
Journal of Artificial Intelligence Research 49 (2014) 669-703 Submitted 11/13; published 4/14

Improved Separations of Regular Resolution from Clause
Learning Proof Systems

Maria Luisa Bonet bonet@lsi.upc.edu
Lenguajes y Sistemas Informáticos,
Universidad Politécnica de Cataluña,
Barcelona, Spain

Sam Buss sbuss@math.ucsd.edu
Department of Mathematics,
University of California, San Diego,
La Jolla, CA 92093-0112, USA

Jan Johannsen jan.johannsen@ifi.lmu.de

Institut für Informatik,

Ludwig-Maximilians Universität München,

D-80538 München, Germany

Abstract

This paper studies the relationship between resolution and conflict driven clause learn-
ing (CDCL) without restarts, and refutes some conjectured possible separations. We prove
that the guarded, xor-ified pebbling tautology clauses, which Urquhart proved are hard for
regular resolution, as well as the guarded graph tautology clauses of Alekhnovich, Johann-
sen, Pitassi, and Urquhart have polynomial size pool resolution refutations that use only
input lemmas as learned clauses. For the latter set of clauses, we extend this to prove that
a CDCL search without restarts can refute these clauses in polynomial time, provided it
makes the right choices for decision literals and clause learning. This holds even if the
CDCL search is required to greedily process conflicts arising from unit propagation. This
refutes the conjecture that the guarded graph tautology clauses or the guarded xor-ified
pebbling tautology clauses can be used to separate CDCL without restarts from general
resolution. Together with subsequent results by Buss and Ko�lodziejczyk, this means we lack
any good conjectures about how to establish the exact logical strength of conflict-driven
clause learning without restarts.

1. Introduction

The problem SAT of deciding the satisfiability of propositional CNF formulas is of great the-
oretical and practical interest. Even though SAT is NP-complete, industrial instances with
hundreds of thousands variables are routinely solved by state-of-the-art SAT solvers. Most
of these solvers use conflict-driven clause learning (CDCL) based on the work of Marques-
Silva and Sakallah (1999). These CDCL solvers use the DPLL (Davis-Putnam-Logemann-
Loveland) search procedure with clause learning, extended with additional techniques such
as fast backtracking, restarts, and variable selection heuristics.

c©2014 AI Access Foundation. All rights reserved.



Bonet, Buss, & Johannsen

Without clause learning, the DPLL procedure is equivalent to tree-like resolution. With
the addition of clause learning,1 CDCL becomes considerably more powerful. In fact, CDCL
together with unlimited restarts is capable of polynomially simulating general resolution
proofs (Pipatsrisawat & Darwiche, 2011). Without restarts, CDCL is known to polynomially
simulate regular resolution (Buss, Hoffmann, & Johannsen, 2008). Furthermore, general
resolution is known to be strictly stronger than regular resolution (Alekhnovich, Johannsen,
Pitassi, & Urquhart, 2007). However, the exact power of CDCL without restarts is unknown.
This question is interesting not just because CDCL without restarts is a core search method
for most SAT aolvers, but also because a better understanding of the power of CDCL may
lead to a better understanding of the practical performance of SAT solvers.

Alekhnovich et al. (2007) and Urquhart (2011) gave three examples of unsatisfiable sets
of clauses that require exponentially longer regular resolution refutations than (general)
resolution refutations. In view of the fact that CDCL without restarts lies between regu-
lar resolution and resolution, these three examples were conjecturally good candidates for
showing that CDCL without restarts cannot polynomially simulate general resolution. The
present paper refutes these conjectures for two of these examples; namely, we prove that
CDCL without restarts can give polynomial size refutations of the guarded graph tautolo-
gies clauses of Alekhnovich et al. and the guarded xor-ified pebbling tautologies clauses of
Urquhart, provided the CDCL search makes optimal choices for decision literals and for
learning clauses and forgetting learned clauses. For the former tautology, we further show
that the CDCL search can be required to be greedy and never ignore contradictions that
can be found by unit propagation. It follows that those two tautologies do not give a su-
perpolynomial separation of resolution refutations from CDCL refutations without restarts.
Buss and Ko�lodziejczyk (2012) subsequently proved a similar result for the Stone tautolo-
gies, which Alekhnovich et al. proved give an exponential separation of regular resolution
and resolution. Thus, there are presently no conjectured examples of tautologies that would
provide an exponential separation between the power of CDCL without restarts and the
power of resolution. On the other hand, it looks very difficult to prove that CDCL without
restarts can polynomially simulate resolution. We consequently lack good conjectures about
how to characterize the exact strength of CDCL without restarts.

Beame, Kautz, and Sabharwal (2004) gave the first theoretical analysis of CDCL. Among
other things, they noted that CDCL with restarts simulates general resolution. Their con-
struction, however, was rather unnatural as it requires the CDCL algorithm to ignore some
contradictions. This situation was rectified by Pipatsrisawat and Darwiche (2011), who
showed that CDCL solvers with restarts which use unit propagation and never ignore contra-
dictions can also simulate resolution. Their proof was based on the technique of absorption
that was first defined by Atserias, Fichte, and Thurley (2011).

Beame et al. (2004) also studied CDCL without restarts. Using “proof trace extensions”,
they showed that CDCL without restarts is strictly stronger than any “natural” proof
system strictly weaker than resolution. A natural proof system is one in which proofs do
not increase in length superpolynomially when variables are restricted to constants; natural

1. In this paper, we use “CDCL” as a synonym for “DPLL with clause learning”. When we discuss whether
CDCL without restarts can polynomially simulate resolution, we mean whether the simulation is possible
with the correct choices for decision literals and learned clauses.

670



Separations of Regular Resolution

proof systems include systems such as tree-like and regular resolution. The proof trace
method changes the formulas by introducing extraneous variables and clauses, which have
the effect of giving CDCL more freedom in choosing decision variables for branching.

Buss et al. (2008) and Hertel, Bacchus, Pitassi, and Van Gelder (2008) gave improved
versions of the proof trace extension method so that the extraneous variables depend only
on the set of clauses being refuted and not on the resolution refutation of the clauses. The
drawback remains, however, that the proof trace extension method gives contrived sets of
clauses and contrived resolution refutations, and consequently does not give much insight
into the power of CDCL.

There have been two approaches to formalizing CDCL without restarts as a static proof
system rather than as a proof search algorithm. The first is pool resolution with a degenerate
resolution inference, due to Van Gelder (2005) and studied further by Hertel et al. (2008).
Pool resolution requires proofs to have a depth-first regular traversal similarly to the search
space of a DPLL algorithm. Degenerate resolution allows resolution inferences in which one
or both of the hypotheses may be lacking occurrences of the resolution literal. (Detailed
definitions are given in Section 2.) Van Gelder argued that pool resolution with degenerate
resolution inferences simulates a wide range of CDCL algorithms without restarts. He
also gave a proof, using techniques of Alekhnovich et al. (2007), that pool resolution with
degenerate inferences is stronger than regular resolution, using extraneous variables similar
to proof trace extensions.

The second approach is due to Buss et al. (2008) who introduced a different degen-
erate resolution rule called w-resolution, and a proof system, called regWRTI, based on
w-resolution and clause learning of “input lemmas”. They proved that regWRTI exactly
captures non-greedy CDCL without restarts. As discussed below, “non-greedy” means that
contradictions may need to be ignored by the CDCL search.

It remains open whether any of CDCL without restarts, pool resolution (with or without
degenerate inferences), or the regWRTI proof system can polynomially simulate general res-
olution. One approach to answering these questions is to try to separate pool resolution or
regWRTI from general resolution. However, the best so-far obtained separations from reso-
lution apply only to the weaker system of regular resolution, based on work of Alekhnovich
et al. (2007) and Urquhart (2011) giving exponential separations between regular resolution
and general resolution. Alekhnovich et al. proved their exponential separation of regular
resolution and resolution for two families of tautologies, variants of the graph tautology
clauses GT′ and the “Stone” pebbling tautology clauses. Urquhart subsequently gave a
related separation using a different set of pebbling tautology clauses which he denoted de-
noted Πi.

2 The present paper calls the GT′ clauses the guarded graph tautology clauses, and
denotes them GGT instead of GT′; their definition is given in Section 4. Section 3 defines
the guarded xor-ified pebbling tautology clauses GPebk⊕(G), which are essentially the same
as the clauses Πi.

An obvious question is whether pool resolution or regWRTI has polynomial size refu-
tations of the GGT, GPebk⊕, or Stone clauses. The present paper resolves the first two
questions by showing that both pool resolution and regRTI do indeed have polynomial size

2. Huang and Yu (1987) also gave a separation of regular resolution and general resolution, but only for a
single set of clauses. Goerdt (1993) gave a quasipolynomial separation of regular resolution and general
resolution.

671



Bonet, Buss, & Johannsen

refutations of the GGT and GPebk⊕ clauses. The refutations avoid the use of extraneous
variables in the style of proof trace extensions; furthermore, they use only the traditional
resolution rule and do not require degenerate resolution inferences or w-resolution inferences.
In addition, we use only learning of input clauses; thus, our refutations are also regWRTI
refutations (and in fact regRTI refutations) in the terminology of Buss et al. (2008). As
a corollary of the characterization of regWRTI by Buss et al., GGT and GPebk⊕ have
polynomial size refutations that can be found by CDCL without restarts.

The Stone clauses have recently been shown to also have regRTI refutations by Buss and
Ko�lodziejczyk (2012); although they use a rather different method than the present paper.
Thus, none of the three principles separate CDCL without restarts from general resolution.
It is natural to speculate that perhaps pool resolution, regWRTI, or CDCL without restarts
can simulate general resolution. However, it is hard to be optimistic that such simulations
exist, as we have been unable to extend our methods or those of Buss and Ko�lodziejczyk to
give a polynomial simulation of general resolution by CDCL without restarts.

Our results are proved by giving regRTI refutations and then invoking a result of Buss
et al. (2008, Thm. 5.6) which states that a regWRTI refutation of size n of a set Γ of clauses
can be translated into a CDCL refutation that does not use restarts and has runtime poly-
nomially bounded by n. The mentioned theorem of Buss et al. applies to CDCL algorithms
that can learn clauses using the framework of Marques-Silva and Sakallah (1999) (see also
Beame et al., 2004), but does make some important assumptions. The first assumption is
that the CDCL algorithm makes optimal choices for decision literals and for learned clauses;
the second assumption is that the CDCL algorithm may be non-greedy.

Informally, the fact that the CDCL search must make optimal choices for decision literals
and learned clauses means that Buss et al. (2008) prove the equivalence of regWRTI with
nondeterministic CDCL search without restarts. This assumption of nondeterminism is
probably unavoidable in light of the conditional non-automatizability of resolution proved
by Alekhnovich and Razborov (2001). However, it is a very reasonable assumption for
characterizing CDCL search in terms of a formal proof system. Furthermore, lower bounds
on the sizes of regWRTI refutations will imply lower bounds on the runtimes of CDCL
without restarts.

A CDCL search is called non-greedy if it is allowed to ignore contradictions while contin-
uing to assign further decision literals. Implemented CDCL algorithms are always greedy;
namely, they learn conflicts and backtrack whenever possible; and it is probably a rare
event that non-greedy CDCL algorithms would consistently outperform greedy algorithms,
at least in practical applications. (However, this is an open question.) The upper bounds
for CDCL without restarts obtained via upper bounds on regWRTI refutations potentially
give only non-greedy CDCL searches. For the guarded graph tautologies, however, we prove
more, namely that greedy and unit propagating CDCL without restarts can give polynomial
size refutations of the guarded graph tautology clauses provided it makes optimal choices
for decision literals and for learning and forgetting clauses.

We conjecture that the guarded xor-ified pebbling tautologies GPebk⊕ can also be re-
futed by polynomial size greedy and unit propagating CDCL without restarts. Preliminary
investigations reveal no obstacle; however, the technical details are quite involved, and due
to the length of the present paper, we have not carried out the complete construction. Each
tautology seems to require a separate proof. Indeed, it is open whether greedy and unit

672



Separations of Regular Resolution

propagating CDCL without restarts can simulate arbitrary regRTI proofs, or even arbitrary
(dag-like) regular resolution refutations.

The outline of the paper is as follows. Section 2 defines resolution, degenerate resolu-
tion, and w-resolution, and then regular, tree, and pool resolution. It concludes with the
definition of greedy and unit propagating. Section 3 defines the GPeb tautologies, includ-
ing “xor-ification” and “guarded” initial clauses. It then proves the existence of polynomial
size pool resolution and regRTI refutations of the guarded xor-ified GPebk⊕ clauses. The
first idea of the proof is to try to follow the regular refutations of the unguarded Pebk⊕

clauses. These refutations cannot be used directly however, since the initial clauses of
Pebk⊕ are “guarded” in the GPebk⊕ clauses and this yields refutations which violate the
regularity/pool property. So, the second idea is that the proof search branches as needed
to learn the initial unguarded Pebk⊕ clauses. This generates additional clauses that must
be proved, and the tricky part is to be sure that exactly the right set of additional clauses
is generated.

Section 4 turns to the graph tautology clauses GTn and their guarded versions, GGTn. It
first defines these clauses and states the main theorems about polynomial size refutations of
the GGTn clauses in pool resolution and regRTI. Section 4.1 defines the notion of bipartite
partial order, and discusses the regular refutations of the graph tautology clauses GTn

as given by St̊almarck (1996) and Bonet and Galesi (2001). Section 4.2 constructs the
pool/regRTI refutations of the GGTn clauses. The intuition for this construction is similar
to the constructions for the pebbling tautologies, but the technical details are much more
involved. Section 5 concludes with an explicit description of a polynomial time greedy and
unit propagating CDCL search without restarts which refutes the GGTn clauses.

This paper is a reworking and an expansion of an extended abstract (Bonet & Buss,
2012a) and an unpublished preprint (Bonet & Buss, 2012b) by the first two authors. These
earlier versions included only the results for the GGT tautologies and did not consider the
GPeb principles.

2. Preliminaries

Propositional formulas are defined over a set of variables and the connectives ∧, ∨ and ¬.
We use the notation x to express the negation ¬x of x. A literal is either a variable x
or a negated variable x. A clause C is a set of literals, interpreted as the disjunction of
its members. The empty clause, �, has truth value False. We shall only use formulas in
conjunctive normal form, CNF; namely, a formula will be a set (conjunction) of clauses.
We often use disjunction (∨), union (∪), and comma (,) interchangeably.

Definition 1. The three forms of resolution defined below take two clauses A and B called
the premises and a literal x called the resolution variable, and produce a new clause C called
the resolvent.

A B
C

In all cases, it is required that x /∈ A and x /∈ B. The different forms of resolution are:

Resolution rule. The hypotheses have the forms A := A′ ∨ x and B := B′ ∨ x. The
resolvent C is A′ ∨B′.

673



Bonet, Buss, & Johannsen

Degenerate resolution rule. (Van Gelder, 2005; Hertel et al., 2008) If x ∈ A and x ∈ B, we
apply the resolution rule to obtain C. If A contains x, and B doesn’t contain x, then
the resolvent C is B. If A doesn’t contain x, and B contains x, then the resolvent C
is A. If neither A nor B contains the literal x or x, then C is the lesser of A or B
according to some tiebreaking ordering of clauses.

w-resolution rule. (Buss et al., 2008) From A and B as above, we infer the clause C :=
(A \ {x}) ∨ (B \ {x}). If the literal x /∈ A (resp., x /∈ B), then it is called a phantom
literal of A (resp., B).

Degenerate and w-resolution combine weakening with resolution. Of course, it is well-
known that adding weakening to resolution does not increase the refutational strength of
resolution; however, the point of allowing degenerate or w-resolution is that the derivation
may “learn” some clauses in the parts of the derivation that would have otherwise been
pruned away if weakening were not allowed. For this reason, degenerate and w-resolution
actually correspond better to DPLL search than resolution does.

Definition 2. A resolution derivation, or proof, of a clause C from a CNF formula F is
a sequence of clauses C1, . . . , Cs such that C = Cs and such that each clause from the
sequence is either a clause from F or is the resolution resolvent of two previous clauses.
If the derived clause, Cs, is the empty clause, this is called a resolution refutation of F .
The more general concepts of degenerate and w-resolution derivations and refutations are
defined similarly. The size of a proof is the number of clauses in the proof.

We use the terms “proof” and “derivation” interchangeably. A derivation is represented
as a directed acyclic graph (dag) on the vertices C1, . . . , Cs, where each clause from F has
out-degree 0, and all the other vertices from C1, . . . , Cs have edges pointing to the two
clauses from which they were derived. The empty clause has in-degree 0.

Resolution is sound and complete in the refutational sense: a CNF formula F has a
refutation if and only if F is unsatisfiable. Furthermore, if there is a derivation of a clause C
from F , then C is a consequence of F ; that is, for every truth assignment σ, if σ satisfies
F then it satisfies C. Conversely, if C is a consequence of F then there is a derivation of
some C ′ ⊆ C from F .

A resolution refutation is regular provided that, along any path in the directed acyclic
graph, each variable is resolved on at most once. A resolution derivation of a clause C
is regular provided that, in addition, no variable appearing in C is used as a resolution
variable in the derivation. A refutation is tree-like if the underlying graph is a tree, so each
occurrence of a clause in the refutation is used at most once as a premise of an inference.

We next define a version of pool resolution, using the conventions of Buss et al. (2008)
who called this “tree-like regular resolution with lemmas” or “regRTL”. The idea is that
clauses obtained previously in the proof can be used freely as learned lemmas. To be able
to talk about clauses previously obtained, we need to define an ordering of clauses.

Definition 3. Given a tree T , the post-order ordering <T of the nodes is defined as follows:
if u is a node of T , v is a node in the subtree rooted at the left child of u, and w is a node
in the subtree rooted at the right child of u, then v <T w <T u.

674



Separations of Regular Resolution

Definition 4. A pool resolution proof (also called a regRTL proof) from a set of initial
clauses F is a resolution proof tree T that fulfills the following conditions: (a) each leaf is
labeled with either a clause of F or a clause (called a “lemma”) that appears earlier in the
tree in the <T ordering; (b) each internal node is labeled with a clause and a literal, and the
clause is obtained by resolution from the clauses labeling the node’s children by resolving
on the given literal; (c) the proof tree is regular; (d) the root is labeled with the conclusion
clause. If the labeling of the root is the empty clause �, the pool resolution proof is a pool
refutation.

The notions of degenerate pool resolution proof and pool w-resolution proof are de-
fined similarly, but allowing degenerate resolution or w-resolution inferences, respectively.
Van Gelder (2005) and Hertel et al. (2008) defined pool resolution to be the degenerate
pool resolution system, so our notion of pool resolution is more restrictive than theirs. Our
definition is equivalent to the one by Buss (2009), however. It is also equivalent to the
system regRTL defined by Buss et al. (2008). Pool w-resolution is the same as the system
regWRTL of Buss et al. It is open whether the systems of pool resolution, degenerate
pool resolution, and pool w-resolution are distinct. The present paper give examples of
superpolynomial separations between these three systems and regular resolution.

A “lemma” in clause (a) of the above definition is called an input lemma if it is derived
by input subderivation, namely by a subderivation in which each inference has at least one
hypothesis which is a member of F or is a lemma. Input resolution is the same as the
“trivial resolution” of Beame et al. (2004), who used it to characterize clauses that can be
learned from conflicts found by unit propagation (see also Chang, 1970). The use of input
subderivations for learning clauses in pool resolution proofs is due to Buss et al. (2008). In
their terminology, a pool resolution proof which uses only input lemmas is called a regRTI
proof. Likewise a regWRTL proof that uses only input lemmas is called a regWRTI proof.
To understand the nomenclature; “reg” stands for “regular”, “W” for “w-resolution”, “RT”
for “resolution tree”, “L” for lemma, and “I” for “input lemma”.

Based on the definition of Van Gelder (2005), Cpool is defined as the “pool” of falsified
literals at clause C. The definition of the “pool” includes the phantom literals used in
w-resolution inferences:

Definition 5. Let R be a tree-like, regular refutation with lemmas using degenerate reso-
lution, w-resolution, or resolution. Let C be a clause in R. Then, the clause Cpool is defined
to equal

Cpool := {x : the literal x occurs, either explicitly or as a phantom literal,

in some clause of R that lies on the branch

from the root node of R up to and including C},
Note that C ⊆ Cpool, and the regularity of R ensures that Cpool contains no contradictory
literals.

3. Guarded, Xor-ified, Pebbling Principles

This section gives polynomial size regRTI refutations for the guarded pebbling tautology
clauses which Urquhart (2011) proved require exponential size regular resolution proofs.

675



Bonet, Buss, & Johannsen

Definition 6. A pointed dag G = (V,E) is a directed acyclic graph with a single sink t
such that every vertex in G has indegree either 0 or 2. The pebbling tautology clauses
Peb(G) for a pointed dag G are the following unsatisfiable set of clauses in the variables xv
for v ∈ V :

(α) xs, for every source s ∈ V ,

(β) xu ∨ xv ∨ xw, for every vertex w with two (immediate) predecessors u and v,

(γ) xt, for t the sink vertex.

The clauses Peb(G) are Horn clauses and hence have a short tree-like resolution refu-
tation of linear size. However, these clauses can be made difficult to refute by using “or-
ification” or “xor-ification” (see Ben-Sasson, Impagliazzo, & Wigderson, 2004; Ben-Sasson,
2009, and Urquhart, 2011). Here we define Urquhart’s (2011) “xor-ification” of a pebbling
tautology clause. Xor-ification, for two variables, is due to Alekhnovich and Razborov as
discussed by Ben-Sasson (2009), and is similar to the “or-ification” used by Ben-Sasson
et al. (2004) which replaces each variable by the disjunction of two variables. The intuition
for xor-ification is that each variable xu is replaced by a set of clauses which expresses the
exclusive or xu,1 ⊕ · · · ⊕ xu,k of k new variables.

Definition 7. Let k > 0, and xu be a variable of Peb(G). Let xu,1, . . . , xu,k be new
variables, and let x1u,j be xu,j, and x−1

u,j be its complement xu,j. Define xk⊕u to be the set of
clauses of the form

xi1u,1 ∨ xi2u,2 ∨ · · · ∨ xiku,k (1)

where an even number of the values ij equal −1 (and the rest equal 1). Dually, define xk⊕u
to be the set of clauses of the form (1) with an odd number of the ij ’s equal to −1. Note
there are 2k−1 clauses in each of xk⊕u and xk⊕u . If C is a clause C = z1 ∨ · · · ∨ z�, each zi a
literal xu or xu, then Ck⊕ is the set of clauses of the form

C1 ∨ C2 ∨ · · · ∨C�,

where each Ci ∈ zk⊕i . There are 2(k−1)� many clauses in Ck⊕.

Definition 8. The xor-ified pebbling tautology clauses Pebk⊕(G) is the set of clauses Ck⊕

for C ∈ Peb(G). If G has n vertices, Pebk⊕(G) has O(23kn) clauses.

Definition 9. Let G be a pointed graph with n vertices and k = k(n) > 0. Let ρ be a
function with domain the set of clauses of Pebk⊕(G) and range the set of variables xu,i of
Pebk⊕(G), such that, for all C, the variable ρ(C) is not used in C. The guarded xor-ified
pebbling tautology clauses, GPebk⊕(G), are the clauses of the form

C ∨ ρ(C) and C ∨ ρ(C)

for C ∈ Pebk⊕(G).

The GPebk⊕(G) clauses depend on the choice of ρ; however, this is suppressed in the
notation. GPebk⊕(G) consists of O(23kn) clauses.

Our definitions of Pebk⊕(G) and GPebk⊕(G) differ somewhat from Urquhart’s, but these
differences are inessential and make no difference to asymptotic proof sizes.

676



Separations of Regular Resolution

Of course, the Pebk⊕(G) clauses are readily derivable from the GPebk⊕(G) clauses by
resolving on the guard literals as given by ρ. There are simple polynomial size regular
resolution refutations of the Pebk⊕(G) clauses; hence there are polynomial size, but not
regular, resolution refutations of the GPebk⊕(G) clauses. Indeed, Urquhart (2011) proved
that there are pointed graphs G with n vertices and values k = k(n) = O(log log n), and
functions ρ, such that regular resolution refutations of the GPebk⊕(G) clauses require size
2Ω(n/((log n)2 log logn)).

Theorem 10. The guarded xor-ified pebbling tautology clauses GPebk⊕(G) have polynomial
size regRTI refutations, and thus polynomial size pool refutations.

We make some simple observations about working with xor-ified clauses before proving
Theorem 10.

Lemma 11. Let u be a vertex in G. There is a tree-like regular refutation of the clauses in
xk⊕u and xk⊕u with 2k − 1 resolution inferences, height k, and 2k leaf clauses. Its resolution
variables are the variables xu,i.

Proof. This is immediate by inspection: the refutation consists of resolving on the liter-
als xu,i successively for i = 1, 2, . . . , k, giving a refutation of height k. The refutation
corresponds to a complete binary decision tree over the k many variables xu,i; the leaf
clauses of the refutation are the members of xk⊕u and xk⊕u .

The refutation of Lemma 11 can be viewed as being the “k⊕-translation” of the proof

xu xu
⊥

The next lemma describes a similar “k⊕-translation” of a proof

C, xu D,xu
C,D

Lemma 12. Let u be a vertex in G, and let C and D be clauses which do not contain
either xu and xu. Then each clause of (C ∨D)k⊕ has a tree-like regular derivation from the
clauses in (C ∨xu)k⊕ and (D∨xu)k⊕ in which the variables used as resolution variables are
exactly the variables xu,i. This derivation has 2k − 1 resolution inferences, height k, and
2k leaf clauses.

Proof. Fix a clause E from (C ∨ D)k⊕; we must describe its derivation from clauses in
(C ∨ xu)k⊕ and (D ∨ xu)k⊕. Let EC be the subclause of E which is from Ck⊕, and let
ED the subclause of E which is from Dk⊕. If C and D have non-empty intersection, EC

and ED are not disjoint; however, in any event, E = EC ∪ ED.

Form the refutation from Lemma 11. Then add EC to every leaf clause from x⊕u , add
ED to every leaf clause from xk⊕u , and add E to every non-leaf clause. This gives the desired
derivation of E.

Lemma 12 lets us further generalize the construction of k⊕-translations of proofs. As a
typical example, the next lemma gives the k⊕-translation of the following derivation:

677



Bonet, Buss, & Johannsen

xu, xv, xw xu
xv, xw xv

xw

Lemma 13. Let w be a vertex of G, and u and v its predecessors. Then, each clause
in xk⊕w has a dag-like regular resolution derivation P from the clauses in xk⊕u , xk⊕v , and
(xu ∨ xv ∨ xw)k⊕. This derivation contains < 22k resolution inferences and resolves on the
literals xu,i and xv,i. In addition, the paths in P that lead to clauses in xk⊕v resolve on
exactly the literals xv,i.

Lemma 13 follows by applying Lemma 12 twice.

It is important to note that the left-to-right order of the leaves of the derivation of
Lemma 13 can be altered by changing the left-to-right order of hypotheses of resolution
inferences. In particular, given any leaf clause D of a refutation P , we can order the
hypotheses of the resolution inferences so that D is the leftmost leaf clause. This will be
useful when D needs to be learned.

Definition 14. G�w is the induced pointed subgraph of G with sink w and containing
those vertices from which the vertex w is reachable. G[w] is the subgraph of G obtained
by making the vertex w a leaf by removing its incoming edges, and then removing those
vertices from which the sink vertex of G is no longer reachable. Note that G[w] is a pointed
dag and has the same sink as G.

The vertex u is an ancestor of w if u 	= w and u ∈ G�w, i.e., if there is a path from
u to w. We call u and v independent ancestors of w provided u, v, and w are distinct
and u ∈ (G�w)[v] and v ∈ (G�w)[u]. This means there is a path from u to w that does
not contain v, and a path from v to w to that does not contain u. We write G[u, v] for
G[u][v] = G[v][u].

More generally, let � ≥ 0 and u1, . . . , u�, w be distinct vertices. We say u1, . . . , u� are
independent ancestors of w, if for every i ≤ �, there is a path from ui to w that does not
contain any uj for j 	= i. We write G[u1, . . . , u�] for G[u1] · · · [u�]. Note that the definition
of G[u1, . . . , u�] is independent of the order of the ui’s.

Since G is a dag, it is possible for u and v to be independent ancestors of w, and also
have u an ancestor of v or vice-versa.

The next lemma states that the polynomial size regular resolution refutations of the
Pebk⊕(G) clauses also apply to subgraphs such as G�w and (G�w)[u1, . . . , u�]. We write
Pebk⊕

αβ (G) to denote the k⊕-translations of Peb(G) clauses of type (α) and (β), omitting

the clauses of type (γ), and similarly for GPebk⊕
αβ (G). To save space, we often write �u

instead of u1, . . . , u�. For instance, in the next lemma, ((G�w)[�u]) \ {�u,w} is shorthand for
((G�w)[u1, . . . , u�]) \ {u1, . . . , u�, w}.

Lemma 15. Let w be a vertex of G. Let � ≥ 0 and u1, . . . u� be independent ancestors of w.
Then each clause of (xu1 ∨ · · · ∨ xu�

∨ xw)k⊕ has a regular resolution derivation from the
clauses Pebk⊕

αβ ((G�w)[�u]). The derivation uses only resolution variables of the form xv,i for

v ∈ ((G�w)[�u]) \ {�u,w}. The derivation is dag-like and has size O(23kn) and height O(kn).

Proof. There is a simple regular dag-like derivation P of xu1∨· · ·∨xu�
∨xw from the clauses

(α) and (β) of (non-xorified) Peb(G), of size O(n) where n is the size of G. P proceeds by

678



Separations of Regular Resolution

visiting vertices v in a depth-first traversal of (G�w)[�u] and deriving some subclause Cv of
xu1 ∨ · · · ∨ xu�

∨ xv: the subclause Cv contains xv and those xui ’s such that there is a path
from ui to v that contains no other uj. For v a leaf distinct from the uj ’s, Cv is just xv
and also a Peb(G) clause of type (α). If v has immediate predecessors v1 and v2, then Cv

is formed by resolving Cv1 and Cv2 against the Peb(G) clause xv1 ∨ xv2 ∨ xv of type (β).
Now let U be some clause in (xu1 ∨ · · · ∨ xu�

)k⊕ and W some clause in xk⊕w . We need
to give a derivation of U ∨W . We claim that a k⊕-translation P k⊕ of P forms the desired
derivation. For this, each clause Cv of P is translated into 2k−1 many clauses CX where
X ∈ xk⊕v . Each CX is a subclause of U ∨X; namely the subclause which omits the literals
xui,j and xui,j of U when xui /∈ Cv. For v1 and v2 the two immediate ancestors of v as
before, and X ∈ xk⊕v , the clause CX is derived in P k⊕ from the 22k−2 many clauses CX1

and CX2 where Xi ∈ (xvi)
k⊕ for i = 1, 2. By Lemma 13, each such subderivation in P k⊕

has height ≤ 2k and size ≤ 22k, and resolves on exactly the variables xv1,j and xv2,j.
The result is that a variable xv,j is resolved on in P k⊕ precisely when xv is resolved on

in P . And, since P has size O(n), P k⊕ has size O(23kn) and height O(kn).

Proof. (of Theorem 10.) We will construct a series of “LR partial refutations”, denoted
R0, R1, R2, . . .; this process eventually terminates with a pool resolution (regRTL) refuta-
tion of GPebk⊕(G). The terminology “LR partial” indicates that the refutation is being
constructed in left-to-right order, with the left part of the refutation properly formed, but
with many of the remaining leaves labeled with “unfinished clauses” instead of with valid
learned clauses or initial clauses from GPebk⊕(G).

An LR partial refutation R is a tree with nodes labeled with clauses that form a correct
regRTI resolution refutation (and thus a correct pool resolution refutation), except at the
unfinished clauses at leaves. Furthermore, it must satisfy the following conditions:

a. Rt is a tree of nodes labeled with clauses. The root is labeled with the empty clause.
Each non-leaf node in Rt has a left child and a right child, and the clauses labeling
these nodes form a valid resolution inference.

b. Each leaf of Rt is either “finished” or “unfinished”. Each finished node leaf L is labeled
with either a clause from GPebk⊕(G) or with a clause that was derived by an input
subderivation of Rt to the left of L in the post-order. The input subderivation may
not contain any unfinished leaves.

c. Each unfinished leaf is labeled with a clause C ∈ Ek⊕ where E is a clause of the form
xu1 ∨· · ·∨xu�

∨xw with � ≥ 0 and u1, . . . , u� independent ancestors of w. Furthermore
Cpool contains no literal xv,i with v ∈ (G�w)[�u] \ {�u,w}.

We introduce a new notational convention to describe (sub)clauses in Rt. For w a vertex

in G, the notation W or W ′ denotes a clause in xk⊕w , and W or W
′

denotes a clause in xk⊕w .

The notation W or W
′
in no way denotes the negation of W or W ′; instead, they are names

of clauses, with the overline meant only to serve as a reminder of the semantic meaning.
The initial LR-partial refutation R0 is formed as follows. Let Q be the refutation

obtained as the k⊕-translation of the inference

xt xt
⊥

679



Bonet, Buss, & Johannsen

as given by Lemma 11, where t is the sink of G. There are 2k leaf clauses of Q: half of
them are labeled with clauses T ∈ xk⊕t and the other half are labeled with clauses T ∈ xk⊕t .
Form R0 from Q by replacing each leaf clause T ∈ xk⊕t with a derivation

T , ρ(T ) T , ρ(T )

T

resolving on the guard literal ρ(T ). These inferences are regular, since ρ(T ) is not an xt,i.

The clauses T , ρ(T ) and T , ρ(T ) are in GPebk⊕(G) and hence are finished clauses. The
other leaf clauses, of the form T ∈ xk⊕t , satisfy condition c. with T = C ∈ xk⊕t and � = 0;
these T ’s are unfinished clauses in R0.

For the inductive step t ≥ 0, the LR partial refutation Rt will be transformed into Rt+1.
The goal is to replace one unfinished leaf in Rt, either by a derivation containing only
finished leaves, or by a derivation which learns one more Pebk⊕(G) clause while adding
only polynomially many more unfinished leaves.

Consider the leftmost unfinished leaf of Rt. By condition c., its clause C will have the
form U1, . . . , U �,W where � ≥ 0, U i ∈ xk⊕ui

for i ≤ �, and W ∈ xk⊕w . By Lemma 15,

there is a dag-like regular refutation P of C from the clauses of Pebk⊕
αβ ((G�w)[�u]). We wish

to convert P (if possible) into a derivation of C from the clauses of GPebk⊕
αβ ((G�w)[�u])

and the already learned clauses of Rt. Consider a particular leaf clause D of P , so D ∈
Pebk⊕

αβ ((G�w)[�u]): each such D needs to be handled in some way that makes P a valid
derivation. There are four cases to consider:

(i) If the clause D is already learned as an input lemma in Rt to the left of C, then D may
be used in P as is.

For the remaining cases, assume D has not been learned as an input lemma.

(ii) Let y = ρ(D). If either y or y is a member of Cpool, then add that literal to D and to
every clause below D until reaching the first clause where it appears. This replaces D
with one of the GPebk⊕

αβ ((G�w)[�u]) clauses D∨y or D∨y. By construction, it preserves
the validity of the resolution inferences of Rt as well as the regularity property.

(iii) Suppose cases (i) and (ii) do not apply and that y is not used in P as a resolution
variable below D. In this case, replace D by a resolution inference deriving D from
D ∨ y and D ∨ y. This preserves the regularity of the derivation. It also makes D a
learned clause.

It is possible that C itself is a Pebk⊕
αβ (G) clause. If so, then C = D and P is the trivial

derivation containing only C, and one of cases (i)-(iii) holds.

If all leaf clauses D of P can be treated by cases (i)-(iii), then we have successfully
transformed P into a (still dag-like) derivation P ′ which satisfies regularity and in which
leaf clauses are from GPebk⊕(G) or already learned as input lemmas in Rt. By a result of
Buss et al. (2008, Thm. 3.3), P ′ can be converted in a regRTI proof P ′′ of the same conclusion
as P , preserving the regularity conditions, and with the size of P ′ bounded by twice the
product of the size of P and the height of P . Therefore, the size of P ′′ is O((23kn)(kn)) =

680



Separations of Regular Resolution

O(k23kn2). Form Rt+1 by replacing the clause C in Rt with the derivation P ′′. Rt+1 satisfies
conditions a.-c., and has one fewer unfinished clauses than Rt.

However, if even one leaf clause D of P fails cases (i)-(iii), then a completely different
construction is used to form Rt+1. Fix some leaf clause D which of P does not fall into cases
(i)-(iii). The unfinished clause C of Rt will be replaced by a small derivation of C which
learns D (in its leftmost inference), and which adds up to O(23k) new unfinished clauses
in Rt+1.

The leaf clause D is the k⊕-translation of an (α) or (β) clause of Pebk⊕(G) and thus
either has the form E ∈ x⊕e for some source e in G or has the form A,B,E where A ∈ xk⊕a ,
B ∈ xk⊕b , and E ∈ xk⊕e for a, b, and e vertices in G�w with a and b the two predecessors
of e in G. Without loss of generality, b is not an ancestor of a in G; otherwise interchange
a and b. There are two cases depending on whether D is E or is A,B,E.

First suppose D is E ∈ xk⊕e for e a source node in G. We claim that e, u1, . . . , u�
are independent ancestors of w. As already remarked, P is not the trivial derivation since
otherwise the cases (i)-(iii) would hold; therefore e is not equal to w. Consequently, E is not
a subclause of the final clause C = U1, . . . U �,W of P . Hence some xe,i is resolved on in P .
Since P was formed using Lemma 15, e therefore cannot equal any ui. Since e ∈ (G�w)[�u],
there must exist a path from e to w that avoids all the nodes ui. Thus, since e is a source
node, the vertices e, u1, . . . , u� are independent ancestors of w.

To form Rt+1, first replace the derivation P by the k⊕-translation of the following:

xe xe, U 1, . . . , U �,W

U1, . . . , U �,W
(2)

Note that (2) contains a blend of variables from Peb(G) (non-xorified) and from Pebk⊕(G)
(xor-ified). However, we can still form its k⊕-translation Q: the leaf clauses of Q are the

2k clauses of the form E′ ∈ xk⊕e and of the form E
′
, U1, . . . , U �,W for E

′ ∈ xk⊕e . By choosing
the appropriate left-to-right order for the hypotheses in Q, we arrange for D = E to be the
leftmost leaf clause of Q. Let y = ρ(D). Then y is not one of the variables xe,i, nor is y
or y in Cpool since condition (ii) does not hold for D. Therefore, the regularity condition is
preserved when we modify Q by replacing D with

D, ρ(D) D, ρ(D)

D
(3)

Form Rt+1 from Rt by replacing C with the modified Q. This causes D to become learned
as an input lemma in Rt+1. The other leaf clauses of Q all satisfy condition c. in Rt+1 and
thus become unfinished clauses of Rt+1: they are all to the right of D. This adds < 2k

new unfinished clauses to Rt+1. The number of inferences in the derivation structure is less
than 2k.

Second suppose D is A,B,E, where a and b are the predecessors of e in G. Suppose for
the moment that e 	= w, and that the nodes u1, . . . , u� are distinct from a and b. By the
same reasoning as in the previous case, e is not equal to any ui. We begin by replacing the

681



Bonet, Buss, & Johannsen

derivation P with the k⊕-translation Q of:

xa, xb, xe Ua, xa
Ua, xb, xe Ub, xb

Ua,Ub, xe Uw, xe,W

U1, . . . , U �,W

(4)

where Ua, Ub and Uw are (possibly empty) sets of literals that form a partition of the set
{U1, . . . , U �}. We must define Ua, Ub, and Uw so that (the k⊕-translation of) the clause
Ua, xa, the clause Ub, xb and the clause Uw, xe,W each fulfill the condition c. in order to
be legitimate “unfinished leaves”.

Since u1, . . . , u� are independent ancestors of w, we can fix paths π1, . . . , π� in G such
that πi is a path from ui to w and such that πi does not contain uj for any j 	= i. Call πi an
“a-path” if it contains the node a. Call πi a “b-path if it contains b but does not contain a.
Finally, call πi a “w-path” if it contains neither a nor b. Then, define Ua to be the set of
Ui’s such that πi is an “a-path. Likewise, let Ub (respectively, Uw) be the set of Ui’s such
that πi is a b-path (respectively a w-path). Clearly, Ua, Ub and Uw form a partition of
{U1, . . . , U�}. Also, the ui’s for Ui in Ua form a set of independent ancestors of a, so Ua, xa
satisfies condition c. Likewise, the clauses Ub, xb and Uw, xe,W also satisfy condition c. To
prove the latter, note that any path from ui to w that contains e must contain at least one
of a or b.

The k⊕-translation Q of (4) has D as its leftmost leaf clause. Let y = ρ(D). Then y
is not one of the variables xa,i, xb,i, xe,i, nor is y or y in Cpool since condition (ii) does not
hold for D. Therefore, the regularity condition is preserved when we modify Q by replacing
D with (3). Form Rt+1 from Rt by replacing C with the modified Q. This causes D to
become learned as an input lemma in Rt+1. As previously argued, the other leaf clauses
of Q have become valid unfinished clauses that satisfy condition c. Rt+1 gains < 23k new
inferences, and less than 3 · 2k new unfinished clauses.

We still have to consider the cases where u1, . . . , u�, a and b are not distinct. There
are 2� (very similar) cases where only one of the ui’s is in {a, b}. For instance, suppose
that u1 = a and no ui is equal to b. We claim that A is the same clause as U1. To prove
this, note that if A is different from U1, then there is a literal xu1,j or xu1,j appearing in A
which appears in negated form xu1,j or xu1,j (respectively) in U1. This implies that the
derivation P uses xu1,j as a resolution variable, contradicting the fact that P was formed
via Lemma 15. With A = U1, we form Q as the k⊕-translation of

U1, xb, xe Ub, xb

Ub, U 1, xe Uw, xe,W

U1, . . . , U �,W

Here Ub and Uw are defined as above (and Ua equals {U1}). Order Q so that D is its
leftmost leaf clause, and then form Rt+1 as in the previous paragraph.

The case where there are i, j ≤ � and i 	= j, such that ui = a and uj = b, the proof
structure is even simpler: Suppose u1 = a and u2 = b. Similarly to the previous case, A
and B must be the same as U1 and U2, respectively. Then let Q be the k⊕-translation of

U1, U2, xe xe, U 3, . . . , U �,W

U1, . . . , U �,W

682



Separations of Regular Resolution

(so Uw = {U3, . . . , U�}) and proceed as before.
Finally, consider the case w = e. Clearly, each Ui is an ancestor of either a or b.

Therefore, each Ui is in Ua or Ub. The refutation Rt+1 is formed from the proof structure
as in (4), but omitting the last inference.

This concludes the construction of Rt+1 from Rt. The process of constructing Rt’s halts
once there are no remaining unfinished clauses, and yields a final refutation R which is a
valid regRTI refutation of the GPebk⊕(G) clauses.

We need to bound the size of the refutation R. First consider how Rt+1 is formed
from Rt. In cases (i)-(iii), an unfinished leaf is completely handled without adding any
new unfinished leaves. In these cases, at most O(k23kn2) many new clauses are introduced
in Rt+1. In case (iv), a new Pebk⊕(G) clause is learned as an input lemma while adding
only O(3 · 2k) many new unfinished leaves in Rt+1 (and only O(23k) new clauses).

Even though there are exponentially many potential unfinished clauses, the case (iv) con-
struction can occur at most polynomially many times because there are only polynomially
many Pebk⊕(G) clauses to be learned. Indeed, there are only < n23(k−1) many Pebk⊕(G)
clauses. Therefore, at most O(n23(k−1) · 3 · 2k) many distinct unfinished leaf clauses can ap-
pear during the construction of R. Consequently, cases (i)-(iii) occur only this many times.
Therefore, the total number of clauses in R is bounded by O(n23(k−1) · 3 · 2k · k23kn2) =
O(27kn3). Thus the size of R is polynomially bounded by the size of the GPebk⊕(G) clauses;
in fact, it is bounded by a degree three polynomial.

This completes the proof of Theorem 10.

4. Guarded Graph Tautologies

We define various graph tautologies, sometimes also called “ordering principles”. They
use a size parameter n > 1, and variables xi,j with i, j ∈ [n] and i 	= j, where [n] =
{0, 1, 2, . . . , n−1}. A variable xi,j will intuitively represent the condition that i ≺ j with ≺
intended to be a total, linear order. We will thus always adopt the simplifying convention
that xi,j and xj,i are the identical literal, i.e., only the variables xi,j for i < j actually exist,
and xj,i for j < i is just a notation for xi,j, and xj,i stands for xi,j. This identification
makes no essential difference to the complexity of proofs of the tautologies, but it reduces
the number of literals and clauses, and simplifies the definitions. In particular, it means
there are no axioms for the antisymmetry or totality of ≺.

The following GTn clauses are based on the tautologies defined by Krishnamurthy
(1985). These tautologies, or similar ones, have also been studied by St̊almarck (1996),
Bonet and Galesi (2001), Segerlind, Buss, and Impagliazzo (2004), Beckmann and Buss
(2005), Van Gelder (2006), Alekhnovich et al. (2007) and Johannsen (2009).

Definition 16. Let n > 1. Then GTn is the following set of clauses:

(α∅) The clauses
∨

j �=i xj,i, for each value i < n.

(β∅) The transitivity clauses Ti,j,k := xi,j ∨ xj,k ∨ xk,i for all distinct i, j, k in [n].

Note that the clauses Ti,j,k, Tj,k,i and Tk,i,j are identical. For this reason Van Gelder
(2005) uses the name “no triangles” (NT) for a similar principle.

The next definition is due to Alekhnovich et al. (2007), who used the notation GT′
n.

They used particular functions r and s for their lower bound proof, but since our upper

683



Bonet, Buss, & Johannsen

bound proof does not depend on the details of r and s we leave them unspecified. We
require that r(i, j, k) 	= s(i, j, k) and that the set {r(i, j, k), s(i, j, k)} 	⊂ {i, j, k}. In addition,
w.l.o.g., r(i, j, k) = r(j, k, i) = r(k, i, j), and similarly for s.

Definition 17. Let n ≥ 1, and let r(i, j, k) and s(i, j, k) be functions mapping [n]3 to [n]
as above. The guarded graph tautology clauses, GGTn, consist of:

(α∅) The clauses
∨

j �=i xj,i, for each value i < n.

(β′
∅) The guarded transitivity clauses Ti,j,k ∨ xr,s and Ti,j,k ∨ xr,s, for all distinct i, j, k in

[n], where r = r(i, j, k) and s = s(i, j, k).

Note that the GGTn clauses depend on the functions r and s; this is suppressed in the
notation. Our first main result for the guarded graph tautologies is:

Theorem 18. The guarded graph tautology clauses GGTn have polynomial size pool reso-
lution (regRTL) refutations.

The proof of Theorem 18 will construct pool refutations in the form of regular tree-like
refutations with lemmas. A key part of this is learning transitive closure clauses that are
derived using resolution on the guarded transitivity clauses of GGTn. A slightly modified
construction, that uses a result of Buss et al. (2008), gives instead tree-like regular resolution
refutations with input lemmas. This will establish the following:

Theorem 19. The guarded graph tautology clauses GGTn have polynomial size, tree-like
regular resolution refutations with input lemmas (regRTI refutations).

As discussed in the introduction, Theorem 19 and a result of Buss et al. (2008) together
imply the GGTn clauses can be shown unsatisfiable by non-greedy polynomial size CDCL.
This follows via the mentioned theorem of Buss et al. (2008, Thm. 5.6), since the refutations
of GGTn are regRTI, and hence regWRTI, proofs in the sense of Buss et al.. Theorem 31
of Section 5 will improve on this by giving greedy CDCL refutations.

Theorem 19 is strictly stronger than Theorem 18, but we find it convenient to prove
Theorem 18 first.

4.1 Resolution Refutations for Guarded Graph Tautologies

The following theorem is an important ingredient of our upper bound proof.

Theorem 20. (St̊almarck, 1996; Bonet & Galesi, 2001; Van Gelder, 2006) The sets GTn

have regular resolution refutations Pn of polynomial size O(n3).

The proofs of Theorems 18 and 19 use the refutation Pn as a “black box”: the only
property needed is that the Pn’s are regular and polynomial size. Section 5 will need to use
the details of Pn however.

Proof. (Proof sketch for Theorem 20.) For �, k ∈ [n], define the clause Totk,� to be

Totk,� :=
∨

j∈[k+1]\{�}
xj,�,

684



Separations of Regular Resolution

Tot3,3 Tot3,2 Tot3,1 Tot3,0

Tot2,2 Tot2,1 Tot2,0

Tot1,1 Tot1,0

Tot0,0 = �

Figure 1: Main structure of the regular refutation Pn of the GTn clauses, with n = 4.
Inferences that resolve against transitivity clauses Ti,j,k are not shown: the slanted
line from Totk+1,k+1 to Totk,� represents k many resolution inferences against the
clauses T�,i,k+1 for i ∈ [k + 1] \ {�}. Each subderivation with hypotheses Totk,k
and Totk,� and conclusion Totk−1,� is an input derivation.

which expresses the condition that � has a predecessor j ≤ k. Of course, the clauses Totn−1,�,
for � = 0, 1, . . . , n − 1, are the initial clauses (α∅) of GTn. Note that Tot0,0 is the empty
clause.

As pictured in Figure 1, Pn proceeds by deriving Totk,� from Totk+1,k+1 and Totk+1,�

for k = n−2, . . . , 0 and � ≤ k, until deriving the empty clause Tot0,0. The first part of the
derivation of Totk,� resolves Totk+1,k+1 successively against the k many transitivity clauses
T�,i,k+1 for i ∈ [k+ 1]\{�}. By the convention that xi,� and x�,i are the same literal, T�,i,k+1

is the clause xi,�, xi,k+1, xk+1,�. The resolution with T�,i,k+1 uses xi,k+1 as the resolution
literal and has the effect of adding xk+1,� to the clause, and replacing xi,k+1 with xi,�. Thus,
the conclusion of these k resolution steps is

xk+1,� ∨
∨

i∈[k+1]\{�}
xi,�.

One final resolution against Totk+1,� on the literal xk+1,� yields Totk,� as desired. The
regularity of Pn is evident by inspection.

The refutations Pn can be modified to give refutations of GGTn by first deriving each
transitive clause Ti,j,k from the two guarded transitivity clauses of (β′

∅). This however
destroys the regularity property, and as already discussed, no polynomial size regular refu-
tations exist for GGTn (Alekhnovich et al., 2007).

As usual, a partial order ≺ on [n] is an antisymmetric, transitive binary relation on [n].
We will be primarily interested in “bipartite” partial orders, which are partial orders that
do not have any chain of inequalities x ≺ y ≺ z.

Definition 21. A bipartite partial order is a binary relation π on [n] such that the domain
and range of π do not intersect. We write x ≺π y for (x, y) ∈ π. The set of π-minimal
elements is denoted Mπ.

The righthand side of Figure 2 shows an example. The bipartiteness of π arises from the
fact that Mπ and [n] \Mπ partition [n] into two sets. If i ≺π j, then i ∈ Mπ and j /∈ Mπ.

685



Bonet, Buss, & Johannsen

1 2 3 4 5

6 7 8 9

10 11

⇒
1 2 3 4 5

6 7 8 910 11
[n] −Mπ:

Mπ:

Figure 2: Example of a dag (left) and its associated bipartite partial order (right).

In addition, Mπ contains the isolated points of π. It is permitted for ≺ to be the empty
relation, and then Mπ = [n].

A (bipartite) partial order on [n] can also be viewed as a directed acyclic graph (dag)
G = ([n], π); note that [n] is the set of vertices, and π is the set of edges of G. Conversely,
we define a mapping from an arbitrary dag G = ([n], τ) to an associated bipartite partial
order π:

Definition 22. Let G = ([n], τ) be a dag. We write x ≺+
τ y to denote that G contains a

path of length ≥ 1 from x to y. The bipartite partial order π associated with G is defined
by letting x ≺π y hold precisely when x is τ -minimal in G (that is, x has indegree 0) and
x ≺+

τ y.

Note that the definition does not require τ to be transitive. It is easy to check that the
π associated with τ is in fact a bipartite partial order. The intuition is that π retains only
the information about whether i ≺+

τ j for minimal elements i, and forgets the ordering that
τ imposes on non-minimal elements.

We define the graph tautology clauses GTπ,n relative to π as follows.

Definition 23. Let π be a bipartite partial order on [n]. Then GTπ,n contains:

(α) The clauses
∨

j �=i xj,i, for each value i ∈ Mπ.

(β) The transitivity clauses Ti,j,k := xi,j ∨xj,k ∨xk,i for all distinct i, j, k in Mπ. (Vertices
i, j, k′ in Figure 3 show an example.)

(γ) The transitivity clauses Ti,j,k for all distinct i, j, k such that i, j ∈ Mπ and i 	≺π k and
j ≺π k. (As shown in Figure 3.)

The set GTπ,n is satisfiable if π is nonempty. As an example, there is the assignment
that sets xj,i true for some fixed j /∈ Mπ and every i ∈ Mπ, and sets all other variables
false. However, if π is applied as a restriction, then GTπ,n becomes unsatisfiable. That is
to say, there is no assignment which satisfies GTπ,n and is consistent with π. This fact is
proved by the regular derivation Pπ described in the next lemma.

Definition 24. For π a bipartite partial order, the clause (
∨
π) is

(∨
π
)

:= {xi,j : i ≺π j}.

Lemma 25. Let π be a bipartite partial order on [n]. Then there is a regular derivation Pπ

of (
∨
π) from the set GTπ,n.

The only variables resolved on in Pπ are the following: the variables xi,j such that
i, j ∈ Mπ, and the variables xi,k such that k /∈ Mπ, i ∈ Mπ, and i 	≺π k.

686



Separations of Regular Resolution

Mπ:

[n] \Mπ:

i j

k

k′

�1 �2 �3

Figure 3: A bipartite partial order π is pictured, with the ordered pairs of π shown as
directed edges. (For instance, j ≺π k holds.) The set Mπ is the set of minimal
vertices. The nodes i, j, k shown are an example of nodes used for a transitivity
axiom xi,j ∨ xj,k ∨ xk,i of type (γ). The nodes i, j, k′ are an example of the nodes
for a transitivity axiom of type (β).

Lemma 25 implies that if π is the bipartite partial order associated with a dag τ , then
Pπ does not resolve on any literal whose value is set by τ . This is proved by noting that if
i ≺τ j, then j /∈ Mπ.

If π is empty, Mπ = [n] and there are no clauses of type (γ). In this case, GTπ,n

is identical to GTn, and the Pπ of Lemma 25 is the same as the refutation of GTn of
Theorem 20.

Proof. By renumbering the vertices, we can assume w.l.o.g. that Mπ = {0, . . . ,m−1}. For
each k ≥ m, there is at least one value of j such that j ≺π k: let Jk be an arbitrary such
value j. Note Jk < m.

Fix i ∈ Mπ; that is, i < m. Recall that the clause of type (α) in GTπ,n for i is∨
j �=i xj,i. We resolve this clause successively, for each k ≥ m such that i 	≺π k, against the

clauses Ti,Jk,k of type (γ)
xi,Jk ∨ xJk,k ∨ xk,i

using resolution variables xk,i. (Note that Jk 	= i since i 	≺π k.) This yields a clause Totπm−1,i:

∨
k≥m
i�≺πk

xi,Jk ∨
∨
k≥m
i�≺πk

xJk,k ∨
∨
k≥m
i≺πk

xk,i ∨
∨
k<m
k �=i

xk,i.

The first two disjuncts shown above come from the side literals of the clauses Ti,Jk,k; the
last two disjuncts come from the literals in

∨
j �=i xj,i which were not resolved on. Since a

literal xi,Jk is the same literal as xJk,i and since Jk < m, the literals in the first disjunct are
also contained in the fourth disjunct. Thus, eliminating duplicate literals, Totπm−1,i is equal
to the clause

Sπ
i ∨ Totm−1,i :=

∨
k≥m
i�≺πk

xJk,k ∨
∨
k≥m
i≺πk

xk,i ∨
∨
k<m
k �=i

xk,i. (5)

where Sπ
i is defined to equal the first two big disjuncts in the lefthand side of the equation,

and Totm−1,i is the same as before, namely the last big disjunct on the righthand side.
Repeating this process, we obtain derivations of the clauses Totπm−1,i for all i < m. Their

subclauses Totm−1,i are the same as the (α∅) clauses in GTm. Thus, the clauses Totπm−1,i

give all (α∅) clauses of GTm, but with Sπ
i ’s added in as side literals. Moreover, the clauses

of type (β) in GTπ,n are exactly the transitivity clauses of GTm. All these clauses can be

687



Bonet, Buss, & Johannsen

Tot3,3 Tot3,2 Tot3,1 Tot3,0

Totπ3,3 Totπ3,2 Totπ3,1 Totπ3,0

Totπ2,2 Totπ2,1 Totπ2,0

Totπ1,1 Totπ1,0

Totπ0,0 = (
∨
π)

Figure 4: Main structure of the regular derivation Pπ, with m = 4. The initial clauses
are GTm clauses. Inferences that resolve against transitivity clauses Ti,j,k are not
shown: slanted lines and the top row of vertical lines represent multiple resolution
inferences against transitivity clauses.

combined exactly as in the refutation of GTm described in Theorem 20, but carrying along
extra side literals Sπ

i ; namely carrying along literals xJk,k for Jk ≺π k, and xi,k for i ≺π k.
Since the refutation of GTm uses all of its transitivity clauses and since each xJk,k literal is
the same as an xi,k with i ≺π k, this yields a resolution derivation Pπ of the clause

{xi,k : i ≺π k}.

This is the clause (
∨
π) as desired.

The just-constructed derivation Pπ of (
∨
π) has the structure shown in Figure 4: the

clauses Totπk,i are equal to

Totπk,i =

⎧⎨
⎩

Sπ
i ∨ Totk,i if k = m− 1

Sπ
i ∨ Sπ

m−1 ∨ Totk,i if i < k < m− 1∨m−1
j=i Sπ

j ∨ Totk,i if i = k
(6)

To show that Pπ is regular, note that the first parts of Pπ deriving the clauses Totπi,m are
regular by construction, and they use resolution only on variables xk,i with i < m ≤ k, and
i 	≺π k. The remaining part of Pπ is also regular by Theorem 20, and uses resolution only
on variables xi,j with i, j ≤ m.

4.2 Pool and w-Resolution Refutations for GGTn

We now prove Theorem 18, and then indicate the minor changes needed to prove Theo-
rem 19.

Proof. (Theorem 18) We again construct a finite sequence of “LR partial refutations”,
denoted R0, R1, R2, . . .. This terminates after finitely many steps with the desired pool
(regRTL) refutation R of GGTn. Each LR partial refutation Rt will be a correct pool

688



Separations of Regular Resolution

resolution refutation, except possibly for the presence of “unfinished clauses” at leaves.
Unfinished clauses will correspond to bipartite partial orders. Each Rt will satisfy the
following conditions:

a. R is a tree. The root is labeled with the empty clause. Each non-leaf node in R has a
left child and right child; the clause labeling the node is derived by resolution from
the clauses on its two children.

b. For each clause C occurring in R, the set of ordered pairs τ(C) is defined as τ(C) =
{〈i, j〉 : xi,j ∈ Cpool}. In many cases, τ(C) will be a dag, but this is not always true.
For instance, if C is a transitivity axiom, then τ(C) has a 3-cycle and is not a dag.

d. Leaves are either “finished” or “unfinished”. Each finished leaf L is labeled with either a
clause from GGTn or a clause that occurs to the left of L in the post-order traversal
of R.

e. For an unfinished leaf labeled with clause C, the set τ(C) is a dag. Furthermore, letting
π be the bipartite partial order associated with τ(C), the clause C is equal to (

∨
π).

Property e. is particularly crucial and is novel to our construction. As shown below,
each unfinished leaf, labeled with a clause C = (

∨
π), will be replaced by a derivation S.

The derivation S often will be based on Pπ, and thus might be expected to end with exactly
the clause C; however, some of the resolution inferences needed for Pπ might be disallowed
by the regularity property of pool resolution proofs. This can mean that S will instead be
a derivation of a clause C ′ such that C ⊆ C ′ ⊆ Cpool. The condition C ′ ⊆ Cpool is required
because any literal x ∈ C ′ \C will be handled by modifying the refutation R by propagating
x downward in R until reaching a clause that already contains x. Since C ′ ⊆ Cpool, such
a clause exists. The fact that C ′ ⊇ C implies that enough literals are present for the
derivation to use only (non-degenerate) resolution inferences — by virtue of the fact that
our constructions will pick C so that it contains the literals that must be present for use as
resolution literals.

The construction begins by letting R0 be the “empty” refutation, containing just the
empty clause. Of course, this clause is an unfinished leaf, and τ(∅) = ∅. Thus R0 is a valid
LR partial refutation.

For the induction step, Rt has been constructed already. Let C be the leftmost unfinished
clause in Rt. Rt+1 will be formed by replacing C with an (LR-partial) derivation S of some
clause C ′ such that C ⊆ C ′ ⊆ Cpool.

We need to describe S. Let π be the bipartite partial order associated with τ(C), and
consider the derivation Pπ from Lemma 25. Since C is (

∨
π) by condition e., the final

line of Pπ is the clause C. The intuition is that we would like to let S be Pπ. The first
difficulty with this is that Pπ is dag-like, and the LR-partial refutation is intended to be
tree-like, This difficulty, however, can be circumvented by just expanding Pπ, which is
regular, into a tree-like regular derivation with lemmas by the simple expedient of using a
depth-first traversal of Pπ. The second, and more serious, difficulty is that Pπ is a derivation
from GTn, not GGTn. Namely, the derivation Pπ uses the transitivity clauses of GTn as
initial clauses instead of the guarded transitivity clauses of GGTn. The transitivity clauses
Ti,j,k := xi,j ∨xj,k ∨xk,i in Pπ are handled one at a time as described below. There are four

689



Bonet, Buss, & Johannsen

separate constructions: case (i) requires no change to Pπ; cases (ii) and (iii) require small
changes; but in the fourth case, the subproof Pπ is abandoned in favor of “learning” the
transitivity clause.

By the remark after Lemma 25, no literal in Cpool is used as a resolution literal in Pπ.

(i) Suppose a transitivity clause Ti,j,k of Pπ already appears earlier in Rt, that is, to the left
of C in the post-order. Then Ti,j,k is already learned, and can be used freely in Pπ.
(Since we are building a pool resolution refutation, not a w-resolution refutation, there
is no need for Ti,j,k to be an input lemma.)

In the remaining cases (ii)-(iv), the transitivity clause Ti,j,k is not yet learned. Let the guard
variable for Ti,j,k be xr,s, so r = r(i, j, k) and s = s(i, j, k).

(ii) Suppose case (i) does not apply and that the guard variable xr,s or its negation xr,s is a
member of Cpool. The guard variable thus is used as a resolution variable somewhere
along the branch from the root to clause C. Then, as mentioned above, Lemma 25
implies that xr,s is not resolved on in Pπ. Therefore, we can add the literal xr,s or xr,s
(respectively) to the clause Ti,j,k and to every clause on any path below Ti,j,k until
reaching a clause that already contains that literal. This replaces Ti,j,k with one of
the initial clauses Ti,j,k ∨ xr,s or Ti,j,k ∨ xr,s of GGTn. Note this adds the literal xr,s
or xr,s to the final clause C ′ of the modified Pπ. This maintains the property that
C ⊆ C ′ ⊆ Cpool.

(iii) Suppose case (i) does not apply and that xr,s is not used as a resolution variable
below Ti,j,k in Pπ and neither xr,s nor xr,s is a member of Cpool. In this case, Pπ is
modified so as to derive the clause Ti,j,k from the two GGTn clauses Ti,j,k ∨ xr,s and
Ti,j,k ∨ xr,s by resolving on xr,s. This maintains the regularity of the derivation. It
also means that henceforth Ti,j,k will be learned.

If all of the transitivity clauses in Pπ can be handled by cases (i)-(iii), then we use Pπ to
define Rt+1. Namely, let P ′

π be the derivation Pπ as modified by the applications of cases
(ii) and (iii). The derivation P ′

π is regular and dag-like, so we can recast it as a tree-like
derivation S with lemmas, by using a depth-first traversal of P ′

π. The size of S is linear in
the size of P ′

π, since only lemmas need to be repeated. The final line of S is the clause C ′,
namely C plus the literals introduced by case (ii). The derivation Rt+1 is formed from Rt

by replacing the clause C with the derivation S of C ′, and then propagating each new literal
x ∈ C ′ \ C down towards the root of Rt, adding x to each clause below S until reaching
a clause that already contains x. The derivation S contains no unfinished leaf, so Rt+1

contains one fewer unfinished leaves than Rt.
On the other hand, if even one transitivity axiom Ti,j,k in Pπ is not covered by the above

three cases, then case (iv) must be used instead. This introduces a completely different
construction to form S:

(iv) Let Ti,j,k be any transitivity axiom in Pπ that is not covered by cases (i)-(iii). In
this case, the guard variable xr,s is used as a resolution variable in Pπ somewhere
below Ti,j,k; in general, this means we cannot use resolution on xr,s to derive Ti,j,k

while maintaining the desired pool property. Hence, Pπ is no longer used, and we

690



Separations of Regular Resolution

instead will form S with a short left-branching path that “learns” Ti,j,k. This will
generate two or three new unfinished leaf nodes. Since unfinished leaf nodes in a
LR partial derivation must be labeled with clauses from bipartite partial orders, it is
also necessary to attach short derivations to these unfinished leaf nodes to make the
unfinished leaf clauses of S correspond correctly to bipartite partial orders. These
unfinished leaf nodes are then kept in Rt+1 to be handled at later stages.

The construction of S is described in detail next, and depends on whether Ti,j,k is type
(β) or (γ). The base case of R0 is type (β), but we describe the type (γ) construction
first as it is somewhat simpler.

Suppose Ti,j,k is type (γ), and thus xj,k appears in C. (Refer to Figure 3.) Let xr,s be
the guard variable for the transitivity axiom Ti,j,k. The derivation S will have the form

xi,j, xj,k, xk,i, xr,s xi,j, xj,k, xk,i, xr,s
xi,j, xj,k, xk,i

S1 . . .
... . .

.

xi,j, xi,k, π−[jk;jR(i)]

xi,j, xj,k, π−[jk;jR(i)]

S2 . . .
... . .

.

xj,i, xj,k, π−[jk;iR(j)]

xj,k, π−[jk]

The notation π−[jk] denotes the disjunction of the negations of the literals in π omitting the
literal xj,k. We write “iR(j)” to indicate literals xi,� such that j ≺π �. (The “R(j)” means
“range of j”.) Thus π−[jk;iR(j)] denotes the clause containing the negations of the literals
in π, omitting xj,k and any literals xi,� such that j ≺π �. The clause π−[jk;jR(i)] is defined
similarly.

The upper leftmost inference of S is a resolution inference on the variable xr,s. Since
Ti,j,k is not covered by either case (i) or (ii), the variable xr,s is not in Cpool. Thus, this
use of xr,s as a resolution variable does not violate regularity. Furthermore, since Ti,j,k is
of type (γ), we have i	≺τ(C)j, j 	≺τ(C)i, i	≺τ(C)k, and k 	≺τ(C)i. Thus the literals xi,j and xi,k
are not in Cpool, so they also can be resolved on without violating regularity.

Let C1 and C2 be the final clauses of S1 and S2, and let C−
1 be the clause below C1 and

above C. The set τ(C2) is obtained by adding 〈j, i〉 to τ(C), and similarly τ(C−
1 ) is τ(C)

plus 〈i, j〉. Since Ti,j,k is type (γ), we have i, j ∈ Mπ. Therefore, since τ(C) is a dag, τ(C2)
and τ(C−

1 ) are also dags. Let π2 and π1 be the bipartite orders associated with these dags
(respectively). We will form the subderivation S1 so that it contains the clause (

∨
π1) as its

only unfinished clause. This will require adding inferences in S1 which add and remove the
appropriate literals. The first step of this type already occurs in going up from C−

1 to C1

since this has removed xj,k and added xi,k, reflecting the fact that j is not π1-minimal and
thus xi,k ∈ π1 but xj,k /∈ π1. Similarly, we will form S2 so that its only unfinished clause is
(
∨
π2).

We first describe the subderivation S2. The situation is pictured in Figure 5, which
shows an extract from Figure 3: the edges shown in part (a) of the figure correspond to
the literals present in the final line C2 of S2. In particular, recall that the literals xi,� such
that j ≺π � are omitted from the last line of S2. (Correspondingly, the edge from i to �1 is
omitted from Figure 5.) The last line C2 of S2 may not correspond to a bipartite partial
order as it may not partition [n] into minimal and non-minimal elements; thus, C2 may
not qualify to be an unfinished node of Rt+1. (An example of this in Figure 5(a) is that

691



Bonet, Buss, & Johannsen

i j

k�1 �2 �3

(a) xj,k, xi,�2 , xj,i, π
∗

i j

k�1 �2 �3

(b) xj,k, xi,�2 , xj,i, π
∗

Figure 5: The partial orders for the fragment of S2 shown in (7).

j ≺τ(C2) i ≺τ(C2) �2, corresponding to xj,i and xi,�2 being in C2.) The bipartite partial
order π2 associated with τ(C2) is equal to the bipartite partial order that agrees with π
except that each i ≺π � condition is replaced with the condition j ≺π2 �. (This is represented
in Figure 5(b) by the fact that the edge from i to �2 has been replaced by the edge from
j to �2. Note that the vertex i is no longer a minimal element of π2; that is, i /∈ Mπ2 .)
We wish to form S2 to be a regular derivation of the clause xj,i, π−[jk;iR(j)] from the clause
(
∨
π2).

The subderivation of S2 for replacing xi,�2 in π with xj,�2 in π2 is as follows, letting π∗

be π−[jk;iR(j);i�2].

S′
2 . . .

... . .
.

xj,i, xi,�2 , x�2,j

. . .
... . .

. rest of S2

xj,k, xj,�2 , xj,i, π
∗

xj,k, xi,�2 , xj,i, π
∗

(7)

The part labeled “rest of S2” will handle similarly the other literals � such that i ≺π � and
j 	≺π �. The final line of S′

2 is the transitivity axiom Tj,i,�2 . This is a GTn axiom, not
a GGTn axiom; however, it can be handled by the methods of cases (i)-(iii). Namely, if
Tj,i,�2 has already been learned by appearing somewhere to the left in Rt, then S′

2 is just
this single clause. Otherwise, let the guard variable for Tj,i,�2 be xr′,s′ . If xr′,s′ is used as a
resolution variable below Tj,i,�2, then replace Tj,i,�2 with Tj,i,�2 ∨ xr′,s′ or Tj,i�2 ∨ xr′,s′ , and
propagate the xr′,s′ or xr′,s′ to clauses down the branch leading to Tj,i,�2 until reaching a
clause that already contains that literal. Finally, if xr′,s′ has not been used as a resolution
variable in Rt below C, then let S′

2 consist of a resolution inference deriving (and learning)
Tj,i,�2 from the clauses Tj,i,�2 , xr′,s′ and Tj,i,�2, xr′,s′ .

To complete the construction of S2, the inference (7) is repeated for each value of � such
that i ≺π � and j 	≺π �. The result is that S2 has one unfinished leaf clause, and it is labeled
with the clause (

∨
π2).

We next describe the subderivation S1. The situation is shown in Figure 6. As in the
formation of S2, the final clause C1 in S1 may need to be modified in order to correspond
to the bipartite partial order π1 which is associated with τ(C1). First, note that the literal
xj,k is already replaced by xi,k in the final clause of S1. The other change that is needed is
that, for every � such that j ≺π � and i 	≺π �, we must replace xj,� with xi,� since we have
j 	≺π1 � and i ≺π1 �. Vertex �3 in Figure 6 is an example of a such a value �. The ordering
in the final clause of S1 is shown in part (a), and the desired ordered pairs of π1 are shown
in part (b). Note that j is no longer a minimal element in π1.

692



Separations of Regular Resolution

i j

k�1 �2 �3

(a) xi,k, xj,�3 , xi,j, π
∗

i j

k�1 �2 �3

(b) xi,k, xi,�3 , xi,j , π
∗

Figure 6: The partial orders for the fragment of S1 shown in (8).

The replacement of xj,�3 with xi,�3 is effected by the following inference, letting π∗ now
be π−[jk;jR(i);j�3].

S′
1 . . .

... . .
.

xi,j, xj,�3, x�3,i

. . .
... . .

. rest of S1

xi,k, xi,�3 , xi,j, π
∗

xi,k, xj,�3, xi,j, π
∗

(8)

The “rest of S1” will handle similarly the other literals � such that j ≺π � and i 	≺π �.
Note that the final clause of S′

1 is the transitivity axiom Ti,j,�3 . The subderivation S′
1 is

formed in exactly the same way that S′
2 was formed above. Namely, depending on the

status of the guard variable xr′,s′ for Ti,j,�3, one of the following is done: (i) the clause Ti,j,�3

is already learned and can be used as is, or (ii) one of xr′,s′ or xr′,s′ is added to the clause
and propagated down the proof, or (iii) the clause Ti,j,�3 is inferred using resolution on xr′,s′

and becomes learned.

To complete the construction of S1, the inference (8) is repeated for each value of �
such that j ≺π � and i 	≺π �. The result is that S1 has one unfinished leaf clause, and it
corresponds to the bipartite partial order π1.

That completes the construction of S for the subcase of (iv) where Ti,j,k is of type (γ).
Now suppose Ti,j,k is of type (β). (For instance, the values i, j, k′ of Figure 3.) In this case,
S will have the form

Ti,j,k, xr,s Ti,j,k, xr,s
Ti,j,k

S3 . . .
... . .

.

xi,j, xi,k, π−[jR(i),kR(i∪j)]
xi,j , xj,k, π−[jR(i),kR(i∪j)]

S4 . . .
... . .

.

xi,j, xk,j, π−[jR(i∩k)]
xi,j, π−[jR(i∩k)]

S5 . . .
... . .

.

xj,i, π−[iR(j)]

π

where xr,s is the guard variable for Ti,j,k. We write [π−[jR(i∩k)]] to mean the negations
of literals in π omitting any literal xj,� such that both i ≺π � and k ≺π �. Similarly,
π−[jR(i),kR(i∪j)] indicates the negations of literals in π, omitting the literals xj,� such that
i ≺π � and the literals xk,� such that either i ≺π � or j ≺π �.

Note that the resolution on xr,s used to derive Ti,j,k does not violate regularity, since
otherwise Ti,j,k would have been covered by case (ii). Likewise, the resolutions on xi,j, xi,k
and xj,k do not violate regularity since Ti,j,k is of type (β).

The subderivation S5 is formed exactly like S2 above, with the exception that now the
literal xj,k is not present. Thus we omit the description of S5.

We next describe the construction of S4. Let C4 be the final clause of S4; it is easy to
check that τ(C4) is a dag. As before, we must derive C4 from the clause (

∨
π4) where π4 is

the bipartite partial order associated with τ(C4). A typical situation is shown in Figure 7.

693



Bonet, Buss, & Johannsen

i j k

�1 �2 �3

(a) xi,j, xk,j, xj,�2, π
∗

i j k

�1 �2 �3

(b) xi,j , xi,�2 , xk,j, xk,�2 , π
∗

Figure 7: The partial orders as changed by S4.

As pictured there, it is necessary to add the literals xi,� such that j ≺π � and i 	≺π �, while
removing xj,�; examples of this are � equal to �2 and �3 in Figure 7. At the same time, we
must add the literals xk,� such that j ≺π � and k 	≺π �, while removing xj,�; examples of
this are � equal to �1 and, again, �2 in the same figure.

For a vertex �3 such that j ≺π �3 and k ≺π �3 but i 	≺π �3, this is done similarly to the
inferences (7) and (8) but without the side literal xj,k:

S′
4 . . .

... . .
.

xi,j, xj,�3, x�3,i

. . .
... . .

. rest of S4

xi,�3 , xk,j, xi,j, π
∗

xj,�3 , xk,j, xi,j, π
∗

(9)

Here π∗ is π−[jR(i∩k);j�3]. The transitivity axiom Ti,j,�3 shown as the last line of S′
4 is handled

exactly as before. This construction is repeated for all such �3’s.
The vertices �1 such that j ≺π �1 and i ≺π �1 but k 	≺π �1 are handled in exactly the

same way. (The side literals π∗ change each time to reflect the literals that have already
been replaced.)

Finally, consider a vertex �2 such that i 	≺π �2 and j ≺π �2 and k 	≺π �2. This is handled
by the derivation

S′′
4 . . .

... . .
.

xi,j, xj,�2 , x�2,i

S′′′
4 . . .

... . .
.

xk,j, xj,�2 , x�2,k

. . .
... . .

. rest of S4

xi,j, xi,�2 , xk,j, xk,�2 , π
∗

xi,j, xi,�2 , xk,j, xj,�2, π
∗

xi,j, xk,j, xj,�2 , π
∗

As before, the set π∗ of side literals is changed to reflect the literals that have already
been added and removed as S4 is being created. The subderivations S′′

4 and S′′′
4 of the

transitivity axioms Ti,j,�2 and Tk,j,�2 are handled exactly as before, depending on the status
of their guard variables.

Finally, we describe how to form S3. For this, we must form the bipartite partial order π3
which is associated with τ(C3), where C3 is the final clause of S3. To obtain π3, we need
to add the literals xi,� such that i 	≺π � and such that either j ≺π � or k ≺π �, while
removing any literals xj,� and xk,�. This is done by exactly the same construction used
above in (9). The literals in π−[jR(i);kR(i∪j)] are exactly the literals needed to carry this
out. The construction is quite similar to the above constructions, and we omit any further
description.

That completes the description of how to construct the LR partial refutations Rt. The
process stops once some Rt has no unfinished clauses. We claim that the process stops after
polynomially many stages.

694



Separations of Regular Resolution

To prove this, recall that Rt+1 is formed by handling the leftmost unfinished clause
using one of cases (i)-(iv). In the first three cases, the unfinished clause is replaced by a
derivation based on Pπ for some bipartite order π. Since Pπ has size O(n3), this means
that the number of clauses in Rt+1 is at most the number of clauses in Rt plus O(n3).
Also, by construction, Rt+1 has one fewer unfinished clauses than Rt. In case (iv) however,
Rt+1 is formed by adding up to O(n) many clauses to Rt plus adding either two or three
new unfinished leaf clauses. In addition, case (iv) always causes at least one transitivity
axiom Ti,j,k to be learned. Therefore, case (iv) can occur at most 2

(
n
3

)
= O(n3) times.

Consequently at most 3 · 2
(n
3

)
= O(n3) many unfinished clauses are added throughout the

entire process. It follows that the process stops with Rt having no unfinished clauses for
some i ≤ 6

(n
3

)
= O(n3). Therefore there is a pool refutation of GGTn with O(n6) lines.

Since the GGTn principle has O(n3) many clauses, the number of inferences in the refutation
is bounded by a quadratic polynomial of the number of the clauses being refuted.

By inspection, each clause in the refutation contains O(n2) literals. This is because
the largest clauses are those corresponding to (small modifications of) bipartite partial
orders, and because bipartite partial orders can contain at most O(n2) many ordered pairs.
Furthermore, the refutations Pn for the GTn contain only clauses of size O(n2).
Q.E.D. Theorem 18

Theorem 19 is proved with nearly the same construction. In fact, the only change
needed is the construction of S from P ′

π. Recall that in the proof of Theorem 18, the pool
derivation S was formed by using a depth-first traversal of P ′

π. This is not sufficient for
Theorem 19, since now the derivation S must use only input lemmas. Instead, we again
use the same result as before of Buss et al. (2008, Thm. 3.3), which states that a (regular)
dag-like resolution derivation can be transformed into a (regular) tree-like derivation with
input lemmas. Forming S in this way from P ′

π suffices for the proof of Theorem 19: the
lemmas of S are either transitive closure axioms derived earlier in Rt or are derived by
input subderivations earlier in the post-order of S. Since the transitive closure axioms that
appeared earlier in Rt were derived by resolving two GGTn axioms, the lemmas used in S
are all input lemmas.

The transformation of the theorem of Buss et al. (2008, Thm. 3.3) may multiply the size
of the derivation by the depth of the original derivation. The proofs Pπ have depth O(n),
so the regRTI refutation has overall size O(n7). This completes the proof of Theorem 19.

5. Greedy and Unit Propagating CDCL

This section proves that the guarded graph tautology clauses GGTn can be refuted by a
polynomial-time greedy, unit propagating CDCL search without restarts. One difficulty is
that we do not even know whether regular dag-like resolution refutations can be polyno-
mially simulated by greedy, unit propagating CDCL without restarts. Therefore, we must
first establish Theorems 26 and 30 showing that there are greedy, unit propagating CDCL
refutations without restarts for the graph tautologies GTn and GTπ,n. Theorem 31 then
gives the polynomial-time greedy, unit propagating CDCL algorithm (without restarts) for
GGTn. The intuition is that the CDCL search traverses the regRTI refutations for GGTn

695



Bonet, Buss, & Johannsen

from Theorem 19, learning transitivity clauses Ti,j,k whenever possible. We will also need
to use the notion of “absorption” used by Atserias et al. (2011) and Pipatsrisawat and
Darwiche (2011).

We give a quick overview of CDCL search algorithms and clause learning algorithms; for
greater detail, see the works of Marques-Silva and Sakallah (1999) and Beame et al. (2004).
Given a set of clauses Γ as input, the CDCL search maintains a stack of literals assigned
the value True and a collection Δ of learned clauses. A simplified, but general, form of the
procedure for CDCL without restarts is as follows:

Input : A set Γ of clauses.
Algorithm:

Set Δ := ∅.
Loop:

If unit propagation from Γ ∪ Δ yields a contradiction,
Halt. Γ is unsatisfiable.

Else if unit propagation from the assigned literals and Γ ∪ Δ
yields a contradiction,

Infer zero or more clauses by input resolution based on the
conflict, and add them to Δ. (Learning)

Select Δ− ⊆ Δ, and set Δ = Δ \ Δ−. (Garbage collection)
Unassign the last assigned literal. (Backtracking)

Else if all literals are assigned a value,
Halt. Γ is satisfiable.

Else
Choose an unassigned literal, and assign it the value True.

Endif

The above-described CDCL algorithm lacks many important features of the usual imple-
mentations of CDCL algorithms. However, this simplified CDCL algorithm can polyno-
mially simulate more sophisticated implementations of CDCL by learning and unlearning
the appropriate clauses. Conversely, more sophisticated CDCL algorithms can polynomi-
ally simulate the simplified CDCL algorithm, and since we are proving a polynomial time
runtime for the simplified algoithm, this certainly implies a polynomial time runtime for
more sophisticated CDCL algorithms (subject as usual to specifying which decision literals
are set and which clauses are learned and garbage collected).

The clause learning used in Theorems 26 and 30 is not the usual first-UIP (unique
implication point) clause learning, but does learn only clauses that are obtained by picking
a cut in the conflict graph, as is common for CDCL algorithms.

Theorem 26. Greedy, unit propagating CDCL search without restarts can refute the GTn

clauses in polynomial time.

Proof. Recall the construction of the refutations Pn of the GTn clauses as pictured in
Figure 1. The key property needed is that the derivation of Totk,j from Totk+1,k+1 and
Totk+1,j is an input derivation, and this will permit learning Totk,j once Totk+1,k+1 and
Totk+1,j have been learned.

696



Separations of Regular Resolution

We will give a direct description of the CDCL search. The search initially chooses to
set the literals x1,0, x2,1 . . ., xn−2,n−3 true as decision literals, in that order, so xi+1,i is
set true at (decision) level i + 1. A literal xi,j is interpreted as meaning that i ≺ j in the
partial order ≺; thus the decision literals express that n − 2 ≺ n − 3 ≺ · · · ≺ 1 ≺ 0 holds.
Unit propagation with the transitive closure clauses now implies the literals xj,i, or in other
words that j ≺ i, for 0 ≤ i < j ≤ n− 2. The literal xj,i is derived at level j.

Until reaching the literal xn−2,n−3, no other unit propagations are possible. But, upon
assigning xn−2,n−3 true, the clause Totn−1,n−2 becomes a unit clause, and xn−1,n−2 is in-
ferred. In other words, n− 1 ≺ n− 2 is inferred. Now, from the literals xn−2,j, further unit
propagations with transitive closure clauses gives xn−1,j, that is n ≺ j, for all j < n−2. This
falsifies Totn−1,n−1, and yields a conflict, so the CDCL search backtracks to the previous
level.

As it backtracks, the CDCL algorithm learns the two clauses Totn−3,n−3∨xn−3,n−2 and
Totn−2,n−2, and sets the decision literal xn−2,n−3 false at level n − 3. The first clause is
learned by taking this decision literal xn−2,n−3 as the UIP, since the literals xn−3,j for j <
n−3 were the literals of level < n−3 that were used to infer level n−2 literals in the conflict
graph. To see it is possible to learn the second clause Totn−2,n−2, note that the conflict was
obtained via unit propagation from the decision literal xn−2,n−3 and the literals xn−2,j, and
that Totn−2,n−2 contains exactly the negations of these literals. The literals xn−2,j were all
set at level n − 2, so Totn−2,n−2 was not learned from a UIP; nonetheless, it falls within
what is commonly permitted for CDCL learning. Once Totn−3,n−3 ∨ xn−3,n−2 is learned,
the literal xn−3,n−2 follows by a single unit propagation.

After this first backtrack, the decision literals x1,0, x2,1, . . ., xn−3,n−4 have been set true
as decision literals, Totn−2,n−2 and Totn−3,n−3 ∨ xn−3,n−2 are learned, and xn−3,n−2 is true
at level n− 3 by unit propagation. It is possible to use unit propagation to get yet another
conflict. However, instead of describing this, we go to the general cases.

In the general case, there are parameters �, r, s so that 0 ≤ � < r < s < n with either
s = r + 1 or s = n − 1. In this general case, the literals x1,0, x2,1, . . ., x�,�−1 are set true
as the first � decision literals and the literals x�,�+2, x�,�+3, . . . , x�,r are set as the next
decision literals, and the three clauses Tots,�, Tot�,� ∨ x�,�+1, and Totk,k for all k > � have
been learned. (Refer to Figure 1. The situation in the previous paragraph has � = n − 3,
r = n − 2, and s = n − 1.) Using Tot�,� ∨ x�,�+1 and unit propagation, the literal x�,�+1 is
set at level �. In terms of ≺, the literals which are set true express the conditions

� ≺ �− 1 ≺ · · · ≺ 1 ≺ 0 and � ≺ j for j = � + 1, . . . , r. (10)

If r < s− 1 = n− 2, unit propagation does not yield a contradiction, and the CDCL search
proceeds by setting x�,r+1 true as the next decision literal. The CDCL search is now in the
general case with parameters �, r+1, n−1.

When r = s− 1, unit propagation with transitivity clauses yields x�,j, namely � ≺ j, for
all j ∈ [s] \ {�}. This makes Tots,� a unit clause and thus xs,�, namely s ≺ �, is set true by
unit propagation. Using the literals x�,j again, unit propagation with transitivity clauses
falsifies the learned clause Tots,s. The CDCL algorithm now backtracks one level. When
r > � + 1, it learns Tots−1,�. This can be learned since the conflict was obtained from the
literals x�,j for j ∈ [s] \ {�}. The learned clause Tots,� is forgotten by garbage collection.
This puts the CDCL search in the new general situation with parameters �, r−1, s−1.

697



Bonet, Buss, & Johannsen

For r = � + 1 = s− 1, the two clauses Tot�,� and Tot�−1,�−1 ∨ x�−1,� are learned instead.
The second clause is the clause obtained by the usual learning algorithm using the decision
literal x�,�−1 as the UIP. The clause Tot�,� can be learned since the conflict graph used the
literals x�,j for j < � to obtain the conflict: this is not obtained by a UIP, but it is obtained
by by using a cut in the conflict graph. Garbage collection is used to forget the clauses
Tot�,� ∨ x�,�+1 and Tots,�. This puts the CDCL search in the general case, with the new
�, r, s parameters equal to �− 1, �, and n− 1, respectively.

The CDCL search ends after dealing with the case � = 0, r = 1 and s = 2. In this case,
the empty clause Tot0,0 is learned, and the CDCL search halts, establishing that GTn is
unsatisfiable.

The next theorem discusses how a greedy, unit propagating CDCL search can simulate
the derivations Pπ of the graph tautologies GTπ,n obtained by restricting GTn with a
bipartite partial order π. Of course, this does not fully make sense, since CDCL search
only simulates refutations, not derivations. What we really want is to simulate Pπ as a
subderivation of the regRTI refutations of GGTn as constructed in Theorem 19. For this,
let C be a clause in the regRTI refutation of GGTn. Let τ be the dag such that i ≺τ j iff
xi,j ∈ Cpool, and let π be the associated bipartite partial order, so C is the clause (

∨
π).

We claim there is a greedy, unit propagating CDCL refutation of the (non-guarded) GTπ,n

clauses from the literals xi,j such that i ≺τ j. In other words, greedy, unit propagating
CDCL search can refute the GTn clauses once it has set the literals in Cpool false.

To state Theorem 30 in full generality, we need the following definitions. These are
modifications of definitions by Atserias et al. (2011) and Pipatsrisawat and Darwiche (2011).

Definition 27. Let C be a clause and x a literal in C. We say C is u.p.-absorbed at x by
a set Γ of clauses provided that when every literal in C \ {x} is set false, then x is implied
by unit propagation using clauses from Γ. We say C is u.p.-absorbed by Γ provided it is
u.p.-absorbed by Γ at every x ∈ C. We say C is absorbed by Γ provided that when all
literals in C are set false, then unit propagation using Γ yields a contradiction.

Once a clause C becomes u.p.-absorbed, it becomes redundant in terms of unit prop-
agation. In particular, adding C as an additional clause would not yield any additional
conflicts and would not make it possible to learn any additional clauses from conflicts.

We need a slightly more general definition, however.

Definition 28. Let C and Γ be as above, and let L be a set of literals. We write L to denote
the set of unit clauses {x} for x ∈ L, i.e. the clauses asserting every x ∈ L is false. Then C
is L-absorbed or L-u.p.-absorbed (at x) by Γ provided it is absorbed or u.p.-absorbed (at x)
by Γ ∪ L, respectively.

Suppose C is L-u.p.-absorbed. The intuition is that Γ is the current set of initial and
learned clauses for a CDCL search S, and that the literals in L have all been set false (either
as decision literals or by unit propagation). Then, unit propagation from Γ ∪ L yields a
contradiction if and only if unit propagation from Γ∪L∪{C} does. The learned clause for
the former may need to include additional literals from L however. To state this formally:

Lemma 29. Let Γ be a set of clauses, L be a set of literals set false as above, and C be
L-u.p.-absorbed by Γ. Suppose unit propagation from Γ∪L∪{C} yields a contradiction and

698



Separations of Regular Resolution

allows a clause D to be learned. Then unit propagation from Γ∪L also yields a contradiction,
and allows a clause D′ to be learned such that D′ ⊆ D ∪ L.

The proof of Lemma 29 is almost immediate from the definitions, and is left to the reader.
Note that the additional literals from L which appear in D′ are precisely the negations of
the literals of L which are needed to simulate the invocation of C for unit propagation.

Theorem 30. Let τ define a dag on [n], and let π ⊆ τ be the bipartite partial order
associated with τ . Then there is a greedy, unit propagating CDCL search that finds a
refutation of the GTπ,n clauses and the unit clauses xi,j such that i ≺τ j.

Proof. As in the proof of Lemma 25, let Mπ = [m] and Jk be such that Jk ≺π k for k ≥ m.
Let L be the set of literals xi,j such that i ≺π j. Let S be the greedy, unit propagating
CDCL search refuting the GTm clauses of size polynomial in m given by Theorem 26. We
wish to prove that S can be transformed into a greedy, unit propagating CDCL search S ′

that refutes the GTπ,n clauses and the clauses L. The search S ′ will mimic S very closely,
setting decision literals in the same order as S, but will learn the clauses Totπi,j in place of
the clauses Toti,j . (Compare Figures 1 and 4.)

S ′ must use the GTπ,n clauses as initial clauses instead of the GTm clauses used by S.
First consider a GTm transitivity clause used by S; this is of type (β∅) from Definition 17
and is equal to Ti,j,k for distinct i, j, k < m. As such, it is also a GTπ,n clause of type (β)
and thus is already available for S ′ to use.

Second, consider a totality clause Totm−1,i =
∨

k∈[m]\{i} xk,i of type (α∅) that is used for
unit propagation by the search S. This clause may not be L-u.p.-absorbed by the GTπ,n

clauses. But, if not, then it is L-absorbed by GTπ,n and this will suffice for the search S ′ to
succeed. To see that it is L-absorbed, suppose that S is at a point where unit propagation
with Totm−1,i is used to obtain a conflict. In this case, all but one literal of Totm−1,i

have been set false, namely there is a j0 ∈ [m] \ {i} so that S has set the literals xj,i for
j ∈ [m] \ {i, j0} false and now infers xj0,i by unit propagation. The new search S ′ also has
set the literals xj,i for j ∈ [m] \ {i, j0} false and needs to infer xj0,i; but S ′ must use the
GTπ,n clause Totn−1,i instead of the GTm clause Totm−1,i. Consider any xk,i in Totn−1,i

with k ≥ m. If there is a j ∈ [m] \ {i, j0} such that j ≺π k (we let Jk denote any such j),
then, since xj,k ∈ L, unit propagation with the transitivity clause Ti,j,k sets xi,k true, i.e.,
falsifies xk,i in Totn−1,i. If this holds for all k ≥ m, then Totn−1,i is reduced to the unit
xj0,i, so Totm−1,i is L-u.p.-absorbed at xj0,i by GTπ,n. Otherwise Totm−1,i is not L-u.p.-
.absorbed. In this case, let k1, . . . , kR be the values ≥ m such that j0 ≺π kr for 1 ≤ r ≤ R,
so the just-described unit propagation is able to reduce Totn−1,i to the (non-unit) clause
xj0,i ∨ xk1,i ∨ · · · ∨ xkR,i. The search S ′ now branches to set xj0,i false as a decision literal.
Unit propagation with the transitivity clauses Ti,j0,kr , for r ≤ R falsifies the literals xkr,i and
thereby falsifies Totn−1,i. Then S ′ backtracks and learns the clause Sπ

i ∨Totm−1,i (see (5)).
This of course is just the clause Totπm−1,i. With Totπm−1,i learned, and since the literals
in Sπ

i are in L and are set false, S ′ can now obtain a conflict in the same as way as S.

In general, the literals in Totπi,j \ Toti,j are all members of L, and so are set false by S ′.
It is thus straightforward to check that the remaining steps of S can be simulated directly
by S ′ using exactly the same decision literals, and obtaining conflict clauses in the same
way, but now learning the clauses Totπi,j instead of the clauses Toti,j .

699



Bonet, Buss, & Johannsen

We can now describe the greedy and unit propagating CDCL without restart procedures
that refute the GGTn clauses.

Theorem 31. There are CDCL without restart search procedures which are greedy and unit
propagating, and refute the GGTn clauses in polynomial time.

Proof. The basic idea for the greedy, unit propagating CDCL search S is that it follows the
structure of the refutation described in the proofs of Theorems 18 and 19; that is, S follows
the stages of the construction of LR-partial refutations.

At a stage of S that corresponds to an unfinished clause C of a LR-partial refutation,
S has some set of transitivity clauses Ti,j,k as its only learned clauses, and has set zero or
more literals xi,j true. These literals describe a dag τ , namely i ≺τ j iff xi,j has been set
true. Let π be the associated bipartite partial order, so C = (

∨
π). Then S has set every

xi,j true for which i ≺π j. If possible, S will now use the refutation of Theorem 30 to
backtrack from the current stage; otherwise, S will branch to learn a another transitivity
clause. The first possibility holds provided that every transitivity clause Ti,j,k, of type (β)
or (γ) needed for the refutation of GTπ,n is either learned or Cpool-u.p.-absorbed by S.

Otherwise, suppose some transitivity clause Ti,j,k of type (γ) is neither learned nor
Cpool-u.p.-absorbed. Following the pattern of the argument for this case in the proof of
Theorem 18, S sets xi,j true as a decision literal. Since Ti,j,k was of type (γ), xi,j has not
already been set. We claim that setting xi,j true does not yield a contradiction by unit
propagation. To prove this claim, note that the only way unit propagation can occur is
if some (guarded or unguarded) transitivity clause becomes a unit clause. Referring back
to Figure 3, the only (possibly guarded) transitivity clauses which can become unit upon
setting xi,j true are clauses Ti,j,� for � ≥ m such that S has set xj,� true. Therefore unit
propagation does not yield a contradiction from xi,j . S now sets xk,i true. Since Ti,j,k

is of type (γ) and C = (
∨
π), S has set xj,k true; therefore, unit propagation yields a

contradiction from Ti,j,k ∨ ρ and Ti,j,k ∨ ρ. From this, S backtracks, setting xi,k true and
learning Ti,j,k.

After backtracking, S is at a stage corresponding to the clause C1 of the subrefutation S1

in the proof of Theorem 18. Let L1 be the literals that are set false, τ1 be the dag defined by
the literals of L1, and let π1 be the associated bipartite order. S needs to infer the literals
xi,� for i ≺π1 �. This is done using transitivity clauses. Any L1-u.p.-absorbed transitivity
clause can be used directly. For other transitivity clauses Ti,j,�, once xi,j and xj,� are set true,
then S branches to set x�,i false as a decision literal, obtains an immediate contradiction by
unit propagation from the two GGTn clauses for Ti,j,� and backtracks, learning Ti,j,� and
inferring xi,� by unit propagation. Once all the literals xi,� where i ≺π1 � are set true, S is
again at a stage corresponding to an unfinished clause.

Once S backtracks out of the stage corresponding to the clause C1, S enters the stage
corresponding to C2. This is handled similarly.

The argument for the case where a transitivity clause Ti,j,k of type (β) has not been
learned is very similar. Again we follow the construction in the proof of Theorem 18, and
now use stages that correspond to clauses C3, C4, and C5. Since the construction is quite
similar, we omit its description.

Theorem 31 shows a very close correspondence between the regRTI proofs of the GGTn

clauses and greedy, unit propagating CDCL refutations without restarts. It is open, how-

700



Separations of Regular Resolution

ever, whether an arbitrary regRTI or regWRTI refutation can be converted into a polynomial
size greedy, unit propagating CDCL refutation without restarts. It is even open whether ev-
ery (dag-like) regular refutation corresponds to a greedy, unit propagating CDCL refutation
without restarts.

Acknowledgements

We are grateful to J. Hoffmann for assisting with a correction to an earlier version of the
proof of Theorem 19. We also thank A. Van Gelder, L. Ko�lodziejczyk, A. Beckmann,
T. Pitassi, and three anonymous referees for encouragement, suggestions, and useful sub-
stantial comments.

M. L. Bonet was supported in part by grant TIN2010-20967-C04-02, and by a Research
Abroad Fellowship (Generalitat de Catalunya BE, 2012).

S. Buss was supported in part by National Science Foundation grants DMS-0700533,
DMS-1101228 and CCF-1213151, and by a grant from the Simons Foundation (#208717 to
Sam Buss). He also thanks the John Templeton Foundation for supporting his participation
in the CRM Infinity Project at the Centre de Recerca Matemàtica, Barcelona, Catalonia,
Spain during which some of these results were obtained.

S. Buss and J. Johannsen thank the Banff International Research Station for the work-
shop on Proof Complexity (11w5103) held in October 2011 during which part of these
results were obtained.

References

Alekhnovich, M., Johannsen, J., Pitassi, T., & Urquhart, A. (2007). An exponential sepa-
ration between regular and general resolution. Theory of Computing, 3 (5), 81–102.

Alekhnovich, M., & Razborov, A. A. (2001). Resolution is not automatizable unless W [P ]
is tractable. In Proc. 42nd IEEE Conf. on Foundations of Computer Science (FOCS),
pp. 210–219.

Atserias, A., Fichte, J. K., & Thurley, M. (2011). Clause-learning algorithms with many
restarts and bounded-width resolution. Journal of Artificial Intelligence Research, 40,
353–373.

Beame, P., Kautz, H. A., & Sabharwal, A. (2004). Towards understanding and harnessing
the potential of clause learning. J. Artificial Intelligence Research, 22, 319–351.

Beckmann, A., & Buss, S. R. (2005). Separation results for the size of constant-depth
propositional proofs. Annals of Pure and Applied Logic, 136, 30–55.

Ben-Sasson, E. (2009). Size space tradeoffs for resolution. SIAM Journal on Computing,
38 (6), 2511–2525.

Ben-Sasson, E., Impagliazzo, R., & Wigderson, A. (2004). Near optimal separation of tree-
like and general resolution. Combinatorica, 24 (4), 585–603.

Bonet, M. L., & Buss, S. R. (2012a). An improved separation of regular resolution from pool
resolution and clause learning. In Proc. 15th International Conference on Theory and

701



Bonet, Buss, & Johannsen

Applications of Satisfiability Testing – SAT 2012, Lecture Notes in Computer Science
#7317, pp. 45–57.

Bonet, M. L., & Buss, S. R. (2012b). An improved separation of regular resolution from pool
resolution and clause learning. Full version, arxiv.org, arXiv:1202.2296v2 [cs.LO].

Bonet, M. L., & Galesi, N. (2001). Optimality of size-width tradeoffs for resolution. Com-
putational Complexity, 10 (4), 461–474.

Buss, S., & Ko�lodziejczyk, L. (2012). Small stone in pool. Submitted for publication.

Buss, S. R. (2009). Pool resolution is NP-hard to recognise. Archive for Mathematical Logic,
48 (8), 793–798.

Buss, S. R., Hoffmann, J., & Johannsen, J. (2008). Resolution trees with lemmas: Resolution
refinements that characterize DLL-algorithms with clause learning. Logical Methods
in Computer Science, 4, 4:13 (4:13), 1–18.

Chang, C. L. (1970). The unit proof and the input proof in theorem proving. J. ACM,
17 (4), 698–707.

Goerdt, A. (1993). Regular resolution versus unrestricted resolution. SIAM Journal on
Computing, 22 (4), 661–683.

Hertel, P., Bacchus, F., Pitassi, T., & Van Gelder, A. (2008). Clause learning can effectively
p-simulate general propositional resolution. In Proc. 23rd AAAI Conf. on Artificial
Intelligence (AAAI 2008), pp. 283–290. AAAI Press.

Huang, W., & Yu, X. (1987). A DNF without regular shortest consensus path. SIAM
Journal on Computing, 16 (5), 836–840.

Johannsen, J. (2009). An exponential lower bound for width-restricted clause learning.
In Proc. 12th International Conference on Theory and Applications of Satisfiability
Testing – SAT 2009, Lecture Notes in Computer Science #5584, pp. 128–140.

Krishnamurthy, B. (1985). Short proofs for tricky formulas. Acta Informatica, 22 (3), 253–
275.

Marques-Silva, J. P., & Sakallah, K. A. (1999). GRASP — A new search algorithm for
satisfiability. IEEE Transactions on Computers, 48 (5), 506–521.

Pipatsrisawat, K., & Darwiche, A. (2011). On the power of clause-learning SAT solvers as
resolution engines. Artificial Intelligence, 172 (2), 512–525.

Segerlind, N., Buss, S. R., & Impagliazzo, R. (2004). A switching lemma for small restrictions
and lower bounds for k-DNF resolution. SIAM Journal on Computing, 33 (5), 1171–
1200.

St̊almarck, G. (1996). Short resolution proofs for a sequence of tricky formulas. Acta
Informatica, 33 (3), 277–280.

Urquhart, A. (2011). A near-optimal separation of regular and general resolution. SIAM
Journal on Computing, 40 (1), 107–121.

Van Gelder, A. (2005). Pool resolution and its relation to regular resolution and DPLL
with clause learning. In Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR 2005), Lecture Notes in Computer Science 3835, pp. 580–594. Springer-Verlag.

702



Separations of Regular Resolution

Van Gelder, A. (2006). Preliminary report on input cover number as a metric for propo-
sitional resolution proofs. In Theory and Applications of Satisfiability Testing - SAT
2006, Lecture Notes in Computer Science 4121, pp. 48–53. Springer Verlag.

703


