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Abstract

Assume that each of n voters may or may not approve each of m issues. If an agent (the
lobby) may influence up to k voters, then the central question of the NP-hard LOBBYING
problem is whether the lobby can choose the voters to be influenced so that as a result
each issue gets a majority of approvals. This problem can be modeled as a simple matrix
modification problem: Can one replace k rows of a binary n x m-matrix by k all-1 rows such
that each column in the resulting matrix has a majority of 1s? Significantly extending on
previous work that showed parameterized intractability (W[2]-completeness) with respect
to the number k of modified rows, we study how natural parameters such as n, m, k, or
the “maximum number of 1s missing for any column to have a majority of 1s” (referred
to as “gap value ¢g”) govern the computational complexity of LOBBYING. Among other
results, we prove that LOBBYING is fixed-parameter tractable for parameter m and provide a
greedy logarithmic-factor approximation algorithm which solves LOBBYING even optimally
if m < 4. We also show empirically that this greedy algorithm performs well on general
instances. As a further key result, we prove that LOBBYING is LOGSNP-complete for
constant values g > 1, thus providing a first natural complete problem from voting for this
complexity class of limited nondeterminism.

1. Introduction

Campaign management comprises all sorts of activities for influencing the outcome of an
election, including well-known scenarios such as bribery (Faliszewski, Hemaspaandra, &
Hemaspaandra, 2009; Dorn & Schlotter, 2012; Schlotter, Elkind, & Faliszewski, 2011;
Elkind, Faliszewski, & Slinko, 2012) and control (Bartholdi III, Tovey, & Trick, 1992; Elkind,
Faliszewski, & Slinko, 2011; Erdélyi, Piras, & Rothe, 2011). While these works relate to
campaigning in case of classical voting scenarios where one typically wants to make a specific
candidate win or to prevent him from winning, Christian, Fellows, Rosamond, and Slinko
(2007) introduced the scenario of lobbying in multiple referenda. Intuitively, the point here
is that there are n voters, each of them providing a yes- or no-answer to each of m issues. In
other words, we have a referendum on m issues the voters can decide on. Naturally, before
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the referendum is held, campaigns will be run by various parties and interest groups to
influence the outcome of the referendum. Assuming complete knowledge about the current
voter opinions and assuming the extreme scenario that an external agent—the “lobby”—gains
complete control over specific voters, Christian et al. modeled this very basic scenario as
0/1-matrix modification problem, where the rows represent voters, the columns represent
issues to vote on with yes (1) or no (0), and the lobby goal is represented by a 0/1-vector.

LoBBYING
Input: A matrix A € {0,1}"*™ and an integer k > 0.
Question: Can one modify the entries of at most k rows in A such that in the resulting
matrix every column has more 1s than 0s?

In our context, modifying a row means to simply flip all Os to 1s. Hence, modifying a
minimum number of rows can be interpreted as the lobby influencing a minimum number
of voters to reach a certain goal. In difference to Christian et al., we assume that the
desired outcome of each column is 1 instead of providing a goal vector of the lobby. That is,
1 corresponds to agreement with the lobby goal and 0 corresponds to disagreement. Clearly,
by appropriately flipping all entries of a column this can be always ensured. Furthermore,
we assume that any column with a majority of 1s is removed from the input matrix. The
following example, which is an extract from the real-world data from illustrates
our model.

Example 1. Consider the following four issues and voting behavior of the five faction
leaders extracted from the recorded votes of the German parliament in 2013. (See|Section 6.2
for details about the full data set.)

Selected issues: 1 2 3 4

1. Water access is a human right. Briiderle No No Yes Yes

2. Forbid the Nationalist Party. Gysi Yes Yes No No

3.  Financial help for Ireland. Kauder No No Yes Yes

4. Financial help for Cyprus. Kiinast Yes Yes Yes Yes
Steinmeier No Yes Yes Yes

Assume that the lobby wants to approve the first two issues and disapprove the last two
issues. Then, the matrix translates into the following binary matrix.

The second column can be removed because
the majority of voters already agree with the
lobby. Modifying the first and third row
yields a solution.

O = O RO
=== O = O
o O o = O
o O O = O

LOBBYING is NP-complete (Christian et al., 2007). Moreover, in the setting of param-
eterized complexity analysis (Downey & Fellows, 2013; Flum & Grohe, 2006; Niedermeier,
2006), Christian et al. showed that it is W[2]-complete with respect to the parameter “num-
ber k of rows to modify”, that is, even if only a small number of voters shall be influenced
the problem is computationally intractable. In this work, we provide a significantly more

410



A MULTIVARIATE COMPLEXITY ANALYSIS OF LOBBYING IN MULTIPLE REFERENDA

refined view on the parameterized and multivariate computational complexity (Fellows,
Jansen, & Rosamond, 2013; Niedermeier, 2010) of LOBBYING. To this end, we identify the
following parameters naturally occurring in LOBBYING and analyze their influence on its
computational complexity. The studied parameters are:

e n: number of rows;

e m: number of columnd'}

k: number of rows to modify;

kE':=[(n+1)/2] — k: below-guarantee parameterﬂ

e g:=maxj’, g;: maximum gap value over all columns, where the gap value gi=[(n+
1)/2] = >° , A;j is the number of missing 1s to make column j have more 1s than
Os;

e s: maximum number of 1s per row;

e {: maximum number of Os per row.

1.1 Parameter Choice

The parameters n, m, and k are naturally occurring parameters as they measure the input
size and the solution size, respectively. Scenarios with only few voters or issues are clearly
interesting and realistic restrictions. Furthermore, also the restriction to instances with
small solutions is very natural as a limited budget of the lobby may only allow a (very)
small amount of bribery or, more positively, advertisement. Additionally, &’ complements
the parameter k£ and seems promising because it measures the distance from a trivial type
of yes-instances. Moreover, observe that the maximum gap value g is a lower bound on the
number of rows that have to be modified; it can be precomputed in linear time. Furthermore,
sets of issues where each single issue needs only a small amount of additional approvals or
disapprovals bear good prospects for a lobby with limited budget. Finally, s and ¢ measure
the density of the input matrix. In our model the density of the matrix can be seen as the
degree of agreement between the voters and the lobby. Hence, it is worth to investigate
whether high or low density leads to computational tractability.

1.2 Parameter Relations

There are various relations between the parameters’ values above. For instance, columns
containing a majority of 1s can be safely removed (also implying positive gap values for all
columns). As this implies that the input matrix has at least as many Os as 1s, it follows
that there has to be at least one row where at least half of the entries are 0s. Hence,
t < m < 2t. In addition, if the input matrix contains a column only consisting of 0s, then
one has to modify [(n+1)/2] rows, implying that the corresponding LOBBYING instance is

1. Christian et al. (2007) argued that m seldom exceeds 20.
2. Clearly, lobbying [(n+1)/2] voters, that is, modifying [(n+1)/2] rows in the input matrix yields always
the desired solution, making [(n + 1)/2] a trivial upper bound for k.
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LOGSNP-hard (even for constant parameter values)

maximum maximum number NP-hard below-guarantee

gap value g s of 1s per row parameter k'
(s, k)

W|[2]-hard

/
to modify (5,9) number m maximum number ILP-EPT
: of columns t of Os per row ;
L <] |

i number Y i

no polynomial kernel

trivial FPT (s,1)

(parameters pro- / FPT

vide upper bo.unds (m,n) (t,n) (fixed-parameter tractable)
of the input size) _

Figure 1: Parameterized complexity of LOBBYING and relations between the parameters
considered in this paper. An arc from z to y means that there is some function
f with < f(y). We omit combined parameters where one component is upper-
bounded by a function of the other component, for example (n,k) is omitted,
because k < n. ILP-FPT means that the fixed-parameter tractability bases on a
formulation as integer linear program.

a yes-instance if and only if k£ > [(n 4+ 1)/2]. Also, we assume m < n - s as otherwise there
has to be a column consisting only of Os which is a trivial input instance since we would
only have to check whether k£ > [(n + 1)/2]. The relations between these parameters and
the combinations considered in this paper are illustrated in [Figure I}

Finally, we remark that in this article we focus on the “plain” lobbying in multiple
referenda scenarios. We leave considerations of more fine-grained aspects of the lobbying
process (such as allowing different forms of modifying the input matrix) as a natural next
step for future work.
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1.3 Related Work

Our central point of reference is the work by Christian et al. (2007) whose key result
is the proof of W[2]-completeness of LOBBYING with respect to the number k. Erdélyi,
Hemaspaandra, Rothe, and Spakowski (2007) generalized LOBBYING to a weighted sce-
nario and showed that an efficient greedy algorithm achieves a logarithmic approximation
factor (1 + In(m - [(n + 1)/2])) for the weighted case. Moreover, they showed that essen-
tially no better approximation ratio can be proven for their algorithm. Later, models for
lobbying in a probabilistic environment were proposed by Binkele-Raible, Erdélyi, Fernau,
Goldsmith, Mattei, and Rothe (2014), providing (parameterized) hardness and tractability
results; they interpret lobbying as a form of bribery.

As a special case of the combinatorial reverse auction problem (Sandholm, Suri, Gilpin,
& Levine, 2002), the optimization version of LOBBYING is relevant to combinatorial markets
in multi-agent systems. In combinatorial reverse auctions, there are different items that a
buyer wants to acquire at the lowest cost from the sellers. More precisely, the buyer wants
to have an amount of units from each item, U = (uj,usg,...,uy). Each seller i submits
how many goods he has for each item, (A%, N}, ..., A% ) and the price p; for which he would
sell. The goal is to minimize the cost while acquiring the required amount of units of each
item. It is easy to see how to translate our lobbying problem into a combinatorial reverse
auction problem: Each issue j corresponds to an item j. The buyer’s requirement for each
item j is the gap value of the corresponding column, u; := g;,Vj € {1,...,m}. Each row ¢
corresponds to a seller with offer /\;'» =1—A4;;,Vj€{l,...,m} and price p; := 1.

LOBBYING is also closely related to bribery in judgment aggregation (Baumeister, Erdélyi,
& Rothe, 2011) where the judges submit binary opinions on different propositions and the
goal is to bribe as few judges as possible in order to obtain a certain outcome. A LOBBYING
instance can be formulated as an equivalent instance of the bribery in judgment aggregation
problem using a premise-based procedure. More precisely, given a binary matrix A, each
propositional variable v; corresponds to a column j, each judge ¢ corresponds to a row 7 with
the judgment set consisting of those variables v; satisfying A; ; = 1, and the agenda consists
of all propositional variables as premises and no conclusions. Now the goal of modifying
as few rows as possible in order to have more 1s than Os in each column is equivalent to
bribing as few judges as possible in order to have all possible variables approved by more
than half of the judges.

Finally, we refer to survey articles for a discussion on the importance of parameterized
complexity results in the context of artificial intelligence (AI) (Gottlob, Scarcello, & Sideri,
2002; Gottlob & Szeider, 2008) and voting (Betzler, Bredereck, Chen, & Niedermeier, 2012).

1.4 Our Contributions

We initiate a systematic parameterized and multivariate complexity analysis for the LoOB-
BYING problem. We contribute to the theoretical as well as to the empirical side. See the
preliminaries in for definitions of parameterized complexity classes and the like.
Our complexity results are summarized in Let us sketch a few highlights.

e In Section [3] we show that LOBBYING remains NP-hard for s = 3 and &’ = 1. Thus,
there is no hope for fixed-parameter tractability with respect to the parameters s or k’.
Moreover, a special highlight of our work is to show that even if the gap parameter g
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Table 1: Summary of results. For each parameter combination (row by column) the entries

indicate whether LOBBYING is fixed-parameter tractable (FPT), fixed-parameter
tractable based on a formulation as integer linear program (ILP-FPT), polynomial-
time solvable for constant parameter values (XP), W[2]-hard (W[2]-h), W[2]-
complete (W[2]-c), LOGSNP-complete, meaning completeness for a class of limited
nondeterminism lying between P and NP for constant parameter values (LOGSNP-
¢), or NP-complete even for constant parameter values (NP-c). Entries on the main
diagonal represent results with respect to single parameters. Furthermore, for
(m,n), (t,n), and (s,n), we have problem kernels of polynomial size because these
parameters naturally bound the input size (see [Figure 1]). For (m,k’) we are not
aware of kernel size bounds. For all other parameter combinations above, under
some reasonable complexity-theoretic assumptions, there cannot be a polynomial-
size problem kernel (see Section [4]).

is equal to one, LOBBYING remains intractable in the sense of being complete for the
limited nondeterminism class LOGSNP (Papadimitriou & Yannakakis, 1996) (also see
the survey in Goldsmith, Levy, & Mundhenk, 1996). This is of particular interest for
at least two reasons. First, it provides a first natural voting problem complete for
LOGSNP. Second, this is one of the so far rare examples where this complexity class
is used in the context of parameterized complexity analysis.

In Section 4] we reveal limitations of effective polynomial-time preprocessing for LOB-
BYING, that is, we prove that polynomial-size problem kernels are unlikely to exist.

In Section 5] we show that LOBBYING is fixed-parameter tractable for parameter m by
means of describing an ILP formulation with at most 2" variables. We further provide
two efficient algorithms yielding provably optimal results for input matrices with up
to four columns. One of these two algorithms is based on a simple greedy strategy and
provides a logarithmic approximation ratio for cases with more than four columns.
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Furthermore, we develop several fixed-parameter algorithms for various parameter
combinations and show that LOBBYING is polynomial-time solvable for s < 2.

e Finally, in Section [6] we experimentally compare our greedy heuristic, with the heuris-
tic in the work of Erdélyi et al. (2007), and an implementation of our ILP formulation
providing solutions guaranteed to be optimal. Our empirical results with random data
and real-world data indicate that LOBBYING can be solved efficiently.

2. Preliminaries

Our aim is to provide a deeper understanding of the computational complexity of the NP-
complete LOBBYING problem. To this end, we employ classical complexity classes such as P
(polynomial time) and NP (nondeterministic polynomial time) (Garey & Johnson, 1979) as
well as the class LOGSNP of limited nondeterminism (lying between P and NP) (Papadim-
itriou & Yannakakis, 1996; Goldsmith et al., 1996) and parameterized complexity classes
such as FPT (fixed-parameter tractability), W[2] (second level of the “weft hierarchy” of
presumable parameterized intractability), and XP (Downey & Fellows, 2013; Flum & Grohe,
2006; Niedermeier, 2006). Throughout this paper, we denote by log the logarithm to base
two.

2.1 LOGSNP

LOGSNP has been introduced by Papadimitriou and Yannakakis (1996) to precisely char-
acterize the computational complexity of certain problems in NP that are neither known
to be NP-complete nor known to be solvable in polynomial time. LOGSNP is a subclass of
problems in NP which can be decided in polynomial time with an initial phase of O(log2 N)
nondeterministic steps, where NV is the overall input size. However, LOGSNP does not in-
clude all problems decidable in polynomial time after the nondeterministic phase since it
puts additional restrictions on the computation. Roughly speaking, one is only allowed to
use some constant number of “elements” of the “guessed” solution.

It is widely believed that LOGSNP is properly intermediate between P and NP. Prob-
lems complete for LOGSNP under polynomial-time reductions include R1ICH HYPERGRAPH
COVER (see for the definition) and LoG ADJUSTMENT (Papadimitriou & Yan-
nakakis, 1996), the latter being of particular importance in artificial intelligence. In Loa
ADJUSTMENT, a boolean expression in conjunctive normal form with r variables and a truth
assignment 7" are given, and the question is whether there is a satisfying truth assignment
whose Hamming distance from 7" is at most logr.

Alternative characterizations of LOGSNP exist (Cai, Chen, Downey, & Fellows, 1997;
Flum & Grohe, 2006, Sec. 15.2).

2.2 Fixed-Parameter Tractability and XP

The concept of parameterized complexity was pioneered by Downey and Fellows (2013) (see
also further textbooks: Flum & Grohe, 2006; Niedermeier, 2006). The fundamental goal is to
find out whether the seemingly unavoidable combinatorial explosion occurring in algorithms
to solve NP-hard problems can be confined to certain problem-specific parameters. If such
a parameter assumes only small values in applications, then an algorithm with a running
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time that is exponential exclusively with respect to this parameter may be efficient. For
LOBBYING, we suggest a number of (potentially small) parameters. A combined parameter
(which is a vector of parameters) can, for the sake of convenience, be simply seen as the
sum of its components.

Formally, a problem is fized-parameter tractable (equivalently, contained in the param-
eterized complexity class FPT) with respect to a parameter p (equivalently, when param-
eterized by p) if any instance (I,p) of this problem can be solved in f(p) - |I|°(") time,
where f solely depends on p. If the problem can only be solved in polynomial running time
where the degree of the polynomial depends on p (such as |1 |f (p)), then, for parameter p,
the problem is said to lie in the—strictly larger (Downey & Fellows, 2013)—parameterized
complexity class XP. Note that containment in XP ensures polynomial-time solvability for a
constant parameter p whereas FPT additionally ensures that the degree of the corresponding
polynomial is independent of the parameter p.

2.3 Kernelization

Another way of showing fixed-parameter tractability is through kernelization. A kernel-
ization algorithm takes as input a problem instance I together with a parameter p and
transforms it in polynomial time into an instance I’ with parameter p’ such that (I,p) is
a yes-instance if and only if (I’,p') is a yes-instance and there is a function f such that
P < f(p) and |I'] < f(p). The function f measures the size of the (problem) kernel (I',p).
A problem kernel is said to be a polynomial kernel if f is polynomially bounded. Note that it
is well-known that a decidable problem is fixed-parameter tractable with respect to a param-
eter if and only if it is “kernelizable” (Cai et al., 1997). The corresponding kernels, however,
may have exponential size and it is of particular interest to determine which problems, with
respect to which parameter(s), allow for polynomial-size problem kernels (Bodlaender, 2009;
Guo & Niedermeier, 2007) since the total running time complexity may vary dependent on
the kernel size. Using techniques developed by Bodlaender, Downey, Fellows, and Hermelin
(2009) and by Fortnow and Santhanam (2011), Szeider (2011) recently proposed to examine
the power of kernelization for several problems in Artificial Intelligence. See Section {4| for
more discussion.

2.4 Parameterized Intractability

Downey and Fellows (2013) also introduced a framework of parameterized intractability. In
this framework, the two basic complexity classes of parameterized intractability are W[1]
and W[2], and a problem is shown to be W[1]- or W[2]-hard by providing a parameterized
reduction from a W[1]- or W[2]-hard problem to the problem in question. A parameterized
reduction from a problem II; to another problem Il is a function f computable in FPT
time such that there is a function g and the instance (I3, p2) produced by f on instance
(I1,p1) satisfies the following:

e (I1,p1) is a yes-instance of problem II; if and only if (I3,p2) is a yes-instance of
problem Ils, and

e p2 < g(p1).
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WI[1]-complete problems include CLIQUE parameterized by the solution size (Downey &
Fellows, 2013) while W[2]-complete problems include SET COVER parameterized by the
solution size (see Section for the formal definition).

If a problem is shown to be NP-hard even if parameter p is a constant, then it cannot
be contained in XP unless P = NP.

3. Intractable Cases

In this section, we examine the worst-case computational complexity of LOBBYING. Besides
NP-completeness in one very restricted case, we also prove a LOGSNP-completeness result
for the case that in each column only one l-entry is missing to reach a majority of 1s.

3.1 NP-Completeness

For some of the hardness reductions presented in this work, NP-complete variants of the
following SET COVER (SC) problem are used.

SET COVER (SC)

Input: A family of sets S = {S1, ..., S¢} over a universe U = {uq,...,u,} of elements
and an integer h > 0.

Question: Is there a size-h set cover, that is, a collection of h sets in S whose union is
u?

Note that even 3-SET COVER (3-SC), where each set from S is of size at most three, is
NP-complete (Karp, 1972). In order to make the reduction work, we need to let h, |S|, and
the number of occurrences of every element in the sets in S fulfill the following properties
whose correctness is easy to see:

1. We add (multiple copies of) singletons to the family S to ensure that |S| —2h+1 >0
and to ensure that every element appears in at least h sets in S.

2. We also add a new element u* to the universe U, add h copies of the singleton {u*}
to the family S, and set h := h + 1 to ensure that each element appears in at most
|S| — h sets in S.

A common starting point for each of our SC reductions is to transform S (and U) into
a binary matrix in a similar way as Christian et al. (2007) transformed DOMINATING SET
instances into binary matrices. The corresponding |S| x [U|-matrix is called SC-matriz and
is defined as
1 if u; € Si,

M(S,U) = (v;5) with z;; 1= {0 otherwise

Observe that each column j € {1,...,|U|} has 1s in at most (|S| — h) rows. We will make
use of the SC-matrix in Section [4] and in the following theorem.

An instance of LOBBYING with k£ > [(n+1)/2] (that is, more than half of the rows can
be modified) is a yes-instance. Following general ideas of Mahajan and Raman (1999) in the
context of “above and below guarantee parameterization”, we investigate the complexity of
LOBBYING in case the maximum number of 1s per row is bounded by a constant and k is
slightly below the bound [(n + 1)/2]. Such a parameterization is called below guarantee.
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U=1{1,23, 4,5} 1 23 45 |
S={5 =124} S 01010 00
Sy = {3,5} Spr 001 01 00
Sz ={1,2,5} S 11001 0 0
S4=1{1,2,3} Sz 11100 0 0
S5 ={4,5} } Ss: 00011 0 0
00 000 1 0]
00000 01

h=2 ki=|S|—h=3

Figure 2: Hlustration of the reduction from 3-SC to LOBBYING. Left: an 3-SC instance;
Right: the constructed LOBBYING instance. The SC-matrix together with two
dummy rows and two dummy columns (inside the dashed polygon) ensure that
any set of rows which are not selected by some solution of size three corresponds
to a set cover. The 3-SC solution (Sy and Ss) is highlighted in boldface on the
left. The LOBBYING solution (modifying the first three rows) is highlighted by
gray backgrounds.

Theorem 1. LOBBYING remains NP-complete for input matrices where the mazximum num-
ber s of ones per row is three and for k' = 1 of the below guarantee parameter k' =

([(n+1)/2] = k).

Proof. Obviously, given a matrix A and k = [(n + 1)/2] — 1 rows of A, we can check in
polynomial time whether each row of A has at most three 1s and whether modifying the
k given rows makes every column have more 1s than 0s. Hence, LOBBYING with s = 3 and
k' = 1 remains in NP.

For the NP-hardness result, we describe a polynomial-time reduction from 3-SC to
LoBBYING where each row contains at most three 1s. The reduction is illustrated with an
example in Let (S,U,h) denote a 3-SC instance. First, compute the SC-matrix
M(S,U), which we refer to as original rows and original columns in the following. Second,
add |S|—2h+1 additional dummy rows and |S|—2h+1 additional dummy columns containing
only 0s. Recall that we can assume that |[S| —2h + 1 > 0. Finally, for 1 <i < |S| —2h + 1,
change the entry in the ith dummy column of the ¢th dummy row to 1. To complete the
construction we set k := |S| — h.

Each original row has at most three 1s since each set of S has at most three elements.
Each dummy row has exactly one 1. Further, the below guarantee parameter k&' = [(n +
1)/2] —k =[(2|S] —2h +1)/2] — (|S| — h) = 1. The quota for a column to have more 1s
than Os is |S| — h + 1. Since every original column has 1s in at most |S| — h original rows
and no 1s in the dummy rows, no original column has more 1s than Os in the matrix. More
precisely, the jth original column has gap value |S| —h+1— |{S; | u; € S;}|. Each dummy
column has gap value |S| — h. Hence the maximum gap value g is |S| — h.
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Obviously, the reduction runs in polynomial time. Now, we show that (S,U,h) is a
yes-instance of 3-SC if and only if the constructed matrix can be modified to have more 1s
than Os in every column by changing at most k£ rows to all-1-rows.

For the “only if” part, suppose that (S,U,h) is a yes-instance for 3-SC. Let &' C S
denote a set cover of size h. By modifying each original row ¢ that corresponds to a set
S; ¢ S, every column has more 1s than Os, that is, at least (|S| — h + 1) 1s: Each jth
dummy column gains (|S| — h) 1s from the modified original rows and another 1 from the
jth dummy row. Each original column gains (|S|—h) 1s from the modified original rows and
another 1 from an unmodified original row, since the sets corresponding to the unmodified
original rows form a set cover.

For the “if” part, suppose that the constructed matrix has more 1s than 0Os in every
column by modifying at most k = |S| — h rows. First, observe that the number of modified
rows is exactly |S| — h since the maximum gap value is |S| — h. Second, no dummy row
is modified: Assume towards a contradiction that the i'th dummy row is modified. Since
the 7/th dummy column has only one 1 in the matrix, namely, at the 7/th dummy row, this
column cannot get a majority of (|S| — h + 1) 1s by the modification of any |S| — h rows
including the 7th dummy row—a contradiction. Third, we show that the sets corresponding
to the unmodified original rows form a size-h set cover for (S,U, h). Each original column j’
gets exactly (|S| — h) 1s from the modified original rows and no 1 from any dummy row.
To get a majority of (S| —h+1) 1s, column j’ must contain another 1 in some unmodified
original row. Hence, the sets corresponding to the unmodified rows form a set cover of
size k. This shows the correctness of the construction. O

Proposition 1. LOBBYING remains NP-complete for every constant integer value k' > 1
of the below-guarantee parameter k' = ([(n+1)/2] — k).

Proof. The NP-containment follows analogously to To show the NP-hardness
for any constant k' > 1, we take the SC-matrix M(S,U) and add x additional dummy
columns and zk’ additional dummy rows where z := (|S| — 2h — 1)/k’ 4+ 2. Note that we
can add singletons to the family S to make sure £’ is a divisor of (|S| — 2h — 1). We fill
the added entries as follows: For each j € {1,...,|U|}, set the entries of £’ — 1 arbitrary
dummy rows at the original column j to 1. For 1 < j < x, set the entry in the jth dummy
column of the [(j — 1)k + 1]th, [(j — 1)k" + 2Jth, ..., [(j — 1)k’ + ¥/]th dummy rows to 1.
Set k :=|S| — h.

In total, the constructed matrix has 2|S| — 2h + 2k’ — 1 rows and || 4+ x columns. The
quota for a column to have more 1s than Os is ¢ = |S| — h + k’. Each original column has
gap value ¢ — ({S; | uj € Si}|+k —1)=[S| —h+1—(|{Si | u; € Si}|) and each dummy
column has gap value ¢ — k' = |S| — h.

The reduction runs in polynomial time. Now, it remains to show the correctness.

Suppose that (S,U, h) has a set cover S’ C S of size h. By modifying each original row
i that corresponds to a set S; ¢ &', every column has more 1s than Os.

Conversely, suppose that the constructed matrix has more 1s than Os after modifying
at most k rows. Using the analogous reasoning as in the proof for we can
show that exactly k original rows are modified and the original rows which are not modified
correspond to the sets which can form a set cover for (S,U, h). O
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3.2 LOGSNP-Completeness

In this section, we show that LOBBYING for instances with constant maximum gap value g =
1 is LOGSNP-complete (Papadimitriou & Yannakakis, 1996) (see also Section [2| for some
discussion about the class). This implies that,

e unless LOGSNP = P, LOBBYING restricted to instances with constant value g cannot
be solved in polynomial time, and hence, LOBBYING parameterized by g is not in XP,
and

e unless LOGSNP = NP, LOBBYING restricted to instances with constant value g is not
NP-hard.

Theorem 2. LOBBYING for instances with constant mazimum gap value g is in LOGSNP.

Proof. First of all, we show that if £k > ¢- (|logm| + 1), then the LOBBYING instance (A, k)
is a yes-instance. Recall that there is a row containing Os in at least half of the columns
(see the parameter discussion in [Section 1]). Modify this row and continue with the columns
in which nothing was modified so far. Again, there has to be a row containing Os in at
least half of the columns, which one can modify. We repeat this until each column has been
touched at least once, decreasing g by at least one. This takes at most (|logm |+ 1) steps.
Then, we remove all columns with gap value zero. We repeat this procedure at most g times
to end up with an empty matrix, modifying altogether at most g - (|logm] + 1) rows.

It follows from the observations above that any LOBBYING instance (A4, k) can be solved
by modifying at most ¢g- ([logm |+ 1) rows (independent of the value of k). Since each row
can be identified by O(logn) bits, there is a certificate for yes-instances of the problem that
uses only O(log?(n 4 m)) many bits. This implies that the LOBBYING problem belongs to
problems decidable in polynomial time after O(log®(n + m)) non-deterministic steps. This
already indicates that LOBBYING with constant maximum gap lies somewhere between P
and NP. To show the containment of LOGSNP, we reduce LOBBYING with constant max-
imum gap to the LOGSNP-complete RIcH HYPERGRAPH COVER problem (Papadimitriou
& Yannakakis, 1996) in polynomial time.

RicH HYPERGRAPH COVER (RHC)
Input: A family of sets S = {S1,...,5¢} over a universe U = {uy,...,u,} of an even
number r of elements, where |S;| > /2 for all S, and an integer h > 0.
Question: Is there a subset U’ C U of size at most h that has a non-empty intersection
with every set S; € §7

Let (A € {0,1}™*™ k) be an input instance to LOBBYING with constant maximum gap
value g. First, for each column j € {1,...,m}, let Z; be the set of rows that have Os
at column j and let g; be the gap value of column j, that is, the number of missing 1s
to make column j have more 1s than 0s. We assume that (A, k) is non-trivial, that is,
no column consists of only 0s and all gap values are positive. Now, consider all possible
size-(|Z;| — g; + 1) subsets of row set Z;. If there is a set X of rows which intersects each
of these subsets, then modifying all rows in X make column j have more 1s than 0s. We
exploit this observation and construct an instance of RHC from (A € {0,1}"*™ k).
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For each row i € {1,...,n}, add an element u; to the universe Y. For each column j €
{1,...,m}, add to the family S all possible size-(|Z;| — g; + 1) subsets of elements in
set {u; | i € Z;}. We say that all these newly added subsets correspond to column j. Let
the solution size h equal k. This completes the reduction.

Since g is constant and at most m - nY different subsets are added to S, the reduction
runs in polynomial time. It remains to show the correctness, that is, (A, k) is a yes-instance
to LOBBYING if and only if the constructed instance (S,U,h) is a yes-instance to RICH
HYPERGRAPH COVER.

For the “only if” part, assume that (A, k) is a yes-instance. Let R’ be a set of rows of
size at most k such that modifying them makes every column have more 1s than 0s. Let
U = {u; | i € R'} be the set of corresponding elements. We show that U’ intersects with
every set S € §. Suppose for the sake of contradiction that there is a set S* € S with
S*NU" = 0. By construction of the subsets in S, let set S* correspond to column j and,
hence, |S*| = |Zj| —g; +1. Then R’ can contain at most (g; — 1) rows from Z; which makes
column j not have more 1s than Os—a contradiction.

For the “if” part, assume that (S,U,h) is a yes-instance. Let U’ be a set of elements
of size at most h which intersects every set S € S. Let R’ = {i | uw; € U’} be the set
of corresponding rows. We show that modifying all rows in R’ results in a matrix where
every column has more 1s than 0s. Suppose for the sake of contradiction that there is a
column j which has at most as many 1s as Os after modifying all rows in R’. This means
that |Z; N R'| < g; — 1, and hence Z; \ R’ contains at least |Z;| — g; + 1 rows. Thus, it is
possible to find a size-(|Z;| — g; + 1) set of elements in {u; | i € Z; \ R'} C Z; which does
not intersect with U’—a contradiction. O

As a consequence of the above proof, we can assume that any non-trivial instance of
LoBBYING fulfills k£ < ¢ - (|[logm] + 1). If we try all combinations of at most k rows to
modify, and for each of them check whether every column has more 1s than Os, then we
obtain an algorithm solving LOBBYING in O(ng'(ﬂog”ﬂ“) -m) time. Now, suppose that
LOBBYING with constant g were NP-hard, implying there is a polynomial-time reduction
from some NP-complete problem P to LOBBYING with constant g. Then we would have
n = |I|°M and m = |1|°( for the constructed LOBBYING instance with |I| being the input
size of problem P. Thus, P would be decidable in [I|°0°€!/]) time, implying the following
corollary.

Corollary 1. LOBBYING for instances with constant mazrimum gap value g is not NP-hard
unless all problems in NP can be solved in |I|°08 ) time, where |I| is the size of the input.

Next, we show that LOBBYING is LOGSNP-hard even if each column needs only one
additional 1 to reach a majority of 1s, that is, g = 1.

Theorem 3. LOBBYING for instances with mazimum gap value g = 1 is LOGSNP-hard.

Proof. We reduce in polynomial time from RicH HYPERGRAPH COVER (RHC) to LOBBY-
ING with maximum gap value g = 1. The definition of RHC is already given in the proof of
Theorem [2L

Consider an arbitrary RHC instance (S,U,h) with |S| = ¢ and [U| = r. As already
mentioned by Papadimitriou and Yannakakis (1996), we can assume that h < |log/|+1 as
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otherwise (S,U, h) is a trivial yes-instance: Since each set in S contains at least half of the
elements from U, there should be one element which appears in at least half of the sets in
S. Add to the solution an element which appears in at least half of the subsets and delete
all sets in S which contain this element, and repeat. Now, let w := max([log¢|+2, [logr]).
This implies 7/2 < 271, h < w — 1 and 2% < 8¢ + 2r, that is, 2% is upper-bounded by a
polynomial in £ and r. Furthermore, let ¢; with 1 < ¢ < 2% — 1 be an enumeration of all
0/1-vectors of length w with the exception of the all-zero vector. For every such vector j;,
let V(i) denote the set of all ¢ (1 <4’ < 2% —1) for which the inner product @; - v is odd;
it is easily seen that |V(i)| = 2w~1.

Now, we are ready to construct an instance (A, k) for LOBBYING. Add to matrix A
one element row i for each element u; € U and one so-called dummy row ' for each 0/1-
vector Uy (1 < i’ < 2% —1) of length w except for the all-zero vector. The total number n
of rows in A is r 4+ 2% — 1, which is odd, because r is even. The quota for a column to
have more 1s than Os is ¢ = /2 + 2", Let matrix A have a total of m = £- (2% — 1)
columns, one column C(j,2) for each pair (j,2z) with 1 < j</fand 1 <z <2% —1. We fill
the entries of A as follows: let column c¢(; ) have 0 at element row i if the corresponding
set Sj € S contains element u;, and 1 otherwise. Further, let column c(; .y have Os at ¢ — ||
arbitrarily chosen dummy rows ¢’ with @y € V(z) (that is, the inner product vy - ¥, is odd),
and have 1s in the remaining dummy rows. Note that our choice of w implies |S;| < ¢ and
0<q—18j| =7r/2+2v"1 —|S;] < 2% ! such that there are enough dummy rows i’ with
Uy € V(z). In this way, we fix the entries of matrix A such that each column has exactly
q — 1 ones and g zeros, which means that the maximum gap value g equals one.

Finally, set the parameter k to be h. This completes the reduction. Obviously, it runs
in polynomial time. It remains to show that the RHC instance (S,U, h) is a yes-instance if
and only if the constructed LOBBYING instance (A, k) is a yes-instance.

For the “only if” part, assume that the RHC instance (S,U, h) is a yes-instance, which
is certified by a subset U’ of size at most h = k. By construction of matrix A, modifying
the element rows corresponding the elements in U’ makes every column C(j,z) gain at least
one additional 1.

]72)

For the “if” part, assume that modifying at most k£ rows in matrix A results in a matrix
where each column has more 1s than 0s. Let R’ be the set of modified element rows,
and define D = {di,ds,...,dy} so that di,...,d, are the modified dummy rows. Thus,
y<k=h<w-—1. Let U = {u; | i € R’} be the set of elements that correspond to the
element rows from R’. For the sake of contradiction, suppose that there is a set S; € S
which does not intersect with U’. Then, for every 1 < z < 2% — 1, column C(j,z) has 1s
in all element rows from R’. We show that there even is a column C(j,») Which has 1s at
every dummy row from D. In order to find this column, we first observe that by standard
linear algebra there exists a vector ¥, (1 < z < 2% — 1) that simultaneously satisfies all
equations 7y, - U, = 0 over the finite field of size two for 1 <14 < y. (The equation system
is homogeneous, the dimension of the underlying space is w, and there are only y < w — 1

constraining equations.) Then, by definition, none of the vectors vy, , ..., Uy, are contained
in the set V(z). Thus, column C(j,») has 1s in all dummy rows dy, ..., d,—a contradiction
since c(; .y does not gain an additional 1 after modifying rows from R’ U D. O

422



A MULTIVARIATE COMPLEXITY ANALYSIS OF LOBBYING IN MULTIPLE REFERENDA

4. Limits of Preprocessing

Efficient preprocessing and data reduction techniques are of key importance when trying
to (exactly) solve NP-hard problems (Guo & Niedermeier, 2007); we also refer to Szeider
(2011) for a general account on showing limits of preprocessing for AI problems. In this
section, we prove that for almost all fixed-parameter tractability results stated in
LoOBBYING does not admit, under a reasonable complexity-theoretic assumption, an efficient
preprocessing algorithm formalized as a polynomial kernelization in parameterized algorith-
mics. A sufficient assumption for almost all known lower bounds for kernelization is that
NP ¢ coNP/poly; it is known that NP C coNP/poly would imply a collapse of the polynomial
hierarchy to its third level (Yap, 1983). One way for showing the non-existence of polyno-
mial kernels is to give a so-called polynomial time and parameter transformation from an
NP-hard problem that is already shown unlikely to admit a polynomial kernel (Bodlaender,
Thomassé, & Yeo, 2011). A polynomial time and parameter transformation is a parame-
terized reduction that is required to be computable in polynomial time and the parameter
in the instance where one reduces to is polynomially upper-bounded by the parameter in
the instance that one reduces from.

We prove that LOBBYING admits neither a polynomial-size kernel with respect to the
combined parameter (m, k) nor with respect to n. By simple further observations on the re-
lations between parameters, these two results imply the non-existence of polynomial kernels
for most parameters and parameter combinations as listed in Table [T} Recall and
the parameter discussion in for details on the parameter relations. In some cases
LOBBYING is NP-hard even if the parameters are constants (see s, K/, and (s, k’)), in other
cases the parameters can be bounded by functions only depending on n (see g, k, k', n,
and combinations of them) or the parameters can be bounded by functions only depending
on m and k (see t, m, g, k, and combinations of them). For (m,n), (¢,n), and (s,n) we
have problem kernels of linear ((m,n) and (¢,n)) or polynomial ((s,n)) size, because these
parameters naturally bound the input size. The question whether there are polynomial ker-
nels remains open for the parameters (m, k') and (¢, k"), which are equivalent with respect
to this question.

To prove our conditional non-existence result for LOBBYING parameterized by (m, k), we
employ an “incompressibility result” for SET COVER due to the work of Dom, Lokshtanov,
and Saurabh (2009).

Theorem 4. Unless NP C coNP/poly, LOBBYING does not admit a polynomial-size prob-
lem kernel with respect to the combined parameter (m,k), that is, the number of columns
combined with the number of rows to modify .

Proof. Dom et al. (2009) showed that, unless NP C coNP /poly, SET COVER (SC) does not
admit a polynomial kernel with respect to the combined parameter (U, h). To show that
this result transfers to LOBBYING with respect to (m, k) we describe a polynomial time and
parameter transformation from SC with respect to (|U|, h).

Let (S,U,h) be an SC-instance. Recall that adding multiple copies of each set to S
does not change the answer to the instance, we can assume without loss of generality that
each element occurs in at least h and in at most |S| — h sets. First, compute the SC-matrix
M(S,U), which we refer to as original rows and original columns in the following, and
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invert Os and 1s. Second, add |S|—2h+ 1 dummy rows containing only Os. In every original
column j, invert |S| — [{S; : u; € S;}| — h + 1 of the Os from arbitrary dummy rows to 1s.
Add one dummy column containing 1s in the dummy rows, and Os elsewhere. Finally, let
k:=h.

Note that the number of Os in the dummy column is |S|, the number of Os in any other
column is |S| — h + 1, and the total number of rows is 2|S| — 2h + 1. Thus, the gap of each
original column is exactly one and the gap in the dummy column is h.

We show that (S,U, h) is a yes-instance of SET COVER if and only if the constructed
matrix can be modified to have more 1s than 0Os in every column by changing at most &k = h
rows to all-1-rows.

For the “only if” part, assume that (S,U,h) is a yes-instance. Let &’ C S be a size-h
set cover. Modifying all (original) rows corresponding to the sets of S’ results in a matrix
where each column has more 1s than Os: Since each of the h modified original rows has
a 0 in the dummy column, the dummy column gains h additional 1s. Furthermore, each
original row gets at least one additional 1, because &’ is a set cover.

For the “if” part, suppose that the constructed instance is a yes-instance. This means
that modifying exactly k = h rows results in a matrix where each column has more 1s
than Os since the maximum gap value is h. Since the gap value in the dummy column is h
and no dummy row contains a 0 in the dummy column, a solution cannot modify any dummy
row. Since the gap value of each original column is exactly one, the sets corresponding to
the modified rows of any LOBBYING solution must form a set cover.

This reduction is a polynomial time and parameter transformation from SC parameter-
ized by |U| and h to LOBBYING parameterized by m and k: The matrix in the resulting
LOBBYING instance has [U| + 1 columns and we ask to modify at most &k = h rows. Since
LOBBYING is contained in NP and since SC is NP-hard, a polynomial kernel for LOBBYING
with respect to (m, k) would imply a polynomial kernel for SC with respect to (||, h) which
is not possible unless NP C coNP/poly (Dom et al., 2009). O

While LOBBYING is trivially fixed-parameter tractable with respect to the number n of
rows, it is unlikely to have a polynomial-size problem kernel under this parameterization.

Theorem 5. Unless NP C coNP/poly, LOBBYING does not admit a polynomial-size problem
kernel with respect to the number n of rows (voters).

Proof. Observe that in the polynomial time and parameter transformation in the proof of
the number of rows in the constructed input matrix for LOBBYING is at most
twice the number of sets of the SC instance. Hence, if SC does not admit a polynomial
kernel with respect to the number of sets (unless NP C coNP/poly), then LOBBYING also
does not admit a polynomial kernel with respect to n (unless NP C coNP/poly). Next, we
show that, indeed, SC does not admit a polynomial kernel with respect to the number of
sets.

SC is strongly related to the HiTTING SET (HS) problem, in which, given a family of
sets Sy over a universe Uy and an integer h > 1, one is asked to choose a set U’ C Uy of
size at most h such that each set in Sy has a non-empty intersection with U’. Dom et al.
(2009) showed that, unless NP C coNP /poly, HS does not admit a polynomial kernel with
respect to |Up|.
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There is a simple polynomial time and parameter transformation from HS parameterized
by |[Um| to SC parameterized by |S|: For each set S; € Sy in the HS instance add an
element s; to the universe set U of the SC instance. Finally, for each element e € Uy of the
HS instance add a set to the set family S of the SC instance that contains the element s;
for each S; € Sy with e € S;. It is easy to verify that (Sg,Upy, h) is a yes-instance of HS if
and only if (S,U, h) is a yes-instance of SC. O

5. Tractable Cases

In this section, contrasting the intractability results of the previous sections, we demon-
strate that LOBBYING is efficiently solvable in practically relevant cases. To this end, we
study numerous quantities (that is, parameters) and how they influence the computational
complexity of LOBBYING. For instance, in we have seen that LOBBYING remains
NP-hard for input matrices with at most three 1s per row —here we show that
it becomes polynomial-time solvable for matrices with at most two 1s per row. Moreover, we
show fixed-parameter tractability of LOBBYING with respect to the number m of columns
(issues), for up to four columns even being linear-time solvable. Finally, we shed light on
several further structural restrictions on the input matrix that can make solving LOBBYING
feasible.

Note that instances with only few rows (voters) are tractable, because already the very
naive brute-force approach which simply tries to modify all size-k subsets of rows leads to
an algorithm with FPT running time with respect to the parameter number n of rows.

Proposition 2. LOBBYING is solvable in O(2™ - m) time.

5.1 At Most Two Ones per Row

The following result complements altogether yielding a complexity dichotomy
between containment in P and NP-completeness with respect to the maximum number s of
1s per row.

Theorem 6. LOBBYING restricted to input matrices with at most two 1s per row, that is,
s <2, is solvable in O(nmlogm) time.

Proof. The idea for the algorithm is to use the special structure of rows that are not modified
and the fact that each row has at most two 1s. If we may modify k£ > [(n+1)/2] rows then
we can trivially answer yes; otherwise each column requires b := [(n + 1)/2]| — k additional
1s outside the k£ modified rows in order to reach [(n + 1)/2] 1s. Our algorithm will seek
a selection of rows such that (1) each column has b 1s inside the selected rows and (2)
there are at least k unselected rows left out of which any k can be modified. Modifying any
k unselected rows then gives a total of at least b+ k = [(n+1)/2] 1s in each column. Note
that any solution with k& modified rows requires that each column initially contains at least
b 1s; otherwise we can safely answer no.

We will see that the problem of finding the desired selection of rows with b 1s per column
comes down to a certain matching problem in an auxiliary graph GG, which we will construct
next. The graph G gets one vertex for each column, and we add to G an edge for each row
which contains 1s in the corresponding two columns (a vertex pair may be connected by
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multiple edges). A b-matching in our graph is a subset of the edges such that each vertex is
endpoint of at most b edges in that subset. Our final algorithm will essentially come down
to the computation of a maximum cardinality b-matching in G. For clarity, however, let us
first show how b-matchings in G and solutions to our lobbying question interact.

First, assume that there exists a solution for the LOBBYING instance. Let R be the set
of all rows and let R* be a choice of k rows such that modifying these gives each column at
least [(n+1)/2] 1s. (Should R* be smaller than k then further rows could be added without
harm.) It follows that all other rows, say, R' = R\R*, contribute at least b = [(n+1)/2] —k
1s in each column. From R’ we will get a large b-matching in G as follows: For each column
we arbitrarily mark b rows that have a 1 in this column (so each row is marked at most
twice since s < 2). Let M C R’ denote the set of marked rows, and let My C M denote
the set of rows that are marked twice. We observe that the size of M is b-m — | M| since
we marked b-m times and used two marks for each row of My. Considering the edges of G
which correspond to the elements in My it is easy to see that each vertex is incident to at
most b of them (we only marked b times per vertex, and only the twice marked rows are
considered). Thus the edges corresponding to Mj constitute a b-matching in G.

Second, consider the set Mj of rows that correspond to the edges of any mazimum
b-matching of G, that is, each vertex is incident to at most b edges; clearly |Mj| > |Ma].
Now greedily add to MJ rows such that each column has exactly b 1s in the created set of
rows. (This is possible since each column contains at least b 1s; otherwise we answered no
at the beginning.) We let M* denote the obtained set of rows; i.e., those from M5 and the
added ones. We observe that |M*| =b-m — |M5|, since we add b-m — 2| M| further rows
to M3: We need b-m 1s total, M3 contributes 2|M5| 1s, and the greedily added rows give
one 1 each. It follows that

[M*|=b-m — [M5] <b-m—[M] = [M] < |R| =[R| - k.

Thus, there are at least k rows left outside of M™* which can be modified to all-1 rows.
Together with the rows of M™* this gives the required number [(n +1)/2] = k + b of 1s for
each column.

Thus, any solution gives rise to a b-matching and any maximum b-matching leads to
a solution (if one exists). Our algorithm therefore begins by computing a maximum b-
matching for G. Then, as in the previous paragraph we take the corresponding rows and
greedily extend the set to get b 1s in each column. Finally, if this leaves at least k rows
unused then modifying any k of them must give a solution (as we just argued). Crucially,
if there is a solution, then we showed that this gives a sufficiently large b-matching in G.

The computation of a maximum b-matching is the most costly part; according to Gabow
(1983), a maximum b-matching can be computed in O(nmlogm) time (see also Schrijver
(2003, Chapter 31) for a more general notion of b-matchings). O

5.2 Very Few and Few Columns

As already mentioned in the introductory section, Christian et al. (2007) pointed out that
the number m of issues in multiple referenda rarely exceeds the value 20. This makes m a
well-motivated, practically relevant parameter and leads to the question how m influences
the computational complexity of LOBBYING. In this subsection, we demonstrate how to
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solve LOBBYING efficiently when m < 4 (by a matching-based and by a greedy algorithm).
Moreover, we formulate LOBBYING as an integer linear program with a number of variables
bounded by a function in m and deduce fixed-parameter tractability from this. These
findings are complemented by a “no-polynomial-kernel result” from [Section 4| (Theorem 4))
and experimental evaluations in We start with a matching-based linear-time
algorithm for LOBBYING.

Theorem 7. For input matrices with at most four columns LOBBYING is solvable in linear
time.

Proof. We modify the matching-based algorithm from to cover all cases with
m < 4. If m =1 or m = 2, then no modification is needed. For the cases m = 3 and m =4
observe first that the matching-based algorithm can be asked to modify k£ rows such that
there will be b; 1s in column i for ¢ € {1,...,m}.

Now, if m = 3 and the input matrix contains c all-1 rows, then we can remove them and
execute the matching-based algorithm from on the resulting matrix (where now
every row contains at most two 1s) and ask it to achieve [(n+1)/2] — ¢ 1s in each column.

For the case m = 4 we claim that there is an optimal solution in which at most one
row with three 1s is modified. To prove that, consider a solution modifying the minimum
number of such rows. Further assume that these rows are the last to be modified and
consider the situation just before any row with three 1s is modified. Now suppose without
loss of generality that row vector 0111 is modified. Then there is a positive gap in the first
column and whenever there is a row with 0 in this column, then it is a 0111 row. Hence, the
number of 0s in this column is at least [(n+1)/2] as it is not yet satisfied. But the number
is at most [(n+ 1)/2], as otherwise we would have more than [(n+1)/2] row vectors 0111
and the columns 2, 3, and 4 would be satisfied in the given matrix—a contradiction. Thus,
the gap in the first column is 1 and it is enough to modify the row vector 0111 to satisfy
the first column. If there was another row with three 1s to be modified, say the row vector
1011, then this one together with all 0111 row vectors would make the gap values of the
third and the fourth columns negative—a contradiction.

In summary, we can solve the case m = 4 by branching into at most five cases: One
0111 row is modified, one 1011 row is modified, one 1101 row is modified, one 1110 row is
modified, and no row with three 1s is modified. Then, we modify the appropriate row and
remove all rows containing at least three 1s. We count for each j the number ¢; of 1s in
column j of the removed rows. Finally, we ask the matching-based algorithm to modify at
most k — 1 (or at most k, according to the chosen branch) of the remaining rows such that
column j contains [(n+1)/2] —¢; l-entries. The running time follows from [Theorem 6 [

To attack matrices with more than four columns, we next develop a simple greedy
strategy for this case. Indeed, it provides optimal results for input matrices with at most
four columns. We further show that it is a logarithmic-factor approximation algorithm
for an unlimited number of columns. In we demonstrate its excellent heuristic
properties.

Let A € {0,1}™*™ be an input matrix. Recall that the gap g; of a column j € {1,...,m}
is the number of additional 1s this column needs to gain a majority of 1s. Let G := {g; |
j€{1,...,m}} be the set of different gap values, let (G) be the sequence of the elements
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from G in decreasing order, and let (G); denote the jth element from (G). Further, let
gain(R) be the gain vector of a row vector R with respect to matrix A, defined as

gain(R) := (21, 22,---,2q|),

where z; denotes the number of zeros in row R in columns with gap value (G);. To compare
two gain vectors, we use the lexicographic order <. A row R has the highest gain if R is
the greatest element with respect to <, that is, for every row R’ in the matrix it holds that
R < R.

We now present the algorithm MaxGapZeros which employs a greedy heuristic to decide
which rows to modify. The basic idea is to repeatedly choose a row vector with highest gain
in A and set it to all 1s until all columns are satisfied. Note that the gap value of each
column may change after one row is modified. Hence, a row vector’s gain may also change.

Algorithm 1 MaxGapZeros (A € {0,1}"*™)

compute the gap values of all columns

while a column with positive gap value exists do
compute the gain vector of each row vector
modify an arbitrary row vector with highest gain
update the gap values for all columns

return modified rows

Theorem 8. Given an input matrix with n rows, m columns, and mazimum gap g, Maz-
GapZeros finds a solution of size at most [logm] - g in O(m - n?) time; it even finds an
optimal solution for LOBBYING in O(n?) time if m < 4.

Proof. First, we show the running time bound. Computing the gap values of all columns
takes O(mn) time and MaxGapZeros performs at most [(n + 1)/2] iterations. In each
iteration computing the gain vectors and finding a row with maximum gain takes O(mn)
time, because we can sort the m columns according to their gap values (positive integers of
size at most n) in O(m+n) time using counting sort, and compute row-wise the gain vectors
while comparing with the current maximum gain vector in O(mn) time. Updating the gap
values takes O(m) time. Altogether, MaxGapZeros runs in O(mn +n(m+n+mn+m)) =
O(m - n?) time.

Second, we show the logarithmic approximation factor for m > 1. MaxGapZeros takes
in each iteration a row with a maximum number of Os in columns with maximum gap value.
We show that, doing this, MaxGapZeros reduces the maximum gap value by one in at most
[logm| iterations.

Let my denote the number of the columns with gap value g, where g is the maximum gap
value over all columns. If g > 1, then there is always a row with strictly more than (mg/2)
0s in columns with gap value g, because otherwise the matrix restricted to the columns with
gap value g would contain at most as many 0Os as 1s. MaxGapZeros will select such row
because the gain vector of every row with less than (my/2) Os in columns with gap value g
is smaller. Hence, the maximum gap is reduced by one in at most [log(my)] < [logm]
iterations.
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If g = 1, it is possible that there is no row with strictly more than (mgy/2) Os, because the
matrix restricted to columns with gap one can have as many Os as 1s. However, in the i¢th
iteration MaxGapZeros satisfies at least my - 27" columns, since there is always a row that
contains at least as many Os as 1s in columns with gap one. Hence, after [log(mg)] iterations,
at most one column with gap one survives. Thus, by showing that actually MaxGapZeros
satisfies more than m,/2 columns in the first iteration or MaxGapZeros satisfies more than
mg/4 columns in the second iteration, we show that in total MaxGapZeros needs [log(my)]
iterations to satisfy all columns with gap one. Assume that MaxGapZeros satisfies exactly
mg/2 columns in the first iteration. Without loss of generality, let the row that was selected
by MaxGapZeros in the first iteration contain 1s in the first my/2 columns with gap one.
Since these columns have gap one, there must be more 0s than 1s in the remaining rows of
the matrix restricted to these columns. Thus, there is a row with more than (mgy/4) Os in
columns with gap one that is selected by MaxGapZeros in the second iteration. Hence, all
columns with maximum gap one can be satisfied in [log(mg)] < [logm] iterations.

Summarizing, MaxGapZeros terminates in at most [logm] - g iterations. Clearly, every
solution of minimum size must contain at least g rows.

Third, we show that MaxGapZeros finds an optimal solution when m < 4. For in-
put matrices with one or two columns, MaxGapZeros clearly finds a solution of minimum
size. In the remainder of the proof, we show that MaxGapZeros also finds a minimum-size
solution when the input matrix contains three or four columns. To this end, we analyze
the stepwise modification of the input matrix A by MaxGapZeros and compare with the
stepwise modification of the input matrix A following a minimum-size solution.

For some multiset of row vectors X, let A(X) denote the matrix resulting from the
modification of all row vectors from X in A, that is, replacing the row vectors from X with
the same number of all-1-rows. Furthermore, (X) denotes a sequence of the row vectors
from X and (X); denotes the ith element in this sequence.

We analyze the stepwise modification process as follows: Let (Rygz) be the sequence of
the row vectors as modified by MaxGapZeros and let (Ropr) be an arbitrary sequence of
the row vectors from some minimum size solution Ropr. Furthermore, let A; be the matrix
before the ith row modification from (Ryqz), that is, 4; := A({(Rmcz)v | @' < i}) and
gj(A;) denotes the gap value of the jth column in matrix A;. Now, for ¢ = 1 to |Rwmczl|,
we compare (Rygz)i with (Ropr);. Note that (Ropr); will not run out of the sequence
since we will show that (Ryagz)i = (Ropr)i, 1 <4’ < i, and it is clear that if (Ropr) and
(Rmaz) are identical in the first ¢ — 1 positions, then either both contain at least i elements
or none. When comparing (Ryz)i with (Ropr):, whenever (Ryvaz)i # (Ropr): we replace
or reorder elements in (Ropr) such that afterwards (Rumaz)ir = (Ropr)i, 1 < @ < i, and,
as an invariant, (Ropr) still corresponds to a solution of minimum size. This implies that
Ai = A({{Rmaz)i | " < i}) = A({{Ropr): | 7' <1}).

In the following, we assume 3i > 0 with (Ryaz)i = (Ropr)i, Vi’ < i. For two row
vectors ri, 7y from {0,1}™ we write 11 C rp if rijz] = 0 = rafz] =0, V1 <z < m. It
is easy to see that #i"” > i with (Rmaz)i € (Ropr)i A (Rmaz)i # (Ropt)ir, because
MaxGapZeros would have selected (Ropr);~ instead of (Rygz): already in iteration i. For
each 1 < i < [(Rmaz)|, if (Rmaz)i # (Ropr)i, then at least one of the following four
cases occurs. Note that the case that (Rygz): is an all-Os row is subsumed by Case 1.
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Furthermore, when there are only three columns Case 2 is also subsumed by Case 1. Cases 2—
4 implicitly assume that Case 1 does not apply.

Case 1. 3¢’ > ¢ with (RQPT>1;/ C (RMgz>i. If 3" > ¢ with <ROPT>i“ = <RMgz>i, then
swap the ith and #"th element of (Ropr). Otherwise, replace the i'th element of
(Ropt) by (Rmaz): and swap the ith and #'th element of (Ropr) if i’ # i.

Case 2. (Rnmgz): contains exactly three 0s. Without loss of generality let (Rngz)q
have Os in the first three columns. This implies that the last column’s gap value
can not be larger than each of the first three columns’ gap values, that is, g,(4;) >
94(A;),z € {1,2,3}. Since Case 1 does not apply, for every position i’ > 7 it holds
that (Ropr)# has a 0 in column 4, but at least one 1 in some other column since
otherwise our greedy algorithm would have selected this all-O-row (Ropr)s at step i.
Thus, there are more than g4(A;) such positions and we can safely replace the ith
element in (Ropr) by (RmGz)i-

Case 3. (Rmgz): contains exactly two 0s. Without loss of generality, (Rymaz)s: has Os
in the first two columns. Due to the design of MaxGapZeros it holds that the first two
columns’ gap values are at least as large as the last two columns’ gap values, that is,
9z(A;) > gy(Ai), x € {1,2},y € {3,4}. There is no position ¢ > i in (Ropr) such that
(Ropr)s also has 0s in the first two columns, because otherwise (Ryaz)i € (Ropr)i,
which is not possible since MaxGapZeros would have selected (Ropt)s instead of
(Rnmaz)q already in iteration i. Thus, there are at least g1(A4;) positions iy > i with
(Ropt)i, containing a 1 in the second column and at least g2(A;) positions 7o > i
with (Ropr)q, containing a 1 in the first column. Moreover, since Case 1 does not
apply and, hence, (Ropr)y € (Rmaz)i for every i’ > 4, each of the corresponding row
vectors has at least two 0s. If ¢g1(A;) = ¢g2(A4;), then by its approximation guarantee
MaxGapZeros also needs at most [log4] - g1(A4;) = g1(4;) + g2(4;) further rows.
Thus, we can safely replace the i'th element of (Ropt) by (Rmaz)i for each i > i.
If g1(A;) > g2(A;), then there must be some position ¢’ > 4 such that (Ropr)y
contains a 0 in column y € {3,4}, but the column y is already satisfied in the matrix
A({(Ropr)i | i" < i'}). If there is any position i* > i with (Ropr);+ containing two
0s: one 0 in column y and one 0 in column 1 or 2, then replace the i*th element of
(Ropt) by (Rmaz): and swap the ith and i*th element of (Ropr) if i* # i. Otherwise,
for every position ¢* > i it holds that if (Ropr)i+ contains a 0 in column y then
(Ropr):+ contains exactly three 0: one 0 in column 3, one 0 in column 4, and one 0
in column 1 or 2. This implies that both column 3 and column 4 do not have positive
gap in the matrix A({(Ropr)i~ | i <4i'}). Thus, replace the i'the element of (Ropr)
by (Ryaz)i and swap the ith and i'th element of (Ropr) if ¢’ # 1.

Case 4. (RnmGz): contains exactly one 0. We show that in this case there are at most
two columns with positive gap values in A;. Let j* be the only column where (Rygz )
has one 0. For each column j, let Ry(j) be the index set of rows containing a 0 in
column j. Consider any other column ;' with positive gap value. A; contains no rows
with Os in both j* and 7/, that is, Ro(j*) N Ro(j) = 0, because otherwise our greedy
algorithm would have selected such rows. Thus, the gap values of both j* and 7' must
be one, implying that the maximum gap value is one. If the matrix contains at least
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three columns with maximum gap one, then there must be a row containing Os in at
least two of these columns which should have been selected by our greedy algorithm.
Thus, there are at most two columns with positive gap in A;. Since MaxGapZeros is
optimal for at most two columns, we can safely replace the i'th element of (Ropr) by
(Ryz)i for each ¢ > .

Finally, we obtain a minimum-size solution Ropr with Ropt = RMmaz. ]

There are five-column input matrices where our algorithm may not provide an optimal
solution. For example, the optimal solution for the 5 x 6-matrix

= -0 O oo
_ O == OO
_ o = O = O
OO Pk O
SO = O = =

contains two rows (row two and three) while our algorithm may output three rows as a
possible solution since the first three row vectors all have the highest gain (1,2). Note that
the first column has gap 2 while all other columns have gap 1. If MaxGapZeros decides to
modify the first row before the other two rows, then it needs two more rows to satisfy all
columns.

Theorems |7|and |8 show that in case of at most four issues LOBBYING can be solved very
efficiently. On the contrary, parameterized by the number m of columns, we only have a
“theoretical fixed-parameter tractability result”; it is based on a famous theorem in mathe-
matical programming of Lenstra (1983) and further improved by Frank and Tardos (1987)
and Kannan (1987). Roughly speaking, it says that solving integer linear programs with a
number of variables depending solely on parameter p is fixed-parameter tractable with re-
spect to p. However, the (worst-case) upper bound on the running time of the corresponding
algorithm is impractical and of classification nature only. Nevertheless, we experimented
with the practical usefulness of the subsequent ILP formulation (see .

Theorem 9. LOBBYING is fixed-parameter tractable with respect to the parameter number m
of columns.

Proof. We describe an integer linear program (ILP) with at most 2" variables that solves
LOBBYINGH Then, LOBBYING is fixed-parameter tractable with respect to m, because any
ILP with p variables and L input bits can be solved in O(p*°°(P) L) time (Kannan, 1987,
Frank & Tardos, 1987).

There are at most 2" different rows in a binary matrix with m columns. Let rq,...,7;
be an arbitrary ordering of all pairwise different rows in A, and for all 1 < ¢ <[ let ¢(r;)
be the number of occurrences of r;. For 1 < ¢ <land 1 < j < m let Bj(ri) = 1 if the
jth column of row r; has value 0 and, otherwise, Bj(r;) = 0. For 1 < i <[ we introduce

3. Dorn and Schlotter (2012) already mentioned that their ILP for the SwAP BRIBERY problem could be
adapted to LOBBYING.

431



BREDERECK, CHEN, HARTUNG, KRATSCH, NIEDERMEIER, SUCHY, & WOEGINGER

the integer variable b;, where 0 < b; < ¢(r;); the value of b; indicates how often one has to
modify a row of type r;. The ILP is formulated as follows. Recall that g; is the number of
missing 1s to make column j have more 1s than Os and k is the number of rows to modify.

b; <k, (1)
=1
0<b; <ery) V1<i<l, (2)
l
gj < Zbl - Bj(ri) Vi<ji<m (3)
=1

Constraint ensures that at most k£ rows are modified. Constraint ensures that
the amount of rows to be modified from each type r; is available in the input matrix.
Constraint ensures that for each column j at least g; rows with a O-entry in the jth
position are modified. Hence, the ILP provides a solution for LOBBYING with at most k
modified rows. O

Since m < 2t, fixed-parameter tractability for m (Theorem 9) implies the following.

Corollary 2. LOBBYING is fized-parameter tractable with respect to the parameter maxi-
mum number t of zeros per row.

5.3 Dynamic Programming for Few Columns and Small Gap

If we use the reduction proof by Christian et al. (2007), then we immediately gain a W/[2]-
hardness result with respect to the maximum gap value g for LOBBYING. Furthermore, as
discussed in [Section 3.2] LOBBYING is LOGSNP-complete even if g is 1. So, under reasonable
complexity-theoretic assumptions, it is neither NP-hard nor in XP for constant ¢g. In this
section, we prove tractability of LOBBYING with respect to parameter g when combining it
either with the number m of columns or even with the maximum number s

of 1s per row ((Corollary 3)).

Theorem 10. LOBBYING is solvable in O((g + 1)™ - n?-m) time.

Proof. Let A € {0,1}™*™ and k € N be a LOBBYING input instance and let g1, g2,...,gm
be the corresponding gap values in A. We solve the problem via Dynamic Programming
employing a boolean table T'[i,l,§1,...,Gm], where i € {0,...,n}, I € {0,...,k}, and
g; €40,...,g;} for all j. An entry T'[i,1,§1,...,Jm] is set to True if it is possible to reduce
the gap of column j by at least g; by modifying exactly [ rows in the first ¢ rows of A.
Otherwise set the entry to False. Clearly, (A, k) is a yes-instance of LOBBYING if and only
if T[n,k,g1,...,9m| = True.

To initialize the table, we set 10,0, d1,...,gm] to be True if g; = 0 for all j and
False otherwise. To compute an entry T'[i,l, g1, .., Jm] We check two cases: First, we set
Tli,l,G1,. .., dm) to True if T[i—1,1,41, ..., gm] = True (treating the case where row i is not
contained in a solution). Second, we set T'[i, 1, g1, ..., gm]| to Trueif T[i—1,1-1,4¢},...,90,] =
True where g} = g; if row ¢ has 1 in the column j and g}- = max{0,g; — 1} if row 7 has 0 in
the column j. If none of the two cases applies, then we set T'[i,l, g1, ..., Gm| = False.
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Table T has (94 1)" - (k+1) - (n+ 1) entries and each table entry can be computed in
O(m) time, resulting in an overall running time of O((g + 1) - k- n - m). O

Finally, we “harvest” a further fixed-parameter tractability result for LOBBYING by
simply relating parameter values.

Corollary 3. LOBBYING is solvable in O((g + 1)*s-n? + 169 - m) time.

Proof. First, we provide some useful inequality between (functions of) parameter values.
Count the number of 1s in the input matrix. Since there are at most s of them in each row,
there are at most ns of them in the whole matrix. In addition, there are at least n/2 — g of
them in each column and, hence, the total number of 1s is at least (n/2 — g)m. It follows
that (n/2 — g)m < ns.

Now, we employ the just derived inequality to deduce fixed-parameter tractability for
the combined parameter (g,s). If ¢ < n/4, then nm/4 < (n/2 — g)m < ns, hence m < 4s
and we can use the O((g+1)™m-n?) = O((g+1)**s-n?) time algorithm from
Otherwise n < 4g and we can solve the problem by brute force, testing all possible subsets
of rows to be modified in O(2" - m) = O(2%9 - m) time. O

5.4 Close to Guarantee and Small Gap

Under some reasonable complexity-theoretic assumptions LOBBYING is neither in XP for the
below-guarantee parameter k':=[(n+1)/2] —k (see nor in XP for the maximum
gap value g over all columns (see . However, using some relations between the
parameters and the brute-force algorithm from we can show that LOBBYING
is in XP for the combined parameter (g,k’). More precisely, we show that LOBBYING is
fixed-parameter tractable with respect to &’ if g is a constant.

Theorem 11. LOBBYING is solvable in O(m29+1 . 22K) time.

Proof. From the definition of k' it follows that k + k' > n/2. Furthermore, from the
logarithmic factor approximation (see [Theorem 8) it follows that k < g - logm. Combining

this gives n < 2(g - logm + k). Thus, using the brute-force algorithm from [Proposition 2
LOBBYING is solvable in O(2" - m) = O(229108™ . 22K" ) = O(m?9+1 . 22') time. O

It remains open whether LOBBYING is fixed-parameter tractable for the combined pa-
rameter (g, k") (not assuming that g is a constant).

6. Experimental Evaluation of the Greedy and ILP Algorithms

Recall that we consider the number m of columns to be the parameter with currently
strongest support in terms of doing a parameterized complexity analysis. This is because
m seldom exceeds 20 (Christian et al., 2007). Hence, in this section we present the experi-
mental results we obtained from testing our greedy heuristic (MaxGapZeros) and our ILP
formulation (ILP) from as well as the slightly simpler greedy algorithm (MaxZe-
ros) by Erdélyi et al. (2007). Roughly speaking, whereas MaxZeros simply picks a row with a
maximum number of 0s, MaxGapZeros uses a gain measure where Os in columns with higher
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gap value are given higher attention. Thus, by comparing MaxGapZeros and MaxZeros we
evaluated the effect of our refined gain measure.

We evaluated both efficiency and solution quality of the greedy algorithms, comparing
with exact solutions delivered by the ILP. Note that the heuristic by Erdélyi et al. (2007)
was designed to solve the more general weighted variant of LOBBYING, and hence, we do
not expect MaxZeros to outperform MaxGapZeros in terms of solution quality. However,
we are not aware of any other algorithm solving LOBBYING to compare with.

We used Gurobi 5.0.1 as our (integer) linear program solver to handle the ILP formu-
lation of LOBBYING given in the proof of Recall that the number of variables
in the ILP formulation depends only on the number of different rows and thus can be
upper-bounded by 2.

We tested the algorithms on a large set (= 3.3 - 105 matrices) of random instances and
instances generated from the actual voting records of the German parliament. We used
two types of random models where each was controlled by several “density parameters®,
determining the fraction of the number of 1s to the number of 0s. Our “row-oriented”
model randomly chooses a density for each row and then sets each row entry at random
such that it equals 1 with a probability equal to the chosen density value. In a similar
way, our “column-oriented” approach randomly chooses a density for each column and then
generates the entries in this column at random using this density value as the probability
for generating a 1. contains a more detailed description of our random models.
In we present our experimental findings.

All our experiments were performed on an Intel Xeon E5-1620 3.6GHz machine with
64GB of memory running the Debian GNU/Linux 6.0 operating system. Both greedy
heuristics are implemented in C+4. The ILP implementation uses Gurobﬁ 5.0.1 through
its Java APIL. The source code including the data generator is freely availableﬂ

6.1 Random Instance Generation

In both models, the row-oriented and the column-oriented, the process of creating a random
instance is controlled by two density parameters a and b with 0 < a < b < 1. Subsequently,
when describing our two models in detail, “randomly choosing a number” always refers to
a random number generated using an i.i.d. process and a uniform distribution.

6.1.1 Row-ORIENTED MODEL

For certain values of n,m,a, and b with a < b, the row-oriented model creates a binary
matrix A € {0,1}"*™ as follows. For each row i, it chooses a random number d; from the
interval [a,b]. Then, for all 1 < j < m, entry A;; is set to 1 with probability d;. Using
the row-oriented model, we created instances for all combinations of a € {0.1,0.2,0.3,0.4}
and b € {0.5,0.6,0.65,0.7,0.8} where a + b < 1. Since the expected fraction of 1s in row i
is d; and the expected fraction of 1s in A is (a + b)/2, implying that in case of a +b > 1
a high fraction of columns have gaps at most zero, we required that a + b < 1. Thus, for
each combination of n and m, we created 13 instances according to this model. Herein,
we started with m = 10 and increased m by 10% in each step, rounding up to the nearest

4. http://www.gurobi.com/
5. http://akt.tu-berlin.de/menue/software/

434


http://www.gurobi.com/
http://akt.tu-berlin.de/menue/software/

A MULTIVARIATE COMPLEXITY ANALYSIS OF LOBBYING IN MULTIPLE REFERENDA

integer if necessary (formally, m < [m - 1.1]), until m was larger than 300. We assigned n
110 equidistant values within [10,991] (formally, n < n + 9). Summarizing, we had 33
different values for m and 110 different values for n, obtaining a total of 47 190 instances in
the row-oriented model.

6.1.2 COLUMN-ORIENTED MODEL

Here, to create a matrix A € {0, 1}"*" for fixed a and b, for each column i the column-
oriented model chooses a random number d; from [a, b]. Then, denoting the maximum pos-
sible gap [(n+1)/2] by gmax, the model assigns 1s to (1 —d;) - gmax many entries in column ¢,
and 0 to the remaining entries. Observe that this ensures that the gap of column 7 is d; - gmax
and thus the expected gap of a column is ((a+b)/2)-gmax. We created instances for all combi-
nations of a € {0,0.1,0.2,0.3,0.4,0.5} and b € {0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}
where a < b. Thus, for each combination of n and m we created 51 instances. Thereby,
we started with m = 10 and increased m by 10% in each step , once again rounding up
to the nearest integer if necessary (formally, m < [m - 1.1]) as long as it was smaller than
100. We assigned n 110 equidistant values within [10,991] (formally, n <— n +9). Thus we
had 21 different values for m and 110 for n, obtaining a total of 142 810 instances from the
column-oriented model.

We discarded instances containing a column with gap at most zero. Furthermore, we do
not discuss instances with less than 10 columns because all tested algorithms were extremely
fast (less than 0.01 seconds on average) and our greedy heuristic computed optimal solutions
for more than 99% of these instances.

6.2 Real-World Data Generation

To obtain a data set representing realistic binary preferences of politicians we use the well-
documented voting records of the German parliament, the “Bundestag”. Votes on issues in
the Bundestag can be anonymous or recorded votes. Whenever a party from the parliament
or 5% of the members request it, each voter’s decision is recorded together with the voter’s
name. We generated our instances from the recorded votes in 2012 and 2013 which are
freely available from www.bundestag.de:

e The issue of each recorded vote became an issue in our model. When there were
several very similar issues (for example similar amendments on the same topic) we
only took the last one.

e Each member of the Bundestag became a voter in our model. When a Bundestag
member did not show up or abstained from voting we assume that his or her opinion
was consistent with the majority of his or her party. When a Bundestag member left
the parliament during the period, we did not collect his or her votes. (This happened
twice.)

This resulted in a matrix with 67 columns and 620 rows. Approximately half of the columns
have a small gap value (less than 25) and the other half has gap values greater than 90.
Roughly one third of the columns have gap values greater than 150. Even the maximum
possible gap value of 311 occurs twice.
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6.2.1 THE GOAL OF THE LOBBY

Since lobby actions are usually not very well-documented and one cannot (easily) identify
voters that have been bribed, we decided to guess the goal of the lobby. Recall that in our
model, a 1 (resp. a 0) in column j of row 7 of the input matrix means that voter i agrees
(resp. disagrees) with the lobby with respect to issue j. Hence, to get input matrices for
our model, we need the set of issues for which the lobby disagrees with a majority of the
voters. Issues for which the goal of the lobby is consistent with the majority of voters can
always be ignored.

6.2.2 TEST SERIES

We performed three experiments, one with randomly selected issues of small gap values
(g < 30), one with randomly selected issues of high gap values (¢ > 90), and one with
randomly selected issues without any restriction. For each number m of columns from
{5,10,...,30} we extracted 100 instances for each of the first two experiments. For each m
from {5,10,...,60} we generated 100 instances for the last experiment. This covers a wide
range of scenarios which differ in the number of issues the lobby wants to change as well as
in the amount of changes each issue needs to reach a majority of approvals.

6.3 Results

We evaluated the experimental results concerning time efficiency and, for the greedy heuris-
tics, additionally with respect to solution quality (closeness to optimal solutions), that is,
the distance of the derived solutions from an optimal one.

To evaluate the efficiency for some fixed attribute values (e.g., the number of columns)
we computed the average running times over all corresponding instances. The running times
of the greedy algorithms were very small (below 0.1 seconds on average). To get reliable
values we ran both greedy heuristics 20 times for each instance and stored the average value.
The ILP algorithm solved more than 95% of the instances within five minutes. We counted
the running time for the remaining instances as five minutes to get a lower bound for the
correct average running times of the ILP algorithm.

To evaluate the optimality we computed the percentage of optimally solved instances as
well as the average difference between the optimal number of lobbied voters and the number
of voters lobbied by the heuristic solution. In the following, we denote this as the “distance
from optimality”.

6.3.1 EFFICIENCY FOR THE ROW-ORIENTED MODEL

As expected, the heuristic algorithms were much faster than the ILP algorithm. Whereas
both heuristics needed less than 0.1 seconds on instances with more than 300 columns or
up to 1000 rows, the ILP needed more than ten seconds on average for instances with at
least 150 columns or with at least 500 rows. See for details. Somewhat surpris-
ingly, MaxGapZeros turned out to be faster than MaxZeros for instances with more than
24 columns as well as for instances with at least 100 rows. The reason seems to be that
MaxGapZeros produces smaller solutions than MaxZeros allowing for earlier termination

(see [Figure 4).
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Figure 3: Row-oriented model: Running time depending on the number of columns and the
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6.3.2 OPTIMALITY FOR THE ROW-ORIENTED MODEL

Our greedy algorithm (MaxGapZeros) performed very well for this data set in terms of
solution size. More than 50% of the instances were optimally solved, even those with more
than 300 columns. In contrast, the simpler greedy algorithm (MaxZeros) could only solve
very few instances optimally. As for the distance to optimality, MaxGapZeros results have
an average distance of less than one whereas the average distance to optimality of the
MaxZeros results exhibits a logarithmic growth with respect to the number of issues and it

is always greater than two. See for details.

6.3.3 EFFICIENCY FOR THE COLUMN-ORIENTED MODEL

Similarly to the row-oriented model, the heuristic algorithms were extremely fast for all
tested instances. For all instances (which all have less than 100 columns), MaxZeros was
slightly faster than MaxGapZeros but the difference between the average running time of
MaxGapZeros and MaxZeros decreased with an increasing number of issues. See
for details.

6.3.4 OPTIMALITY FOR THE COLUMN-ORIENTED MODEL

Similarly to the row-oriented model, MaxGapZeros computed solutions which are relatively
close to the optimum. Whereas the percentage of instances having between 30 and 100
columns which were optimally solved by MaxGapZeros is slightly lower than for the row-
oriented model, the percentage of instances which were optimally computed by MaxZeros is
twice as high as for the row-oriented model. In contrast, as for the distance to optimality,
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the results for the column-oriented model behaved similarly to the results for the row-
oriented model. Again, the average distance to optimality of the MaxZeros results exhibits
a logarithmic growth with respect to the number of issues and is always greater than three,
while the average distance to optimality of the MaxGapZeros results is lower than one for

all tested instances. See for details.

6.3.5 EFFICIENCY FOR THE REAL-WORLD DATA SET

Surprisingly, all algorithms including the ILP algorithm could solve every single instance
extremely fast. MaxZeros was slightly faster than MaxGapZeros and even the ILP algorithm
needed less than 0.07 seconds for each instance. A reason seems to be that politicians of
the same party often vote similarly so that there are few different rows in the matrices and,
hence, the ILP has much less variables to handle than in the worst case (only up to 103
instead of 620). As expected, instances with small maximum gap values could be computed
(slightly) faster.

6.3.6 OPTIMALITY FOR THE REAL-WORLD DATA SET

Somewhat unexpectedly, MaxGapZeros could solve all instances optimally. Recall that this
was not the case for random data instances of similar sizes. In contrast to MaxGapZeros,
for most instances MaxZeros could not find an optimal solution. Especially for the instances
with only high gap values and for the instances without restrictions on the gap values, the
distance of MaxZeros’s solution size to the optimal solution size is quite large. See
and for details. Interestingly, the optimal solution size equals the maximum gap
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value for almost all instances. Note that this cannot be the only explanation for tractability
since such instances are in general still NP-hard to compute; see the reduction used in the

proof of

6.3.7 CONCLUSION

We showed that both heuristics are very efficient on synthetic random data of reasonable
size, that is, for up to 300 columns and up to 1000 rows. Whereas the greedy heuristic by
Erdélyi et al. (2007) computes solutions that are relatively far away from the optimum, our
greedy algorithm computed optimal solutions for most instances. However, note that our
greedy algorithm is directly designed to solve LOBBYING whereas the algorithm by Erdélyi
et al. (2007) is designed for the more general weighted variant of LOBBYING. Somewhat
unexpectedly, also the exact ILP algorithm solved most of our instances within five minutes.
Even all instances with up to 37 columns and up to 100 rows were optimally solved by the
ILP within five minutes.

On the data set based on real-world data, the algorithms behaved very similar to the
synthetic case. Our greedy algorithm could solve all instances optimally and the ILP algo-
rithm could solve all instances very fast.

7. Conclusion

LOBBYING as studied here is a fundamental matrix modification problem with a rich com-
binatorial structureﬁ We started exploiting this structure in terms of a number of natural
parameterizations and a corresponding parameterized and multivariate complexity analysis.
[Table 1] in [Section 1| summarizes our results. Indeed, the space of investigations could be
extended by introducing further parameters and also looking at further parameter combina-
tions, all the time with the ultimate goal to obtain (improved) fixed-parameter tractability
results (Komusiewicz & Niedermeier, 2012). So far, our results indicate that making use
of the parameter number m of columns is particularly promising albeit only a “theoretical
fixed-parameter tractability” result based on integer linear programming could be proven.
We found a very well performing greedy algorithm that turns out to deliver provably opti-
mal results for input matrices with up to four columns. Based on our positive experimental
results, we suggest this algorithm to be the current method of choice in solving also larger
LOBBYING instances getting close to optimal solutions.

On the methodological side, our probably most innovative contribution is to show
LOGSNP-completeness (Papadimitriou & Yannakakis, 1996) in case of input matrices which
only have gap value 1 for all columns, that is, a situation where the lobby may hope to
achieve the goal at low cost (meaning few modified rows). This result is of particular interest
since only few natural LOGSNP-complete problems are known and since it seems to be the
first use of this “tool” in assessing the parameterized complexity of parameterized problems
between XP and the class of problems that are NP-hard even for constant parameter values.
This can be of independent future interest when studying the parameterized complexity of
other problems.

6. Very recently, LOBBYING was very useful in assessing the computational complexity of a matrix modifi-
cation problem arising in machine learning (Froese, van Bevern, Niedermeier, & Sorge, 2013).
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In future work, our findings for the plain LOBBYING problem may be extended to natural
variants and generalizations. These include

e to allow the lobby to only partially influence the voters (that is, the rows may not be
changed to all-1 rows),

e to only head for getting a majority of approvals for a certain (pre-specified) percentage
of issues (columns),

e to consider the modification operation of adding voters (rows), and

e to consider the modification operation of deleting voters (rows).
Moreover, it is of interest to extend the multivariate studies to the scenarios of probabilistic
and weighted lobbying as have been studied in previous work (Binkele-Raible et al., 2014;

Erdélyi et al., 2007).
We conclude with a few concrete open questions for future research on LOBBYING.

e Can one replace the integer linear program (see [Theorem 9|in [Section 5.2)) by a direct
(more efficient) combinatorial algorithm in the fixed-parameter tractability result for
LOBBYING parameterized by the number m of columns?

e Our fixed-parameter tractability results for the parameter combinations (m, k), (m, g),
(m,s), (k,s), and (g, s) are of theoretical nature only—can they be made practical?

e We showed that LOBBYING is fixed-parameter tractable with respect to k' when g is
a constant. Is it also fixed-parameter tractable for the combined parameter (g, k’)?

e For the combined parameters (m,n), (t,n), and (s,n) there are trivial polynomial-size
problem kernels for LOBBYING because there are polynomials only depending on the
respective parameters which upper-bound the input size. We showed that, except for
(m, k") which remains open, for all of our other fixed-parameter tractability results
there are no polynomial-size problem kernels, unless NP C coNP/poly. Is there any
possibility of (provable) efficient and effective preprocessing and data reduction for
LOBBYING?

e All our results adhere to a worst-case analysis—what is the complexity of LOBBYING
on average? Our findings with the greedy heuristic suggest that there is reason to
believe that LOBBYING is computationally not so hard as worst-case analysis sug-
gests. The situation is similar in the recent studies concerning the seemingly “patho-
logical” NP-hardness of manipulation and its very good solvability in experimental
results (Betzler, Niedermeier, & Woeginger, 2011; Davies, Katsirelos, Narodytska, &
Walsh, 2011; Davies, Narodytska, & Walsh, 2012; Walsh, 2011). A more thorough
investigation in this direction concerning LOBBYING seems promising.
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