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Abstract

This paper presents a reinforcement learning algorithm for solving infinite horizon
Markov Decision Processes under the expected total discounted reward criterion when both
the state and action spaces are continuous. This algorithm is based on Watkins’ Q-learning,
but uses Nadaraya-Watson kernel smoothing to generalize knowledge to unvisited states.
As expected, continuity conditions must be imposed on the mean rewards and transition
probabilities. Using results from kernel regression theory, this algorithm is proven capable
of producing a Q-value function estimate that is uniformly within an arbitrary tolerance
of the true Q-value function with probability one. The algorithm is then applied to an
example problem to empirically show convergence as well.

1. Introduction

A Markov Decision Process (MDP) is a stochastic control problem, usually considered in
discrete time. At each time step, the system is in a state and a controller chooses an action.
The system then transitions to a new state with a probability distribution that depends
both on the previous state and the action utilized. A reward (or cost, for some authors)
is also received. The rewards are allowed to be random variables with a distribution that
depends on the state and the action utilized. The goal is to find a policy (a function that
maps states to actions) that maximizes rewards (or minimizes costs) according to some
measure of goodness. We will consider MDPs for which there are no terminal, absorbing
states. In this case, a common optimality criterion is the expected total discounted reward.
MDPs under this criterion on finite state-action spaces have been well studied. If the
state transition probabilities and reward means are known, then dynamic programming
methods can obtain an optimal policy in a finite number of steps (Ross, 1992). However, if
probabilities and rewards are initially unknown but transitions and rewards can be simulated
or observed, then the problem becomes much more difficult, one amenable to the methods
of reinforcement learning.

Watkins (1989) developed Q-learning, a novel and popular algorithm for learning the
value of a state-action pair under an optimal policy without explicitly calculating transition
probabilities and mean rewards. The values can then be used to construct an optimal
policy. If there are a finite number of states and actions, then the learned values are proven
to converge to their true values. However, problems with a very large number of states or
actions may cause the values to converge unreasonably slowly. Furthermore, if the number
of state-action pairs is infinite, then the convergence guarantee no longer holds. A natural
question is whether the knowledge gained from an observation can be generalized using
function approximators to similar states and actions, and whether the state-action values
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still converge, either theoretically or empirically. The immediacy of this question is apparent
even in Watkins’ thesis (1989), where a form of function approximation, the CMAC (Albus,
1975), is used in the solution to two example problems with a large number of state-action
pairs.

Function approximators in reinforcement learning may cause value estimates to converge
to suboptimal values (Bertsekas, 1995), oscillate (Gordon, 1996), or even diverge (Fairbank
& Alonso, 2012; Tsitsiklis & Van Roy, 1996). However, when used carefully, they have also
been impressively effective. A famous example of success with a large yet finite state-action
space is the TD-Gammon program (Tesauro, 1995), which used temporal difference learning
(Sutton, 1988) and a neural network to generalize knowledge. It eventually learned to be
competitive with tournament-level human backgammon players. Scenarios with continuous
states and finite actions have been well studied. Empirical convergence has been observed
with CMACs (Sutton, 1996), neural networks (Rummery & Niranjan, 1994; ten Hagen,
1991), and regression trees (Ernst et al., 2005). Theoretically, there have been positive
results as well. A parametric function approximator can yield convergent results if it satisfies
certain interpolation properties (Szepesvári & Smart, 2004). A non-parametric technique,
kernel regression, has also been proven to converge to optimal values (Ormoneit & Sen,
1999).

Problems where both the states and the actions are allowed to be continuous have
been less well-studied. One major reason is that constructing a policy requires taking a
supremum over all possible actions, which is straightforward when actions are finite but
generally difficult when continuous. This difficulty, though present, has not prevented
researchers from developing techniques to make the process manageable. One method is
to calculate values for a discrete set of actions, then use a weighted average to produce a
continuous valued action (Millán et al., 2002). Baird and Klopf (1993) specifically designed
a function approximator, termed “wire-fitting,” such that the supremum over the action
space can be immediately obtained. Wire-fitting has been combined with neural networks
to learn thruster-control in order to drive a submersible to a target with success (Gaskett
et al., 1999). Algorithms allowing for stochastic policies can rapidly choose actions from a
probability distribution, as in Sequential Monte Carlo Learning (Lazaric et al., 2008).

Despite the practical success of these algorithms, there has been very little theoretical
investigation into the convergence properties when actions are continuous. The purpose of
this paper is to present what is, to my knowledge, the first off-policy Q-learning variant
allowing for continuous state and actions which is proven to converge to optimal values with
probability one. Specifically, if the state and action spaces are both allowed to be infinite
but compact subsets of Euclidean space, then with a sufficiently small kernel regression
bandwidth and suitable continuity conditions on the random rewards and transition prob-
abilities, one may obtain a Q-value function estimate that is uniformly within an arbitrary
tolerance of the true Q-value function. Though the intention of the algorithm is to fill a
theoretical gap, the results of a proof-of-concept example implementation will be provided.

The particular method of knowledge generalization is Nadaraya-Watson kernel regres-
sion, which is a memory-based non-parametric smoothing technique with well-studied prop-
erties. It is similar to the function approximators used by Ormoneit and Sen (1999) and
Santamaŕıa et al. (1996). A distinction should be made between Nadaraya-Watson kernel
regression and the use of kernel functions through the so-called “kernel trick” in the context
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of reinforcement learning. The methods are similar in that they use a kernel function and
deliver non-linear regression results as kernel based weighted sums, but the intermediate
methodologies are quite different. See the work of Taylor and Parr (2009) for a discussion
of kernelized value function methods, and the work of Xu et al. (2007) for an application
of kernelized regression to policy iteration.

In Section 2, Markov Decision Processes will be defined. Section 3 introduces Nadaraya-
Watson kernel regression and describes an algorithm that uses kernel smoothing to obtain
a function that estimates the Q-value of each state-action pair. The main result of this
paper, theoretical convergence of a continuous state and action algorithm, is stated in
Section 4 along with sufficient conditions for convergence. Section 5 describes the strategy
of the proof, proves a set of lemmas, and finally proves the main result. An example
implementation along with a discussion of practical difficulties is in Section 6. Finally,
Section 7 concludes with a few ideas for extensions.

2. Description of a Continuous Markov Decision Process

It is assumed the reader is familiar with the basic theory of discrete Markov Decision
Processes. For an introduction, we recommend the texts by Puterman (1994) and Ross
(1992). This paper will consider Markov Decision Processes for which the state and action
spaces are not discrete, but are compact subsets of Euclidean space. Let S, the state
space, be a compact subset of Euclidean space of dimension dS and B(S) be the Borel σ-
algebra on S. Let A, the action space, be a compact subset of Euclidean space of dimension
dA. Note that S × A is a subset of Rd where d = dS + dA. Elements of this space will
be written (s, a) to make the state and action clear, but for all computational purposes
they are best regarded as numerical vectors. Transitions between states are governed by a
function P : S × B(S)×A→ R+ satisfying:

• For each a ∈ A and B ∈ B(S), P (·, B, a) : S → R+ is a measurable function.

• For each s ∈ S and a ∈ A, P (s, ·, a) : B(S)→ R+ is a probability measure on S.

• For each s ∈ S and B ∈ B(S), P (s,B, ·) : A→ R+ is a measurable function.

For each state and action (s, a) there is a random reward R(s, a) bounded by a constant
C0.

The Markov Decision Process proceeds as follows: the process begins in some state s ∈ S
and the controller chooses an action a ∈ A. A random reward R(s, a) is received and the
system transitions to a new state in accordance with the probability measure P (s, ·, a). The
system progresses to the next time step, and this scenario repeats from the new state. The
reward distributions and transition probabilities are assumed to have the Markov property:
they only depend on the current state and action; they do not depend on the history of
previous states and actions.

A policy π is a measurable function π : S → A. In some settings, policies are allowed to
be stochastic or non-stationary, but we will restrict our attention to deterministic policies.
Define Pπ(s,B) := P (s,B, π(s)). Then Pπ is a transition kernel for a Markov chain on the
space S.
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Let γ, 0 < γ < 1, be a discount factor. Let (st, at) be the (random) state and action
at time t. Under a policy π, the value of a state s is defined under the expected total
discounted reward criterion:

V π(s) = E

[ ∞∑
t=0

γtR(st, π(st))|s0 = s

]
.

A policy π∗ is optimal if it satisfies V π∗
(s) = sup

π
V π(s), ∀s ∈ S.

Our goal is to find an algorithm which will, under suitable conditions, converge to an
optimal policy. To that end, we will define Q-values as

Qπ(s, a) := E[R(s, a)] + γ

∫
S
V π(t)P (s, dt, a).

This is a continuous version of the discrete definition made by Watkins (1989). Intuitively
Qπ(s, a) is the value obtained if we start in state s, utilize action a, and then follow policy
π thereafter. Consider the Q-values associated with an optimal policy π∗: Q∗(s, a) :=
Qπ

∗
(s, a). If we can learn the values Q∗(s, a) for all (s, a), then an optimal policy can easily

be recovered by setting

π∗(s) = argsup
a∈A

Q∗(s, a).

3. Description of Algorithm

This section will introduce the form of the function approximator to be used, and then
describe an algorithm which will generate a sequence of estimates of the optimal Q-values.

3.1 Nadaraya-Watson Kernel Regression

Nadaraya-Watson kernel regression (Watson, 1964; Nadaraya, 1964) is a smoothing tech-
nique which estimates the value at a point as a weighted average of nearby observations,
using a non-negative kernel function to assign weights to observations based on their dis-
tance. Kernels typically are symmetric, peak at zero, and decrease away from zero so that
the weight of an observation is inversely related to the distance. Formally, we will require
K : Rd → R+ to be a multivariate function satisfying:

KI. K is integrable:
∫
Rd K(u)du <∞.

KII. K is bounded: ||K||∞ < CK <∞.

KIII. K has compact support: There exists L <∞ such that

K(u) = 0 when ||u||∞ > L.

KIV. K is Lipschitz: There exists M <∞ such that for all u, u′ ∈ Rd,

|K(u)−K(u′)| ≤M ||u− u′||∞.
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The compact support condition is not required in all applications (indeed, the Gaussian
function is a common kernel choice) but will be used here to reduce computation load by
assigning zero weight to sufficiently distant observations.

A bandwidth h > 0 is a parameter used to fine-tune the level of smoothing. Define

Kh(u) :=
1

h
K(u/h).

If u is non-scalar, the division may be understood to be component-wise. Values of h which
are too large or small relative to the sample size tend to oversmooth or overfit the data.
Typically when using kernel regression the bandwidth decreases toward zero as the number
of observations increases. A discussion of the particulars of bandwidth selection is beyond
the scope of this paper, but a rule of thumb obtained from assuming Gaussian density and

unit variance is h = n−
1

4+d , where n is the number of observations and d is the dimension
(Härdle, 2004). This rule of thumb should be regarded as a starting value, not a definitive
answer. For example, cross-validation is a common method for selecting bandwidths. For
more information, the interested reader is referred to the texts by Silverman (1986) or
Simonoff (1996). For the purpose of the algorithm to follow, we need only a constant
bandwidth which is sufficiently small.

Given a set of n ordered pairs (xi, yi) and a bandwidth h, the Nadaraya-Watson esti-
mator is

m̂h(x) =

∑n
i=1Kh(x− xi)yi∑n
i=1Kh(x− xi)

.

3.2 The Algorithm

We will use the following notation. For n > 0,

• h is a fixed bandwidth.

• γ is a fixed discount factor.

• (sn, an) is the state-action pair at the beginning of iteration n.

• rn is the sample reward observed at iteration n.

• un is the state that is transitioned to during iteration n.

• yh,n := rn + γ supa∈A Q̂h,n−1(un, a), where Q̂h,n−1(un, a) is defined below in (2).

Here is a description of the algorithm.

1. Set the initial Q-value estimate function to be zero everywhere. Q̂h,0(s, a) = 0 for all
(s, a) ∈ S ×A. Choose some initial state s1.

2. For n > 0, pick an action an ε-greedily (or according to some other exploration
method). Define a function αh,n : S ×A→ [0, 1] by

αh,n(s, a) =


Kh((s, a)− (sn, an))∑n
j=1Kh((s, a)− (sj , aj))

if
∑n

j=1Kh((s, a)− (sj , aj)) 6= 0

0 if
∑n

j=1Kh((s, a)− (sj , aj)) = 0

(1)
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and use this to update the Q-value estimate function by setting

Q̂h,n(s, a) := (1− αh,n(s, a))Q̂h,n−1(s, a) + αh,n(s, a)yh,n. (2)

Set sn+1 = un.

Note that as a result of Equation (2), one may show by induction that

Q̂h,n(s, a) =


∑n

j=1Kh((s, a)− (sj , aj))yh,j∑n
j=1Kh((s, a)− (sj , aj))

if
∑n

j=1Kh((s, a)− (sj , aj)) 6= 0

Q̂h,0(s, a) if
∑n

j=1Kh((s, a)− (sj , aj)) = 0.
(3)

Equation (2) is how the updates are conceptually performed and has a form familiar to
classic Q-learning, but Equation (3) is how all calculations are made. The estimates
produced by this algorithm are essentially kernel-smoothed averages of the terms yh,n :=

rn + γ supa∈A Q̂h,n−1(un, a).

Algorithm 1 Pseudocode for theoretical algorithm

Initialize h = bandwidth value, m = maximum iterations,
γ = discount factor, ε = exploration parameter
Initialize Q̂h,0(s, a) = 0 ∀(s, a)
Set initial state s1

for i=1:m do
r = Uniform(0,1) random value
if r < ε then ai = random action
else

ai = supa∈A Q̂h,n−1(si, a)
end if
ui = next state, ri = reward
yh,i := ri + γ supa∈A Q̂h,i−1(ui, a)

Q̂h,i(s, a) =
∑i

j=1Kh((s,a)−(sj ,aj))yh,j∑i
j=1Kh((s,a)−(sj ,aj))

si+1 = ui
end for

4. Statement of Theorem

Assume the following conditions hold:

AI. The state-action pair to be utilized at the beginning of an iteration (regarded as a
random variable due to exploration and random transitions) has a density f : S×A→
R which is positive everywhere and has uniformly continuous and bounded second
derivatives.

AII. Rewards are bounded. There exists a C0 < ∞ such that for any (s, a) ∈ S × A,
R(s, a) < C0.
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AIII. The expected values of the rewards are Lipschitz continuous across the state-action
space. There exists a Cr such that for all (s1, a1), (s2, a2) ∈ S ×A,

|E[R(s1, a1)]− E[R(s2, a2)]| ≤ Cr||(s1, a1)− (s2, a2)||.

Also, E[R(s, a)]f(s, a) has uniformly continuous and bounded second derivatives.

AIV. Transition probabilities converge weakly and Lipschitz continuously. Let g : S → R be
continuous and bounded. There exists a Ct such that for any (s1, a1), (s2, a2) ∈ S×A,∣∣∣∣∫ g(u)P (s1, du, a1)−

∫
g(u)P (s2, du, a2)

∣∣∣∣ ≤ Ct||g(u)||∞||(s1, a1)− (s2, a2)||

Also,
∫
g(u)P (s, du, a)f(s, a) has uniformly continuous and bounded second deriva-

tives.

Theorem 1. Let assumptions AI. - AIV. and kernel conditions KI. - KIV. hold and
Q̂h,n(s, a) be defined by (2). With probability one, for any ε > 0, there exists h = h(ε)
and N = N(h, ε) such that for n > N

sup
(s,a)∈S×A

|Q̂h,n(s, a)−Q∗(s, a)| < ε. (4)

5. Lemmas and Proof of Theorem

The proof strategy is inspired by Watkins’ original proof over finite spaces. For the interested
reader, we suggest the technical report (Watkins & Dayan, 1992) that followed Watkins’
thesis. This method is different from the later approaches to proving convergence of Q-
learning, such as those of Tsitsiklis (1994) and Jaakkola et al. (1993), which are variations
and extensions of stochastic approximation theory. Although Watkins’ method does rely
on a stochastic approximation result in a minor way, the key intuition is how Q-learning
imitates model estimation.

One of the strengths of Q-learning is that it does not require a model of the system to be
estimated or maintained. However, the learned Q-values are the optimal values for a model
that can be constructed by appropriately assigning weights to the observed rewards and
transitions. Specifically, if the learning parameters used to update value estimates are used
to weight reward and transition observations to carefully define an artificial process, then
the learned Q-value estimates will be optimal for this artificial process. As more rewards
and transitions are observed, the artificial process becomes more similar to the real process,
so the optimal Q-values for the two processes become more similar, thus the learned values
converge to the optimal values for the real process. Watkins called such an artificial process
the Action Replay Process.

The proof strategy can be summarized in the following five steps:

1. For a fixed bandwidth value, define an auxiliary Action Replay Process (ARP). This
artificial process is purely a proof device.

2. Show that the function Q̂h,n(s, a) is the optimal Q-value function for the ARP with
corresponding bandwidth.
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3. Show that for sufficiently small bandwidths, the rewards and transition probabilities
from the ARP become arbitrarily close to those of the original process.

4. Show that two MDPs with similar rewards and transition probabilities have similar
optimal Q-values.

5. The optimal values of the ARP converge to the optimal values of the original process.
Hence by step 2, the Q-values learned by the algorithm converge to the optimal Q-
values.

5.1 Construction of the ARP (Action Replay Process)

Now the ARP will be defined. It is a finite length, terminating MDP. Pick a bandwidth
value h, and keep it fixed throughout the discussion that follows. We suggest thinking of
the ARP as a card game. Suppose that one is preparing to run the algorithm from Section
3. Also suppose that we have a deck of index cards. For each iteration of the algorithm,
we will write the following values on a card: < sk, ak, uk, rk, Q̂h,k(·), αh,k(·) >. These values
are regarded as random variables depending on the random states, actions, and rewards
from the original process rather than fixed values from a particular sample trajectory. We
also have a card on which the initial Q̂h,0(·) is written. With this card on bottom, stack all
cards in ascending order by iteration as shown in Figure 1.

< Q̂h,0(·) > Level 0

< s1, a1, u1, r1, Q̂h,1(·), αh,1(·) > Level 1

< s2, a2, u2, r2, Q̂h,2(·), αh,2(·) > Level 2

...

...

< sn−1, an−1, un−1, rn−1, Q̂h,n−1(·), αh,n−1(·) > Level n− 1

< sn, an, un, rn, Q̂h,n(·), αh,n(·) > Level n

Figure 1: The ARP envisioned as a stack of cards.

States A state of the ARP is a 2-tuple < s, n > consisting of a state from the original state
space s ∈ S and a non-negative level n which tells us which card is to be inspected.
All cards above level n are ignored, leaving us with a finite stack of cards. Any state
with level 0 is a terminal, absorbing state.

Actions The actions for the ARP are the same as the actions from the real process, a ∈ A.
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Transitions and Rewards Suppose the ARP is in state < s, n > and action a is chosen.
Inspect the card corresponding to level n. With probability αh,n(s, a), we accept this
card and receive reward rn and transition to state < un, n − 1 >. Otherwise, ignore
that card and inspect the card at level n − 1. With probability αh,n−1(s, a), accept
this card, receive reward rn−1 and transition to state < un−1, n − 2 >. Otherwise,
continue inspecting cards until one is accepted, where the probability of accepting the
card at level k is αh,k(s, a). If the bottom card corresponding to level 0 is reached
(that is, the state is < s, 0 > and action a is being utilized) then a reward Qh,0(s, a)
is received and the ARP terminates.

As the ARP is an MDP, it has optimal Q-values. Let Q∗h(< s, n >, a) be the function
giving the optimal Q-values for state < s, n > and action a for the ARP with bandwidth h.

5.2 Lemmas

The optimal Q-values at level n for the ARP corresponding to bandwidth h are the learned
Q-value estimates for the original process at iteration n as defined by (2).

Lemma 1.
Q∗h(< s, n >, a) = Q̂h,n(s, a),∀(s, a) ∈ S ×A,∀n ≥ 0.

Proof. Proceed by induction on the level n of the ARP. Recall that if the ARP is in state
< s, 0 > and action a is used, then the reward is Q̂h,0(s, a) and the process terminates.
Thus

Q∗h(< s, 0 >, a) = Q̂h,0(s, a)

which proves the n = 0 case.
Now suppose by way of induction that Q∗h(< s, n− 1 >, a) = Q̂h,n−1(s, a) for all states

and actions. Let the ARP be in state < s, n > with action a utilized. Recall that by
construction of the ARP,

• with probability αh,n(s, a) we receive reward rn and transition to < un, n − 1 >.
Otherwise,

• with probability 1− αh,n(s, a) that card is thrown away and the situation is identical
to utilizing a in state < s, n− 1 >.

Then by conditioning on whether the level n card is accepted or not, we have by the
induction hypothesis and (2):

Q∗h(< s, n >, a) = (1− αh,n(s, a))Q∗h(< s, n− 1 >, a)

+ αh,n(s, a)(rn + γ sup
b∈A

Q∗h(< un, n− 1 >, b))

= (1− αh,n(s, a))Q̂h,n−1(s, a)

+ αh,n(s, a)(rn + γ sup
b∈A

Q̂h,n−1(un, b))

= (1− αh,n(s, a))Q̂h,n−1(s, a) + αh,n(s, a)yh,n

= Q̂h,n(s, a).
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The following lemma, which is needed in the proof of Lemma 3, shows that
∑n

k=1 αh,k(s, a)
grows uniformly across the state-action space.

Lemma 2. If assumption AI. holds, then with probability one,

lim
n→∞

inf
(s,a)∈S×A

n∑
k=1

αh,k(s, a)→∞. (5)

Proof. S × A is compact, so it can be covered by a finite number of disjoint sets of fixed
positive diameter with each set having positive Lebesgue measure. Choose the diameter
such that u, u′ in the same set implies Kh(u−u′) > δ > 0. Suppose that J sets are needed,
and denote them by B1, B2, ..., BJ . Set T0 = 0 and for k > 0, let Tk denote the first time at
which each set has been visited at least k times. Note that by AI. and the Borel-Cantelli
Lemma, P (Tk < ∞) = 1. Fix (s, a) ∈ S × A, and letting CK denote the bound on the
kernel values,

Tn∑
k=1

αh,k(s, a) =
n∑
k=1

Tk∑
j=Tk−1+1

αh,j(s, a) ≥
n∑
k=1

δ

CKTk
=

δ

CK

n∑
k=1

T−1
k .

The terms Tk, k > 0, are not independent but can be bounded by random variables which
are. Set W1 = T1. Ignoring all previous visits to sets prior to and at time T1, set W2 to be
the number of steps from T1 until each Bj is visited again. It is obvious that W2 ≥ T2−T1.
Likewise, for k > 1, set Wk to be the number of steps from Tk−1 until each set is visited
again, so that Wk ≥ Tk−Tk−1. Notice that W1,W2, ... are i.i.d. random variables. Applying
these inequalities, one may write

T−1
1 = W−1

1

T−1
2 ≥ (W1 +W2)−1

...

T−1
k ≥

 k∑
j=1

Wj

−1

.

We now have

Tn∑
k=1

αh,k(s, a) ≥ δ

CK

n∑
k=1

 k∑
j=1

Wj

−1

.

It suffices to show that
∑n

k=1

(∑k
j=1Wj

)−1
goes to infinity with probability one. Set

Sn =
∑n

k=1Wk. Then
∑n

k=1
1
Sk

=
∑n

k=1
1
k
k
Sk

. Since k
Sk
→ 1

E[W1] > 0,
∑n

k=1
1
k
k
Sk
→∞ with

probability one. (s, a) was arbitrary, which proves the result.

The next lemma shows that if one starts the ARP at a sufficiently high level, the
probability of ending below a certain level after a fixed number of actions can be made
arbitrarily small.
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Lemma 3. Let ε > 0, l0 be any level of the ARP, and positive integer n represent the length
of a sequence of actions to be followed. Then there exists a level l > l0 such that if the ARP
starts at a level above l and follows the sequence of n actions, the probability of ending below
level l0 is less than ε.

Proof. Proceed by induction. Consider first the case where n = 1. For m > l0, suppose the
ARP is in state < s,m > and action a utilized. Transitioning to a state with level below l0
means no card at or above level l0 is accepted. The probability of not accepting the card
at level k is 1 − αh,k(s, a), so the probability of accepting none is Πm

k=l0
(1 − αh,k(s, a)). A

well-known inequality from real analysis yields

Πm
k=l0(1− αh,k(s, a)) < e

−
∑m

k=l0
αh,k(s,a)

.

It follows from Lemma 2 that it is possible to choose l1 such that m > l1 implies

inf
(s,a)∈S×A

m∑
k=l0

αh,k(s, a) > − log ε.

Then
P (ending below l0) = Πm

k=l0(1− αh,k(s, a)) < e
−

∑m
k=l0

αh,k(s,a)
< ε.

For a sequence of n actions, there exists l1 such that the probability of ending below
l0 from l1 in one transition is less than ε

2 and by induction there is an l2 such that the
probability of ending below l1 in n − 1 transitions is less than ε

2 . Then if the ARP starts
above level l2,

P (below l0 after n transitions)

=P (below l0 after n transitions|above l1after n− 1 transitions)

∗ P (above l1after n− 1 transitions)

+P (below l0 after n transitions|below l1after n− 1 transitions)

∗ P (below l1after n− 1 transitions)

≤ ε
2
· 1 + 1 · ε

2
= ε.

The next lemma allows one to work with finite sequences of actions rather than infinite
ones with an arbitrarily small error.

Lemma 4. Consider the value of a state s when a specific sequence of n actions (a0, a1, ..., an−1)
is to be followed and the process is then terminated:

E

[
n−1∑
t=0

γtR(st, at)|s0 = s

]
.

Also consider the value of the same state under the same n actions but then followed by an
arbitrary policy π:

E

[
n−1∑
t=0

γtR(st, at) +

∞∑
t=n

γtR(st, π(st))|s0 = s

]
.

The difference of these two values goes to zero as n increases towards infinity.
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Proof. We are interested in the difference

E

[
n−1∑
t=0

γtR(st, at) +
∞∑
t=n

γtR(st, π(st))|s0 = s

]
− E

[
n−1∑
t=0

γtR(st, at)|s0 = s

]
.

The difference is clearly the expectation of the second term in the first expectation. Because
the rewards are bounded by C0, we can use a change of variables v = t− n and write

E

[ ∞∑
t=n

γtR(st, π(st))|s0 = s

]
= E

[ ∞∑
v=0

γv+nR(sv, π(sv))|s0 = s

]

≤ γnE

[ ∞∑
v=0

γv|R(sv, π(sv))||s0 = s

]

≤ γn
∞∑
v=0

γvC0 = γn
C0

1− γ

which goes to zero as n goes to infinity.

The next lemma will consider the reward received from the ARP when in state < s, n >
and action a is utilized. This random quantity depends on the state-actions chosen and
rewards received in the original process, but it also depends on which levels of the ARP
are accepted during state transitions. For the ARP constructed with bandwidth h and
rewards received when in state < s, n > and utilizing action a, let Ê[Rh,n(s, a)] denote an
expectation taken over ARP state transitions, but not over the sequence of state-actions
and rewards from the original process. Note that Ê[Rh,n(s, a)] is not a constant, but a
random quantity defined on the same sample space as the original process.

Similarly, the probability of the ARP transitioning into a state in set T ∈ B(S) is also
a random variable depending on which state-actions are chosen in the original process. For
the ARP constructed with bandwidth h and starting in state < s, n > and utilizing action
a, let P̂h,n(s, T, a) denote the random probability of the ARP transitioning into a state in
set T .

The next lemma shows that for high enough levels, the rewards and transition prob-
abilities of the ARP are close to the rewards and transition probabilities of the original
process.

Lemma 5. If assumptions AI.-AIV. and kernel conditions KI.-KIV. are met, then

a) With probability one, for any ε > 0 there exists an h = h(ε, T ) and N = N(ε, h) such
that if n > N ,

sup
(s,a)∈S×A

∣∣∣Ê[Rh,n(s, a)]− E[R(s, a)]
∣∣∣ < ε.

b) With probability one, for any ε > 0 and g : S → R that is integrable, continuous, and
bounded, there exists a h(ε) and N(ε, h) such that if n > N ,

sup
(s,a)∈S×A

∣∣∣∣∫
S
g(u)P̂h,n(s, du, a)−

∫
S
g(u)P (s, du, a)

∣∣∣∣ < ε.

716



A Continuous Action Q-learning Variant

Proof. Consider the expected reward associated with a state-action (s, a) at level n of the
ARP. Condition on whether the card at level n is accepted. With probability 1−αh,n(s, a)
we do not accept the card, and the expected reward is that of level n− 1. With probability
αh,n(s, a) the level n card is accepted and we receive reward rn. For the special case n = 0,

we are at the lowest level of the ARP and receive reward Q̂h,0(s, a). So the expected rewards
satisfy the recursive relationship

Ê[Rh,0(s, a)] = Q̂h,0(s, a),

Ê[Rh,n(s, a)] = (1− αh,n(s, a))E[Rh,n−1(s, a)] + αh,n(s, a)rn, for n > 0.

Now we show by induction that

Ê[Rh,n(s, a)] =

∑n
j=1Kh((s, a)− (sj , aj))rj∑n
j=1Kh((s, a)− (sj , aj))

when
∑n

j=1Kh((s, a)− (sj , aj)) 6= 0. For the n = 1 case,

Ê[Rh,1(s, a)] = (1− αh,1(s, a))Q̂h,0(s, a) + αh,1r1.

Replace the αh,1(s, a) terms as per the definition in (1).

Ê[Rh,1(s, a)] =

(
1−

∑1
j=1Kh((s, a)− (sj , aj))∑1
j=1Kh((s, a)− (sj , aj))

)
Q̂h,0(s, a) +

∑1
j=1Kh((s, a)− (sj , aj))∑1
j=1Kh((s, a)− (sj , aj))

r1

= r1.

Now assume the induction hypothesis holds for n− 1.

Ê[Rh,n(s, a)] = (1− αh,n(s, a))Ê[Rh,n−1(s, a)] + αh,n(s, a)rn

=

(∑n−1
j=1 Kh((s, a)− (sj , aj))∑n
j=1Kh((s, a)− (sj , aj))

)(∑n−1
j=1 Kh((s, a)− (sj , aj))rj∑n−1
j=1 Kh((s, a)− (sj , aj))

)

+
Kh((s, a)− (sj , aj))∑n
j=1Kh((s, a)− (sj , aj))

rn

=

∑n
j=1Kh((s, a)− (sj , aj))rj∑n
j=1Kh((s, a)− (sj , aj))

.

The expected rewards for the ARP are equivalent to kernel regression estimates. Assump-
tions AI., AII., AIII., and kernel conditions KI.-KIV. meet the technical conditions of
Hansen (2008). See Theorem 9 on page 735. This yields

sup
(s,a)∈S×A

|Ê[Rh,n(s, a)]− E[R(s, a)]| < ε

for sufficiently large n, which proves part a).
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For part b), recall that un denotes the state that is transitioned to at iteration n.
Consider the random variable indicator function for the event that the n-th transition from
the original process is into T ∈ B(S).

1T (un) =

{
1 if un ∈ T
0 if un /∈ T .

Similar to rewards, the transition probabilities for the ARP at level n can be conditioned
on whether the level n card is accepted or not. Assume we are in state-action (s, a). With
probability 1 − αh,n(s, a), we do not accept the card and the probability of transitioning
into T is that of level n − 1. With probability αh,n(s, a) the level n card is accepted and
the value of 1T (un) tells us whether we transition into T or not. Thus we have the relation

P̂h,1(s, T, a) =αh,1(s, a)1T (u1),

P̂h,n(s, T, a) =(1− αh,n(s, a))P̂h,n−1(s, T, a) + αh,n(s, a)1T (un).

Let g : S → R be a simple function, g(u) =
∑m

i=1 ai1Ti(u). We can apply this relation to
the integral of g to find∫
g(u)P̂h,1(s, du, a) =

m∑
i=1

aiP̂h,1(s, Ti, a) =
m∑
i=1

ai1Ti(u1)

= g(u1)

and∫
g(u)P̂h,n(s, du, a) =

m∑
i=1

aiP̂h,1(s, Ti, a)

=

m∑
j=1

ai

[
(1− αh,n(s, a))P̂h,n−1(s, Ti, a) + αh,n−1(s, a)1Ti(un)

]
= (1− αh,n−1(s, a))

∫
g(u)P̂h,n−1(s, du, a) + αh,n(s, a)g(un).

Using a common argument from measure theory, this relation also holds for any integrable
function by approximating with simple functions. The rest of the proof proceeds as in part
a), with assumptions AI., AIV., and kernel conditions KI.-KIV. fulfilling the requirements
of Hansen’s Theorem 9.

Definition. For a given MDP, let Q(s1, < a1, a2, ..., an, t >) denote the expected dis-
counted reward received when the process starts in state s1 and actions a1, a2, ..., an are
utilized consecutively and the process then terminates. Formally

Q(s1, < a1, a2, ..., an, t >) = E

 n∑
j=1

γj−1R(sj , aj)
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where the chance of transitioning to states s2, ..., sn is understood to be governed by
P (sj , ·, aj).

The following lemma shows that state-action values possess a sort of continuity. This
property will be needed to apply Lemma 7 to state-action values.

Lemma 6. If assumptions AII., AIII., and AIV. hold, then for any n, and for any fixed
but arbitrary sequence of actions < a1, a2, ..., an >, the function f : S → R defined by

f(s) = Q(s,< a1, a2, ..., an, t >)

is Lipschitz continuous.

Proof. Consider first the case n = 1. Let s1, s2 ∈ S. Then by AIII.

|Q(s1, < a1, t >)−Q(s2, < a1, t >)|
=|E[R(s1, a1)]− E[R(s2, a1)]| ≤ Cr||(s1, a1)− (s2, a1)||.

Before considering the case n > 1, notice that by assumption AII.

|Q(s,< a1, a2, ..., an, t >)| ≤ E

 n∑
j=1

γj−1|R(sj , aj)|


≤
∞∑
j=1

γj−1C0

=
C0

1− γ
.

Applying AIII. to the difference of means and AIV. to the difference of integrals, we have
for n > 1 and s1, s2 ∈ S

|f(s1)− f(s2)| =|Q(s1, < a1, ..., an, t)−Q(s2, < a1, ..., an, t >)|
≤|E[R(s1, a1)]− E[R(s2, a1)]|

+

∣∣∣∣γ ∫
S
Q(u,< a2, ...an, t >)P (s1, du, a1)

− γ

∫
S
Q(u,< a2, ...an, t >)P (s2, du, a1)

∣∣∣∣
≤Cr||((s1, a1)− (s2, a1))||+ Ct||Q(u,< a2, ...an, t >)||∞||(s1, a1)− (s2, a1)||

≤Cr||((s1, a1)− (s2, a1))||+ Ct
C0

1− γ
||(s1, a1)− (s2, a1)||.

By taking C1 = 2 max{Cr, CtC0
1−γ } and inserting into the last inequality, we have

|f(s1)− f(s2)| ≤ C1||(s1, a1)− (s2, a1)||.

Finally, notice that ||(s1, a1)−(s2, a1)|| = ||s1−s2|| from properties of the Euclidean metric.
We end with

|f(s1)− f(s2)| ≤ C1||s1 − s2||,
which proves the result.
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For the next lemma, suppose one has two MDPs defined on the same state and action
space. For (s, a) ∈ S × A, let R(i)(s, a) and P (i)(s, ·, a) denote the rewards and transition
probabilities of process i for i = 1, 2. The lemma will show that if the expected rewards and
transition probabilities of the processes are sufficiently close, then the expected discounted
reward of a series of actions is also close.

Lemma 7. Suppose the assumptions required for Lemma 6 hold. For any ε > 0 and sequence
of actions of length n, there exists δr(n, ε) and δt(n, ε) such that if g : S → R is continuous
and ||g||∞ ≤ C0

1−γ and the following two conditions hold:

1.

sup
(s,a)∈S×A

∣∣∣E[R(1)(s, a)]− E[R(2)(s, a)]
∣∣∣ < δr(n, ε)

2.

sup
(s,a)∈S×A

∣∣∣∣∫
S
g(u)P (1)(s, du, a)−

∫
S
g(u)P (2)(s, du, a)

∣∣∣∣ < δt(n, ε),

then for any sequence of actions of length n,

|Q(1)(s1, < a1, a2, ..., an, t >)−Q(2)(s1, < a1, a2, ..., an, t >)| < ε.

Proof. We proceed by induction on n, the number of actions to be executed. For n = 1,
take δr(1, ε) = ε.

|Q(1)(s1, < a1, t >)−Q(2)(s1, < a1, t >)| = |E[R(1)(s1, a1)]− E[R(2)(s1, a1)]| < δr = ε.

Now assume the induction hypothesis holds for a sequence of actions of length n−1. Take
δr(n, ε) = min

{
ε
3 , δr(n− 1, ε3)

}
, and δt(n, ε) = min

{
ε
3 , δt(n− 1, ε3)

}
. Then for a sequence

of length n, we can condition on state s2 and write

|Q(1)(s1, < a1, ..., an, t >)−Q(2)(s1, < a1, ..., an, t >)|
≤ |E[R(1)(s1, a1)]− E[R(2)(s1, a1)]| (6)

+ γ

∣∣∣∣∫
S
Q(1)(s2, < a2, ..., an, t >)P (1)(s1, ds2, a1) (7)

−
∫
S
Q(2)(s2, < a2, ..., an, t >)P (2)(s1, ds2, a1)

∣∣∣∣ . (8)
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Add and subtract
∫
S Q

(1)(s2, < a2, ..., an, t >)P (2)(s1, ds2, a1):

|Q(1)(s1, < a1, ..., an, t >)−Q(2)(s1, < a1, ..., an, t >)|
≤|E[R(1)(s1, a1)]− E[R(2)(s1, a1)]|

+

∣∣∣∣∫
S
Q(1)(s2, < a2, ..., an, t >)P (1)(s1, ds2, a1)

−
∫
S
Q(1)(s2, < a2, ..., an, t >)P (2)(s1, ds2, a1)

∣∣∣∣
+

∣∣∣∣∫
S
Q(1)(s2, < a2, ..., an, t >)P (2)(s1, ds2, a1)

−
∫
S
Q(2)(s2, < a2, ..., an, t >)P (2)(s1, ds2, a1)

∣∣∣∣
From Lemma 6 the value function is continuous, so by assumption the first difference

can be made smaller than ε/3 by choice of δr, the second difference made small by choice
of δt, and the third difference made small by the induction hypothesis. Each difference is
less than ε

3 , and the result is proved.

5.3 Proof of Theorem

We are now prepared to prove Theorem 1.

Proof. The terms with subscripts will denote the values of the ARP with bandwidth h. The
terms with no subscripts will refer to the original process. For any policy π, consider the
difference

|Qπh(< s, n >, a)−Qπ(s, a)| (9)

≤ |Qπh(< s, n >, a)−Qh(< s, n >,< a, π(s2), ..., π(sm), t >)| (10)

+ |Qh(< s, n >,< a, π(s2), ..., π(sm), t >)−Q(s,< a, π(s2), ..., π(sm), t >)| (11)

+ |Q(s,< a, π(s2), ..., π(sm), t >)−Qπ(s, a)| . (12)

By Lemma 4, m can be chosen large enough such that lines (10) and (12) are less than ε
3 .

By Lemma 5, there exists an h and N such that if more than N iterations are run, the
rewards and transition probabilities of the ARP become arbitrarily close to those of the
real process. Furthermore, by Lemma 3 there is a higher level N1 such that if one starts
at a level above N1, the probability of straying below N after performing m actions is less
than (1−γ)ε

12C0
. When above level N , the requirements to apply Lemma 7 are met, and one

can make line (11) less than 2C0ε
12C0−(1−γ)ε . If the ARP does stray below level N , then the

difference is bounded by 2C0
1−γ as mentioned in Lemma 6. Then by conditioning on whether

the ARP strays below level N ,

|Qh(< s, n >,< a, π(s2), ..., π(sm), t >)−Q(s,< a, π(s2), ..., π(sm), t >)|

≤ 2C0

1− γ

(
(1− γ)ε

12C0

)
+

(
2C0ε

12C0 − (1− γ)ε

)(
12C0 − (1− γ)ε

12C0

)
=
ε

3
.
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It follows that
|Qπh(< s, n >, a)−Qπ(s, a)| < ε.

Because the policy π was arbitrary, we can replace it with a policy optimal for the real
process, π∗. Then we know ∣∣∣Qπ∗

h (< s, n >, a)−Q∗(s, a)
∣∣∣ < ε.

Now we claim that π∗ also gives optimal values for the ARP. If it did not, and some other
policy π0 gave higher values, then consider that∣∣Qπ0h (< s, n >, a)−Qπ0(s, a)

∣∣
can be made arbitrarily small, but this would imply Qπ0(s, a) > Qπ

∗
(s, a) which contradicts

the choice of π∗ as an optimal policy. We now have

|Q∗h(< s, n >, a)−Q∗(s, a)| < ε.

But by Lemma 1, Q∗h(< s, n >, a) = Q̂h(s, a). Thus∣∣∣Q̂h,n(s, a)−Q∗(s, a)
∣∣∣ < ε.

(s, a) ∈ S ×A was arbitrary, so the convergence is uniform.

6. Experimental Results

The primary intent of this paper and therefore also this algorithm is to serve as an addition
to the theory of continuous domain reinforcement learning by providing asymptotic conver-
gence results. In this section we explore the practical application of the algorithm and show
that with minor modification it is capable of obtaining a satisfactory solution to a standard
benchmark problem in a reasonable amount of time.

In this section we detail an application to the Mountain Car problem (Moore, 1991).
The state space consists of two variables: the position p of the car, constrained to the
interval [−1, 1] and the velocity v, constrained to [−3, 3]. The action space consists of a
single variable, a force applied to the vehicle along a line tangent to the road with a value in
[−4, 4]. The car starts at the bottom of the hill at a standstill, corresponding to an initial
state of (−.5, 0). The goal is to drive the car to the top of the hill in the positive direction,
i.e., p > 1 while keeping the velocity in bounds. If the goal is reached, a reward of 1 is
experienced and the trial terminates. If the car goes out of bounds (that is, p < −1 or
|v| > 3) then a reward of −1 is received and the trial terminates. In all other states the
reward received is zero. The hill is defined by the expression

H(p) =

p
2 + p if p < 0
p√

1+5p2
if p ≥ 0 .

Figure 2 shows the shape of the hill, the initial position, and the location of the goal.
This problem is non-trivial because the maximum force in the positive direction is not large
enough to move directly to the goal. Instead, the agent must learn to build momentum by
alternating acceleration before trying to move to the goal.
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Figure 2: The hill for the mountain car to climb. The circle represents the initial position,
and the star represents the goal.

6.1 Examination of Assumptions

Assumptions AI.-AIV., while sufficient to ensure convergence, are quite strong. In fact,
there are many standard problems in Reinforcement Learning which do not meet them.
For example, rewards are often of a discontinuous nature, where most states emit zero
reward and crossing a boundary suddenly yields a reward or penalty. The purpose of this
section is to show that the proposed algorithm is somewhat robust. That is, even in the
presence of violated conditions, it can obtain policies adequate for solving the problem at
hand. Specifically, we will see how the Mountain Car problem violates two out of four
assumptions, yet the algorithm still produces a policy which can reach the goal state.

The first assumption is the continuous analogue of classic Q-learning’s requirement that
every state-action pair be visited an infinite number of times. We require the distribution
of (sn, an) to possess a density which is positive and sufficiently smooth. However, given
the dynamics of the Mountain Car, there are areas of the state space which are inaccessible
with the available actions. Consider the state consisting of position p = .9 and velocity
v = −2.9. The position is at the top of the hill near the goal. The maximum acceleration in
the negative direction is not strong enough to produce a negative velocity as large as −2.9
in the space given.

Figure 3 suggests that the density over the state space is adequately smooth, but it
is clear that there are states which have not been visited. However, if the state space is
restricted to the set of accessible states, it seems reasonable that the density is everywhere
positive.

The second assumption requires bounded rewards. The Mountain Car problem clearly
satisfies this.
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Figure 3: A histogram showing frequency of visits across the state space.

The third assumption requires rewards to be Lipschitz continuous. It is common in
Reinforcement Learning for rewards to be zero for most of the state-action space, with a
goal state emitting positive rewards and penalties issued for leaving boundaries or entering
undesirable states. This is exactly the case for the Mountain Car. One could circumvent
this problem by replacing impulse rewards with a low-variance Gaussian density function
centered at the goal state, or use a similar method for smoothing rewards without disrupting
the overall reward structure.

The fourth assumption requires weak convergence of transition probability measures as
states and actions become more similar. Furthermore, that convergence must be uniform
across the state-action space. For a problem with smooth, deterministic transitions such
as Mountain Car, it is easy to verify convergence in distribution for un (the state being
transitioned to) as state-actions (sn, an) converge, which is equivalent to weak convergence
(see Jacod & Protter, 2003, ch. 18).

It should be noted that the strength of the assumptions are directly linked to the desire
for the value function estimate to converge uniformly. Kernel methods can achieve weaker
forms of convergence with much weaker assumptions. For example, Devroye and Györfi
(1985) show that with proper bandwith selection, kernel density estimates can converge
in L1 with no conditions on the density being estimated. This suggests that kernel-based
algorithms may be able to return good policies despite discontinuities in the reward function,
as is the case for the Mountain Car problem. However, this has not been thoroughly
investigated for other problems yet.

6.2 Computational Considerations

An advantage of non-parametric approximators is that they have the potential to represent
any function with arbitrary precision, but at a cost of increased computational load as
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more observations are used. The following paragraphs will discuss a few suggestions for
alleviating this problem.

One idea is to be selective about which observations are kept to use for future calculations
while discarding the rest. For example, consider that before a boundary is reached for the
first time, all rewards received are equal to zero, which is the initialized function value.
Recording these observations will slow down future value function computations but does
not add to the knowledge of the system. Suppose that when in state-action (s, a), reward
rn is received and the next state is un. One may choose to discard this experience if

|rn + γ sup
b∈A

Q̂h,n−1(un, b)− Q̂h,n−1(s, a)| < δ

for some tolerance δ. Only keeping experiences with the potential to improve the value
function estimate ensures the algorithm learns efficiently.

Another idea is to, at some point, begin discarding old observations as new ones are
recorded to keep a fixed number in memory. Consider that for terms rn+γ supb∈A Q̂h,n−1(un, b)

calculated early, the value Q̂h,n−1(un, b) is not yet calculated with enough data to give a
good estimate. Dropping old values in favor of new ones serves a double purpose of cap-
ping the increasing computational load and speeding convergence of value estimates. Care
should be taken so that no region of the state-action space is left without observations for
performing kernel regression.

A third option, and the approach taken in this example, is to “seed” the algorithm
with a fixed number of randomly-generated episodes which have reached the goal before
beginning the standard ε-greedy exploration strategy. Exploration episodes are generated
using random action selection. Episodes which reach a penalty state or fail to find the goal
within 500 iterations are discarded, while successful episodes are passed to the algorithm.
After 20 such episodes, the algorithm chooses random actions with probability ε and optimal
(based on current knowledge) actions otherwise. At this point all iterations are passed to
the learning algorithm.

As mentioned in the introduction, taking a supremum over all possible actions for a
given state is, in general, a difficult problem. For the Mountain Car problem, which has
only one action variable, a suitable choice for a kernel function allows for exact solutions.
The Epanechnikov kernel is defined by

Ke(x) =

{
3
4(1− x2) if |x| < 1

0 otherwise
(13)

and is a common choice for kernel regression as it minimizes an approximation of mean
integrated square error (see Silverman, 1986, section 3.3.2 for more details). For the three
dimensional Mountain Car problem, we define the multivariate kernel as the product of
Epanechnikov kernels for each variable. That is, for state-action pairs represented by
(pk, vk, ak), we define

K((p1, v1, a1)− (p2, v2, a2)) = Ke(p1 − p2)Ke(v1 − v2)Ke(a1 − a2)

An advantage of formulating the kernel in this way is that the numerator of the derivative
with respect to the action variable is quadratic in the action variable. Because the Epanech-
nikov kernel is non-zero on a finite interval, the domain of the action variable can be broken
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into a finite number of intervals on which the quadratic coefficients are constant. Thus all
points which are candidate maxima are either a root of one of a finite number of quadratics
or breakpoints between intervals. Using this method, the optimal action can be calculated
relatively efficiently. If the routine finds multiple actions with the same optimal value, ties
are broken randomly. Currently, this strategy works only on problems with one action
variable, though the possibility of extending into higher dimensions is being investigated.

6.3 Results
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Figure 4: The trajectory through the state space as obtained by the final policy.
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Figure 5: Actions chosen from the final policy.
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Implementation was in MATLAB 2012b in Ubuntu 12.04 on hardware with an Intel
Xeon 3.47 gigahertz processor and 24 gigabytes of RAM. 7,500 iterations were recorded
in 858 seconds. Parameter values were bandwidth h = .2, exploration parameter ε = .9,
discount factor γ = .9, and k = 20 successful episodes to initialize with 1.

The policy obtained is near-optimal. Figure 4 shows the trajectory of the car through
the state space. The car begins by accelerating in the negative direction, travels partway
up the hill to the left, then changes to positive acceleration until it reaches the goal. Figure
5 shows action selection over time. The optimal policy will choose actions on the extreme
ends of the action interval, and the learned policy sometimes chooses actions near but not
at the boundary. Figure 6 shows iterations against time. There is an initially surprising
phenomena here. One would expect the number of iterations per second to increase as more
data is collected, but after around 400 iterations the calculations actually speed up. The
reason is that when only a small amount of data is available, the action-selection subroutine
will find many actions with the same maximum value. Each candidate best action is kept
in memory until the tie is randomly broken at the end of the subroutine. As more data
is collected, ties occur less commonly, and the subroutine finishes in less time. For a brief
time, the increase in speed from faster action-selection outpaces the decrease in speed from
accumulating data. Over time, this phenomena vanishes, and the algorithm slows down
once again. Figure 7 shows iterations against time for 25,000 iterations. From this plot it
is clear that the described phenomena is temporary.

Another unexpected occurence involved the optimal bandwidth. Repeating the experi-
ment multiple times with different bandwidths revealed that the best results were obtained
when the algorithm learned with a bandwidth of .2 but used a smaller bandwidth, .07, when
building the final policy. Early trials resulted in a policy that could find the goal but spent
more time than necessary building momentum. Upon investigation it was found that the
value of state-actions corresponding to the initial state were calculated using values in the
initial position but with positive velocity. This caused the policy to use positive acceleration
(the best action when velocity is already positive) rather than negative acceleration (the
best action when velocity is zero) from the initial state. A smaller bandwidth, specifically
.07, avoided this issue. Note that using .07 when the algorithm was in the learning phase
did not yield good results because it did not sufficiently generalize when a small amount
of data was available. This suggests that even though the convergence proof uses a fixed
bandwidth, in practice it is best to decrease the bandwidth as the amount of data increases.

7. Conclusion

This paper has presented a reinforcement learning algorithm for continuous states and ac-
tions which is proven to converge to an optimal solution. Knowledge generalization is based
on Nadaraya-Watson kernel regression. The most similar previous result is that of Ormoneit
and Sen (1999), which uses kernel-smoothing for problems with a continuous state space
and a finite number of actions. The algorithm presented here is different in a few important
ways. First, actions are allowed to be continuous. However, this introduces the burden of
ensuring small changes in actions result in small changes to transition dynamics. Second,
the assumption on the distribution of states is weaker. Ormoneit and Sen’s Assumption

1. For the full source code, see the online appendix associated with this publication.
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Figure 6: Graph of 7,500 iterations completed over time.
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Figure 7: Graph of 25,000 iterations completed over time.

3 requires states to be sampled uniformly from the state space. This has been weakened
in the present paper to requiring the distribution of states to have a positive and smooth
density.

The presented algorithm is sequential in that it updates after each single observation.
The primary reason for considering a sequential rather than batch-mode algorithm is so
Watkins’ proof strategy can be applied as directly as possible. However, for applications, a
batch-mode version possesses many advantages. Informal experiments with the Mountain
Car and Inverted Pendulum problems with a batch-mode implementation have produced
better results in typically a quarter of the amount of time the sequential algorithm requires.
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One of the practical difficulties in implementing the algorithm is that the amount of
computation required increases with each recorded observation. In addition to the ideas
in Section 6, the author has experimented with sparsifying by selecting a grid of M points
{(sj , aj)|j = 1, ...,M} in the state-action space and assigning to each point a value such
that performing kernel regression on those values will yield predictions similar to predictions
obtained using kernel regression on the entire set of observations. Essentially, the idea is to
use the kernel as a radial basis function at fixed locations in the state-action space and learn
the weights for each. Specifically, suppose N transitions have been observed, N ≥M , with
{(si, ai)|i = 1, ...N} and {yh,i := ri + γ supa∈A Q̂h,i−1(ui, a)|i = 1, ..., N} recorded. Define a
matrix XN×M entry-wise by

Xi,j =
Kh((si, ai)− (sj , aj))∑M
j=1Kh((si, ai)− (sj , aj)

and ~YN×1 by Yi = yh,i. Solve for ~β that minimizes ||X~β− ~Y ||2. For a state-action (s, a), de-

fine ~KM×1(s, a) by Kj(s, a) = K((s, a)− (sj , aj)). The value of (s, a) can then be estimated

by ~KT (s, a)~β. For future observations, update ~β as described by Chambers (1971). This
method requires computation that is linear in the number of observations and constant in
storage requirements.

The fourth assumption concerns weak convergence of state transition probability mea-
sures. If the state-action space is separable, it is possible to define a metric on the set of all
transition measures such that convergence in the metric is equivalent to weak convergence.
See, for example, the Prokhorov metric (Billingsley, 1999). Therefore it is possible to restate
assumption four in a more succint manner which is sometimes easier to verify. However,
extra work is then required to derive the properties needed in the convergence proof. The
author has chosen to state assumption four in the manner that simplifies the proof.
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