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Abstract
Increasing the expressiveness of qualitative spatial calculi is an essential step towards meeting the
requirements of applications. This can be achieved by combining existing calculi in a way that
we can express spatial information using relations from multiple calculi. The great challenge is
to develop reasoning algorithms that are correct and complete when reasoning over the combined
information. Previous work has mainly studied cases where the interaction between the combined
calculi was small, or where one of the two calculi was very simple. In this paper we tackle the
important combination of topological and directional information for extended spatial objects. We
combine some of the best known calculi in qualitative spatial reasoning, the RCC8 algebra for
representing topological information, and the Rectangle Algebra (RA) and the Cardinal Direction
Calculus (CDC) for directional information. We consider two different interpretations of the RCC8
algebra, one uses a weak connectedness relation, the other uses a strong connectedness relation.
In both interpretations, we show that reasoning with topological and directional information is de-
cidable and remains in NP. Our computational complexity results unveil the significant differences
between RA and CDC, and that between weak and strong RCC8 models. Take the combination of
basic RCC8 and basic CDC constraints as an example: we show that the consistency problem is
in P only when we use the strong RCC8 algebra and explicitly know the corresponding basic RA
constraints.

1. Introduction

Qualitative Spatial Reasoning (QSR) is a multi-disciplinary research field that aims at establishing
expressive representation formalisms of qualitative spatial knowledge and providing effective rea-
soning mechanisms. Originating from Allen’s work (1983) on temporal interval relations, QSR has
been widely acknowledged as the AI approach to spatial knowledge representation and reasoning,
with applications ranging from natural language understanding (Davis, 2013), robot navigation (Shi,
Jian, & Krieg-Brückner, 2010; Falomir, 2012), geographic information systems (GISs) (Egenhofer

c©2014 AI Access Foundation. All rights reserved.



COHN, LI, LIU, & RENZ

& Mark, 1995), sea navigation (Wolter et al., 2008), to high level interpretation of video data (Srid-
har, Cohn, & Hogg, 2011; Cohn, Renz, & Sridhar, 2012). We refer the reader to the work of Cohn
and Renz (2008), and Wolter and Wallgrün (2012) for more information.

The qualitative approach usually represents spatial information by introducing a relation model
on the domain of spatial entities, which could be points, line segments, rectangles, or arbitrary
regions. In the literature, such a relation model is often called a qualitative calculus (Ligozat &
Renz, 2004), which contains a finite set of jointly exhaustive and pairwise disjoint (JEPD) relations
defined on the domain. In the past three decades, dozens of spatial relation models have been
proposed in the literature (Cohn & Renz, 2008; Chen, Cohn, Liu, Wang, Ouyang, & Yu, 2013).
Many of these qualitative calculi approximate spatial entities by points. While this is convenient
when representing spatial direction, distance and positions (providing the extent of the objects is
small compared to their distance apart), it is inappropriate as far as the shapes and/or topology
of the spatial objects are concerned. In this paper, we represent spatial entities as 2-dimensional
bounded regions in the real plane, which may have holes or multiple connected components.

In the literature, most spatial calculi focus on one single aspect of space, e.g. topology, direc-
tion, distance, position, or shape. Topological relations are those relations that are invariant under
homeomorphisms such as scale, rotation, and translation. It is widely acknowledged that topolog-
ical relations are of crucial importance. One influential formalism for topological relations is the
region connection calculus (RCC) (Randell, Cui, & Cohn, 1992). Based on one primitive binary
connectedness relation, a set of eight JEPD topological relations can be defined in the RCC. This
calculus is known as the RCC8 algebra. According to different interpretations of connectedness,
this calculus may have different variants. In this paper, we say two (closed) regions are weakly con-
nected if they share at least a common point, and say they are strongly connected if their intersection
is at least one-dimensional. Accordingly, we address the two resulting RCC8 algebras as the weak
and the strong RCC8 algebras respectively. For convenience, we denote the weak RCC8 algebra as
RCC8, and the strong one as RCC8′.

The importance of the distinction between strong and weak RCC8 becomes clear when analysing
the different ways of defining the neighbourhood of pixels commonly used in Computer Vision. 4-
connectedness refers to the pixels that are horizontally and vertically connected to a pixel, while
8-connectedness includes the diagonally neighbouring pixels as well. This distinction corresponds
nicely to the distinction between strong and weak RCC8 as 8-connectedness considers connec-
tions at a point, while 4-connectedness only considers connections along a line (which is one-
dimensional). Therefore, we can use strong or weak RCC8 in a similar way we use 4- or 8-
connectedness, depending on the requirements of the application at hand.

The RCC8 algebra only represents topological information between spatial objects. In many
practical applications, however, other kinds of relations are often used together with topological
relations. For example, when recommending a restaurant you dined at before it is common to give
descriptions such as “the restaurant is in the city centre, west of the central station, and nearby there
is a McDonald’s.”

Among all these aspects of spatial information other than topology, directional relations are
perhaps the most important. There are two well-known formalisms that can cope with directional
relations between extended spatial objects. One is the Rectangle Algebra (RA) (Balbiani, Condotta,
& Fariñas del Cerro, 1999), the other is the Cardinal Direction Calculus (CDC) (Goyal & Egenhofer,
2001; Skiadopoulos & Koubarakis, 2005). When representing the direction of a primary object
to a reference object, RA approximates both the reference object and the primary object by their
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minimum bounding rectangles (MBRs), and relates the two objects by the interval relations between
the projected intervals. On the other hand, CDC only approximates the reference object by its MBR,
while leaving the primary object unchanged. The CDC has 511 basic relations, and RA has 169
basic relations. Most (487 out of 511) basic CDC relations intersect with one and only one basic
RA relation and, hence, are contained in a unique basic RA relation. Therefore, CDC is in a sense
more expressive than RA.

A central reasoning problem in QSR is the consistency problem. An instance of the consistency
problem is a set Γ of constraints like (xαy), where x, y are spatial variables, and α is a qualitative
relation from a qualitative calculus. We say Γ is consistent or satisfiable if there exists an instanti-
ation of the spatial variables such that all constraints in Γ are satisfied. Without loss of generality,
we assume that there is a unique constraint between any two variables. Note that if x and y are not
related, we can add (x ? y) in Γ without changing its consistency, where ? is the universal relation
in the calculus. Unlike classical CSPs, the domain of a spatial variable is usually infinite, and it may
be undecidable to determine the consistency of binary CSPs with infinite domains (Hirsch, 1999).
In the past three decades, QSR has made significant progress in solving the consistency problems
for a variety of qualitative calculi (Renz & Nebel, 1999; Renz, 1999; Balbiani et al., 1999; Zhang,
Liu, Li, & Ying, 2008; Skiadopoulos & Koubarakis, 2005; Liu, Zhang, Li, & Ying, 2010; Liu & Li,
2011).

In order to bring spatial reasoning theory closer to practical applications, it is necessary to
combine multiple aspects of spatial information. A growing number of works have been devoted to
combining topological RCC relations with other aspects of spatial information, e.g. qualitative size
(Gerevini & Renz, 2002), cardinal directions (Sistla & Yu, 2000; Li, 2006a, 2007; Liu, Li, & Renz,
2009; Li & Cohn, 2012), connectivity (Kontchakov, Nenov, Pratt-Hartmann, & Zakharyaschev,
2011), convexity (Davis, Gotts, & Cohn, 1999; Schockaert & Li, 2012), betweenness (Schockaert
& Li, 2013), and gravity (Ge & Renz, 2013). Recently, Wölfl and Westphal (2009) also empirically
compared two approaches to the combination of binary qualitative constraint calculi in general.
There are also interesting works on combining spatial and temporal formalisms (Gerevini & Nebel,
2002; Gabelaia, Kontchakov, Kurucz, Wolter, & Zakharyaschev, 2005). Moreover, in other subareas
of formalisms of constraint research, combination of formalisms has been discussed for a long time
and there are some very strong results, see e.g. the work by Bodirsky and Kára (2010), and Jonsson
and Krokhin (2004).

The current paper considers the full combination of RCC8 and RCC8′ with the two directional
relation models RA and CDC. We identify the joint satisfaction problem (JSP) as the main reasoning
task. Given a network of topological (RCC8 or RCC8′) constraints Θ and a network of directional
(RA or CDC) constraints ∆, assuming that Θ and ∆ involve the same set of variables, the JSP is to
decide when the joint network Θ ] ∆ is satisfiable. Note that we use ], instead of ∪, to indicate
that Θ and ∆ are over the same variables.

Since topological and directional information is not independent, it is possible that the joint
network Θ ] ∆ is unsatisfiable while both Θ and ∆ are satisfiable. Solving the joint satisfaction
problem is in general harder than solving Θ and ∆ independently. In this paper, we interpret direc-
tional relations in terms of RA and CDC, and interpret topological relations in terms of the weak
and the strong RCC8 algebras. When only basic constraints are involved, we show that the JSP
for basic (weak or strong) RCC8 and basic RA networks can be solved in polynomial time, but the
JSP for basic (weak or strong) RCC8 and basic CDC networks is NP-complete. Furthermore, we
show that, when the three calculi (viz. RCC8, RA, and CDC) are combined together, the JSP for
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basic RCC8′ networks and basic RA and CDC networks is tractable. Since non-basic constraints
can always be backtracked to basic constraints, these results show that the JSP over (weak or strong)
RCC8 and RA or CDC is in NP.

This paper is a significant extension of the conference paper (Liu et al., 2009), where the combi-
nation of basic weak RCC8 and RA or CDC constraints was considered. This paper also considers
the combination of RCC8′ and RA and/or CDC constraints. In addition, we extend our tractable
results to two maximal tractable subsets of RCC8 and one large tractable subset of RA. This paper
is also closely related to the work of Li (2007), and Li and Cohn (2012), where the combination of
the weak RCC8 algebra and two subalgebras (viz. DIR9 and DIR49) of RA is considered.

1.1 An Application Scenario

As an example for demonstrating the usefulness of our results, we use the Angry Birds domain.
Similar representation and reasoning tasks can be applied whenever we use computer vision to
detect objects in image or video. Angry Birds is a popular computer game that has gained increasing
attention within the AI community, see e.g. the work of Zhang and Renz (2014). The Angry Birds
AI competition is an AI challenge problem, where the goal is to build an intelligent agent that can
play Angry Birds better than the best human players (see http://aibirds.org).

Figure 1: A screenshot of the Angry Birds game.

The Angry Birds domain includes a number of building blocks of different materials, sizes
and shapes, and even with holes. The building blocks form complicated spatial structures that
protect pigs from the attacking birds (see Figure 1). AI agents have to be able to play the game
like humans do, that is they only get visual information about the game in the form of screenshots.
The competition organisers provide a basic computer vision software that detects the minimum
bounding boxes of all objects in a screenshot as well as the object category. So what is given is a
set of rectangles that form the minimum bounding boxes of the actual objects (see Figure 1). While
each object is a solid physical object that cannot overlap another object (only RCC8 relations DC
and EC are possible between objects), their bounding boxes can be related in any relation of the
Rectangle Algebra and any relation in CDC. Instead of considering only spatial relations between
single objects, we can also take into account sets of objects, for example, the set of all objects that
are directly or indirectly supported by a particular other object, or the set of all objects that provide
cover for a particular pig, or the set of all wooden blocks.
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Notations Meanings
α, β, γ, δ, θ, ρ relations, usually basic relations (page 498)
D,R, S, T relations, usually non-basic relations (page 498)

α∼ the converse relation of α (page 498)
α ◦w β the weak composition of α and β (page 498)

x, y, z,vi, vj spatial variable or interval variable (page 498)
Θ,Γ,∆ network of constraints (page 498)
a, b, c,m bounded regions (page 500)
Ĥ8,Q8, C8 the three maximal tractable subclasses of RCC8 (page 500)
P,Q points (page 501)
H the unique maximal tractable subclass of IA (page 502)

Ix(a), Iy(a) the x- and y- projective intervals of region a (page 503)
M(a) the minimal bounding rectangle (MBR) of region a (page 503)
α⊗ β the RA relation induced by two IA relations α, β (page 503)

m = (mi)
n
i=1 an n-tuple of regions mi that form a solution to some network (page 504)

(δ, γ) a consistent pair of basic CDC relations (page 505)
ιx(δ, γ), ιy(δ, γ) the x- and y- projective interval relations of (δ, γ) (page 505)

ι(δ, γ) the RA relation ιx(δ, γ)⊗ ιy(δ, γ) induced by (δ, γ) (page 506)
Θ ] Γ the combination of two networks over the same set of variables (page 507)

JSP(S, T ) the joint satisfaction problem over subclasses S and T (page 507)
RA(T ) the RA relation induced by an RCC8 relation T (page 509)

RCC8(D) the RCC8 relation induced by an RA relation D (page 509)
CCP(vi, vj) two variables vi, vj have the common conflict point relation (page 510)

Table 1: Notations.

These sets of building blocks form spatial regions in the general sense as used by RCC8 and
BRCC8 (Wolter & Zakharyaschev, 2000), which also include regions with multiple disconnected
pieces or regions with holes. In particular, it means that any RCC8 relation is possible between two
sets of objects, not just DC or EC.

Given spatial configurations in the Angry Birds domain, we can now use RCC8 relations as well
as RA and CDC relations to represent spatial information about (sets of) objects and their minimum
bounding boxes that is extracted from the screenshots. The results of this paper allow us to accu-
rately reason about the combined information represented using RCC8, RA, and CDC. Important
reasoning tasks that can benefit from our results include, for example, inferring how a configuration
changes after it is hit by a bird or inferring whether a given representation is consistent or whether
it is stable under gravity (Zhang & Renz, 2014). An algorithm for predicting the configuration of
the blocks after a shot might work by envisaging individual possible block positions but these might
be mutually or globally inconsistent. An algorithm for reasoning about the consistency of such
predictions is therefore desirable.

The remainder of this paper proceeds as follows. Section 2 introduces basic notions, important
examples, and essential results of qualitative calculi. Section 3 then describes the joint satisfaction
problem and considers the simple example of the combination of RA and CDC constraints. Sections
4 and 5 consider the computational complexity of the combination of weak and, respectively, strong
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RCC8 with RA. Section 6 discusses the computational complexity of the combination of weak and
strong RCC8 with CDC. We conclude the paper in Section 7 and give proofs of major computa-
tional complexity results in the appendices. For the convenience of the reader, Table 1 summarises
notations used in this paper.

2. Qualitative Calculi

The establishment of a proper qualitative calculus is the key to the success of the qualitative ap-
proach to temporal and spatial reasoning. This section introduces basic notions of qualitative cal-
culi and recalls the RCC8 algebra, the Rectangle Algebra, and the Cardinal Direction Calculus. In
addition, we will also summarise some essential results that will be used in the main part of the
paper.

2.1 Basic Notions

Let U be the domain of temporal or spatial entities, and Rel(U) be the set of binary relations on U.
With the usual relational operations of intersection, union, and complement, Rel(U) is a Boolean
algebra. A finite set B of nonempty binary relations on U is jointly exhaustive and pairwise disjoint
(JEPD for short) if any two entities in U are related by one and only one relation in B. Write 〈B〉
for the subalgebra of Rel(U) generated by B. Clearly, relations in B are atoms in the algebra 〈B〉.
We call 〈B〉 a qualitative calculus on U, and call relations in B basic relations of the calculus.

Notation. Note that each relation in 〈B〉 is the union of a set of basic relations. In this paper, we
write R = {α1, α2, ..., αk} if R is the union of basic relations α1, α2, ..., αk. For convenience, we
regard each basic relation α as the singleton {α}.

For two relations R,S in a qualitative calculus M = 〈B〉, we write R∼ for the converse of R,
which is defined as

R∼ = {(x, y) ∈ U× U : (y, x) ∈ R}, (1)

and write R ◦w S for the smallest relation in M which contains R ◦ S, the usual composition of R
and S, which is defined as

R ◦ S = {(x, y) ∈ U : (∃z ∈ U)(x, z) ∈ R ∧ (z, y) ∈ S}.

We call R ◦w S the weak composition of R and S (Düntsch, Wang, & McCloskey, 2001).
A constraint over 〈B〉 has the form (xRy), where R is a relation in 〈B〉. We call (xRy) a basic

constraint ifR is a basic relation in B. An important reasoning problem in a qualitative calculus is to
determine the satisfiability or consistency of a network Γ = {viRijvj}ni,j=1 of constraints over 〈B〉,
where Γ is satisfiable (or consistent) if there is an instantiation (ai)

n
i=1 in U such that (ai, aj) ∈ Rij

holds for all 1 ≤ i, j ≤ n.
Given two constraint networks Γ = {viRijvj}ni,j=1 and Θ = {viTijvj}ni,j=1, we say Θ refines

Γ if Tij is a subset of Rij for any 1 ≤ i, j ≤ n. A consistent scenario of Γ is a consistent basic
network that refines Γ. It is clear that Γ is consistent iff it has a consistent scenario. On the other
hand, given an n-tuple of entities (ai)

n
i=1 in U, write δij for the basic relation in a fixed qualitative

calculus that relates ai to aj . Then ∆ = {viδijvj}ni,j=1 is a consistent scenario and we call this the
scenario (or basic constraint network) induced by (ai)

n
i=1.
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The consistency of a constraint network can be partially determined by path-consistency algo-
rithms. We say a network Γ = {viRijvj}ni,j=1 is path-consistent if

Rji = R∼ij , ∅ 6= Rij ⊆ Rik ◦w Rkj (2)

for any i, j and any k 6= i, j. In case Γ is a basic network, this is equivalent to saying that every
subnetwork involving three variables of Γ is consistent.

Path-consistency can be enforced in cubic time (Vilain & Kautz, 1986). That is, if we apply
the path-consistency algorithm on a constraint network Γ, then in cubic time the algorithm will
terminate and we either get an empty constraint (and hence know that Γ is inconsistent) or transform
Γ into an equivalent path-consistent network. For basic networks, it is easy to see that consistency
implies path-consistency, but the opposite proposition does not always hold.

In the following subsections we recall the qualitative topological and directional calculi that will
be discussed in this paper.

2.2 The Region Connection Calculus RCC8

The region connection calculus (RCC) (Randell et al., 1992) is a first-order theory based on a binary
connectedness relation. Standard RCC models arise from topological spaces. In this paper, we are
only concerned with interpretations of RCC in the real plane, which provides arguably the most
important model for RCC. Another reason lies in that the directional calculi considered in this paper
are also defined over the real plane. A plane region (or region) is a nonempty regular closed subset
of the real plane. We only consider bounded regions, as cardinal directions only involve bounded
regions. But these regions could have multi-pieces and/or have holes.1

One standard interpretation of RCC is based on the Whiteheadean connectedness (Whitehead,
1929) on plane regions, where two regions are connected if they have a common point. This con-
nectedness may be considered too weak in many cases. For example, “a worm cannot pass from the
interior of one apple to another, which touch just at a point, without becoming visible to the exte-
rior – so from the worm’s point of view we might as well say that the apples are not ‘sufficiently’
connected.” (Borgo, Guarino, & Masolo, 1996, p. 223) In this paper, we also consider a stronger
connectedness, in which two regions are regarded as connected if their intersection is at least one-
dimensional (Li, Liu, & Wang, 2013). In the case of a rectangular grid of spatial primitive entities,
as already noted, strong and weak connectedness correspond to, respectively, the important notion
of 4- and 8-neighbourhood of pixels commonly used in Computer Vision.

In both interpretations, the relations in Table 2 and the converses of TPP and NTPP form a
JEPD set. Write Brcc8 and Brcc8′ for these two sets. We call the Boolean algebras generated by
Brcc8 and Brcc8′ , respectively, the weak and the strong RCC8 models, written as RCC8 and RCC8′.
Strong connectedness has been considered by Borgo et al., (1996), Cohn and Varzi (1999), and
Li et al., (2013). It is easy to see that, as relations, strong connectedness is contained in weak
connectedness. Table 2 illustrates a configuration (the 2nd from the left) which is an instance of EC
in RCC8 but an instance of DC in RCC8′, and a configuration (the 2nd from the right) which is an
instance of TPP in RCC8 but an instance of NTPP in RCC8′.

1. We stress here that the restriction of RCC to bounded plane regions does not affect the complexity of reasoning with
RCC8, as every consistent RCC8 network has a solution in any RCC model (Li, 2006b).
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Relation Symb. Definition (weak) Definition (strong)
equals EQ a = b a = b

disconnected DC a ∩ b = ∅ dim(a ∩ b) ≤ 0
externally connected EC a ∩ b 6= ∅ ∧ a◦ ∩ b◦ = ∅ dim(a ∩ b) = 1

partially overlap PO a◦ ∩ b◦ 6= ∅ ∧
a 6⊆ b ∧ a 6⊇ b

a◦ ∩ b◦ 6= ∅ ∧
a 6⊆ b ∧ a 6⊇ b

tangential proper part TPP a ⊂ b ∧ a 6⊂ b◦ a ⊂ b ∧ dim(∂a ∩ ∂b) = 1
non-tangential proper part NTPP a ⊂ b◦ a ⊂ b ∧ dim(∂a ∩ ∂b) ≤ 0

Table 2: The set of basic RCC8 and RCC8′ relations, where a, b are two plane regions and x◦, ∂x, dim(x)
denote, respectively, the interior, boundary, and dimension of x. Note that for notational conve-
nience we set dim(∅) = −1.

Remark 1. As far as consistency and realisations are concerned, Li (2006b) has shown that any
consistent RCC8 network has a solution in any RCC model. The cubic realisation algorithm de-
scribed there can be used to construct a solution in both the weak and the strong RCC8 models.
This implies in particular that an RCC8 network has a solution in the weak RCC8 model iff it has
a solution in the strong RCC8 model. As we will show in this paper, this is, however, not the case
when cardinal directions are combined with topological relations.

In the following, we recall some important properties of the three maximal tractable subclasses
Ĥ8, C8, andQ8 of RCC8 identified by Renz (1999). A complete list of relations in these subclasses
can be found in Appendix A of the work of Renz (2002).

Lemma 2. Suppose R is a non-basic RCC8 relation such that R ∩ {DC,EC,PO} = ∅. Then

(1) R ∈ Q8 iff R is either {TPP,NTPP} or {TPP∼,NTPP∼}.

(2) R ∈ Ĥ8 iff R is in Q8 or one of the following relations

{TPP,EQ}, {TPP,NTPP,EQ}, {TPP∼,EQ}, {TPP∼,NTPP∼,EQ}.

(3) R ∈ C8 iff R is in Ĥ8, or either {NTPP,EQ} or {NTPP∼,EQ}.

We note the above lemma does not define these subclasses. In particular, these subclasses do
include RCC8 relations R such that R ∩ {DC,EC,PO} 6= ∅.

Renz also shows that a consistent scenario can be constructed in O(n2) time for any path-
consistent network Θ over one of the three maximal tractable subclasses.
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Theorem 3 (Renz, 1999). A consistent scenario Θs of a path-consistent network Θ of constraints
over Ĥ8, C8, or overQ8 can be computed inO(n2) time, by replacing every constraint (viRvj) ∈ Θ
with (vi base(R) vj) ∈ Θs, where base(R) is a basic relation obtained as follows:

(1) If R ∈ B, then base(R) = R;

(2) else if {DC} ⊆ R, then base(R) = {DC};

(3) else if {EC} ⊆ R and S = Q8 or S = Ĥ8, then base(R) = {EC};

(4) else if {PO} ⊆ R, then base(R) = {PO};

(5) else if {NTPP} ⊆ R and S = C8, then base(R) = {NTPP};

(6) else if {TPP} ⊆ R, then base(R) = {TPP};

(7) else base(R) = base(R∼).

In what follows, we call Θs the canonical consistent scenario of Θ.

2.2.1 REALISATION OF BASIC RCC8 NETWORKS

It is known that, for basic RCC8 networks, path-consistency implies consistency (Nebel, 1995). We
next give a a short description of the cubic realisation algorithm proposed by Li (2006b), as we need
to devise a similar algorithm later for the combination cases.

Given a basic RCC8 network Θ = {viθijvj}ni,j=1, suppose Θ is path-consistent. An ntpp-chain
in Θ is defined to be a series of variables vi1 , vi2 , · · · , vik such that visNTPPvis+1 ∈ Θ for all
s = 1, · · · , k − 1. The ntpp-level l(i) of a variable vi is defined to be the maximum length of the
ntpp-chains contained in Θ that ends with vi.

A realisation can be constructed as follows, where a variable may be interpreted as a bounded
region with multiple pieces. Without loss of generality, we assume (viEQvj) ∈ Θ only when
i = j. We first define for each variable vi a finite set Xi of control points as follows. For each i,
introduce a point Pi to vi; if viECvj or viPOvj , then introduce a point Pij to vi; if viTPPvj or
viNTPPvj , then put all Xi points into Xj . We then expand each point P in Xi a little to obtain a
square s(P ). These squares are pairwise disjoint. Then, taking the union of these squares, we obtain
an instantiation of bounded regions to these vi. This works for all but the EC and NTPP constraints.
Further modifications are needed to cope with these constraints (cf. Li, 2006b or Appendix C of
this paper).

2.3 Interval Algebra and Rectangle Algebra

In this subsection, we recall Interval Algebra (IA) (Allen, 1983) and Rectangle Algebra (RA) (Bal-
biani et al., 1999). IA is the qualitative calculus generated by the 13 basic relations between closed
intervals on the real line shown in Table 3. We write

Bint = {b,m,o, s,d, f,eq, fi,di, si,oi,mi,bi} (3)

for the set of basic IA relations. Ligozat (1994) defines the dimension2 of a basic interval relation
as 2 minus the number of equalities appearing in the definition of the relation (see Table 3). That is,

2. We stress that this notion of dimension is different from the topological dimension.
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for basic relations we have

dim(eq) = 0,dim(m) = dim(s) = dim(f) = 1,dim(b) = dim(o) = dim(d) = 2. (4)

For a non-basic relation R we define

dim(R) = max{dim(θ) : θ is a basic relation in R}. (5)

Relation Symb. Conv. Dim. Definition
before b bi 2 x+ < y−

meets m mi 1 x+ = y−

overlaps o oi 2 x− < y− < x+ < y+

starts s si 1 x− = y− < x+ < y+

during d di 2 y− < x− < x+ < y+

finishes f fi 1 y− < x− < x+ = y+

equals eq eq 0 x− = y− < x+ = y+

(i) (ii)

Table 3: IA basic relations (i) definitions and (ii) conceptual neighbourhood graph, where x =
[x−, x+], y = [y−, y+] are two intervals.

Nebel and Bürckert (1995) have shown that there is a unique maximal tractable subclass of IA
which contains all basic relations. This subclass, written as H, is known as the ORD-Horn class.
Using the conceptual neighbourhood graph (CNG) of IA (Freksa, 1992), Ligozat (1994) gives a
geometrical characterisation for ORD-Horn relations. Consider the CNG of IA (shown in Table 3
(ii)) as a partially ordered set (Bint,�) (by interpreting any relation smaller than its right or upper
neighbours). For θ1, θ2 ∈ Bint with θ1 � θ2, we write [θ1, θ2] as the set of basic interval relations θ
such that θ1 � θ � θ2, and call such a relation a convex interval relation. An IA relation R is called
pre-convex if it can be obtained from a convex relation by removing one or more basic relations with
dimension lower than R. For example, [o,eq] = {o, s, fi,eq} is a convex relation and {o,eq} is a
pre-convex relation. Ligozat has shown that ORD-Horn relations are precisely pre-convex relations.

Nebel and Bürckert also show that every path-consistent IA network overH is consistent. Fur-
thermore, we can construct a consistent scenario for every path-consistent IA network over H in
quadratic time.

Suppose R is an IA relation and let

Rcore = {θ ∈ Bint : dim(θ) = dim(R), θ ∈ R}. (6)

By (6) it is clear that Rcore = {eq} iff R = {eq}, and Rcore = R ∩ {b,o,d,di,oi,bi} if R ∩
{b,o,d,di,oi,bi} is nonempty, and Rcore = R \ {eq} otherwise. Then we have

Lemma 4. (Renz, 1999) Suppose Θ = {viRijvj}ni,j=1 is a path-consistent IA network overH. Let

Θcore = {viRcore
ij vj}ni,j=1. (7)

Then Θcore is also path-consistent.

502



REASONING ABOUT TOPOLOGICAL AND CARDINAL DIRECTION RELATIONS

From Table 3 (ii) it is easy to see that a pre-convex relation R has dimension 1 iff either R is a
1-dim basic relation or R is contained in {s,eq, si} or {fi,eq, f}. As a consequence, we know

Corollary 5. Suppose Θ = {viRijvj}ni,j=1 is a path-consistent network over H. Then Θ has a
consistent scenario Θ∗ = {viR∗ijvj}ni,j=1 which has the following property:

dim(R∗ij) = dim(Rij), and

R∗ij = {eq} only if Rij = {eq}, R∗ij = {m} only if Rij = {m}, R∗ij = {mi} only if Rij = {mi}.

This result shows that, for any path-consistent network Θ overH, we can construct in quadratic
time a consistent scenario for Θ.

(i) (ii)

Figure 2: (i) The minimum bounding rectangleM(a) of a region a; (ii) the RA relation of a to b is
m⊗ o.

IA can be naturally extended to regions in the plane. We assume an orthogonal basis in the Eu-
clidean plane. For a bounded region a, its minimum bounding rectangle (MBR), denoted byM(a),
is the smallest rectangle which contains a and whose sides are parallel to the axes of the basis.
We write Ix(a) and Iy(a) as, respectively, the x- and y-projections ofM(a). The basic rectangle
relation between two bounded regions a, b is α ⊗ β iff (Ix(a), Ix(b)) ∈ α and (Iy(a), Iy(b)) ∈ β,
where α, β are two basic IA relations (see Figure 2 for illustration). We write Brec for the set of
basic rectangle relations, i.e.,

Brec = {α⊗ β : α, β ∈ Bint}. (8)

There are 169 different basic rectangle relations in Brec. The Rectangle Algebra (RA) is the algebra
generated by relations in Brec (Balbiani et al., 1999).

The following definitions will be used later.

Definition 6. Suppose α = ρ1 ⊗ ρ2 is a basic RA relation. We say α is a 0-meet relation if
ρ1, ρ2 ∈ {m,mi}, and is a corner relation if ρ1, ρ2 ∈ {m,mi, s, si, f, fi,eq}. In general, we say a
non-basic RA relation R = {α1, ..., αk} (k ≥ 2) is a corner relation if each αi (1 ≤ i ≤ k) is a
corner relation.

By definition, each 0-meet relation is a corner relation. Furthermore, it is easy to see that a basic
RA relation α is a 0-meet relation iff, for every two rectangles r, r′ with (r, r′) ∈ α, r ∩ r′ is a
singleton in the plane; and α is a corner relation iff every two rectangles r, r′ with (r, r′) ∈ α have,
at least, a corner point in common.

The following lemma is straightforward.
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Lemma 7. Let ∆ = {vi(Rij ⊗ Sij)vj}ni,j=1 be an RA network, where Rij and Sij are arbitrary IA
relations. Then ∆ is satisfiable iff its projections ∆x = {xiRijxj}ni,j=1 and ∆y = {yiSijyj}ni,j=1

are satisfiable IA networks.

By Corollary 5 and the above lemma we have

Lemma 8. Suppose ∆ = {viRijvj} is a path-consistent RA network over H × H. Then ∆ has a
consistent scenario ∆∗ = {viδijvj} such that

• δij is a 0-meet relation iff Rij is a 0-meet basic relation, and

• δij is a corner relation iff Rij consists only of basic corner relations.

As a consequence, we knowH×H is a tractable subclass of RA. No maximal tractable subclass
has been identified for RA, but a larger tractable subclass of RA has been identified (Balbiani et al.,
1999).

We next show that each path-consistent basic IA or RA network has a canonical solution in the
following sense.

Definition 9 (canonical tuple of intervals (rectangles)). Suppose m = ([m−i ,m
+
i ])ni=1 is an n-tuple

of intervals. Let E(m) be the set of the values of the end points of intervals in m. We say m is
canonical iff E(m) = {0, 1, · · · ,M}. A tuple of rectangles (mi)

n
i=1 is canonical iff its x- and

y-projections, (Ix(mi))
n
i=1 and (Iy(mi))

n
i=1, are canonical tuples of intervals. A solution of an

IA (RA, respectively) network is called a canonical solution if it is a canonical tuple of intervals
(rectangles, respectively).

For a basic satisfiable IA network, we can compute the total order of all the end points. Hence
we can obtain a canonical solution (by assigning 0 to the first end point, 1 to the second, etc.). This
gives us the following proposition.

Proposition 10. Suppose Θ is a satisfiable basic IA (RA) constraint network. Then Θ has a unique
canonical solution.

2.4 Cardinal Direction Calculus

The cardinal direction calculus (CDC) was proposed by Goyal and Egenhofer (1997). Given a
bounded region b in the real plane, by extending the four edges ofM(b), we partition the plane into
nine tiles, denoted by bij (1 ≤ i, j ≤ 3), see Figure 3 (i) for illustration.

For a primary region a and a reference region b, the CDC relation of a to b, denoted by δab,
is encoded in a 3 × 3 Boolean matrix (dij)1≤i,j≤3, where dij = 1 iff a◦ ∩ bij 6= ∅ (where a◦ is
again the interior of a). For example, the basic CDC relations δab and δba for the regions a, b in
Figure 3(ii) are represented by the following matrices.

δ∗ = δab =

0 0 0
1 0 0
0 0 0

 , γ∗ = δba =

0 0 1
0 0 1
0 0 1

 . (9)

A CDC relation can be any but the zero Boolean matrix, so there are 29−1 = 511 basic relations
in CDC. We denote this set by Bcdc. A pair of basic CDC relations (δ, γ) is called a consistent pair
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(i) (ii) (iii)

Figure 3: Illustrations of (i) the nine tiles of a reference region; (ii) and (iii): two solutions of the
CDC basic constraint network {v1δ

∗v2, v2γ
∗v1}, where δ∗ and γ∗ are defined in Eq. (9).

if the constraint network {v1δv2, v2γv1} has a solution. We also call γ a weak converse of δ if
(δ, γ) is a consistent pair. Figure 4 shows that a basic CDC relation may have more than one weak
converse. Therefore, we need both the relation of a to b and the relation of b to a to give a complete
description (in terms of the CDC calculus) of the directional information between two regions a, b.

(i) (ii)

Figure 4: Illustration of two consistent CDC pairs (i) (δab, δba) and (ii) (δa′b′ , δb′a), where δab =
δa′b′ but δba 6= δb′a′ . Also note that the rectangle relation between a, b and that between
a′, b′ are both o⊗ o.

In the following we show that there is a strong connection between CDC and RA relations.

Definition 11. (Zhang et al., 2008; Liu et al., 2010) For a pair of basic CDC relations (δ, γ), we
define the x-projective interval relation of (δ, γ), written as ιx(δ, γ), as the disjunction of all basic
IA relations α which has an instance that is the x-projection of some solution of {v1δv2, v2γv1},
i.e.

ιx(δ, γ) = {α ∈ Bint : (∃m1,m2)[(m1,m2) ∈ δ ∧ (m2,m1) ∈ γ ∧ (Ix(m1), Ix(m2)) ∈ α]}.

A similar definition applies for the y-direction.

Note that if (δ, γ) is not a consistent pair, then both ιx(δ, γ) and ιy(δ, γ) are the empty relation.
If (δ, γ) is a consistent pair, then we can prove (Liu et al., 2010) that its x- (or y-) projective interval
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relation is an IA relation R which has the following property

R = {b,m} or R = {bi,mi}, or R is a basic IA relation in {o, s,d, f,eq,oi, si,di, fi}. (10)

The two projective interval relations can then be combined into an RA relation.

Definition 12. (Zhang et al., 2008; Liu et al., 2010) For a pair of basic CDC relations (δ, γ), we
call ι(δ, γ) = ιx(δ, γ) ⊗ ιy(δ, γ) the RA relation induced by (δ, γ). In general, for a basic CDC
constraint network ∆ = {viδijvj}ni,j=1, we call ι(∆) = {viRijvj}ni,j=1 the RA constraint network
induced by ∆, where Rij = ι(δij , δji).

Note that ι(δ, γ) is not necessarily a basic RA relation. If (δ, γ) is consistent, then we know the
RA relation ι(δ, γ) has the form α ⊗ β, where α, β are IA relations that satisfy (10). Furthermore,
a solution of {v1δv2, v2γv1} is always a solution of {v1ι(δ, γ)v2}. We note that a solution of
{v1ι(δ, γ)v2} is not necessarily a solution of {v1δv2, v2γv1}.

Take the consistent pair (δ∗, γ∗) defined in (9) as an example. Figure 3 (ii) and (iii) show two
solutions (a, b) and (a′, b′) of the basic CDC constraint network {v1δ

∗v2, v2γ
∗v1}. This implies

by definition that ιx(δ∗, γ∗) contains {b,m}. It is easy to see from the definition that ιx(δ∗, γ∗)
contains no other basic IA relations and ιx(δ∗, γ∗) = {b,m}. Similarly, we can show ιy(δ∗, γ∗) =
{d}. This shows that this consistent pair (δ∗, γ∗) corresponds to basic RA relations, viz. m⊗ d and
b⊗ d.

2.4.1 CANONICAL SOLUTIONS OF BASIC CDC NETWORKS

Just like IA and RA, consistent CDC networks also have ‘canonical’ solutions.

Definition 13 (regular solution, Zhang et al., 2008; Liu et al., 2010). Suppose m = (mi)
n
i=1 is

a solution of a basic CDC constraint network ∆. We say that m is maximal if m′i ⊆ mi holds
for any solution (m′i)

n
i=1 of ∆ withM(mi) = M(m′i); we say m is regular if m is maximal and

(M(mi))
n
i=1 is a canonical tuple of rectangles.

A basic CDC network in general has many regular solutions, but we have the following result.

Proposition 14. Let ∆ be a basic CDC network. Suppose Γ is a basic RA network that refines
ι(∆), the induced RA network of ∆. Then we can determine in cubic time whether ∆ has a solution
that also satisfies Γ. Moreover, if ∆ has a solution, then it has a unique regular solution which also
satisfies Γ. Furthermore, this unique regular solution can be constructed in cubic time.

Proof. The proof is similar to that for Proposition 12 in the work of Liu et al., (2010). A sketch is
given in Appendix A.

From the proof of the above result, we can see that each region mi in a regular solution (mi)
n
i=1

consists of unit cells (i.e. rectangles of the form [i, i+1]× [j, j+1], where i, j ∈ Z) in the canonical
solution of Γ, i.e. for each region mi and each cell c, we have either c ⊆ mi or c ∩mi

◦ = ∅.
For a basic CDC network ∆, there may exist exponentially many different basic RA networks

that refine ι(∆). Hence, ∆ may have exponentially many different regular solutions (see Fig-
ure 11(a) for an example of such a network). However, to verify that ∆ has a solution, we need
only prove that ∆ has a solution for some special basic RA network that refines ι(∆) (Liu et al.,
2010, Proposition 12).3 Therefore, the consistency of ∆ can be determined in cubic time, and, if ∆
is consistent, a regular solution can be constructed in cubic time (Liu et al., 2010).

3. Such a special network is called a “meet-free” basic RA network in the work of Liu et al., (2010).
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3. The Joint Satisfaction Problem

After the preparatory introduction of basic notions and essential results of qualitative calculi, we are
now ready to describe the joint satisfaction problem.

Let M1 and M2 be two qualitative calculi over the same domain U. Suppose Si is a subclass of
Mi (i = 1, 2). We write JSP(S1,S2) for the joint satisfaction problem (Gerevini & Renz, 2002; Li,
2007) over S1 and S2.

Suppose Θ = {viTijvj}ni,j=1 is a constraint network over S1, and ∆ = {viDijvj}ni,j=1 is a
constraint network over S2 involving the same variables. Then we say Θ ] ∆ is an instance of
JSP(S1,S2). The joint satisfaction problem was first considered for RCC8 and the qualitative size
calculus (identical to the Point Algebra in Vilain & Kautz, 1986) by Gerevini and Renz (2002).
Moreover, it was shown that the consistency of a joint network can be approximated by the poly-
nomial bipath-consistency algorithm. Li and Cohn (2012) recently showed that bipath-consistency
can be equivalently expressed as below.

Definition 15. Let Θ]∆ be a joint constraint network over M1 and M2, where Θ = {viTijvj}ni,j=1

and ∆ = {viDijvj}ni,j=1. We say Θ ]∆ is bi-closed if α ∩Dij and Tij ∩ β are nonempty for any
basic relation α ∈ Tij , any basic relation β ∈ Dij , and any 1 ≤ i, j ≤ n (here we regard each
relation as a subset of U×U). A bi-closed joint network Θ]∆ is bipath-consistent if Θ and ∆ are
both path-consistent.

Informally speaking, a joint constraint network is bi-closed if each basic relation of a given
relation in one of the calculi is consistent with the corresponding relation in the other calculus.

As a simple example of the joint satisfaction problem, we consider the combination of RA and
CDC in the next subsection.

3.1 The Combination of RA and CDC

Let R be a basic CDC relation. Then R∼, the set-theoretic converse (or inverse) relation of R
(cf. (1)), may be not representable in the relation algebra CDC (Cicerone & Di Felice, 2004; Liu
et al., 2010). That is, R∼ cannot be represented as the union of several basic CDC relations. In this
sense, we say the CDC is not closed under converse. Recently, Schneider et al. (2012) proposed a
variant of CDC, called the Object Interaction Model (OIM), which is closed under converse.

For two bounded regions a, b, OIM divides the plane into up to (l1 + 2) × (l2 + 2) tiles by
extending the edges of M(a) and M(b), where l1 + 1 and l2 + 1 are the numbers of horizontal
and, respectively, vertical lines. It is clear that 1 ≤ l1, l2 ≤ 3 since edges ofM(a) andM(b) may
coincide. The OIM relation φab is represented by an l1× l2 matrix (also written as φab) considering
existence of interior points of a and/or b in corresponding bounded tiles. Let T be such a bounded
tile. We set the entry corresponding to T in the matrix φab to 0 if T has no interior point which is in
either a or b; and set it 1 (2, respectively) if T has an interior point which is in a (b, respectively) and
has no interior point which is in b (a, respectively); and set it 3 otherwise. The converse relation of
a basic OIM relation is also a basic OIM relation. In particular, the basic OIM relation φba of b to a
can be obtained by swapping the occurrences of 1 and 2 in φab.

For example, the OIM relations between the regions in Figure 3 (ii) and (iii) are respectively

φab =

0 0 2
1 0 2
0 0 2

 , φa′b′ =

0 2
1 2
0 2

 ,
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and the OIM relations between the regions in Figure 4 are respectively

φab =

0 2 2
1 3 2
1 1 0

 , φa′b′ =

0 2 2
1 1 2
1 1 0

 .
We note that for regions a, b, a′, b′ in both figures we have δab = δa′b′ . This suggests that OIM is
finer grained than CDC in the sense that it splits one basic CDC relation into several OIM relations.
Nevertheless, since CDC is not closed under converse, we need to consider consistent pairs of basic
CDC relations in order to evaluate its expressivity. When comparing the expressivity of the two
calculi in this way, we can see that (δab, δba) 6= (δa′b′ , δb′a′) in Figure 4, but (δab, δba) = (δa′b′ , δb′a′)
in Figure 3. This shows that OIM makes finer distinctions than CDC in describing the scenarios
given in Figure 3(ii) and (iii): when saying a is west of b, CDC does not differentiate if the east
boundary of a meets or precedes the west boundary of b. The following result shows that OIM is
only finer than CDC in describing these cardinal relations, and it is in essence the combination of
CDC and RA.

Theorem 16. (Li & Liu, 2014) For any two regions a and b, we can compute the RA relation of a
to b, the CDC relation of a to b, and the CDC relation of b to a from the OIM relation of a to b, and
vice versa.

In other words, for each basic OIM relation θ, there exist two basic CDC relations δ, δ′ and a
basic RA relation γ such that θ = δ ∩ δ′∼ ∩ γ, i.e. for any two regions a and b, the relation θ is the
OIM relation of a to b iff δ, δ′ and γ are, respectively, the CDC relation of a to b, the CDC relation
of b to a, and the RA relation of a to b. Because basic CDC and RA relations are both JEPD, the
above choices of δ, δ′, γ are unique. In the following, we call δ the CDC relation induced by θ and
call γ the RA relation induced by θ. Note that in this case δ′ (as a relation of b to a) is the CDC
relation induced by θ∼, which is the OIM relation of b to a.

As a consequence, we have the following result.

Proposition 17. Suppose Θ = {viθijvj}ni,j=1 is a basic OIM network such that θji = θ∼ij for any
i, j. Let ∆ = {viδijvj}ni,j=1 and Γ = {viγijvj}ni,j=1, where δij and γij are, respectively, the CDC
relation and the RA relation induced by θij . Then Θ is consistent iff the joint network ∆ ] Γ is
consistent.

Proof. Recall that the converse of a basic OIM relation is also a basic OIM relation. Because
θji = θ∼ij , it is straightforward to show that θij = δij ∩ δ∼ji ∩ γij . Therefore, solutions of Θ are
exactly the solutions of ∆ ] Γ.

As a consequence of Propositions 14 and 17 we have

Corollary 18. Let Θ, ∆ and Γ be as given in Proposition 17. Then Γ is a basic RA network that
refines ι(∆), and the consistency of Θ can be determined in cubic time. Moreover, if Θ is consistent,
then there is a unique regular solution of ∆ that is also a solution of Θ.

So far, we have described by an example what is a JSP. In the next three sections, we will
consider the main task of this paper: the JSP of topological and directional constraints.
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4. Combination of Weak RCC8 and RA Networks

In this section we represent topological information as weak RCC8 relations and directional infor-
mation as RA relations. We first consider the interaction between weak RCC8 and RA relations,
then consider the JSP for basic constraints, and, lastly, consider the JSP in general.

4.1 Interaction Between Weak RCC8 and RA Relations

Relations in different calculi may interact in the sense that a relation from one calculus may intersect
with several relations from the second calculus. We here recall related definitions and preliminary
results obtained by Li and Cohn (2012).

Definition 19. Let T be an RCC8 relation and D an RA relation. The RA relation induced by T
and the RCC8 relation induced by D are defined as

RA(T ) = {δ : δ is a basic RA relation and δ ∩ T 6= ∅} (11)

RCC8(D) = {θ : θ is a basic RCC8 relation and θ ∩D 6= ∅}. (12)

Note that a joint network Θ ]∆ is bi-closed if δij ⊆ RA(θij) and θij ⊆ RCC8(δij) for any i, j.

It is easy to see (cf. Li and Cohn, 2012) that RA(T ) =
⋃
{RA({θ}) : θ ∈ T} and

RA({DC}) ⊃ RA({EC}) ⊃RA({PO}) ⊃ RA({TPP}) ⊃ RA({NTPP,EQ}), (13)

RA({PO}) ⊃ RA({TPP∼}) ⊃ RA({NTPP∼,EQ}), (14)

where, for example, RA({EC}) ⊃ RA({PO}) holds because, for each basic RA relation δ, δ is
in RA({EC}) ifM(a)∩M(b) 6= ∅ for all (a, b) ∈ δ, and δ is in RA({PO}) ifM(a)∩M(b) is
a non-degenerate rectangle for all (a, b) ∈ δ.

Lemma 20. Let T be an RCC8 relation and D an RA relation. Then RCC8(D) is a relation in the
intersection of Ĥ8, Q8, and C8; and RA(T ) is a relation inH×H if T is a relation in Ĥ8 or Q8.

Proof. This follows from the definitions ofRCC8(D) andRA(T ) and a simple table look-up from
Appendix A of the work of Renz (2002).

The second statement does not apply to relations in C8. For example, consider T = {NTPP,
EQ}. Then T is a relation in C8, but RA(T ) = {d⊗ d,eq⊗ eq} is outsideH×H.

4.2 Combination of Basic Networks

We now consider the combination of RCC8 and RA. First we show that bipath-consistency is not
sufficient for consistency in JSP(Brcc8,Brec) (Li & Cohn, 2012). Let Γ = {viγijvj}4i,j=1 be the
basic RA network induced by the four rectangles mΓ

i (i = 1, 2, 3, 4) illustrated below.

Let Θ = {viθijvj}4i,j=1 be the basic RCC8 constraint network in which θ12 = θ34 = {EC} and
all the others are {DC}. Clearly, Θ is satisfiable. Although Θ ] Γ is bipath-consistent, it is not
satisfiable. This is because, otherwise, there exists a solution m = (mi)

4
i=1 andM(m1)∩M(m2) =

M(m3) ∩M(m4) = {P} is a singleton. By θ12 = θ34 = {EC} we know P ∈ mi (i = 1, 2, 3, 4).
This contradicts θ13 = {DC}.

We call point P in the above configuration a conflict point. In general, we have the following
definition.
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Definition 21 (conflict point). Let Θ = {viθijvj}ni,j=1 be a basic RCC8 network and Γ = {vi
γijvj}ni,j=1 a basic RA network. Suppose mΓ is the canonical solution of Γ. A point Q is called a
conflict point of mΓ

i if there exists j such that mΓ
i ∩mΓ

j = {Q} and θij = {EC}. We write Ci for
the set of all conflict points of mΓ

i .

Clearly, each conflict point of mΓ
i is also a corner point of mΓ

i . This implies that mΓ
i and mΓ

j

may have at most one common conflict point. Moreover, suppose m = (mi)
n
i=1 is a solution of

Θ ] Γ such thatM(mi) = mΓ
i for all 1 ≤ i ≤ n. Then each conflict point of mΓ

i is contained in
mi. This means Ci ⊂ mi. As a consequence, we have

Ci ∩ Cj 6= ∅⇒ θij 6= {DC} (1 ≤ i, j ≤ n) (15)

The following theorem shows that this is also sufficient.

Theorem 22. Let Θ = {viθijvj}ni,j=1 be a basic RCC8 network and Γ = {viγijvj}ni,j=1 a basic RA
network. Suppose Θ ] Γ is bipath-consistent. Then Θ ] Γ is satisfiable iff (15) holds.

Proof. The necessity part is clear. We defer the proof of the sufficiency part to Appendix B.

As a corollary, we have JSP(Brcc8,Brec) is in P.

Corollary 23. For a basic RCC8 network Θ and a basic RA network Γ, the consistency of Θ ] Γ
can be decided in cubic time.

Proof. Bipath-consistency of Θ ] Γ can be checked in cubic time. We can construct the unique
canonical rectangle solution of Γ in quadratic time. The conflict point set Ci can also be computed
in quadratic time. That is, the condition of Theorem 22 can be checked in cubic time.

4.3 Large Tractable Subsets

Recall that RCC8 has three maximal tractable subclasses Ĥ8, C8, and Q8, and IA has one maximal
tractable subclass H, all containing the basic relations. In this subsection, we aim to extend the
above result to maximal tractable subsets Ĥ8, C8 of RCC8, and the large tractable subsetH×H of
RA.

To this end, we need to extend the notion of conflict points from basic networks to arbitrary
networks. Recall that 0-meet relations and corner relations are basic RA relations defined in Defi-
nition 6.

Definition 24 (common conflict point). Let Θ = {viTijvj}ni,j=1 be an RCC8 network and ∆ =
{viDijvj}ni,j=1 an RA network. We say two variables vi, vj have the CCP (common conflict point)
relation, written CCP(vi, vj), if Dij is a 0-meet (basic) relation and Tij = {EC}, or

• Dij is a (possibly disjunctive) corner relation; and
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• there exist i′, j′ such that Dii′ and Djj′ are 0-meet (basic) relations, Dij′ , Di′j and Di′j′ are
(possibly disjunctive) corner relations, and Tii′ = Tjj′ = {EC}.

If CCP(vi, vj) and v′i, v
′
j are variables that satisfy the above conditions, we also write CCP(i, j :

i′, j′) to stress the roles of vi′ and vj′ .

(i) (ii)

Figure 5: Two joint constraint networks in JSP(RCC8, RA), where in both (i) and (ii)
Dij is the basic RA relation between vi and vj as illustrated in the pic-
ture, T14 = T23 = {EC} and all unspecified RCC8 constraints are
non-basic RCC8 relation {DC,EC,PO}. In both (i) and (ii) we have
CCP(1, 2),CCP(1, 3),CCP(1, 4),CCP(2, 3),CCP(2, 4),CCP(3, 4).

Examples are shown in Figure 5. Note that if Θ and ∆ are all basic networks, then vi and vj
have the CCP relation iff Ci ∩ Cj is nonempty, i.e. vi and vj have a common conflict point.

Definition 25. Let Θ = {viTijvj}ni,j=1 be an RCC8 network and ∆ = {viDijvj}ni,j=1 an RA
network. We say Θ ]∆ is CCP-consistent if

CCP(vi, vj)⇒ DC 6∈ Tij (16)

holds for any i 6= j. We say a joint network Θ ] ∆ is BC-consistent if it is bipath-consistent and
CCP-consistent.

In general, if vi and vj have the CCP relation, then (in any realisation) vi and vj share at least
one corner point (of their MBRs) in common. Therefore, in the weak RCC8 algebra, they cannot be
disconnected, and neither can be contained in another as a non-tangential proper part. Note that the
latter statement also follows from the bi-closedness of Θ ]∆.

Similar to the bipath-consistency algorithm (Gerevini & Renz, 2002), we devise an algorithm
(Algorithm 1) for enforcing BC-consistency. The following theorem shows that this algorithm is
sound.

Theorem 26. Suppose Θ ] ∆ is a joint network of RCC8 and RA constraints, where Θ = {viTij
vj}ni,j=1 and ∆ = {viDijvj}ni,j=1. Then in O(n4) time, the algorithm BC-CONSISTENCY either
finds an inconsistency or transforms Θ ] ∆ into an equivalent joint network Θ′ ] ∆′ which is
BC-consistent.
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Input: A joint network Θ ]∆, where Θ = {viTijvj}ni,j=1 and ∆ = {viDijvj}ni,j=1.
Output: false, if an empty constraint is generated; a BC-consistent joint network equivalent

to Θ ]∆, otherwise.
Q← {(i, k, j) | i 6= j, k 6= i, k 6= j}; (i indicates the i-th variable of Θ ]∆.
Analogously for j and k)
while Q 6= ∅ do

select and delete a path (i, k, j) from Q;
if BC-REVISION(i, k, j) then

if Tij = ∅ or Dij = ∅ then
return false;

end
Q← Q ∪ {(i, j, k), (k, i, j) | k 6= i, k 6= j};

end
end

Function: BC-REVISION(i, k, j)
Input: three variables i, k and j
Output: true, if Tij or Dij is revised; false otherwise.
Side effects: Tij and Dji revised using the operations ∩ and ◦w.
Tij ←
(Tij ∩RCC8(Dij))∩ (Tji ∩RCC8(Dji))

∼ ∩ (Tik ∩RCC8(Dik)) ◦w (Tkj ∩RCC8(Dkj));
Dij ← (Dij ∩RA(Tij)) ∩ (Dji ∩RA(Tji))

∼ ∩ (Dik ∩RA(Tik)) ◦w (Dkj ∩RA(Tkj));
if CCP(i, j : k) then

Tij ← Tij \ {DC};
end
if neither Tij nor Dij is revised then

return false;
end
Dji ← D∼ij ;
Tji ← T∼ij ;
return true.

Algorithm 1: BC-CONSISTENCY, where we write CCP(i, j : k) to represent the situation
where there exists another variable vl such that vl and vk together are evidence of CCP(i, j).
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Proof. This is because, if we iteratively use the following updating rules then either an empty con-
straint occurs or the network becomes stable.

Tij ← (Tij ∩RCC8(Dij)) ∩ (Tji ∩RCC8(Dji))
∼

∩ (Tik ∩RCC8(Dik)) ◦w (Tkj ∩RCC8(Dkj)) (17)

Dij ← (Dij ∩RA(Tij)) ∩ (Dji ∩RA(Tji))
∼ ∩ (Dik ∩RA(Tik)) ◦w (Dkj ∩RA(Tkj)) (18)

Tij ← Tij \ {DC} if CCP(i, j : k), (19)

where i, j, k represent the variables vi, vj and vk and CCP(i, j : k) represents the situation where
there exists another variable vl such that vl and vk together are evidence of CCP(i, j). For each
triple, CCP(i, j : k) can be determined in O(n) time and the subroutine BC-REVISION(i, k, j) can
be carried out in O(n) time. Since each Tij is a set of basic RCC8 relations and each Dij is a set of
basic RA relations, (Tij , Dij) can be revised for a constant number of times. Therefore the number
of the loops remains cubic, and BC-CONSISTENCY will terminate in O(n4) time.

The algorithm is in general not complete. The following lemma will be useful to prove the main
result (Theorem 28), which will guarantee the completeness of the algorithm for RCC8 networks
over Ĥ8 and RA networks overH×H.

Lemma 27. Let Θ = {viTijvj}ni,j=1 be an RCC8 network and ∆ = {viDijvj}ni,j=1 an RA network.
Suppose Θ is over Ĥ8 or Q8 and Θ ] ∆ is bipath-consistent. Assume that Θ∗ is the canonical
consistent scenario of Θ (cf. Theorem 3), and ∆∗ is any consistent scenario of ∆. Then Θ∗ ]∆∗ is
bipath-consistent.

Proof. Because both Θ∗ and ∆∗ are path-consistent basic networks, we need only show that Θ∗]∆∗

is bi-closed, i.e. δ∗ij ∈ RA(θ∗ij) and θ∗ij ∈ RCC8(δ∗ij) for any i 6= j. Since θ∗ij and δ∗ij are both basic
relations, this is equivalent to showing that θ∗ij ∩ δ∗ij is nonempty for any i 6= j. By (13) and (14) it
is straightforward to show that RA(Tij) = RA(θ∗ij). Therefore δ∗ij ⊆ Dij ⊆ RA(Tij) = RA(θ∗ij),
i.e. δ∗ij ∩ θ∗ij is nonempty.

We note that this result does not apply to C8. For example, let T = {NTPP,EQ}, D =
{d⊗ d,eq⊗ eq}. The RCC8 relation NTPP is inconsistent with the RA relation eq⊗ eq.

Theorem 28. Let Θ = {viTijvj}ni,j=1 be an RCC8 network and ∆ = {viDijvj}ni,j=1 an RA net-
work. Suppose Θ is over Ĥ8, and ∆ is overH×H. Then Θ]∆ is consistent if it is BC-consistent.

Proof. Recall that each RA network over H × H is in essence a pair of IA networks over H. By
Lemma 8 we know ∆ has a consistent scenario ∆∗ such that (i) δ∗ij is a 0-meet relation iff Dij is;
and (ii) δ∗ij is a corner relation iffDij consists of corner relations. Let Θ∗ be the canonical consistent
scenario of Θ. We show Θ∗ ]∆∗ is consistent.

By Lemma 27 we know Θ∗ ]∆∗ is bipath-consistent. We next show it satisfies (15), which is
equivalent to (16) when only basic constraints are concerned. To this end, we show that CCP(i, j :
i′, j′) holds in Θ∗ ] ∆∗ only if it holds in Θ ] ∆. By the choice of ∆∗ and Θ∗, we know Tii′ =
Tjj′ = {EC} and all the RA relations are either 0-meet relations or consist of corner relations.
Therefore, CCP(i, j : i′, j′) also holds in Θ]∆. Because Θ]∆ is BC-consistent, we know DC is
not in θij . This implies θ∗ij 6= {DC} and Θ∗]∆∗ satisfies (15). By Theorem 22, we know Θ∗]∆∗,
hence Θ ]∆, is consistent.
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As a consequence, we know the joint consistency problem over Ĥ8 or Q8 and H × H can be
solved in polynomial time.

Theorem 29. The joint satisfaction problems JSP(Ĥ8,H×H) and JSP(Q8,H×H) are in P.

Proof. Suppose Θ ] ∆ is a joint network such that Θ is over Ĥ8 or Q8, and ∆ is over H × H.
We first apply the algorithm BC-CONSISTENCY to Θ ]∆. If an empty relation occurs during the
process, then Θ]∆ is inconsistent. Otherwise, suppose Θ′ ]∆′ is the BC-consistent joint network
equivalent to Θ ]∆. We assert that Θ′ is still over Ĥ8 or Q8 and ∆′ is over H×H. We note that,
for any RCC8 relation T in Ĥ8 (or Q8), and any RA relation D inH×H, we have by Lemma 31

• RCC8(D) is a relation in both Ĥ8 and Q8;

• RA(T ) is a relation inH×H;

• T \ {DC} = T ∩ {EC,PO,TPP,NTPP,TPP∼,NTPP∼,EQ} is in Ĥ8 (or Q8).

Because BC-CONSISTENCY only uses the rules (17)-(19) to update relations, each RCC8 relation
in Θ′ remains in Ĥ8 (orQ8), and each RA relation in ∆′ remains inH×H. The consistency Θ′]∆′

then follows from Theorem 28.

The property in the proof of the above theorem does not hold for C8. It remains open if
JSP(C8,H × H) is tractable (though this is not very important for practical purposes since either
Ĥ8 or Q8 can be used to backtrack over to find a solution if required).

5. Combination of RCC8′ and RA Networks

In this section, we represent topological information as RCC8′ relations and directional information
as RA relations. In the previous section we have shown that, for certain tractable subclasses of RCC8
and RA, the JSP can be determined in polynomial time, but we also show that bipath-consistency
is incomplete for these subclasses. The reason lies in that two regions that are constrained by DC
may have a common conflict point. For RCC8′, this situation does not exist anymore because two
disjoint regions may still have a 0-dimensional intersection. This section will show that, for RCC8′,
bipath-consistency alone is sufficient to show the consistency of a joint network Θ ]∆ for Θ over
H8 or C8 and ∆ overH×H.

As in the case of weak RCC8, we first consider the interaction between RCC8′ and RA relations,
then consider the consistency of joint basic networks, and, lastly, consider the general case.

Similar to Definition 19, we have the following definition.

Definition 30. Let T be an RCC8′ relation and D an RA relation. The RA relation induced by T
and the RCC8′ relation induced by D are defined as

RA(T ) = {δ : δ is a basic RA relation and δ ∩ T 6= ∅} (20)

RCC8′(D) = {δ : θ is a basic RCC8′ relation and θ ∩D 6= ∅}. (21)

It is easy to see that RA(T ) =
⋃
{RA({θ}) : θ ∈ T} and

RA({DC})⊃RA({EC})⊃RA({PO})⊃RA({TPP}) = RA({NTPP}) ⊃ RA({EQ}).
RA({PO})⊃RA({TPP∼}) = RA({NTPP∼}) ⊃ RA({EQ}).
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Note that we have RA({TPP}) = RA({NTPP})= {s,d, f,eq} ⊗ {s,d, f,eq}. This is because
in RCC8′ a non-tangential proper part of a region a may have the same MBR as a. For example,
each star region in Figure 6 is a non-tangential proper part of its MBR in RCC8′.

Lemma 31. Let T be an RCC8′ relation and D an RA relation. Then RCC8′(D) is a relation in
the intersection of Ĥ8, Q8, and C8; and RA(T ) is a relation in H ×H if T is a relation in Ĥ8 or
Q8 or C8.

In particular, unlike the case for weak RCC8, we have RA({NTPP,EQ}) = {s,d, f,eq} ⊗
{s,d, f,eq} is a relation inH×H.

Figure 6: Basic regions of a control point P in the combination of RCC8′ and RA.

Theorem 32. Suppose Θ is a basic RCC8′ network and ∆ is a basic RA network. Then Θ ]∆ is
consistent if it is bipath-consistent.

Proof. The proof follows the same pattern as for the combination of weak RCC8 and RA (The-
orem 22), but we need to replace the basic regions around a control point P with the star re-
gions shown in Figure 6, where we only show three regions b, r, g around P , and bNTPPr and
rNTPPg.

We have the following result for RCC8′ and RA.

Theorem 33. Suppose Θ is a network over Ĥ8 or Q8 in RCC8′, ∆ is an RA network. Then Θ ]∆
is consistent if Θ ]∆ is bi-closed, Θ is path-consistent, and ∆ is consistent.

Proof. Assume that Θ∗ is the canonical consistent scenario of Θ, and ∆∗ is any consistent scenario
of ∆. Then, completely similar to Lemma 27, we can show that RA(θ∗ij) = RA(θij) and hence the
bi-closeness of Θ∗]∆∗. Because Θ∗ and ∆∗ are consistent, we know Θ∗]∆∗ is bipath-consistent,
hence consistent by Theorem 32.

The above result shows that the consistency of a joint network in JSP(Ĥ8, RA) can be polyno-
mially reduced to determining the consistency of an RCC8 network over Ĥ8 and an RA network.
In this sense, JSP(Ĥ8, RA) is a separable problem. In particular, we have
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Theorem 34. If RCC8 relations are interpreted by using strong connectedness, then the joint satis-
faction problems JSP(Ĥ8,H×H) and JSP(Q8,H×H) are in P.

Again, it remains open whether the above result holds for networks over C8 in RCC8′, even
though in this case RA({NTPP,EQ}) = RA(TPP) is a relation inH×H.

In the following section, we consider the combination of RCC8 and CDC constraints.

6. Combination of RCC8 and CDC Constraints

Although basic RCC8 networks and basic CDC networks can be solved in cubic time indepen-
dently, the interaction between RCC8 and CDC constraints makes the joint satisfaction problem
hard to solve. In this section, we first show that the joint satisfaction problem is in NP by de-
signing a polynomial non-deterministic algorithm and then show it is NP-hard even for basic con-
straints. This shows that JSP(Brcc8,Bcdc) is NP-complete. We then consider three variants of
JSP(Brcc8,Bcdc) obtained by replacing RCC8 with RCC8′ and/or CDC with OIM. Write Boim for
the set of basic OIM relations. We show JSP(Brcc8,Boim) and JSP(Brcc8′ ,Bcdc) are NP-complete,
but JSP(Brcc8′ ,Boim) is in P.

6.1 Algorithms

Let Θ be an instance of a joint basic RCC8 or RCC8′ network and ∆ a basic CDC or OIM network
over the same set of variables. We provide in this subsection algorithms for determining the consis-
tency of Θ ]∆. Our key idea is first showing that Θ ]∆ is consistent iff ∆ has a regular solution
that is RA consistent with Θ (see below) and then giving algorithms for determining whether ∆ has
such a regular solution.

Suppose m = (mi)
n
i=1 is a solution of ∆. Recall that we say m = (mi)

n
i=1 is a regular solution

if it is a maximal solution and {M(mi)}ni=1 is a canonical tuple of rectangles (cf. Dfn. 13). Note
that each region in a regular solution m is the union of a set of cells introduced by the canonical
tuple of rectangles.

Definition 35. Let Θ = {viθijvj}ni,j=1 be a basic RCC8 network and ∆ = {viδijvj}ni,j=1 a basic
CDC network. Suppose m = (mi)

n
i=1 is a regular solution of ∆. Write Γ for the RA network

induced by m. We say a regular solution m of ∆ is RA consistent with Θ if there exists a solution of
Θ ]∆ which also satisfies Γ.

The following lemma gives a characterisation of consistent joint basic networks.

Lemma 36. Let Θ = {viθijvj}ni,j=1 be a basic RCC8 network and ∆ = {viδijvj}ni,j=1 a basic
CDC network. Then Θ ]∆ is consistent iff ∆ has a regular solution that is RA consistent with Θ.

Proof. The sufficiency part is clear by definition. We only prove the necessity part. Suppose a =
(ai)

n
i=1 is a solution of Θ]∆. Write Γ for the RA network induced by a. Then a is also a solution of

∆]Γ. Hence there is a unique regular solution of ∆ which also satisfies Γ. Write m = (mi)
n
i=1 for

this regular solution. It is clear that m is a regular solution of ∆ that is RA consistent with Θ.

By this lemma, to determine the consistency of Θ ] ∆, we need only determine the existence
of regular solutions of ∆ that are RA consistent with Θ. Suppose m is a regular solution of ∆. We
next give a necessary and sufficient condition for m being RA consistent with Θ.
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To this end, we first fix some notation and terminology. For a region mi in m, we say a corner
point P of mi is a potential conflict point (in m) if exactly one of the four cells incident to P is
contained in mi. For example, the grey region shown in Figure 7 has five potential conflict points
Pi (i = 1, ..., 5). Later we will show that these points may introduce conflicts that are hard to resolve
when RCC8 constraints are involved. Furthermore, we denote by Gi the set of cells contained in
mi, Ei the set of edges of cells which lie on the boundary of mi, and Ni the set of potential conflict
points of vi.

Figure 7: Illustration of potential conflict points.

Lemma 37. Let Θ = {viθijvj}ni,j=1 be a basic RCC8 network and ∆ = {viδijvj}ni,j=1 a basic
CDC network. If a regular solution m = (mi)

n
i=1 of ∆ is RA consistent with Θ, then we have:

if θij = TPP or NTPP then Gi ⊆ Gj . (22)

Proof. We prove this by contradiction. Assume that (viTPPvj) or (viNTPPvj) is a constraint in
Θ and Gi * Gj .

Suppose (vsδvt) is a constraint in ∆, where δ is a basic CDC relation represented by the 3× 3
Boolean matrix (dpq)1≤p,q≤3. Because m is a solution of ∆, we have for any 1 ≤ p, q ≤ 3 that

dpq = 1 iff m◦s ∩m
pq
t 6= ∅, (23)

where mpq
t denotes one of the nine tiles generated by the MBR of mt (cf. Fig. 3). Since m is a

regular solution and Gs is the set of cells contained in ms, this is equivalent to saying that

dpq = 1 iff Gs and mpq
t have a common cell. (24)

Now let g be a cell in Gi \ Gj . Because g is not in Gj , by the construction procedure of regular
solutions (see Appendix A), there exists a constraint (vjδ

′vk) ∈ ∆ with δ′ = (d′uv) such that g is a
cell contained in mpq

k for some p, q. By (24) and that g is not in Gj we know d′pq = 0 and hence,
by (23), m◦j ∩m

pq
k = ∅. Let (viδ

′′vk) be the CDC constraint between vi and vk in ∆ and suppose
δ′′ = (d′′uv). Because g is cell in both Gi and mpq

k , we have d′′pq = 1 by (24).
Because m is RA consistent with Θ, there exists a solution a = (ai)

n
i=1 of Θ ] ∆ such that

M(ai) = M(mi). Since (viTPPvj) or (viNTPPvj) is in Θ, we know ai ⊂ aj . Furthermore,
we have aj ⊆ mj as m is a maximal solution of ∆. Therefore, ai ⊂ mj . Because mpq

k = apqk
and m◦j ∩ m

pq
k = ∅, a◦i ∩ a

pq
k is empty. This shows that (ai, ak) is not in δ′′ since d′′pq = 1. A

contradiction.

The NTPP constraints may furthermore exclude some edges in Ei and nodes in Ni from the
valuation of vi. Suppose viNTPPvj is a constraint in Θ and m = (mi)

n
i=1 is RA consistent with

Θ. For any solution a = (ai)
n
i=1 of Θ ]∆ withM(ai) = M(mi), by aiNTPPaj and aj ⊆ mj
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we have aj ∩ ∂mj = ∅. This is to say, ai cannot touch the edges and nodes in Ej and Nj . To
characterise this, we define

Ēi ≡ Ei \
⋃
{Ej : viNTPPvj ∈ Θ}, (25)

N̄i ≡ Ni \
⋃
{Nj : viNTPPvj ∈ Θ}. (26)

Since every region in m can be represented by a Boolean matrix, Gi, Ēi, N̄i can be calculated
in polynomial time. The following proposition then gives a necessary and sufficient condition for m
being RA consistent with Θ.

Lemma 38. Let Θ = {viθijvj}ni,j=1 be a basic RCC8 network and ∆ = {viδijvj}ni,j=1 a basic
CDC network. Then a regular solution m = (mi)

n
i=1 of ∆ is RA consistent with Θ iff

• viTPPvj ∈ Θ or viNTPPvj ∈ Θ implies Gi ⊆ Gj , and

• M(
⋃
Ēi) =M(mi) for any i, and

• viPOvj ∈ Θ implies Gi ∩Gj 6= ∅, and

• there exists a resolving function f , which is defined as a function from V toP(
⋃
{N̄1, · · · , N̄n})

satisfying (27)-(29).

f(vi) ⊆ N̄i, (27)

viECvj ∈ Θ⇒ Gi ∩Gj 6= ∅ or Ēi ∩ Ēj 6= ∅ or f(vi) ∩ f(vj) 6= ∅, (28)

viDCvj ∈ Θ⇒ f(vi) ∩ f(vj) = ∅. (29)

Proof. We begin with the necessity part. Suppose m is RA consistent with Θ. Then by definition
there exists a solution a = (ai)

n
i=1 of Θ ] ∆ such that M(ai) = M(mi). The first condition is

proven in Lemma 37. For the second condition, becauseM(ai) =M(mi), and ai ⊆ mi, we know
that ai has a nonempty intersection with one unit edge on a cell that lies on the top (bottom, leftmost,
or rightmost) edge ofM(mi). This unit edge is clearly inEi. Furthermore, it can be proven that this
edge is in Ēi, and thus we haveM(

⋃
Ēi) =M(mi). The following two conditions guarantee that

the PO, EC constraints can be satisfied while not violating DC constraints. The third condition
follows directly from ai ⊆

⋃
Gi and aiPOaj . For the last condition, we define a resolving function

f as f(vi) = {P ∈ N̄i : P ∈ ai}. It is straightforward to prove that f satisfies (27)-(29).
For the sufficiency part, we construct a solution of Θ]∆. The procedure is quite similar to that

given for Theorem 22 in Appendix B. For vi, we choose a control point from each cell in Gi and
a control point from each edge in Ēi. If viPOvj , we choose a control point for both of them from
a common cell of Gi and Gj . If viECvj , we choose a control point for them in a common cell if
Gi ∩ Gj 6= ∅, or from a common edge if Ēi ∩ Ēj 6= ∅, or from f(vi) ∩ f(vj) by the resolving
function f . It can then be proven that these control points lead to a solution of Θ. Moreover, the
choice of control points ensures that the regions are also a solution of ∆.

Since the conditions in Lemma 38 can be verified by a nondeterministic polynomial algorithm,
we have the following theorem.

Theorem 39. JSP(Brcc8,Bcdc) is in NP.
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Proof. Suppose Θ]∆ is an instance of JSP(Brcc8,Bcdc). We devise a nondeterministic polynomial
algorithm as follows. We first guess a basic RA network Γ that is consistent with the basic CDC
network ∆, and compute the regular solution m of ∆ that satisfies Γ in cubic time, and further guess
a resolving function f that satisfies the conditions (27)-(29), and check whether m is consistent
with the basic RCC8 network Θ by Lemma 38 via f . If this is the case, the algorithm returns true.
Otherwise, the algorithm returns false. This shows that JSP(Brcc8,Bcdc) is in NP.

Since each OIM network has at most one regular solution, by Lemma 38 we have

Corollary 40. JSP(Brcc8,Boim) is in NP.

If we interpret topological constraints in RCC8′, then we have the following simplified condition
for determining whether a regular solution of ∆ is RA consistent with Θ.

Proposition 41. Suppose that Θ is a basic RCC8′ network, and ∆ is a basic CDC network, both
over the same set of variables V = {v1, · · · , vn}. Then a regular solution of ∆ is RA consistent
with Θ iff

• viTPPvj ∈ Θ or viNTPPvj ∈ Θ implies Gi ⊆ Gj , and

• viPOvj ∈ Θ implies Gi ∩Gj 6= ∅, and

• viECvj ∈ Θ implies that either Gi ∩Gj or Ēi ∩ Ēj is nonempty.

Moreover, the above conditions can be checked in polynomial time.

Proof. The proof is similar to that for Lemma 38. The resolving function is now irrelevant, because
in RCC8′ conflict points are no longer evidence for EC relations, where a point P (a set X , re-
spectively) is regarded as evidence of a relation (aECb) if P ∈ a ∩ b (X ⊆ a ∩ b), respectively.
Note that we do not require M(

⋃
Ēi) = M(mi), as in RCC8′ it is possible that aNTPPb and

M(a) =M(b), see Figure 6 for illustration.

This directly leads to the following two results.

Theorem 42. JSP(Brcc8′ ,Bcdc) is in NP.

Proof. The proof is similar to that for Theorem 39. Suppose Θ]∆ is an instance of JSP(Brcc8,Bcdc).
We first guess a basic RA network Γ that is consistent with ∆ and construct a regular solution m of
∆ that satisfies Γ and then check whether m is RA consistent with Θ by Proposition 41.

Recall that OIM is in essence the combination of CDC and RA, and a basic OIM network is
consistent iff the two component CDC and RA networks are consistent (see Proposition 17). In the
case when RCC8′ is combined with OIM, we have the following tractability result.

Theorem 43. JSP(Brcc8′ ,Boim) is in P.

Proof. The algorithm for JSP(Brcc8′ ,Boim) contains three steps. Suppose Θ ] ∆ is an instance
with n variables. The first step is to decide whether ∆ and Θ are independently consistent. If not
so, then return false; otherwise, construct the unique regular solution m of ∆. This can be achieved
in O(n3) time. We then calculate Gi and N̄i, which can be done in O(n4) time. The third step is
to decide whether m is RA consistent with Θ according to Proposition 41, which can be done in
O(n4) time. Therefore, the consistency of Θ ] ∆ can be determined in O(n4) time and, hence,
JSP(Brcc8′ ,Boim) is in P.
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In the next subsection, we show that JSP(Brcc8,Bcdc), JSP(Brcc8′ ,Bcdc), and JSP(Brcc8,Boim)
are all NP-hard.

6.2 NP-Hardness Results

Recall that in the proof of Theorem 39, we guess twice when determining the consistency of an
instance Θ ] ∆ of JSP(Brcc8,Bcdc), once for a basic RA network that is consistent with ∆, and
once for a resolving function f that satisfies (27)-(29) (see Proposition 38). In this subsection we
devise two polynomial reductions from known NP-hard problems to JSP(Brcc8,Bcdc) by exploiting
these two facts.

Theorem 44. JSP(Brcc8,Bcdc) is NP-hard.

Proof. The first reduction is from 3-SAT to JSP(Brcc8,Bcdc). Because it is quite complicated, we
defer the construction to Appendix C. Here we only explain why this problem is NP-hard.

For each 3-SAT instance ϕ, we construct an instance Θϕ ] ∆ϕ of JSP(Brcc8,Bcdc) such that
each RCC8 constraint is either a DC or an EC constraint. Furthermore, we can show that ∆ϕ has a
unique regular solution that is RA consistent with Θϕ if ϕ is consistent.

The intractability is caused by the potential conflict points in the regular solution, which, to-
gether with the EC and DC constraints, may introduce conflicts that are hard to resolve. By
Lemma 38, to satisfy an EC constraint viECvj , we need to check whether mi and mj share a
cell, or else an edge, or else a corner point. In the last case, it can be proven without much difficulty
that points shared by mi and mj are exactly those points in N̄i ∩ N̄j . Therefore, if mi and mj share
no cell or edge, then the evidence point for the constraint viECvj can only be chosen from N̄i∩N̄j .
It turns out that choosing such evidence points for all the EC constraints while not violating the
DC constraints in Θ is NP-hard.

The second reduction is from Graph 3-colouring problem to JSP(Brcc8,Bcdc). We defer the con-
struction to Appendix D. For each graphG, we construct an instance ΘG]∆G in JSP(Brcc8,Bcdc).
This reduction differs from the first one in that it does not exploit the intractability of finding a
resolving function. In fact, when viECvj is a constraint, then in each regular solution m of ∆G,
either mi and mj share a cell or an edge, or mi and mj are disjoint (in which case m is not RA
consistent with Θ). That is to say, resolving functions have no effect on the RA consistency of m.
The reduction is based on the fact that ∆G has exponentially many regular solutions, and there is no
general way to test all of them in polynomial time (unless P = NP).

Note that in the first reduction we have shown ∆ϕ has a unique regular solution that is RA
consistent with Θϕ if ϕ is consistent, where ϕ is a 3-SAT instance and Θϕ ] ∆ϕ is the instance
of JSP(Brcc8,Bcdc) defined by the reduction. Write Γϕ for the basic RA network induced by this
particular regular solution of ∆ϕ. It is easy to see that Θϕ ]∆ϕ is consistent iff Θϕ ]∆ϕ ] Γϕ is
consistent. In other words, the reduction from 3-SAT is also a reduction to JSP(Brcc8,Boim).

Corollary 45. JSP(Brcc8,Boim) is NP-hard.

Similarly, the second reduction is also a reduction to JSP(Brcc8′ ,Bcdc). This is because the
JSP(Brcc8,Bcdc) instance for each graph G only uses DC and EC constraints, and when two vari-
ables are required to be EC, then their MBRs do not 0-meet, but their MBRs may overlap.

Corollary 46. JSP(Brcc8′ ,Bcdc) is NP-hard.
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By these NP-hardness results and Theorem 39, Corollary 40, and Theorem 42, we know

Theorem 47. The joint satisfaction problems JSP(Brcc8,Bcdc), JSP(Brcc8′ ,Bcdc), and JSP(Brcc8,
Boim) are all NP-complete.

7. Conclusion

In this paper, we have investigated the computational complexity of reasoning with topological
relations and cardinal directions between extended spatial objects. We used two different inter-
pretations of the well-known RCC8 algebra for representing topological information, and use the
Rectangle Algebra (RA) and the cardinal direction calculus (CDC) to describe directional informa-
tion. We have shown that the joint satisfaction problems are decidable and remain in NP for all
these interpretations of topological and directional information. More importantly, we have shown
that the consistency problem is in P when basic (weak or strong) RCC8 and basic RA constraints
are involved, or when topological constraints are basic strong RCC8 constraints and directional
constraints are jointly represented by basic RA and CDC constraints.

Some related work has been reported in the work of Sistla and Yu (2000), Li (2007), and Li
and Cohn (2012), but only small fragments of RA are used to express directional information. Our
results represent a large step towards the applicability of qualitative spatial reasoning techniques for
real-world problems. In particular the tractable results are very promising as they enable efficient
reasoning about these important calculi. It also means that if efficient reasoning is important for
a potential application, developers should aim for representing directional information using RA
(or together with CDC) instead of CDC alone and/or representing topological information by using
RCC8′ instead of RCC8. Our results about combining RCC8 and CDC/OIM are very important
from a theoretical point of view as they are the first formal results for this combination. As demon-
strated using a concrete application scenario, our results are also of practical significance, as the
combined information we consider can be easily extracted in cases where computer vision is used
for obtaining spatial information.
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Appendix A. Realisation of Basic CDC Networks

We here describe the cubic algorithm given in the work of Zhang et al., (2008), and Liu et al., (2010).
Given a basic CDC network, first, we compute a canonical solution of the induced (possibly non-
basic) RA network. Next, we remove the cells that violate some constraints from each rectangle.
Third, we check whether what we have obtained is a valid solution. In the following, we give a
detailed description with a running example illustrated in Table 4 and Figure 8.
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δij δji ιxij ⊗ ι
y
ij ρxij ⊗ ρ

y
ij

(1, 2)

0 0 0
1 1 0
1 0 0

 0 1 1
0 1 1
0 0 0

 o⊗ o o⊗ o

(1, 3)

0 0 0
1 0 0
1 0 0

 0 0 0
0 1 0
0 0 0

 {m,b} ⊗ fi b⊗ fi

(2, 3)

1 1 0
1 0 0
0 0 0

 0 0 0
0 0 1
0 1 1

 o⊗ oi o⊗ oi

Table 4: Example of solving a basic CDC network.

Step 1. Compute the induced RA network Γ0 of ∆.
Step 2. Refine Γ0 to a basic RA network Γ = {vi(ρxij ⊗ ρ

y
ij)vj}ni,j=1 by setting ρxij = ιxij\{m,mi}

and ρyij = ιyij\{m,mi}. If Γ is unsatisfiable, then neither is ∆. Suppose Γ is satisfiable and construct
its canonical solution mΓ = (mΓ

i )ni=1 (cf. Figure 8).

Figure 8: Illustration of Step 3: Deriving a solution m of ∆ from a canonical solution mΓ of Γ.

Step 3. This step tries to find a solution m = (mi)
n
i=1 of the basic CDC network ∆ such that

M(mi) = M(mΓ
i ). Recall a basic CDC relation δij is represented as a 3 × 3 Boolean matrix

((δij)xy). If m is a solution, m◦i ∩ (mj)xy = ∅ holds for every (δij)xy = 0, where (mj)xy is one
of the nine tiles generated byM(mj) (cf. Figure 3). This means, to make m a solution to ∆, we
need to exclude all impossible cells from mΓ

i . Set Ti =
⋃
{(mΓ

j )xy : (δij)xy = 0}nj=1. Let mi be
the closure of mΓ

i \ Ti (cf. Figure 8 left).
Step 4. The last step checks whether m = (mi)

n
i=1 is a solution of ∆. If it is a solution, then m

must be a regular solution; if it is not, then we assert that ∆ has no solution at all.
We note that other regular solutions may exist (cf. Figure 8 right). We can get all of them by

repeating Steps 2 to 4 using every possible refinement of Γ0.

Appendix B. Proof of Theorem 22

We only need to show the ‘sufficiency’ part. Similar to the cubic construction method for ba-
sic RCC8 constraints (cf. Li, 2006b and Section 2.2.1 of this paper), we construct a solution
m = (mi)

n
i=1 with an additional requirement that M(mi) = mΓ

i for each 1 ≤ i ≤ n, where
{mΓ

1 , ...,m
Γ
n} is the canonical solution of ∆. Recall that the coordinates of each corner point of a

rectangle mΓ
i are integral. Assuming the ntpp-level l(i) has been computed for each 1 ≤ i ≤ n, we

next describe the construction in detail.
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Step 1. Selection of Control Points

For each vi we select a set of control pointsXi. First of all, each corner point in Ci is a control point
for vi. We then select one (non-integral) point from each edge of mΓ

i and put the four points into
Xi. Then, for any j > i with θij = EC or PO select a point Pij frommΓ

i ∩mΓ
j (which is nonempty

because of the bipath-consistency of Θ ] Γ), and put it into both Xi and Xj . Note that mΓ
i ∩mΓ

j

could be a single point, or a line segment, or a rectangle. When choosing Pij from mΓ
i ∩mΓ

j , we
require that each Pij is a fresh point that has not been chosen before and is not a corner point of any
rectangle (unless Γi ∩mΓ

j is a singleton set). We write P for the set of all the control points.

Step 2. Basic Regions Associated to Control Points

For each control point Q, we construct a series of sectors {qi,k : k = 1, · · · , 4}ni=1 and a series
of squares {q(i)}ni=1 (see Figure 9). We call these the basic regions associated to Q. Note that we
use an upper case letter to denote a control point, and use the corresponding lower case letter (with
indices) to denote basic regions. The sectors are chosen in this way as this allows us to distinguish
up to four connecting regions in cases where Q is a corner point (such as point P in Figure3). The
sectors completely fill all the disks.

Figure 9: Basic regions of a control point Q.

For any two different control points, we require their outermost squares to be disjoint. Further-
more, a basic region must be small enough so that it is not crossed by the border of anymΓ

i of which
Q is not a boundary point.

Step 3. Region Construction

For each control point Q, set qi =
⋃4

k=1 q
i,k. Let

a1
i = mΓ

i ∩
⋃
{qi : Q ∈ Xi}

a2
i = a1

i ∪ (mΓ
i ∩

⋃
{qj : θij = PO, Q ∈ Xi ∩Xj})

a3
i = a2

i ∪
⋃
{a2

j : θji = TPP or θji = NTPP}

a4
i = a3

i ∪
⋃
{q(l(i)) : θji = NTPP, Q ∈ a3

j}

Set mi = a4
i and m = (mi)

n
i=1. It is easy to prove that m satisfies all RCC8 constraints in Θ. For

example, suppose (viDC vj) is a constraint in Θ. Because (15) holds, we know vi and vj share no
common conflict point, i.e. Ci∩Cj = ∅. Due to the choice of control points for vi and vj , we know
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Xi ∩Xj is also empty. It is now easy to show that mi ∩mj is empty and hence the DC constraint
is satisfied.

To show m also satisfies Γ, we need only prove M(mi) = mΓ
i for each i. It is clear that a1

i

and a2
i are subsets of mΓ

i . By the choice of Xi, we know mΓ
i =M(a1

i ) =M(a2
i ). If θji = TPP

or NTPP, then mΓ
j ⊆ mΓ

i by bipath-consistency. This implies M(a3
i ) = mΓ

i . Furthermore, if
θji = NTPP, we have (mΓ

j ,m
Γ
i ) ∈ d ⊗ d by bipath-consistency. So for any control point Q in

a3
j ⊆ mΓ

j , Q is also in the interior of mΓ
i . Therefore, by the choice of basic regions, we know the

outmost square q(n) at Q, hence q(l(i)), is contained in mΓ
i . Therefore,M(a4

i ) = mΓ
i . This proves

that m is a solution to Θ ] Γ.

Appendix C. The Reduction from 3SAT to JSP(Brcc8,Bcdc)

Let ϕ =
∧m

i=1 cj be a 3SAT instance involving n propositional variables {pk}nk=1 and m clauses.
Assume that the j-th clause cj is qi1 ∨ qi2 ∨ qi3, where each qij is a literal in {pk}nk=1 ∪ {¬pk}nk=1.
We construct a JSP(Brcc8,Bcdc) instance Θϕ ] ∆ϕ and choose a particular regular solution m of
∆ϕ such that ϕ is satisfiable iff m is RA consistent with Θϕ.

There are three types of spatial variables in Θϕ]∆ϕ: auxiliary variables (called grid variables)
which are used to fix the relative locations of other variables, variables to simulate propositional
variables, and variables to simulate propositional clauses.

C.1 Grid Variables

We introduce 10 × n grid variables Gij (1 ≤ i ≤ 2n, 1 ≤ j ≤ 5). The CDC constraints between
these variables are specified as in Figure 10 (left). The RCC8 relation between two grid variables
Gij , Gi′j′ is EC if they are 4-neighbours, i.e. {|i − i′|, |j − j′|} = {0, 1}. These EC constraints
make sure that there is no gap between the MBRs of two neighbouring grid variables. This implies
that there is at most one regular solution of ∆ϕ.

Grid variables are mainly used to locate other spatial variables. For a new variable v and a grid
variable Gij , we say v occupies Gij if v ∩ M(Gij) is nonempty, and its MBR is M(Gij), i.e.
M(v ∩M(Gij)) =M(Gij).

Figure 10: Grid and spatial variables for propositional variables.

C.2 Spatial Variables for Propositional Variables

For each propositional variable pi in ϕ, four spatial variables Ai, Bi, Ci and Di are introduced such
that each occupies two grid cells, but has an empty intersection with the interiors of the MBRs of
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all other grid variables. The corresponding grid cells are illustrated in Figure 10 (right). Take Ai

as example. By assigning the CDC constraints between Ai and the grid variables, we require Ai

occupies G2i−1,1 and G2i−1,4, but is disjoint from the MBRs of all other grid variables. It is easy to
see that Ai ∩Bi contains at most two points, viz. P+

i and P−i , and so does Ci ∩Di.
As for the topological constraints, we require AiECBi and CiECDi, and all other constraints

are DC. The EC constraints imply that both Ai ∩Bi and Ci ∩Di are nonempty. On the other hand,
since AiDCCi, we can conclude that Ai and Bi must share only one of P+

i and P−i , while Ci and
Di share the other one.

C.3 Spatial Variables for Propositional Clauses

For each clause (qj1 ∨ qj2 ∨ qj3) in ϕ, we introduce two new spatial variables Ej and Fj , both
occupy three grid cells. The precise occupied grid cells are set according to the variables and signs
of qjk. Figure 11 gives an example to illustrate the construction, where we assume qj1 = pi1 , qj2 =
¬pi2 , qj3 = ¬pi3 . As for the topological constraints, we set the constraint between Ej and Fj

as EC, and set all other constraints as DC. This implies Ej ∩ Fj contains at least one point of
P−i1 , P

+
i2
, P+

i3
. We claim that it is not the case that Ai1 ∩ Bi1 = {P−i1 }, Ai2 ∩ Bi2 = {P+

i2
} and

Ai3 ∩Bi3 = {P+
i3
}. Otherwise, some DC constraint, e.g. that between Ai1 and Ej , will be violated.

C.4 The Regular Solution That May Be RA Consistent with Θϕ

Figure 11: Spatial variables for clauses.

We have now finished the construction. Note that ∆ϕ is always satisfiable and there are expo-
nentially many regular solutions of it (as there may be or may be not a gap between 4-neighbouring
grid variables). However, the EC constraints between the 4-neighbouring grid variables imply that
only the regular solution in which there is no gap between 4-neighbouring grid variables can be RA
consistent with Θϕ. We denote this regular solution by m.

We next show that ϕ is consistent iff Θϕ]∆ϕ is consistent. Suppose Θϕ]∆ϕ has a solution a.
We define an assignment π : {pi}ni=1 → {true, false} such that π(pi) = true iff Ai∩Bi = {P+

i }
in a. We can verify that π satisfies ϕ. On the other hard, suppose π is an assignment that satisfies
ϕ. We prove that Θϕ ]∆ϕ has a solution. The idea is to introduce an instance of JSP(Brcc8,Brec),
in which we have two spatial variables A+

i and A−i instead of Ai (also for Bi, Ci, Di), and three
variables Ek

j (1 ≤ k ≤ 3) instead of Ej (also for Fj). The RA constraints are set according to
Figure 10 and Figure 11, while the RCC8 constraints are set by Θϕ and π. It can be proven that
this new joint network satisfies (15), and a solution can be obtained in cubic time. A solution of
Θϕ ]∆ϕ can then be obtained by merging the related regions (e.g. merging A+

i and A−i into Ai).
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The verification is straightforward. Therefore, ϕ is satisfiable iff Θϕ ]∆ϕ is satisfiable, and thus ϕ
is satisfiable iff m is RA consistent with Θϕ.

Appendix D. The Reduction from Graph 3-Colouring to JSP(Brcc8,Bcdc)

Suppose G = (V,E) is a graph. We construct an instance ΘG]∆G of JSP(Brcc8,Bcdc) as follows.
For each node vi in V , we construct a gadget with 10 spatial variables: uki (k = 1, 2, · · · , 8), xi
and yi. We first describe their CDC constraints. The basic CDC constraints between uki and uk

′
i are

specified as in Figure 12 (i). For example, ∆G contains the following basic CDC constraints

u1
i

0 0 0
1 0 0
0 0 0

u2
i , u2

i

0 0 0
0 0 1
0 0 0

u1
i , u2

i

1 1 0
1 1 0
0 0 0

u7
i , u7

i

0 0 0
0 1 1
0 1 1

u2
i .

Note that, the induced RA constraint between u2l+1
i and u2l+2

i for l = 0, 1, 2 is (b ∪m)⊗ eq. The
basic CDC constraints between xi and yi are specified as in Figure 12 (ii), i.e.

xi

0 0 0
1 1 0
0 0 0

 yi, yi

0 0 0
0 1 1
0 0 0

xi.
The CDC constraints concerning xi, yi and uki are specified as follows.

xi

0 0 0
0 1 0
0 0 1

u1
i , xi

0 0 0
1 0 0
0 0 1

u2
i , xi

1 0 0
0 1 0
0 0 1

u3
i , xi

1 0 0
1 0 0
0 0 1

u4
i ,

xi

1 0 0
0 1 0
0 0 0

u5
i , xi

1 0 0
1 0 0
0 0 0

u6
i , xi

1 0 0
0 0 0
0 0 1

uki (k = 7, 8),

uki

0 0 0
0 1 0
0 0 0

xi (k 6= 6), u6
i

0 0 0
0 0 1
0 0 0

xi;
yi

0 0 0
0 0 1
0 0 1

u1
i , yi

0 0 0
0 1 0
0 0 1

u2
i , yi

1 0 0
0 0 1
0 0 1

u3
i , yi

1 0 0
0 1 0
0 0 1

u4
i ,

yi

1 0 0
0 0 1
0 0 0

u5
i , yi

1 0 0
0 1 0
0 0 0

u6
i , yi

1 0 0
0 0 0
0 0 1

uki (k = 7, 8),

uki

0 0 0
0 1 0
0 0 0

 yi (2 ≤ k ≤ 8), u1
i

0 0 0
1 0 0
0 0 0

 yi.
Figure 12 (ii) illustrates a regular solution of uki , xi and yi, where u1

i meets u2
i while there is

a gap between u3
i and u4

i , and between u5
i and u6

i . We note that there are in total eight different
regular solutions when the network is restricted to the gadget of vi.
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(i)

(ii)

Figure 12: Illustrations of the CDC constraints: (i) constraints between uki (k = 1, 2, · · · , 8); (ii)
constraints relating xi, yi. Note we use dashed squares to denote variables u7

i and u8
i ,

which ‘connect’ two other variables. Note that both xi and yi have three disjoint parts.
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The RCC8 constraint between any two variables is either EC or DC. We require xiECyi. This
is realisable only if u2l+1

i meets u2l+2
i in x-direction for at least one l ∈ {0, 1, 2}.4 We use this fact

to mimic that the node vi ∈ V is coloured with one of the three colours. The RCC8 constraints of
the remaining pairs of variables are all specified as DC. 5

The gadgets for all nodes in V are horizontally aligned, as illustrated in Figure 13.

Figure 13: Illustrations of the gadgets for all nodes in V

Figure 14: Illustrations of the gadget for edge ek = (vi, vj), where dashed lines suggest that corre-
sponding edges are aligned according to proper CDC constraints.

We then devise the gadgets for edges in graph G. Let ek = (vi, vj) be an edge in E. For each
colour l ∈ {0, 1, 2}, we introduce four variables w0

k,l, w
1
k,l, w

2
k,l and w3

k,l as well as constraints to
guarantee that u2l+1

i cannot meet u2l+2
i if u2l+1

j meets u2l+2
j , which corresponds to that nodes vi

and vj cannot both have colour l (because ek is an edge in G). The CDC constraints are specified
as in Figure 14. We note that w1

k,l meets w3
k,l iff u2l+1

i meets u2l+2
i , and w3

k,l meets w2
k,l iff u2l+1

j

meets u2l+2
j , all in x-direction. By the CDC constraints we can show thatM(w3

k,l) is contained in
M(w0

k,l). This implies that there is either a gap between w1
k,l and w3

k,l or a gap between w3
k,l and

w2
k,l. In other words, w1

k,l meets w3
k,l and w3

k,l meets w2
k,l cannot happen simultaneously. By the

4. If there are more than one l such that u2l+1
i meets u2l+2

i in x-direction, we always choose the smallest such l as the
‘colour’ of the node vi.

5. Note that u1
iDCu2

i together with the CDC relations between u1
i and u2

i does not necessarily imply that u1
i should

precede u2
i in x-direction. That is, u1

i could still meet u2
i in x-direction in this case.
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constraints enforcing the dashed lines we know u2l+1
i cannot meet u2l+2

i if u2l+1
j meets u2l+2

j , and
vice versa.

Note that we need to complete both Θ and ∆. While unspecified CDC constraints can be easily
deduced from these figures, unspecified RCC8 constraints are all DC.

It is not hard to verify that graph G is 3-colourable iff the joint network ΘG ]∆G is consistent.
The idea is that, if π : V → {0, 1, 2} is a 3-colouring of G, then we may construct a solution of
ΘG ]∆G in which the RA relation between u2l+1

i and u2l+2
i is m⊗ eq if π(i) = l, and is b⊗ eq

otherwise. This guarantees that xi and yi are realisable. The fact that no incident nodes in G have
the same colour implies that all wr

k,l are realisable. On the other hand, if ΘG ] ∆G is satisfiable,
then at least one pair in {(u1

i , u
2
i ), (u

3
i , u

4
i ), (u

5
i , u

6
i )} should have RA relation m ⊗ eq (otherwise,

xiECyi is violated). Define π : V → {0, 1, 2} by π(vi) = min{l : u2l+1
i m⊗ eq u2l+2

i }. It can be
verified that π is a 3-colouring of G due to the fact that wr

k,l are realisable.
Now we have completed the reduction from Graph 3-Colouring to JSP(Brcc8,Bcdc). We note

that the EC constraints can also be interpreted in terms of RCC8′. This means that ΘG ] ∆G can
also be regarded as an instance of JSP(Brcc8,Bcdc). Therefore, we have also provided a reduction
from Graph 3-Colouring to JSP(Brcc8′ ,Bcdc).
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