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Abstract

A pointwise competitive classifier from class F is required to classify identically to the
best classifier in hindsight from F . For noisy, agnostic settings we present a strategy for
learning pointwise-competitive classifiers from a finite training sample provided that the
classifier can abstain from prediction at a certain region of its choice. For some interest-
ing hypothesis classes and families of distributions, the measure of this rejected region is

shown to be diminishing at rate β1 · O
(

(polylog(m) · log(1/δ)/m)
β2/2

)

, with high proba-

bility, where m is the sample size, δ is the standard confidence parameter, and β1, β2 are
smoothness parameters of a Bernstein type condition of the associated excess loss class
(related to F and the 0/1 loss). Exact implementation of the proposed learning strategy
is dependent on an ERM oracle that is hard to compute in the agnostic case. We thus
consider a heuristic approximation procedure that is based on SVMs, and show empirically
that this algorithm consistently outperforms a traditional rejection mechanism based on
distance from decision boundary.

1. Introduction

Given a labeled training set and a class of models F , is it possible to select from F , based
on a finite training sample, a model whose predictions are always identical to best model
in hindsight? While classical results from statistical learning theory surely preclude such a
possibility within the standard model, when changing the rules of the game it is possible.
Indeed, consider a game where our classifier is allowed to abstain from prediction without
penalty in some region of its choice (a.k.a classification with a reject option). For this game,
and assuming a noise free “realizable” setting, it was shown by El-Yaniv and Wiener (2010)
that one can train a “perfect classifier” that never errs whenever it is willing to predict.
While always abstaining will render such perfect classification vacuous, it was shown that
for a quite broad set of problems (each specified by an underlying distribution family and
a hypothesis class), perfect realizable classification is achievable with a rejection rate that
diminishes quickly to zero with the training sample size.

In general, perfect classification cannot be achieved in a noisy setting. In this paper, our
objective is to achieve pointwise competitiveness, a property ensuring that the prediction at
every non-rejected test point is identical to the prediction of the best predictor in hindsight
from the same class. Here we consider pointwise-competitive selective classification and
generalize the results of El-Yaniv and Wiener (2010) to the agnostic case. In particular,
we show that pointwise-competitive classification is achievable with high probability by a
learning strategy called low error selective strategy (LESS). Given a training sample Sm
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and a hypothesis class F , LESS outputs a pointwise-competitive selective classifier (f, g),
where f(x) is a standard classifier, and g(x) is a selection function that qualifies some of
the predictions as “don’t knows” (see definitions in Section 2). The classifier f is simply
taken to be the empirical risk minimizer (ERM) classifier, f̂ . Pointwise competitiveness is
achieved through g as follows. Using standard concentration inequalities, we show that the
true risk minimizer, f∗, achieves empirical error that is close that of f̂ . Thus, with high
probability f∗ belongs to the class of low empirical error hypotheses. Now all that is left
to do is set g(x) such that it allows the prediction of the label of x, as f̂(x), if and only
if all the hypotheses in this low error class unanimously agree on the label of x. In the
simpler, realizable setting (El-Yaniv & Wiener, 2010), this low error class simply reduces
to the version space.

The bulk of our analysis (in Sections 3, 4 and 5) concerns coverage bounds for LESS,
namely, showing that the measure of the region where the classifier (f, g) refuses to classify,
diminishes quickly, with high probability, as the training sample size grows (see Section 2
for a formal definition). We provide several general and distribution-dependent coverage
bounds. In particular, we show (in Corollaries 12 and 14, respectively) high probability
bounds for the coverage Φ(f, g) of the classifier (f, g, ) of the form,

Φ(f, g) ≥ 1− β1 ·O
(

(polylog(m) · log(1/δ)/m)β2/2
)

,

for linear models under (unknown) distribution P (X,Y ), where X are feature space points
and Y are labels, whose marginal P (X) is any finite mixture of Gaussians, and for axis
aligned rectangles under P (X,Y ) whose marginal P (X) is a product distribution, where
β1, β2 are Bernstein class smoothness parameters depending on the hypothesis class and the
underlying distribution (and the loss function, 0/1 in our case).

At the outset, efficient implementation of LESS seems to be out of reach as we are
required to track the supremum of the empirical error over a possibly infinite hypothesis
subset, which in general might be intractable. To overcome this computational difficulty, we
propose a reduction of this problem to a problem of calculating (two) constrained ERMs.
For any given test point x, we calculate the ERM over the training sample Sm with a
constraint on the label of x (one positive label constraint and one negative). We show
that thresholding the difference in empirical error between these two constrained ERMs is
equivalent to tracking the supremum over the entire (infinite) hypothesis subset. Based
on this reduction we introduce in Section 6 a “disbelief principle” that motivates a heuris-
tic implementation of LESS, which relies on constrained SVMs, and mimics the optimal
behavior.

In Section 7 we present some numerical examples over medical classification problems
and examine the empirical performance of the new algorithm and compare its performance
with that of the widely used selective classification method for rejection, based on distance
from decision boundary.

2. Pointwise-Competitive Selective Classification: Preliminary
Definitions

Let X be some feature space, for example, d-dimensional vectors in R
d, and Y be some

output space. In standard classification, the goal is to learn a classifier f : X → Y, using
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a finite training sample of m labeled examples, Sm = {(xi, yi)}mi=1, assumed to be sampled
i.i.d. from some unknown underlying distribution P (X,Y ) over X × Y. The classifier is to
be selected from some hypothesis class F . Let ℓ : Y×Y → [0, 1] be a bounded loss function.

In selective classification (El-Yaniv & Wiener, 2010), the learning algorithm receives Sm

and is required to output a selective classifier, defined to be a pair (f, g), where f ∈ F is a
classifier, and g : X → {0, 1} is a selection function, serving as qualifier for f as follows. For
any x ∈ X , (f, g)(x) = f(x) iff g(x) = 1. Otherwise, the classifier outputs “I don’t know.”

The general performance of a selective predictor is characterized in terms of two quanti-
ties: coverage and risk. The coverage of (f, g) is Φ(f, g) , EP [g(x)] . The true risk of (f, g),
with respect to some loss function ℓ, is the average loss of f restricted to its region of activity
as qualified by g, and normalized by its coverage, R(f, g) , EP [ℓ(f(x), y) · g(x)] /Φ(f, g). It
is easy to verify that if g ≡ 1 (and therefore Φ(f, g) = 1), then R(f, g) reduces to the famil-
iar risk functional R(f) , EP [ℓ(f(x), y)]. For a classifier f , let R̂(f) , 1

m

∑m
i=1 ℓ(f(xi), yi),

the standard empirical error of f over the sample Sm. Let f̂ = argminf∈F R̂(f) be the
empirical risk minimizer (ERM), and let f∗ = argminf∈F R(f) be the true risk minimizer
with respect to unknown distribution P (X,Y ).1 Clearly, the true risk minimizer f∗ is un-
known. A selective classifier (f, g) is called pointwise-competitive if for any x ∈ X , for which
g(x) > 0, f(x) = f∗(x).

3. Low Error Selective Strategy (LESS)

For any hypothesis class F , hypothesis f ∈ F , distribution P , sample Sm, and real number
r > 0, define the true and empirical low-error sets,

V(f, r) ,
{

f ′ ∈ F : R(f ′) ≤ R(f) + r
}

(1)

and
V̂(f, r) ,

{

f ′ ∈ F : R̂(f ′) ≤ R̂(f) + r
}

. (2)

Throughout the paper we denote by σ(m, δ, d) the slack of a standard uniform deviation
bound, given in terms of the training sample size, m, the confidence parameter, δ, and the
VC-dimension, d, of the class F ,

σ(m, δ, d) , 2

√

2d
(

ln 2me
d

)

+ ln 2
δ

m
. (3)

The following theorem is a slight extension of the statement made by Bousquet, Boucheron,
and Lugosi (2004, p. 184).

Theorem 1 (Bousquet et al., 2004). Let ℓ be the 0/1 loss function and F , a hypothesis
class whose VC-dimension is d. For any 0 < δ < 1, with probability of at least 1 − δ over
the choice of Sm from Pm, any hypothesis f ∈ F satisfies

R(f) ≤ R̂(f) + σ(m, δ, d).

Similarly, R̂(f) ≤ R(f) + σ(m, δ, d) under the same conditions.

1 More formally, f∗ is a classifier such that R(f∗) = inff∈F R(f) and inff∈F P ((x, y) : f(x) 6= f∗(x)) = 0.
The existence of such a (measurable) f∗ is guaranteed under sufficient considerations (see Hanneke, 2012,
pp. 1511-2).
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Remark 2. The use of Theorem 1 and, in particular, VC bounds for classification problems
(0/1 loss) is not mandatory for developing the theory presented in this paper. Similar
theories can be developed using other types of bounds (e.g., Rademacher or compression
bounds) for other learning problems.

Let G ⊆ F . The disagreement set (Hanneke, 2007a; El-Yaniv & Wiener, 2010) w.r.t. G
is defined as

DIS(G) , {x ∈ X : ∃f1, f2 ∈ G s.t. f1(x) 6= f2(x)} . (4)

Let us now motivate the low-error selective strategy (LESS) whose pseudo-code appears
in Strategy 1. The strategy is define whenever the empirical risk minimizer (ERM) exists,
for example, in the case of the 0/1 loss. Using a standard uniform deviation bound, such as
the one in Theorem 1, one can show that the training error of the true risk minimizer, f∗,
cannot be “too far” from the training error of the empirical risk minimizer, f̂ . Therefore,

we can guarantee, with high probability, that the empirical low error class V̂
(

f̂ , r
)

(applied

with appropriately chosen r) includes the true risk minimizer f∗. The selection function
g is now constructed to accept a subset of the domain X , on which all hypotheses in the
empirical low-error set unanimously agree. Strategy 1 formulates this idea. We call it a
‘strategy’ rather then an ‘algorithm’ because it lacks implementation details. Indeed, it is
not clear at the outset if this strategy can be implemented.

Strategy 1 Agnostic low-error selective strategy (LESS)

Input: Sm,m, δ, d
Output: a pointwise-competitive selective classifier (h, g) w.p. 1− δ
1: Set f̂ = ERM(F , Sm), i.e., f̂ is any empirical risk minimizer from F w.r.t. Sm

2: Set G = V̂
(

f̂ , 2σ(m, δ/4, d)
)

(see Eq. (2) and (3))

3: Construct g such that g(x) = 1 ⇐⇒ x ∈ {X \DIS (G)}
4: f = f̂

We now begin the analysis of LESS. The following lemma establishes its pointwise com-
petitiveness. In Section 4 we develop general coverage bounds in terms of an undetermined
disagreement coefficient. Then, in Section 5 we present distribution-dependent bounds that
do not rely on the disagreement coefficient.

Lemma 3 (pointwise competitiveness). Let ℓ be the 0/1 loss function and F , a hypothesis
class whose VC-dimension is d. Let δ > 0 be given and let (f, g) be the selective classifier
chosen by LESS. Then, with probability of at least 1− δ/2, (f, g) is a pointwise competitive
selective classifier.

Proof. By Theorem 1, with probability of at least 1− δ/4,

R̂(f∗) ≤ R(f∗) + σ (m, δ/4, d) .

Clearly, since f∗ minimizes the true error, R(f∗) ≤ R(f̂). Applying again Theorem 1, we
know that with probability of at least 1− δ/4,

R(f̂) ≤ R̂(f̂) + σ (m, δ/4, d) .
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Using the union bound, it follows that with probability of at least 1− δ/2,

R̂(f∗) ≤ R̂(f̂) + 2σ (m, δ/4, d) .

Hence, with probability of at least 1− δ/2,

f∗ ∈ V̂
(

f̂ , 2σ (m, δ/4, d)
)

, G.

By definition, LESS constructs the selection function g(x) such that it equals one iff x ∈
X \DIS (G) . Thus, for any x ∈ X , for which g(x) = 1, all the hypotheses in G agree, and in
particular f∗ and f̂ agree. Therefore (f, g) is pointwise-competitive with high probability.

4. General Coverage Bounds for LESS in Terms of the Disagreement
Coefficient

We require the following definitions to facilitate the coverage analysis. For any f ∈ F and
r > 0, define the set B(f, r) of all hypotheses that reside in a ball of radius r around f ,

B(f, r) ,

{

f ′ ∈ F : Pr
X∼P

{

f ′(X) 6= f(X)
}

≤ r

}

.

For any G ⊆ F , and distribution P , we denote by ∆G the volume of the disagreement set
of G (see (4)), ∆G , Pr {DIS(G)}. Let r0 ≥ 0. The disagreement coefficient (Hanneke,
2009) of the hypothesis class F with respect to the target distribution P is

θ(r0) , θf∗(r0) = sup
r>r0

∆B(f∗, r)

r
. (5)

The disagreement coefficient will be utilized later on in our analysis. See also a discussion
on its characteristics after Corollary 7. The associated excess loss class of the class F and
the loss function ℓ (Massart, 2000; Mendelson, 2002; Bartlett, Mendelson, & Philips, 2004)
is defined as

XL(F , ℓ)(x, y) , {ℓ(f(x), y)− ℓ(f∗(x), y) : f ∈ F} .
Whenever F and ℓ are fixed we abbreviate XL = XL(F , ℓ)(x, y). XL is said to be a
(β1, β2)-Bernstein class with respect to P (where 0 < β2 ≤ 1 and β1 ≥ 1), if every h ∈ XL
satisfies

Eh2 ≤ β1(Eh)
β2 . (6)

Bernstein classes arise in many natural situations (see, e.g., Koltchinskii, 2006; Bartlett &
Mendelson, 2006; Bartlett & Wegkamp, 2008). For example, if the conditional probability
P (Y |X) is bounded away from 1/2, or it satisfies Tsybakov’s noise conditions2, then the
excess loss function is a Bernstein class (Bartlett & Mendelson, 2006; Tsybakov, 2004).3

2 If the data was generated from any unknown deterministic hypothesis with limited noise then P (Y |X) is
bounded away from 1/2.

3 Specifically, for the 0/1 loss, Assumption A in Proposition 1 in the work of Tsybakov (2004), is equivalent
to the Bernstein class condition of Equation (6) above with β2 = α

1+α
, where α is the Tsybakov noise

parameter.
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In the following sequence of lemmas and theorems we assume a binary hypothesis class F
with VC-dimension d, an underlying distribution P over X ×{±1}, and that ℓ is the 0/1 loss
function. Also, XL denotes the associated excess loss class. Our results can be extended to
loss functions other than 0/1 by similar techniques to those used by Beygelzimer, Dasgupta,
and Langford (2009).

In Figure 1 we schematically depict the hypothesis class F (the gray area), the target
hypothesis (filled black circle outside F), and the best hypothesis in the class f∗. The
distance of two points in the diagram relates to the distance between two hypothesis under
the marginal distribution P (X). Our first observation is that if the excess loss class is
(β1, β2)-Bernstein class, then the set of low true error (depicted in Figure 1 (a)) resides
within a larger ball centered around f∗ (see Figure 1 (b)).

Figure 1: The set of low true error (a) resides within a ball around f∗ (b).

Lemma 4. If XL is a (β1, β2)-Bernstein class with respect to P , then for any r > 0

V(f∗, r) ⊆ B
(

f∗, β1r
β2

)

.

Proof. If f ∈ V(f∗, r) then, by definition, E {I(f(X) 6= Y )} ≤ E {I(f∗(X) 6= Y )} + r. By
linearity of expectation we have,

E {I(f(X) 6= Y )− I(f∗(X) 6= Y )} ≤ r. (7)

Since XL is (β1, β2)-Bernstein,

E {I(f(X) 6= f∗(X))} = E {|I(f(X) 6= Y )− I(f∗(X) 6= Y )|}
= E

{

(ℓ(f(X), Y )− ℓ(f∗(X), Y ))2
}

, Eh2 ≤ β1(Eh)
β2

, β1 (E {I(f(X) 6= Y )− I(f∗(X) 6= Y )})β2 .

By (7), E {I(f(X) 6= f∗(X))} ≤ β1r
β2 . Therefore, by definition, f ∈ B

(

f∗, β1r
β2
)

.
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So far we have seen that the set of low true error resides within a ball around f∗. Now
we would like to prove that with high probability the set of low empirical error (depicted
in Figure 2 (a)) resides within the set of low true error (see Figure 2 (b)). We emphasize
that the distance between hypotheses in Figure 2 (a) is based on the empirical error, while
the distance in Figure 2 (b) is based on the true error.

Figure 2: The set of low empirical error (a) resides within the set of low true error (b).

Lemma 5. For any r > 0, and 0 < δ < 1, with probability of at least 1− δ,

V̂(f̂ , r) ⊆ V (f∗, 2σ (m, δ/2, d) + r) .

Proof. If f ∈ V̂(f̂ , r), then, by definition, R̂(f) ≤ R̂(f̂)+r. Since f̂ minimizes the empirical
error, we know that R̂(f̂) ≤ R̂(f∗). Using Theorem 1 twice, and applying the union bound,
we see that with probability of at least 1− δ,

R(f) ≤ R̂(f) + σ(m, δ/2, d) ∧ R̂(f∗) ≤ R(f∗) + σ(m, δ/2, d).

Therefore,

R(f) ≤ R(f∗) + 2σ (m, δ/2, d) + r,

and

f ∈ V (f∗, 2σ (m, δ/2, d) + r) .

We have shown that, with high probability, the set of low empirical error is a subset of
a certain ball around f∗. Therefore, the probability that at least two hypotheses in the set
of low empirical error will disagree with each other is bounded by the probability that at
least two hypotheses in that ball around f∗ will disagree with each other. Fortunately, the
latter is bounded by the disagreement coefficient as established in the following lemma.
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Lemma 6. For any r > 0 and 0 < δ < 1, with probability of at least 1− δ,

∆V̂(f̂ , r) ≤ β1 · (2σ (m, δ/2, d) + r)β2 · θ(r0),
where θ(r0) is the disagreement coefficient of F with respect to P , applied with r0 =
(2σ(m, δ/2, d))β2 (see (5)).

Proof. Applying Lemmas 5 and 4 we get that with probability of at least 1− δ,

V̂(f̂ , r) ⊆ B
(

f∗, β1 (2σ (m, δ/2, d) + r)β2

)

.

Therefore,

∆V̂(f̂ , r) ≤ ∆B
(

f∗, β1 (2σ (m, δ/2, d) + r)β2

)

.

By the definition of the disagreement coefficient (5), for any r′ > r0, ∆B(f∗, r′) ≤ θ(r0)r
′.

Recalling that β1 ≥ 1 and thus observing that r′ = β1 (2σ (m, δ/2, d) + r)β2 > (2σ (m, δ/2, d))β2 =
r0, the proof is complete.

We are now in a position to state our first coverage bound for the selective classifier
constructed by LESS. This bound is given in terms of the disagreement coefficient.

Corollary 7. Let F be a hypothesis class as in Theorem 1, and assume that XL is a
(β1, β2)-Bernstein class w.r.t. P . Let (f, g) be the selective classifier constructed by LESS.
Then, with probability of at least 1− δ, (f, g) is a pointwise competitive selective classifier
and

Φ(f, g) ≥ 1− β1 · (4σ (m, δ/4, d))β2 · θ(r0),
where θ(r0) is the disagreement coefficient of F with respect to P , and r0 = (2σ(m, δ/4, d))β2 .

Proof. By Lemma 3, with probability of at least 1−δ/2, (f, g) is pointwise-competitive. Set

G , V̂
(

f̂ , 2σ (m, δ/4, d)
)

. By construction, f = f̂ , and the selection function g(x) equals

one iff x ∈ X \DIS (G). Thus, by the definition of coverage, Φ(f, g) = E{g(X)} = 1−∆G.
Therefore, applications of Lemma 6 and the union bound imply that with probability of at
least 1− δ, (f, g) is pointwise-competitive and its coverage satisfies,

Φ(f, g) = E{g(X)} = 1−∆G ≥ 1− β1 · (4σ (m, δ/4, d))β2 · θ(r0),

Noting that θ(r) is monotone non-increasing with r, we know that the coverage bound
of Corollary 7 clearly applies with θ(0). The quantity θ(0) has been discussed in numer-
ous papers and has been shown to be finite in various settings including thresholds in R

under any distribution (θ(0) = 2) (Hanneke, 2009), linear separators through the origin
in R

d under uniform distribution on the sphere (θ(0) ≤
√
d) (Hanneke, 2009), and linear

separators in R
d under smooth data distribution bounded away from zero (θ(0) ≤ c(f∗)d,

where c(f∗) is an unknown constant that depends on the target hypothesis) (Friedman,
2009). For these cases, an application of Corollary 7 is sufficient to guarantee pointwise-
competitiveness with bounded coverage that converges to one. Unfortunately for many
hypothesis classes and distributions the disagreement coefficient θ(0) is infinite (Hanneke,
2009). Fortunately, if the disagreement coefficient θ(r) grows slowly with respect to 1/r (as
shown in Wang, 2011, under sufficient smoothness conditions), Corollary 7 is sufficient to
guarantee bounded coverage.
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5. More Distribution-Dependent Coverage Bounds for LESS

In this section we establish distribution-dependent coverage bounds for LESS. The starting
point of these bounds is the following corollary.

Corollary 8. Let F be a hypothesis class as in Theorem 1, and assume that F has dis-
agreement coefficient

θ(r0) = O (polylog (1/r0)) (8)

w.r.t. distribution P , and that XL is a (β1, β2)-Bernstein class w.r.t. the same distribution.
Let (f, g) be the selective classifier chosen by LESS. Then, with probability of at least 1− δ,
(f, g) is pointwise competitive and its coverage satisfies,

Φ(f, g) ≥ 1− β1 ·O
(

(

polylog(m)

m
· log 1

δ

)β2/2
)

.

Proof. Plugging in (8) in the coverage bound of Corollary 7 immediately yields the result.

Corollary 8 states fast coverage bounds for LESS in cases where the disagreement co-
efficient grows slowly with respect to 1/r0.

4 Recent results on disagreement-based active
learning and selective prediction (Wiener et al., 2014; Wiener, 2013) established tight rela-
tions between the disagreement coefficient and an empirical quantity called the version space
compression set size. This quantity has been analyzed by El-Yaniv and Wiener (2010) in
the context of realizable selective classification, and there are known distribution-dependent
bounds for it. Our plan for the rest of this section is to introduce the version space com-
pression set size, discuss its relation to the disagreement coefficient, and then show how to
apply those results in the agnostic setting.

While we are interested in solving the agnostic case, we will now consider for a moment
the realizable setting and utilize known results that will be used in our analysis. Specifically,
we now assume that ∃f∗ ∈ F with P(Y = f∗(x)|X = x) = 1 for all x ∈ X , where
(X,Y ) ∼ P . Given a training sample Sm, let VSF ,S be the induced version space, i.e., the
set of all hypotheses consistent with the given sample Sm. The version space compression
set size, denoted n̂(Sm) = n̂(F , Sm), is defined to be the size of the smallest subset of
Sm inducing the same version space (Hanneke, 2007b; El-Yaniv & Wiener, 2010). Being a
function of Sm, clearly n̂(Sm) is a random variable, and for any specific realization Sm its
value is unique.

For any m and δ ∈ (0, 1], define the version space compression set size minimal bound as

Bn̂(m, δ) , min {b ∈ N : P(n̂(Sm) ≤ b) ≥ 1− δ} . (9)

We rely on the following lemma (Wiener et al., 2014). For the sake of self-containment we
provide its proof in the appendix.

4 When the disagreement coefficient does not grow ploy-logarithmically with 1/r0 but is still o(1/r0), it is
still possible to prove a lower bound on the coverage. Specifically, if θ(r0) = O ((1/r0)

α) with α < 1, one
can show that Φ(f, g) ≥ 1−O(1/(

√
m)β2(1−α)).
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Lemma 9 (Wiener et al., 2014). In the realizable case, if Bn̂(m, δ) = O (polylog(m) log (1/δ)),

or Bn̂

(

m, 1
20

)

= O (polylog(m)), then θ(r0) = O
(

polylog
(

1
r0

))

.

Obviously, the statement of Lemma 9 only holds (and is well defined) within a realizable
setting (the version space compression set size is only defined for this setting). We now turn
back to the agnostic setting and consider an arbitrary underlying distribution P over X ×Y.

Recall that in the agnostic setting, we let f∗ : X → Y denote a (measurable) classifier
such that R(f∗) = inff∈F R(f) and inff∈F P ((x, y) : f(x) 6= f∗(x)) = 0, which is guaranteed
to exist under sufficient assumptions (see Hanneke, 2012, Section 6.1); We call f∗ an infimal
(best) hypothesis (of F , w.r.t. P ). Clearly there can be several different infimal hypotheses.
We note, however, that if XL is a (β1, β2)-Bernstein class with respect to P (as we assume
in this paper), then Lemma 4 ensures that all infimal hypotheses are identical up to measure
zero.

The definitions of version space and version space compression set size can be naturally
generalized to the agnostic setting with respect to an infimal hypothesis (Wiener et al.,
2014) as follows. Let f∗ be an infimal hypothesis of F w.r.t. P . The agnostic version space
of Sm is

VSF ,Sm,f∗ , {f ∈ F : ∀(x, y) ∈ Sm, f(x) = f∗(x)}.
The agnostic version space compression set size, denoted n̂(Sm) = n̂(F , Sm, f∗), is defined
to be the size of the smallest subset of Sm inducing the agnostic version space VSF ,Sm,f∗ .
Finally, extend also the definition of the version space compression set minimal bound to
the agnostic setting as follows.

Bn̂(m, δ, f∗) , min{b ∈ N : P(n̂(F , Sm, f∗) ≤ b) ≥ 1− δ}.

The key observation that allows for surprisingly easy utilization of Lemma 9 in the
agnostic setting is that the disagreement coefficient depends only on the hypothesis class
F and the marginal distribution P (X). Using an infimal hypothesis f∗ we can therefore
take any agnostic learning problem and consider its realizable “projection,” whereby points
are labeled by f∗ and it has the same marginal distribution P (X). These two problems
will have (essentially) the same disagreement coefficients. This idea was initially observed
by Hanneke (2013) and Wiener (2013). Here we formulate it as a slight variation of the
formulation in the work of Wiener, Hanneke, and El-Yaniv (2014).

We define the disagreement in the agnostic setting as in (5) with respect to an in-
fimal hypothesis f∗. For any agnostic learning problem (F , P ) we define its realizable
projection (F ′, P ′) as follows. Let F ′ , F ∪ {f∗} where f∗ is an infimal hypothesis of
the agnostic problem. Define P ′ to be a distribution with marginal P ′(X) = P (X), and
P(Y = f∗(x)|X = x) = 1 for all x ∈ X . It is easy to verify that (F ′, P ′) is a realizable
learning problem, i.e., ∃f∗ ∈ F ′ with PP ′(X,Y )(Y = f∗(x)|X = x) = 1 for all x ∈ X .

Lemma 10 (Realizable projection). Given any agnostic learning problem, (F , P ), let
(F ′, P ′) be its realizable projection. Let θ(r0) and θ′(r0) be the associated disagreement coef-
ficients of the agnostic and realizable projection problems, respectively. Then, θ(r0) ≤ θ′(r0).

Proof. First note that θ and θ′ depend, respectively, on P and P ′ only via f∗ and the
marginal distributions P (X) = P ′(X). Since F ⊆ F ∪ {f∗} = F ′, we readily get that
θ(r0) ≤ θ′(r0).
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Let us summarize the above derivation. Given an agnostic problem (F , P ), consider
its realizable projection (F ′, P ′). If Bn̂(m, δ) = O (polylog(m) log (1/δ)) (or Bn̂(m, 1/20) =
O (polylog(m))) for the realizable problem, then by Lemma 9, θ(r0) = O (polylog (1/r0)),
which, by Lemma 10, also holds in the original agnostic problem. Therefore, Corollary 7
applies and we obtain a fast coverage bound for LESS w.r.t. (F , P ).

New agnostic coverage bounds for LESS are obtained using the following known bounds
for the (realizable) version space compression set size. The first one, by El-Yaniv and Wiener
(2010), applies to the problem of learning linear separators under a mixture of Gaussian
distributions. The following theorem is a direct application of Lemma 32 in the work of
El-Yaniv and Wiener (2010).

Theorem 11 (El-Yaniv & Wiener, 2010). For any d, n ∈ N, let X ⊆ R
d, F be the space of

linear separators on R
d, and P be any distribution with marginal over R

d that is a mixture
of n multivariate normal distributions. Then, there is a constant cd,n > 0 (depending on
d, n, but otherwise independent of P ) such that ∀m ≥ 2,

Bn̂(m, 1/20) ≤ cd,n(log(m))d−1.

Applying Theorem 11, together with Lemma 10, Lemma 9 and Corollary 8, immediately
yields the following result.

Corollary 12. Assume the conditions of Theorem 11. Assume also that XL is a (β1, β2)-
Bernstein class w.r.t. P (X,Y ). Let (f, g) be the selective classifier constructed by LESS.
Then, with probability of at least 1− δ, (f, g) is a pointwise competitive selective classifier
and

Φ(f, g) ≥ 1− β1 ·O
(

(polylog(m) · log(1/δ)/m)β2/2
)

.

The second version space compression set size bound concerns realizable learning of
axis-aligned rectangles under product densities over Rn. Such bounds have been previously
proposed by Wiener, Hanneke, and El-Yaniv (2014) and El-Yaniv and Wiener (2010, 2012).
We now state (without proof) a recent bound (Wiener, Hanneke, & El-Yaniv, 2014) giving
version space compression set size bound for this learning problem (whose positive class is
bounded away from zero).

Theorem 13 (Wiener et al., 2014). For d,m ∈ N and λ, δ ∈ (0, 1), let X ⊆ R
d. For any P

with marginal distribution over R
d that is a product of densities over R

d with marginals
having continuous CDFs, and for F the space of axis-aligned rectangles f on R

d with
P ((x, y) : f(x) = 1) ≥ λ,

Bn̂(m, δ) ≤ 8d

λ
ln

(

8d

δ

)

.

Here again, an application of Theorem 13, together with Lemma 10, Lemma 9 and Corol-
lary 8 yields the following corollary.

Corollary 14. For d,m ∈ N and λ, δ ∈ (0, 1), let X ⊆ R
d. Let P (X,Y ) be an underlying

distribution with marginal P (X) that is a product of densities over Rd with marginals having
continuous CDFs. Let F the space of axis-aligned rectangles f on R

d with P ((x, y) : f(x) =
1) ≥ λ, Assume that XL is a (β1, β2)-Bernstein class w.r.t. P (X,Y ). Let (f, g) be the
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selective classifier constructed by LESS. Then, with probability of at least 1 − δ, (f, g) is a
pointwise competitive selective classifier and

Φ(f, g) ≥ 1− β1 ·O
(

(polylog(m) · log(1/δ)/m)β2/2
)

.

6. ERM Oracles and the Disbelief principle

At the outset, efficient construction of the selection function g prescribed by LESS seems
to be out of reach as we are required to verify, for each point x in question, whether all
hypotheses in the low error class agree on its label. Moreover, g should be computed for the
entire domain. Luckily, it is possible to compute g in a “lazy” manner and we now show
how to compute g(x) by calculating (two) constrained ERMs. For any given test point x,
we calculate the ERM over the training sample Sm with a constraint on the label of x (one
positive label constraint and one negative). We show that thresholding the difference in
empirical error between these two constrained ERMs is equivalent to tracking the supremum
over the entire (infinite) hypothesis subset. The following lemma establishes this reduction.

Lemma 15. Let (f, g) be a selective classifier chosen by LESS after observing the training
sample Sm. Let f̂ be an empirical risk minimizer over Sm. Let x be any point in X and
define

f̃x , argmin
f∈F

{

R̂(f) | f(x) = −sign
(

f̂(x)
)}

,

i.e., an empirical risk minimizer forced to label x the opposite from f̂(x). Then

g(x) = 0 ⇐⇒ R̂(f̃x)− R̂(f̂) ≤ 2σ (m, δ/4, d) . (10)

Proof. First note that according to the definition of V̂ (see Eq (2)),

R̂(f̃x)− R̂(f̂) ≤ 2σ (m, δ/4, d) ⇐⇒ f̃x ∈ V̂
(

f̂ , 2σ (m, δ/4, d)
)

. (11)

To prove the first direction (⇐=) of (10), assume that the RHS of (10) holds. By (11), we
get that both f̂ , f̃x ∈ V̂. However, by construction, f̂(x) = −f̃x(x), so x ∈ DIS(V̂) and
g(x) = 0.

To prove the other direction (=⇒), assume that R̂(f̃x) − R̂(f̂) > 2σ (m, δ/4, d). Under
this assumption, we will prove that for any f ′ ∈ V̂, f ′(x) = f̂(x), and therefore, x ∈
X \ DIS(V̂), entailing that g(x) = 1. Indeed, assume by contradiction that there exists
f ′ ∈ V̂ such that f ′(x) = f̃x(x) 6= f̂(x). By construction, it holds that

R̂(f ′) ≥ R̂(f̃x) > R̂(f̂) + 2σ (m, δ/4, d) ,

so f ′ 6∈ V̂ . Contradiction.

Lemma 15 tells us that in order to decide if point x should be rejected we need to measure
the empirical error R̂(f̃x) of a special empirical risk minimizer, f̃x, which is constrained to
label x the opposite from ĥ(x). If this error is sufficiently close to R̂(ĥ), our classifier cannot
be too sure about the label of x and we must reject it. Thus, provided we can compute
these ERMs, we can decide whether to predict or reject any individual test point x ∈ X ,
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without actually constructing g for the entire domain X . Figure 3 illustrates this principle
for a 2-dimensional example. The hypothesis class is the class of linear classifiers in R

2

and the source distribution is two normal distributions. Negative samples are represented
by blue circles and positive samples by red squares. As usual, f̂ denotes the empirical

Figure 3: Constrained ERM.

risk minimizer. Let us assume that we want to classify point x1. This point is classified
positive by f̂ . Therefore, we force this point to be negative and calculate the restricted
ERM (depicted by doted line marked f̃x1). The difference between the empirical risk of f̂
and f̃x1 is not large enough, so point x1 will be rejected. However, if we want to classify
point x2, the difference between the empirical risk of f̂ and f̃x2 is quite large and the point
will be classified as positive.

Equation (11) motivates the following definition of a “disbelief index” DF (x, Sm) for
each individual point in X . Specifically, for any x ∈ X , define its disbelief index w.r.t. Sm

and F ,

D(x) , DF (x, Sm) , R̂(f̃x)− R̂(f̂).

Observe that D(x) is large whenever our model is sensitive to the label of x in the sense
that when we are forced to bend our best model to fit the opposite label of x, our model
substantially deteriorates, giving rise to a large disbelief index. This large D(x) can be
interpreted as our disbelief in the possibility that x can be labeled so differently. In this
case we should definitely predict the label of x using our unforced model. Conversely, if
D(x) is small, our model is indifferent to the label of x and in this sense, is not committed
to its label. In this case we should abstain from prediction at x. Notice that LESS is a
specific application of thresholded disbelief index.

We note that a similar technique of using an ERM oracle that can enforce an arbitrary
number of example-based constraints was used by Dasgupta, Hsu, and Monteleoni (2007a)
and Beygelzimer, Hsu, Langford, and Zhang (2010), in the context of active learning. As
in our disbelief index, the difference between the empirical risk (or importance weighted
empirical risk, see Beygelzimer et al., 2010) of two ERM oracles (with different constraints)
is used to estimate prediction confidence.
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Figure 4: RC curve of our technique (depicted in red) compared to rejection based on
distance from decision boundary (depicted in dashed green line). The RC curve
in right figure zooms into the lower coverage regions of the left curve.

In practical applications of selective prediction it is desirable to allow for some control
over the trade-off between risk and coverage; in other words, it is desirable to be able to
develop the entire risk-coverage (RC) curve for the classifier at hand (see, e.g., El-Yaniv &
Wiener, 2010) and let the user choose the cutoff point along this curve in accordance with
other practical considerations and constraints. The disbelief index facilitates an exploration
of the risk-coverage trade-off curve for our classifier as follows. Given a pool of test points we
can rank these test points according to their disbelief index, and points with low index should
be rejected first. Thus, this ranking provides the means for constructing a risk-coverage
trade-off curve. Ignoring for the moment implementation details (which are discussed in
Section 7), a typical RC curve generated by LESS is depicted in Figure 4 (red curve)5. The
dashed green RC curve was computed using the traditional distance-based techniques for
rejection (see discussion of this common technique in Section 8) The right graph is a zoom
in section of the entire RC curve (depicted on the left graph). The dashed horizontal line is
the test error of f∗ on the entire domain and the dotted line is the Bayes error. While for
high coverage values the two techniques are statistically indistinguishable, for any coverage
less than 60% we get a significant advantage for LESS. It is clear that in this case not only
the estimation error was reduced, but also the test error goes significantly below the optimal
test error of f∗ for low coverage values.

Interestingly, the disbelief index generates rejection regions that are fundamentally dif-
ferent than those obtained by the traditional distance-based techniques for rejection (see
Section 8). To illustrate this point (and still ignoring implementation details), consider
Figure 5 where we depict the rejection regions for a training sample of 150 points sampled
from a mixture of two identical normal distributions (centered at different locations). The
height map in this figure, which correspond to disbelief index magnitude (a), and distance
from decision boundary (b), reflect the “confidence regions” of each technique according to
its own confidence measure.

5 The learning problem is the same synthetic problem used for generating Figure 6.
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(a) (b)

Figure 5: Linear classifier. Confidence height map using (a) disbelief index; (b) distance
from decision boundary.

Figure 6: SVM with polynomial kernel. Confidence height map using (a) disbelief index;
(b) distance from decision boundary.

To intuitively explain the height map of Figure 5(a), recall that the disbelief index is
the difference between the empirical error of the ERM and the restricted ERM. If a test
point resides in a high density region, we expect that forcing the wrong label for that point
will result in a large increase of the training error. As a result, the denser the area is, the
larger the disbelief index, and therefore, the higher the classification confidence.

The second synthetic 2D source distribution we consider is even more striking. Here X
is distributed uniformly over [0, 3π] × [−2, 2] and the labels are sampled according to the
following conditional distribution

P (Y = 1|X = (x1, x2)) ,

{

0.95, x2 ≥ sin(x1);
0.05, else.

The thick red line depicts the decision boundary of the Bayes classifier. The hight maps
in Figure 6 depict the rejection regions obtained by (our approximation of) LESS and by
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the traditional (distance from decision boundary) technique for a training sample of 50
points sampled from this distribution (averaged over 100 iterations). Here the hypothesis
class used for training was SVM with a polynomial kernel of degree 5. The qualitative
difference between these two techniques, and in particular, the nice fit of the disbelief
principle technique compared to SVM is quite surprising.

Figure 7: RC curves for SVM with linear kernel. Our method in solid red, and rejection
based on distance from decision boundary in dashed green. Horizontal axis (c)
represents coverage.

7. Heuristic Procedure Using SVM and its Empirical Performance

The computation of a (constrained) ERM oracle can be efficiently achieved in the case of
realizable learning with linear models (see, e.g., El-Yaniv & Wiener, 2010) and in the case
of linear regression (Wiener & El Yaniv, 2012). However, in a noisy setting the computation
of the linear ERM oracle can be reduced to a variant of the MAX FLS and C MAX FLS
problems (with strict and non-strict inequalities) (Amaldi & Kann, 1995). Unfortunately,
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MAX FLS is APX-complete (within a factor 2). C MAX FLS is MAX IND SET-hard, and
cannot be approximated efficiently at all. Moreover, there are extensions of these results
to other classes, including axis-aligned hyper-rectangles, showing that approximating ERM
for these classes is NP-hard (Ben-David et al., 2003).

While at present it is not known if these hardness results (and other related lower
bounds) hold for half spaces under nice distributions such as Gaussian (mixtures), we note
that Tauman Kalai et al. (2008) studied the problem of agnostically learning halfspaces
under distributional assumptions. In particular, they showed that if the data distribution is
uniform over the d-dimensional unit sphere (or hyper-cube, and other related distributions),
then it is possible to agnostically learn ǫ-accurate halfspaces in time poly(d1/ǫ

4
). However,

it is known that these particular distributions do not elicit effective pointwise competitive
learning. On the contrary, the uniform distribution over the unit sphere is among the
worst possible distributions for pointwise-competitive classification (and disagreement-based
active learning) unless one utilizes homogeneous halfspaces (see discussion in, e.g., El-Yaniv
& Wiener, 2010).

Figure 8: SVM with linear kernel. The maximum coverage for a distance-based rejection
technique that allows the same error rate as our method with a specific coverage.
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Having discussed these computational hurdles, we should recall that much of applied
machine learning research and many of its applications are doing quite well with heuristic
approximations (rather than formal ones). When practical performance is the objective,
clever heuristics and tricks can sometimes make the difference. At this point in the paper
we therefore switch from theory to practice, aiming at implementing a rejection method
inspired by the disbelief principle and see how well they work on real world problems.

We “approximate” the ERM as follows. Using support vector machines (SVMs) we use
a high C value (105 in our experiments) to penalize more on training errors than on small
margin (see definitions of the SVM parameters in, e.g. Chang & Lin, 2011). In this way the
solution to the optimization problem tend to get closer to the ERM. In order to estimate
R̂(f̃x) we have to restrict the SVM optimizer to only consider hypotheses that classify the
point x in a specific way. To accomplish this we use a weighted SVM for unbalanced data.
We add the point x as another training point with weight 10 times larger than the weight
of all training points combined. Thus, the penalty for misclassification of x is very large
and the optimizer finds a solution that doesn’t violate the constraint.

Another problem we face is that the disbelief index is a noisy statistic that highly
depends on the sample Sm. To overcome this noise we use robust statistics. First we
generate an odd number k of different samples (S1

m, S2
m, . . . Sk

m) using bootstrap sampling
(we used k = 11). For each sample we calculate the disbelief index for all test points and for
each point take the median of these measurements as the final index. We also note that for
any finite training sample the disbelief index is a discrete variable. It is often the case that
several test points share the same disbelief index. In those cases we can use any confidence
measure as a tie breaker. In our experiments we use distance from decision boundary to
break ties. Focusing on SVMs with a linear kernel we compared the RC (Risk-Coverage)
curves achieved by the proposed method with those achieved by SVM with rejection based
on distance from decision boundary. This latter approach is very common in practical
applications of selective classification. For implementation we used LIBSVM (Chang &
Lin, 2011).

We tested our algorithm on standard medical diagnosis problems from the UCI reposi-
tory, including all datasets used by Grandvalet, Rakotomamonjy, Keshet, and Canu (2008).
We transformed nominal features to numerical ones in a standard way using binary in-
dicator attributes. We also normalized each attribute independently so that its dynamic
range is [0, 1]. No other preprocessing was employed. In each iteration we choose uniformly
at random non-overlapping training set (100 samples) and test set (200 samples) for each
dataset.6 The SVM was trained on the entire training set, and test samples were sorted
according to confidence (either using distance from decision boundary or disbelief index).

Figure 7 depicts the RC curves of our technique (red solid line) and rejection based on
distance from decision boundary (green dashed line) for linear kernel on all 6 datasets. All
results are averaged over 500 iterations (error bars show standard error). With the exception
of the Hepatitis dataset, in which both methods were statistically indistinguishable, in
all other datasets the proposed method exhibits significant advantage over the traditional
approach. We would like to highlight the performance of the proposed method on the
Pima dataset. While the traditional approach cannot achieve error less than 8% for any

6 Due to the size of the Hepatitis dataset the test set was limited to 29 samples.
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Figure 9: RC curves for SVM with RBF kernel. Our method in solid red and rejection
based on distance from decision boundary in dashed green.

rejection rate, in our approach the test error decreases monotonically to zero with rejection
rate. Furthermore, a clear advantage for our method over a large range of rejection rates is
evident in the Haberman dataset.7.

For the sake of fairness, we note that the running time of our algorithm (as presented
here) is substantially longer than the traditional technique. The performance of our algo-
rithm can be substantially improved when many unlabeled samples are available. In this
case the rejection function can be evaluated on the unlabeled samples to generate a new
“labeled” sample. Then a new rejection classifier can be trained on this sample.

Figure 8 depicts the maximum coverage for a distance-based rejection technique that
allows the same error rate as our method with a specific coverage. For example, let us
assume that our method can have an error rate of 10% with coverage of 60% and the

7 The Haberman dataset contains survival data of patients who had undergone surgery for breast cancer.
With estimated 207,090 new cases of breast cancer in the united states during 2010 (Society, 2010) an
improvement of 1% affects the lives of more than 2000 women.
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Figure 10: SVM with RBF kernel. The maximum coverage for a distance-based rejection
technique that allows the same error rate as our method with a specific coverage.

distance-based rejection technique achieves the same error with maximum coverage of 40%.
Then the point (0.6, 0.4) will be on the red line. Thus, if the red line is bellow the diagonal
then our technique has an advantage over distance-based rejection and visa versa. As an
example, consider the Haberman dataset, and observe that regardless of the rejection rate,
distance-based technique cannot achieve the same error as our technique with coverage
lower than 80%.

Figures 9 and 10 depict the results obtained with RBF kernel. In this case a statistically
significant advantage for our technique was observed for all datasets.

8. Related Work

Pointwise-competitive classification is a unique and extreme instance of classification with
an abstention option, an idea which emerged from the pattern recognition community, was
first proposed and studied 50 years ago by Chow (1957, 1970), and generated lots of interest
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(Fumera et al., 2001; Tortorella, 2001; Santos-Pereira & Pires, 2005; Fumera & Roli, 2002;
Pietraszek, 2005; Bounsiar et al., 2006; Landgrebe et al., 2006; Herbei & Wegkamp, 2006;
Hellman, 1970; El-Yaniv & Pidan, 2011; Bartlett & Wegkamp, 2008; Wegkap, 2007; Freund
et al., 2004). Taking a broader perspective, pointwise-competitive selective prediction (and
in particular, classification) is a particular instance of the broader concept of confidence-
rated learning, whereby the learner must formally quantify confidence in its prediction.
Achieving effective confidence-rated prediction (including abstention) is a longstanding and
challenging goal in a number of disciplines and research communities. Let us first discuss
some of the most prominent approaches to confidence-rated prediction and note how they
related to the present work.

In the ‘knows-what-it-knows’ (KWIK) framework studied in reinforcement-learning (Li,
Littman, & Walsh, 2008; Strehl & Littman, 2007; Li & Littman, 2010) a similar notion
to pointwise competitiveness is studied, and coverage rates are analyzed (Li et al., 2008;
Li, 2009). However, KWIK was limited to the realizable model and is concerned with an
adversarial setting where both the target hypothesis and the training data are selected by
an adversary. While all positive results for the KWIK adversarial setting apply to the
statistical pointwise-competitive prediction setting (where training examples are sampled
i.i.d.), this adversarial setting precludes non trivial coverage for all the interesting hypothesis
classes currently addressed by pointwise-competitive prediction. This deficiency comes as no
surprise because the KWIK adversarial setting is much more challenging than the statistical
pointwise-competitive prediction assumptions.

The conformal prediction framework (Vovk, Gammerman, & Shafer, 2005) provides
hedged predictions by allowing the possibility of multi-labeled predictions and guarantees
a user-desired confidence rate in an asymptotic sense. Conformal prediction is mainly con-
cerned with an online probabilistic setting. Rather than predicting a single label for each
sample point, a conformal predictor can assign multiple labels. Any user-defined confi-
dence level ǫ for the error rate can be asymptotically guaranteed. When interpreting these
multi-labeled predictions as rejection, we can compare it to pointwise-competitive predic-
tion. In this sense, conformal prediction can construct online predictors with a reject option
that have asymptotic performance guarantees. A few important differences between con-
formal predictions and pointwise-competitive prediction can be pointed out. While both
approaches provide “hedged” predictions, they use different notions of hedging. Whereas
in pointwise-competitive prediction the goal is to guarantee that with high probability over
the training sample our predictor agrees with the best predictor in the same class over all
points in the accepted domain, the goal in conformal predictions is to provide guarantees
for the average error rate, where the average is taken over all possible samples and test
points.8 In this sense, conformal prediction cannot achieve pointwise competitiveness. In
addition, conformal prediction also utilizes a different notion of error than the one used in
the pointwise-competitive model. While pointwise-competitive prediction is focused on per-
formance guarantees for the error rate only on the covered (accepted) examples, conformal
prediction provides a guarantee for all examples (including those that have multiple predic-
tions or none at all). By increasing the multi-labeled prediction rate (uncertain prediction),

8 As noted by Vovk et al.: “It is impossible to achieve the conditional probability of error equal to ǫ given the
observed examples, but it is the unconditional probability of error that equals ǫ. Therefore, it implicitly
involves averaging over different data sequences...” (Vovk et al., 2005, p. 295).
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the error rate can be decreased to any arbitrarily small value. This is not the case with the
pointwise-competitive prediction error notion on the covered examples, which is bounded
below by the Bayes error on the covered region. Finally, conformal prediction mentions
a notion of efficiency, which is similar to coverage but, to the best of our knowledge, no
finite sample results have been established. Another interesting scheme in the vicinity of
confidence-rated learning is the the guaranteed error machine (GEM) (Campi, 2010). In
the GEM model the reject option is considered as a correct answer, which means that risk
can be reduced arbitrarily (as in conformal prediction).

Pointwise-competitive classification is a special case of pointwise-competitive prediction
(El-Yaniv & Wiener, 2010, 2011; Wiener & El Yaniv, 2012; El-Yaniv & Wiener, 2012;
Wiener, 2013; Wiener et al., 2014). Pointwise-competitive selective classification was first
addressed by El-Yaniv and Wiener (2010) where the realizable case was studied (in that
paper pointwise-competitiveness was termed “perfect classification”). The present article
extends pointwise-competitive classification to noisy problems

There are also a number of theoretical studies of (general) selective classification (not
pointwise-competitive). Freund et al. (2004) studied a simple ensemble method for binary
classification. Given a hypothesis class F , the method outputs a weighted average of all
the hypotheses in F , where the weight of each hypothesis exponentially depends on its
individual training error. Their algorithm abstains from prediction whenever the weighted
average of all individual predictions is close to zero. They were able to bound the probability
of misclassification by 2R(f∗) + ǫ(m) and, under some conditions, they proved a bound of
5R(f∗) + ǫ(F ,m) on the rejection rate. The LESS strategy can be viewed as an extreme
variation of the Freund et al. method. We include in our “ensemble” only hypotheses with
sufficiently low empirical error and we abstain if the weighted average of all predictions is
not definitive ( 6= ±1). Our risk and coverage bounds are asymptotically tighter.

Excess risk bounds were developed by Herbei and Wegkamp (2006) for a model where
each rejection incurs a cost in [0, 1/2]. Their bound applies to any empirical risk minimizer
over a hypothesis class of ternary hypotheses (whose output is in {±1, reject}). See also
various extensions by Wegkap (2007) and Bartlett and Wegkamp (2008).

A rejection mechanism for SVMs based on distance from decision boundary is perhaps
the most widely known and used rejection technique. It is routinely used in medical appli-
cations (Mukherjee et al., 1998; Guyon et al., 2002; Mukherjee, 2003). Few papers proposed
alternative techniques for rejection in the case of SVMs. Those include taking the reject
area into account during optimization (Fumera & Roli, 2002), training two SVM classifiers
with asymmetric cost (Sousa, Mora, & Cardoso, 2009), and using a hinge loss (Bartlett &
Wegkamp, 2008). Grandvalet et al. (2008) proposed an efficient implementation of SVM
with a reject option using a double hinge loss. They empirically compared their results
with two other selective classifiers: the one proposed by Bartlett and Wegkamp (2008) and
the traditional rejection based on distance from decision boundary. In their experiments
there was no statistically significant advantage to either method compared to the traditional
approach for high rejection rates.

Pointwise selective classification is strongly tied to disagreement-based active learning.
For the realizable case, El-Yaniv and Wiener (2012) presented a reduction of stream-based
active learning with the CAL algorithm of Cohn et al. (1994) to pointwise-competitive
classification. This reduction roughly states that if the rejection rate (the reciprocal of
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coverage) of LESS is O(polylog(m/δ)/m) then the problem (F , P ) is actively learnable
by CAL with exponential speedup. A consequence of this reduction resulted in the first
exponential speedup bounds for CAL with general linear models under any finite mixture
of Gaussians. The other direction, showing that exponential speedup for CAL implies the
above rejection rate for LESS (in the realizable setting) was recently established by Wiener
(2013) and by Wiener, Hanneke, and El-Yaniv (2014) (using two different techniques).

The version space compression set size, which is extensively utilized in the present
work, has been introduced implicitly by Hanneke (2007b) as a special case of the extended
teaching dimension, and in that context, the version space compression set is called the
minimal specifying set. It was introduced explicitly by El-Yaniv and Wiener (2010) in the
context of selective classification, and was proved by El-Yaniv and Wiener (2012) to be a
special case of the extended teaching dimension of Hanneke (2007b). Relations between
the disagreement coefficient and the version space compression set size were first discussed
El-Yaniv and Wiener (2012). Sharp ties between these two quantities, such as those stated
in Lemma 9, and others were very recently developed by Wiener, Hanneke, and El-Yaniv
(2014).

9. Concluding Remarks

We find the existence of pointwise-competitive classification quite fascinating. The striking
feature of such a classifier is that, by definition, a pointwise-competitive predictor is free
of estimation error and cannot overfit. This means that our hypothesis class can be as
expressive as we like and still we will be protected from overfitting. However, without
effective coverage bounds our pointwise-competitive classifier may refuse to predict at all
times.

The current paper, and recent studies on both selective prediction (El-Yaniv & Wiener,
2015) and active learning (Wiener, Hanneke, & El-Yaniv, 2014), place the version space
compression set size at the center of stage, as a leading quantity that can drive results and
intuition in both domains. At present, this is the only known technique able to prove fast
coverage for pointwise-competitive classification and exponential label complexity speedup
for disagreement-based active learning for both general linear models under a fixed mixture
of Gaussians and axis aligned rectangles under product distributions.. Is it possible to
extend these results beyond linear classifiers and axis aligned rectangles under interesting
distribution families? For example, it is plausible that existing results for axis-aligned
rectangles can be extended to decision trees.

The formal relationship between active learning and pointwise-competitive classification
(El-Yaniv & Wiener, 2012; Wiener, 2013; Wiener et al., 2014) created a powerful synergy
that allows for migrating results between these two models. Currently, this formal connec-
tion is manifested via two links. The first, within a realizable setting, is the equivalence
of LESS-based classification with fast coverage to CAL-based active learning with expo-
nential speedup. The second link consists of bounds that relate the underlying complexity
measures: the disagreement coefficient in active learning, and version space compression
set size in pointwise-competitive classification. A number of other non-established rela-
tions that can significantly substantiate the interaction between the two problems could be
considered. For example, is it possible to prove a direct equivalence between LESS-based
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pointwise-competitive agnostic classification with fast coverage rates and LESS-based active
learning with exponential speedup? We expect that a resolution of this question will have
various interesting implications. For example, such a relationship could potentially facilitate
the migration of very interesting algorithms and techniques devised for active learning to
the pointwise-competitive framework. An immediate candidate is the algorithm of Beygelz-
imer et al. (2010), which builds on ideas of Dasgupta et al. (2007b) and Beygelzimer et al.
(2009). Resembling the implementation proposed for LESS via calls to (a constrained) ERM
oracle, this algorithm works without tracking the version space for both the final choice of
the hypothesis as well as the querying component. Instead, for querying, it relies on an
ERM oracle that enforces at most one example-based constrain. Thus, the importance-
weighting technique on which it is based resembles the disbelief principle we outline here.
In this regard, it will be very interesting to also consider and migrate ideas from active
learning algorithms emerging from the online learning branch (Orabona & Cesa-Bianchi,
2011; Cesa-Bianchi et al., 2009; Dekel et al., 2010) while using, as required, online to batch
conversion techniques (Zhang, 2005; Kakade & Tewari, 2009; Cesa-Bianchi & Gentile, 2008;
Dekel, 2008).

The LESS strategy requires a unanimous vote among all hypotheses in a low empirical
error subset of the hypothesis class. When considering, e.g., linear models, this subset of
hypotheses is uncountable, and in any case (even if it is finite) its size can be huge. Clearly,
LESS is an extremely radical and defensive strategy. An immediate question that arises
is whether the LESS unanimity requirement can be relaxed to a majority vote. Can we
achieve pointwise competitiveness with only a (strong) majority vote instead of unanimity?
Besides the greater flexibility of a general voting scheme, which may lead to different types
of interesting learning algorithms, such a relaxation can potentially ease the computational
complexity of implementing LESS (which, as discussed above, is a bottleneck in agnostic
classification). For example, with a relaxed voting scheme we might utilize hypothesis
sampling, for which a classical example in a related context is the celebrated query-by-
committee (QBC) strategy (Seung et al., 1992; Freund et al., 1997; Fine et al., 2002; Gilad-
Bachrach, 2007; Gilad-Bachrach et al., 2005). However, if strict pointwise competitiveness
is advocated, it is easy to see any strong majority vote is not sufficient. Indeed, consider an
f∗ that differs from all other hypotheses in F on a single point in X . Unless the probability
of this point is very large (not the typical case), with high probability this point is not part
of the training set Sm, and therefore, any majority vote (even very strong) will label it the
opposite of f∗. Hence, in the worst case, even a strong majority is not sufficient for pointwise
competitiveness. As a natural compromise for the pointwise competitiveness objective, one
can revert to standard excess-risk bounds (Bartlett et al., 2006) whereby we compare the
overall average performance of our predictor, R(f), to that of the optimal predictor, R(f∗)
(not pointwise). In this regard, the work of Freund, Mansour, and Schapire (2004) discussed
in Section 8, is such a result with its excess-risk bound R(f, g) ≤ 2R(f∗) +O

(

1/(m1/2−θ)
)

(θ is a hyper-parameter) and coverage bound Φ(f, g) ≥ 1− 5R(f∗)−O
(

ln |F|/
√
m1/2−θ

)

.

Considering excess-risk bounds against f∗, is it possible to beat the above risk and coverage
bounds using a relaxed voting scheme for rejection? What would be the optimal bounds
in a fully agnostic setting? Can better bounds be devised for specific distributions like
Gaussian mixtures? We note that the Freund et al. strategy is also interesting because
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the final aggregated predictor is in general outside of F and can, in principle, significantly
outperform f∗ ∈ F (the above bound does not elicit such a behavior). This emphasizes the
potential usefulness of ensembles, applied not only in the rejection scheme, but also in the
final predictor. Recall that in the LESS strategy the final predictor always belongs to F .
Thus, when considering ensembles and allowing excess-risk bounds, there can be even more
ambitious goals, such as strictly beating f∗ on average.
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Appendix A. Some Proofs

The proof of Lemma 9 below relies on the following Lemma 16 (Wiener et al., 2014), whose
proof is also provided here for the sake of self-containment.

Lemma 16 (Wiener et al., 2014). In the realizable case, for any r0 ∈ (0, 1),

θ(r0) ≤ max

{

max
r∈(r0,1)

16Bn̂

(⌈

1

r

⌉

,
1

20

)

, 512

}

.

Proof. We will prove that, for any r ∈ (0, 1),

∆B(f∗, r)

r
≤ max

{

16Bn̂

(⌈

1

r

⌉

,
1

20

)

, 512

}

. (12)

The result then follows by taking the supremum of both sides over r ∈ (r0, 1).

Fix r ∈ (0, 1), let m = ⌈1/r⌉, and for i ∈ {1, . . . ,m}, define Sm\i = Sm \ {(xi, yi)}. Also
define Dm\i = DIS(VSF ,Sm\i

∩ B(f∗, r)) and ∆m\i = P(xi ∈ Dm\i|Sm\i) = P (Dm\i × Y).
If ∆B(f∗, r)m ≤ 512, (12) clearly holds. Otherwise, suppose ∆B(f∗, r)m > 512. If xi ∈
DIS(VSF ,Sm\i

), then we must have (xi, yi) ∈ ĈSm . So

n̂(Sm) ≥
m
∑

i=1

1 DIS(VSF,Sm\i
)(xi).
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Therefore,

P {n̂(Sm) ≤ (1/16)∆B(f∗, r)m}

≤ P

{

m
∑

i=1

1 DIS(VSF,Sm\i
)(xi) ≤ (1/16)∆B(f∗, r)m

}

≤ P

{

m
∑

i=1

1 Dm\i
(xi) ≤ (1/16)∆B(f∗, r)m

}

= P

{

m
∑

i=1

1 DIS(B(f∗,r))(xi)− 1 Dm\i
(xi) ≥

m
∑

i=1

1 DIS(B(f∗,r))(xi)− (1/16)∆B(f∗, r)m

}

= P

{

m
∑

i=1

1 DIS(B(f∗,r))(xi)− 1 Dm\i
(xi) ≥

m
∑

i=1

1 DIS(B(f∗,r))(xi)−
1

16
∆B(f∗, r)m,

m
∑

i=1

1 DIS(B(f∗,r))(xi) <
7

8
∆B(f∗, r)m

}

+ P

{

m
∑

i=1

1 DIS(B(f∗,r))(xi)− 1 Dm\i
(xi) ≥

m
∑

i=1

1 DIS(B(f∗,r))(xi)−
1

16
∆B(f∗, r)m,

m
∑

i=1

1 DIS(B(f∗,r))(xi) ≥
7

8
∆B(f∗, r)m

}

≤ P

{

m
∑

i=1

1 DIS(B(f∗,r))(xi) < (7/8)∆B(f∗, r)m

}

+ P

{

m
∑

i=1

1 DIS(B(f∗,r))(xi)− 1 Dm\i
(xi) ≥ (13/16)∆B(f∗, r)m

}

.

Since we are considering the case ∆B(f∗, r)m > 512, a Chernoff bound implies

P

(

m
∑

i=1

1 DIS(B(f∗,r))(xi) < (7/8)∆B(f∗, r)m

)

≤ exp {−∆B(f∗, r)m/128} < e−4.

Furthermore, Markov’s inequality implies

P

(

m
∑

i=1

1 DIS(B(f∗,r))(xi)− 1 Dm\i
(xi) ≥ (13/16)∆B(f∗, r)m

)

≤
m∆B(f∗, r)− E

[

∑m
i=1 1 Dm\i

(xi)
]

(13/16)m∆B(f∗, r)
.

Since the xi values are exchangeable,

E

[

m
∑

i=1

1 Dm\i
(xi)

]

=
m
∑

i=1

E

[

E

[

1 Dm\i
(xi)

∣

∣

∣
Sm\i

]]

=
m
∑

i=1

E
[

∆m\i

]

= mE
[

∆m\m

]

.
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it can be shown (Hanneke, 2012) that this is at least

m(1− r)m−1∆B(f∗, r).

In particular, when ∆B(f∗, r)m > 512, we must have r < 1/511 < 1/2, which implies
(1− r)⌈1/r⌉−1 ≥ 1/4, so that we have

E

[

m
∑

i=1

1 Dm\i
(xi)

]

≥ (1/4)m∆B(f∗, r).

Altogether, we have established that

P (n̂(Sm) ≤ (1/16)∆B(f∗, r)m) <
m∆B(f∗, r)− (1/4)m∆B(f∗, r)

(13/16)m∆B(f∗, r)
+ e−4

=
12

13
+ e−4 < 19/20.

Thus, since n̂(Sm) ≤ Bn̂

(

m, 1
20

)

with probability at least 19/20, we must have that

Bn̂

(

m,
1

20

)

> (1/16)∆B(f∗, r)m ≥ (1/16)
∆B(f∗, r)

r
.

Proof of Lemma 9. Assuming that Bn̂(m, δ) = O
(

polylog(m) log
(

1
δ

))

holds, there exists
a constant δ1 ∈ (0, 1/20) for which Bn̂(m, δ1) = O (polylog(m)). Because Bn̂(m, δ) is non-
increasing with δ, Bn̂

(

m, 1
20

)

≤ Bn̂(m, δ1), and thus Bn̂

(

m, 1
20

)

= O (polylog(m)). Therefore,

max
m≤1/r0

Bn̂

(

m,
1

20

)

= O

(

max
m≤1/r0

polylog(m)

)

= O

(

polylog

(

1

r0

))

,

and using Lemma 16 we have,

θ(r0) ≤ max

{

max
m≤⌈1/r0⌉

16Bn̂

(

m,
1

20

)

, 512

}

≤ 528 + 16 max
m≤1/r0

Bn̂

(

m,
1

20

)

= O

(

polylog

(

1

r0

))

.

References

Amaldi, E., & Kann, V. (1995). The complexity and approximability of finding maximum
feasible subsystems of linear relations. Theoretical computer science, 147 (1), 181–210.

Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2006). Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101 (473), 138–156.

Bartlett, P., & Mendelson, S. (2006). Discussion of ”2004 IMS medallion lecture: Local
rademacher complexities and oracle inequalities in risk minimization” by V. koltchin-
skii. Annals of Statistics, 34, 2657–2663.

197



Wiener & El-Yaniv

Bartlett, P., Mendelson, S., & Philips, P. (2004). Local complexities for empirical risk
minimization. In COLT: Proceedings of the Workshop on Computational Learning
Theory, Morgan Kaufmann Publishers.

Bartlett, P., & Wegkamp, M. (2008). Classification with a reject option using a hinge loss.
Journal of Machine Learning Research, 9, 1823–1840.

Ben-David, S., Eiron, N., & Long, P. (2003). On the difficulty of approximately maximizing
agreements. Journal of Computer and System Sciences, 66 (3), 496–514.

Beygelzimer, A., Dasgupta, S., & Langford, J. (2009). Importance weighted active learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, pp.
49–56. ACM.

Beygelzimer, A., Hsu, D., Langford, J., & Zhang, T. (2010). Agnostic active learning without
constraints. Advances in Neural Information Processing Systems 23.

Beygelzimer, A., Dasgupta, S., & Langford, J. (2009). Importance weighted active learning.
In Proceedings of the 26th annual international conference on machine learning, pp.
49–56. ACM.

Beygelzimer, A., Hsu, D., Langford, J., & Zhang, T. (2010). Agnostic active learning without
constraints. arXiv preprint arXiv:1006.2588.

Bounsiar, A., Grall, E., & Beauseroy, P. (2006). A kernel based rejection method for super-
vised classification. International Journal of Computational Intelligence, 3, 312–321.

Bousquet, O., Boucheron, S., & Lugosi, G. (2004). Introduction to statistical learning
theory. In Advanced Lectures on Machine Learning, Vol. 3176 of Lecture Notes in
Computer Science, pp. 169–207. Springer.

Campi, M. (2010). Classification with guaranteed probability of error. Mach. Learn., 80 (1),
63–84.

Cesa-Bianchi, N., & Gentile, C. (2008). Improved risk tail bounds for on-line algorithms.
Information Theory, IEEE Transactions on, 54 (1), 386–390.

Cesa-Bianchi, N., Gentile, C., & Orabona, F. (2009). Robust bounds for classification via
selective sampling. In Proceedings of the 26th Annual International Conference on
Machine Learning, pp. 121–128. ACM.

Chang, C., & Lin, C. (2011). LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2, 27:1–27:27. Software available
at ”http://www.csie.ntu.edu.tw/ cjlin/libsvm”.

Chow, C. (1957). An optimum character recognition system using decision function. IEEE
Trans. Computer, 6 (4), 247–254.

Chow, C. (1970). On optimum recognition error and reject trade-off. IEEE Trans. on
Information Theory, 16, 41–36.

Cohn, D., Atlas, L., & Ladner, R. (1994). Improving generalization with active learning.
Machine Learning, 15 (2), 201–221.

Dasgupta, S., Hsu, D., & Monteleoni, C. (2007a). A general agnostic active learning algo-
rithm. In NIPS.

198



Agnostic Pointwise-Competitive Selective Classification

Dasgupta, S., Monteleoni, C., & Hsu, D. J. (2007b). A general agnostic active learning
algorithm. In Advances in neural information processing systems, pp. 353–360.

Dekel, O. (2008). From online to batch learning with cutoff-averaging.. NIPS.

Dekel, O., Gentile, C., & Sridharan, K. (2010). Robust selective sampling from single and
multiple teachers.. In COLT, pp. 346–358.

El-Yaniv, R., & Pidan, D. (2011). Selective prediction of financial trends with hidden
markov models. In NIPS, pp. 855–863.

El-Yaniv, R., & Wiener, Y. (2010). On the foundations of noise-free selective classification.
Journal of Machine Learning Research, 11, 1605–1641.

El-Yaniv, R., & Wiener, Y. (2011). Agnostic selective classification. In Neural Information
Processing Systems (NIPS).

El-Yaniv, R., & Wiener, Y. (2012). Active learning via perfect selective classification.
Journal of Machine Learning Research, 13, 255–279.

El-Yaniv, R., & Wiener, Y. (2015). On the version space compression set size and its
applications. In Vovk, V., Papadopoulos, H., & Gammerman, A. (Eds.), Measures of
Complexity: Festschrift for Alexey Chervonenkis. Springer, Berlin.

Fine, S., Gilad-Bachrach, R., & Shamir, E. (2002). Query by committee, linear separation
and random walks. Theoretical Computer Science, 284 (1), 25–51.

Freund, Y., Mansour, Y., & Schapire, R. (2004). Generalization bounds for averaged clas-
sifiers. Annals of Statistics, 32 (4), 1698–1722.

Freund, Y., Seung, H., Shamir, E., & Tishby, N. (1997). Selective sampling using the query
by committee algorithm. Machine Learning, 28, 133–168.

Friedman, E. (2009). Active learning for smooth problems. In Proceedings of the 22nd

Annual Conference on Learning Theory.

Fumera, G., & Roli, F. (2002). Support vector machines with embedded reject option. In
Pattern Recognition with Support Vector Machines: First International Workshop, pp.
811–919.

Fumera, G., Roli, F., & Giacinto, G. (2001). Multiple reject thresholds for improving
classification reliability. Lecture Notes in Computer Science, 1876.

Gilad-Bachrach, R. (2007). To PAC and Beyond. Ph.D. thesis, the Hebrew University of
Jerusalem.

Gilad-Bachrach, R., Navot, A., & Tishby, N. (2005). Query by committee made real. In
NIPS.

Grandvalet, Y., Rakotomamonjy, A., Keshet, J., & Canu, S. (2008). Support vector ma-
chines with a reject option. In NIPS, pp. 537–544. MIT Press.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classifi-
cation using support vector machines.. Machine Learning, 389–422.

Hanneke, S. (2007a). A bound on the label complexity of agnostic active learning. In ICML,
pp. 353–360.

199



Wiener & El-Yaniv

Hanneke, S. (2007b). Teaching dimension and the complexity of active learning. In Proceed-
ings of the 20th Annual Conference on Learning Theory (COLT), Vol. 4539 of Lecture
Notes in Artificial Intelligence, pp. 66–81.

Hanneke, S. (2009). Theoretical Foundations of Active Learning. Ph.D. thesis, Carnegie
Mellon University.

Hanneke, S. (2013). A statistical theory of active learning. Unpublished.

Hanneke, S. (2012). Activized learning: Transforming passive to active with improved label
complexity. The Journal of Machine Learning Research, 98888, 1469–1587.

Hellman, M. (1970). The nearest neighbor classification rule with a reject option. IEEE
Trans. on Systems Sc. and Cyb., 6, 179–185.

Herbei, R., & Wegkamp, M. (2006). Classification with reject option. The Canadian Journal
of Statistics, 34 (4), 709–721.

Kakade, S., & Tewari, A. (2009). On the generalization ability of online strongly convex
programming algorithms. In Advances in Neural Information Processing Systems
(NIPS), pp. 801–808.

Koltchinskii, V. (2006). 2004 IMS medallion lecture: Local rademacher complexities and
oracle inequalities in risk minimization. Annals of Statistics, 34, 2593–2656.
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