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Abstract

We study propagation for the Sequence constraint in the context of constraint pro-
gramming based on limited-width MDDs. Our first contribution is proving that establishing
MDD-consistency for Sequence is NP-hard. Yet, we also show that this task is fixed pa-
rameter tractable with respect to the length of the sub-sequences. In addition, we propose
a partial filtering algorithm that relies on a specific decomposition of the constraint and a
novel extension of MDD filtering to node domains. We experimentally evaluate the per-
formance of our proposed filtering algorithm, and demonstrate that the strength of the
MDD propagation increases as the maximum width is increased. In particular, MDD prop-
agation can outperform conventional domain propagation for Sequence by reducing the
search tree size and solving time by several orders of magnitude. Similar improvements are
observed with respect to the current best MDD approach that applies the decomposition
of Sequence into Among constraints.

1. Introduction

The central inference process of constraint programming is constraint propagation (Rossi,
van Beek, & Walsh, 2006; Dechter, 2003; Apt, 2003). While traditional constraint processing
techniques were designed for explicitly defined relations of small arity, state-of-the-art con-
straint programming solvers apply specialized constraint propagation algorithms for global
constraints of any arity, often based on efficient combinatorial methods such as network
flows (van Hoeve & Katriel, 2006; Régin, 2011).

Conventional constraint propagation algorithms (or domain filtering algorithms) oper-
ate on individual constraints of a given problem. Their role is to identify and remove
values in the variable domains that are inconsistent with respect to the constraint under
consideration. Whenever the domain of a variable is updated (i.e., a value is removed),
the constraints in which this variable appears can be reconsidered for inspection. This
cascading process of propagating the changes in variable domains through the constraints
continues until a fixed point is reached. Most constraint programming solvers assume that
the variable domains are finite, which ensures termination of the constraint propagation
process. Note that constraint propagation in itself may not be sufficient to determine the
resolution of a given problem. Therefore, constraint propagation is normally applied at each
search state in a systematic search process.
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A major benefit of propagating variable domains is that it can be implemented efficiently
in many cases. However, an inherent weakness of domain propagation is that it implicitly
represents the Cartesian product of the variable domains as potential solution space. By
communicating only domain changes, this limits the amount of information shared between
constraints.

To address this shortcoming of domain propagation, Andersen, Hadzic, Hooker, and
Tiedemann (2007) proposed the use of multi-valued decision diagrams (MDDs) as an al-
ternative to variable domains in the context of constraint propagation. MDDs are directed
acyclic layered graphs that can, in principle, compactly represent all solutions to a combi-
natorial problem (Wegener, 2000). Andersen et al. (2007) showed that MDDs of limited
width can provide a much stronger relaxation of the solution space than the traditional
Cartesian product of the variable domains, and as a consequence MDDs allow to represent
and communicate more refined information between constraints. By propagating MDDs
rather than variable domains, huge reductions in search tree size and computation time
can be realized (Andersen et al., 2007; Hadzic, Hooker, O’Sullivan, & Tiedemann, 2008a;
Hadzic, Hooker, & Tiedemann, 2008b; Hadzic, O’Mahony, O’Sullivan, & Sellmann, 2009;
Hoda, van Hoeve, & Hooker, 2010; Cire & van Hoeve, 2012, 2013).

MDDs can be used to represent individual (global) constraints, subsets of constraints,
or all constraints in a given problem. When representing individual constraints, as in the
work of Hawkins, Lagoon, and Stuckey (2005) and Cheng and Yap (2008), the higher-level
information carried by the MDD is lost when projecting this down to the variable domains
for the traditional domain propagation. The highest potential for MDD propagation instead
appears to be in representing specific subsets of constraints within the same MDD. That is,
for a given set of constraints, we create and maintain one single limited-width MDD, which
is then propagated through this constraint set. Since an MDD is defined with respect to a
fixed variable ordering, it is most useful to select a subset of constraints compatible with this
ordering. When applied in this way, MDD propagation can be implemented in parallel to the
existing domain propagation in constraint programming systems, thus complementing and
potentially strengthening the domain propagation process. For example, Cire and van Hoeve
(2013) introduced MDD propagation for a subset of constraints representing disjunctive
scheduling problems. They embedded this as a custom global constraint in the ILOG CP
Optimizer constraint programming solver, which greatly improved the performance.

1.1 Methodology

Constraint propagation based on limited-width MDDs amounts to MDD filtering and MDD
refinement. The role of an MDD filtering algorithm is to remove provably inconsistent arcs
from the MDD (Hadzic et al., 2008b; Hoda et al., 2010). An MDD refinement algorithm on
the other hand, aims at splitting nodes in the MDD to more accurately reflect the solution
space (Hadzic et al., 2008a). In order to make this approach scalable and efficient, refinement
algorithms must ensure that the MDD remains within a given maximum size (typically by
restricting its maximum width—the number of nodes on any layer). By increasing this
maximum width, the MDD relaxation can be strengthened to any desired level. That
is, a maximum width of 1 would correspond to the traditional Cartesian product of the
variable domains, while an infinite maximum width would correspond to an exact MDD
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representing all solutions. However, increasing the size of the MDD immediately impacts
the computation time, and one typically needs to balance the trade-off between the strength
of the MDD and the associated computation time.

In order to characterize the outcome of an MDD filtering algorithm, the notion of MDD
consistency was introduced by Andersen et al. (2007), similar to domain consistency in
finite-domain constraint programming: Given an MDD, a constraint is MDD consistent if
all arcs in the MDD belong to at least one solution to the constraint. As a consequence
of the richer data structure that an MDD represents, establishing MDD consistency may
be more difficult than establishing domain consistency. For example, Andersen et al. show
that establishing MDD consistency on the Alldifferent constraint is NP-hard, while
establishing traditional domain consistency can be done in polynomial time (Régin, 1994).

1.2 Contributions

The main focus of this paper is the Sequence constraint, that is defined as a specific con-
junction of Among constraints, where an Among constraint restricts the occurrence of a
set of values for a sequence of variables to be within a lower and upper bound (Beldiceanu
& Contejean, 1994). The Sequence constraint finds applications in, e.g., car sequencing
and employee scheduling problems (Régin & Puget, 1997; van Hoeve, Pesant, Rousseau, &
Sabharwal, 2009). It is known that classical domain consistency can be established for Se-
quence in polynomial time (van Hoeve, Pesant, Rousseau, & Sabharwal, 2006; van Hoeve
et al., 2009; Brand, Narodytska, Quimper, Stuckey, & Walsh, 2007; Maher, Narodytska,
Quimper, & Walsh, 2008; Downing, Feydy, & Stuckey, 2012). Furthermore, Hoda et al.
(2010) present an MDD filtering algorithm for Among constraints establishing MDD con-
sistency in polynomial time. However, it remained an open question whether or not MDD
consistency for Sequence can be established in polynomial time as well.

In this work, we answer that question negatively and our first contribution is showing
that establishing MDD consistency on the Sequence constraint is NP-hard. This is an
important result from the perspective of MDD-based constraint programming. Namely, of
all global constraints, the Sequence constraint has perhaps the most suitable combinatorial
structure for an MDD approach; it has a prescribed variable ordering, it combines sub-
constraints on contiguous variables, and existing approaches can handle this constraint
fully by using bounds reasoning only.

As our second contribution, we show that establishing MDD consistency on the Se-
quence constraint is fixed parameter tractable with respect to the lengths of the sub-
sequences (the Among constraints), provided that the MDD follows the order of the Se-
quence constraint. The proof is constructive, and follows from a generic algorithm to filter
one MDD with another.

The third contribution is a partial MDD propagation algorithm for Sequence, that does
not necessarily establish MDD consistency. It relies on the decomposition of Sequence
into ‘cumulative sums’, and a new extension of MDD filtering to the information that is
stored at its nodes.

Our last contribution is an experimental evaluation of our proposed partial MDD propa-
gation algorithm. We evaluate the strength of our algorithm for MDDs of various maximum
widths, and compare the performance with existing domain propagators for Sequence. We
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also compare our algorithm with the currently best known MDD approach that uses the
natural decomposition of Sequence into Among constraints (Hoda et al., 2010). Our
experiments demonstrate that MDD propagation can outperform domain propagation for
Sequence by reducing the search tree size, and solving time, by several orders of magni-
tude. Similar results are observed with respect to MDD propagation of Among constraints.
Our results thus provide further evidence for the power of MDD propagation in the context
of constraint programming.

The remainder of this paper is structured as follows. In Section 2, we provide the neces-
sary definitions of MDD-based constraint programming and the Sequence constraint. In
Section 3, we present the proof that establishing MDD consistency on Sequence is NP-
hard. Section 4 describes that establishing MDD consistency is fixed parameter tractable.
In Section 5, the partial MDD filtering algorithm is presented. Section 6 shows the experi-
mental results. We present final conclusions in Section 7.

2. Definitions

We first recall some basic definitions of MDD-based constraint programming, following the
work of Andersen et al. (2007) and Hoda et al. (2010). In this work, an ordered Multivalued
Decision Diagram (MDD) is a directed acyclic graph whose nodes are partitioned into n+1
(possibly empty) subsets or layers L1, . . . , Ln+1, where the layers L1, . . . , Ln correspond
respectively to variables x1, . . . , xn. L1 contains a single root node r, and Ln+1 contains
a single terminal node t. For a node u in the MDD, we let L (u) denote the index of its
layer. For an MDD M , the width w(M) is the maximum number of nodes in a layer, or
maxn

i=1{|Li|}. In MDD-based CP, the MDDs typically have a given fixed maximum width.

All arcs of the MDD are directed from an upper to a lower layer; that is, from a node
in some Li to a node in some Lj with i < j. For our purposes it is convenient to assume
(without loss of generality) that each arc connects two adjacent layers. Each arc out of
layer Li is labeled with an element of the domain D(xi) of xi. For an arc a, we refer to
the label it represents as `(a). For notational convenience, we also write `(u, v) instead of
`((u, v)) for an arc (u, v). An element in D(xi) appears at most once as a label on the
arcs out of a given node u ∈ Li. The set A(u, v) of arcs from node u to node v may
contain multiple arcs, and we denote each with its label. Let Ain(u) denote the set of arcs
coming into node u. We define the size of an MDD M by the number of its arcs, i.e.,
|M | =

∣∣{a | a ∈ Ain(u), u ∈ Li, i = 2, . . . , n+ 1}
∣∣.

An arc with label v leaving a node in layer i represents an assignment xi = v. Each
path in the MDD from r to t can be denoted by the arc labels v1, . . . , vn on the path and
is identified with the solution (x1, . . . , xn) = (v1, . . . , vn). A path v1, . . . , vn is feasible for a
given constraint C if setting (x1, . . . , xn) = (v1, . . . , vn) satisfies C. Constraint C is feasible
on an MDD if the MDD contains a feasible path for C.

A constraint C is called MDD consistent on a given MDD if every arc of the MDD
lies on some feasible path. Thus MDD consistency is achieved when all redundant arcs
(i.e., arcs on no feasible path) have been removed. We also say that such MDD is MDD
consistent with respect to C. Domain consistency for C is equivalent to MDD consistency
on an MDD of width one that represents the variable domains. That is, it is equivalent
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to MDD consistency on an MDD in which each layer Li contains a single node si, and
A(si, si+1) = D(xi) for i = 1, . . . , n.

Lastly, we formally recall the definitions of Among (Beldiceanu & Contejean, 1994),
Sequence (Beldiceanu & Contejean, 1994), and Gen-Sequence (van Hoeve et al., 2009)
constraints. The Among constraint counts the number of variables that are assigned to a
value in a given set S, and ensures that this number is between a given lower and upper
bound:

Definition 1 Let X be a set of variables, l, u integer numbers such that 0 ≤ l ≤ u ≤ |X|,
and S ⊂ ∪x∈XD(x) a subset of domain values. Then we define Among(X, l, u, S) as

l ≤
∑
x∈X

(x ∈ S) ≤ u.

Note that the expression (x ∈ S) is evaluated as a binary value, i.e., resulting in 1 if x ∈ S
and 0 if x /∈ S. The Sequence constraint is the conjunction of a given Among constraint
applied to every sub-sequence of length q over a sequence of n variables:

Definition 2 Let X be an ordered set of n variables, q, l, u integer numbers such that
0 ≤ q ≤ n, 0 ≤ l ≤ u ≤ q, and S ⊂ ∪x∈XD(x) a subset of domain values. Then

Sequence(X, q, l, u, S) =

n−q+1∧
i=1

Among(si, l, u, S),

where si represents the sub-sequence xi, . . . , xi+q−1.

Finally, the generalized Sequence constraint extends the Sequence constraint by allowing
the Among constraints to be specified with different lower and upper bounds, and sub-
sequence length:

Definition 3 Let X be an ordered set of n variables, k a natural number, ~s, ~l, ~u vectors of
length k such that si is a sub-sequence of X, li, ui ∈ N, 0 ≤ li ≤ ui ≤ n for i = 1, 2, . . . , k,
and S ⊂ ∪x∈XD(x) a subset of domain values. Then

Gen-Sequence(X,~s,~l, ~u, S) =
k∧

i=1

Among(si, li, ui, S).

3. MDD Consistency for Sequence is NP-Hard

As stated before, the only known non-trivial NP-hardness result for a global constraint in
the context of MDD-based constraint programming is that of Andersen et al. (2007) for
the Alldifferent constraint. A challenge in determining whether a global constraint
can be made MDD consistent in polynomial time is that this must be guaranteed for any
given MDD. That is, in addition to the combinatorics of the global constraint itself, the
shape of the MDD adds another layer of complexity to establishing MDD consistency. For
proving NP-hardness, a particular difficulty is making sure that in the reduction, the MDD
remains of polynomial size. For Sequence constraints, so far it was unknown whether a
polynomial-time MDD consistency algorithm exists. In this section we answer that question
negatively and prove the following result.
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Theorem 1 Establishing MDD consistency for Sequence on an arbitrary MDD is NP-
hard even if the MDD follows the variable ordering of the Sequence constraint.

Proof. The proof is by reduction from 3-SAT, a classical NP-complete problem (Garey
& Johnson, 1979). We will show that an instance of 3-SAT is satisfied if and only if a
particular Sequence constraint on a particular MDD M of polynomial size has a solution.
Therefore, establishing MDD consistency for Sequence on an arbitrary MDD is at least
as hard as 3-SAT.

Consider a 3-SAT instance on n variables x1, . . . , xn, consisting of m clauses c1, . . . , cm.
We first construct an MDD that represents the basic structure of the 3-SAT formula (see
Example 1 after this proof for an illustration). We introduce binary variables yi,j and yi,j
representing the literals xj and xj per clause ci, for i = 1, . . . ,m and j = 1, . . . , n (xj and xj
may or may not exist in ci). We order these variables as a sequence Y , first by the index of
the clauses, then by the index of the variables, and then by yi,j , yi,j for clause ci and variable
xj . That is, we have Y = y1,1, y1,1, y1,2, y1,2,. . . ,y1,n, y1,n, . . . , ym,1, ym,1, . . . ,ym,n, ym,n. We
construct an MDD M as a layered graph, where the k-th layer corresponds to the k-th
variable in the sequence Y .

A clause ci is represented by 2n consecutive layers corresponding to yi,1, . . . , yi,n. In
such part of the MDD, we identify precisely those paths that lead to a solution satisfying
the clause. The basis for this is a ‘diamond’ structure for each pair of literals (yi,j , yi,j),
that assigns either (0, 1) or (1, 0) to this pair. If a variable does not appear in a clause, we
represent it using such a diamond in the part of the MDD representing that clause, thus
ensuring that the variable can take any assignment with respect to this clause. For the
variables that do appear in the clause, we will explicitly list out all allowed combinations.

More precisely, for clause ci, we first define a local root node ri representing layer L (yi,1),
and we set tag(ri) = ‘unsat’. For each node u in layer L (yi,j) (for j = 1, . . . , n), we do the
following. If variable xj does not appear in ci, or if tag(u) is ‘sat’, we create two nodes v, v′

in L
(
yi,j
)
, one single node w in L (yi,j+1), and arcs (u, v) with label 1, (u, v′) with label 0,

(v, w) with label 0, and (v′, w) with label 1. This corresponds to the ‘diamond’ structure.
We set tag(w) = tag(u). Otherwise (i.e., tag(u) is ‘unsat’ and yi,j appears in ci), we create
two nodes v, v′ in L

(
yi,j
)
, two nodes w,w′ in L (yi,j+1), and arcs (u, v) with label 1, (u, v′)

with label 0, (v, w) with label 0, and (v′, w′) with label 1. If ci contains as literal yi,j , we set
tag(w) = ‘sat’ and tag(w′) = ‘unsat’. Otherwise (ci contains yi,j), we set tag(w) = ‘unsat’
and tag(w′) = ‘sat’.

This procedure will be initialized by a single root node r representing L (y11). We
iteratively append the MDDs of two consecutive clauses ci and ci+1 by merging the nodes
in the last layer of ci that are marked ‘sat’ into a single node, and let this node be the
local root for ci+1. We finalize the procedure by merging all nodes in the last layer that
are marked ‘sat’ into the single terminal node t. By construction, we ensure that only one
of yij and yij can be set to 1. Furthermore, the variable assignment corresponding to each
path between layers L (yi,1) and L (yi+1,1) will satisfy clause ci, and exactly n literals are
chosen accordingly on each such path.

We next need to ensure that for a feasible path in the MDD, each variable xj will
correspond to the same literal yi,j or yi,j in each clause ci. To this end, we impose the
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Figure 1: The MDD corresponding to Example 1.

constraint

Sequence(Y, q = 2n, l = n, u = n, S = {1}) (1)

on the MDD M described above. If the sub-sequence of length 2n starts from a positive
literal yi,j , by definition there are exactly n variables that take value 1. If the sub-sequence
starts from a negative literal yi,j instead, the last variable in the sequence corresponds to
the value xj in the next clause ci+1, i.e., yi+1,j . Observe that all variables except for the
first and the last in this sequence will take value 1 already n − 1 times. Therefore, of the
first and the last variable in the sequence (which represent xj and its complement xj in any
order), only one can take the value 1. That is, xj must take the same value in clause ci and
ci+1. Since this holds for all sub-sequences, all variables xj must take the same value in all
clauses.

The MDD M contains 2mn + 1 layers, while each layer contains at most six nodes.
Therefore, it is of polynomial size (in the size of the 3-SAT instance), and the overall con-
struction needs polynomial time. �
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Figure 2: The exact MDD for the Sequence constraint of Example 2.

Example 1 Consider the 3-SAT instance on four Boolean variables x1, x2, x3, x4 with clauses
c1 = (x1 ∨ x3 ∨ x4) and c2 = (x2 ∨ x3 ∨ x4). The corresponding MDD used in the reduction
is given in Figure 1.

4. MDD Consistency for Sequence is Fixed Parameter Tractable

In this section we show that establishing MDD consistency for Sequence on an arbitrary
MDD is fixed parameter tractable, with respect to the length of the sub-sequences q. It
was already shown by van Hoeve et al. (2006, 2009) that an exact MDD for the Sequence
constraint exists with O(n2q) nodes (i.e., the ‘unfolded’ automaton of the Regular con-
straint), as illustrated in the next example.

Example 2 Consider the constraint Sequence(X, q = 3, l = 1, u = 2, S = {1}) where
X = {x1, x2, . . . , x6} is an ordered set of binary variables. The corresponding exact MDD,
following the order of X, is presented in Figure 2. For convenience, each node in the MDD
is labeled with the last q − 1 labels that represent the sub-sequence up to that node (starting
q−1 layers up). For example, the second node in the third layer represents decisions x1 = 0
and x2 = 1, corresponding to sub-sequence 01. To construct the next layer, we either append
a 0 or a 1 to this sub-sequence (and remove the first symbol), leading to nodes labeled 10 and
11, respectively. Note that from nodes labeled 00 we must take an arc with label 1, because
l = 1. Similarly for nodes labeled 11 we must take an arc with label 0, because u = 2. After q
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layers, all possible sub-sequences have been created (maximally O(2q−1)), which thus defines
the width of the subsequent layers.

However, since we are given an arbitrary MDD, and not necessarily an exact MDD, we need
some additional steps to exploit this connection. For this we apply a generic approach that
will not only show fixed parameter tractability for Sequence, but in fact can be applied
to determine whether MDD consistency is tractable for any constraint.

Our goal is to establish MDD consistency on a given MDD M with respect to another
MDD M ′ on the same set of variables. This is compatible with our earlier definitions since
M ′ can be interpreted to define a constraint. That is, M is MDD consistent with respect to
M ′ if every arc in M belongs to a path (solution) that also exists in M ′. For our purposes,
we assume that M and M ′ follow the same variable ordering.

We can establish MDD consistency by first taking the intersection of M and M ′, and
then removing all arcs from M that are not compatible with the intersection. Computing the
intersection of two MDDs is well-studied, and we present a top-down intersection algorithm
that follows our definitions in Algorithm 1. This description is adapted from the ‘melding’
procedure presented by Knuth (2009).

The intersection MDD, denoted by I, represents all possible paths (solutions) that are
present both in M and M ′. Each partial path in I from the root rI to a node u thus
will exist in M and M ′, with respective endpoints v, v′. This information is captured by
associating with each node u in I a state s(u) = (v, v′) representing those nodes v ∈ M
and v′ ∈ M ′. The root of I is initialized as rI with s(rI) := (r, r′) where r and r′ are the
respective roots of M and M ′ (lines 1-2). The algorithm then, in a top-down traversal,
considers a layer LI

i in I, and augments a node u ∈ LI
i with s(u) = (v, v′) with an arc

only if both M and M ′ have an arc with the same label out of v and v′ respectively (lines
5-7). If the next layer already contains a node ũ with the same state we re-use that node.
Otherwise we add a new node ũ to LI

i+1 and add the arc (u, ũ) to I. Note that the last layer
of I contains a single terminal tI with state s(tI) = (t, t′), provided that I is not empty. In
the last step (line 14) we clean up I by removing all arcs and nodes that do not belong to a
feasible path. This can be done in a bottom-up traversal of I. Observe that this algorithm
does not necessarily create a reduced MDD.

Algorithm 2 presents an algorithm to establish MDD-consistency on M with respect to
M ′. We first compute the intersection I of M and M ′ (line 1). We then traverse M in a
top-down traversal, and for each layer LM

i we identify and remove infeasible arcs. For this,
we define a Boolean array Support[u, l] (initialized to 0) that represents whether an arc out
of node u ∈ M with label l has support in I (line 3). In line 4, we consider all arcs out
of layer LI

i in I. If an arc a = (v, ṽ) exists in LI
i with label l and s(v) = (u, u′), we mark

the associated arc out of u as supported by setting Support[u, l] := 1 (lines 4-6). We then
remove all arcs out of LM

i that have no support (lines 7-9). Lastly, we again clean up M
by removing all arcs and nodes that do not belong to a feasible path (line 11).

Theorem 2 Algorithm 2 establishes MDD-consistency on M with respect to M ′ in O(|M | ·
w(M ′) time and space.

Proof. The correctness of Algorithm 1 follows by induction on the number of layers. To
prove that Algorithm 2 establishes MDD-consistency, consider an arc a = (u, ũ) in M after
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Algorithm 1 Intersection(M ,M ′)

Input: MDD M with root r, MDD M ′ with root r′. M and M ′ are defined on the same
ordered sequence of n variables.

Output: MDD I with layers LI
1, . . . , L

I
n+1 and arc set AI . Each node u in I has an

associated state s(u).
1: create node rI with state s(rI) := (r, r′)
2: LI

1 := {rI}
3: for i = 1 to n do
4: LI

i+1 := {}
5: for all u ∈ LI

i with s(u) = (v, v′) do
6: for all a = (v, ṽ) ∈M and a′ = (v′, ṽ′) ∈M ′ such that `(a) = `(a′) do
7: create node ũ with state s(ũ) := (ṽ, ṽ′)
8: if ∃ w̃ ∈ LI

j+1 with s(w̃) = s(ũ) then ũ := w̃

9: else LI
i+1 += ũ end if

10: add arc (u, ũ) with label `(a) to arc set AI

11: end for
12: end for
13: end for
14: remove all arcs and nodes from I that are not on a path from rI to tI ∈ LI

n+1

15: return I

Algorithm 2 MDD-Consistency(M ,M ′)

Input: MDD M with root r, MDD M ′ with root r′. M and M ′ are defined on the same
ordered sequence of n variables.

Output: M that is MDD-consistent with respect to M ′

1: create I := Intersection(M ,M ′)
2: for i = 1 to n do
3: create array Support[u, l] := 0 for all u ∈ LM

i and arcs out of u with label l
4: for all arcs a = (v, ṽ) in AI with s(v) = (u, u′) such that v ∈ LI

i do
5: Support[u, `(a)] := 1
6: end for
7: for all arcs a = (u, ũ) in M such that u ∈ LM

i do
8: if Support[u, `(a)] = 0 then remove a from M end if
9: end for

10: end for
11: remove all arcs and nodes from M that are not on a path from r to t ∈ LM

n+1

12: return M
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applying the algorithm. There exists a node v ∈ I with s(v) = (u, u′) such that solutions
represented by the paths from r to u in M and from r′ to u′ in M ′ are equivalent. There
also exists an arc aI = (v, ṽ) ∈ AI with the same label as a. Consider s(ṽ) = (w,w′). Since
M and I are decision diagrams, a label appears at most once on an arc out of a node.
Therefore, w = ũ. Since aI belongs to I, there exist paths from w (or ũ) to t in M and
from w′ to t′ in M ′ that are equivalent. Hence, a belongs to a feasible path in M (from r
to u, then along a into ũ and terminating in t) for which an equivalent path exists in M ′

(from r′ to u′, then into w′ and terminating in t′).
Regarding the time complexity for computing the intersection, a coarse upper bound

multiplies n (line 3), w(M) · w(M ′) (line 5), and d2
max (line 6), where dmax represents the

maximum degree out of a node, or maxx∈X |D(x)|. We can amortize these steps since the for-
loops in lines 3 and 6 consider each arc in M once for comparison with arcs in M ′. Each arc
is compared with at most w(M ′) arcs (line 6); here we assume that we can check in constant
time whether a node has an outgoing arc with a given label (using an arc-label list). This
gives a total time complexity of O(|M | ·w(M ′)). The memory requirements are bounded by
the size of the intersection, which is at most O(n ·w(M) ·w(M ′) · dmax) = O(|M | ·w(M ′)).
This dominates the complexity of Algorithm 2, since lines 2-12 can be performed in linear
time and space (in the size of M). �

Observe that Algorithm 2 no longer ensures that each solution in M is represented by
some path in M ′, as is the case for the intersection. MDD-consistency merely establishes
that each arc in M belongs to some solution that is also in M ′. Although MDD intersections
are stronger than MDD consistency, their limitation is that the width of the intersection
MDD may be as large as the product of the widths of M and M ′. Therefore intersecting M
with multiple MDDs will, in general, increase the size of the resulting MDD exponentially.

We next apply Theorem 2 to the Sequence constraint.

Corollary 1 Let X be an ordered sequence of variables, C = Sequence(X, q, l, u, S) a
sequence constraint, and M an arbitrary MDD following the variable ordering of X. Estab-
lishing MDD consistency for C on M is fixed parameter tractable with respect to parameter q.

Proof. We know that there exists an exact MDD M ′ of size O(n2q−1) that represents C
(van Hoeve et al., 2006, 2009). Applying Theorem 2 gives an MDD-consistency algorithm
with time and space complexity O(|M | 2q−1), and the result follows. �

We note that Theorem 2 can also be applied to obtain the tractability of establishing
MDD consistency on other constraints. Consider for example the constraint Among(x1, x2,
. . . , xn, l, u, S). For any variable ordering, we can construct an exact MDD in a top-down
procedure by associating with each node v the number of variables taking a value in S along
the path from r to v, representing the ‘length’ of that path. Nodes with the same length are
equivalent and can be merged. Because the largest layer has at most u + 1 different path
lengths, the exact MDD has size O(nu), and by Theorem 2 establishing MDD consistency
is tractable for Among. Indeed, Hoda et al. (2010) also showed that MDD consistency can
be established for this constraint, with quadratic time complexity.
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The converse of Theorem 2 does not hold: There exist constraints for which MDD
consistency can be established in polynomial time on any given MDD, while a minimal
reduced exact MDD has exponential size. As a specific example, consider linear inequality
constraints of the form

∑n
i=1 aixi ≥ b where xi is an integer variable, ai is a constant, for

i = 1, . . . , n, and b is a constant. MDD consistency can be established for such constraints in
linear time, for any given MDD, by computing for each arc the longest r-t path (relative to
the coefficients ai) that uses that arc (Andersen et al., 2007). However, Hosaka, Takenaga,
Kaneda, and Yajima (1997) provide the following explicit linear inequality. For k even
and n = k2, consider

∑
1≤i,j≤k aijxij ≥ k(22k − 1)/2, where xij is a binary variable, and

aij = 2i−1 + 2k+j−1, for 1 ≤ i, j ≤ k. They show that, for any variable order, the size of the

reduced ordered BDD for this inequality is bounded from below by Ω(2
√
n/2).

5. Partial MDD Filtering for Sequence

In many practical situations the value of q will lead to prohibitively large exact MDDs for
establishing MDD consistency, which limits the applicability of Corollary 1. Therefore we
next explore a more practical partial filtering algorithm that is polynomial also in q.

One immediate approach is to propagate the Sequence constraint in MDDs through
its natural decomposition into Among constraints, and apply the MDD filtering algorithms
for Among proposed by Hoda et al. (2010). However, it is well-known that for classical
constraint propagation based on variable domains, the Among decomposition can be sub-
stantially improved by a dedicated domain filtering algorithm for Sequence (van Hoeve
et al., 2006, 2009; Brand et al., 2007; Maher et al., 2008). Therefore, our goal in this sec-
tion is to provide MDD filtering for Sequence that can be stronger in practice than MDD
filtering for the Among decomposition, and stronger than domain filtering for Sequence.
In what follows, we assume that the MDD at hand respects the ordering of the variables in
the Sequence constraint.

5.1 Cumulative Sums Encoding

Our proposed algorithm extends the original domain consistency filtering algorithm for
Sequence by van Hoeve et al. (2006) to MDDs, following the ‘cumulative sums’ encod-
ing as proposed by Brand et al. (2007). This representation takes the following form.
For a sequence of variables X = x1, x2, . . . , xn, and a constraint Sequence(X, q, l, u, S),
we first introduce variables y0, y1, . . . , yn, with respective initial domains D(yi) = [0, i]
for i = 1, . . . , n. These variables represent the cumulative sums of X, i.e., yi represents∑i

j=1 (xj ∈ S) for i = 1, . . . , n. We now rewrite the Sequence constraint as the following
system of constraints:

yi = yi−1 + δS(xi) ∀i ∈ {1, . . . , n}, (2)

yi+q − yi ≥ l ∀i ∈ {0, . . . , n− q}, (3)

yi+q − yi ≤ u ∀i ∈ {0, . . . , n− q}, (4)

where δS : X → {0, 1} is the indicator function for the set S, i.e., δS(x) = 1 if x ∈ S and
δS(x) = 0 if x /∈ S. Brand et al. show that establishing singleton bounds consistency on
this system suffices to establish domain consistency for the original Sequence constraint.
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In order to apply similar reasoning in the context of MDDs, the crucial observation is
that the domains of the variables y0, . . . , yn can be naturally represented at the nodes of the
MDD. In other words, a node v in layer Li represents the domain of yi−1, restricted to the
solution space formed by all r-t paths containing v. Let us denote this information for each
node v explicitly as the interval [lb(v),ub(v)], and we will refer to it as the ‘node domain’ of
v. Following the approach of Hoda et al. (2010), we can compute this information in linear
time by one top-down pass, by using equation (2), as follows:

lb(v) = min(u,v)∈Ain(v) {lb(u) + δS (`(u, v))} ,
ub(v) = max(u,v)∈Ain(v) {ub(u) + δS (`(u, v))} ,

(5)

for all nodes v 6= r, while [lb(r),ub(r)] = [0, 0].

As the individual Among constraints are now posted as yi+q− yi ≥ l and yi+q− yi ≤ u,
we also need to compute for a node v in layer Li+1 all its ancestors from layer Li. This can
be done by maintaining a vector Av of length q+ 1 for each node v, where Av[i] represents
the set of ancestor nodes of v at the i-th layer above v, for i = 0, . . . , q. We initialize
Ar = [{r},∅, . . . ,∅], and apply the recursion

Av[i] = ∪(u,v)∈Ain(v)Au[i− 1] for i = 1, 2, . . . , q,

Av[0] = {v}.

The resulting top-down pass itself takes linear time (in the size of the MDD), while a direct
implementation of the recursive step for each node takes O(q · (w(M))2) operations for an
MDD M . Now, the relevant ancestor nodes for a node v in layer Li+q are stored in Av[q],
a subset of layer Li. We similarly compute all descendant nodes of v in a vector Dv of
length q + 1, such that Dv[i] contains all descendants of v in the i-th layer below v, for
i = 0, 1, . . . , q. We initialize Dt = [{t},∅, . . . ,∅].

However, for our purposes we only need to maintain the minimum and maximum value
of the union of the domains of Av, resp., Dv, because constraints (3) and (4) are inequalities;
see the application of Av and Dv in rules (8) below. This makes the recursive step more
efficient, now taking O(qw(M)) operations per node.

Alternatively, we can approximate this information by only maintaining a minimum
and maximum node domain value for each layer, instead of a list of ancestor layers. This
will compromise the filtering, but may be more efficient in practice, as it only requires to
maintain two integers per layer.

5.2 Processing the Constraints

We next process each of the constraints (2), (3), and (4) in turn to remove provably incon-
sistent arcs, while at the same time we filter the node information.

Starting with the ternary constraints of type (2), we remove an arc (u, v) if lb(u) +
δS(`(u, v)) > ub(v). Updating [lb(v),ub(v)] for a node v is done similar to the rules (5)
above:

lb(v) = max
{

lb(v),min(u,v)∈Ain(v) {lb(u) + δS(`(u, v))}
}
,

ub(v) = min
{

ub(v),min(u,v)∈Ain(v) {ub(u) + δS(`(u, v))}
}
,

(6)

709



Bergman, Cire & van Hoeve

2x

1x

3x

4x

5x

: 0

: 1

a. Initial MDD

[0,0]

[0,0]

[0,0]

[1,1]

[1,1]

[1,1]

[0,2]

[0,2][1,1]

[2,2]

[2,3]

[1,4]

[0,5]

b. Node domains

2y

1y

3y

4y

5y

2x

1x

3x

4x

5x

0y

[0,0]

[0,0

[1,1]

[1,1] [2,2] [3,3]

[1,1] [2,2] [2,2]

[0,0] [2,2] [1,1]

[2,4]

c. MDD after filtering

Figure 3: MDD propagation for the constraint Sequence(X, q = 3, l = 1, u = 2, S = {1})
of Example 3.

In fact, the resulting algorithm is a special case of the MDD consistency equality propa-
gator of Hadzic et al. (2008a), and we thus inherit the MDD consistency for our ternary
constraints.

Next, we process the constraints (3) and (4) for a node v in layer Li+1 (i = 0, . . . , n).
Recall that the relevant ancestors from Li+1−q are Av[q], while its relevant descendants
from Li+1+q are Dv[q]. The variable corresponding to node v is yi, and it participates in
four constraints:

yi ≥ l + yi−q,
yi ≤ u+ yi−q,

yi ≤ yi+q − l,
yi ≥ yi+q − u.

(7)

Observe that we can apply these constraints to filter only the node domain [lb(v),ub(v)]
corresponding to yi. Namely, the node domains corresponding to the other variables yi−q
and yi+q may find support from nodes in layer Li+1 other than v. We update lb(v) and
ub(v) according to equations (7):

lb(v) = max{ lb(v), l + min
u∈Av [q]

lb(u), min
w∈Dv [q]

lb(w)− u },

ub(v) = min{ ub(v), u+ max
u∈Av [q]

ub(u), max
w∈Dv [q]

ub(w)− l }. (8)

The resulting algorithm is a specific instance of the generic MDD consistent binary
constraint propagator presented by Hoda et al. (2010), and again we inherit the MDD
consistency for these constraints. We can process the constraints in linear time (in the size
of the MDD) by a top-down and bottom-up pass through the MDD.
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Example 3 Consider the constraint Sequence(X, q = 3, l = 1, u = 2, S = {1}) with the
ordered sequence of binary variables X = {x1, x2, x3, x4, x5}. Assume we are given the
MDD in Figure 3.a. In Figure 3.b. we show the node domains that result from processing
rules (5). Figure 3.c. shows the resulting MDD after processing the constraints via the
rules (6) and (8). For example, consider the middle node in the fourth layer, corresponding
to variable y3. Let this node be v. It has initial domain [0, 2], and Av[q] only contains the
root node, which has domain [0, 0]. Since l = 1, we can reduce the domain of v to [1, 2]. We
can next consider the arcs into v, and conclude that value 1 in its domain is not supported.
This further reduces the domain of v to [2, 2], and allows us to eliminate one incoming arc
(from the first node of the previous layer).

The resulting MDD in Figure 3.c. reflects all possible deductions that can be made by
our partial algorithm. We have not established MDD consistency however, as witnessed by
the infeasible path (1, 1, 0, 0, 0).

Observe that our proposed algorithm can be applied immediately to the more general
Gen-Sequence constraints in which each Among constraint has its individual l, u and q.
The cumulative sums encoding can be adjusted in a straightforward manner to represent
these different values.

5.3 Formal Analysis

We next formally compare the outcome of our partial MDD filtering algorithm with MDD
propagation for the Among encoding and domain propagation for Sequence. First, we
recall the following theorem.

Theorem 3 (Brand et al., 2007, Thm. 4) Bounds consistency on the cumulative sums
encoding is incomparable to bounds consistency on the Among encoding of Sequence.

Note that since all variable domains in the Among and cumulative sums encoding are
ranges (intervals of integer values), bounds consistency is equivalent to domain consistency.

Corollary 2 MDD consistency on the cumulative sums encoding is incomparable to MDD
consistency on the Among encoding of Sequence.

Proof. We apply the examples from the proof of Theorem 4 in the work of Brand et al..
Consider the constraint Sequence(X, q = 2, l = 1, u = 2, S = {1}) with the ordered
sequence of binary variables X = {x1, x2, x3, x4} having domains D(xi) = {0, 1} for i =
1, 2, 4, and D(x3) = {0}. We apply the ‘trivial’ MDD of width 1 representing the Cartesian
product of the variable domains. Establishing MDD consistency on the cumulative sums
encoding yields

y0 ∈ [0, 0], y1 ∈ [0, 1], y2 ∈ [1, 2], y3 ∈ [1, 2], y4 ∈ [2, 3],
x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0}, x4 ∈ {0, 1}.

Establishing MDD consistency on the Among encoding, however, yields

x1 ∈ {0, 1},x2 ∈ {1}, x3 ∈ {0},x4 ∈ {1}.
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Consider the constraint Sequence(X, q = 3, l = 1, u = 1, S = {1}) with the ordered
sequence of binary variables X = {x1, x2, x3, x4} having domains D(xi) = {0, 1} for i =
2, 3, 4, and D(x1) = {0}. Again, we apply the MDD of width 1 representing the Cartesian
product of the variable domains. Establishing MDD consistency on the cumulative sums
encoding yields

y0 ∈ [0, 0], y1 ∈ [0, 0], y2 ∈ [0, 1], y3 ∈ [1, 1], y4 ∈ [1, 1],
x1 ∈ {0}, x2 ∈ {0, 1}, x3 ∈ {0, 1},x4 ∈ {0},

while establishing MDD consistency on the Among encoding does not prune any value. �

As an additional illustration of Corollary 2, consider again Example 3 and Figure 3. MDD
propagation for the Among encoding will eliminate the value x4 = 0 from the infeasible
path (1, 1, 0, 0, 0), whereas our example showed that MDD propagation for cumulative sums
does not detect this.

Theorem 4 MDD consistency on the cumulative sums encoding of Sequence is incom-
parable to domain consistency on Sequence.

Proof. The first example in the proof of Corollary 2 also shows that domain consistency
on Sequence can be stronger than MDD consistency on the cumulative sums encoding.

To show the opposite, consider a constraint Sequence(X, q, l, u, S = {1}) with a set
of binary variables of arbitrary size, arbitrary values q, l, and u = |X| − 1. Let M be the
MDD defined over X consisting of two disjoint paths from r to t: the arcs on one path
all have label 0, while the arcs on the other all have value 1. Since the projection onto
the variable domains gives x ∈ {0, 1} for all x ∈ X, domain consistency will not deduce
infeasibility. However, establishing MDD consistency with respect to M on the cumulative
sums encoding will detect this. �

Even though formally our MDD propagation based on cumulative sums is incomparable to
domain propagation of Sequence and MDD propagation of Among constraints, in the
next section we will show that in practice our algorithm can reduce the search space by
orders of magnitude compared to these other methods.

6. Computational Results

The purpose of our computational results is to evaluate empirically the strength of the par-
tial MDD propagator described in Section 5. We perform three main comparisons. First,
we want to assess the impact of increasing the maximum width of the MDD on the filtering.
Second, we want to compare the MDD propagation with the classical domain propagation
for Sequence. In particular, we wish to evaluate the computational overhead of MDD
propagation relative to domain propagation, and to what extent MDD propagation can
outperform domain propagation. Third, we compare the filtering strength of our MDD
propagator for Sequence to the filtering strength of the MDD propagators for the individ-
ual Among constraints, being the best MDD approach for Sequence so far (Hoda et al.,
2010).
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We have implemented our MDD propagator for Sequence as a custom global constraint
in IBM ILOG CPLEX CP Optimizer 12.4, using the C++ interface. Recall from Section 5
that for applying rules (8) we can either maintain a minimum and maximum value for the q
previous ancestors and descendants of each node, or approximate this by maintaining these
values simply for each layer. We evaluated both strategies and found that the latter did
reduce the amount of filtering, but nonetheless resulted in much more efficient performance
(about twice as fast on average). Hence, the reported results use that implementation.

For the MDD propagator for Among, we apply the code of (Hoda et al., 2010). For the
domain propagation, we applied three models. The first uses the domain consistent propa-
gator for Sequence by van Hoeve et al. (2009), running in O(n3) time. The second uses
the domain consistent propagator for Sequence based on a network flow representation
by Maher et al. (2008), which runs in O(n2) time.1 As third model, we applied the de-
composition into cumulative sums, which uses no explicit global constraint for Sequence.
Propagating this decomposition also takes O(n2) in the worst case, as it considers O(n) vari-
ables and constraints while the variable domains contain up to n elements. We note that
for almost all test instances, the cumulative sums encoding established domain consistency
on Sequence. As an additional advantage, the cumulative sums encoding permits a more
insightful comparison with our MDD propagator, since both are based on the cumulative
sums decomposition.

We note that Brand et al. (2007) introduce the ‘multiple-Sequence’ constraint that
represents the conjunction of multiple Sequence constraints on the same set of ordered
variables (as in our experimental setup). Narodytska (2011) shows that establishing bounds
consistency on such system is already NP-hard, and presents a domain consistent propagator
that encodes the system as an automaton for the Regular constraint. The algorithm runs
in O(nmq) time, where n represents the number of variables, m the number of Sequence
constraints, and q the length of the largest subsequence.

In order to compare our algorithms with the multiple-Sequence constraint, we con-
ducted experiments to identify a suitable testbed. We found that instances for which the
multiple-Sequence constraint would not run out of memory could be solved instantly by
using any domain propagator for the individual Sequence constraints, while creating the
data structures for the multiple-Sequence constraint took substantially more time on av-
erage. For instances that were more challenging (as described in the next sections), the
multiple-Sequence constraint could not be applied due to memory issues. We therefore
excluded this algorithm from the comparisons in the sections below.

Because single Sequence constraints can be solved in polynomial time, we consider
instances with multiple Sequence constraints in our experiments. We assume that these
are defined on the same ordered set of variables. To measure the impact of the different
propagation methods correctly, all approaches apply the same fixed search strategy, i.e.,
following the given ordering of the variables, with a lexicographic value ordering heuristic.
For each method, we measure the number of backtracks from a failed search state as well
as the solving time. All experiments are performed using a 2.33GHz Intel Xeon machine.

1. We thank Nina Narodytska for sharing the implementation with us.
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6.1 Systems of Sequence Constraints

We first consider systems of multiple Sequence constraints that are defined on the same set
of variables. We generate instances with n = 50 variables each having domain {0, 1, . . . , 10},
and 5 Sequence constraints. For each Sequence constraint, we set the length of sub-
sequence uniform randomly between [5, n/2) as

q = (rand()%((n/2)− 5)) + 5.

Here, rand() refers to the standard C++ random number generator, i.e., rand()%k selects
a number in the range [0, k − 1]. Without the minimum length of 5, many of the instances
would be very easy to solve by either method. We next define the difference between l and
u as ∆ := (rand()%q), and set

l := (rand()%(q −∆)),

u := l + ∆.

Lastly, we define the set of values S by first defining its cardinality as (rand()%11) + 1, and
then selecting that many values uniformly at random from {0, 1, . . . , 10}. We generated 250
such instances in total.2

We solve each instance using the domain consistency propagator for Sequence, the
cumulative sums encoding (domain propagation), and the MDD propagator with maximum
widths 2, 4, 8, 16, 32, 64, 128. Each method is given a maximum time limit of 1,800 seconds
per instance.

We compare the performance of domain propagation and MDD propagation in Fig-
ure 4. In this figure, we report for each given time point how many instances could be
solved within that time by a specific method. The three domain propagation methods are
represented by ‘Cumulative Sums’ (the cumulative sums decomposition), ‘Sequence - HPRS’
(the Sequence propagator in van Hoeve et al., 2006, 2009), and ‘Sequence - Flow’ (the
flow-based propagator in Maher et al., 2008). Observe that the cumulative sums domain
propagation, although not guaranteed to establish domain consistency, outperforms both
domain consistent Sequence propagators. Also, MDD propagation with maximum width
2 can already substantially outperform domain propagation. We can further observe that
larger maximum widths require more time for the MDDs to be processed, but in the end
it does allow to solve more instances: maximum MDD width 128 permits to solve all 250
instances within the given time limit, whereas domain propagation can respectively solve
220 (Sequence - Flow), 230 (Sequence - HPRS), and 232 (Cumulative Sums) instances.

To illustrate the difference between domain and MDD propagation in more detail, Fig-
ure 5 presents scatter plots comparing domain propagation (cumulative sums) with MDD
propagation (maximum width 32). This comparison is particularly meaningful because
both propagation methods rely on the cumulative sums representation. For each instance,
Figure 5.a depicts the number of backtracks while Figure 5.b depicts the solving time of
both methods. The instances that were not solved within the time limit are collected under
‘TO’ (time out) for that method. Figure 5.a demonstrates that MDD propagation can lead
to dramatic search tree reductions, by several orders of magnitude. Naturally, the MDD

2. All instances are available at http://www.andrew.cmu.edu/user/vanhoeve/mdd/.

714



MDD Propagation for Sequence Constraints

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Time(s)

N
u

m
b

e
r 

o
f 

in
s
ta

n
c
e

s
 s

o
lv

e
d

10
−2

10
−1

10
0

10
1

10
2

10
3

MDD Width 128

MDD Width 32

MDD Width 2

Domain (Cumulative Sums)

Domain (Sequence − HPRS)

Domain (Sequence − Flow)

Figure 4: Performance comparison of domain and MDD propagators for the Sequence
constraint. Each data point reflects the total number of instances that are solved
by a particular method within the corresponding time limit.

propagation comes with a computational cost, but Figure 5.b shows that for almost all in-
stances (especially the harder ones), the search tree reductions correspond to faster solving
times, again often several orders of magnitude.

We next evaluate the impact of increasing maximum widths of the MDD propagator.
In Figure 6, we present for each method the ‘survival function’ with respect to the number
of backtracks (a.) and solving time (b.). Formally, when applied to combinatorial back-
track search algorithms, the survival function represents the probability of a run taking
more than x backtracks (Gomes, Fernández, Selman, & Bessière, 2005). In our case, we
approximate this function by taking the proportion of instances that need at least x back-
tracks (Figure 6.a), respectively seconds (Figure 6.b). Observe that these are log-log plots.
With respect to the search tree size, Figure 6.a clearly shows the strengthening of the MDD
propagation when the maximum width is increased. In particular, the domain propagation
reflects the linear behavior over several orders of magnitude that is typical for heavy-tailed
runtime distributions. Naturally, similar behavior is present for the MDD propagation, but
in a much weaker form for increasing maximum MDD widths. The associated solving times
are presented in Figure 6.b. It reflects similar behavior, but also takes into account the
initial computational overhead of MDD propagation.
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Figure 5: Comparing domain and MDD propagation for Sequence constraints. Each data
point reflects the number of backtracks (a.) resp. solving time in seconds (b.)
for a specific instance, when solved with the best domain propagator (cumulative
sums encoding) and the MDD propagator with maximum width 32. Instances for
which either method needed 0 backtracks (a.) or less than 0.01 seconds (b.) are
excluded. Here, TO stands for ‘timeout’ and represents that the specific instance
could not be solved within 1,800s (Fig. b.). In Figure a., these instances are
labeled separately by TO (at tick-mark 108); note that the reported number of
backtracks after 1,800 seconds may be much less than 108 for these instances. All
reported instances with fewer than 108 backtracks were solved within the time
limit.

6.2 Nurse Rostering Instances

We next consider a more structured problem class inspired by nurse rostering problems.
The problem is to design a work schedule for a nurse over a given horizon of n days. On
each day, a nurse can either work a day shift (D), evening shift (E), night shift (N), or
have a day off (O). We introduce a variable xi for each day i = 1, . . . , n, with domain
D(xi) = {O,D,E,N} representing the shift. We impose the eight Sequence constraints
modeling the requirements listed in Table 1.

By the combinatorial nature of this problem, the size of the CP search tree turns out to
be largely independent on the length of the time horizon, when a lexicographic search (by
increasing day i) is applied. We however do consider instances with various time horizons
(n = 40, 60, 80, 100), to address potential scaling issues.

The results are presented in Table 2. The columns for ‘Domain Sequence’ show the total
number of backtracks (BT) and solving time in seconds (CPU) for the domain consistent
Sequence propagator. Similarly, the columns for ‘Domain Cumul. Sums’ show this infor-
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Figure 6: Evaluating the impact of increased width for MDD propagation via survival func-
tion plots with respect to search backtracks (a.) and solving time (b.). Both plots
are in log-log scale. Each data point reflects the percentage of instances that re-
quire at least that many backtracks (a.) resp. seconds (b.) to be solved by a
particular method.

Requirement Sequence(X, q, l, u, S)

At least 20 work shifts every 28 days: Sequence(X, 28, 20, 28, {D,E,N})

At least 4 off-days every 14 days: Sequence(X, 14, 4, 14, {O})

Between 1 and 4 night shifts every 14 days: Sequence(X, 14, 1, 4, {N})

Between 4 and 8 evening shifts every 14 days: Sequence(X, 14, 4, 8, {E})

Nights shifts cannot appear on consecutive days: Sequence(X, 2, 0, 1, {N})

Between 2 and 4 evening/night shifts every 7 days: Sequence(X, 7, 2, 4, {E,N})

At most 6 work shifts every 7 days: Sequence(X, 7, 0, 6, {D,E,N})

Table 1: Nurse rostering problem specification. Variable set X represents the shifts to be
assigned over a sequence of days. The possible shifts are day (D), evening (E),
night (N), and day off (O).

mation for the cumulative sums domain propagation. The subsequent columns show these
numbers for the MDD propagator, for MDDs of maximum width 1, 2, 4, and 8. Note that
propagating an MDD of width 1 corresponds to domain propagation, and indeed the associ-
ated number of backtracks is equivalent to the domain propagator of the cumulative sums.
As a first observation, a maximum width of 2 already reduces the number of backtracks
by a factor 8.3. For maximum width of 8 the MDD propagation even allows to solve the
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Domain Domain MDD MDD MDD MDD
Sequence Cumul. Sums Width 1 Width 2 Width 4 Width 8

n BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU

40 438,059 43.83 438,059 32.26 438,059 54.27 52,443 12.92 439 0.44 0 0.02
60 438,059 78.26 438,059 53.40 438,059 80.36 52,443 18.36 439 0.68 0 0.04
80 438,059 124.81 438,059 71.33 438,059 106.81 52,443 28.58 439 0.94 0 0.06
100 438,059 157.75 438,059 96.27 438,059 135.37 52,443 37.76 439 1.22 0 0.10

Table 2: Comparing domain propagation and the MDD propagation for Sequence on nurse
rostering instances. Here, n stands for the number of variables, BT for the number
of backtracks, and CPU for solving time in seconds.

problem without search. The computation times are correspondingly reduced, e.g., from
157s (resp. 96s) for the domain propagators to 0.10s for the MDD propagator (width 8) for
the instance with n = 100. Lastly, we can observe that in this case MDD propagation does
not suffer from scaling issues when compared to domain propagation.

As a final remark, we also attempted to solve these nurse rostering instances using the
Sequence domain propagator of CP Optimizer (IloSequence). It was able to solve the
instance with n = 40 in 1,150 seconds, but none of the others instances were solved within
the time limit of 1,800 seconds.

6.3 Comparing MDD Filtering for Sequence and Among

In our last experiment, we compare our Sequence MDD propagator to the MDD propaga-
tor for Among constraints by Hoda et al. (2010). Our main goal is to determine whether a
large MDD is by itself sufficient to solve these problem (irrespective of propagating Among
or a cumulative sums decomposition), or whether the additional information obtained by
our Sequence propagator makes the difference.

We apply both methods, MDD propagation for Sequence and MDD propagation for
Among, to the data set of Section 6.1 containing 250 instances. The time limit is again
1,800 seconds, and we run the propagators with maximum MDD widths 2, 8, 32, and 128.

We first compare the performance of the MDD propagators for Among and Sequence
in Figure 7. The figure depicts the number of instances that can be solved within a given
time limit for the various methods. The plot indicates that the Among propagators are
much weaker than the Sequence propagator, and moreover that larger maximum widths
alone do not suffice: using the Sequence propagator with maximum width 2 outperforms
the Among propagators for all maximum widths up to 128.

The scatter plot in Figure 8 compares the MDD propagators for Among and Sequence
in more detail, for widths 2, 8, 32, and 128 (instances that take 0 backtracks, resp. less
than 0.01 seconds, for either method are discarded from Figure 8.a, resp. 8.b). For smaller
widths, there are several instances that the Among propagator can solve faster, but the
relative strength of the Sequence propagator increases with larger widths. For width
128, the Sequence propagator can achieve orders of magnitude smaller search trees and
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solving time than the Among propagators, which again demonstrates the advantage of
MDD propagation for Sequence when compared to the Among decomposition.

7. Conclusion

Constraint propagation with limited-width MDDs has recently been shown to be a powerful
alternative to the conventional propagation of variable domains in constraint programming.
In this work, we have studied MDD propagation for the Sequence constraint, which ap-
pears in, e.g., rostering and scheduling applications. We have first proved that establishing
MDD consistency for Sequence is NP-hard. However, we have also shown that this task
is fixed parameter tractable with respect to the length of the sub-sequences defined by the
constraint, provided that the MDD follows the variable ordering specified by the constraint.
We then proposed a practical MDD propagation algorithm for Sequence that is also poly-
nomial in the length of the sub-sequences, which is based on a cumulative decomposition.
We provided extensive experimental results comparing our MDD propagator for Sequence
to domain propagators for Sequence as well as an existing MDD propagator for Among.
Our computational experiments have shown that our MDD propagator for Sequence can
outperform domain propagators by orders by magnitude in terms of search tree size and
solving time. Similar results were obtained when compared to the existing MDD propaga-
tor for Among, which demonstrates that in practice a large MDD alone is not sufficient to
solve these problems; specific MDD propagators for global constraints such as Sequence
can lead to orders of magnitude speedups.
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