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Abstract
There is a growing interest in intelligent assistants for a variety of applications from sorting

email to helping people with disabilities to do their daily chores. In this paper, we formulate the
problem of intelligent assistance in a decision-theoretic framework, and present both theoretical
and empirical results. We first introduce a class of POMDPs called hidden-goal MDPs (HGMDPs),
which formalizes the problem of interactively assisting an agent whose goal is hidden and whose
actions are observable. In spite of its restricted nature, we show that optimal action selection
for HGMDPs is PSPACE-complete even for deterministic dynamics. We then introduce a more
restricted model called helper action MDPs (HAMDPs), which are sufficient for modeling many
real-world problems. We show classes of HAMDPs for which efficient algorithms are possible.
More interestingly, for general HAMDPs we show that a simple myopic policy achieves a near
optimal regret, compared to an oracle assistant that knows the agent’s goal. We then introduce
more sophisticated versions of this policy for the general case of HGMDPs that we combine with
a novel approach for quickly learning about the agent being assisted. We evaluate our approach
in two game-like computer environments where human subjects perform tasks, and in a real-world
domain of providing assistance during folder navigation in a computer desktop environment. The
results show that in all three domains the framework results in an assistant that substantially reduces
user effort with only modest computation.

1. Introduction

Personalized AI systems that interactively assist their human users have received significant atten-
tion in recent years (Yorke-Smith, Saadati, Myers, & Morley, 2012; Lieberman, 2009; Myers, Berry,
Blythe, Conleyn, Gervasio, McGuinness, Morley, Pfeffer, Pollack, & Tambe, 2007). However, an
overarching formal framework of interactive assistance that captures all these different systems and
provides a theoretical foundation is largely missing. In this paper we address this lacuna by introduc-
ing a general framework of decision-theoretic assistance, analyzing the problem complexity under
different assumptons, proposing different heuristic solutions, and evaluating their effectiveness.

We consider a model where the assistant observes a goal-oriented agent and must select assistive
actions in order to best help the agent achieve its goals. In real applications, this requires that the
assistant be able to handle uncertainty about the environment and the agent, to reason about varying
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action costs, to handle unforeseen situations, and to adapt to the agent over time. Here we consider
a decision-theoretic model, based on partially observable Markov decision processes (POMDPs),
which naturally handles these features, providing a formal basis for designing intelligent assistants.
The first contribution of this work is to formulate the problem of selecting assistive actions as
a class of partially observable Markov decision processes (POMDPs) called Hidden Goal MDPs
(HGMDPs), which jointly models the application environment along with the agent’s policy and
hidden goals. A key feature of this approach is that it explicitly reasons about the environment and
the agent, which provides the potential flexibility for assisting in ways unforeseen by the developer
as new situations are encountered. Thus, the developer need not design a hand-coded assistive
policy for each preconceived application scenario. Instead, when using our framework, the burden
on the developer is to provide a model of the application domain and the agent, or alternatively a
mechanism for learning one or both of these models from experience. Our framework then uses
those models in an attempt to compute, in any situation, whether assistance could be beneficial and
if so what assistive action to select.

The second contribution of this work is to analyze the properties of this formulation. Despite
the restricted nature of HGMDPs, the complexity of determining if an HGMDP has a finite-horizon
policy of a given value is PSPACE-complete even in deterministic environments. This motivates a
more restricted model called Helper Action MDP (HAMDP), where the assistant executes a helper
action at each step. The agent is obliged to accept the helper action if it is helpful for its goal and
receives a reward bonus (or cost reduction) by doing so. Otherwise, the agent can continue with
its own preferred action without any reward or penalty to the assistant. We show classes of this
problem that are complete for PSPACE and NP. We also show that for the class of HAMDPs with
deterministic agents there are polynomial time algorithms for minimizing the expected and worst-
case regret relative to an oracle assistant that knows the goal of the agent. Further, we show that the
optimal worst case regret can be characterized by a graph theoretic property called the tree rank of
the corresponding all-goals policy tree and can be computed in linear time.

In principle, given a HGMDP, one could apply a POMDP solver in order to arrive at an optimal
assistant policy. Unfortunately, the relatively poor scalability of POMDP solvers will often force us
to utilize approximate/heuristic solutions. This is particularly true when the assistant is continually
learning updated models of the agent and/or environment, which results in a sequence of more
accurate HGMDPs, each of which needs to be solved. A third contribution of our work is a set
of myopic action selection mecahnisms that approximate the optimal policy. For HAMDPs, we
analyze a myopic heuristic and show that it has a regret which is upper bounded by the entropy
of the goal distribution for HAMDPs. Furthermore we give a variant of this policy that is able
to achieve worst-case and expected regret that is logarithmic in the number of goals without any
prior knowledge of the goal distribution. We also describe two other approaches that are based
on a combination of explicit goal estimation, myopic heuristics, and bounded search and are more
generally applicable to HGMDPs.

In order for the above approach to be useful, the HGMDP must incorporate a reasonably ac-
curate model of the agent being assisted. A fourth contribution of our work is to describe a novel
model-based bootstrapping mechanism for quickly learning the agent policy, which is important
for the usability of an assistant early in its lifetime. The main idea is to assume that that agent is
“close to rational” in the decision-theoretic sense, which motivates defining a prior on agent policies
that places higher probability on policies that are closer to optimal. This prior in combination with
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Bayesian updates allows for the agent model to be learned quickly when the rationality assumption
is approximately satisfied.

The final contribution of our work is to evaluate our framework in three domains. First we
consider two game-like computer environments with human subjects. The results in these domains
show that the assistants resulting from our framework substantially reduce the amount of work
performed by the human subjects. We also consider a more realistic domain, the folder navigator
(Bao, Herlocker, & Dietterich, 2006) of the Task Tracer project. In this domain, the user navigates
the directory structure searching for a particular location to open or save a file, which is unknown to
the assistant. The job of the assistant is to predict the user’s destination folder and take actions that
provide “short cuts” to reach it. The results show that our generic assistant framework compares
favorably to the hand-coded solution of Bao et al.

The remainder of this paper is organized as follows. In the next section, we introduce our for-
mal problem setup in terms of HGMDPs, followed by an analysis of computational complexity and
guarantees for myopic heuristics in the case of HAMDPs. Next, we present our approximate solu-
tion approach for general HGMDPs based on goal estimation and online action selection. Finally
we give an empirical evaluation of the approach in three domains and conclude with a discussion of
related and future work.

2. Hidden Goal Markov Decision Processes

Throughout the paper we will refer to the entity that we are attempting to assist as the agent and the
assisting entity as the assistant. We consider an episodic problem setting where at the beginning of
each episode the agent begins in some world state and selects a goal from a finite set of possible
goals. The goal set, for example, might contain all possible dishes that the agent might be interested
in cooking, or all the possible destination folders that the agent may possibly navigate to. Impor-
tantly, the assistant can fully observe the world state and the agent’s actions, but cannot observe the
goal of the agent. We model the interaction between the agent and assistant as sequential where
the agent and assistant alternate turns, taking a single action per turn (possibly noop).1 The episode
ends when either the agent’s or the assistant’s action leads to a goal state. An immediate reward
is accumulated after each action during the episode. The total reward of an episode is equal to the
sum of the rewards obtained during the episode. Note that the available actions for the agent and
assistant need not be the same and may have varying rewards. Since the assistant and the agent
share the same objective, all rewards are viewed from the perspective of the agent. The objective of
the assistant is to behave in a way that maximizes the expected total reward of an episode.

More formally, we model the above interaction via Hidden Goal Markov Decision Processes
(HGMDPs). An HGMDP is an MDP in which the goal of the user is not observed while the rest
of the environment is completely observed. An HGMDP is a tuple 〈S,G,A,A′, T,R, π, IS , IG〉
where S is a set of states, G is a finite set of possible agent goals, A is the set of agent actions, and
A′ is the set of assistant actions. Typically A′ will include a noop action, which allows the assistant
to decide not to provide any assistance at a particular decision epoch. T is the transition function
where T (s, g, a, s′) is the probability of a transition to state s′ from s after taking action a ∈ A∪A′
when the agent’s goal is g. R is the reward function which maps S×G× (A∪A′) to real values. π

1. We consider this strictly alternating turn model for simplicity. However, it is straightforward to use this model to
capture interactions that are not strictly alternating, e.g. allowing the assistant or agent to take multiple actions in a
row.
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is the agent’s policy that maps S ×G to distributions over A and need not be optimal in any sense.
IS (IG) is an initial state (goal) distribution.

An assistant policy for an HGMDP defines a distribution over actions given the sequence of
preceding observations, i.e., the sequence of state action pairs. It is important that the assistant pol-
icy depends on the history rather than only the current state since the entire history can potentially
provide evidence about the goal of the agent, which may be necessary for selecting an appropriate
action. We must now define an objective function that will be used to evaluate the value of a par-
ticular assistant policy. We consider a finite-horizon episodic problem setting, where each HGMDP
episode begins by drawing an initial state s ∼ IS and a goal g ∼ IG. The process then alternates
between the agent and the assistant executing actions (including noops) in the environment until the
horizon or a terminal state is reached. The agent is assumed to select actions according to π. In
many domains, a terminal goal state will be reached within the horizon, though in general, goals
can have arbitrary impact on the reward function. The reward for the episode is equal to the sum
of the rewards of the actions executed by the agent and assistant during the episode. The objective
of the assistant is to reason about the HGMDP and observed state-action history in order to select
actions that maximize the expected (or worst-case) total reward of an episode.

Before proceeding further it is worth reviewing some of the assumptions of the above formula-
tion and the potential implications.

• Partial Observability: The definition of the HGMDP is very similar to the definition of a
Partially Observable Markov Decision Process (POMDP). In fact, the HGMDP is a special
case of the POMDP where the unobserved part of the state space consists of a single com-
ponent which corresponds to the goal of the user. For simplicity we have assumed that the
world state is fully observable. This choice is not fundamental to our framework and one can
imagine relatively straightforward extensions of our techniques that model the environment
as a partially observable MDP (POMDP) where the world states are not fully observable. In
Section 3, we shed some light on the hardness of HGMDPs and describe some specialized
heuristic solutions with performance guarantees.

• Agent Policy: We have also assumed that the agent is modeled as a memoryless/reactive
policy that gives a distribution over actions conditioned on only the current world state and
goal. This assumption is also not fundamental to our framework and one can also extend
it to include more complex models of the user, for example, that include hierarchical goal
structures. Such an extension has been explored previously (Natarajan, Tadepalli, & Fern,
2007).

• Sequential Interaction: We have also assumed for simplicity an interaction model between
the assistant and agent that involves interleaved, sequential actions rather than parallel actions.
This, for example, precludes the assistant from taking actions in parallel with the agent. While
parallel assistive actions are useful in many cases, there are many domains where sequential
actions are the norm. We are especially motivated by domains such as “intelligent desktop
assistants” that help store and retrieve files, filter spam, sort email, etc., and “smart homes”
that open doors, switch on appliances, and so on. Many opportunities for assistance in these
domains are of the sequential variety. In many cases, tasks that appear to require parallel
activity can often be formulated as a set of threads where each thread is sequential and hence
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can be formulated as a separate assistant. Extending our framework to handle general parallel
assistance is an interesting future direction.

• Goal-Dependent Transitions: The dependence of the reward and policy on the goal allows
the model to capture the agent’s desires and behavior under each goal. The dependence of T
on the goal is less intuitive and in many cases there will be no dependence when T is used
only to model the dynamics of the environment. However, we allow goal dependence of T
for generality of modeling. For example, it can be convenient to model basic communication
actions of the agent as changing aspects of the state, and the result of such actions will often
be goal dependent.

There are two main obstacles to solving the problem of intelligent assistance in our framework.
First, in many scenarios, initially the HGMDP will not be directly at our disposal since we will lack
accurate information about the agent policy π and/or the goal distribution IG. This is often due to
the fact that the assistant will be deployed for a variety of initially unknown agents. Rather, the as-
sistant will find itself in an environment and be only given the possible set of goals. As described in
Section 5, our approach to this difficulty is to learn an approximate HGMDP by estimating the agent
policy π and the goal distribution IG. Furthermore, we will also describe a bootstrapping mecha-
nism for learning these approximations quickly. The second obstacle to solving the HGMDP is the
generally high computational complexity of solving HGMDPs. To deal with this issue Section 4
considers various approximate techniques for efficiently solving the HGMDPs.

It should be mentioned that it is possible to provide assistance using simpler domain-specific
engineered solutions. In particular, the domains we consider later could be solved using several less
expensive solutions and do not require the machinery of HGMDPs. In fact, in one of our domains,
we compare our model against an existing supervised learning method. The goal of our work is
to provide a domain-independent framework that can potentially encapsulate several such assistant
systems with the hope that it gives rise to a robust understanding and methodology of building such
systems with much less human effort in the future.

3. Theoretical Analysis

In this section, we will analyze the hardness of solving HGMDPs, and show that despite being a
special case of POMDPs, they are just as hard. This motivates a new model called the Helper-Action
MDP (HAMDP) which is more restricted and is more amenable to approximate solutions. We will
then introduce a myopic heuristic to solve HAMDPs and analyze its performance. We will also
analyze some special cases of HAMDPs which permit more efficient solutions.

3.1 Complexity Results on Hidden Goal MDPs

Given knowledge of the agent’s goal g in an HGMDP, the assistant’s problem reduces to solving an
MDP over assistant actions. The MDP transition function captures both the state change due to the
assistant action and also the ensuing state change due to the agent action selected according to π
given g. Likewise the reward function on a transition captures the reward due to the assistant action
and the ensuing agent action conditioned on g. The optimal policy for this MDP corresponds to an
optimal assistant policy for g. However, since the real assistant will often have uncertainty about
the agent’s goal, it is unlikely that this optimal performance will be achieved.
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We can view an HGMDP as a collection of |G| MDPs that share the same state space, where
the assistant is placed in one of the MDPs at the beginning of each episode, but cannot observe
which one. Each MDP is the result of fixing the goal component of the HGMDP definition to one
of the goals. This collection can be easily modeled as a restricted type of partially observable MDP
(POMDP) with a state space S ×G. The S component is completely observable, while the G com-
ponent is unobservable but only changes at the beginning of each episode (according to IG) and
remains constant throughout an episode. Furthermore, each POMDP transition provides observa-
tions of the agent action, which gives direct evidence about the unchanging G component. From
this perspective HGMDPs appear to be a significant restriction over general POMDPs. However,
our first result shows that despite this restriction the worst-case complexity is not reduced even for
deterministic dynamics.

Given an HGMDP M , a horizon m = O(|M |), and a reward target r∗, the short-term reward
maximization problem asks whether there exists a history-dependent assistant policy that achieves
an expected finite horizon reward of at least r∗. For general POMDPs this problem is PSPACE-
complete (Papadimitriou & Tsitsiklis, 1987; Mundhenk, 2001), and for POMDPs with deterministic
dynamics, it is NP-complete (Littman, 1996). However, we have the following result.

Theorem 1. Short-term reward maximization for HGMDPs with deterministic dynamics is PSPACE-
complete.

Proof. Membership in PSPACE follows from the fact that any HGMDP can be polynomially en-
coded as a POMDP for which policy existence is in PSPACE. To show PSPACE-hardness, we
reduce the PSPACE-complete problem TQBF (truth of quantified Boolean formula) to the problem
of the existence of a history-dependent assistant policy of expected reward ≥ r.

Let Φ be a quantified Boolean formula in the form ∀x1∃x2∀x3 . . . ∃xn {C1(x1, . . . , xn) ∧ . . .
∧ Cm(x1, . . . , xn)}, where each Ci is a disjunctive clause. For us, each goal gi is a clause, The
agent chooses a goal uniformly randomly from the set of goals formed from Φ and hides it from the
assistant. The states consist of pairs of the form (v, i), where v ∈ {0, 1} is the current value of the
goal clause, and i is the next variable to set. The actions of the assistant are to set the existentially
quantified variables. The agent simulates setting the universally quantified variables by choosing
actions from the set {0, 1} with equal probability. The episode terminates when all the variables are
set, and the assistant gets a reward of 1 if the value of the clause is 1 at the end and a reward of 0
otherwise.

Note that the assistant does not get any useful informtion about the goal until the termination
of the episode. If Φ is satisfiable, then there is an assistant policy that leads to a reward of 1
over all goals and all choices of agent actions, and hence has an expected value of 1 over the goal
distribution. If not, then at least one of the goals will not be satisfied for some setting of the universal
quantifiers, leading to an expected value < 1. Hence the TQBF problem reduces to deciding if a
HGMDP has a policy of expected reward ≥ 1.

This result shows that any POMDP can be encoded as an HGMDP with deterministic dynam-
ics, where the stochastic dynamics of the POMDP are captured via the stochastic agent policy in the
HGMDP. However, the HGMDPs resulting from the PSPACE-hardness reduction are quite patho-
logical compared to those that are likely to arise in realistic assistant domains. Most importantly, the
agent’s actions provide practically no information about the agent’s goal until the end of an episode,
when it is too late to exploit the knowledge. This suggests that we search for restricted classes of
HGMDPs that will allow for efficient solutions with performance guarantees.
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3.2 Helper Action MDPs

The motivation for Helper Action MDPs (HAMDPs) is to place restrictions on the agent and as-
sistant that avoid the following three complexities that arise in general HGMDPs: 1) the agent can
behave arbitrarily poorly if left unassisted and as such the agent actions may not provide signifi-
cant evidence about the goal; 2) the agent is free to effectively “ignore” the assistant’s help and not
exploit the results of assistive action, even when doing so would be beneficial; and 3) the assistant
actions have the possibility of negatively impacting the agent compared to not having an assistant.
HAMDPs will address the first issue by assuming that the agent is competent at (approximately)
maximizing reward without the assistant. The second and the third issues will be addressed by as-
suming that the agent will always “detect and exploit” helpful actions and that the assistant actions
never hurt the agent even when they are unhelpful.

Informally, the HAMDP provides the assistant with a helper action for each of the agent’s ac-
tions. Whenever a helper action h is executed directly before the corresponding agent action a,
the agent receives a bonus reward of 1. However, the agent will only accept the helper action h
(by taking a) and hence receive the bonus, if a is an action that the agent considers to be good for
achieving the goal without the assistant. Thus, the primary objective of the assistant in an HAMDP
is to maximize the number of helper actions that get accepted by the agent.2

While simple, this model captures much of the essence of assistive domains where assistant
actions cause minimal harm and the agent is able to detect and accept good assistance when it
arises.

An HAMDP is an HGMDP 〈S,G,A,A′, T,R, π, IS , IG〉 with the following constraints:

• The agent and assistant actions sets are A = {a1, . . . , an} and A′ = {h1, . . . , hn}, so that for
each ai there is a corresponding helper action hi.

• The state space is S = W ∪ (W × A′), where W is a set of world states. States in W × A′
encode the current world state and the previous assistant action.

• The reward function R is 0 for all assistant actions. For agent actions the reward is zero
unless the agent selects the action ai in state (s, hi) which gives a reward of 1. That is, the
agent receives a bonus of 1 whenever it takes an action directly after the corresponding helper
action.

• The assistant always acts from states in W , and T is such that taking hi in s deterministically
transitions to (s, hi).

• The agent always acts from states in S × A′, resulting in states in S according to a transi-
tion function that does not depend on hi, i.e. T ((s, hi), g, ai, s

′) = T ′(s, g, ai, s
′) for some

transition function T ′.

• Finally, for the agent policy, let Π(s, g) be a function that returns a set of actions and P (s, g)
be a distribution over those actions. We will view Π(s, g) as the set of actions that the agent

2. Note that here we have assumed all bonus rewards are 1 for simplicity. Most of our results below are easily extended
to non-uniform positive bonus rewards. In particular for our main result concerning bounding the regret of the
myopic policy, the analogous result simply includes a constant factor equal to the maximum possible reward bonus.
The exceptions are Theorems 7 and 8, which we do not currently have analogous results for non-uniform reward
bonuses.
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considers acceptable (or equally good) in state s for goal g. The agent policy π always selects
ai after its helper action hi whenever ai is acceptable. That is, π((s, hi), g) = ai whenever
ai ∈ Π(s, g). Otherwise the agent draws an action from P (s, g).

In a HAMDP, the primary impact of an assistant action is to influence the reward of the following
agent action. Also notice that HAMDPs do not have rewards that are inherent to the underlying
environment. Rather, the only rewards are the bonuses received whenever the agent accepts a helper
action. While we could have defined the model to include environmental reward in addition to
helper bonuses, this unnecessarily complicates the model (as the following hardness result shows).
Instead, we assume that the inherent environmental reward is already captured by the agent policy
via Π(s, g), which is considered to contain actions that approximately optimize this reward.

As an example, the HAMDP model captures both the “doorman domain,” and the “desktop do-
main” in our experiments. In the doorman domain, the helper actions correspond to opening doors
for the agent, which reduces the cost of navigating from one room to another. In the desktop do-
main, the helper actions correspond to offering shortcuts to a user’s destination folders. Importantly
opening an incorrect door or offering an incorrect shortcut does not increase the (physical) cost to
the agent over having no assistant at all, which is a key property of HAMDPs.

Despite the apparent simplification of HAMDPs over HGMDPs, it turns out that somewhat
surprisingly the worst case computational complexity is not reduced.

Theorem 2. Short-term reward maximization for HAMDPs is PSPACE-complete.

Proof. Membership in PSPACE follows easily since HAMDPs are a specialization of HGMDPs.
The proof of PSPACE-hardness is identical to that of Theorem 1 except that here, instead of the
agent’s actions, the stochastic environment models the universal quantifiers. The agent accepts
all actions until the last one and sets the variable as suggested by the assistant. After each of the
assistant’s actions, the environment chooses a value for the universally quantified variable with equal
probability. The last action is accepted by the agent if the goal clause evaluates to 1, otherwise not.
There is a history-dependent policy whose expected reward is greater than or equal to the number
of existential variables if and only if the quantified Boolean formula is satisfiable.

Unlike the case of HGMDPs, the stochastic dynamics are essential for PSPACE-hardness as will be
shown in a later section. Despite this negative result, the following sections demonstrate the util-
ity of the HAMDP restriction by giving performance guarantees for simple policies and improved
complexity results. So far, there are no analogous results for general HGMDPs.

3.3 Myopic Heuristic Analysis

HAMDPs are closely related to the sequential prediction framework of Littlestone (1988). In this
framework, in each round the learner is shown a new instance for which it predicts a binary label. If
the prediction is incorrect, a mistake is made, and the learner is given the true label. In the realizable
setting, the true labels are determined by a hypothesis in a target class. An optimal prediction
algorithm minimizes the upper bound on the number of mistakes over all possible hypotheses. We
can view the helper action in HAMDP as a prediction of the user action. Maximizing the bonus
reward in HAMDP is equivalent to minimizing the number of mistakes in sequential prediction.
Unlike sequential prediction, here the predictions (actions) need not be binary. While in sequential
prediction the sequence of states are arbitrarily chosen, here we assume that they are generated by
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a Markov process. In spite of these differences, some of the results of sequential prediction can be
adapted to HAMDPs albeit using a different terminology. However, we derive all our results from
first principles for consistency.

Given an assistant policy π′, the regret of a particular episode is the extra reward that an oracle
assistant with knowledge of the goal would achieve over π′. For HAMDPs the oracle assistant can
always achieve a reward equal to the finite horizon m, because it can always select a helper action
that will be accepted by the agent. Thus, the regret of an execution of π′ in a HAMDP is equal to
the number of helper actions that are not accepted by the agent, which we will call mispredictions.
From above we know that optimizing regret is PSPACE-hard and thus here we focus on bounding
the expected and worst-case regret of the assistant. We now introduce our first myopic heuristic and
show that it is able to achieve regret bounds that are logarithmic in the number of goals.

Coarsened Posterior Heuristic. Intuitively, our myopic heuristic will select an action that has
the highest probability of being accepted with respect to a “coarsened” version of the posterior
distribution over goals. The myopic policy in state s given history H is based on the consistent goal
set C(H), which is the set of goals that have non-zero probability with respect to history H . It is
straightforward to maintain C(H) after each observation (observations include the world state and
the agent’s actions). The myopic policy is defined as:

π̂(s,H) = arg max
a

IG(C(H) ∩G(s, a))

where G(s, a) = {g | a ∈ Π(s, g)} is the set of goals for which the agent considers a to be an
acceptable action in state s. The expression IG(C(H) ∩ G(s, a)) can be viewed as the probability
mass of G(s, a) under a coarsened goal posterior which assigns goals outside of C(H) probability
zero and otherwise weighs them proportional to the prior.

Theorem 3. For any HAMDP the expected regret of the coarsened posterior heuristic is bounded
above by the entropy of the goal distributionH(IG).

Proof. The main idea of the proof is to show that after each misprediction of the myopic policy (i.e.
the selected helper action is not accepted by the agent) the uncertainty about the goal is reduced by
a constant factor, which will allow us to bound the total number of mispredictions on any trajectory.

Consider a misprediction step where the coarsened posterior heuristic selects helper action hi in
state s given history H , but the agent does not accept the action and instead selects a∗ 6= ai. By the
definition of the myopic policy we know that IG(C(H)∩G(s, ai)) ≥ IG(C(H)∩G(s, a∗)), since
otherwise the assistant would not have chosen hi. From this fact we now argue that IG(C(H ′)) ≤
IG(C(H))/2 where H ′ is the history after the misprediction. That is, the probability mass under
IG of the consistent goal set after the misprediction is less than half that of the consistent goal set
before the misprediction. To show this we will consider two cases: 1) IG(C(H) ∩ G(s, ai)) <
IG(C(H))/2, and 2) IG(C(H) ∩ G(s, ai)) ≥ IG(C(H))/2. In the first case, we immediately get
that IG(C(H) ∩ G(s, a∗)) < IG(C(H))/2. Combining this with the fact that C(H ′) ⊆ C(H) ∩
G(s, a∗) we get the desired result that IG(C(H ′)) ≤ IG(C(H))/2. In the second case, note that

C(H ′) ⊆ C(H) ∩ (G(s, a∗)−G(s, ai))

⊆ C(H)− (C(H) ∩G(s, ai))

Combining this with our assumption for the second case immediately implies that IG(C(H ′)) ≤
IG(C(H))/2.
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The above shows that if a misprediction is made between historiesH andH ′ then IG(C(H ′)) ≤
IG(C(H))/2. This implies that for any episode, after n mispredictions resulting in a history Hn,
IG(C(Hn)) ≤ 2−n. Now consider an arbitrary episode where the true goal is g. We know that
IG(g) is a lower bound on IG(C(Hn)), which implies that IG(g) ≤ 2−n or equivalently that n ≤
− log(IG(g)). Thus for any episode with goal g the maximum number of mistakes is bounded by
− log(IG(g)). Using this fact we get that the expected number of mispredictions during an episode
with respect to IG is bounded above by −

∑
g IG(g) log(IG(g)) = H(IG), which completes the

proof.

SinceH(IG) ≤ log(|G|), this result implies that for HAMDPs the expected regret of the myopic
policy is no more than logarithmic in the number of goals. Furthermore, as the uncertainty about
the goal decreases (decreasingH(IG)) the regret bound improves until we get a regret of 0 when IG
puts all mass on a single goal. It turns out that this logarithmic bound is asymptotically tight in the
worst case.

Theorem 4. There exists a HAMDP such that for any assistant policy the expected regret is at least
log(|G|)/2.

Proof. Consider a deterministic HAMDP such that the environment is structured as a binary tree
of depth log(|G|), where each leaf corresponds to one of the |G| goals. By considering a uniform
goal distribution it is easy to verify that at any node in the tree there is an equal chance that the true
goal is in the left or right sub-tree during any episode. Thus, any policy will have a 0.5 chance of
committing a misprediction at each step of an episode. Since each episode is of length log(|G|), the
expected regret of an episode for any policy is log(|G|)/2.

Resolving the gap between the myopic policy bound and this regret lower bound is an open problem.

3.3.1 APPROXIMATE GOAL DISTRIBUTIONS.

Suppose that the assistant uses an approximate goal distribution I ′G instead of the true underlying
goal distribution IG when computing the myopic policy. That is, the assistant selects actions that
maximize I ′G(C(H) ∩ G(s, a)), which we will refer to as the myopic policy relative to I ′G. The
extra regret for using I ′G instead of IG can be bounded in terms of the KullbackLeibler (KL) diver-
gence (Kullback & Leibler, 1951) between these distributions KL(IG ‖ I ′G), which is zero when I ′G
equals IG.

Theorem 5. For any HAMDP with goal distribution IG, the expected regret of the myopic policy
with respect to distribution I ′G is bounded above byH(IG) + KL(IG ‖ I ′G).

Proof. The proof is similar to that of Theorem 3, except that since the myopic policy is with respect
to I ′G rather than IG, we derive that, on any episode, the maximum number of mispredictions n is
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bounded above by − log(I ′G(g)). Using this fact, the average number of mispredictions is given by:∑
g IG(g) log(

1

I ′G(g)
) =

∑
g IG(g)

(
log(

1

I ′G(g)
) + log(IG(g))− log(IG(g))

)
=

∑
g IG(g) log(

IG(g)

I ′G(g)
)−

∑
g

IG(g) log(IG(g))

= H(IG) + KL(IG ‖ I ′G).

Note that for any random variable X with distribution P over a finite domain of size N , we
have KL(P ‖ U) = log(N)−H(P ), where U is the uniform distribution. Thus, a consequence of
Theorem 5 is that the myopic policy with respect to the uniform goal distribution has expected regret
bounded by log(|G|) for any HAMDP, showing that logarithmic regret can be achieved without
knowledge of IG. This can be strengthened to hold for worst case regret.

Theorem 6. For any HAMDP, the worst case and hence expected regret of the myopic policy with
with respect to the uniform goal distribution is bounded above by log(|G|).

Proof. The proof of Theorem 5 shows that the number of mispredictions on any episode is bounded
above by − log(I ′G). In our case I ′G = 1/|G| which shows a worst case regret bound of log(|G|).
This immediately implies that the expected regret bound of the uniform myopic policy is bounded
by log(|G|).

3.4 Deterministic Agent Policies

We now consider several special cases of HAMDPs. First, we restrict the agent’s policy to be
deterministic for each goal, i.e. Π(s, g) has at most a single action for each state-goal pair (s, g).

Theorem 7. The myopic policy achieves the optimal expected reward for HAMDPs with determin-
istic agent policies.

The proof is given in the Appendix. It is sometimes desirable to minimize the worst possible regret
compared to an oracle assistant who knows the agent’s goal. As we show below, this can be captured
by a graph-theoretic notion of tree rank that generalizes the rank of decision trees (Ehrenfeucht &
Haussler, 1989).

Definition 1. The rank of a rooted tree is the rank of its root node. If a node is a leaf node then
rank(node) = 0, else if a node has at least two distinct children c1 and c2 with equal highest ranks
among all children, then rank(node) = 1+ rank(c1). Otherwise rank(node) = the rank of the highest
ranked child.

The optimal trajectory tree (OTT) of a HAMDP in deterministic environments is a tree where
the nodes represent the states of the HAMDP reached by the prefixes of optimal action sequences
for different goals starting from the initial state.3 Each node in the tree represents a state and a set of

3. If there are multiple initial states, we build an OTT for each initial state. Then the rank would be the maximum of the
ranks of all trees.
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goals for which it is on the optimal path from the initial state. Since the agent policy is deterministic,
there is at most one trajectory per goal in the tree. Hence the size of the optimal trajectory tree is
bounded by the number of goals times the maximum length of any trajectory, which is at most the
size of the state space in deterministic domains. The following Lemma follows by induction on the
depth of the optimal trajectory tree. The proof is in the Appendix.

Lemma 1. The minimum worst-case regret of any policy for an HAMDP for deterministic environ-
ments and deterministic agent policies is equal to the tree rank of its optimal trajectory tree.

This leads to the following.

Theorem 8. If the agent policy is deterministic, the problem of minimizing the maximum regret in
HAMDPs in deterministic environments is in P.

Proof. We first construct the optimal trajectory tree. We then compute its rank in linear time while
simultaneously computing the optimal minimax policy using the recursive definition of tree rank.
The result then follows from Lemma 1.

3.5 Bounded Branching Factor Policies

The assumption of a deterministic agent policy may be too restrictive in many domains. We now
consider agent policies which may have a constant number of possible actions in Π(s, g) for each
state-goal pair as defined below.

Definition 2. The branching factor of a HAMDP is the largest number of possible actions in Π(s, g)
by the agent in any state for any goal and any assistant’s action.

The Doorman domain of Section 6.1 has a branching factor of 2 since there are at most two optimal
actions to reach any goal from any state.

Theorem 9. Minimizing the worst-case regret in finite horizon HAMDPS in deterministic environ-
ments with a constant branching factor k is NP-complete.

The proof is in the appendix. We can also show that minimizing the expected regret for a bounded
k is NP-hard. We conjecture that this problem is also in NP, but this question remains open.

4. Solving Practical HGMDPs

Although HAMDPs offer a theoretically elegant framework, the requirements of practical assistant
systems are not easily satisfed by its assumptions. In this section, we consider the more general
problem of solving HGMDPs and offer some practical heuristic solutions that are inspired by our
theoretical analysis.

In principle we could use a general purpose POMDP solver to solve HGMDPs. While the
POMDP solvers based on point-based methods and search-based methods have become more ef-
ficient over the years, they are still too inefficient to be used in an interactive setting, where the
parameters of the POMDP are continually being updated. Moreover, as the analysis in the previous
section suggests, simple myopic heuristics based on the knowledge of the goal distribution and the
optimal policies given the goals appear promising to yield respectable performance. For this reason,
we adopt an approach based on Bayesian goal estimation followed by heuristic action selection, and
evaluate it in three different domains. Below, we first give an overview of our solution algorithm
and then describe each of the components in more detail.
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4.1 Overview

In this section, we will assume that we are given an HGMDPM , delegating the problem of learning
M to Section 5. Let Ot = o1, ..., ot be an observation sequence observed by the assistant from the
beginning of the current trajectory until time t. Each observation is a tuple of a world state and the
previously selected action (by either the assistant or agent). Given Ot and M our goal is to compute
an assistant action whose value is (close to) optimal.

To motivate the approach, it is useful to consider some special characteristics of the HGMDP.
Most importantly, the belief state corresponds to a distribution over the agent’s goal. Since the agent
is assumed to be goal directed, the observed agent actions provide substantial evidence about what
the goal might and might not be. In fact, even if the assistant does nothing, the agent’s goals will
often be rapidly revealed by analyzing the relevance of the agent’s initial actions to the possible
goals. In such cases, this suggests that the state/goal estimation problem for the HGMDP may be
solved quite effectively by just observing how the agent’s actions relate to the various possible goals,
rather than requiring the assistant to select actions explicitly for the purpose of information gathering
about the agent’s goals. In other words, in such cases, we can expect purely (or nearly) myopic
action selection strategies, which avoid reasoning about information gathering, will be effective.
Reasoning about information gathering is one of the key complexities involved in solving POMDPs
compared to MDPs. Here we leverage the intuitive properties of the HGMDP to gain tractability
by limiting or completely avoiding such reasoning. Of course, as shown by our PSPACE-hardness
results, goals will not always be rapidly revealed and non-myopic reasoning will be essential.

We note that in some cases, the assistant will have pure information-gathering actions at its
disposal, e.g. asking the agent a question. While we do not consider such actions in our experiments,
we believe that such actions can be handled naturally in this framework by incorporating only a
small amount of look-ahead search.

With the above motivation, our assistant architecture, depicted in Figure 1, alternates between
goal estimation and action selection as follows:

1. After observing the agent’s next action, we update the goal distribution based on the HGMDP
model.

2. Based on the updated distribution we evaluate the effectiveness of assistant actions (including
noop) by building a sparse-sampling look-ahead tree of bounded depth (perhaps just depth
one), where leaves are evaluated via a myopic heuristic.

The key element of the architecture is the computation of the myopic heuristics. On top of this
heuristic, we can optionally obtain non-myopic behavior via search by building a look-ahead sparse-
sampling tree. Our experiments show that such search can improve performance by a small margin
at a significant computational cost. We note that the idea of utilizing myopic heuristics to select
actions in POMDPs is not new, see for example (Cassandra, 1998; Geffner & Bonet, 1998), and
similar methods have been used previously with success in applications such as computer bridge
(Ginsberg, 1999). The main contribution here is to show that this approach is particularly well
suited to our setting and to evaluate some efficiently computable heuristics specifically designed for
solving HGMDPs. Below we describe the goal estimation and action selection operations in more
detail.
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Goal Estimation Action Selection

Environment User

Ut

At
Ot

P(G)

Assistant

Wt

Figure 1: Depiction of the assistant architecture. The agent has a hidden goal and selects actions
Ut that cause the environment to change world state Wt, typically moving closer to the
goal. The assistant (upper rectangle) is able to observe the world state along with the
observations generated by the environment, which in our setting contain the user/agent
actions along with the world state. The assistant is divided into two components. First,
the goal estimation component computes a posterior over agent goals P (G) given the ob-
servations. Second, the action selection component uses the goal distribution to compute
the best assistive action At via a combination of bounded search and myopic heuristic
computation. The best action might be noop in cases where none of the other assistive
actions has higher utility for the user.
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4.2 Goal Estimation

Given an HGMDP with agent policy π and initial goal distribution IG, our objective is to maintain
the posterior goal distribution P (g|Ot), which gives the probability of the agent having goal g
conditioned on observation sequence Ot. Note that since we have assumed that the assistant cannot
affect the agent’s goal, only observations related to the agent’s actions are relevant to the posterior.
Given the agent policy π, it is straightforward to incrementally update the posterior P (g|Ot) upon
each of the agent’s actions.

At the beginning of each episode we initialize the goal distribution P (g|O0) to IG. On timestep t
of the episode, ifOt does not involve an agent action, then we leave the distribution unchanged. Oth-
erwise, when the agent selects action a in state s, we update the posterior according to P (g|Ot) =
(1/Z) · P (g|Ot−1) · π(a|s, g), where Z is a normalizing constant. That is, the distribution is ad-
justed to place more weight on goals that are more likely to cause the agent to execute action a in s.
The accuracy of goal estimation relies on how well the policy π learned by the assistant reflects the
true agent policy. As described in Section 5.2, we use a model-based bootstrapping approach for
estimating π and update this estimate at the end of each episode. Provided that the agent is close to
optimal, as in our experimental domains, this approach can lead to rapid goal estimation, even early
in the lifetime of the assistant.

We have assumed for simplicity that the actions of the agent are directly observable. In some
domains, it is more natural to assume that only the state of the world is observable, rather than the
actual action identities. In these cases, after observing the agent transitioning from s to s′ we can
use the MDP transition function T to marginalize over possible agent actions yielding the update,

P (g|Ot) = (1/Z) · P (g|Ot−1) ·
∑
a∈A

π(a|s, g)T (s, a, s′).

4.3 Action Selection

Given the HGMDP M and a distribution over goals P (g|Ot), we now address the problem of
selecting an assistive action. Our mechanisms utilize a combination of bounded look-ahead search
and myopic heuristic computations. By increasing the amount of look-ahead search the actions
returned will be closer to optimal at the cost of more computation. Fortunately, for many HGMDPs,
useful assistant actions can be computed with relatively little or no search. We first describe several
myopic heuristics that can be used either for greedy action selection or in combination with search.
Next, we review how to utilize sparse sampling to obtain non-myopic action selection.

4.3.1 ACTION SELECTION HEURISTICS

To explain the action selection procedure, we introduce the idea of an assistant MDP relative to a
goal g and M , which we will denote by M(g). The MDP M(g) is identical to M except that we
change the initial goal distribution such that P (G0 = g) = 1. That is, the goal is always fixed to g in
each episode. Since the only hidden component of M ’s state space was the goal, fixing the goal in
M(g) makes the state fully observable, yielding an MDP. Each episode inM(g) evolves by drawing
an initial world state and then selecting assistant actions until the goal g is achieved. Note that the
state transition after an assistant action a′ in state s is the result of successive state transitions, first
due to the assistant action and then due to the ensuing agent action, which is selected based on the
agent policy and goal g. An optimal policy for M(g) gives the optimal assistive action assuming
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that the agent is acting to achieve goal g. We will denote the Q-function of M(g) by Qg(s, a),
which is the expected cost of executing action a in state s and then following the optimal policy.

We now consider a second heuristic for action selection, which accounts for non-uniform re-
wards and the true goal posterior, unlike the coarsened posterior heuristic introduced in Section 3.3.
It is simply the expected Q-value of an action over assistant MDPs, and has also been called theQMDP

method by Cassandra (1998). The heuristic value for assistant action a in state s given observations
Ot is

H(s, a,Ot) =
∑
g

Qg(s, a) · P (g|Ot).

Intuitively H(s, a,Ot) measures the utility of taking an action under the assumption that all
goal ambiguity is resolved in one step. Thus, this heuristic will not value the information-gathering
utility of an action. Rather, the heuristic will favor assistant actions that make progress toward goals
with high posterior probability. When the goal posterior is highly ambiguous this will often lead
the assistant to prefer noop, which at least does not hurt progress toward the goal. Note that this
heuristic, as well as the others below, can be used to evaluate the utility of a state s, rather than a
state-action pair, by maximizing over all actions maxaH(s, a,Ot).

The primary computational complexity of computing H is to solve the assistant MDPs for each
goal in order to obtain the Q-functions. Technically, since the transition functions of the assistant
MDPs depend on the approximate agent policy π, we must re-solve each MDP after updating the
π estimate at the end of each episode (see Section 5.2 for policy learning). However, using incre-
mental dynamic programming methods such as prioritized sweeping (Moore & Atkeson, 1993) can
alleviate much of the computational cost. In particular, before deploying the assistant we can solve
each MDP offline based on the default agent policy given by the Boltzmann bootstrapping distribu-
tion describe in Section 5.2. After deployment, prioritized sweeping can be used to incrementally
update the Q-values based on the learned refinements we make to π.

When it is not practical to exactly solve the assistant MDPs, we may resort to various approx-
imations. We consider two approximations in our experiments. One is to replace the user’s policy
to be used in computing the assistant MDP with a fixed default user policy, eliminating the need to
compute the assistant MDP at every step. We denote this approximation by Hd. Another approxi-
mation uses the simulation technique of policy rollout (Bertsekas & Tsitsiklis, 1996) to approximate
Qg(s, a) in the expression for H . This is done by first simulating the effect of taking action a in
state s and then using π to estimate the expected cost for the agent to achieve g from the resulting
state. That is, we approximate Qg(s, a) by assuming that the assistant will only select a single
initial action followed by only agent actions. More formally, let C̄n(π, s, g) be a function that sim-
ulates n trajectories of π achieving the goal from state s and then averaging the trajectory costs.
The heuristic Hr is identical to H(s, a,Ot) except that we replace Qg(s, a) with the expectation∑

s′∈S T (s, a, s′) · C̄(π, s′, g). We can also combine both of these heuristics, using a fixed default
user policy and policy rollouts, which we denote by Hd,r.

4.3.2 SPARSE SAMPLING

All of the above heuristics are somewhat myopic in the sense that they do not take into account
potentially persistent ambiguity about the agent’s goal and do not consider the use of information
gathering actions to resolve the ambiguity. In cases where it is beneficial to consider some non-
myopic reasoning, one can combine these heuristics with shallow search in the belief space of
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the assistant MDP. For this purpose we utilize depth d bounded sparse sampling trees (Kearns,
Mansour, & Ng, 1999) to compute an approximation to the Q-function for a given belief state
(st, Ot), denoted by Qd(st, a, Ot). Given a particular belief state, the assistant will then select the
action that maximizes Qd. Note that for convenience we represent the belief state as a pair of the
current state st and observation history Ot. This is a lossless representation of the belief state since
the posterior goal distribution can be computed exactly from Ot and the goal is the only hidden
portion of the POMDP state.

The base case Q0(st, a, Ot) will be equal to one of our myopic heuristics described above.
Increasing the depth d will result in looking ahead d state transitions and then evaluating one of
our heuristics. By looking ahead it is possible to track the potential changes to the belief state after
taking certain actions and then determine whether those changes in belief would be beneficial with
respect to providing better assistance. Sparse sampling does such look-ahead by approximately
computing:

Qd(s, a,O) = E[R(s, g, a) + V d−1(s′, O′)] (1)

V d(s,O) = max
a

Qd(s, a,O) (2)

where g is a random variable distributed according to the goal posterior P (g|O) and (s′, O′) is
a random variable that represents the belief state after taking action a in belief state (s,O). In
particular, s′ is the world state arrived at and O′ is simply the observation sequence O extended
with the observation obtained during the state transition. The first term in the above expectation
represents the immediate reward of the assistant action a when the goal is g.

Sparse sampling approximates the above expectation by averaging a set of b samples of succes-
sor belief states. The sparse-sampling pseudo-code is presented in Table 4.3.2. Given an input belief
state (s,O), assistant action a, heuristic H , depth bound d, and sampling width b the algorithm re-
turns (an approximation of) Qd(s, a,O). First, if the depth bound is equal to zero the heuristic
value is returned. Otherwise b samples of observations resulting from taking action a in belief state
(s,O) are generated. The observations will be of the form oi = (s′i, ai, si), where s′i is the state
resulting from taking action a in state s, ai is the ensuing agent action selected in s′i based on a goal
drawn from the goal posterior, and si is the result of taking action ai in state s′i. Each observation oi
corresponds to a new belief state (si, [O; oi]) where [O; oi] is simply the concatenation of oi to O.
The code then recursively computes a value for each of these belief states by maximizing Qd over
all actions and then averages the results.

As b and d become large, sparse sampling will produce an arbitrarily close approximation to the
true Q-function of the belief state MDP. The computational complexity of sparse sampling is linear
in b and exponential in d. Thus the depth must be kept small for real-time operation.

5. Learning HGMDPs

In this section, we tackle the problem of learning the HGMDP while interacting with the environ-
ment to assist the agent. We assume that the set of goals G is known to the agent. The primary
role for learning is to acquire the agent’s policy and goal distribution. This assumption is natural
in situations where the assistant is being applied many times in the same environment, for possibly
different agents. For example, in a desktop environment, the environment MDP corresponds to a
description of the various desktop functionalities, which remains fixed across users. If one is not
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• Given: heuristic function H , belief state (s,O), action a, depth bound d, sam-
pling width b

• Return: an approximation Qd(s, a,O) of the value of a in belief state (s,O)

1. If d = 0 then return H(s, a,O)

2. Sample a set of b observations {o1, . . . , ob} resulting from taking action a in
belief state (s,O) as follows:

(a) Sample s′i from the environment MDP transition function T (s, a, ·)
(b) Sample a goal gi from P (gi|O)

(c) Sample an agent action ai from the agent policy π(·|s′i, gi)
(d) oi = (s′i, ai, si), where si is sample from the environment MDP transition

function T (s′i, ai, ·)

3. For each oi = (s′i, gi, ai, si) compute Vi = maxa′ Qd−1(si, a
′, [O; oi])

4. Return Qd(s, a,O) = 1
b

∑
iR(s, gi, a) + Vi

Table 1: Pseudo-code for Sparse Sampling in the HGMDP

provided with a description of the MDP then it is typically straightforward to learn this model with
the primary cost being a longer “warming up” period for the assistant.

Relaxing the assumption that we are provided with the set of possible goals is more problematic
in our current framework. As we saw in Section 4, our solution methods depend on knowing this set
of goals and it is not clear how to learn these from observations, since the goals, unlike states and
actions, are not directly observable to the assistant. Extending our framework so that the assistant
can automatically infer the set of possible user goals, or allow the user to define their own goals, is
an interesting future direction. We note, however, it is often possible for a designer to enumerate a
set of user goals before deployment that while perhaps not complete, allows for useful assistance to
be provided.

5.1 Maximum Likelihood Estimates

It is straightforward to estimate the goal distribution G0 and agent policy π by simply observing the
agent’s actions, possibly while being assisted, and to compute empirical estimates of the relevant
quantities. This can be done by storing the goal achieved at the end of each episode along with
the set of world state-action pairs observed for the agent during the episode. The estimate of IG
can then be based on observed frequency of each goal (usually with Laplace correction to avoid
extreme values of the probabilities). Likewise, the estimate of π(a|s, g) is simply the frequency for
which action a was taken by the agent when in state s and having goal g. While in the limit these
maximum likelihood estimates will converge to the correct values of the true HGMDP, in practice
convergence can be slow. This slow convergence can lead to poor performance in the early stages
of the assistant’s lifetime. To alleviate this problem we propose an approach for bootstrapping the
learning of the agent policy π.
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5.2 Model-Based Bootstrapping

We will leverage our environment MDP model in order to bootstrap the learning of the agent policy.
In particular, we assume that the agent is near optimal in the sense that, for a particular goal and
world state, he is more likely to select actions that are close to optimal. This is not unrealistic
in many application domains that might benefit from intelligent assistants. In particular, there are
many tasks, that are conceptually simple for humans, yet are quite tedious, e.g., navigating through
the directory structure of a computer desktop. Performing optimally in such tasks is not difficult for
humans.

Given the “near rationality assumption”, we initialize the estimate of the agent’s policy to a
prior that is biased toward optimal agent actions. To do this we will consider the environment MDP
with the assistant actions removed and solve for the Q-function Q(a, s, g) using MDP planning
techniques. The Q-function gives the expected cost of executing agent action a in world state s and
then acting optimally to achieve goal g using only agent actions. In a world without an assistant,
a rational agent would always select actions that maximize the Q-function for any state and goal.
Furthermore, a close-to-rational agent would prefer actions that achieve higher Q-values to highly
suboptimal actions. We first define the Boltzmann distribution, which will be used to define our
prior,

π̂(a|s, g) =
1

Z(s, g)
exp(K ·Q(a, s, g)) (3)

where Z(s, g) is a normalizing constant, and K is a temperature constant. Using larger values
of K skews the distribution more heavily toward optimal actions. Given this definition, our prior
distribution over π(·|w, g) is taken to be a Dirichlet with parameters (α1, . . . , α|A|), where αi =
α0 · π̂(ai|s, g). Here α0 is a parameter that controls the strength of the prior. Intuitively α0 can be
thought of as the number of pseudo-actions represented by the prior, with each αi representing the
number of those pseudo-actions that involved agent action ai. Since the Dirichlet is conjugate to
the multinomial distribution, which is the form of π(·|s, g), it is easy to update the posterior over
π(·|s, g) after each observation. One can then take the mode or mean of this posterior to be the point
estimate of the agent policy used to define the HGMDP.

In our experiments, we found that this prior provides a good initial proxy for the actual agent
policy, allowing for the assistant to be immediately useful. Further updating of the posterior tunes
the assistant better to the peculiarities of a given agent. For example, in many cases there are
multiple optimal actions and the posterior will come to reflect any systematic bias among equally
good actions that an agent has. Computationally the main obstacle to this approach is computing the
Q-function, which needs to be done only once for a given application domain since the environment
MDP is constant. Using dynamic programming this can be accomplished in polynomial time in the
number of states and goals. When this is not practical, a number of alternatives exist including the
use of factored MDP algorithms (Boutilier et al., 1999), approximate solution methods (Boutilier
et al., 1999; Guestrin et al., 2003), or developing domain specific solutions.

Finally, in this work, we utilize an uninformative prior over the goal distribution. An interesting
future direction would be to bootstrap the goal distribution estimate based on observations from a
population of agents.
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6. Experimental Results

In this section, we present the results of conducting user studies and simulations in three domains:
two game-like environments and a folder predictor domain for an intelligent desktop assistant. In
the user studies in the two game-like domains, for each episode, the user’s and the assistant’s actions
were recorded. These user studies were performed using 12 human subjects (graduate students in CS
department at Oregon State University) over a single session. The ratio of the cost of achieving the
goal with the assistant’s help to the optimal cost without the assistant was calculated and averaged
over the multiple trials for each user. We present similar results for the simulations as well. The third
domain is a folder predictor domain, where we simulated the user and used one of our heuristics to
generate the top 3 recommended folders for the user. We present the number of clicks required on an
average for the user to reach her desired folder. Two of these three domains, namely, the doorman
domain and the folder predictor domain, fall under the category of HAMDPs since the assistive
actions can be merely viewed as helper actions that the agent can ignore. The kitchen domain on
the other hand needs a slightly more general formulation since the agent and the assistant do not
strictly alternate, and the assistant’s actions cannot be ignored by the agent.

6.1 Doorman Domain

In the doorman domain, there is an agent and a set of possible goals such as collect wood, food and
gold. Some of the grid cells are blocked. Each cell has four doors and the agent has to open the
door to move to the next cell (see Figure 2). The door closes after one time-step so that at any time
only one door is open. The goal of the assistant is to help the user reach his goal faster by opening
the correct doors.

A state is a tuple 〈s, d〉, where s stands for the the agent’s cell and d is the door that is open. The
total number of states is 245 (49 squares with 5 possibilities for the door). The actions of the agent
are to open door and to move in each of the 4 directions or to pickup whatever is in the cell, for a
total of 9 actions. The assistant can open the doors or perform a noop (5 actions. The agent’s and
the assistant’s actions strictly alternate in this domain, satisfying the definition of HAMDPs. There
is a reward of −1 (or a cost of 1) if the user has to open the door and no reward to the assistant’s
action. The trial ends when the agent picks up the desired object. Note that while we have included
a noop action for the assistant, in this domain the action is never selected, since the cost of opening
a wrong door and noop are the same, while there is no potential benefit of selecting noop.

In this experiment, we evaluated two heuristics: one where we fixed the user policy to the default
policy in the HGMDP creation (Hd) avoiding the need for repeated computation of the HGMDP at
every step and the second where we use the policy rollout to calculate the Q-values (Hr). In each
trial, the system chooses a goal and one of the two heuristics at random. The user is shown the
goal and he tries to achieve it, always starting from the center square. After every user’s action, the
assistant opens a door or does nothing. The user may pass through the door or open a different door.
After the user achieves the goal, the trial ends, and a new one begins. The assistant then uses the
user’s trajectory to update the agent’s policy.

The results of the user studies for the doorman domain are presented in Tabe 2. The first two
rows give cumulative results for the user study when actions are selected greedily according to Hr

and Hd respectively. Rather than reporting the negtive rewards, the table shows the total number of
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Figure 2: Doorman Domain. The agent’s goal is to fetch a resource. The grid cells are separated by
doors that must be opened before passing through.

actions for all trials across all users without the assistant N, and the total number of actions with the
assistant U, and the average of percentage savings (1-(U/N)) over all trials and over all the users.4

As can be seen, both the methods reduce the number of actions by more than 50%. Note that
an assistant that selects among the four doors at random would reduce the number of actions by
only 25% in comparison. An omniscient assistant who knows the user’s goal reduces the number
of actions by 78%. This is not 100% because the first door is always opened by the user. In our
experiments, if we do not count the user’s first action, the number of actions reduces by 65%.5 It
can be observed that Hr appears to have a slight edge over Hd. One possible reason for this is that
while using Hd, we do not re-solve the MDP after updating the user policy, while Hr is always
using the updated user policy. Thus, rollout is reasoning with a more accurate model of the user.

Total User Fractional Savings Time
Heuristic Actions Actions 1− (U/N) per

N U action (in secs
Hr 750 339 0.55± 0.055 0.0562
Hd 882 435 0.51 ± 0.05 0.0021
Hr 1550 751 0.543 ± 0.17 0.031

d = 2, b = 1 1337 570 0.588 ± 0.17 0.097
d = 2, b = 2 1304 521 0.597 ± 0.17 0.35
d = 3, b = 1 1167 467 0.6 ± 0.15 0.384
d = 3, b = 2 1113 422 0.623 ± 0.15 2.61

Table 2: Results of experiments in the Doorman Domain. The first two rows of the table present the
results of the user studies while the rest of the table presents the results of the simulation.

4. This gives a pessimistic estimate of the usefulness of the assistant assuming an optimal user and is a measure of utility
normalized by the optimal utility without the aid of the assistant.

5. Note that this first action requirement is easily aviodable. It is simply the equivalent of an “on” switch to indicate that
the user is ready to move about in the grid. We can also replace this requirement by explicitly adding an on button to
the interface to start a new episode.
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Another interesting observation is that there are individual differences among the users. Some
users always prefer a fixed path to the goal regardless of the assistant’s actions. Some users are
more flexible. From the survey we conducted at the end of the experiment, we learned that one of
the features that the users liked was that the system was tolerant to their choice of suboptimal paths.
The data reveals that the system was able to reduce the costs by approximately 50% even when the
users chose suboptimal trajectories.

We also conducted experiments using sparse sampling with non-zero depths. We considered
depths of d = 1 and d = 2 while using sampling widths of b = 1 or b = 2. The leaves of the sparse
sampling tree are evaluated using Hr which simply applies rollout to the user policy. Hence sparse
sampling of d = 0 and b = 1, would correspond to the heuristic Hr. For these experiments, we did
not conduct user studies, due to the high cost and effort required for humans in such studies, but
simulated the human users by choosing actions according to policies learned from their observed
actions from the previous user study. The results are presented in the last 5 rows of Table 2. Note that
the absolute numbers of actions in the user studies and the simulations are not comparable as they
are based on different numbers of trajectories. The human users were tested on fewer trajectories
to minimize their fatigue. We see that sparse sampling increased the average run time (last column)
by an order of magnitude, but is able to produce a reduction in average cost for the user. This result
is not surprising in hindsight, for in the simulated experiments, sparse sampling is able to sample
from the exact user policy (i.e. it is sampling from the learned policy, which is also being used
for simulations). These results suggest that a small amount of non-myopic reasoning can have a
positive benefit with a substantial computation cost. Note, however, that the bulk of the benefit
realized by the assistant can be obtained without such reasoning, showing that the myopic heuristics
are well-suited to this domain.

6.2 Kitchen Domain

In the kitchen domain, the goals of the agent are to cook various dishes. There are 2 shelves with
3 ingredients each. Each dish has a recipe, represented as a partially ordered plan. The ingredients
can be fetched in any order, but should be mixed before they are heated. The shelves have doors
that must be opened before fetching ingredients and only one door can be open at a time.

There are 8 different recipes. The state consists of the location of each of the ingredients
(bowl/shelf/table), the mixing state and temperature state of the ingredient (if it is in the bowl)
and the door that is open. The state also includes the action history to preserve the ordering of the
plans for the recipes. The user’s actions are: open the doors, fetch the ingredients, pour them into
the bowl, mix, heat and bake the contents of the bowl, or replace an ingredient back to the shelf. The
assistant can perform all user actions except for pouring the ingredients or replacing an ingredient
back to the shelf. We restricted the assistant from pouring ingredients as it is an irreversible ac-
tion. The reward for all non-pour actions is -1. Experiments were conducted on 12 human subjects
who are computer science graduate students. Unlike in the doorman domain, here we allowed the
the assistant to take multiple consecutive actions. The turn switches to the user when the assistant
executes the noop action.

This domain has a large state space and hence it is not possible to update the user policy after
every trajectory. Hence, the two heuristics that we compare both use the default user policy. The
second heuristic in addition uses policy rollout to compare the actions. In other words, we compare
Hd and Hd,r. The results of the user studies are shown in top part of the Table 3. As in the doorman
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Figure 3: The kitchen domain. The user is to prepare the dishes described in the recipes on the
right. The assistant’s actions are shown in the bottom frame.

domain, the total number of agent actions with and without the assistant, and the percentage reduc-
tion due to the assistant are presented. The number of user actions was summed over 12 users and
the cumulative results are presented. It can be observed that Hd,r performs better than Hd. It was
observed from the experiments that the Hd,r technique was more aggressive in choosing non-noop
actions than Hd, which would wait until the goal distribution is highly skewed toward a particular
goal.

Total User Fractional Savings Time
Heuristic Actions Actions 1− (U/N) per

N U action (secs)
Hd,r 3188 1175 0.6361 ±0.15 0.013
Hd 3175 1458 0.5371± 0.10 0.013
Hd,r 6498 2332 0.6379 ± 0.14 0.013

d = 2, b = 1 6532 2427 0.6277 ± 0.14 0.054
d = 2, b = 2 6477 2293 0.646 ± 0.14 0.190
d = 3, b = 1 6536 2458 0.6263 ±0.15 0.170
d = 3, b = 2 6585 2408 0.645 ± 0.14 0.995

Table 3: Results of experiments in the Kitchen Domain. The first two rows of the table present the
results of the user studies while the last 5 rows present the results of the simulation.

We compared the use of sparse sampling and our heuristic on simulated user trajectories for
this domain as well (see the last 5 rows of Table 3). Again, the absolute numbers of actions of the
user studies are not comparable to that of simuations due to different numbers of trajectories in each
case. Since sparse sampling considers a larger number of trajectories than the other methods, the
policies learned are sometimes better than those learned from other heuristics, although they took
more time to execute. However, there is no significant difference between the solution quality of
rollouts and sparse sampling on simulations, showing that our myopic heuristics are performing as
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well as sparse sampling with much less computation. Sparse sampling with higher depths requires
an order of magnitude more computation time when compared to the rollout.

6.3 Folder Predictor

In this section, we present the evaluation of our framework on a real-world domain. As a part of
the Task Tracer project (Dragunov, Dietterich, Johnsrude, McLaughlin, Li, & Herlocker, 2005),
researchers developed a file location system called folder predictor (Bao et al., 2006). The idea
behind the folder predictor is that by learning about the user’s file access patterns, the assistant can
help the user with his file accesses by predicting the folder in which the file has to be accessed or
saved.

In this setting, the goal of the folder predictor is to minimize the number of clicks of the user.
The predictor would choose the top three folders that would minimize the cost and then append them
to the UI (shown in ovals in Figure 4). Also, the user is taken to the first recommended folder. So if
the user’s target folder is the first recommended folder, the user would reach the folder in zero clicks
and reach the second or the third recommended folder in one click. The user can either choose one
of the recommendations or navigate through the windows folder hierarchy if the recommendations
are not relevant.

Figure 4: Folder predictor (Bao et al., 2006).

Bao et al. considered the problem as a supervised learning problem and implemented a cost-
sensitive algorithm for the predictions with the cost being the number of clicks of the user (Bao
et al., 2006). But, their algorithm does not take into account the response of the user to their
predictions. For instance, if the user chooses to ignore the recommended folders and navigates the
folder hierarchy, they do not make any re-predictions. This is due to the fact that their model is
a one-time prediction and does not consider the user responses. Also, their algorithm considers
a restricted set of previously accessed folders and their ancestors as possible destinations. This
precludes handling the possibility of user accessing a new folder.

Our decision-theoretic model naturally handles the case of re-predictions by changing the rec-
ommendations in response to the user actions. As a first step, we used the data collected from their
user interface and used our model to make predictions. We use the user’s response to our predic-
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tions to make further predictions. Also, to handle the possibility of a new folder, we consider all
the folders in the folder hierarchies for each prediction. We used a mixture density to obtain the
probability distribution over the folders.

P (f) = µ0P0(f) + (1− µ0)Pl(f)

Here P0 is the probability according to Bao et.al’s algorithm (2006), Pl is the uniform probabil-
ity distribution over the set of folders and µ0 is ratio of the number of times a previously accessed
folder has been accessed to the total number of folder accesses.

The idea behind using the above density function is that during the early stages of a task, the user
will be accessing new folders while in later stages the user will access the folders of a particular task
hierarchy. Hence as the number of folder accesses increases the value of µ0 increases and would
eventually converge to 1, and hence the resulting distribution would converge to P0. The data set
consists of a collection of requests to open a file (Open) and save a file (saveAs), ordered by time.
Each request contains information such as, the type of request (open or saveAs), the current task,
the destination folder, etc. The data set consists of a total of 810 open/saveAs requests. The folder
hierarchy consists of 226 folders.

The state space consists of 4 parts: the current folder that the user is accessing and the three
recommendations two of which are unordered. This would correspond to a state space of size
226 × 225 ×

(
224
2

)
. The action of the user is either to choose a recommended folder or select

a different folder. The action of the assistant corresponds to choosing the top 3 folders and the
action space is of size 225 ×

(
224
2

)
. The reward in our case was the negative of the number of user

clicks. In this domain, the assistant and the user’s actions strictly alternate as the assistant revises its
predictions after every user action. The prior distribution was initialized using the rewards computed
by the model developed by Bao et al. (2006).

We applied the decision theoretic model to the data set. For each request, our assistant would
make the prediction using the Hd,r heuristic (which uses the default user policy and the rollout
method) and then the user is simulated. The user would accept the recommendation if it shortens
his path to the goal, and otherwise would act according to his optimal policy. The user here is
considered close to optimal, which is not unrealistic in the real world. To compare our results, we
also used the model developed by Bao et al. in the data set and present the results in Table 4.

One-time Prediction With Repredictions
Restricted folder set 1.3724 1.34

All Folders 1.319 1.2344

Table 4: Results of the experiments in the folder predictor domain. The numbers indicate the av-
erage number of clicks required by the agent to reach his/her correct folder. The entry in
the top left hand cell is the performance of the current Task Tracer, while the one in the
bottom right hand cell is the performance of the decision-theoretic assistant.

The table shows the average cost of folder navigation for 4 different cases: Bao et.al’s original
algorithm, their algorithm modified to include mixture distributions and our model with and without
mixture distributions. It can be seen that our model with the use of mixture distributions has the
least user cost for navigation and hence is the most effective. Bao et. al have shown that their
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algorithm performs significantly better than the windows default prediction which has an average
of 2.6 clicks per folder navigation. This improvement can be attributed to the two modifications
mentioned earlier. First, the use of re-predictions in our model which is natural to the decision-
theoretic framework while their model makes a one-time prediction and hence cannot make use
of the user’s response to the recommendations. Secondly, considering all folders in the hierarchy
for prediction including the possibility of the user accessing a new folder is found to be useful. It
can be observed that either of the modifications yields a lower cost than the original algorithm, but
combining the two changes is significantly more effective.

7. Discussion and Related Work

Our work is inspired by the growing interest and success in building useful software assistants
(Yorke-Smith et al., 2012; Lieberman, 2009; Myers et al., 2007). Some of this effort is focused
on building desktop assistants that help with tasks such as calendar scheduling (Refanidis, Alex-
iadis, & Yorke-Smith, 2011), email filtering (Cohen, Carvalho, & Mitchell, 2004), on-line diag-
nostics (Skaanning, Jensen, & Kjaerulff, 2000), and travel planning (Ambite, Barish, Knoblock,
Muslea, Oh, & Minton, 2002). Each of these tasks typically requires designing a software system
around specialized technologies and algorithms. For example, email filtering is typically posed as a
supervised learning problem (Cohen et al., 2004), travel planning combines information gathering
with search and constraint propagation (Ambite et al., 2002), and printer diagnostics is formulated
as Bayesian network inference (Skaanning et al., 2000). Other approaches focus on socially assis-
tive robots setting where a robot is designed to aid human agents in achieving their goals (Johnson,
Cuijpers, Juol, Torta, Simonov, Frisiello, Bazzani, Yan, Weber, Wermter, et al., 2013). Unfortu-
nately the plethora of systems and approaches lacks an overarching conceptual framework, which
makes it difficult to build on each others’ work. In this paper, we argue that a decision-theoretic
approach provides such a common framework and allows the design of systems that respond to
novel situations in a flexible manner reducing the need for pre-programmed behaviors. We formu-
late a general version of the assistantship problem that involves inferring the user’s goals and taking
actions to minimize the expected costs.

Earlier work on learning apprentice systems focused on learning from the users by observa-
tion (Mahadevan, Mitchell, Mostow, Steinberg, & Tadepalli, 1993; Mitchell, Caruana, Freitag,
J.McDermott, & Zabowski, 1994). This work is also closely related to learning from demonstration
or programming by demonstration (Johnson, 2014; Konidaris, Kuindersma, Grupen, & Barto, 2012;
Atkeson & Schaal, 1997; Cypher, 1993; Lau, Wolfman, Domingos, & Weld, 2003). The emphasis
in these systems is to provide an interface where the computer system can unobtrusively observe the
human user doing a task and learn to do it by itself. The human acts both as a user and as a teacher.
The performance of the system is measured by how quickly the system learns to imitate the user,
i.e., in the supervised learning setting. Note that imitation and assistance are two different things in
general. While we expect our secretaries to learn about us, they are not typically expected to replace
us. In our setting, the assistant’s goal is to reduce the expected cost of user’s problem solving. If the
user and the assistant are capable of exactly the same set of actions, and if the assistant’s actions cost
nothing compared to the user’s, then it makes sense for the assistant to try to completely replace the
human. Even in this case, the assistantship framework is different from learning from demonstration
in that it still requires the assistant to infer the user’s goal from his actions before trying to achieve
it. Moreover, the assistant might learn to solve the goal by itself by reasoning about its action set
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rather than by being shown examples of how to do it by the user. In general, however, the action
set of the user and the assistant may be different, and supervised learning is not appropriate. For
example, this is the case in our folder predictor. The system needs to decide which set of folders
to present to the user, and the user needs to decide which of those to choose. It is awkward if not
impossible to formulate this problem as supervised learning or programming by demonstration.

Taking the decision-theoretic view helps us approach the assistantship problem in a principled
manner taking into account the uncertainty in the user’s goals and the costs of taking different
actions. The assistant chooses an action whose expected cost is the lowest. The framework naturally
prevents the assistant from taking actions (other than noop) when there is no assistive action which
is expected to reduce the overall cost for the user. Rather than learning from the user how to behave,
in our framework the assistant learns the user’s policy. This is again similar to a secretary who learns
the habits of his boss, not so much to imitate her, but to help in the most effective way. In this work
we assumed that the user MDP is small enough that it can be solved exactly given the user’s goals.
This assumption may not always be valid, and it makes sense in those cases to learn from the user
how to behave. It is most natural to treat this as a case where the user’s actions provide exploratory
guidance to the system (Clouse & Utgoff, 1992; Driessens, 2002). This gives an opportunity for the
system to imitate the user when it knows nothing better and improve upon the user’s policy when it
can.

There have been other personal assistant systems that are based on POMDP models. However,
these systems are formulated as domain-specific POMDPs and are solved offline. For instance,
the COACH system helped people suffering from dementia by giving them appropriate prompts as
needed in their daily activities (Boger, Poupart, Hoey, Boutilier, Fernie, & Mihailidis, 2005). They
use a plan graph to keep track of the user’s progress and then estimate the user’s responsiveness to
determine the best prompting strategy. A distinct difference from our approach is that there is only
a single fixed goal of washing hands, and the only hidden variable is the user responsiveness which
is either low or high. Rather, in our formulation the goal is a random variable that is hidden to the
assistant. Since their state-action space is significantly smaller (1280 as against 2×108 states in our
folder predictor domain), it is possible for them to solve the POMDP exactly. Given that we need
to re-solve the POMDP after every user action, it becomes prohibitively expensive. Yet another
difference is that the length of the trajectory to the goal is small in their case and hence a plan graph
would suffice to capture the user policy. In our model, we do not restrict to a plan graph and instead
solve the user MDP to bootstrap the policy. They have mentioned learning the user policy as a
future direction. In our work, even though we start with an initial estimate of the user policy, we
update it after every goal is achieved. This can be considered as online learning of user policy with
a reasonably good prior. We note that a combination of these two frameworks (one for modeling
user’s responsiveness and the other for modeling user’s goal) would be useful, where the assistant
infers both the agent goals and other relevant hidden properties of the user, such as responsiveness.

In Electric Elves, the assistant takes on many of the mundane responsibilities of the human
agent including rescheduling a meeting should it appear that the user is likely to miss it. Again a
domain-specific POMDP is formulated and solved offline using a variety of techniques. In one such
approach, since the system monitors users in short regular intervals, radical changes in the belief
states are usually not possible and are pruned from the search space (Varakantham, Maheswaran,
& Tambe, 2005). Neither exact nor approximate POMDP solvers are feasible in our online setting,
where the POMDP is changing as we learn about the user, and must be repeatedly solved. They are
either too costly to run (Boger et al., 2005), or too complex to implement as a baseline, e.g., Electric
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Elves (Varakantham et al., 2005). Our experiments demonstrate that simple methods such as one-
step look-ahead followed by rollouts would work well in many domains where the POMDPs are
solved online. In a distinct but related work (Doshi & Gmytrasiewicz, 2004), the authors introduce
the setting of interactive POMDPs, where each agent models the other agent’s beliefs. Clearly, this
is more general and more complex than ordinary POMDPs. Our model is simpler and assumes that
the agent is oblivious to the presence and beliefs of the assistant. While the simplified model suffices
in many domains, relaxing this assumption without sacrificing tractability would be interesting.

There have been several dialogue systems proposed and many of them are based on decision-
theoretic principles (Walker, 2000; Singh, Litman, Kearns, & Walker, 2002). For instance, the
NJFun system is designed as an MDP to provide assistance to the user by interacting with the user
and providing the answer to the user’s questions. It uses an automatic speech recognizer (ASR) to
interpret the human dialogues and uses a dialogue policy to choose the best action (the response).
The goals of the user could be a set of standard queries such as locations of restaurants, wineries,
shopping centers etc. The state space would be the dialogue states, i.e., the current state of the
dialogue between the user and assistant (such as greeting, choice state etc). The observations are
the interpretations of the dialogues of the human by the ASR. The NJFun system can be usefully
modeled as an HGMDP, where the goal of the assistant is to infer the user’s query given the obser-
vations and provide appropriate response. The initial assistant policy can be learned from training
data, in a manner similar to the dialogue policy of the NJFun system.

Our work is also related to on-line plan recognition and can be naturally extended to include
hierarchies as in the hierarchical versions of HMMs (Bui, Venkatesh, & West, 2002) and PCFGs
(Pynadath & Wellman, 2000). Blaylock and Allen describe a statistical approach to goal recognition
that uses maximum likelihood estimates of goal schemas and parameters (Blaylock & Allen, 2004).
These approaches do not have the notion of cost or reward. By incorporating plan recognition in the
decision-theoretic context, we obtain a natural notion of optimal assistance, namely maximizing the
expected utility.

There has been substantial research in the area of user modeling. Horvitz et al. took a Bayesian
approach to model whether a user needs assistance based on his actions and attributes and provided
assistance as needed in a spreadsheet application (Horvitz et al., 1998). Hui and Boutilier used a
similar idea for assistance with text editing (Hui & Boutilier, 2006). They use DBNs with handcoded
parameters to infer the type of the user and compute the expected utility of assisting the user. It
would be interesting to explore the use of ideas from plan recognition (Charniak & Goldman, 2013;
Gal, Reddy, Shieber, Rubin, & Grosz, 2012; Chu, Song, Kautz, & Levinson, 2011) in our system
to take into account the user’s intentions and attitudes while computing the optimal policy for the
assistant.

Recently, there have been methods proposed for solving POMDPs called point based meth-
ods (Pineau, Gordon, & Thrun, 2003; Porta, Vlassis, Spaan, & Poupart, 2006; Kurniawati, Hsu,
& Lee, 2008; Shani, Pineau, & Kaplow, 2013). An example of this method is point based value
iteration (PBVI) (Pineau et al., 2003; Porta et al., 2006) that takes a set of belief points B as input
and maintains a set of POMDP α-vectors at each iteration. Each iteration produces a new set of α-
vectors that are optimal for each belief point with respect to the α-vectors in the previous iteration.
The approximation made by PBVI when compared to value iteration is that there is no guarantee
that the set of α-vectors is optimal for the entire belief space. By omitting some α-vectors, PBVI
maintains a constant run time per iteration. Application of efficient point based methods such as
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PBVI to the decision-theoretic assistance problem and evaluation of their performance compared to
the policy rollout and sparse sampling methods remains a promising research direction.

8. Summary and Future Work

We introduced a decision-theoretic framework for assistant systems and described the HGMDP
as an appropriate model for selecting assistive actions. The computational complexity of HGMDPs
motivated the definition of a simpler model called HAMDP, which allows efficient myopic heurstics
and more tractable special cases.

We also described an approximate solution approach based on iteratively estimating the agent’s
goal and selecting actions using myopic heuristics. Our evaluation using human subjects in two
game-like domains show that the approach can significantly help the user. We also demonstrated in
a real world folder predictor that the decision-theoretic framework was more effective than the state
of the art techniques for folder prediction.

One future direction is to consider more complex domains where the assistant is able to do a se-
ries of activities in parallel with the agent. Another possible direction is to assume hierarchical goal
structure for the user and do goal estimation in that context. Recently, the assistantship model was
extended to hierarchical and relational settings (Natarajan et al., 2007) by including parameterized
task hierarchies and conditional relational influences as prior knowledge of the assistant. This prior
knowledge would relax the assumption that the user MDP can be solved tractably. This knowledge
was compiled into an underlying Dynamic Bayesian network, and Bayesian network inference al-
gorithms were used to infer a distribution of user’s goals given a sequence of her atomic actions.
The parameters for the user’s policy were estimated by observing the users’ actions.

Our framework can be naturally extended to the case where the environment is partially ob-
servable to the agent and/or to the assistant. This requires recognizing actions taken to gather
information, e.g., opening the fridge to decide what to make based on what is available. Incorporat-
ing more sophisticated user modeling that includes users forgetting their goals, not paying attention
to an important detail, and/or changing their intentions would be extremely important for building
practical systems. The assistive technology can also be very useful if the assistant can quickly learn
new tasks from expert users and transfer the knowledge to novice users during training.
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Appendix A. Proof of Theorem 7

According to the theory of POMDPs, the optimal action in a POMDP maximizes the sum of the
immediate expected reward and the value of the resulting belief state (of the assistant) (Kaelbling,
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Littman, & Cassandra, 1998). When the agent policy is deterministic, the initial goal distribution
IG and the history of agent actions and states H fully captures the belief state of the agent. Let
V (IG, H) represent the value of the current belief state. Then the value function of the belief state
is given by by the following Bellman equation, where H ′ stands for the history after the assistant’s
action hi and the agent’s action aj .

V (IG, H) = max
hi

E(R((s, hi), g, aj)) + V (IG, H
′) (4)

Since there is only one agent’s action in Π(s, g), the agent action aj , the subsequent state s′ in
H ′ and its value do not depend on hi. Hence the best helper action h∗ of the assistant is given by:

h∗(IG, H) = arg max
hi

E(R((s, hi), g, a
∗(s, g)))

= arg max
hi

∑
g∈C(H)

IG(g)I(ai ∈ Π(s, g))

= arg max
hi

IG(C(H) ∩G(s, ai))

where C(H) is the set of goals consistent with the current historyH , andG(s, ai) is the set of goals
for which ai is good in state s. I(ai ∈ Π(s, g)) is an indicator function which is = 1 if ai ∈ Π(s, g).
Note that h∗ is exactly the myopic policy. 2

Appendix B. Proof of Lemma 1

The worst-case regret of any pair (s,G) in the HAMDP is given by the following Bellman equation.
assuming that G is the set of possible goals of the agent and the current state is s. Regret(s,G) = 0
if s is a terminal state or all goals in G are satisfied in s. Otherwise, Regret(s,G) = mini maxj 6=i

{Regret(si, Gi), 1 + Regret(sj , Gj))} where (si, Gi) and (sj , Gj) are in Children((s,G)).
Here the outer min is due to the assistant picking a helper action for a goal in Gi to maximize

the reward and the inner max is due to the agent either accepting it, or picking a different goal to
minimize the reward. The proof is by induction. Each node in the trajectory tree represents a state
and a set of goals G for which that state is on the optimal path.
Basis: If (s,G) is a leaf node, it is either a terminal state or all goals in G are satisfied in s. Hence
its rank equals its reward which is 0.
Inductive step: Suppose that the induction is true for all children of (s,G). We will consider two
cases.
Case 1. There is a unique child of (s,G) representing (s1, G1) which has the highest regret among
all its children. By inductive hypothesis, rank((s1, G1)) = regret(s1, G1). If the assistant chooses
the helper action that corresponds to (s1, G1), the agent can only choose actions that yield lower
regret in the worst case. Choosing any other helper action would increase the regret, since the
agent could then choose a1 and add 1 to the regret. So we have, regret(s,G)= regret(s1, G1) =
rank((s1, G1)) = rank((s,G)).
Case 2. There are at least two children (s1, G1) and (s2, G2) of (s,G) which have the highest rank
among all its children. By inductive hypothesis, rank((s1, G1)) = rank((s2, G2)) = regret(s1, G1)
= regret(s2, G2). Here the agent can increase the regret by 1 more by choosing a goal in G2 if the
assistant chooses G1 and vice versa. Hence, regret(s,G)= 1+regret(s1, G1) = 1+rank((s1, G1)) =
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rank((s,G)).
Hence in both cases, we have shown that regret(s,G) is rank((s,G)). 2

Appendix C. Proof of Theorem 9

We first show that the problem is in NP. We build a tree representation of a history-dependent policy
for each initial state. Every node in the tree is represeted by a triple (s, i, G), where s is a state,
G is a set of goals for which it is on a good path, and i is the index of the helper action chosen
by the policy at that node. The root node corresponds to a possible initial state and the initial goal
set IG. The children of a node in the tree represent possible successor nodes (sj , j, Gj) reached by
the agent’s response to hi, whether by accepting hi and executing ai or by executing other actions.
The children resulting from ai are called “accepted,” and the latter are called “rejected.” Note that
multiple children can result from the same action because the dynamics are a function of the agent’s
goal.

We now guess a policy tree and check that its maximum regret, i.e. the maximum number of
rejected children in any path from the root to a leaf, is within bounds. To verify that the optimal
policy tree is of polynomial size we note that the number of leaf nodes is upper bounded by |G| ×
maxgN(g), where N(g) is the number of leaf nodes generated by the goal g. To estimate N(g),
we start from the root and navigate downwards. For any node that contains g in its goal set, if some
accepted child contains g, then it will be the only child that will be reached for g. If not, there is a
misprediction and there are at most k children reached. Hence, the number of nodes reached for g
grows geometrically with the number of mispredictions. From Theorem 6, since there are at most
log |G| mispredictions in any such path, N(g) ≤ klog2 |G| = klogk |G| log2 k = |G|log2 k. Hence the
total number of all leaf nodes of the tree is bounded by |G|1+log k, and the total number of nodes
in the tree is bounded by m|G|1+log k, where m is the number of steps to the horizon. Since this is
polynomial in the problem parameters, the problem is in NP.

To show NP-hardness, we reduce 3-SAT to the given problem. We consider each 3-literal clause
Ci of a propositional formula Φ as a possible goal. The rest of the proof is identical to that of
Theorem 1 except that all variables are set by the assistant since there are no universal quantifiers.
The agent only rejects the setting of the last variable in the clause if the clause evaluates to 0. The
worst regret on any goal is 0 iff the 3-SAT problem has a satisfying assignment. 2
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