetric tautolo-

gies until fixpoint produces a formula which is closed under subsumption elimination.

Lemma 3. ATE is at least as powerful as ASE, except in the corner case that the formula contains

the empty clause.

Proof. Consider the corner case that a formula contains the empty clause. In the case, ASE can

remove all clauses other than the empty clause. However, let F := ∅ ∧ C such that C is not a

tautology. ATE cannot remove C , while ASE can.

To see that ATE is at least as powerful as ASE in the other cases, consider the following. If

there is a clause C ∈ F for which ALA(F,C) is subsumed by C ′ ∈ F \ {C}, then ALA(F,C)
is a tautology: say ALA(F,C) is subsumed by C ′ = (l1 ∨ . . . ∨ lk). By the definition of ALA,

l̄1, . . . , l̄k ∈ ALA(F,C).

Lemma 4. ASE is at least as powerful as ATE, except in the corner case that the formula consists

of only tautologies.

Proof. Consider the corner case that a formula consists of only tautologies. In this case, ATE can

remove all clauses. However, ASE can remove at most all but one clause.

To see that ASE is at least as powerful as ATE, consider the following. Any tautology is

subsumed by any other clause. That also holds for asymmetric tautologies. Hence as long as there

is at least one clause available for subsumption (which is the case if the formula contains at least

one non-tautological clause), ASE is at least as powerful as ATE.

Proposition 5. ASE is not confluent.

Proof. By replacing ATE with ASE in the proof of Proposition 1.

Proposition 6. For any CNF formula F , ASE(F ) is logically equivalent to F .

Proof. For any clause C removed by ASE, (F \ {C}) ∪
⋃

l∈C{(l̄)} is unsatisfiable. This implies

that F \ {C} |= C , that is, F \ {C} logically entails C .

By replacing ATE with ASE in the proof of Lemma 3 we have the following.

Proposition 7. ASE is not BCP-preserving.

5. Clause Elimination Procedures based on Blocked Clauses

As a third family of clause elimination procedures considered in this paper, we now analyze proce-

dures that eliminate blocked clauses (Kullmann, 1999) and present generalizations thereof to QSAT.
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5.1 Blocked Clause Elimination for SAT

We start with the “plain” variant of blocked clause elimination, BCE.

Proposition 8. BCE is more powerful than TE.

Proof. To see that BCE is at least as powerful as TE, notice that for any tautology C , D ⊇ C is

also a tautology. In this case D = C ∪C ′ \ {l̄} with C ′ and l̄ from Definition 7 of BCE. Moreover,

consider the formula F := (a). BCE can remove (a) from F , in contrast to TE.

Proposition 9. For some CNF formula F , BCE(F ) is not logically equivalent to F .

Proof. Recall the formula FBCE from Example 3. Consider the truth assignment τ with τ(v1) =
τ(v2) = τ(w3) = t and τ(v3) = τ(w1) = τ(w2) = f. Although τ satisfies BCE(FBCE), the clause

(v̄1 ∨ v̄2) in FBCE is falsified by τ .

Proposition 10. BCE(F ) is not BCP-preserving.

Proof. Follows from the fact that BCE does not preserve logical equivalence (Proposition 9).

We now turn to the asymmetric variant of blocked clause elimination which turns out to be more

powerful that BCE.

Proposition 11. Removal of an asymmetric blocked clause preserves satisfiability.

Proof. Follows from the facts that F is logically equivalent to (F \ {C}) ∪ {ALA(F,C)} and that

BCE preserves satisfiability.

Lemma 5. ABCE is more powerful than (i) BCE, and (ii) ATE.

Proof. ABCE is at least as powerful as BCE due to C ⊆ ALA(F,C): if C is a tautology, then

ALA(F,C) is a tautology. ABCE is at least as powerful as ATE since tautologies are blocked

clauses. Moreover, recall that in Example 7, ABCE could eliminate all clauses from FABCE. Nei-

ther BCE nor ATE can remove any clause from FABCE.

Proposition 12. ABCE is not confluent.

Proof. Let F = (ā ∨ b) ∧ (ā ∨ c) ∧ (a ∨ d̄) ∧ (b̄ ∨ d) ∧ (c̄ ∨ d). F contains four asymmetric

blocked clauses: ALA(F, (ā ∨ b)) = (ā ∨ b ∨ c̄ ∨ d̄) with blocking literal b, ALA(F, (ā ∨ c)) =
(ā ∨ b̄ ∨ c ∨ d̄) with blocking literal c, ALA(F, (b̄ ∨ d)) = (a ∨ b̄ ∨ c ∨ d) with blocking literal b̄,
and ALA(F, (c̄ ∨ d)) = (a ∨ b ∨ c̄ ∨ d) with blocking literal c̄. ABCE removes either (ā ∨ b) and

(b̄ ∨ d), or (ā ∨ c) or (c̄ ∨ d) from F .

Replacing BCE with ABCE in the proof of Proposition 9, we have the following.

Proposition 13. For some CNF formula F , ABCE(F ) is not logically equivalent to F .
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5.2 Quantified Blocked Clause Elimination

In the following, we generalize the notion of blocked clauses and blocked clause elimination (BCE)

for QSAT. We prove that blocked clauses can be removed also in the case of QSAT, and discuss

differences to propositional logic.

Definition 14. A literal l with quant(l) = ∃ in a clause C ∈ F of a QBF G = Q1 . . . Qn.F is called

a quantified blocking literal if for all C ′ ∈ F with l̄ ∈ C ′, a literal l′ with l′ ≤ l exists such that

l′, l̄′ ∈ C ∪ (C ′ \ {l̄}). A clause is quantified blocked if it contains a quantified blocking literal.

For a QBF G in PCNF, quantified blocked clause elimination repeats the removal of quantified

blocked clauses from G until fixpoint. The resulting QBF is denoted by QBCE(G). Our definition

of quantified blocking literals slightly differs from the original definition (Biere et al., 2011) which

uses l′, l̄′ ∈ C ⊗l C
′ instead of l′, l̄′ ∈ C ∪ (C ′ \ {l̄}). Our definition includes the case that either C

or C ′ is a tautology, i.e., when C ⊗l C
′ is undefined. Apart from this, the definitions are equivalent.

In contrast to propositional logic, there are two restrictions on the selection of quantified block-

ing literals. A blocking literal has to be existential and the literals responsible for the tautology in a

resolvent have to be of smaller level than the blocking literal. Without these restrictions, quantified

blocked clause elimination would not be sound, as illustrated by the following examples.

Example 8. Both clauses in the satisfiable QBF G = ∀x∃y.((x∨ȳ)∧(x̄∨y)) are quantified blocked

clauses since the existential literals ȳ and y are quantified blocking literals in the first and second

clause, respectively. Note that x < y in the prefix ordering. Let G′ = ∃x∀y.((x ∨ ȳ) ∧ (x̄ ∨ y)) be

obtained from G by changing the quantifiers of x and y in the prefix. The QBF G′ is unsatisfiable.

No clause in G′ is quantified blocked since x is existential and x < y. If we ignored the condition on

the level of a quantified blocking literal, then erroneously both clauses in G′ would be considered

as quantified blocked, and removing any clause of G′ results in a satisfiable QBF.

Example 9. Consider the unsatisfiable QBF ∃y∀x∃z.((y ∨ x̄ ∨ z) ∧ (ȳ ∨ x ∨ z) ∧ (y) ∧ (z̄)).
By definition, literals of the universal variable x cannot be quantified blocking. If we ignored the

quantifier type of x then erroneously x̄ and x in the first and second clause, respectively, would

be considered as quantified blocking literals. Note that the condition on the quantifier level holds,

that is, y < x where y is responsible for the tautological resolvent of the two clauses containing

x. However, removing the second clause, which is erroneously considered as quantified blocked,

results in a satisfiable QBF.

As the following theorem shows, quantified blocked clauses contain redundant information only,

and may therefore be removed from the formula.

Theorem 1. Let G = Q1 . . . Qn.(F ∪ {C}) be a QBF and let C be a quantified blocked clause in

G with blocking literal l. Then G and Q1 . . . Qn.F are equivalent.

Proof. Let C be a quantified blocked clause with the quantified blocking literal l with var(l) ∈ Qi,

i ≤ n. The direction G ⇒ Q1 . . . Qn.F trivially holds. We show Q1 . . . Qn.F ⇒ G by induction

over q = |Q1 . . . Qi−1|.
In the base case, we have q = 0, i.e., var(l) ∈ Q1 with quant(Q1) = ∃. The same argument

as in SAT (Kullmann, 1999) applies: let τ be a satisfying assignment for F , i.e., for each C ′ ∈ F
there exists a literal l′ such that τ(l′) = t. If τ satisfies C , the implication Q1.F ⇒ G holds,
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otherwise we construct a satisfying assignment τ ′ for F ∪ {C} as follows. Let τ ′(l′) = τ(l′) for

l′ 6= l and τ ′(l) = t. Then τ ′ satisfies not only C but also all other clauses C ′ ∈ F . If l̄ ∈ C ′, there

exists a literal l′′ 6= l such that l′′ ∈ C and l̄′′ ∈ C ′, with τ(l′′) = τ(C) = τ ′(l′′) = f and thus

τ ′(C ′) = τ ′(l̄′′) = t. Note that l′′ ∈ Q1 due to the restriction l′′ ≤ l.

For the induction step, assume q > 0. Let h be a literal with var(h) = y and y ∈ Q1. Note

that var(l) 6= y. We show that Q1\{y} . . . Qn.F [h] ⇒ G[h]. The rest follows from lifting the

implication over the conjunction that defines the semantics of universal quantification if quant(Q1)

= ∀, and, respectively, over the disjunction that defines the semantics of the existential quantification

if quant(Q1) = ∃. Three cases have to be considered for showing that C[h] is a blocked clause or

removed in F [h].

1. h ∈ C . Then C is removed from G[h].

2. h 6∈ C and h̄ 6∈ C . Consequently, C[h] = C . Furthermore, C is still a quantified blocked

clause in G[h], since h was not used to make a resolvent on l tautological. Then the induction

hypothesis is applicable.

3. h̄ ∈ C . Consequently, C[h] = C\{h̄} which is a quantified blocked clause in G[h], because

each clause C ′ with h, h̄ ∈ C ⊗l C
′ is removed from G[h], and other clauses C ′ with k, k̄ ∈

C ⊗l C
′ and y 6= var(k) still produce tautological resolvents with C on l. Note that l ∈ C[h]

since l 6= h̄.

Theorem 2. The application of QBCE(G) on a QBF G is confluent.

Proof. The argument is similar as for propositional logic (see Section 5).

For the soundness of quantified blocked clause elimination for QSAT, the level of the blocking

literal must be equal or higher than the level of the literal making the resolvent tautological, as the

following example illustrates.

Example 10. An extended example related to Example 8 where universal reduction is not applicable

to any clause is given by the unsatisfiable QBF

G′ = ∃x∀y∃z.((x ∨ z̄) ∧ (x̄ ∨ z) ∧ (y ∨ z̄) ∧ (ȳ ∨ z)).

The first two clauses in G′ encode that x and z are equivalent, and the last two clauses encode

that y and z are equivalent. The variable z prohibits the application of universal reduction. In the

first two clauses x and x̄, respectively, are not quantified blocking literals because x < z. If these

clauses were erroneously considered to be blocked and removed, then the resulting QBF would be

satisfiable.

Quantified blocked clauses may be eliminated from a formula without changing its truth value,

because they contain redundant information only. Hence, quantified blocked clause elimination is

applied in order to remove clauses from a QBF which may reduce the number of variables occurring

in the formula too. The following properties established for SAT (Kullmann, 1999; Heule et al.,

2010), also hold for QSAT. For the sake of compactness, we omit the prefix “quantified” if no

confusion arises.
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1. Formulas which are smaller with respect to their number of clauses potentially contain more

blocked clauses. If the matrix of a QBF G1 is a subset of the matrix of the QBF G2 then

there might be clauses which are blocked in G1, but not in G2. If there is a clause C which is

blocked in G2, but not in G1, then C 6∈ G1.

2. From the statement above, it follows immediately that QBCE has a unique fixpoint. If a

clause C is blocked in a QBF G, then any clause C ′ with C 6= C ′ blocked in G is also

blocked in G\{C}.

3. If a clause C is subsumed by a blocked clause C ′, i.e., C ′ ⊆ C , then C is also a blocked

clause. Obviously, the other direction does not hold.

4. Clauses containing an existential pure literal are blocked. The pure literal is the blocking

literal. In fact, QBCE may be considered as a generalization of pure literal elimination rule

for existentially quantified variables. However, the elimination of pure literals which are

universally quantified is not simulated by QBCE. In general, pure literal elimination of

universal literals does not eliminate whole clauses, but only single literals.

5. If the clauses C1 . . . Cn are the only clauses of a QBF G which contain the literal l, then

a clause C with l̄ ∈ C is blocked if for each clause Ci, the clause C contains a literal li
with l̄i ∈ Ci and li < l. In particular, if a QBF G contains an equivalence of the form

(l, l̄1, . . . , l̄n), (l̄, l1), . . . , (l̄, ln) and l occurs in no other than these clauses, then the equiva-

lence may be removed due to QBCE.

The fifth property indicates that QBCE eliminates equivalences under certain conditions. In

fact, like BCE in SAT (Järvisalo et al., 2012a), QBCE achieves structure-based simplifications

defined for circuit-based representations purely on the PCNF-level, without explicit knowledge on

the structure of the original representation.

6. Covered Clause Elimination Procedures

As the final family of clause elimination procedures considered in this paper, we now introduce and

analyze CNF and PCNF-level procedures that eliminate what we call covered clauses.

Covered clause elimination is based on successively adding certain literals to a clause C in a

CNF F ′ = F ∧{C} in a satisfiability-preserving way. Adding a literal l to C produces the extended

clause C ′ = C ∪ {l} which replaces C in F ′ to obtain F ′ = F ∧ {C ′}. If C ′ becomes blocked due

to adding a literal l then C ′ can be removed from F ′ by BCE, effectively eliminating one clause of

F ′. The literals added to a clause C by extension steps are called covered literals. These literals are

determined by inspecting all the clauses which, when resolved with C , result in a non-tautological

resolvent. A clause that becomes blocked by adding covered literals is called a covered clause. For

the application of covered clause elimination in practice, a clause C is extended by covered literals

only tentatively. If the extended clause C ′ does not become blocked eventually, then the added

literals are discarded and the original clause C is restored.

In the following, we formally define the set of covered literals, which can safely be used to

extend clauses in a CNF. Then we introduce covered clause elimination for SAT and QSAT and

analyze its properties. Similar to BCE, covered clause elimination does not preserve logical equiv-

alence. Therefore, in Section 7 we present an algorithm to reconstruct solutions to CNFs where

covered clauses have been eliminated.

146



CLAUSE ELIMINATION FOR SAT AND QSAT

6.1 Covered Clause Elimination Procedures for SAT

Given a CNF formula F , a clause C , and a literal l ∈ C , the set of resolution candidates of C w.r.t. l
is

RC(F,C, l) := {C ′ | C ′ ∈ Fl̄ and C ⊗l C
′ is not a tautology}.

In words, the set RC(F,C, l) of resolution candidates consists of clauses C ′ that contain the opposite

literal of l, meaning that these clauses can be resolved with C on the literal l. Notice that every clause

in RC(F,C, l) contains the literal l̄. If RC(F,C, l) = ∅, then C is blocked w.r.t. F . The literals

apart from l̄ which occur in all clauses of RC(F,C, l) form the resolution intersection RI(F,C, l)
of l and C w.r.t. F , formally defined as

RI(F,C, l) :=
(

⋂

RC(F,C, l)
)

\{l̄}.

In words, the resolution intersection RI(F,C, l) is the set of literals (apart from l̄) which occur in

each clause in the resolution candidate set RC(F,C, l). Given a CNF formula F , a clause C ∈ F ,

and a literal l ∈ C , we say that l covers the literals in RI(F,C, l) (w.r.t. F and C). A literal l′ is

covered by l ∈ C if l′ ∈ RI(F,C, l). A literal l ∈ C is covering w.r.t. F and C if l covers at least

one literal, that is, RI(F,C, l) 6= ∅.

Example 11. Consider the formula

FCLA = (a ∨ b ∨ c) ∧ (a ∨ b̄ ∨ d) ∧ (a ∨ c̄ ∨ d̄) ∧ (ā ∨ b̄ ∨ c̄) ∧ (ā ∨ b ∨ d̄) ∧ (ā ∨ c ∨ d)

which is also visualized as a resolution graph in Figure 2. The resolution graph is constructed as

follows. The clauses are the vertices and vertices are connected if and only if resolution between

the two clauses results in a non-tautological resolvent. In other words, vertices are only connected

if they have exactly one clashing literal. The edges have a label which shows the corresponding

variable of the clashing literal pair.

BCE cannot remove a clause FCLA because for each literal occurrence in FCLA there exists a

non-tautological resolvent. Figure 2 illustrates this by having for each literal of each clause at least

one edge. Now, RC(FCLA, (a ∨ b ∨ c), b) = {(a, b̄, d)}, so RI(FCLA, (a ∨ b ∨ c), b) = {a, d}. In

other words, literal b in (a∨ b∨ c) covers the literals a and d. As discussed in the following, adding

d to (a ∨ b ∨ c) preserves satisfiability. 4

After the addition of d to (a ∨ b ∨ c), several edges disappear. It no longer holds that each

literal occurrence has a corresponding edge. All literals that do not have an edge, (for example, c̄
in (a ∨ c̄ ∨ d̄)), have become blocking literals.

Lemma 6. For any CNF formula F , clause C ∈ F , and literal l ∈ C , it holds that replacing C by

C ∪RI(F,C, l) in F preserves satisfiability.

Proof. For any literal l ∈ C it holds that VE(F, l) = VE((F \ {C})∪ {C ∪RI(F,C, l)}, l), where

VE(F, l) denotes the CNF formula resulting from variable eliminating the variable of the literal l
from F (more formally, VE(F, l) = (Fl ⊗ Fl̄) ∪ (F \ (Fl ∪ Fl̄)), where Fl and Fl̄ consist of the

clauses in F that contain l and l̄, respectively, and Fl ⊗ Fl̄ = {C ⊗l C
′ | C ∈ Fl, C

′ ∈ Fl̄, and

C ⊗l C
′ is not a tautology}).

4. In fact, based on the same reasoning, one could also eliminate literal a from (a ∨ b ∨ c).
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a ∨ b ∨ c a ∨ b̄ ∨ d

a ∨ c̄ ∨ d̄

ā ∨ b̄ ∨ c̄ā ∨ b ∨ d̄

ā ∨ c ∨ d

b

c

a

a da

b

c

a

ad a

a ∨ b ∨ c ∨ d a ∨ b̄ ∨ d

a ∨ c̄ ∨ d̄

ā ∨ b̄ ∨ c̄ā ∨ b ∨ d̄

ā ∨ c ∨ d

b

a da

b

c

a

ad a

Figure 2: Two resolution graphs of FCLA: both graphs have for each clause in FCLA one vertex

and vertices are connected with an edge if the have exactly one pair of complementary

literals (hence the resolvent in non-tautological). The edges are labeled with the variable

of the complementary literals. The top figure shows FCLA before adding covered literal

d to (a ∨ b ∨ c) and the bottom figure shows FCLA after the addition. Notice that in the

top figure there is an edge for each literal. Literals in the bottom figure that have no edge

associated with them, such as c and d in (a ∨ b ∨ c ∨ d) are blocking literals.

For a given clause C in a CNF formula F , we denote by (covered literal addition) CLA(F,C) the

clause resulting from repeating the following until fixpoint:

If there is a literal l ∈ C such that RI(F,C, l) \ C 6= ∅, let C := C ∪ RI(F,C, l).

Lemma 7. Replacing a clause C ∈ F by CLA(F,C) preserves satisfiability.

Proof. The clause CLA(F,C) is obtained by iteratively applying Lemma 6 on clause C .

Lemma 8. Assume two clauses C,D with l ∈ C ⊆ D and two sets of clauses F,G with F ⊆
G. Further assume that D is not blocked w.r.t. F and hence C is not blocked w.r.t. G. Then

RC(G,C, l) ⊇ RC(F,D, l) 6= ∅ and hence RI(G,C, l) ⊆ RI(F,D, l).

Proof. Monotonicity of RC w.r.t. its first argument and anti-monotonicity w.r.t. its second argument

follows directly from its definition. For RI, note that intersection is anti-monotonic for non-empty

sets of sets.
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Theorem 3. Given a CNF formula F and a clause C ∈ F , CLA(F,C) is blocked or uniquely

defined.

Proof. Assume C is not blocked w.r.t. F and contains two literals l1, l2, which cover the literals

L′
i = RI(F,C, li) respectively. Consider the clauses C1 = C ∪ L′

1 and C2 = C ∪ L′
2. Now assume

that both of C1, C2 are not blocked w.r.t. F . Then all clauses D ∈ RC(F,C1, l2) ⊆ RC(F,C, l2)
contain all literals in L′

2. Since C1 is not blocked and thus RC(F,C1, l2) is not empty, we obtain

L′
2 ⊆ RI(F,C1, l2). The case where the indices are exchanged (i.e., L′

1 ⊆ RI(F,C2, l1)) is sym-

metric. Thus as long clauses do not become blocked, covered literals can be added independently.

The case that both of C1, C2 are blocked is trivial.

What remains (by symmetry) is the case that C2 is blocked but C1 is not. Again, we get L′
2 ⊆

RI(F,C1, l2). For C ′
1 = C1∪RI(F,C1, l2) we have C ′

1 = C∪L′
1∪RI(F,C1, l2) ⊇ L′

1∪(C∪L′
2) ⊇

C ′
2 which is also blocked. This generalizes to the following observation: For any non-deterministic

choice of adding covered literals to C , the literal l2 remains covering. Further, if in this process the

clause did not become blocked, it will eventually become blocked if the covered literals of l2 are

added.

With the needed preliminaries in place, we are ready to introduce covered clause elimination

procedures. The first one is the plain variant, simply called covered clause elimination.

Definition 15. Given a CNF formula F , a clause C ∈ F is covered if CLA(F,C) is blocked

w.r.t. F .

Example 12. Back to Example 11. Recall that RI(FCLA, (a∨b∨c), b) = {a, d}. Also, RI(FCLA, (a∨
b ∨ c), c) = {a, d̄}. Therefore, depending on the order of addition, CLA(FCLA, (a ∨ b ∨ c)) is ei-

ther (a ∨ b ∨ c ∨ d) when starting with covering literal b, or (a ∨ b ∨ c ∨ d̄) when starting with

covering literal c. In both cases CLA(FCLA, (a ∨ b ∨ c)) is blocked. After replacing (a ∨ b ∨ c)
by (a ∨ b ∨ c ∨ d), the truth assignment τ with τ(a) = τ(b) = τ(c) = f and τ(d) = t satisfies

the new formula, while falsifying (a ∨ b ∨ c) ∈ FCLA. In fact, FCLA witnesses the fact that none

of the clause elimination procedures based on covered clauses, as introduced next, preserve logical

equivalence in general.

An illustration of the above sis show in Figure 2. It shows the resolution graph of FCLA before

and after adding a covered literal.

Lemma 9. Removal of an arbitrary covered clause preserves satisfiability.

Proof. Clause C can be replaced by CLA(F,C) (Lemma 7), and C can be removed as CLA(F,C)
is blocked.

Definition 16 (Covered Clause Elimination). For a given formula F , covered clause elimination

(CCE) repeats the following until fixpoint: If there is a covered clause C ∈ F , let F := F \ {C}.

The resulting unique formula is denoted by CCE(F ).

Confluence of CCE follows from the following lemma.

Lemma 10. The following holds for any CNF formula F , clause C ∈ F , and set of clauses S ⊆ F
such that C 6∈ S. If C is covered w.r.t. F , then C is covered w.r.t. F \ S.
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Proof. Let CLA(F,C) = Ck, where C0 := C , and Ci+1 := Ci∪RI(F,Ci, li) for each i = 0..k−1
and li ∈ Ci. Now define D0 := C and, for each i = 0..k−1, Di+1 := Di if Di is blocked w.r.t. F \S
and Di+1 := Di ∪ RI(F \ S,Di, li) otherwise. Using Lemma 8, one can show by induction that

for each i we have either (i) Di is blocked w.r.t. F \ S, or (ii) RI(F \ S,Di, li) ⊇ RI(F,Ci, li). If

(i) holds for some i, then CLA(F \ S,C) is blocked w.r.t. F \ C . If Di is not blocked w.r.t. F \ S
for any i, then CLA(F \ S,C) ⊇ CLA(F,C).

Theorem 4. CCE is confluent.

Proof. Follows directly from Lemma 10: if two clauses C and D are both covered w.r.t. F , then C
is covered w.r.t. F \ {D}.

Lemma 11. CCE is more powerful than BCE.

Proof. CCE is at least as powerful as BCE follows from the fact that C ⊆ CLA(C): if C is

blocked, so is CLA(C). Moreover, in FCLA no clause is blocked. However, all clauses are covered.

Hence BCE will not remove a single clause, while CCE removes all of them.

In fact, in cases it is possible to add covered literals to ALA(F,CLA(F,C)): there are cases

when adding asymmetric literals to a clause can increase |RI(F,C, l)| for a non-asymmetric literal

l ∈ C .

Example 13. Consider the CNF formula F = (a ∨ b) ∧ (b ∨ c) ∧ (ā ∨ c) ∧ (ā ∨ d). Notice that

CLA(F, (a ∨ b), a) = (a ∨ b). Literal c̄ is asymmetric w.r.t. (a ∨ b) due to (b ∨ c). After adding c̄,
a in the extended clause (a ∨ b ∨ c̄) covers d.

This observation motivates the following definition for asymmetric covered clauses, based on

extending clauses iteratively by both CLA and ALA until a fixpoint is reached. More formally, for a

given CNF formula F , a clause C ∈ F is asymmetric covered if the clause resulting from repeating

1. C := CLA(F,C).

2. C := ALA(F,C).

until fixpoint is blocked w.r.t. F . Based on this definition, we arrive at asymmetric covered clause

elimination, ACCE.

Definition 17. Asymmetric covered clause elimination (ACCE) repeats the following until fixpoint:

if there is asymmetric covered clause C in F , let F := F \ {C}.

Lemma 12. Removal of an arbitrary asymmetric covered clause preserves satisfiability.

Proof. Follows from the facts that (i) F is satisfiability-equivalent to (F \ {C}) ∪ {CLA(F,C)};

(ii) F is satisfiability-equivalent to (F \{C})∪{ALA(F,C)}; and (iii) BCE preserves satisfiability.

Lemma 13. ACCE is more powerful than (i) ABCE, and (ii) CCE.
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Proof. (i) By replacing CCE and BCE by ACCE and ABCE in the proof of Lemma 11. (ii) Con-

sider the formula

FACCE = (a ∨ b ∨ c) ∧ (a ∨ b ∨ c̄) ∧ (a ∨ b̄ ∨ c) ∧ (a ∨ b̄ ∨ c̄) ∧

(ā ∨ b ∨ c) ∧ (ā ∨ b ∨ c̄) ∧ (ā ∨ b̄ ∨ c) ∧ (ā ∨ b̄ ∨ c̄) ∧

(a ∨ b ∨ d) ∧ (a ∨ b ∨ d̄) ∧ (a ∨ b̄ ∨ d) ∧ (a ∨ b̄ ∨ d̄).

CLA cannot add literals to any clause in FACCE. However, ALA can add d and d̄ to (a ∨ b ∨ c)
using (a∨ b∨ d̄) and (a∨ b∨ d), respectively. After ALA, (a∨ b∨ c) is a tautology, so ACCE can

remove it.

6.2 Quantified Covered Clause Elimination

We now introduce a lifting of covered clause elimination for QSAT. Thereby, covered clauses are

clauses which are blocked when they are enriched with literals contained in any resolvent with pivot

element l, the covering literal. As with QBCE, the prefix ordering has to be taken into account.

Definition 18. Let QRC denote the set of resolution candidates with

QRC(G,C, l) := {C ′ | C ′ ∈ F, l̄ ∈ C ′, 6 ∃l′ : {l′, l̄′} ⊆ C ⊗l C
′},

where G is a QBF with matrix F , C ∈ F , l ∈ C . Then the resolution intersection QRI(G,C, l) of l
and C w.r.t. G is given by

QRI(G,C, l) :=
(

⋂

{C ′′ | C ′ ∈ QRC(G,C, l), C ′′ ⊆ C ′,∀l′ ∈ C ′′ : l′ ≤ l}
)

\{l̄}.

A literal l is called covering literal if QRI(G,C, l) 6= ∅, i.e., l covers the literals in QRI(G,C, l).

Lemma 14. The replacement of a clause C in a QBF G by C ∪QRI(G,C, l) preserves unsatisfia-

bility.

Proof. We will show that for each QBF G = Π.(F ∪ {C}) it holds that if G is unsatisfiable, so is

G′ = Π.(F ∪QRI(G,C, l)). Assume that G is unsatisfiable, but G′ is not. Then there has to be at

least one assignment τ such that τ(C) = f and τ(QRI(G,C, l)) = t. In consequence, there is at

least one l′ ∈ QRI(G,C, l) with τ(l′) = t. Due to the construction of QRI, it holds that ∀C ′ ∈ F
with l̄ ∈ C ′, τ(C ′) = t. This means that at latest, after assigning all variables v where v < l with

value τ(v), l is pure. This means that F is satisfiable by an assignment τ ′ with τ ′(k) = τ(k) for

k 6= l and τ ′(l) = ¬(τ(l)), which is in contradiction with the assumption that G is unsatisfiable.

In the following, QRI(G,C) denotes the clause C extended with all quantified covered literals,

i.e., for all l ∈ QRI(G,C) it holds that QRI(G,C, l) ⊆ QRI(G,C).

Lemma 15 (Quantified Covered Literal Addition). The replacement of a clause C in a QBF G by

QRI(G,C) preserves unsatisfiability.

Proof. Iterative application of Lemma 14.

Definition 19 (Quantified Covered Clause). A clause C in a QBF G is covered if QRI(G,C) is

blocked w.r.t. G.

151
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Theorem 5. The removal of a covered clause preserves unsatisfiability.

Proof. According to Lemma 15, each clause may be replaced by the clause QRI(G,C). If this

clause is blocked, it may be removed according to Theorem 1. If it is a tautology, it can be removed

due to standard rewriting rules.

Example 14. In the QBF ∀a, b, c ∃x, y.((x ∨ ā) ∧ (x̄ ∨ y ∨ b)∧ (x̄ ∨ y ∨ c) ∧ (ȳ ∨ a)) the literal x
of the clause (x∨ ā) covers the literal y. Therefore, we can replace this clause by (x∨ ā∨ y) which

is blocked due to the blocking literal y. Consequently, the clause (x ∨ ā ∨ y) can be eliminated.

The restriction that the literals in the resolution candidates are of smaller level than the according

pivot is necessary for the correctness of quantified covered clause elimination, as shown in the

following example.

Example 15. Consider the unsatisfiable QBF ∃x∀a∃y.((x∨y)∧(x̄∨a)∧(ȳ∨ ā)). If we do not give

any restriction on the selection of the resolution candidates, we would obtain the clause (x∨ y ∨ a)
which is blocked with blocking literal y. If we remove this clause, the QBF becomes satisfiable.

Lemma 16. Covered clause elimination for QSAT is confluent.

Proof. Assume we have to add literal l to a clause C in order to make C a covered clause which is

then removed by blocked clause elimination. Assume that l ∈ QRI(C, l′) for a literal l′ ∈ C . We

have to show that if clause C ′ with l ∈ C ′ is removed due to QCCE, then either l may be still added

to C or C is blocked and hence may be removed. If C ′ was the only clause containing l, then there

is no other clause C ′′ with l̄′ ∈ C ′′. Then l′ is pure and C may be removed. Otherwise, l is in the

intersection of the resolvents with pivot literal l′ and hence l may be added to C .

7. Reconstructing Solutions

Since the elimination procedures based on blocked clauses and covered clauses do not preserve

logical equivalence, a truth assignment τ satisfying, for example, BCE(F ) may not satisfy F . In

this section we shown how solutions to the original CNF formulas can be reconstructed based on

solutions to the CNF formulas resulting from applying variations of blocked clause and covered

clause elimination.

7.1 Procedures Based on Blocked Clauses

Järvisalo and Biere (2010) showed how, given any CNF formula F and truth assignment τ that

satisfies BCE(F ), one can construct a satisfying assignment for F : Add the clauses C ∈ F \
BCE(F ) back in the opposite order of their elimination. In case C is satisfied by τ , do nothing.

Otherwise, assuming that l ∈ C is blocking C , flip the truth value of l in τ to t. After all clauses

have been added, the modified τ satisfies F .

We now show that this procedure can be used to reconstruct solutions for formulas simplified

using ABCE.

Lemma 17. Given a clause C ∈ F , if ALA(F,C) is blocked and not a tautology, then there is a

literal l ∈ C blocking it.
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Proof. By construction, for each literal l ∈ ALA(F,C) \C , here is a clause C ′ ∈ F that contains l̄
and C ′\{l̄} ⊆ ALA(F,C). Therefore, because ALA(F,C) is not a tautology, C ′⊗lALA(F,C) =
ALA(F,C) \ {l} is not a tautology either. Hence l is not blocking ALA(F,C).

Lemma 18. Given a CNF formula F and a truth assignment τ satisfying F , if C /∈ F is falsified

by τ , then ALA(F,C) is falsified by τ .

Proof. From Lemma 1 follows that F∪{ALA(F,C)} is logically equivalent to F∪{C}. Therefore,

ALA(F,C) is satisfied by τ if and only if τ satisfies C .

Lemma 19. Given a CNF formula F and a truth assignment τ satisfying F , if C /∈ F is falsified

by τ and ALA(F,C) is blocked w.r.t. F with blocking literal l ∈ C , then τ satisfies at least two

literals in each clause C ′ ∈ F with l̄ ∈ C ′.

Proof. First, such C ′ ∈ F contain a literal l̄ which is satisfied by τ . Second, because l is blocking,

each clause C ′ must contain one more literal l′ 6= l̄ such that l̄′ ∈ ALA(F,C). Since all literals in

ALA(F,C) are falsified by τ , l′ must be satisfied by τ .

Combining these three lemmas, we can reconstruct a solution for F if we have a satisfying

assignment τ for any ABCE(F ). The clauses C ∈ F \ ABCE(F ) are added back in reverse order

of elimination to ensure that ALA(F,C) is blocked. If C is satisfied by F do nothing. Otherwise,

we know that there is a literal l ∈ C blocking ALA(F,C); recall Lemma 17. Furthermore, all

literals in ALA(F,C) are falsified; recall Lemma 18. However, any C ′ ∈ F containing l̄ has two

satisfied literals; recall Lemma 19. Therefore, by flipping the truth assignment for l to t, C becomes

satisfied, while no such C ′ becomes falsified.

Theorem 6. The following holds for an arbitrary CNF formula F and truth assignment τ satisfying

F . For any clause C /∈ F for which C , ALA(F,C) is blocked w.r.t. F with blocking literal l, either

(i) τ satisfies F ∪ {C}, or (ii) τ ′, which is a copy of τ except for τ ′(l) = t, satisfies F ∪ {C}.

The reconstruction proof provides several useful elements that can be used to implement ABCE
more efficiently. First, since only original literals l ∈ C can be blocking ALA(F,C), we can avoid a

blocking literal check for all literals l ∈ ALA(F,C)\C . Second, it is enough to save each removed

original clause C . None of the additional literals in the extended clause ALA(F,C) not occurring

in C have to be flipped.

We implemented reconstruction as follows. When a clause C is eliminated by a procedure

based on blocking literals (BCE and ABCE), C together with a blocking literal l ∈ C is pushed

on a reconstruction stack S: i.e., S := S, 〈l:C〉. During reconstruction, we examine the eliminated

clauses in reverse order. If the clause on the top of the stack is falsified, the truth value of the

blocking literal is flipped. Figure 3 shows the pseudo-code of the algorithm.

7.2 Procedures Based on Covered Clauses

When covered clauses are eliminated, reconstruction of solutions becomes more tricky. This is due

to the following. As shown in the previous section, given any τ satisfying a formula F , and a clause

C which is falsified by τ , by Lemma 18 ALA(F,C) is also falsified by τ . However, the analogous

claim for CLA(F,C) is not true in general.
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reconstruction (CNF formula F , truth assignment τ , elimination sequence S)

while S is not empty

let 〈l:C〉 := S.pop()

if C is falsified by τ then

flip the truth value of l in τ to t

F := F ∪ {C}

return τ

Figure 3: Pseudo-code for reconstructing a solution with F a reduced formula, τ a satisfying as-

signment for F and S a set of eliminated clauses ordered by last eliminated.

Proposition 14. There is a CNF formula F and a satisfying truth assignment τ for F such that the

following holds. There is a clause C ∈ F that is falsified by τ , while CLA(F,C) is satisfied by τ .

Proof. Let F = FCLA \{(a∨b∨c)} and assume that the truth assignment τ assigns τ(a) = τ(b) =
τ(c) = τ(d) = f. Let C = (a ∨ b ∨ c). Now, τ satisfies F , but falsifies C . Since c ∈ C covers d̄, τ
satisfies CLA(F,C) = (a ∨ b ∨ c ∨ d̄).

Additionally, for any formula F and clause C ∈ F , if ALA(F,C) is blocked w.r.t. F , then there

is a literal l ∈ C blocking it by definition. However, in case CLA(F,C) is blocked, there might be

a literal in CLA(F,C) \ C blocking it.

Proposition 15. There is a CNF formula F for which the following holds. There exist a clause

C ∈ F such that C is not blocked w.r.t. F but CLA(F,C) is blocked (due to a blocking literal

l ∈ CLA(F,C) \ C).

Proof. Recall FCLA from Section 6. In FCLA, (a ∨ b ∨ c) is not blocked. However, the extended

clause CLA(FCLA, C) = (a ∨ b ∨ c ∨ d̄) is blocked with blocking literal d̄.

Due to the properties stated as Propositions 14 and 15, given a truth assignment τ satisfying a

formula F and a covered clause C ∈ F , one may be required to flip the truth values of multiple

variables in τ in order to construct a satisfying assignments for F ∪ {C} based on τ . We will next

show how this can be achieved.

Theorem 7. Given a CNF formula F and a truth assignment τ satisfying F . Let clause C /∈ F be

falsified by τ , while there is a literal l ∈ C such that τ satisfies C ∪ RI(F,C, l), then τ ′, being a

copy of τ with l assigned to t, satisfies F and C .

Proof. We need to show that after flipping l to t, all clauses in Fl̄ are still satisfied. There are two

cases. First, consider a clause C ′ ∈ Fl̄ such that C ⊗l C
′ is a tautology. Then there must be a

x ∈ C such that x̄ ∈ C ′. Since x is falsified by τ , because C is falsified by τ , x̄ is satisfied by

τ and so is C ′. The second case is C ′′ ∈ Fl̄ with C ⊗l C
′′ not being a tautology. By definition,

RI(F,C, l) ⊂ C ′′. Since C is falsified by τ while C ∪ RI(F,C, l) is satisfied by τ , RI(F,C, l) is

satisfied by τ and so is C ′′.
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Given a CNF formula F , C /∈ F with CLA(F,C) being blocked w.r.t. F , and a truth assignment

τ satisfying F . We can use the observation in Theorem 7 to compute, given a truth assignment τ ′

that satisfies F ∪ {C}. In case τ satisfies C it is trivial (τ ′ = τ ). Otherwise, there is a sequence

C0, C1, . . . , Cc such that C0 := C , Cc := CLA(F,C), and Ci+1 := Ci∪RI(F,Ci, li) with li ∈ Ci.

Now, let the reconstruction stack S contain the sequence 〈l0:C0〉, 〈l1:C1〉, . . . , 〈lc:Cc〉. Applying

τ ′ = reconstruction(F, τ, S) using the algorithm in Figure 3 produces τ ′ that satisfies F and C .

7.3 Solution Reconstruction for QSAT

We briefly review approaches to obtaining satisfiability models from preprocessed formulas in the

context of QSAT. These approaches can be classified into two categories depending on whether full

or partial satisfiability models are generated.

First, for some QSAT applications, it is sufficient to extract a partial model of a formula out of

a preprocessed one. Often only the values of the leftmost existential block of variables in a QBF

are of interest. In this case, the partial model represents a single assignment to these variables,

that is a Skolem function of zero arity. To generate partial models in practice, the preprocessor is

restricted to apply only those preprocessing rules which do not affect any variables from the leftmost

quantifier block. These variables are declared as don’t touch variables (Seidl & Könighofer, 2014).

This approach originates from incremental bounded model checking based on SAT (Kupferschmid,

Lewis, Schubert, & Becker, 2011) and QSAT (Marin, Miller, & Becker, 2012).

As an alternative to don’t touch variables, the preprocessor can be equipped with partial tracing

capabilities (Heyman, Smith, Mahajan, Leong, & Abu-Haimed, 2014). Thereby, the application

of the preprocessing rules is not restricted. Instead, information necessary to reconstruct a partial

model in terms of an assignment to the leftmost existential variables is collected during preprocess-

ing.

The second category comprises methods to extract full satisfiability models. Reconstruction

steps for common preprocessing rules except the expansion of universal variables have been pre-

sented by Janota, Grigore, and Marques-Silva (2013). The effect of universal expansion cannot be

expressed solely by Q-resolution, in contrast to equivalence literal substitution, for example, and

hence causes complications. The QRAT proof system (Heule, Seidl, & Biere, 2014a; Heule et al.,

2014b) is the first framework to allow the extraction of full satisfiability models from formulas pre-

processed using all currently implemented preprocessing techniques, including universal expansion.

8. Experimental Evaluation

Complementing the more theoretical analysis on the relationships and properties of the considered

clause elimination procedures, we now present results on an empirical evaluation of the effect of

applying clause elimination on the runtimes of state-of-the-art SAT and QSAT solvers. As bench-

marks, we used standard competition benchmark sets from the most recent SAT Competition (SAT

Competitions Organizing Committee, 2014) and QSAT solver evaluation (Jordan & Seidl, 2014),

focusing on real-world application instances. As an overview of the results, it turned out that the

clause elimination procedures developed in this work, applied within preprocessing, have a clear

positive effect on the performance of various state-of-the-art QSAT solvers. On pure CNF SAT for-

mulas, the effects—while still positive or non-negative on the whole—are more modest, both when

applying clause elimination as preprocessing, as well as within inprocessing. This difference can

partly be explained as follows: SAT benchmarks are typically large and relatively easy considering
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their size, while—due to the more succinct representation form enabled with the use of quantifiers—

QSAT benchmarks are relatively small in terms of how hard they are to solve in practice. Although

the presented clause elimination techniques require polynomial time—while the solving procedures

are exponential—they can be at times expensive in practice, especially on very large CNF formulas

with millions of variables and clauses.5

All experiments were performed on a cluster of 2.8-GHz Intel Core 2 Quad machines each

equipped with 8-GB memory and running Ubuntu 9.04.

8.1 Effectiveness of Clause Elimination in the Context of SAT

We evaluated the effectiveness of clause elimination procedures in the context of state-of-the-art

SAT solvers, more specifically LINGELING version aqw (Biere, 2013), which won the applica-

tion track in the SAT competition 2013. LINGELING heavily relies on the concept of inprocess-

ing (Järvisalo et al., 2012b). As already discussed in the introduction, inprocessing is based on

the idea of interleaving preprocessing, including clause elimination procedures, with search. The

inprocessing paradigm enables the use of facts learned during search, such as learned unit clauses,

in subsequent inprocessing phases, and the then simplified clauses again during search. Beside this

synergistic effect, inprocessing allows preprocessing algorithms to be pre-empted by search and

then resumed in the next inprocessing phase, to avoid getting stuck in a too-costly preprocessing

stages.

There is a difference in cost, in terms of running time, of specific inprocessing algorithms, as

well as the issue that certain simplification steps can actually be achieved with different inprocessing

techniques. As a consequence, it is extremely difficult to evaluate the effect of individual inprocess-

ing techniques in isolation precisely. As an alternative, we investigated how the performance of the

competition version of LINGELING is affected when disabling (i) all clause elimination procedures,

(ii) all pre- and inprocessing techniques other than clause elimination procedures, and (iii) all pre-

and inprocessing techniques. As the benchmark set we used the same instances as in the application

track of the SAT 2013 competition, with the time limit of 5000 seconds per benchmark, running

on hardware with almost identical speed as in the competition. In essence, the results show how

LINGELING would have performed in the competition without clause elimination in comparison to

using other or none of the pre- and inprocessing techniques applied within the solver.

We note that we conducted the same experiment also using the application track instances from

the SAT Competition 2014. While modest improvements (as shown in the following) on the 2013

instances can be observed, on the 2014 instances clause elimination procedures did not noticeably

improve (nor degrade) the performance of LINGELING.6 Hence here we present more details on

the results for the 2013 instances. In general, it appears that clause elimination procedures provide

only modest improvements for SAT solvers, but much more substantial improvement for QSAT

solvers—as we will demonstrate in the following.

5. In fact, in terms of worst-case complexity, it has recently been shown that, conditional to the so-called strong expo-

nential time hypothesis (SETH) (Impagliazzo, Paturi, & Zane, 2001; Calabro, Impagliazzo, & Paturi, 2009) being

true, checking whether a given CNF formula contains a clause having AT cannot be done in sub-quadratic time, even

when restricting to Horn-3-CNF formulas (Järvisalo & Korhonen, 2014).

6. We suspect that the differences in the 2013 and 2014 benchmarks are due to the benchmark selection procedure

applied by the competition organizers, which to an extent balance out performance differences between a set of top-

performing solvers from the previous year. This benchmark selection procedure used in the main SAT competitions

during 2012–2014 is described by Balint, Belov, Järvisalo, and Sinz (2015).
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configuration #sat #unsat #total avg∗ total∗∗

pre- & inprocessing disabled 108 83 191 1254 784440

only clause elimination enabled 112 86 198 1209 749324

base line without clause elimination 111 112 223 1111 632852

LINGELING version aqw (base line) 119 113 232 1124 600691

∗ over solved formulas

∗∗ over all formulas

Table 2: LINGELING configurations on application instances from SAT Competition 2013.

Among other inprocessing algorithms this competition version of LINGELING implements the

following clause elimination procedures. A separate BCE inprocessor is scheduled during inpro-

cessing if bounded variable elimination (VE) (Eén & Biere, 2005) was run-to-completion at least

once. Note that BCE can be implemented much faster than variable elimination. However, since

the latter has often a more pronounced effect, we run VE until completion first, before applying

BCE. Further, as proposed by Han and Somenzi (2007), BCE can partially be performed on-the-fly

during VE. In the configuration without clause elimination we disable both variants of BCE.

The special case of on-the-fly subsumption of on-the-fly strengthening during conflict clause

learning (Han & Somenzi, 2009), can also be considered as a clause elimination procedure, but is

performed during search. Thus we keep it enabled in each of the configurations of LINGELING used

in this experiment. The same applies to subsumption elimination (SE) during VE (Eén & Biere,

2005) and subsumed clauses found during lazy hyper binary resolution (Heule et al., 2013b). An-

other separate inprocessor performs transitive reduction of the binary implication graph. In practice,

transitive reduction is actually quite fast, but unfortunately in our experience does not give much

benefit in terms of solving times.

LINGELING aqw also contains an implementation of ACCE, which is rather costly and usually

never runs until completion. There is also another simple and partial variant of ATE, called basic

ATE (BATE). It is computationally inexpensive to detect some asymmetric tautologies (AT) during

(two-sided) literal probing (Le Berre, 2001), which is used as basic probing technique in various

inprocessing algorithms.

In the default configuration of LINGELING aqw, all the discussed clause elimination proce-

dures not only “wait” until VE was completed at least once, as BCE does, but also require BCE
to be completed at least once (except for BCE obviously). Concretely, the configuration of LIN-

GELING with all the clause elimination procedures disabled is called with the following command

line options: --no-bate --no-block --no-cce --no-transred. By specifying --plain

we further compare a configuration where pre- and inprocessing is disabled with a configura-

tion which only uses clause elimination procedures during pre- and inprocessing, using --plain

--bate --block --cce=3 --transred, which first disables all preprocessing and then selec-

tively enables all clause elimination procedure, combined with --batewait=0 --blockwait=0

--ccewait=1, which makes sure that CCE is only started after BCE has run until completion (as

in the default configuration) and BCE is not delayed.

Results from the experiment are shown in Figure 4 and Table 2. The net result of this evaluation

is that the default configuration of LINGELING, as entered to the competition, with all clause elim-

ination procedures enabled, solves 9 more instances; base line version solves 232 benchmarks but

only 223 without clause elimination. Out of the nine instances, eight are satisfiable, which seems to
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Figure 4: LINGELING version aqw without clause elimination procedures solves 9 instances less

on the application track benchmark set of the SAT 2013 Competition with a time limit of

5000 seconds.

suggest that additionally applying clause elimination is beneficial especially on satisfiable instances.

The results suggest that there are in cases benefits to using clause elimination procedures, but the

improvements are not on the same scale as enabling or disabling VE (Eén & Biere, 2005). Here

we note that, as explained in detail in (Järvisalo et al., 2012a), while VE and BCE are to some

extent orthogonal in terms of the simplifications achieved on CNF formulas, they can perform vari-

ous types of similar simplifications on their own. These include, for examples, various circuit-level

optimizations, such as cone-of-influence and monotone input gate reductions, as well as CNF level

techniques such as pure literal eliminations.

8.2 Effectiveness of Clause Elimination in the Context of QSAT

In the following, we empirically investigate the impact of PCNF-level clause elimination procedures

when applied as preprocessing in QSAT. To this end, we implemented those techniques in the QSAT

preprocessor BLOQQER (version 35) (Seidl & Biere, 2015). The core of BLOQQER is based on the

concept of “resolve and expand” realized in the QSAT solver QUANTOR (Biere, 2005). Basically,

QUANTOR is a complete solver using variable elimination to remove existential variables from

the innermost quantifier block and universal expansion to remove variables from the innermost

universal quantifier block. Depending on the benchmark family, this approach proved to be either

extremely efficient such that formulas hard to other solvers could be solved within a few seconds or

to be extremely memory-consuming. To overcome this limitation, we developed the preprocessor
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Figure 5: Runtimes on the QBFLib Track Benchmarks of QBF Gallery 2014.

BLOQQER that applies the “resolve and expand” approach in a bounded manner. In BLOQQER,

the preprocessed formula is rewritten in a way that a complete solver can then benefit from the

careful application of variable elimination and universal expansion which are repeatedly applied

until the formula either does not change any more or until some limits are reached. (Note that a

formula might already be solved in the preprocessing phase.) We integrated the clause elimination

techniques in BLOQQER such that they are applied during each cycle of variable elimination and

universal expansion.

For evaluating our implementation, we considered the benchmarks of the QBFLib track and of

the Application track of the QBF Gallery 2014 (Jordan & Seidl, 2014). The formulas included in

the QBFLib track are a selection of the QBFLib, the QBF community platform. This set contains

345 formulas from various benchmark families. In the competitive evaluation of the QBF Gallery

2014 only a subset of 276 formulas not directly solved by preprocessors was used. The benchmark

set of the Application track consists of 735 formulas from recently presented encodings to QSAT.

None of these formulas is directly solved by BLOQQER.

The time and memory limits were set to 900 seconds and 7 GB, respectively. Time spent on

preprocessing is included in the time limit for experiments that involve QSAT solvers. If the pre-

processor does not terminate after 900 seconds, then preprocessing is aborted and the formula is

considered to be unsolved. We consider four participants of the QBF Gallery, which are pub-

licly available: the CDCL-based solver DEPQBF (Lonsing & Biere, 2010; Egly, Lonsing, & Widl,

2013); the CEGAR-based solver RAREQS (Janota, Klieber, Marques-Silva, & Clarke, 2012); the

GHOSTQ solver (Klieber et al., 2010; Klieber, 2014) implementing a CEGAR-based approach in

combination with so-called ghost variables, allowing for duality-aware reasoning on the CNF level;

and the solver QUBE that includes the preprocessor SQUEEZEBF (Giunchiglia et al., 2010). This
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HEULE, JÄRVISALO, LONSING, SEIDL, & BIERE

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600

R
u
n
ti

m
e

(s
ec

)

Number of solved formulas

GhostQ

bloqqer + GhostQ

DepQBF

bloqqer + DepQBF

QuBE

bloqqer + QuBE

RAReQS

bloqqer + RAReQS

Figure 6: Runtimes on the Application Track Benchmarks of QBF Gallery 2014.

configuration #sat #unsat #total avg∗ total∗∗ vars cls.

no preprocessing 45 74 119 56 210K 32925 77710

no VE/Expansion 70 (2) 72 (8) 142 (10) 66 192K 32928 36863

no QBCE 76 (27) 91 (34) 167 (61) 47 168K 33306 31776

no QCCE 98 (32) 98 (36) 196 (68) 42 142K 33342 28012

no asymmetric CE 98 (28) 94 (33) 192 (61) 53 148K 33310 31642

full preprocessing 99 (33) 98 (37) 197 (70) 38 141K 33381 27858

∗ average runtime over solved formulas

∗∗ total runtime over all formulas

Table 3: Different BLOQQER configurations with solver DEPQBF on QBFLib benchmarks.

preprocessor implements several techniques also included in BLOQQER as well as a special kind of

equivalence substitution, but no clause elimination procedures like BCE and CCE.

Each of these four solvers was run in its standard configuration with and without BLOQQER.

The results are shown in Figure 5 and Figure 6. For all solvers except GHOSTQ preprocessing

was beneficial. While in the Application track preprocessing hardly had any effect on the runtime

of GHOSTQ, in the QBFLib track the performance of GHOSTQ was decreased by preprocessing.

GHOSTQ relies on structural patterns in the CNF and the application of the preprocessor seems to

destroy these patterns.

Since BLOQQER implements many preprocessing techniques, the just-described experiment

does not directly indicate the power of PCNF-level clause elimination procedures. In order to

evaluate the impact of the various techniques, we run different configurations of BLOQQER in com-
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configuration #sat #unsat #total avg∗ total∗∗ vars cls.

no preprocessing 155 128 283 62 424K 11262 227312

no VE/Expansion 174 219 393 36 322K 11283 173487

no QBCE 189 202 391 60 333K 11340 186860

no QCCE 196 213 409 69 322K 11356 173454

no asymmetric CE 175 213 388 41 328K 11342 174992

full preprocessing 192 217 409 70 322K 11358 173402

∗ average runtime over solved formulas

∗∗ total runtime over all formulas

Table 4: Different BLOQQER configurations with solver DEPQBF on Application benchmarks.

bination with our solver DEPQBF. The results are summarized in Table 3 and Table 4. The tables

give the number of solved satisfiable and unsatisfiable formulas and well as average runtimes for

the solved formulas and the total runtime for the complete benchmark set. The last two columns

show the average number of variables and clauses of the original formulas for the no preprocess-

ing configuration. For the other configurations, the average number of variables and clauses of

the preprocessed formulas is given. Table 3 additionally contains information about the number of

formulas directly solved by BLOQQER (the number of solved formulas in brackets). We ran the

following configurations: (i) no preprocessing, i.e., only the solver DEPQBF, (ii) variable elimina-

tion and expansion turned off but the clause elimination techniques turned on, (iii) blocked clause

elimination turned off, (iv) covered clause elimination turned off, (v) asymmetric clause elimination

techniques turned off, and (vi) all preprocessing techniques turned on.

For both benchmark sets, we observe that the application of BLOQQER is very beneficial for DE-

PQBF. The best performance is achieved when applying all preprocessing techniques. By turning

off variable elimination and universal expansion, we see that using only the clause elimination tech-

niques is already beneficial for the solver. The results for different BLOQQER configurations show

that the clause elimination techniques considerably improve the runtimes and the number of solved

formulas, especially in the case of the QBFLib track benchmarks. In average, the application of

BLOQQER increases the number of variables. This is mainly due to universal expansion. However,

also for the configuration where expansion is disabled, we observe a modest increase of the number

of variables. This is because BLOQQER splits large clauses into smaller ones what turned out to be

beneficial for DEPQBF. Especially for the QBFLib track benchmarks, the application of BLOQQER

drastically decreases the number of clauses (more than 50 percent for most configurations).

9. Conclusions

Preprocessing and inprocessing (generally, formula simplification) techniques have proven impor-

tant in speeding up state-of-the-art SAT and QSAT solving. Understanding the effects of and re-

lationships between various simplification procedures is important for gaining a better understand-

ing of the procedures. In this article, we focused on a specific type of preprocessing techniques,

clause elimination procedures that remove clauses from CNF and PCNF formulas based on dif-

ferent polynomial-time checkable redundancy properties. We introduced novel clause elimination

procedures for both CNF and PCNF formulas as asymmetric variants of the known techniques of

tautology, subsumption, and blocked clause elimination procedures, and additionally developed a
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novel family (including the plain and asymmetric variants) of so-called covered clause elimina-

tion procedures. We analyzed all of the variants from various perspectives—relative effectiveness,

BCP-preserving, confluence, logical equivalence—highlighting intricate differences between the

procedures. This also resulted in a relative power hierarchy, reflecting the relative strengths of the

procedures in removing clauses. In terms of relative power, the asymmetric variant of covered

clause elimination dominates the plain procedures, and the novel covered clause elimination pro-

cedures are the most powerful ones among the considered procedures. Complementing the more

theoretical analysis, we presented results of an empirical evaluation on the practical effectiveness of

the procedures in speeding-up the overall solving runtime of state-of-the-art SAT and QSAT solvers

on real-world benchmark instances. The results show that, while the effects on the SAT-level are

modest, applying the clause elimination procedures is clearly beneficial in the context of QSAT

solving.

Many of the SAT-level clause elimination procedures have already been integrated as inprocess-

ing techniques in a state-of-the-art SAT solver. An important aspect of future work would be to

integrate these procedures as inprocessing techniques into a QSAT solver. The motivation for doing

so is similar to that of the current state-of-the-art inprocessing SAT solvers: to speed up the satisfi-

ability search further via interleaving applications of preprocessing techniques with the core search

routine. For example, clauses may become blocked during the solving process and then removed.

An additional question to investigate is whether it is possible to loosen the blocking criterion by tak-

ing variable dependencies into account. It would also be interesting to perform a thorough in-depth

study of clause elimination in the context of other generalizations of and formalisms related to SAT,

such as maximum satisfiability (MaxSAT) and the extraction of minimally unsatisfiable subsets

(MUSes) of CNF formulas. While there is some recent work looking into possibilities of applying

SAT-based preprocessing in the contexts of MUS and MaxSAT (Belov, Järvisalo, & Marques-Silva,

2013a; Belov, Morgado, & Marques-Silva, 2013b; Berg, Saikko, & Järvisalo, 2015)–including the

use of BCE—we believe such directions have not yet been fully explored.
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