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Abstract
Multi-context Systems (MCSs) are a formalism for systems consisting of knowledge bases

(possibly heterogeneous and non-monotonic) that are interlinked via bridge rules, where the global
system semantics emerges from the local semantics of the knowledge bases (also called “contexts”)
in an equilibrium. While MCSs and related formalisms are inherently targeted for distributed set-
tings, no truly distributed algorithms for their evaluation were available. We address this short-
coming and present a suite of such algorithms which includes a basic algorithm DMCS, an ad-
vanced version DMCSOPT that exploits topology-based optimizations, and a streaming algorithm
DMCS-STREAMING that computes equilibria in packages of bounded size. The algorithms be-
have quite differently in several respects, as experienced in thorough experimental evaluation of a
system prototype. From the experimental results, we derive a guideline for choosing the appropriate
algorithm and running mode in particular situations, determined by the parameter settings.

1. Introduction

In the last decade, there has been an increasing interest in systems that comprise information from
multiple knowledge bases. This includes a wide range of application fields such as data integra-
tion, multi-agent systems, argumentation and many others. To picture a more concrete real-world
application, we may consider METIS (Velikova et al., 2014), an industrial prototype system for fa-
cilitating timely human decision making in maritime control. In this application, human operators
need support to determine whether a ship entering a port might hide its identity for illegal activ-
ities or might be a high risk for environmental hazard. To access such risks, METIS relies on a
number of heterogeneous external information sources such as the commercial ship database IHS
Fairplay,1 ship tracking websites,2 and news items for history of pollution events the ship may have
been involved in.

The rise of the Word Wide Web and distributed systems has propelled this development, and
to date several AI-based formalisms are available to host multiple, possibly distributed knowledge
bases in a compound system. Well-known such formalisms are distributed SAT solving (Hirayama
& Yokoo, 2005), distributed constraint satisfaction (Faltings & Yokoo, 2005; Yokoo & Hirayama,
2000), distributed ontologies in different flavors (Homola, 2010), MWeb (Analyti, Antoniou, &
Damásio, 2011), and different approaches to multi-context systems (Giunchiglia & Serafini, 1994;
Ghidini & Giunchiglia, 2001; Brewka, Roelofsen, & Serafini, 2007; Brewka & Eiter, 2007; Bikakis

1. www.ihs.com/products/maritime-information/
2. marinetraffic.com, myship.com
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Figure 1: Pinpointing Joker

& Antoniou, 2010) rooted in McCarthy’s (1993) work; among them, we focus here on Heteroge-
neous Nonmonotonic Multi-context Systems (MCSs) (Brewka & Eiter, 2007).

As a generalization of previous proposals, MCSs are a powerful formalism to specify systems
of knowledge bases that may have different formats and reasoning powers, ranging from simple
query answering over a relational database to reasoning over description logic knowledge bases (see
Baader et al., 2003), as well as to nonmonotonic formalisms such as default logic (Reiter, 1980) or
answer set programs (Gelfond & Lifschitz, 1991). To allow for heterogeneous knowledge bases and
to deal with the impedance mismatch between them, MCSs abstract knowledge bases to plain math-
ematical structures; on top, special bridge rules interlink the knowledge bases, where a bridge rule
adds a formula to a knowledge base, depending on certain beliefs at other knowledge bases. Hence
the semantics of a knowledge base with associated bridge rules, which forms a context, depends on
the other contexts, possibly in a cyclic manner. Based on this, MCSs have an equilibrium semantics
in terms of global states in which every context adopts an abstract “local model,” called belief set,
that is conformant with the local models adopted by the other contexts and in addition obeys the
bridge rules. The following simple example, which is a paraphrase of Ghidini and Giunchiglia’s
(2001) Magic Box, illustrates the power of this idea,

Example 1 Suppose that in a computer game, players Batman and Robin chased player Joker to
a partially occluded area, as shown in Figure 1; Robin is wounded and cannot read his distance to
objects. Neither Batman nor Robin can tell Joker’s exact position on the 3×3 box: Batman can only
assure that he is not in columns 2 and 3, while Robin can only tell that he is on row 1. However, if
they exchange their partial knowledge, they can pinpoint Joker to row 1 and column 1.

We can model Batman and Robin as contexts whose local knowledge bases include their infor-
mation about Joker’s position, which is exchanged using bridge rules, such as “at row(X) ← (2 :
at row(X)).” for Batman, which informally “imports” Robin’s knowledge (context 2) about row
positions; a full encoding is given in Example 2. The equilibrium of the emerging MCS discloses
then Joker’s position to both Batman and Robin.
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Although MCSs and related formalisms inherently target distributed systems, no truly dis-
tributed algorithms for computing equilibria of MCSs were available. Brewka and Eiter (2007)
encoded equilibria into HEX-programs (Eiter, Ianni, Schindlauer, & Tompits, 2005), which can be
evaluated using the dlvhex solver. However, while this approach elegantly offers full heterogene-
ity, it is fully centralized and needs technical assumptions. Roelofsen, Serafini, and Cimatti (2004)
had proposed earlier an algorithm to check satisfiability of homogeneous, monotonic MCS with a
centralized control that accesses contexts in parallel (hence is not truly distributed). Bikakis and
Antoniou (2010) instead gave a distributed algorithm for their defeasible multi-context systems;
however, the latter have homogeneous (possibly nonmonotonic) contexts with a particular type of
semantics, and the algorithm serves query answering but not model building.

The lack of distributed algorithms for evaluating MCSs based on local context handlers is due
to several obstacles:
• The abstract view of local semantics as belief sets limits for an algorithm at the global level

interference with the knowledge bases and the evaluation process at each context.

• Towards real life applications, certain levels of information hiding and security are required
(e.g. for information exchange between knowledge bases of companies) such that only selected
information is transferred between contexts via well-defined interfaces. This prevents a context
from getting more insight about its neighbors for optimization, for instance to learn conflicts (i.e.,
joint beliefs leading to contradiction) across contexts.

• The MCS system topology, i.e., the structure of context linkage, might be unknown at a context;
this disables decomposing the system for more efficient, modular evaluation.

• The bridge rules might fuel a cyclic information flow through a group of contexts. Even if each
context is easy to evaluate (e.g., all knowledge bases are acyclic logic programs), such global cycles
require nontrivial care.

In this article, we address these obstacles and present results towards efficient distributed eval-
uation of MCSs. Our main contributions are a suite of generic algorithms DMCS, DMCSOPT, and
DMCS-STREAMING which work truly distributed, and their implementation in a system prototype.
In more detail, the contributions are as follows.

1.1 Algorithms and Optimization Techniques

(1) Our first, basic algorithm DMCS aims at a fully distributed setting and we deal with the obstacles
above in a generic way: contexts just exchange belief sets and the call history (i.e., the access path
traversing bridge rules), but no further information. At the global level, belief states are formed
as tuples of belief sets; each context with bridge rules must respect the belief sets of its neighbors
when computing its own belief sets using a local solver for its knowledge base. Cycles are detected
from the call history, if a context gets a request and finds itself in the call history; to break a cycle,
a guessing technique is used with checks on the return path.

(2) By localizing a context’s knowledge about the system and information exchange, DMCS
can fairly easily adapt to context changes (additions or deletions), but at the same time faces some
scalability issues. To enhance the performance in an optimized version DMCSOPT, we disclose
meta-level information to contexts, viz. (i) the topology of context dependencies, which is exploited
for decomposing the MCS into sub-MCSs (blocks) that are linked in a block-tree, and (ii) the inter-
face between contexts, for optimizing the data transfer between blocks. Here (i) breaks cycles in
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advance and (ii) significantly reduces duplicate local evaluation; each yields a remarkable perfor-
mance gain.

(3) Still as DMCS and DMCSOPT compute all equilibria of an MCS, they can not escape from
scalability and memory issues, as multiple local belief sets can lead to combinatorial explosion at the
global level. We thus consider computing equilibria in a streaming mode; to this end, contexts pass
their belief sets not in one shot to their parents but gradually in small packages. Memory blowup
can be thus avoided and moreover contexts can continue earlier than when they wait for all answers
from all neighbors. This approach seems more user-friendly as equilibria gradually appear rather
than all at once, possibly after long time; and one may quit the computation after seeing sufficiently
many results (i.e., equilibria).

1.2 Implementation and Experiments

We have implemented the algorithms in a system prototype. To assess the effects of the optimiza-
tion techniques, we have set up a benchmarking system and conducted comprehensive experiments
with MCSs of various topologies and interlinking. The results confirm our expectation of the opti-
mization techniques in general; in a nutshell, (i) the decomposition technique clearly improves the
performance in the non-streaming mode; (ii) streaming is worthwhile as it may still find answers
while non-streaming times out; (iii) for streaming, choosing the package size is very important;
(iv) the system topology is important as some optimization techniques show drastic improvements
for specific topologies; (v) sometimes, the techniques yield no gain but incur overhead.

The results of this work provide not only truly distributed algorithms for evaluating MCSs, but
through this also for distributed versions of non-monotonic knowledge base formalisms as such
(e.g., for distributed answer set programs), and the underlying principles and techniques might be
exploited in related contexts. Furthermore, they may provide a basis for the evaluation of exten-
sions and generalizations of MCSs, such as non-ground MCSs (Fink, Ghionna, & Weinzierl, 2011),
managed MCSs (Brewka, Eiter, Fink, & Weinzierl, 2011), supported MCS (Tasharrofi & Ternovska,
2014), or reactive MCSs (Goncalves, Knorr, & Leite, 2014; Brewka, Ellmauthaler, & Pührer, 2014).

1.3 Organization

The remainder of this article is organized as follows. The next section provides preliminaries on
Multi-context Systems. Section 3 introduces the basic distributed algorithm DMCS, while Sec-
tion 4 develops the optimized algorithm DMCSOPT; Section 5 presents then the streaming algo-
rithm DMCS-STREAMING. Experimental results of the prototype implementation are reported in
Section 6. In Section 7, we consider related works, and in Section 8 we summarize and address
further and open issues. To increase readability, proofs have been moved to the Appendix.

2. Preliminaries

This sections briefly introduces the preliminaries needed for the rest of the article.

2.1 Multi-context Systems

First, we present the formalization of Heterogeneous Nonmonotonic Multi-context Systems (MCSs)
proposed by Brewka and Eiter (2007) and further described by Brewka, Eiter, and Fink (2011),
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which serves as the base of this work. The idea behind MCSs is to allow different logics to be used
in different contexts, and to model information flow among contexts via bridge rules. The notion of
logic is defined as follows.

Definition 1 (cf. Brewka & Eiter, 2007) A logic L = (KBL,BSL,ACCL) is composed of the
following components:

1. KBL is the set of well-formed knowledge bases of L, each of which consists of a set of
elements called formulas;

2. BSL is the set of possible belief sets, where each S ∈ BSL is a set of elements called beliefs;
and

3. ACCL : KBL → 2BSL is a function describing the “semantics” of the logic, by assigning
to each element of KBL a set of acceptable sets of beliefs.

This notion of logic is very generic, and it abstracts the formation of an agent’s beliefs to a bare
minimum. Structure of formulas (both in the knowledge base and the belief sets) is dismissed, and
they are viewed as “naked elements.” Likewise no particular inference mechanism is associated
with a knowledge base, nor are any logical properties imposed on belief sets; the term “belief”
reflects that statements held by the agent might be on an epistemic basis, without going into further
detail. The assignment of acceptable beliefs sets to a knowledge base, each of which is intuitively a
set of beliefs that an agent is willing to adopt given the knowledge base, captures that in some logics
(e.g., in nonmonotonic logics) multiple or even no acceptable belief sets are possible.

This abstract model allows us to capture a range of different logics for knowledge representation
and reasoning, including classical logic, modal logics, epistemic logics, spatial logics, description
logics etc, but also nonmonotonic logics such as default logic (Reiter, 1980) or answer set programs
(Gelfond & Lifschitz, 1991), in different varieties and settings. A comparison to other formalisms
is given by Brewka et al. (2011). For example, classical (propositional or predicate logic) may be
modeled as follows:

• KB: the set of (well-formed) sentences over a signature Σ,

• BS: the set of deductively closed sets S of Σ-sentences, (i.e., Cn(S) = S, where Cn(·)
denotes deductive closure),

• ACC(kb): the singleton containing the deductive closure of kb, i.e., ACC(kb) = {Cn(kb)}.

For an example of nonmonotonic logics, (disjunctive) logic programs under answer set seman-
tics (Gelfond & Lifschitz, 1991) can be modeled by

• KB: the set of logic programs over a signature Σ,

• BS: the set of consistent sets of literals over Σ,

• ACC(kb): the set AS (kb) of answer sets of kb according to Gelfond and Lifschitz (1991).3

We refer to this setting, which will be used repeatedly in the sequel, as Answer Set Programming
(ASP). Note that the answer sets of a knowledge base kb amount to particular 3-valued models of kb;
intuitively, if a positive literal p is in an answer set S, then p is known to be true, and if a negative

3. As common, we exclude inconsistent answer sets admitted by Gelfond and Lifschitz (1991).
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literal ¬p is in S, then p is known to be false, where “known” means that the literal is present as a
fact or derivable from rules; if neither p nor ¬p is in S, then the truth value of p is unknown. The
above MCS modeling is a possible worlds (scenarios) view via answer sets, which can be generated
by an answer set solver. However, ASP and its implementations also capture inference (truth of a
query in some respectively all answer sets) and further forms of belief set formation.

Bridge rules. Based on logics, bridge rules are introduced to provide a uniform way of interlinking
heterogeneous information sources as follows.

Definition 2 (cf. Brewka & Eiter, 2007) Let L = {L1, . . . , Ln} be a (multi-)set of logics. An Lk-
bridge rule over L, 1 ≤ k ≤ n, is of the form

s← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm) (1)

where (i) for each 1 ≤ i ≤ m, ci ∈ {1, . . . , n} and pi is an element of some belief set of Lci , and
(ii) for each kb ∈ KBk, it holds that kb ∪ {s} ∈ KBk.

Informally, bridge rules refer in their bodies to other contexts (identified by ci) and can thus add
information to a context’s knowledge base depending on what is believed or disbelieved in other
contexts. In contrast to Giunchiglia’s (1992) multi-context systems, there is no single, global set of
bridge rules; each context knows only its own bridge rules.

Now that the means for connecting contexts is available, MCSs can be formally defined.

Definition 3 (Brewka & Eiter, 2007) A multi-context system (MCS) M = (C1, . . . , Cn) consists
of a collection of contexts Ci = (Li, kbi, br i) where Li = (KBi,BSi,ACCi) is a logic, kbi ∈
KBi is a knowledge base, and br i is a set of Li-bridge rules over {L1, . . . , Ln}.

Example 2 (cont’d) The scenario from Example 1 can be formalized by an MCS M = (C1, C2),
where in both contexts L1, L2 are instances of Answer Set Programming, and:

• kb1 = F ∪ F1 ∪
{

at col(X)← see col(X).
¬at col(X)←¬see col(X).

}
∪R,

• br1 =

{
at row(X)← (2 : at row(X)).

¬at row(X) ∨ covered row(X)← not (2 : see row(X)), (1 : row(X)).

}

• kb2 = F ∪ F2 ∪
{

at row(X)← see row(X).
¬at row(X)←¬see row(X).

}
∪R,

• br2 =

{
at col(X)← (1 : at col(X)).

¬at col(X) ∨ covered col(X)← not (1 : see col(X)), (2 : col(X)).

}
,

where

• F = {row(1). row(2). row(3). col(1). col(2). col(3).},

• F1 = {¬see col(2). ¬see col(3).},

• F2 = {see row(1).}, and
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• R =

{
joker in ← at row(X).
joker in ← at col(X).

}
∪

at row(X)← joker in, row(X), not ¬at row(X).
¬at row(X)← joker in, row(X), at row(Y ), X 6= Y.

at col(X)← joker in, col(X), not ¬at col(X).
¬at col(X)← joker in, col(X), at col(Y ), X 6= Y.

.

Here, X and Y are variables used in schematic rules, and they range over rows resp. columns (i.e.,
1,2,3). Intuitively, C1 formalizes Batman’s knowledge about the scene and C2 that of Robin. In the
knowledge bases kb1 and kb2, the facts F represent the box of size 3 × 3, while F1 and F2 state
what Batman and Robin see, viz. that Joker is not in columns 2 and 3 respectively that he is on
row 1. The next two rules simply map sensed locations to respective facts. Informally, the rules in
R make a guess on the row and the column where Joker is, if he is concluded to be in the box (first
two rules); this may lead to multiple belief sets. Importantly, Batman adjusts his knowledge base
depending on beliefs communicated by Robin (bridge rules br1) and vice versa (bridge rules br2).

For convenience, we introduce the following notation and conventions. For an MCS M =
(C1, . . . , Cn), we denote by Bi the set of all beliefs that can occur in belief sets of context Ci, i.e.,
Bi =

⋃
S∈BSi

S, and we let BM =
⋃n

i=1 Bi (simply B, if M is understood). Without loss of
generality, we assume that for distinct contexts Ci and Cj , Bi ∩ Bj = ∅, and that for any bridge
atom of the form (i : bi) appearing in any bridge rule in M , it holds that bi ∈ Bi.

2.2 Semantics of Multi-context Systems

The semantics of an MCS is defined in terms of special belief states, which are sequences S =
(S1, . . . , Sn) such that each Si is an element of BSi. Intuitively, Si should be a belief set of the
knowledge base kbi; however, also the bridge rules must be respected. To this end, kbi is augmented
with the conclusions of its bridge rules that are applicable. More precisely, a bridge rule r of form (1)
is applicable in S, if pi ∈ Sci , for 1 ≤ i ≤ j, and pk /∈ Sck , for j + 1 ≤ k ≤ m. We denote by
head(r) the head of r, and by app(R,S) the set of bridge rules r ∈ R that are applicable in S.
Then,

Definition 4 (Brewka & Eiter, 2007) A belief state S = (S1, . . . , Sn) of an MCS M = (C1, . . . ,
Cn) is an equilibrium, if Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, S)}), for all 1 ≤ i ≤ n.

An equilibrium thus is a belief state which contains for each context an acceptable belief set,
given the belief sets of the other contexts.

Example 3 (cont’d) The MCS M in Example 2 has the single equilibrium S = (S1, S2) where
S1 = F ∪ F1 ∪ F3 and S2 = F ∪ F2 ∪ F3 where F3 = {joker in, at row(1), ¬at row(2),
¬at row(3), at col(1),¬at col(2),¬at col(3)}. This equilibrium indeed reflects the intuition in
the scenario in Example 1, where Batman and Robin together can infer the location of Joker, while
any single one of them cannot accomplish this task without communication.

Example 4 Let M = (C1, C2, C3, C4) be an MCS such that all Li are ASP logics, with signatures
Σ1 = {a}, Σ2 = {b}, Σ3 = {c, d, e}, and Σ4 = {f, g}. Suppose

• kb1 = ∅, br1 = {a← (2 : b), (3 : c)};
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• kb2 = ∅, br2 = {b← (4 : g)};
• kb3 = {c← d; d← c}, br3 = {c ∨ e← not (4 : f)};
• kb4 = {f ∨ g ←}, br4 = ∅.

One can check that S = ({a}, {b}, {c, d}, {g}) is an equilibrium of M .

The computation of equilibria for a given MCS has been realized by a declarative implemen-
tation using HEX-programs (Eiter et al., 2005) which can be evaluated using the dlvhex system.4

The idea is to translate an MCS into a HEX-program with (i) disjunctive facts for guessing the
truth values of beliefs, (ii) HEX-rules for capturing bridge rules, and (iii) constraints with external
atoms for capturing the acceptability functions. For further details on a concrete implementation
of this approach, we refer the reader to the MCS-IE system (Bögl, Eiter, Fink, & Schüller, 2010).
In this article, we pursue a more sophisticated approach, i.e., we design and implement distributed
algorithms, to compute equilibria of MCSs. During evaluation, there is no centralized component
that controls the communication between contexts. Each context independently runs an instance of
the algorithm and communicates with each other to exchange beliefs as well as to detect and break
cycles. These novel contributions are described in the next sections.

3. Basic Algorithm (DMCS)

This section introduces a very first, basic, truly distributed algorithm for evaluating equilibria of
an MCS. The algorithm takes a general setting as input, that is, each context has only minimal
knowledge about the whole system; or in other words, it just knows the interface with direct neigh-
bors (parents and child contexts) but not the topological information or any further metadata of the
system. Under this setting, we concentrate on distributeness. Section 4 shifts the focus towards
optimization techniques when more metadata is provided.

Taking a local stance, we consider a context Ck and compute those parts of (potential) equilibria
of the system which contain coherent information from all contexts that are “reachable” from Ck.

3.1 Basic Notions

We start with some basic concepts. The import closure formally captures reachability.

Definition 5 (Import Closure) Let M = (C1, . . . , Cn) be an MCS. The import neighborhood of
context Ck, k ∈ {1, . . . , n}, is the set

In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk}.

Furthermore, the import closure IC (k) of Ck is the smallest set S such that (i) k ∈ S and (ii) for
all i ∈ S, In(i) ⊆ S.

Equivalently, we can define the import closure constructively by IC (k) = {k} ∪
⋃

j≥0 IC j(k),
where IC 0(k)=In(k), and IC j+1(k) =

⋃
i∈IC j(k) In(i).

Example 5 Consider M in Example 4. Then In(1) = {2, 3}, In(2) = In(3) = {4}, and In(4) =
∅; the import closure of C1 is IC (1) = {1, 2, 3, 4} (see Figure 2).

4. www.kr.tuwien.ac.at/research/systems/dlvhex/
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Figure 2: Import neighborhood and Import closure
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Based on the import closure we define partial equilibria.

Definition 6 (Partial Belief States and Equilibria) Let M = (C1, . . . , Cn) be an MCS, and let
ε /∈

⋃n
i=1 BSi. Then a sequence S = (S1, . . . , Sn) such that Si ∈ BSi ∪ {ε}, for all 1 ≤ i ≤ n, is

a partial belief state (PBS) ofM , and S is a partial equilibrium (PE) ofM w.r.t. Ck, k∈{1, . . . , n},
if i ∈ IC (k) implies Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, S)}), and i 6∈ IC (k) implies
Si = ε, for all 1 ≤ i ≤ n.

Note that IC (k) essentially defines a subsystem M ′ of M that is connected by bridge rules. We use
PEs of M instead of equilibria of M ′ to keep the original MCS M intact.

For combining partial belief states S = (S1, . . . , Sn) and T = (T1, . . . , Tn), we define their
join S ./ T as the partial belief state (U1, . . . , Un) such that

Ui =

{
Si, if Ti = ε or Si = Ti,
Ti, if Ti 6= ε and Si = ε,

, for all 1 ≤ i ≤ n

(see Figure 3). Note that S ./ T is void, if some couples Si, Ti are from BSi but different. Naturally,
the join of two sets S and T of partial belief states is then S ./ T = {S ./ T | S ∈ S, T ∈ T }.

Example 6 Consider two sets of partial belief states:

S = { (ε, {b}, ε, {¬f, g}) , (ε, {¬b}, ε, {f,¬g}) } and

T = {(ε, ε, {¬c,¬d, e}, {¬f, g}), (ε, ε, {c, d,¬e}, {¬f, g}), (ε, ε, {¬c,¬d,¬e}, {f,¬g})} .
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Their join is given by

S ./ T =

{
(ε, {b}, {¬c,¬d, e}, {¬f, g}), (ε, {b}, {c, d,¬e}, {¬f, g}),
(ε, {¬b}, {¬c,¬d,¬e}, {f,¬g})

}
.

3.2 The Basic Algorithm

Given an MCSM and a starting contextCk, we aim at finding all PEs ofM w.r.t.Ck in a distributed
way. To this end, we design an algorithm DMCS whose instances run independently at a node for
each context and communicate with each other for exchanging sets of partial belief states. This
provides a method for distributed model building, and the DMCS algorithm can be applied to any
MCS provided that appropriate solvers for the respective context logics are available. As a main
feature of DMCS, it can also compute projected partial equilibria, i.e., PEs projected to a relevant
part of the beliefs showing up in Ck’s import closure. This can be exploited for specific tasks
like, e.g., local query answering or consistency checking. When computing projected PEs, the
information communicated between contexts is minimized, keeping communication cost low.

In the sequel, we present a basic version of the algorithm, abstracting from low-level implemen-
tation issues; the overall MCS structure is assumed to be unknown at context nodes. The idea is as
follows: starting from contextCk, we visit its import closure by expanding the import neighborhood
at each context Ci like in a depth-first search (DFS), until a leaf context is reached or a cycle is de-
tected, by finding the current context in the set hist of already visited contexts. A leaf context simply
computes its local belief sets, transforms them into partial belief states, and returns this result to its
parent (invoking context, Figure 4a). In case of a cycle (Figure 4c), the context Ci which detects the
cycle must also break it, by (i) guessing belief sets for its “export” interface, (ii) transforming the
guesses into partial belief states, and (iii) returning them to the invoking context.

An intermediate context Ci produces partial belief states that will be joined, i.e., consistently
combined, with partial belief states of its neighbors; to enable this, Ci returns its local belief sets,
joined with the results of its own neighbors (Figure 4b).

For computing projected PEs, the algorithm offers a parameter V called the relevant interface
which must fulfill some conditions w.r.t. import closure that we next discuss.

Notation. Given a (partial) belief state S and set V ⊆ B of beliefs, we denote by S|V the restriction
of S to V , i.e., the (partial) belief state S′ = (S1|V , . . . , Sn|V), where Si|V = Si ∩ V if Si 6= ε, and
ε|V = ε; for a set S of (partial) belief states, we let S|V = {S|V | S ∈ S}. Next,

Definition 7 (Recursive Import Interface) For an MCS M = (C1, . . . , Cn) and k ∈ {1, . . . , n},
we call V(k) = {pi | (ci : pi) ∈ B(r), r ∈ brk} the import interface of context Ck and V∗(k) =⋃

i∈IC (k) V(i) the recursive import interface of context Ck.

For a correct relevant interface V , we have two extremal cases: (1) V = V∗(k) and (2) V = VB = B.
In (1), DMCS basically checks for consistency on the import closure of Ck by computing PEs
projected to interface beliefs. In (2), it computes PEs w.r.t. Ck. In between, by providing a fixed
interface V , problem-specific knowledge (such as query variables) and/or infrastructure information
can be exploited to keep computations focused on relevant projections of partial belief states.

The projections of partial belief states are cached in every context such that recomputation and
recombination of belief states with local belief sets are kept at a minimum.

We assume that each context Ck has a background process (or daemon in Unix terminology)
that waits for incoming requests of the form (V, hist), upon which it starts the computation outlined
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Figure 4: Basic distributed algorithm - casewise

in Algorithm 1. This process also serves the purpose of keeping the cache c(k) persistent. We
write Ci.DMCS(V, hist) to specify that we send (V, hist) to the process at context Ci and wait for
its return message.

Algorithm 1 uses the following primitives:

• function lsolve(S) (Algorithm 2): augments the knowledge base kb of the current context
with the heads of bridge rules in br that are applicable w.r.t. partial belief state S, computes
local belief sets using function ACC, combines each local belief set with S, and returns the
resulting set of partial belief states; and

• function guess(V, Ck): guesses all possible truth assignments for the relevant interface w.r.t.
Ck, i.e., for Bk ∩ V .5

DMCS proceeds in the following way:

(a) check the cache for an appropriate partial belief state;

5. In order to relate beliefs in Bk, V can either be a vector of sets, or variables in V are prefixed with context ids; for
simplicity, we kept V as a set without further assumptions.
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Algorithm 1: DMCS(V, hist) at Ck = (Lk, kbk, brk)

Input: V: relevant interface, hist : visited contexts
Data: c(k): static cache
Output: set of accumulated partial belief states

(a) if c(k) is not empty then return c(k)

S := ∅
(b) if k ∈ hist then // cyclic: guess local beliefs w.r.t. V
(c) S := guess(V, Ck)

else // acyclic: collect neighbor beliefs and add local ones

T := {(ε, . . . , ε)} and hist := hist ∪ {k}
(d) foreach i ∈ In(k) do

if for some T ∈ T , Ti = ε then
T := T ./ Ci.DMCS(V, hist)

(e) foreach T ∈ T do S := S ∪ lsolve(T )

(f) c(k) := S|V
return S|V

Algorithm 2: lsolve(S) at Ck = (Lk, kbk, brk)

Input: S: partial belief state S = (S1, . . . , Sn)
Output: set of locally acceptable partial belief states

T := ACCk(kbk ∪ {head(r) | r ∈ app(brk, S)})
return {(S1, , . . . , Sk−1, Tk, Sk+1, . . . , Sn) | Tk ∈ T}

(b) check for a cycle;

(c) if a cycle is detected, then guess partial belief states of the relevant interface of the context
running DMCS;

(d) if no cycle is detected, but import from neighbor contexts is needed, then request partial belief
states from all neighbors and join them;

(e) compute local belief states given the partial belief states collected from neighbors;

(f) cache the current (projected) partial belief state.

The next examples illustrate evaluation runs of DMCS for finding all partial equilibria with
different MCS. We start with an acyclic run.

Example 7 Reconsider M from Example 4. Suppose the user invokes C1.DMCS(V, ∅), where
V = {a, b, c, f, g}, to trigger the evaluation process. Next, C1 forwards in (d) requests to C2

and C3, which both call C4. When called for the first time, C4 calculates in (e) its own belief sets
and assembles the set of partial belief states

S4 = {(ε, ε, ε, {f,¬g}), (ε, ε, ε, {¬f, g})} .
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S3|V

S2|V

Figure 5: A cyclic topology

After caching S4|V in (f), C4 returns S4|V = S4 to one of the contexts C2, C3 whose request arrived
first. On second call, C4 simply returns S4|V to the other context from the cache.

C2 and C3 next call lsolve (in (e)) two times each, which results in S2 = S resp. S3 = T with
S, T from Example 6.

S = { (ε, {b}, ε, {¬f, g}) , (ε, {¬b}, ε, {f,¬g}) } and

T = {(ε, ε, {¬c,¬d, e}, {¬f, g}), (ε, ε, {c, d,¬e}, {¬f, g}), (ε, ε, {¬c,¬d,¬e}, {f,¬g})} .

Thus,

S2|V = { (ε, {b}, ε, {¬f, g}) , (ε, {¬b}, ε, {f,¬g}) } and

S3|V = {(ε, ε, {¬c}, {¬f, g}), (ε, ε, {c}, {¬f, g}), (ε, ε, {¬c}, {f,¬g})} .

C1, after computing in (d)

S2|V ./ S3|V = {(ε, {b}, {¬c}, {¬f, g}), (ε, {b}, {c}, {¬f, g}), (ε, {¬b}, {¬c}, {f,¬g})}

calls lsolve in (e) thrice to compute the final result:

S1|V = {({a}, {b}, {c}, {¬f, g}), ({¬a}, {b}, {¬c}, {¬f, g}), ({¬a}, {¬b}, {¬c}, {f,¬g})} .

The next example illustrates the run of DMCS on a cyclic topology.

Example 8 Let M = (C1, C2, C3) be an MCS such that each Li is an ASP logic, and

• kb1 = ∅, br1 = {a← not (2 : b)};
• kb2 = ∅, br2 = {b← (3 : c)}; and

• kb3 = ∅, br3 = {c ∨ d← not (1 : a)}.

Figure 5 shows the cyclic topology of M . Suppose that the user sends a request to C1 by call-
ing C1.DMCS(V, ∅) with V = {a, b, c}. In step (d) of Algorithm 1, C1 calls C2.DMCS(V, {1}),
then context C2 issues a call C3.DMCS(V, {1, 2}), thus C3 invokes C1.DMCS(V, {1, 2, 3}). At
this point, the instance of DMCS at C1 detects a cycle in (b) and guesses the partial belief states

S ′1 = {({a}, ε, ε), ({¬a}, ε, ε)}
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for Σ1 ∩ V . Then, following the dotted lines in Figure 5, the set S ′1|V = S ′1 is the return value for
the request from C3, which joins it with an initial empty belief state (ε, ε, ε), gives us T and then
calls lsolve(T ) for each T ∈ T in (e), resulting in

S3 = {({¬a}, ε, {c,¬d}), ({¬a}, ε, {¬c, d}), ({a}, ε, {¬c,¬d})} .

The next step of C3 is to return S3|V back to C2, which will proceed as C3 before. The result is
the set of belief states

S2 = {({¬a}, {b}, {c}), ({¬a}, {¬b}, {c}), ({a}, {¬b}, {¬c})} ,

which will be sent back to C1 as S2|V . Notice that belief state ({¬a}, {¬b}, {c}) is inconsistent in
C1, but will be eventually eliminated once C1 evaluates S2|V with lsolve.

Next, C1 will join S2|V with (ε, ε, ε), which yields S2|V , and then use this result to call lsolve.
The union gives us

S1 = {({¬a}, {b}, {c}), ({a}, {¬b}, {¬c})} ,

which is also sent back to the user as final result.

Given an MCSM = (C1, . . . , Cn) and a context Ck, using the recursive import interface of Ck,
i.e., V∗(k), as the relevant interface is a safe (lower) bound for the correctness of Algorithm 1. In
what follows, let M , Ck, and V∗(k) as above.

Theorem 1 (Correctness of DMCS with partial equilibrium) For every V ⊇ V∗(k), it holds that
S′ ∈ Ck.DMCS(V, ∅) iff M has some partial equilibrium S w.r.t. Ck such that S′ = S|V .

We can compute partial equilibria at Ck if we use VB. This holds because using VB preserves
all belief sets returned from step (e), as the projection at step (f) takes no effect.

Corollary 2 S is a partial equilibrium of M w.r.t. Ck iff S ∈ Ck.DMCS(VB, ∅).

Under the assumption that M has a single root context C1, i.e., such that i ∈ IC (1) for all
2 ≤ i ≤ n, DMCS computes equilibria.

Corollary 3 If an MCS M has a single root context C1, then S is an equilibrium of M iff S ∈
C1.DMCS(VB, ∅).

An analysis of the algorithm yields the following upper bound on the computational complexity
and communication activity.

Proposition 4 Let M = (C1, . . . , Cn) be an MCS. In each run of DMCS at a context Ck with an
interface V , it holds that

(1) the total number of calls to lsolve is exponentially bound by n× |V|, i.e., O(2n×|V|).

(2) the number of messages exchanged between contexts Ci, where i ∈ IC (k), is bounded by
2 · |E(k)|, where E(k) = {(i, cj) | i ∈ IC (k), r ∈ bri, (cj : pj) ∈ B(r)}.
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3.3 Discussion

Algorithm DMCS naturally proceeds “forward” in the import direction of contextCk. Thus, starting
from there, it computes partial equilibria which cover Ck and contexts in its import closure. All
other contexts will be ignored; in fact, they are unknown to all contexts in the closure. While partial
equilibria may exist for Ck and its import closure, the whole MCS could have no equilibrium,
because, e.g., (P1) contexts that access beliefs from Ck or its closure get inconsistent, or (P2) an
isolated context or subsystem is inconsistent.

Enhancements of DMCS may deal with such situations: As for (P1), the context neighborhood
may include both importing and supporting contexts. Intuitively, if Ci imports from Cj , then Ci

must register to Cj . By carefully adapting DMCS, we can then solve (P1). However, (P2) remains;
this needs knowledge about the global system topology.

A suitable assumption is that a manager M exists which every context Ci in the system can
reach and ask whether some isolated inconsistent context or subsystem exists; ifM confirms this,
Ci’s DMCS instance simply returns ∅, eliminating all partial equilibria.

To improve decentralization and information hiding, we can weaken the manager assumption by
introducing routers. Instead of askingM, a context Ci queries an assigned routerR, which collects
topology information needed by Ci or looks up a cache. The information exchange between Ci and
R is flexible, depending on the system setting, and could contain contexts that import information
from Ci, or isolated and inconsistent contexts.

A further advantage of topological information is that Ci can recognize cyclic and acyclic
branches upfront; the invocation order of the neighborhood can then be optimized, by starting with
all acyclic branches before entering cyclic subsystems. The caching mechanism can be adapted
for acyclic branches, as intermediate results are complete and the cache is meaningful even across
different evaluation sessions.

In our setting, we are safe assuming that V∗(k) ⊆ V . But this is not needed if M resp. Ck’s
import closure has no join-contexts, i.e., contexts having at least two parents. If we have access
to path information in M at each context, we could calculate V on the fly and adjust it during
MCS traversal. In particular, for a tree- or ring-shaped M , we can restrict V to the locally shared
interface between Ck and its import neighbors, i.e., restricting V to the bridge atoms of brk. In
presence of join-contexts, V must be made “big enough,” e.g. using path information. Furthermore,
join-contexts may be eliminated by virtually splitting them, if orthogonal parts of the contexts are
accessed. This way, scalability to many contexts can be achieved.

Next, we present optimization techniques using topological information of the system.

4. Topology-Based Optimization Algorithm (DMCSOPT)

As a basic version, Algorithm DMCS uses no further metadata apart from the minimal information
that each context must know: its interface with every neighboring context. There are scalability
issues which can be tracked down to the following problems:
(1) contexts are unaware of context dependencies in the system beyond their neighbors, and thus

treat all neighbors equally. Specifically, cyclic dependencies remain undetected until a context,
seeing the invocation chain, requests models from a context in the chain. Furthermore, a context
Ci does not know whether a neighbor Cj already requested models from another neighbor Cj′

which then would be passed to Ci; hence, Ci makes possibly a superfluous request to Cj′ .
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(2) a context Ci returns its local models combined with the results from all its neighbors. In case of
multiple models, the result size can become huge as the system size and number of neighbors
increases. In fact, this is one of the main performance obstacles.
In this section we address optimizations to increase the scalability of distributed MCS evalu-

ation. Resorting to methods from graph theory, we aim at decomposing, pruning, and improved
cycle breaking for dependencies in MCSs. Focusing on (1), we describe a decomposition method
using biconnected components of inter-context dependencies. Based on it we can break cycles and
prune acyclic parts ahead and create an acyclic query plan. To address (2), we foster a partial view
of the system, which is often sufficient for a satisfactory answer, as a compromise between partial
information and performance. We thus define a set of variables for each import dependency in the
system to project the models in each context to a bare minimum such that they remain meaningful.
In this manner, we can omit needless information and circumvent excessive model combinations.

We proceed as follows. After introducing a running example and a superficial explanation of
optimization on it, we present the details of the techniques in Section 4.2. Section 4.3 introduces
the notion of query plans, which is used in Section 4.4 to describe the algorithm DMCSOPT that
intertwines decomposition and pruning with variable projection for performance gains in MCS eval-
uation.

4.1 Running Scenario

We first present a scenario in Example 9 as a running example for this section.

Example 9 (Scientists Group) A group of four scientists, Alice, Bob, Charlie, and Demi meets
after a conference closing to arrange travel back home. The options are going by train or by car
(which is slower); if they use the train, they should bring along some food. Alice as the group
leader finally decides, based on the information she gets from Bob and Charlie.6

Alice prefers to go by car, but she would not object if Bob and Charlie want to go by train.
Charlie has a daughter, Fiona; he does not mind either option, but if Fiona is sick he wants the
fastest transport to get home. Demi just got married, and her husband, Eddie, wants her to be back
soon, and even sooner if she would come soon; Demi tries to yield to her husband’s plea.

Charlie is in charge of buying provisions if they go by train. He might choose either salad or
peanuts; notably, Alice is allergic to nuts. The options for beverages are coke and juice. Bob is
modest; he agrees to any choice of Charlie and Demi for transport but he dislikes coke. Charlie
and Demi do not want to bother the others with their personal matters and just communicate their
preferences, which is sufficient for reaching an agreement.

Example 10 The scenario in Example 9 can be encoded as an MCS M = (C1, . . . , C6), where
Alice = 1, Bob = 2, etc in lexicographical order and all Li are ASP logics. The knowledge bases kbi
and bridge rules bri are as follows:

C1: kb1 =

{
car1← not train1.
⊥← nuts1.

}
and br1 =

{
train1← (2 : train2), (3 : train3).
nuts1← (3 : peanuts3).

}
;

6. Similar scenarios have already been investigated in the realm of multi-agent systems (on social answer set program-
ming see, e.g., Buccafurri & Caminiti, 2008). We do not aim at introducing a new semantics for such scenarios; our
example serves as a plain MCS showcase for the algorithms.
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Figure 6: Topologies and decomposition of the scientist group example

C2: kb2 = {⊥ ← not car2,not train2.} and br2 =


car2← (3 : car3), (4 : car4).

train2← (3 : train3), (4 : train4),
not (3 : coke3).

;

C3: kb3 =


car3 ∨ train3.←

train3← urgent3.
salad3 ∨ peanuts3← train3.

coke3 ∨ juice3← train3

 and br3 =

{
urgent3← (6 : sick6).

train3← (4 : train4)

}
;

C4: kb4 =
{

car4 ∨ train4←
}

and br4 =
{

train4← (5 : sooner5)
}

;

C5: kb5 =
{

sooner5← soon5

}
and br5 =

{
soon5← (4 : train4)

}
;

C6: kb6 =
{

sick6 ∨ fit6←
}

and br6 = ∅.

The context dependencies of M are shown in Fig. 6a. M has three equilibria, namely:

• ({train1}, {train2}, {train3, urgent3, juice3, salad3}, {train4},
{soon5, sooner5}, {sick6});

• ({train1}, {train2}, {train3, juice3, salad3}, {train4}, {soon5, sooner5}, {fit6}); and

• ({car1}, {car2}, {car3}, {car4}, ∅, {fit6}).

Example 11 Consider an MCS M = (C1, . . . , C7) with context dependencies as drawn in Fig-
ure 7a. When the user queries C1 and just cares about the local belief sets in C1, then in the
evaluation process, C4 can discard all local belief sets of C5 and C6 when answering to a call from
C2 or C3. However, when C1 calls C2 (or C3), the invoked context must carry local belief sets of
C4 in its answers to C1. The reason is that belief sets of C4 can cause inconsistent joins at C1 for
partial belief states returned from C2 and C3, while those of C5 to C7 contribute only directly to
computing local belief sets at C4. Note that belief sets of C4 to C7 play no role in determining the
applicability of bridge rules in C1.

559



DAO-TRAN, EITER, FINK, & KRENNWALLNER

C1

query

C2 C3

C4

C5 C6

C7

(a) Original Topology

C1

C2 C3

(ε, ε, S3)
(ε
, S

2
, S

3
) (ε, ε, S

3 )
(b) Triangle

C1

query

C2 C3

C4

C5 C6

C7

(c) Transitive Reduction

Figure 7: Topology of Example 11 (two stacked zig-zag diamonds)

Now, take a sub-system including C1, C2, and C3, assuming that C1 has bridge rules with atoms
(2 : p2) and (3 : p3) in the body, and C2 with atoms (3 : p3). That is, C1 depends on both C2 and
C3, while C2 depends on C3 (see Fig. 7b). A straightforward approach to evaluate this MCS asks
at C1 for the belief sets of C2 and C3. But as C2 also depends on C3, we would need another query
from C2 to C3 to evaluate C2 w.r.t. the belief sets of C3. This shows evident redundancy, as C3 will
need to compute its belief sets twice. Simple caching strategies could mellow out the second belief
state building at C3; nonetheless, when C1 asks C3, the context will transmit its belief states back,
thus consuming network resources.

Moreover, when C2 asks for the PEs of C3, it will receive a set of PEs that covers the belief sets
of C3 and in addition of all contexts in C3’s import closure. This is excessive from C1’s view, as it
only needs to know about (2 : p2) and (3 : p3). However, C1 needs the belief states of both C2 and
C3 in reply of C2: if C2 only reports its own belief sets (which are consistent w.r.t. C3), C1 can’t
align the belief sets received from C2 with those received from C3. Realizing that C2 also reports
the belief sets of C3, no call to C3 must be made.

4.2 Decomposition of Nonmonotonic MCS

Based on the observations above, we present an optimization strategy that pursues two orthogonal
goals: (i) to prune dependencies in an MCS and cut superfluous transmissions, belief state building,
and joining of belief states; and (ii) to minimize content in transmissions. We start with defining the
topology of an MCS.

Definition 8 (Topology) The topology of an MCS M = (C1, . . . , Cn) is the directed graph GM =
(V,E), where V = {C1, . . . , Cn} resp. V = {1, . . . , n} and (i, j) ∈ E iff some rule in br i has an
atom (j:p) in the body.

The first optimization technique is made up of three graph operations. We get a coarse view of the
topology by splitting it into biconnected components, which form a tree representation of the MCS.
Then, edge removal techniques yield acyclic structures.
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In the sequel, we will use standard terminology from graph theory (see Bondy & Murty, 2008);
graphs are directed by default. We may view undirected graphs as directed graphs that have both
edges (u, v), (v, u) for an undirected edge {u, v}.

For any graph G and edges S ⊆ E(G), we denote by G\S the maximal subgraph of G having
no edges from S. Suppose that V ′ ⊆ V (G) is nonempty. Then the subgraph G′ = (V ′, E′) of G
with vertex set V ′ and edge set E = {(u, v) ∈ E(G) | u, v ∈ V (G)} is the subgraph induced by
V ′, denoted by G[V ′]. The induced subgraph G[V \ V ′] is denoted by G\V ′; it results from G by
deleting the vertices in V ′ together with their incident edges. If V ′ = {v}, we writeG\v forG\{v}.

Two vertices u and v of G are said to be connected, if there is a (directed) path from u to v
in G, i.e., a sequence of vertices u = v1, v2, . . . , vn = v, such that (vi, vi+1) ∈ E(G), for each i =
1, . . . , n−1; the path is trivial if n = 1. For an undirected graphG, connectedness is an equivalence
relation on V (G). Thus there is a partition of V (G) into nonempty subsets V1, V2, . . . , Vw such
that two vertices u and v of G are connected iff both of them belong to the same set Vi. The
subgraphs G[V1], G[V2], . . . , G[Vw] are called the components of G. If w = 1 (i.e., G has exactly
one component), then G is connected; otherwise, G is disconnected.

A directed graph G is strongly connected, if for each vertices u, v ∈ V (G) a path from u to v
and vice versa exists. The strongly connected components ofG are the subgraphsG[V1], . . . , G[Vm]
in the unique partition of the graph G into pairwise disjoint induced subgraphs (i.e., Vi ∩ Vj = ∅)
that are strongly connected.

Furthermore, a directed graph G is weakly connected, if turning all edges into undirected edges
yields a connected graph. A vertex c of a weakly connected graph G is a cut vertex, if G\c is
disconnected. A biconnected graph is a weakly connected graph without cut vertices.

A block in a graph G is a maximal biconnected subgraph of G. Given a set of blocks B, the
union of blocks in B is defined as

⋃
B =

⋃
B∈B B, where the union of two graphs G1 = (V1, E1)

and G2 = (V2, E2) is defined as G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).
Let T (G) = (B ∪ C, E) denote the undirected bipartite graph, called block tree of graph G,

where

(i) B is the set of blocks of G,

(ii) C is the set of cut vertices of G,

(iii) and (B, c) ∈ E with B ∈ B and c ∈ C iff c ∈ V (B).

Note that T (G) is a forest for any graph G and a rooted tree if G is weakly connected.

Example 12 Consider the graph in Figure 7a. One can check that 4 is the only cut vertex and there
are two blocks, viz. the subgraphs induced by {1, 2, 3, 4} and {4, 5, 6, 7}.

The next example shows the block tree of our scenario in Example 9.

Example 13 The topology GM of M in Example 10 is shown in Figure 6a. It has two cut vertices,
namely 3 and 4; thus the block tree T (GM ) (Figure 6b) contains the blocks B1, B2, and B3, which
are subgraphs of GM induced by {1, 2, 3, 4}, {4, 5}, and {3, 6}, respectively.

A topological sort of a directed graph is a linear ordering of its vertices such that for every
directed edge (u, v) from vertex u to vertex v, u comes before v in the ordering.
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Pruning. In acyclic topologies, like the triangle presented in Figure 7b, we can exploit a minimal
graph representation to avoid unnecessary calls between contexts, namely, the transitive reduction
of the graph GM . Recall from Aho, Garey, and Ullman (1972) that a graph G− is a transitive
reduction of the directed graph G whenever the following two conditions are satisfied:

(i) there is a directed path from vertex u to vertex v in G− iff there is a directed path from u to v
in G, and

(ii) there is no graph with fewer edges than G− satisfying condition (i).

Note that G− is unique if G is acyclic. For instance, the graph in Figure 7c is the unique transitive
reduction of the one in Figure 7a.

Ear decomposition Another essential part of our optimization strategy is to break cycles by re-
moving edges. To this end, we use ear decompositions of cyclic graphs. A block may have multiple
cycles that are not necessarily strongly connected; thus we first decompose blocks into their strongly
connected components. Using Tarjan’s algorithm (Tarjan, 1972) for this task, one gets as a byprod-
uct a topological sort on the directed acyclic graph formed by the strongly connected components.
This yield a sequence of nodes r1, . . . , rs that are used as entry points to each component. The next
step is to break cycles.

An ear decomposition of a strongly connected graph G rooted at a node r is a sequence P =
〈P0, . . . , Pm〉 of subgraphs of G such that

(i) G = P0 ∪ · · · ∪ Pm,
(ii) P0 is a simple cycle (i.e., has no repeated edges or vertices) with r ∈ V (P0), and

(iii) each Pi (i > 0) is a non-trivial path (without cycles) whose endpoint ti is in P0 ∪ · · · ∪ Pi−1,
but the other nodes are not.

Let cb(G,P ) be the set of edges containing (`0, r) of P0 and the last edge (`i, ti) of each Pi, i > 0.
Here, `0 is the vertex belonging to the edge to the root node r in the simple cycle P0.

Example 14 Take, as an example, a strongly connected graph G in Figure 8a. An ear decomposi-
tion of G rooted at node 1 is P = 〈P0, P1, P2, P3〉 where

VP0 = {1, 2, 3}, EP0 = {(1, 2), (2, 3), (3, 1)}, VP1 = {2, 4, 3}, EP1 = {(2, 4), (4, 3)},
VP2 = {2, 5, 3}, EP2 = {(2, 5), (5, 3)}, VP3 = {1, 4}, EP4 = {(1, 4)}.

The last edges of Pi are dashed. They form the set cb(G,P ) = {(3, 1), (4, 3), (5, 3), (1, 4)}.
Removing these edges results in an acyclic topology as in Figure 8b.

Intuitively, ear decomposition is used to remove cycles from the original system M . On the
resulting acyclic topology, algorithms for evaluating MCSs can be designed more conveniently.
The trade off is that for any edge (`, t) removed from M , context C`, despite being now a leaf
context, has to guess values for variables from Ct. The following example shows the application of
the optimization techniques above to our running scenario.

Example 15 (cont’d) Block B1 of T (GM ) is acyclic, and the transitive reduction gives B−1 with
edges {(1, 2), (2, 3), (3, 4)}. B2 is cyclic, and 〈B2〉 is the only ear decomposition rooted at 4;
removing cb(B2, 〈B2〉) = {(5, 4)}, we obtain B′2 with edges {(4, 5)}. B3 is acyclic and already
reduced. Fig. 6b shows the final result (dotted edges are removed).
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(b) Acyclic topology

Figure 8: Ear decomposition example

The graph-theoretic concepts introduced here, in particular the transitive reduction of acyclic blocks
and the ear decomposition of cyclic blocks, are used to implement the first optimization of MCS
evaluation outlined above. Intuitively, in each block, we apply ear decomposition to get rid of cy-
cles (with the trade-off of guessing), and then use transitive reduction to minimize communication.
Given the transitive reduction B− of an acyclic block B ∈ B, and a total order on V (B−) , one
can evaluate the respective contexts in the reverse order of this total order for computing PEs at
some context Ck: the first context simply computes its local belief sets which—represented as a
set of partial belief states S0—constitutes an initial set of partial belief states T0. In each iteration
step i ≥ 1, Ti is computed by joining Ti−1 with the local belief sets Si of the considered context Ci.
Given the final Tk, we have that Tk|V∗(k) is the set of PEs at Ck (restricted to contexts in V (B−)).

Refined recursive import. Next, we define the second part of our optimization strategy which
handles minimization of information needed for transmission between two neighboring contexts
Ci and Cj . For this purpose, we refine the notion of recursive import interface (Definition 7) in a
context w.r.t. a particular neighbor and a given (sub-)graph.

Definition 9 Given an MCS M = (C1, . . . , Cn) and a subgraph G of GM , for an edge (i, j) ∈
E(G), the recursive import interface of Ci to Cj w.r.t. G is V∗(i, j)G = V∗(i) ∩

⋃
`∈G|j B` where

G|j contains all nodes in G reachable from j.7

Example 16 (cont’d) For the MCS in Example 10, we have V∗(1) = {train2, train3, peanuts3,
car3, coke3, car4, train4, sooner5, sick6}. When we focus on block B1, the refined recursive
import interface V∗(1, 2)B−1

can be obtained by removing bridge atoms from contexts in the other
blocks B2 and B3, yielding {train2, train3, peanuts3, car3, coke3, car4, train4}.

Algorithms. Algorithms 3 and 4 combine the optimization techniques outlined above. Intuitively,
OptimizeTree takes as input a block tree T with ‘parent cut vertex’ cp and ‘root cut vertex’ cr. It tra-
verses T in DFS manner and calls OptimizeBlock on every block. The call results are collected in a

7. Note that V∗(k) is defined in Definition 7.
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Algorithm 3: OptimizeTree(T = (B ∪ C, E), cp, cr)

Input: T : block tree, cp: identifies level in T , cr: identifies level above cp
Output: F : removed edges from

⋃
B, v: labels for (

⋃
B)\F

B′ := ∅, F := ∅, v := ∅ // initialize siblings B′ and return values

if cp = cr then
B′ := {B ∈ B | cr ∈ V (B)}

else
B′ := {B ∈ B | (B, cp) ∈ E}

foreach sibling block B ∈ B′ do // sibling blocks B of parent cp
E := OptimizeBlock(B, cp) // prune block

C′ := {c ∈ C | (B, c) ∈ E ∧ c 6= cp} // children cut vertices of B

B′ := B\E, F := F ∪ E
(a) foreach edge (i, j) of B′ do // setup interface of pruned B

v(i, j) := V∗(i, j)B′ ∪
⋃

c∈C′ V∗(cp)|Bc ∪
⋃

(`,t)∈E V∗(cp)|Bt

foreach child cut vertex c ∈ C′ do // accumulate children

(b) (F ′, v′) := OptimizeTree(T\B, c, cp)
F := F ∪ F ′, v := v ∪ v′

return (F, v)

set F of removed edges; after all blocks have been processed, the final result of OptimizeTree is the
pair (F, v) where v is a labeling for the remaining edges. OptimizeBlock takes a graph G and calls
CycleBreaker for cyclic G, which decomposes G into its strongly connected components, creates
an ear decomposition P for each component Gc, and breaks cycles by removing edges cb(Gc, P ).
For the resulting acyclic subgraph of G, OptimizeBlock computes the transitive reduction G− and
returns all edges that have been removed from G. OptimizeTree continues by computing the la-
beling v for the remaining edges, building on the recursive import interface, but keeping relevant
interface beliefs of child cut vertices and removed edges. Example 20 (Appendix B) illustrates
Algorithms 3 and 4 with a detailed run on the MCS in Example 10.

Formally, the following property holds.

Proposition 5 Given an MCS M and a context Ck such that k is a cut vertex in the topology GM ,
OptimizeTree(T (GM ), k, k) returns a pair (F, v) such that

(i) the subgraph G of GM\F induced by IC (k) is acyclic, and

(ii) in any block B of G and for all (i, j) ∈ E(B), it holds that v(i, j) ⊇ V∗(i, j)B .

Regarding the computational cost of computation, we obtain:

Proposition 6 Given an MCS M and a context Ck such that k is a cut vertex in the topology GM ,
OptimizeTree(T (GM ), k, k) runs in polynomial (quadratic) time in the size of T (GM ) resp. GM .

564



DISTRIBUTED EVALUATION OF NONMONOTONIC MULTI-CONTEXT SYSTEMS

Algorithm 4: OptimizeBlock(G : graph, r : context id)

F := ∅
if G is cyclic then

(c) F := CycleBreaker(G, r) // ear decomposition of strongly connected components

(d) Let G− be the transitive reduction of G\F
return E(G) \ E(G−) // removed edges from G

4.3 Query Plan

Given the topology of an MCS, we need to represent a stripped version of it that contains both
the minimal dependencies between contexts and interface beliefs that need to be transferred be-
tween contexts. This representation will be a query plan that can be used for execution processing.
Syntactically, query plans have the following form.

Definition 10 (Query Plan) A query plan of an MCS M w.r.t. context Ck is any labeled subgraph
Π of GM induced by IC (k) with E(Π) ⊆ E(GM ), and edge labels v : E(G)→ 2Σ.

For any MCS M and context Ck of M , not every query plan is suitable for evaluating M; however,
the following query plan is in fact effective.

Definition 11 (Effective Query Plan) Given an MCSM and a contextCk, the effective query plan
of M with respect to Ck is Πk = (V (G), E(G)\F, v) where G is the subgraph of GM induced by
IC (k) and (F, v) = OptimizeTree(T (GM ), k, k).

We next use Πk for MCS evaluation, and tacitly assume that query plans are effective.

4.4 Evaluation with Query Plans

We now present the algorithm DMCSOPT, which is based on DMCS but exploits the optimization
techniques from above. The idea of DMCSOPT is as follows: we start with context Ck and traverse
a given query plan Πk by expanding the outgoing edges of Πk at each context, like in a DFS, until
a leaf context Ci is reached. The context simply computes its local belief sets, transforms all belief
sets into partial belief states, and returns the result to its parent. If Ci has (j : p) in bridge rules
bodies but context Cj is not in the query plan (this means we broke a cycle by removing the last
edge to Cj), all possible truth assignments to the import interface to Cj are considered.

The result of any context Ci is a set of partial belief states, which amounts to the join, i.e., the
consistent combination, of its local belief sets with the results of its neighbors; the final result is
obtained from Ck. To keep recomputation and recombination of belief states with local belief sets
at a minimum, partial belief states are cached in every context.

Algorithm 5 shows our distributed algorithm, DMCSOPT, with its instance at context Ck. On
input of the id c of a predecessor context (which the process awaits), it proceeds based on an
(acyclic) query plan Πr w.r.t. context Cr, i.e., the starting context of the system. The algorithm
maintains in cache(k) a cache at Ck (which is kept persistent).

• Ci.DMCSOPT(c): send id c to DMCSOPT at context Ci and wait for its result.

• guess(V): guess all possible truth assignments for the interface beliefs V .
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Algorithm 5: DMCSOPT(c : context id of predecessor) at Ck = (Lk, kbk, brk)

Data: Πr: query plan w.r.t. starting context Cr and label v, cache(k): cache
Output: set of accumulated partial belief states

(a) if cache(k) is not empty then
S := cache(k)

else
T := {(ε, . . . , ε)}

(b) foreach (k, i) ∈ E(Πr) do T := T ./ Ci.DMCSOPT(k) // neighbor belief sets

(c) if there is i ∈ In(k) s.t. (k, i) /∈ E(Πr) and Ti = ε for T ∈ T then
T := guess(v(c, k)) ./ T // guess for removed dependencies in Πr

S := ∅
(d) foreach T ∈ T do S := S ∪ lsolve(T ) // get local beliefs w.r.t. T

cache(k) := S
(e) if (c, k) ∈ E(Πr) (i.e., Ck is non-root) then

return S|v(c,k)

else
return S

• lsolve(S) (Algorithm 2): given a partial belief state S, augment kbk with all heads from
bridge rules brk applicable w.r.t. S (=: kb′k), compute local belief sets by ACC(kb′k), and
merge them with S; return the resulting set of partial belief states.

The steps of Algorithm 5 are explained as follows:
(a)+(b) check the cache, and if it is empty get neighbor contexts from the query plan, request

partial belief states from all neighbors and join them;
(c) if there are (i : p) in the bridge rules brk such that (k, i) /∈ E(Πr), and no neighbor delivered

the belief sets for Ci in step (b) (i.e., Ti = ε), we have to call guess on the interface v(c, k)
and join the result with T (intuitively, this happens when edges have been removed from
cycles);

(d) compute local belief states given the partial belief states collected from neighbors; and
(e) return the locally computed belief states and project them to the variables in v(c, k) for non-

root contexts; this is the point where we mask out parts of the belief states that are not needed
in contexts lying in a different block of T (GM ).

Theorem 7 shows that DMCSOPT is sound and complete.

Theorem 7 Let Ck be a context of an MCS M , let Πk be the query plan as in Definition 11 and let
V̂ = {p ∈ v(k, j) | (k, j) ∈ E(Πk)}. Then,

(i) for each S′ ∈ Ck.DMCSOPT(k), there exists a partial equilibrium S of M w.r.t. Ck such
that S′ = S|V̂ ; and

(ii) for each partial equilibrium S of M w.r.t. Ck, there exists an S′ ∈ Ck.DMCSOPT(k) such
that S′ = S|V̂ .
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5. Streaming Equilibria (DMCS-STREAMING)

Algorithm DMCSOPT shows substantial improvements over DMCS; however, when the sizes of
the local knowledge bases and the context interfaces increase, it also suffers from bottlenecks.

This stems from the way in which models are exchanged between contexts. Suppose context C1

accesses several neighbors C2, . . . , Cm under an acyclic information flow, and that each Ci, i ≥ n,
has ni PEs. Before Ci computes in DMCS resp. DMCSOPT any local models, it must join all PEs
from its neighbors; this may lead to n2 × n3 × · · · × nm many PEs, and each of them is an input
to the local solver. This may not only take considerable time but also exhaust memory, even before
local model computation starts.

Note however that if instead each neighbor would transfer just a portion of its PEs, then the
computation at C1 can avoid such a memory blowup. Moreover, this strategy also helps to reduce
inactive running time at C1 while waiting for all neighbors to return all PEs, as C1 can already start
local computing while the neighbors are producing more models.

In general, it is indispensable to trade more computation time, due to recomputations, for less
memory if eventually all partial equilibria at C1 shall be computed. This is the idea underlying a
streaming evaluation method for distributed MCS. It is particularly useful when a user is interested
in obtaining just some instead of all answers from the system, but also for other realistic scenarios
where the current evaluation algorithm does not manage to output under resource constraints in
practice any equilibrium at all.

In this section, we turn this idea into a concrete streaming algorithm DMCS-STREAMING for
computing partial equilibria. Its main features are briefly summarized as follows:

• the algorithm is fully distributed, i.e., instances of its components run at every context and
communicate, thus cooperating at the level of peers;

• when invoked at a context Ci, the algorithm streams (i.e. computes) k ≥ 1 partial equilibria
at Ci at a time; in particular, setting k = 1 allows for consistency checking of the MCS
(sub-)system.

• issuing follow-up invocations one may compute the next k partial equilibria at context C1

until no further equilibria exist; i.e., this evaluation scheme is complete.

• local buffers can be used for storing and exchanging local models (partial belief states) at
contexts, avoiding the space explosion problem.

As this section mainly studies the streaming aspect of the algorithm, we simplify the presen-
tation and omit the interface between contexts. The principles presented here can be applied for
both DMCS and DMCSOPT by adapting the interface and pruning the topology at preprocessing
time. Furthermore, we assume to work with acyclic MCSs. Treatment of cyclic cases can be easily
achieved by adding guessing code to the solving component as in DMCS and DMCSOPT.

To the best of our knowledge, a similar streaming algorithm has neither been developed for
the particular case of computing equilibria of a MCS, nor more generally for computing models of
distributed knowledge bases. Thus, the results obtained here are not only of interest in the setting
of heterogeneous MCS, but they are also relevant in general for model computation and reasoning
over distributed (potentially homogeneous) knowledge bases like e.g. distributed SAT instances.
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Figure 9: DMCS-STREAMING architecture

Algorithm 6: Handler(k1, k2: package range) at Ci

Output.k1 := k1, Output.k2 := k2,
Solver.k2 := k2, Joiner.k := k2 − k1 + 1
call Solver

5.1 Basic Streaming Procedure

The basic idea is as follows: each pair of neighboring contexts can communicate in multiple rounds,
and each request has the effect to receive at most k PEs. Each communication window of k PEs
ranges from the k1-th PE to the k2-th (= k1 + k − 1) PE. A parent context Ci requests from a child
context Cj a pair (k1, k2) and will receive some time later a package of at most k PEs; receiving ε
indicates that Cj has fewer than k1 models. A parallelized version is discussed in Section 5.2.

Important subroutines of the new algorithm DMCS-STREAMING take care of receiving the
requests from parents, receiving and joining answers from neighbors, local solving and returning
results to parents. They are reflected in four components: Handler, Solver, Output, and Joiner
(only active in non-leaf contexts); see Figure 9 for an architectural overview.

All components except Handler (shown in Algorithm 6) communicate using message queues:
Joiner has j queues to store partial equilibria from j neighbors, Solver has one queue to hold joined
PEs from Joiner, and Output has a queue to carry results from Solver. To bound space usage, each
queue has a limit on the number of entries. When a queue is full (resp., empty), the enqueuing writer
(resp., dequeuing reader) is automatically blocked. Furthermore, getting an element also removes
it from the queue, which makes room for other PEs in the queue later. This property frees us from
synchronization technicalities.

Algorithms 7 and 8 show how Solver and Joiner work. They use the following primitives:

• lsolve(S): works as lsolve in DMCS and DMCSOPT, but in addition may return only one
answer at a time and may be able to tell whether there are models left. Moreover, we require that
the results from lsolve are returned in a fixed order, regardless of when it is called. This property is
the key to guarantee the correctness of our algorithm.

• get first(`1, `2, k): send to each neighbor from c`1 to c`2 a request for the first k partial equi-
libria, i.e., k1 = 1 and k2 = k; if they all return some models, store them in the respective queues
and return true; otherwise, return false (some neighbor is inconsistent).
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Algorithm 7: Solver() at Ci

Data: Input queue: q, maximal number of models: k2

count := 0
while count < k2 do

(a) if Ci is a leaf then S := ∅
(b) else call Joiner and pop S from q

if S = ε then count := k2

(c) while count < k2 do
pick the next model S? from lsolve(S)
if S? 6= ε then

push S? to Output.q
count := count + 1

else break

refresh() and push ε to Output.q

• get next(`, k): request the next k equilibria from neighbor Cc` ; if Cc` sends back some mod-
els, store them in the queue q` and return true; otherwise, return false as the neighbor already
exhaustively returned its PEs from the previous request. Note that this subroutine needs to keep
track of which range has been already asked for to what neighbor, by maintaining a set of counters.
A counter w.r.t. a neighbor Cc` is initialized to 0 and increased each time get next(`, k) is called.
When its value is t, the request to Cc` asks for the t’th package of k models, i.e., models in the range
given by k1 = (t − 1) × k + 1 and k2 = t × k. When get first(`1, `2, k) is called, all counters in
range [`1, `2] are reset to 0.

• refresh(): reset all counters and flags of Joiner to their starting states, e.g., first join to true ,
all counters to 0.

The process at each context Ci is triggered when a message from a parent, which contains the
range (k1, k2) arrives at Handler. The latter notifies Solver to compute up to k2 models and Output
to collect those in the range (k1, k2) and return them to the parent. Furthermore, it sets the package
size at Joiner to k = k2 − k1 + 1 in case Ci needs to query further neighbors (cf. Algorithm 6).

When Solver receives a notification from Handler, it first prepares the input for the local solver.
If Ci is a leaf context, the input S gets the empty set assigned in Step (a); otherwise, Solver triggers
Joiner (Step (b)) for input from neighbors. Fed with input from them, lsolve is used in Step (c) to
compute at most k2 results and send them to the output queue.

The Joiner, which is only activated for intermediate contexts as discussed, gathers partial equi-
libria from the neighbors in a fixed ordering and stores the joined, consistent input to a local buffer.
It communicates just one input at a time to Solver upon request. The fixed joining order is guaran-
teed by always asking the first package of k models from all neighbors at the beginning in Step (d).
In subsequent rounds, we begin with finding the first neighbor Cc` that can return further models
(Step (e)), and reset the query to ask for first packs of k models from neighbors from Cc1 to Cc`−1

.
When all neighbors run out of models in Step (f), the joining process ends and sends ε to Solver.

Note that while the above procedure guarantees that no models are missed, it can lead to con-
sider the same combinations (inputs to Solver) multiple times. Using a cache helps to mitigate
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Algorithm 8: Joiner() at Ci

Data: Queue q1, . . . , queue qj for In(i) = {c1, . . . , cj}, buffer for partial equilibria: buf ,
flag first join

while true do
if buf is not empty then

pop S from buf , push S to Solver.q
return

if first join then
(d) if get first(1, j, k) = false then

push ε to Solver.q
return

else first join := false

else
` := 1

(e) while get next(`, k) = false and ` ≤ j do ` := `+ 1
if 1 < ` ≤ j then

get first(1, `− 1, k)
(f) else if ` > j then

push ε to Solver.q
return

for S1 ∈ q1, . . . , Sj ∈ qj do add S1 ./ · · · ./ Sj to buf

C1

C2 C3

C4 C5 C6 C7

Figure 10: Binary tree MCS

recomputation, but as unlimited buffering again quickly exceeds memory limits, recomputation is
an inevitable part of trading computation time for less memory.

The Output component simply reads from its queue until it receives ε or reaches k2 models
(cf. Algorithm 9). Upon reading, it throws away the first k1 − 1 models and only keeps the ones
from k1 onwards. Eventually, if fewer than k1 models have been returned by Solver, then Output
will return ε to the parent.

Example 17 Let M = (C1, . . . , Cn) be an MCS such that for a given integer m > 0, we have n =
2m+1 − 1 contexts, and let ` > 0 be an integer. Let all contexts in M have ASP logics. For i < 2m,
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Algorithm 9: Output() at Ci

Data: Input queue: q, starting model: k1, end model: k2

buf := ∅ and count := 0
while count < k1 do

pick an S from Output.q
if S = ε then count := k2 + 1
else count := count + 1

while count < k2 + 1 do
wait for an S from Output.q
if S = ε then count := k2 + 1
else

count := count + 1
add S to buf

if buf is empty then
send ε to parent

else
send content of buf to parent

the context Ci = (Li, kbi, bri) has

kbi = {aji ∨ ¬a
j
i ← ti | 1 ≤ j ≤ `} and bri =

{
ti ← (2i : aj2i),

ti ← (2i+ 1 : aj2i+1)

∣∣∣∣ 1 ≤ j ≤ `

}
, (2)

and for i ≥ 2m, we let Ci have

kbi = {aji ∨ ¬a
j
i | 1 ≤ j ≤ `} and bri = ∅ . (3)

Intuitively,M is a binary tree-shaped MCS with depthm and `+1 is the size of the alphabet in each
context. Figure 10 shows such an MCS with n = 7 contexts and depth m = 2; the internal contexts
have knowledge bases and bridge rules as in (2), while the leaf contexts are as in (3). The directed
edges show the dependencies of the bridge rules. Such a systemM has equilibria S = (S1, . . . , Sn)
with Si = {aki , ti}, for 1 ≤ k ≤ `.

To compute one PE of M using DMCS or DMCSOPT, one needs to transfer packages of 2`

PEs from each context to its parent (as each context Ci computes all subsets of {a1
i , . . . , a

`
i}). Each

intermediate context receives 2` results from each of its children, whose join leads to 22` inputs for
lsolve; it invokes lsolve that often and only then returns its 2` models to the parent, which has to
wait for this.

On the other hand, DMCS-STREAMING only needs to transfer a single PE between each pair
of connected contexts, which is a significant saving. Indeed, consider e.g. m = 1, ` = 5, i.e.,
M = (C1, C2, C3). Querying C1 with package size k = 1 first causes the query to be forwarded to
C2 as a pair k1 = k2 = 1. As C2 is a leaf context, it invokes the local solver and eventually gets five
different models. However, it just returns one PE to C1, say (ε, {a1

2}, ε). Note that t2 is projected
off as it is not among the atoms of C2 accessed by C1. The same happens at C3, which we assume
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to return (ε, ε, {a2
3}) to C1. At the root context C1, the two PEs from its neighbors are consistently

combined into (ε, {a1
2}, {a2

3}). Feeding this to the local solver, C1 obtains five models, and returns
one of them, say S = ({a1

1, t1}, {a1
2}, {a2

3}).

The following proposition shows the correctness of our algorithm.

Proposition 8 Let M = (C1, . . . , Cn) be an MCS, i ∈ {1, . . . , n} and let k ≥ 1 be an integer. On
input (1, k) to Ci.Handler, Ci.Output returns up to k different partial equilibria with respect to Ci,
and in fact k if at least k such partial equilibria exist.

5.2 Parallelized Streaming

As one might expect, the strategy of ignoring up to k1 models and then collecting the next k is
not likely to be the most effective. The reason is that each context uses only one Solver, which in
general has to serve more than one parent, i.e., requests for different ranges of models of size k.
When a new parent context requests models, we have to refresh the state of Solver and Joiner and
redo from scratch. This is unavoidable, unless a context satisfies the specific property that only one
parent can call it.

A way to address this problem is parallelization. The idea is to serve each parent with a suite
of Handler, Joiner, Solver and Output. The basic interaction between units is still as shown in
Figure 9, with the notable difference that each component now runs in an individual thread. The
significant change is that Solver does not control Joiner but waits at its queue to get new input
for the local solving process. The Joiner independently queries the neighbors, combines PEs from
neighbors, and puts the results into the Solver queue.

The effect is that we do not waste recomputation time for unused models. However, paral-
lelization has its limits in practice. While DMCSOPT may run out of memory, unlimited parallel
instances of the streaming algorithm can exceed the number of threads/processes that the operating
system can support; this happens if contexts can reach others on many alternative paths, like in the
stacked diamond topology: the number of threads is exponential in the number of connected con-
texts, which prohibits scaling to large system sizes. However, in real-world applications the number
of paths might still be ok.

A compromise between the two extremes is a bounded parallel algorithm. The idea is to create
a fixed-size pool of multiple threads and components to share among the contexts; when incom-
ing requests cannot be served with the resources available, the algorithm continues with the basic
streaming procedure. A realization remains for future work.

6. Experimental Evaluation

We have implemented the algorithms above using C ++ in a system prototype called DMCS, which
is available online.8 For space reasons, we omit a detailed presentation and refer for it to the work
of Bairakdar, Dao-Tran, Eiter, Fink, and Krennwallner (2010b), Dao-Tran (2014, ch. 7). Briefly,
the main components of the global architecture are (i) a command-line frontend dmcs for the user
to access the system; (ii) demons daemon which represent nodes that contain (a set of) contexts;
and (iii) a manager dmcsm containing meta-information about the MCS (topology, interfaces) with

8. http://www.kr.tuwien.ac.at/research/systems/dmcs,
https://github.com/DistributedMCS/dmcs/
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Figure 11: Topologies for testing DMCS algorithms

a helper dmcsgen for generating configurations with optimized components. Contexts are imple-
mented as groups of threads that communicate with each other through concurrent message queues.
The system has two main command-line tools, viz. for running the algorihms and for test case gener-
ation, respectively. It allows to switch between different algorithms and modes by simply changing
the command-line arguments.

We now turn to an experimental evaluation of DMCS under various aspects. Next we describe
how the benchmarks were set up, and then we go into runs and results interpretation.

6.1 Benchmark Setup

The idea is to analyze strong and weak points of each algorithm with respect to different parameters,
namely system topology, system size, local theory (i.e., knowledge base) size, and interface size.
Specifically, we considered MCSs with topologies as in Figure 11, including:

Binary Tree (T): Binary trees grow balanced, i.e., every level except the last one is complete.
With this topology, no edge needs to be removed to form the optimal topology; as every
intermediate node is a cut-vertex, the import interface in the query plan is drastically reduced,
leading to an extreme performance improvement.

(Stack of) Diamond(s) (D): a diamond consists of four nodes connecting as C1 to C4 in Fig-
ure 11b. A stack of diamonds combines multiple diamonds in a row, i.e., stackingm diamonds
in a tower of 3m + 1 contexts. Similar to Binary Tree, no edge is removed in constructing
the query plan. W.r.t. this topology, every context connecting two diamonds is a cut-vertex.
As such, the import interface in the query plan is refined after every diamond; this avoids
significantly repetition of partial PEs in evaluation.

(Stack of) Zig-Zag Diamond(s) (Z): a zig-zag diamond is a diamond with a connection between
the two middle contexts, as depicted by contexts C2 to C4 in Figure 11c. A stack of zig-
zag diamonds is built as above. This topology is interesting as after removing two edges per
block, the query plan turns into a linear topology.

Ring (R): ring (Figure 11d). The query plan removes the connection from context Cn to C1 and
then carries the interface between them all the way back to C1. This topology requires guess-
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Figure 12: Local theory structure

ing and checking in any DMCS algorithm; thus it is quite unpredictable which algorithm
performs better in general.

The other quantitative parameters are represented as tuple P = (n, s, b, r), where

• n is the system size (number of contexts),

• s is the local theory size (number of ground atoms in a local theory),

• b is the number of local atoms that can be used as bridge atoms in other contexts, in other
words, the number of interface atoms, and

• r is the maximal number of bridge rules. The generator generates a bridge rule while iterating
from 1 to r with 50% chance; hence on average r/2 bridge rules are generated. We allow
bridge bodies of size 1 or 2.

A test configuration is formulated as X/(n, s, b, r) where X ∈ {T,D,Z,R} represents the topol-
ogy and n, s, b, r are integers representing the quantitative (i.e., size-related) parameters. As we
would like to run several instances over one configuration, the final formulation of a test instance is
Xi/(n, s, b, r), where i is the index of the test instance.

Inside each context, the local theories are structured as follows. Context Ci has s ground atoms
indicated by ai,1, . . . , ai,s. Rules are of the form ai,j ← not ai,k where k = j + 1, if j is odd;
otherwise, we randomly choose k to be j−1 or j+ 1 with a probability of 50% for each possibility.
In case if k > s then the rule does not exist. An example of a context with local theory size is 8 can
be illustrated with the dependency graph as in Figure 12. Here, the bold arrows stand for the fixed
rules while dashed arrows stands for the rules decided by randomization. The corresponding local
theory of this figure is:{

a1 ← not a2 a3 ← not a4 a4 ← not a5 a6 ← not a7

a2 ← not a1 a4 ← not a3 a5 ← not a6 a7 ← not a8

}
.

With this setting, a local context has 2m answer sets, where m ∈ [0, s/2].
Furthermore, one can obtain deterministic contexts (having just one answer set) by disallowing

cycles in the structure of local theories.

6.2 Experiments

We conducted the experiments on a host system using 4-core Intel(R) Xeon(R) CPU 3.0GHz proces-
sor with 16GB RAM, running Ubuntu Linux 12.04.1. Furthermore, we used DLV [build BEN/Sep
28 2011 gcc 4.3.3] as a back-end ASP solver.

We ran a comprehensive set of benchmarks under the setup described in Section 6.1. As the
parameter space P = (n, s, b, r) is huge, we singled out in an initial probing phase the following
values for the experiments:
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Figure 13: DMCS vs. DMCSOPT in non-streaming mode

• for the system size n, depending on the topology:

T : n ∈ {7, 10, 15, 31, 70, 100} Z: n ∈ {4, 7, 10, 13, 25, 31, 70}
D: n ∈ {4, 7, 10, 13, 25, 31} R: n ∈ {4, 7, 10, 13, 70}

• s, b, r are fixed to either 10, 5, 5 or 20, 10, 10, respectively.

A combination of topologyX and parameters P = (n, s, b, r) is denoted byX(n, s, b, r) orXn,s,b,r

(used in figures). Each parameter setting has been tested on five instances. For each instance,
we measured the total running time and the total number of returned partial equilibria on DMCS,
DMCSOPT in non-streaming and streaming mode. For the latter mode, DMCS-STREAMING, we
asked for k answers, where k ∈ {1, 10, 100}. This parameter also influences the size of packages
transferred between contexts (at most k partial equilibria are transferred in one message). As in
streaming mode, asking for more than one PE may require multiple rounds to get all answers, it is
of interest to see how fast the first answers arrive compared to having all answers. We thus compared
the running time of these tasks for k = 10 and k = 100.

6.3 Observations and Interpretations

Figures 13-17 summarize the results of our experiments. Run times are in seconds and timeout
is 600 seconds. From these data, several interesting properties can be observed. We organize
our analysis along the following aspects: (1) comparing DMCS and DMCSOPT, (2) comparing
streaming and non-streaming mode, (3) effect of the package size, (4) role of the topologies, and
(5) the behavior of the algorithms on deterministic contexts.

6.3.1 DMCS VS. DMCSOPT

Figure 13 shows the running time of DMCS and DMCSOPT for computing all partial equilibria, i.e.,
in non-streaming mode, of five instances of the respective parameter settings. Clearly DMCSOPT
outperforms DMCS. This can be explained by the fact that when computing all answers, DMCS
always produces more partial equilibria than DMCSOPT, as one PE returned by DMCSOPT can
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Figure 14: DMCS vs. DMCSOPT in streaming mode

be obtained from projecting many partial equilibria returned by DMCS on the imported interface.
Furthermore, all intermediate results are transferred in one message, which makes no difference
in terms of the number of communications between the algorithms. As such, DMCS must spend
more time on processing possibly exponentially more input; hence, unsurprisingly, it is consistently
slower than DMCSOPT.

However, the observation in streaming mode is different. Figure 14 shows the running time of
DMCS and DMCSOPT in streaming mode to compute the first 100 respectively 10 unique partial
equilibria for T (25, 10, 5, 5) respectively D(10, 10, 5, 5), Z(10, 10, 5, 5) and R(4, 10, 5, 5). On a
first view, as DMCSOPT is consistently slower than DMCS, one might question the correctness of
the results. However, they are not a surprise: again a PE returned by DMCSOPT should corre-
spond to several PEs returned by DMCS. Hence, the batch of the first k unique answers in DMCS
corresponds to only a smaller number of (few) unique answers in DMCSOPT.

Therefore, comparing DMCS and DMCSOPT in streaming mode by measuring the runtime to
compute the first k answers is not fair. We thus took the time when both algorithms finished the first
round of answers (denoted by DMCS-1st and DMCSOPT-1st in Figure 14). With this setting, we
observed the following:

• on the majority of cases DMCSOPT finishes the first round faster than DMCS, however in
about 40% of the instances, it is the other way around; this shows the effect of using the query plan;
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• however, in some cases DMCS wins. This can be explained as follows. First of all, in streaming
mode, we transfer only packages of k partial equilibria at a time; therefore, the effect of reducing the
amount of total work to be done does not always apply as in the non-streaming mode. Furthermore,
at every context, we compute k PEs and project them to the output interface before returning the
results. According to this strategy, when a context Ci returns k1 partial equilibria in non-streaming
mode and k2 partial equilibria in streaming to another context Cj , it might happen that k2 is much
smaller than k1 and hence does not provide enough input for Cj to compute k PEs. Therefore, Cj

will issue more requests to Ci asking for further packages of k PEs, e.g., [k + 1, 2k], [2k + 1, 3k],
etc; and this costs DMCSOPT more time to even compute the first batch of PEs at the root context.
Another approach is to compute always k unique partial equilibria before returning to a parent
context. However, this strategy risks to compute even all local models before k unique partial
equilibria can be found.

Overall, there is not much difference in running time when DMCSOPT is slower than DMCS, except
for instance R3 (Figure 14d). This however comes from a different reason: the cyclic topology with
guess-and-check effects, which play a much more important role than choosing between DMCS and
DMCSOPT (see Section 6.3.4).

6.3.2 STREAMING VS. NON-STREAMING DMCS

We now compare streaming and non-streaming for the same algorithm (DMCS resp. DMCSOPT).
Figure 15 shows the results for DMCS in (15a), and the results for DMCSOPT to compute

the first 10 resp. 100 PEs with small systems/local knowledge bases in (15b) and with large sys-
tems/local theories in (15c). Excluding Ring (which behaves abnormally due to guess-and-check)
one can see that:

• For DMCS, the streaming mode is definitely worth pursuing since DMCS in non-streaming
mode times out in many cases (see also Figure 13), while in streaming mode we still could find
some answers after a reasonable time.

• For DMCSOPT, the situation is a bit different, as streaming loses against non-streaming on
small instances. This is due to the recomputation that the streaming mode pays for transferring just
chunks of partial equilibria between contexts; furthermore, there are duplications between answers.
When one moves to larger systems and local knowledge bases, the streaming mode starts gaining
back. However, it does not always win, as recomputation still significantly takes time in some cases.

Summing up, when the system is small enough, one should try the non-streaming mode as it
avoids recomputation and duplication of PEs between different rounds of computation. But for large
systems, streaming can rescue us from timing out. Even if we have to pay for recomputation, it still
helps in cases when some but not all results are needed, e.g. in brave query answering (membership
of the query in some PE).

6.3.3 EFFECTS OF THE PACKAGE SIZE IN STREAMING MODE

The considerations above raise the question of the optimal number of PEs that should be transferred
in return messages between contexts. We will analyze the experimental results on the streaming
mode with package sizes 1, 10, and 100 to give some hints on this.

Figure 16 shows the average time to compute 1 PE of DMCSOPT in streaming mode with
respect to three package sizes. One can see that transferring just a single PE to get the first answer
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Figure 15: Non-streaming vs. streaming under DMCS and DMCSOPT

is acceptable in most cases, in particular if no guessing is needed. Moving from size 1 to a small
package size like 10 here is sometimes better, as one can save communication time (sending once
a package of 10 partial equilibria vs. sending ten times a package with a single PE). This setting
(small package sizes like 10) will be more effective when communication is a big factor, which
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Figure 16: Average time of DMCSOPT to find one partial equilibrium in streaming mode, varying
package size

happens in real applications where contexts are located at physically distributed nodes. In such
cases, computing 10 partial equilibria should be faster than computing 1 PE in 10 consecutive times.

Furthermore, having package of size 1 is not safe in cases where guessing is applied, e.g., in
R3(4, 20, 10, 10). For these cases, a large enough package size might help to cover the correct
guess; but in general, there is no guarantee for such a coverage. To thoroughly solve this problem,
one needs to apply conflict learning on the whole MCS evaluation.

Also, it is interesting to see that with package size 100, DMCSOPT usually times out. The
reason is that there are many duplications and once DMCSOPT is stuck with a local search branch
that promises fewer than 100 partial equilibria, the algorithm will lose time here without finding
new unique answers and will eventually time out.

To find a good package size p with a specific setting (topology, system size, local theory size),
one may run the system on a training set and apply binary search on p.

6.3.4 EFFECT OF TOPOLOGY

A quick glance over all plots in Figures 13–16 reveals the pattern that the algorithms, especially
the optimizations, perform better on tree than on zigzag and diamond, depending on DMCS or
DMCSOPT, and worst on ring.

The system topology plays an important role here. The aspects that affect the performance of
the algorithms are (i) number of connections, (ii) the structure of block trees and cut vertices, and
(iii) acyclicity vs. cyclicity.

Regarding (i), the topology introduces the number of connections based on the system size. Tree
has fewer connections than Diamond and Zigzag, which reduces not only communication but also
local solving time as fewer requests are made; and the performance of DMCS on these topologies
proves this observation. If one follows this argument, then Ring must offer the best performance.
However, this is actually not the case due to aspect (iii) that we will shortly analyze below.

Concerning (ii), tree can be ultimately optimized as every intermediate node is a cut vertex.
Hence, when applying the query plan for DMCSOPT, we can strip off all beliefs in PEs sent from
child contexts to a parent context. In other words, only local beliefs at a context Ci are needed
to be transferred back to its parents. This drastically decreases the amount of information to be
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Figure 17: DMCS vs. DMCSOPT in streaming mode with package size 100 on ring

communicated, and more importantly, the number of calls to lsolve. Due to this special property,
DMCSOPT performs extremely well on the tree topology, and scales to hundreds of contexts.

Comparing Diamond and Zigzag, they have the same number of cut vertices. However, Zigzag
is converted to a linear topology with an optimal query plan (cf. Figure 11c), and therefore can be
processed much faster than Diamond. In Figure 16, DMCSOPT scales on Zigzag to 70 contexts with
an average time to compute one answer that still better than the one on diamond with 25 contexts.

Regarding (iii), Ring is a cyclic topology while the other topologies are acyclic. Hence each
of the algorithms must do some guess-and-check at some context in the topology. Making the
right guess is most important, even more important than reducing communication and calls to local
solvers. The result of running DMCS and DMCSOPT on this topology (Figure 17) does not follow
any pattern; it absolutely depends on a specific instance whether the above sequential guessing
luckily arrives at the result. Therefore, we frequently see that DMCS outperforms DMCSOPT in
streaming mode, as in such cases, guessing at the root context (after detecting the cycle) is more
effective than guessing at the parent of the root context according to the optimal query plan.

Based on these observations, one can come up with a best strategy to evaluate different types of
topologies. When dealing with MCSs of arbitrary topologies, it looks natural to decompose them
into parts of familiar topologies for which efficient strategies are known, and to combine then these
strategies to an overall evaluation method. Studying this is beyond the scope of this work and an
interesting issue for future research.

6.3.5 BEHAVIOR ON DETERMINISTIC CONTEXTS

Above we considered our algorithms on MCSs consisting of possibly non-deterministic contexts,
i.e., they can have more than one acceptable belief set per knowledge base. It is intriguing to see how
the algorithms behave if all contexts always have exactly one accepted belief set per knowledge base;
this might be because the underlying logic is genuinely “deterministic” and the accepted belief set
clear (e.g., closure in classical logic) or among multiple candidates a particular belief set is chosen
(in implementations typically the first or a “best” solution computed, e.g. in SAT solving or in ASP).
We observed that:
• for non-cyclic topologies, there is no performance difference between DMCS and DMCSOPT,

because the smaller interface used in DMCSOPT does not reduce the number of intermediate PEs
transferred between contexts, as there is only one partial equilibrium computed at every context.
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Figure 18: DMCS vs. DMCSOPT in streaming mode with package size 100 on ring

• for cyclic topology (Ring), guessing plays the main role. Hence it depends on the individual
instance whether DMCS or DMCSOPT wins, like in the case of non-deterministic contexts (cf.
Section 6.3.4).

• non-streaming mode is much faster than streaming (on both DMCS and DMCSOPT); this is
reasonable as any request for further partial equilibria is redundant.

6.3.6 COMPARISON WITH MCS-IE AND P2P-DR

Systems close to DMCS are MCS-IE (Bögl et al., 2010)9 and P2P-DR (Bikakis, Antoniou, & Has-
sapis, 2011). The former is a plugin of the dlvhex system and was originally developed to compute
explanations for inconsistency in Multi-context Systems, but also includes a mode for computing
equilibria of an MCS. However, MCS-IE was implemented with a centralized approach. Figure 18
presents the run time of DMCS, DMCSOPT in comparison with MCS-IE in computing all par-
tial equilibria of the respective configurations. It shows that MCS-IE outperforms DMCS since it
inherits a powerful decomposition technique from dlvhex; however, the decomposition based on
topological information of DMCSOPT turns out to be more efficient, as it also localizes the in-
terface beliefs to communicate between blocks of contexts, which is specific for MCS and is not
exploited by the general decomposition technique in dlvhex.

P2P-DR supports distributed query answering for multi-context systems based on defeasible
logic; for more details, see Section 7. We present here a comparison between DMCS and P2P-DR.

We converted our benchmark to P2P-DR’s style by converting the local knowledge bases and
bridge rules to defeasible local and meta rules, and added a fixed trust order between contexts. We
then queried the root context with an atom appearing in one of the answers of DMCS-STREAMING
with package size 10. It turned out that P2P-DR always found the answers in around 0.25 seconds,
regardless of the tested instance. This behavior can be explained as follows. To find answers for a
query atom, the algorithm of P2P-DR first evaluates the local theory. If it can determine the truth
value of the query, it terminates; otherwise the algorithm consults neighbors to get further evidence
for the reasoning. As our local knowledge base structure, when converted to P2P-DR’s defeasible
theories, allows for a local decision, the system works only on the local theory of the root context

9. http://www.kr.tuwien.ac.at/research/systems/mcsie/tut/
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for every test case, thus results in almost constant execution time. Even when asking neighbours is
necessary, P2P-DR in general may be much faster than DMCS, as the query answering process is
inherently deterministic and in a low-complexity logic; in turn, the formalism is less expressive. A
detailed study of this issue remains for future work.

6.3.7 SUMMARY

Summing up, the analysis of the experimental results shows that there is no clear winner among the
algorithms (DMCS vs. DMCSOPT) under different running modes (streaming vs. non-streaming,
with different package size) on different topologies. We can distill from it a guideline to choose the
setup that fits specific instances in practice, including some issues open for further investigation,
which can be briefly stated as follows:
• choose DMCSOPT over DMCS in non-streaming mode, except for cyclic topologies;

• in streaming mode, choose an appropriate package size carefully (e.g., doing a binary search
on some training instances;

• decompose random topologies into parts whose topologies have effective strategies to evaluate,
and study how to combine the strategies for the over all systems.

7. Related Work

In this section, we resume the discussion of related work. Starting with multi-context systems, we
provide more details on the work by Roelofsen et al. (2004), Bikakis et al. (2011) and consider other
work. We then move to related formalisms in SAT, CSP and ASP.

Roelofsen et al. (2004) described evaluation of monotone MCS with classical theories using
SAT solvers for the contexts in parallel. They used a (co-inductive) fixpoint strategy to check MCS
satisfiability, where a centralized process iteratively combines results of the SAT solvers. Apart
from being not truly distributed, an extension to nonmonotonic MCS is non-obvious; furthermore,
no caching technique was used.

Serafini, Borgida, and Tamilin (2005) and Serafini and Tamilin (2005) developed distributed
tableaux algorithms for reasoning in distributed ontologies, which can be regarded as multi-context
systems with special bridge rules. The algorithms serve to decide whether such a system is con-
sistent, provided no cyclic context dependencies exist (in technical terms, the distributed TBox is
acyclic); the DRAGO system (Serafini & Tamilin, 2005) implements this approach for OWL on-
tologies. Compared to ours, this work is tailored for a specific class of multi-context systems resp.
knowledge bases, without nonmonotonic negation and cyclic dependencies (which are challeng-
ing); furthermore, it targets query answering rather than model building, which in a sense is a dual
problem.

More related to our work as regards distributed evaluation is the the system P2P-DR of Bikakis
et al. (2011). They developed a distributed algorithm for query evaluation in a multi-context system
framework that is specifically based on (propositional) defeasible logic. In this framework, con-
texts are built using defeasible rules and can exchange literals via bridge rules, and a trust order
between contexts is be supplied. Each knowledge base at a context has, in our terminology, a single
accepted belief set which contains the literals concluded; the global system semantics is given in
terms of a (unique) three-valued assignment to all literals, which can be determined using the algo-
rithm: whether literal l is provably (not) a logical conclusion of the system, or whether this remains
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open. Apart from being tailored to a particular logic and preference mechanisms for evaluating in-
terlinked contexts, applying this algorithm to model building is not straightforward; in particular, as
it produces unique belief sets, dealing with nondeterminism and multiple equilibria is not possible.

Our work on computing equilibria for distributed multi-context systems is clearly related to
work on solving constraint satisfaction problems (CSP) and SAT solving in a distributed setting;
Yokoo and Hirayama (2000) survey some algorithms for distributed CSP solving, which are usu-
ally developed for a setting where each node (agent) holds exactly one variable, the constraints
are binary, communication is done via messages, and every node holds constraints in which it is
involved. This is also adopted by later works (Gao, Sun, & Zhang, 2007) but can be generalized
(Yokoo & Hirayama, 2000). In relation to the topology-based optimization techniques in Section 4,
biconnected components are used by Baget and Tognetti (2001) to decompose CSP problems. The
decomposition is used to localize the computation of a single solution in the components of undi-
rected constraint graphs. Along the same lines, our approach is based on directed dependencies,
which allows us to use a query plan for MCS evaluation.

The predominant solution methods in CSP are backtracking algorithms. Bessiere, Bouyakhf,
Mechqrane, and Wahbi (2011) took them a step further with backtracking on a dynamic total or-
dering between agents guided by nogoods. Our approach, however, allows for cyclic dependency
between contexts. Hirayama and Yokoo (2005) presented a suite of algorithms for solving dis-
tributed SAT (DisSAT), based on a random assignment and improvement flips to reduce conflicts.
However, these algorithms are geared towards finding a single model, and an extension to streaming
multiple (or all) models is not straightforward; for other works on distributed CSP and SAT, this is
similar.

Finally, (distributed) SAT and CSP solving concerns monotonic systems (removal of clauses
resp. constraints preserves satisfiability), while MCSs evaluation concerns nonmonotonic systems,
even if all contexts were monotonic (e.g., clause sets); this makes efficient evaluation more difficult,
as important structural properties of the search space cannot be exploited.

Adjiman, Chatalic, Goasdoué, Rousset, and Simon (2006) present a framework of peer-to-peer
inference systems, where local theories of propositional clause sets share atoms and a special al-
gorithm for consequence finding is available. As we pursue the dual problem of model building,
applying it for our needs is not straightforward; furthermore, we are dealing with non-monotonic
systems, while the peer-to-peer systems by Adjiman et al. are monotonic.

Moving to ASP, Pontelli, Son, and Nguyen’s (2011) ASP-PROLOG shares with MCS the idea
of integrating several knowledge bases, called modules, possibly under different semantics. How-
ever, they restricted module semantics to ASP and Prolog (that is, the least Herbrand model), and
ASP-PROLOG pursues query answering instead of model building.

As for streaming, an answer set streaming algorithm for HEX-programs (which generalize ASP
with external information access) was given by Eiter, Fink, Ianni, Krennwallner, and Schüller
(2011). Despite some similarities to Algorithm DMCS-STREAMING, it is rather different: mono-
lithic programs are syntactically decomposed into modules and answer sets computed in a modular
fashion; it is not fully distributed and combines partial models from lower components to input for
upper components straightforwardly; moreover, it may use exponential space in components.
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8. Conclusion

We have considered distributed evaluation of Multi-context Systems (MCSs) that were introduced
by Brewka and Eiter (2007) as a general formalism to interlink possibly nonmonotonic and hetero-
geneous knowledge bases. We have presented a suite of generic algorithms to compute the equilib-
ria, i.e., the semantics of an MCS in a fully distributed manner, using local solvers for the knowledge
bases at the contexts. It contains a basic algorithm DMCS, an advanced version DMCSOPT that
uses topology-based optimizations, and a streaming variant DMCS-STREAMING for computing
partial equilibria gradually. We believe that the underlying principles and techniques might be
exploited in related contexts, and in particular for distributed evaluation of other non-monotonic
knowledge base formalisms.

The algorithms have been implemented in a prototype system that is available as open source.8

On top of this implementation, we have conducted comprehensive experiments to compare the per-
formance of the algorithms and we gave an insight analysis on the results. It points out advantages,
disadvantages as well as the time/memory trade off between the algorithms in different situations
depending on parameters such as system topology, local interface and theory size, and number of
equilibria desired by the user. Based on this, the user can choose the setting (algorithm and mode)
that fits her need best for finding (partial) equilibria of an MCS. A more extensive treatment is given
by Dao-Tran (2014).
Further work and open issues. Several issues remain for further investigation. One is further im-
provement of the algorithms. Here, the experimental results on the Ring topology strongly suggest
to incorporate conflict learning, which proved to be valuable in ASP and SAT solving, to DMCS
and DMCSOPT; we expect that cyclic topologies will benefit from a better guided guessing pro-
cess. Another issue concerns further semantics and variants of MCSs. As for the former, grounded
equilibria are considered by Dao-Tran (2014), which are akin to answer sets of logic programs and
applicable to MCSs that satisfy certain algebraic conditions; they can be characterized like answer
sets using an (adapted) loop formula approach (Lee & Lifschitz, 2003). Dealing with supported
equilibria (Tasharrofi & Ternovska, 2014), however, is open.

Regarding MCS variants, managed MCSs (Brewka et al., 2011) generalize bridge rules to derive
operations (commands) for a management function that is applied on the knowledge bases; it seems
possible to generalize our algorithms to this setting, but an efficient realization is not straightfor-
ward. Another generalization of MCS concerns dynamic data: in areas like sensor networks, social
networks, or smart city applications, data may change or even continuously arrive at nodes, which
motivates reactive and stream processing for MCSs (Goncalves et al., 2014; Brewka et al., 2014).
Last but not least, allowing contexts to evolve via interation with users or with changes in the en-
vironment is a valuable extention. Extending our algorithms to these settings is interesting but
challenging.

Finally, extending this work to query answering over MCSs, where the user poses a query at a
context and receives results derived from (partial) equilibria is another natural issue. As there is no
need for building whole equilibria, better performance may be achieved.
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Appendix A. Proofs

Proof of Theorem 1

To prove this theorem, we first prove the following Lemmas 9 and 10. The latter aims at simplifying
the proof for the cyclic case, based on the notion of converting cyclic MCSs to acyclic ones.

Lemma 9 For any context Ck and partial belief state S of an MCS M = (C1, . . . , Cn),

app(brk, S) = app(brk, S|V) for all VB ⊇ V ⊇ V∗(k).

Proof For any r ∈ app(brk, S), we have that for all (ci : pi) ∈ B+(r) : pi ∈ Sci and for all
(cj : pj) ∈ B−(r) : pj /∈ Scj . We need to show that pi ∈ Sci |Vci ∧ pj /∈ Scj |Vcj . Indeed:

We have V ⊆ VB ⇒ Vcj ⊆ VBj ⇒ Scj |Vcj ⊆ Scj . Therefore, pj /∈ Scj ⇒ pj /∈ Scj |Vcj .
Now, assume that pi /∈ Sci |Vci . From the fact that pi ∈ Sci , it follows that pi /∈ Vci , hence

pi /∈ V∗(k). But this is in contradiction with the fact that pi occurs in some bridge rule body.
Therefore, r ∈ app(brk, S|V). �

The next Lemma 10 is based on the following notions that convert cyclic MCSs to acyclic
ones and show that they have corresponding equilibria. The intuition (illustrated in Figure 19 and
Examples 18, 19) is to introduce an additional context Ck to take care of guessing for every cycle
breaker Ck. Then, the bridge rules of Ck and its parents are modified to point to Ck. We now
formally realize this idea starting with a function ren that renames part of the bridge rules.

Definition 12 Let Ck be a context in an MCS M , and let V be an interface for running DMCS. The
renaming function ren is defined as follows:

• For an atom a: ren(a, k,V) =

{
ag if a ∈ Bk ∩ V
a otherwise

• For a context index c: ren(c, k,V) =

{
c if c ∈ {1, . . . , n}
c otherwise

• For a bridge atom (ci : pi): ren((ci : pi), k,V) = (ren(ci, k,V) : ren(pi, k,V))
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• For a bridge body B = {(c1 : p1) . . . (cj : pj)}:

ren(B, k,V) = {ren((ci : pi), k,V) | (ci : pi) ∈ B}

• For a bridge rule r = head(r)← B(r):

ren(r, k,V) = head(r)← ren(B(r), k,V)

• For a set of bridge rules br : ren(br , k,V) = {ren(r, k,V) | r ∈ br}
• For a context Ci = (Li, kbi, br i) in M : ren(Ci, k,V) = (Li, kbi, ren(bri, k,V)).

Example 18 Let us slightly modify the MCS M = (C1, C2, C3) from Example 8 as follows:

• kb1 = {e ∨ ¬e}, br1 = {a← (1 : e), not (2 : b)};
• kb2 = ∅, br2 = {b← (3 : c)}; and

• kb3 = ∅, br3 = {c ∨ d← not (1 : a)}.

Applying function ren to contexts C1 and C3 results in the following bridge rules wrt. an inter-
face V = {a, b, c, e}:

• ren(br1, 1,V) = {a← (1 : eg),not (2 : b)},
• ren(br3, 1,V) = {c ∨ d← not (1 : ag)}.

For two contexts Ci and Cj , the former is called a parent of the latter with respect to an interface
V , denoted by parent(Ci, Cj ,V) iff there exists a bridge rule r ∈ br i such that there exists (c : p) ∈
B(r) and p ∈ Bj ∩ V .

A set of contexts {Cc1 , Cc2 , . . . , Cc`} of an MCS M is called a cycle w.r.t. an interface V iff

parent(Cc` , C1,V) ∧
∧

1≤i≤`−1

parent(Cci , Cci+1 ,V)

holds. One can pick an arbitrary context in this set to be its cycle-breaker. Given an MCS M , there
are several ways to choose a (finite) set of its contexts to be cycle-breakers. In Algorithm DMCS,
Step (d) practically establishes the cycle-breakers based on the order that elements in In(k) are
iterated. For the next definition, we are interested in this particular set of cycle-breakers.

Definition 13 Given an MCS M = (C1, . . . , Cn), let CBrM = {Cc1 , . . . , Ccj} be the set of cycle-
breakers for M based on the application of DMCS on M starting from context Cr. The conversion
of M to an equal acyclic M? based on CBrM and an interface V is done as follows:

Let C ′i = (Li, kbi, br ′i) =

{
ren(Ci, i,V) if Ci ∈ CBrM
Ci otherwise

Let C ′′i = (Li, kbi, br ′′i ) = ◦Ck∈CBM ren(C ′i, k,V)10

Let C ′′′i = (Li, kbi, br ′′′i ) where br ′′′i =

{
br ′′i ∪ {a← (i : ag) | a ∈ Bi ∩ V} if Ci ∈ CBrM
br ′′i otherwise

For each Cj ∈ CBrM , introduce Cj = (Lj , kbj , br j) where br j = ∅ and kbj = {ag ∨ ¬ag | a ∈
Bj ∩ V}. Then M? = (C ′′′1 , . . . , C

′′′
n , Cc1 , . . . , Ccj ).

10. The order of composing function ren with different parameters k does not matter here.
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Example 19 (cont’d) Let M be the MCS from Example 18 and CBrM = {C1}. Then, the conver-
sion in Definition 13 gives M? = (C ′′′1 , C

′′′
2 , C

′′′
3 , C1), where:

• kb1 = {e ∨ ¬e}, br ′′′1 = {a← (1 : eg),not (2 : b). a← (1 : ag). e← (1 : eg).};
• kb2 = ∅, br ′′′2 = {b← (3 : c)};
• kb3 = ∅, br ′′′3 = {c ∨ d← not (1 : ag)}; and

• kb1 = {eg ∨ ¬eg. ag ∨ ¬ag.}, br1 = ∅.

Lemma 10 Let M be an MCS and M? be its conversion to an acyclic MCS as in Definition 13.
Then the equilibria of M and M? are in 1-1 correspondence.

Proof (Sketch) Let (R1) and (R2) be the runs of DMCS on M and M?, respectively. Due to the
selection of CBrM to construct M?, both (R1) and (R2) have the same order visiting the contexts,
except that when (R1) revisits a cycle-breaker Ck ∈ CBrM , its counterpart (R2) visits Ck. At these
corresponding locations:

• (R1) calls guess(V, Ck) at Step (c), and

• (R2) calls lsolve({ε, . . . , ε}) at Step (e) since Ck is a leaf context.

The construction of the local knowledge base of Ck gives us exactly the guess on Ck. Furthermore,
these guesses are passed on to the parent contexts of Ck and then later on unified by the additional
bridge rules a← (k : ag) introduced in br ′′′k . Therefore, the belief combinations (Step (d)) done at
Ck are executed on the same input on both runs (R1) and (R2). The correspondence of equilibria
hence follows. �

Proof (Theorem 1) Thanks to Lemma 10, we now need to prove Theorem 1 only for the acyclic
case and automatically get the result for the cyclic case.

(⇒) We start by showing soundness of DMCS. Let S′ ∈ Ck.DMCS(V, ∅) such that V ⊇ V∗(k). We
show now that there is a partial equilibrium S of an acyclic M w.r.t. Ck such that S′ = S|V . We
proceed by structural induction on the topology of M .

Base case: Ck is a leaf with In(k) = ∅ and brk = ∅ and k /∈ hist . This means that (d) is not
executed, hence, in (e), lsolve runs exactly once on (ε, . . . , ε), and we get as result the set of all belief
states S = lsolve((ε, . . . , ε)) = {(ε, . . . , ε, Tk, ε, . . . , ε) | Tk ∈ ACCk(kbk)}. We now show that
S′ ∈ S|V . Towards a contradiction, assume that there is no partial equilibrium S = (S1, . . . , Sn) of
M w.r.t. Ck such that S′ = S|V . From In(k) = ∅, we get that IC (k) = {k}, thus the partial belief
state (ε, . . . , ε, Tk, ε, . . . , ε) ∈ S (where Tk ∈ ACCk(kbk)) is a partial equilibrium of M w.r.t. Ck.
Contradiction.

Induction step: assume context Ck has import neighborhood In(k) = {i1, . . . , im} and

Si1 = Ci1 .DMCS(V, hist ∪ {k}),
...

Sim = Cim .DMCS(V, hist ∪ {k}).
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Then by the induction hypothesis, for every S′ij ∈ Sij , there exists a partial equilibrium Sij of M
w.r.t. Cij such that Sij |V = S′ij .

Let S = Ck.DMCS(V, hist). We need to show that for every S′ ∈ S , there is a partial equilib-
rium of M w.r.t. Ck such that S′ = S|V . Indeed, since In(k) 6= ∅, Step (d) is executed; let

T = Si1 ./ · · · ./ Sim

be the result of combining partial belief states from calling DMCS at Ci1 , . . . , Cim . Furthermore,
by Step (e), we have that S = S?|V where S? =

⋃
{lsolve(S) | S ∈ T }. Eventually, S′ ∈ S|V .

Since every DMCS at Ci1 , . . . , Cim returns its partial equilibria w.r.t. Cij projected to V , we have
that every T ∈ T is a partial equilibrium w.r.t. Cij projected to V . M is acyclic and we have visited
all contexts from In(k), thus by Lemma 9 we get that for every T ∈ T , app(brk, T ) gives us all
applicable bridge rules r regardless of Tj = ε in T , for j /∈ In(k). Hence, for all T ∈ T , lsolve(T )
returns only partial belief states, where each component is projected to V except the kth component.
As every T ∈ T preserves applicability of the rules by Lemma 9, we get that for every S′ ∈ S|V ,
there exists a partial equilibrium S of M w.r.t. Ck such that S′ = S|V .

(⇐) We give now a proof for completeness of DMCS by structural induction on the topology of an
acyclic M . Let S = (S1, . . . , Sn) be a partial equilibrium of M w.r.t. Ck and let S′ = S|V . We
show now that S′ ∈ Ck.DMCS(V, ∅).

Base case: Ck is a leaf context. Then, when executing Ck.DMCS(V, ∅), Step (d) is ignored and
Step (e) is called with input (ε, . . . , ε), and lsolve((ε, . . . , ε)) gives us all belief sets S of Ck. As S
is an equilibrium of M w.r.t. Ck, S ∈ S; hence, S′ = S|V will be returned from Ck.DMCS(V, ∅).

Induction case: suppose that the import neighborhood of context Ck is In(k) = {i1, . . . , im}. Let
the restriction of S to every context Cij ∈ In(k) be denoted by Sij , where:

Sij = (S′1, . . . , S
′
n) where S′` =

{
S` if ` ∈ IC (ij)
ε otherwise

Informally speaking, this restriction keeps only belief sets of the contexts reachable from Cij and
sets those of non-reachable contexts to ε. By the induction hypothesis, Sij |V is computed by
Cij .DMCS(V, ∅) for all ij ∈ In(k). We will show that S|V is computed by Ck.DMCS(V, ∅).

Indeed, because we are considering an acyclic M , it holds that Sij |V is also returned from a call
Cij .DMCS(V, {k}), as k plays no role in further calls from Cij to its neighbors. This means that
after step (d), T contains a T = Si1 ./ . . . ./ Sim where Sij appears at position ij in S.

Since S is a partial equilibrium of M w.r.t. Ck, we have that Sk ∈ ACCk(kbk ∪ {head(r) |
r ∈ app(brk, S)}). Furthermore, by choosing V ⊇ V∗(k), Lemma 9 tells us that the applicability of
bridge rules is preserved under the projection of belief sets to V . This gives us that Sk ∈ lsolve(T )
in step (e), and hence S′ = S|V is returned from Ck.DMCS(V, ∅). �

Proof of Proposition 4

(1) For a context Ck, let the number of calls to its local solver be denoted by c(k). This number is
calculated during the computation of T in Step (d), and it is bounded by the maximal number of
combined partial belief sets from its neighbors. Formally speaking:

c(k) ≤ Πi∈In(k)2
|V∩Bi| ≤ 2|In(k)|×|V| ≤ 2n×|V|.
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Hence for the whole MCS, the upper bound of calls to lsolve in a run of DMCS is

c = Σ1≤k≤nc(k) ≤ n× 2n×|V|

(2) For a context Ck of an MCS M = (C1, . . . , Cn), the set E(k) contains all dependencies from
contextsCi for i ∈ IC (k). We visit all (i, j) ∈ E(k) exactly twice during DFS-traversal ofM : once
when calling Cj .DMCS(V, hist) at Ci, and once when retrieving S|V from Cj in Ci. Furthermore,
the caching technique in Step (a) prevents recomputation on already visited nodes, thus prevents
recommunication in the subtree of any visited node. The claim hence follows. �

Proof of Proposition 5

Item (i) is trivial to see since CycleBreaker is applied in Algorithm 4. To prove item (ii), let us look
at two cases in which an edge (`, t) is removed from the original topology at Step (a) of Algorithm 3:

• (`, t) is removed by CycleBreaker: this causes that certain nodes in the graph cannot reach t
via `. However, the interface that Ct provides is already attached to v(i, j) via V∗(cp)|Bt .

• (`, t) is removed by transitive reduction: this does not change the reachability of t from other
nodes; therefore, the interface that Ct provides is already included in V∗(i, j)B′ .

This argument gives us property (ii). �

Proof of Proposition 6

First, we estimate the complexity to compute v(i, j) in loop (a).

v(i, j) := V∗(i, j)B′ ∪
⋃
c∈C′
V∗(cp)|Bc ∪

⋃
(`,t)∈E

V∗(cp)|Bt

On the one hand, the refined recursive import V∗(i, j)′B is defined as (Definition 9):

V∗(i, j)′B = {V∗(i) ∩
⋃

`∈B′|j

B`}

where B′|j contains all nodes reachable from j.
On the other hand, since all sets of possible beliefs in different contexts are disjoint, we have

that ⋃
c∈C′
V∗(cp)|Bc ∪

⋃
(`,t)∈E

V∗(cp)|Bt = V∗(cp)|⋃
c∈C′ Bc∪

⋃
(`,t)∈E Bt

Since the recursive import interface for a node k is defined as V∗(k) =
⋃

i∈IC (k) V(i), the
expression to compute v(i, j) is in the end a combination of set intersection, union, and projection.
With an implementation of sets using hash set, that is, look up takes O(1), these operators can be
implemented in linear time. Therefore, v(i, j) can be computed in linear time in the total number of
beliefs of contexts in the system.

Given GM , the block tree graph T (GM ) can be constructed in linear time (Vats & Moura,
2010). Ear-decomposition (Step (c)) can also be done in linear time (Valdes, Tarjan, & Lawler,
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1982). Transitive reduction (Step (d)) can be computed in quadratic time with respect to the number
of edges in the block.

OptimizeTree(T (GM ), k, k) iterates through all blocks. Assume that we havem blocksB1 . . . ,
Bm, and each Bi contains ni edges, where n = Σm

i=1ni is the total number of edges in the original
graph. Let ti be the time to process block Bi. Then the bound of the total processing time can be
assessed as follows:

t =
m∑
i=1

ti ≤
m∑
i=1

n2
i ≤ (

m∑
i=1

ni)
2 = n2.

Therefore, if we ignore loop (a), OptimizeTree can be done in quadratic time in the size of the
original input, i.e., the size of GM . �

Proof of Theorem 7

To prove this, we need Proposition 11 to claim that partial equilibria returned from DMCS and
DMCSOPT are in correspondence. But first, we need the following supportive notion.

Definition 14 Let Ck be a context of an MCS M , and let Πk be the query plan as in Definition 11.
For each block B of Πk, the block interface of B, whose root vertex is cB , is

VB = {p ∈ v(i, j) | (i, j) ∈ E(B)} ∪BcB .

Let Ci be a context in B. The self-recursive import interface of Ci in B is

V∗(i)B = Bi ∪
⋃

(i,`)∈E(Πk)

V∗(i, `)B.

Proposition 11 Let Ck be a context of an MCS M , let Πk be the query plan as in Definition 11 in
which Ck belongs to block B of Πk and let V =

⋃
B∈Πk

VB . Then,

(i) for each S′ ∈ DMCSOPT(k) called from Cc where (c, k) ∈ E(Πk) or c = k, there exists
a partial equilibrium S ∈ Ck.DMCS(V, ∅) such that S′ = S|V∗(c,k)B if (c, k) ∈ E(Πk) or
S′ = S|V∗(k)B if c = k;

(ii) for each S ∈ Ck.DMCS(V, ∅), there exists some S ∈ DMCSOPT(k) called from Cc such that
S′ = S|V∗(c,k)B if (c, k) ∈ E(Πk) or S′ = S|V∗(k)B if c = k.

A detailed proof for Proposition 11 is given in the next section, we now give a proof for Theorem 7.

Proof (Theorem 7) (i) Let S′ ∈ Ck.DMCSOPT(k) be a result from DMCSOPT. By Proposi-
tion 11 (i) for c = k, there exists an S′′ ∈ Ck.DMCS(V, ∅) such that S′ = S′′|V∗(k)B , where we
choose V =

⋃
B∈Πk

VB . Note that V∗(k) ⊆ V as V collects all bridge atoms from all blocks, which
might contain blocks not reachable from k. By Theorem 1, there exists a partial equilibrium S of
M such that S′′ = S|V . Thus, we have that

S′ = (S|V)|V∗(k)B

= S|V∗(k)B because V∗(k)B ⊆ V
= S|V̂ because V̂ ⊆ V∗(k)B

(ii) Let S be a partial equilibrium of M . By Theorem 1, there exists S′′ ∈ Ck.DMCS(V, ∅) such
that S′′ = S|V where we choose V =

⋃
B∈Πk

VB . As above, V∗(k) ⊆ V . By Proposition 11 (ii)
for c = k, there exists S′ ∈ Ck.DMCSOPT(k) such that S′ = S′′|V∗(k)B . As above, we have that
S′ = S|V̂ . �
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Proof of Proposition 11

To support the proof of Proposition 11, we need the following lemmas.

Lemma 12 Assume context Ck has import neighborhood In(k) = {i1, . . . , im}, no (k, ij) is re-
moved from the original topology by OptimizeBlock(B, cB), and

S ′i1 = DMCSOPT(k) at Ci1 Si1 = Ci1 .DMCS(VB, ∅)
...

...
S ′im = DMCSOPT(k) at Cim Sim = Cim .DMCS(VB, ∅)

such that for every partial equilibrium S′ ∈ S ′ij , there exists S ∈ Sij such that S′ = S|V∗(k,ij)B .
Let T ′ = S ′i1 ./ . . . ./ S ′im and T = Si1 ./ . . . ./ Sim . Then, for each T ′ ∈ T ′, there exists

T ∈ T such that T ′ = T |Vinput (1,m) with Vinput(`1, `2) =
⋃`2

j=`1
V∗(k, ij)B .

Proof We prove by induction on the number of neighbors in In(k).

Base case: In(k) = {i}, the claim trivially holds.

Induction case: In(k) = {i1, . . . , i`}, U ′ = S ′i1 ./ . . . ./ S ′i`−1 , U = Si1 ./ . . . ./ Si`−1 , and
for each U ′ ∈ U ′, there exists U ∈ U such that U ′ = U |Vinput(1,`−1)

. We need to show that for each
T ′ ∈ U ′ ./ S ′i` , there exists a T ∈ U ./ Si` such that T ′ = T |Vinput (1,`).

Assume that the opposite holds, i.e., there exists T = U ′ ./ S′ where U ′ ∈ U ′ and S′ ∈ S ′i` ,
and for all U ∈ U , S ∈ Si` such that U ′ = U |Vinput (1,`−1) and S′ = S|V∗(k,i`)B , we have that
U ./ S is void.

This means there exists a context Ct reachable from Ck by two different ways, one via i` and
the other via one of i1, . . . , i`−1 such that Ut 6= ε, St 6= ε, Ut 6= St, and either

(i) U ′t = ε or S′t = ε, or

(ii) U ′t = S′t 6= ε

Case (i) cannot happen because Ct is reachable from Ck, hence Vinput(1, ` − 1) ∩ Bt 6= ∅ and
V∗(k, i`) ∩Bt 6= ∅.

Concerning case (ii), we have that Ut|Vinput (1,`−1) = St|V∗(k,i`) 6= ε, hence there exists a ∈
Ut \ Ut|Vinput (1,`−1) and a /∈ St|V∗(k,i`). This means that Vinput(1, `− 1) ∩Bt 6= V∗(k, i`) ∩Bt.

However, from Definition 9 of recursive import interface, we have that V∗(k, ix)B = V∗(k) ∩⋃
`∈B|k B`, where B|ix contains all nodes in B reachable from ix. It follows that V∗(k, i`) and
V∗(k, ij) for any 1 ≤ j ≤ `− 1 that reaches t, share the same projection to Bt, hence Vinput(1, `−
1) ∩Bt = V∗(k, i`) ∩Bt.

We reach a contradiction, and therefore Lemma 12 is proved. �

Lemma 13 The join operator ./ has the following properties, given arbitrary belief states S, T , U
with the same size: (i) S ./ S = S (ii) S ./ T = T ./ S (iii) S ./ (T ./ U) = (S ./ T ) ./ U .
These properties also hold for sets of belief states.

Proof The first two properties are trivial to prove. We will prove associativity.
Let R = S ./ (T ./ U) and W = (S ./ T ) ./ U . Consider doing the joins from left to right.

At each position i (1 ≤ i ≤ n), Ri andWi are determined by locally comparing Si, Ti and Ui. If we
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Si = ε Ti = ε Ui = ε Si = Ti Ti = Ui Ui = Si Ri Wi

Y Y Y Y Y Y ε ε

Y Y N Y N N Ui Ui

Y N Y N N Y Ti Ti

Y N N N Y N Ti Ti

N N N void void
N Y Y N Y N Si Si

N Y N N N Y Si Si

N N N void void

N N Y Y N N Si Si

N N N void void

N N N

Y Y Y Si Si

Y N N void void
N Y N void void
N N N void void

Table 1: Possible cases when joining at position i

reach inconsistency, the process terminates and void is returned; otherwise, we conclude the value
for Ri, Wi and continue to the next position. The final join is returned if position n is processed
without any inconsistency.

All possible combination of Si, Ti, and Wi are shown in Table 1. One can see that we always
have the same outcome for Ri and Wi. Therefore, we have in the end either R = W or both are
void . This concludes that the join operator ./ is commutative. �

Lemma 14 Let Ci and Cj be two contexts inM such that they are in the same block after executing
OptimizeTree and there is a directed path from Ci to Cj . Suppose that Si = DMCSOPT(k) at Ci

and Sj = DMCSOPT(k) at Cj . Then Si = Si ./ Sj .

Proof The use of cache in DMCSOPT does not change the result and can be disregarded, i.e., we
can assume without loss of generality that cache(k) = ∅ in DMCSOPT. Indeed, cache(k) is filled
with the result of the computation when it is empty (i.e., when Ck is accessed the first time), and
is after that never changed and DMCSOPT just returns cache(k), i.e., the value of the computation
with empty cache(k).

Under the above assumption, Lemma 14 can be proven by taking any pathCi = Cp1 , . . . , Cph =
Cj that connectsCi toCj , and arguing that for each index ` ∈ {1, . . . , h}, it holds that Sp` = Sp` ./
Sj (?). Indeed, we can show this by an induction on the path.

Base case: ` = h, statement (?) holds as we have Sph ./ Sj = Sj ./ Sj = Sj by identity
(Lemma (13), (i)).

Induction case: consider ` < h, and suppose we already established by the induction hypothesis
that Sp`+1 = Sp`+1 ./ Sj .
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Now by definition of Sp` and DMCSOPT, it holds that Sp` = lsolve(T )11 and T is, by the
statements (b) and (c), of the form T = Sp`+1 ./ T ′; this holds because there is an edge (p`, p`+1)
in E, and because ./ is commutative and associative (Lemma (13), (ii) and (iii)). By the induction
hypothesis, we get

T = Sp`+1 ./ T ′ = (Sp`+1 ./ Sj) ./ T ′ = Sj ./ (Sp`+1 ./ T ′),

that is, T is of the form Sj ./ T ′′.
Next, lsolve(T ) does not change the value of any component of any interpretation I in T that is

defined in Sj ; that is, lsolve(T ) ./ Sj = lsolve(T ). This means Sp` = lsolve(T ) = lsolve(T ) ./
Sj = Sp` ./ Sj , which proves statement (?) holds for `.

Eventually, we get for ` = 1 that Si = Sp1 = Sp1 ./ Sj = Si ./ Sj . �

Based on Lemma 14, we have the following result.

Lemma 15 Assume the import neighborhood of context Ck is In(k) = {i1, . . . , im}, and that
Sij = DMCSOPT(k) at Cij , 1 ≤ j ≤ m. Furthermore, suppose that edge (k, ij) was removed by
the optimization process (1 ≤ j ≤ m), and that Ci` is a neighbor of Ck such that there exists a path
from k to ij through i` in the optimized topology. Then Si` = Si` ./ Sij ; in other words, the input
to DMCSOPT at Ck is not affected by the removal of (k, ij).

Proof Since Cij and Ci` are direct children of Ck, it follows that they belong to the same block.
Therefore, by Lemma 14 we have that Si` = Si` ./ Sij . �

Proof (Proposition 11) We proceed by structural induction on the block tree of an MCS M . First,
we consider the case where the topology of M is a single block B. In this case, the interface passed
to DMCS is V = VB .

Base case: Ck is a leaf. Then we now compare a call DMCSOPT(k) at Ck and Ck.DMCS(V, ∅),
where V = V∗(k)B = Bk. Algorithm 1 returns local belief sets of Ck projected to V and Algo-
rithm 5 returns plain local belief sets, the claim follows as V = V∗(k)B = Bk.

Induction case: Assume the import neighborhood of context Ck is In(k) = {i1, . . . , im}, and

S ′i1 = DMCSOPT(k) at Ci1 Si1 = Ci1 .DMCS(VB, ∅)
...

...
S ′im = DMCSOPT(k) at Cim Sim = Cim .DMCS(VB, ∅)

such that for every partial equilibrium S′ ∈ S ′ij , there exists S ∈ Sij such that S′ = S|V∗(k,ij)B .
There are two cases. First, no edge (k, ij) is removed by the optimization procedure. Then, by

Lemma 12, we have the correspondence between the input to DMCSOPT and DMCS at Ck.
On the other hand, assume that an edge (k, ij) was removed by the optimization process. The

removal can be from either transitive reduction or ear decomposition. In the former case, Lemma 15
shows that the input toCk is not affected by the removal of this edge. For the latter case, the removal
can be one of three possibilities as illustrated in Figure 20, assuming that context C1 gets called:

(i) (6, 1), the last edge of the simple cycle P0 = {1, 2, 3, 4, 5, 6}

11. With abuse of notation, we write lsolve(T ) for
⋃

T∈T lsolve(T )
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Figure 20: Possible cycle breakings

(ii) (9, 6), the last edge of path P1 = {5, 7, 8, 9, 6}

(iii) (12, 2), the last edge of path P2 = {3, 10, 11, 12}

Cases (i) and (iii) differ from case (ii) in the sense that a cycle will be recognized by DMCS
while for case (ii), no cycle is detected along the corresponding path.

Now, consider when (k, ij) is removed in situations similar to cases (i) and (iii), DMCSOPT
will issue a guess at Step (c) of Algorithm 5 on v(k, ij), which includes V∗(cB)|Bij

= VB ∩ Bij .
On the other hand, DMCS will recognize the cycle at Cij and issue a guess on VB ∩Bij at Step (c)
of Algorithm 1. Therefore, the guess is fed equally to Ck.

When (k, ij) is removed in situations similar to case (ii), all guesses of Ck on the interface from
Cij will be eventually filtered when being combined with the local belief states computed by Cij ,
at the starting node of the path containing (k, ij) as the last edge (in the ear decomposition). In
Figure 20, this is node 5.

In all cases, we have that whenever there is an input T ′ into lsolve in DMCSOPT(k) called by
Cc, there is an input T to lsolve in Ck.DMCS(VB, ∅). Therefore, the claim on the output holds.

Now that Proposition 11 holds for a single leaf block, one can see that the upper blocks only
need to import the interface beliefs from the cut vertices (also the root contexts of the lower blocks).
Under the setting of V =

⋃
B∈Πk

VB , results from DMCSOPT and DMCS projected to the interface
of the cut vertices are identical. Therefore, the upper blocks receive the same input regarding the
interfaces of the cut vertices in running both algorithms. And therefore the final results projected to
V∗(k)B are in the end the same. �

Proof of Proposition 8

Note that the components Handler and Output simply take care of the communication part of
DMCS-STREAMING. Output makes sure that the models sent back to the invokers are in cor-
respondence with the request that Handler got. The other routines Joiner and Solver are the main
components that play the role of Step (b) and (d) in Algorithm 5, respectively.

594



DISTRIBUTED EVALUATION OF NONMONOTONIC MULTI-CONTEXT SYSTEMS

T1,1 ./ T2,1 ./ · · · ./ Tm−1,1 ./ Tm,1 ∪
· · · · · ·
T1,1 ./ T2,1 ./ · · · ./ Tm−1,1 ./ Tm,pm ∪

T1,1 ./ T2,1 ./ · · · ./ Tm−1,2 ./ Tm,1 ∪
· · · · · ·
T1,1 ./ T2,1 ./ · · · ./ Tm−1,2 ./ Tm,pm ∪
· · · · · ·
T1,1 ./ T2,1 ./ · · · ./ Tm−1,pm−1

./ Tm,1 ∪
· · · · · ·
T1,1 ./ T2,1 ./ · · · ./ Tm−1,pm−1 ./ Tm,pm ∪
· · · · · ·
T1,1 ./ T2,p2

./ · · · ./ Tm−1,1 ./ Tm,1 ∪
· · · · · ·
T1,1 ./ T2,p2

./ · · · ./ Tm−1,pm−1
./ Tm,pm

∪
· · · · · ·
T1,p1 ./ T2,1 ./ · · · ./ Tm−1,p1 ./ Tm,1 ∪
· · · · · ·
T1,p1

./ T2,p2
./ · · · ./ Tm−1,pm−1

./ Tm,pm

= T1,1 ./ T2,1 ./ · · · ./ Tm−1,1 ./ F (m,m) ∪
· · · · · ·
T1,1 ./ T2,1 ./ · · · ./ Tm−1,pm−1

./ F (m,m) ∪
· · · · · ·
T1,1 ./ T2,p2 ./ · · · ./ Tm−1,1 ./ F (m,m) ∪
· · · · · ·
T1,1 ./ T2,p2

./ · · · ./ Tm−1,pm−1
./ F (m,m) ∪

· · · · · ·
T1,p1

./ T2,p2
./ · · · ./ Tm−1,pm−1

./ F (m,m)

= T1,1 ./ T2,1 ./ · · · ./ F (m− 1,m) ∪
· · · · · ·
T1,1 ./ T2,p2

./ · · · ./ F (m− 1,m) ∪
· · · · · ·
T1,p1

./ T2,p2
./ · · · ./ F (m− 1,m)

= [T1,1 ./ F (2,m)] ∪ · · · ∪ [T1,p1 ./ F (2,m)]

= F (1,m).

Table 2: Accumulation of Joiner

To prove the correctness of DMCS-STREAMING, we just need to show that the input to lsolve
is complete in the sense that if Step (e) of Algorithm 8 is exhaustively executed, the full join of
partial equilibria from the neighboring contexts is delivered.
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Formally, assume that the current context’s import neighborhood is {1, 2, . . . ,m}. Assume that
for neighbor Ci where 1 ≤ i ≤ m, the full partial equilibria are Ti and the returned packages of size
k are denoted by Ti,1, . . . , Ti,pi , that is, Ti = Ti,1 ∪ . . . ∪ Ti,pi . For the correctness of the algorithm,
we assume that Ti,1, . . . , Ti,pi is a fixed partition of Ti. This is possible when, for example, lsolve
always returns answers in a fixed order. We need to show that the accumulation of the join by
Algorithm 8 is actually T1 ./ . . . ./ Tm.

Indeed, each possible join T1,i1 ./ T2,i2 ./ . . . ./ Tm,im is considered by Joiner, which performs
a lexicographical traversal of all suitable combinations. Formally speaking, let F (p, q), where q <
q, denote the join result of neighbors from p to q, that is, F (p, q) = Tp ./ Tp+1 ./ . . . ./ Tq.
According to the lexicographical order, we have that the accumulation of Joiner is

⋃p1
j=1[T1,j ./

F (2,m)] = F (1,m) as demonstrated in Table 2.
This shows that the input to lsolve is complete. Hence, DMCS-STREAMING is correct. �

Appendix B. Detailed Run of OptimizeTree

Example 20 We illustrate now the call OptimizeTree(T = (B∪C, E), cp, cr) for the block set B =
{B1, B2, B3}, B1 = {1, 2, 3, 4}, B2 = {4, 5}, B3 = {3, 6}, C = {1, 3, 4}, E = {(B1, 1), (B2, 4),
(B3, 3)}, and cp = cr = 1.

From the local knowledge bases presented in Example 10, we have:

B1 = {car1, train1,nuts1} B4 = {car4, train4}
B2 = {car2, train2} B5 = {soon5, sooner5}
B3 = {car3, train3, salad3, peanuts3, coke3, juice3, urgent3} B6 = {fit6, sick6}

Since cp = cr, we start with B′ = {B1}. We have F = v = ∅.
Now we call OptimizeBlock(B1, 1). SinceB1 is acyclic, only the transitive reduction is applied.

We get B−1 = ({1, 2, 3, 4}, {(1, 2), (2, 3), (3, 4)}). The subroutine returns E = {(1, 3), (2, 4)}.
The child cut vertices of B1 are C′ = {3, 4}; we update F to {(1, 3), (2, 4)}.
Next, we update the label of all edges (i, j) inB−1 . But before this, let us enumerate the recursive

import interfaces, starting from the import interface, for every node from 1 to 6:

V(1) = {train2, train3, peanuts3} V(3) = {train4, sick6} V(4) = {sooner5}
V(2) = {car3, coke3, train3, car4, train4} V(5) = {train4} V(6) = ∅

V∗(1) = {train2, train3, peanuts3, car3, coke3, car4, train4, sooner5, sick6}
V∗(2) = {train3, car3, coke3, train4, car4, sooner5, sick6}
V∗(3) = {train4, sooner5, sick6}
V∗(4) = {train4, sooner5}
V∗(5) = {train4, sooner5}
V∗(6) = ∅

Now, let us compute V∗(1, 2)B1 = V∗(1) ∩
⋃

`∈B1|2 B`. We have that B1|2 = {3, 4}, thus

V∗(1, 2)B1 = V∗(1) ∩ (B3 ∪B4) = {train2, train3, peanuts3, car3, coke3, car4, train4}

Similarly, with B1|3 = B1|4 = {4}, we have:

V∗(2, 3) = V∗(2) ∩B3 = {car4, train4}
V∗(3, 4) = V∗(3) ∩B4 = {train4}
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The removed edges and updated labels to be stored respectively in F and v for block B1 can be
summarized as:

F = {(1, 3), (2, 4)}

v(1, 2) = V∗(1, 2) ∪ V∗(1)|B3 ∪ V∗(1)|B4 =

{
train2, train3, peanuts3,
car3, coke3, car4, train4

}
v(2, 3) = V∗(2, 3) ∪ V∗(1)|B3 ∪ V∗(1)|B4 = {train3, peanuts3, car3, coke3, car4, train4}
v(3, 4) = V∗(3, 4) ∪ V∗(1)|B3 ∪ V∗(1)|B4 = {train3, peanuts3, car3, coke3, car4, train4}

Next, we call OptimizeTree(T \B1, 3, 1) and OptimizeTree(T \B1, 4, 1), which eventually process
blocks B2 and B3 in the same manner as above. The two calls respectively return:

F ′ = {(5, 4)} F ′′ = ∅
v′(4, 5) = {sooner5} v′′(3, 6) = {train4, sick6}

Combining all results together, OptimizeTree(T, 1, 1) returns as the set of removed edges

F = {(1, 2), (3, 4), (5, 4)}

and as updated labels v for the remaining edges in the blocks

v(1, 2) = {train2, train3, peanuts3, car3, coke3, car4, train4}
v(2, 3) = {train3, peanuts3, car3, coke3, car4, train4}
v(3, 4) = {train3, peanuts3, car3, coke3, car4, train4}
v(4, 5) = {sooner5}
v(3, 6) = {train4, sick6}
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