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Abstract

Graphical models, such as Bayesian Networks and Markov networks play an important
role in artificial intelligence and machine learning. Inference is a central problem to be
solved on these networks. This, and other problems on these graph models are often
known to be hard to solve in general, but tractable on graphs with bounded Treewidth.
Therefore, finding or approximating the Treewidth of a graph is a fundamental problem
related to inference in graphical models. In this paper, we study the approximability of a
number of graph problems: Treewidth and Pathwidth of graphs, Minimum Fill-In, One-
Shot Black (and Black-White) pebbling costs of directed acyclic graphs, and a variety of
different graph layout problems such as Minimum Cut Linear Arrangement and Interval
Graph Completion. We show that, assuming the recently introduced Small Set Expansion
Conjecture, all of these problems are NP-hard to approximate to within any constant factor
in polynomial time.

1. Introduction

Graphical models provide a computational framework for efficiently manipulating proba-
bility distributions over high dimensional spaces, often involving hundreds of thousands of
variables. This framework has found applications in an enormous range of domains in-
cluding: medical and fault diagnosis, image understanding, speech recognition, web search,
coding theory, and statistical physics (Koller & Friedman, 2009). A graphical model is an
efficient representation of a joint distribution over some set of n random variables. Even
if the random variables are binary, it is well known that an arbitrary joint distribution
requires the specification of 2n probabilities. Luckily, in the real world, there is often struc-
ture in the distribution that allows one to express it more succinctly. A graphical model
represents such a joint probability distribution by a graph where the vertices represent the
random variables, and the dependences are modeled by the graph structure. Associated
with each vertex of the graph is a conditional probability table, which specifies the condi-
tional probabilities of this random variable, conditioned on its neighboring vertices. The two
most common types of graphical models are Bayesian networks (also called belief networks),
where the underlying graph is directed, and Markov networks (also called Markov random
fields), where the underlying graph is undirected. The most basic problem in graphical
models is the inference problem, which is the problem of computing the posterior marginal
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distribution of a variable at some vertex. Unfortunately, inference in general is well-known
to be NP-hard to compute exactly as well as to approximate (Roth, 1996).

Despite this intractability, an important class of bounded Treewidth instances of prob-
abilistic inference has been identified and shown to be exactly computable in polynomial
time. The Treewidth of a graph (Robertson & Seymour, 1984, 1986) is a fundamental pa-
rameter of a graph that measures how close the graph is to being a tree. Treewidth is very
closely related to the other notions in machine learning such as Branch-width, Clique-width
and Elimination-width (for an overview of Treewidth and related notions, see Bodlaender,
Gilbert, Hafsteinsson, & Kloks, 1995). On graphs with small Treewidth and where the
tree decomposition is known, a dynamic programming algorithm yields a polynomial-time
algorithm. Particular algorithms for probabilistic inference on bounded Treewidth graphs
are the junction-tree method, variable elimination and clique trees (e.g. see Koller & Fried-
man, 2009, ch. 9, 10). These algorithms runs in time exponential in the Treewidth of the
tree decomposition and polynomial in the size of the graph. Thus for graphs where a tree
decomposition of bounded Treewidth is given, inference is polynomial-time computable.

The same ideas also yield polynomial-time algorithms and often even linear time al-
gorithms for small Treewidth instances for an astonishing variety of other NP-hard prob-
lems, including: satisfiability, counting satisfying assignments, constraint satisfaction, ver-
tex cover, maximum independent set, Hamiltonian circuit, query optimization, matrix de-
composition, and more generally all problems definable in monadic second-order logic. (See
the excellent survey Bodlaender, 2005 for motivation, including theoretical as well as prac-
tical applications of Treewidth.) One catch is that for all of these problems, the algorithm
must begin by finding a tree decomposition, and then use the decomposition to solve the
problem. Given the tree decomposition, the algorithm is typically exponential in the width
of the underlying tree decomposition. Thus there is a need for efficient algorithms to actu-
ally compute the Treewidth of a given graph, and to find tree decompositions with optimal
or close to optimal width.

Unfortunately, while there are many good heuristics for finding a good tree decompo-
sition, it is NP-hard in general to determine the Treewidth of a graph (Arnborg, Corneil,
& Proskurowski, 1987). However, Bodlaender et al. (1995) obtained an O(log n) factor
approximation algorithm for Treewidth. In fact, they actually show that if there is a factor
c approximation algorithm for vertex separator, then there is an O(c) approximation algo-
rithm for Treewidth. And if there is a factor b approximation algorithm for Treewidth then
there is an O(b log n) approximation algorithm for the related Pathwidth problem. The
best currently known approximation factor for vertex separator is O(

√
log n) (Feige, Haji-

aghayi, & Lee, 2005) and thus the best algorithm for Treewidth finds a tree decomposition
that is within an O(

√
log n) factor of the optimal width, and an O((

√
log n)(log n)) factor

approximation algorithm for Pathwidth.

It is a longstanding open question whether or not there is a constant factor approx-
imation algorithm for Treewidth. Such an algorithm would lead to faster algorithms to
find good tree-decompositions for all of the problems mentioned above. The current best
known algorithm that achieves a constant factor approximation for Treewidth runs in time
2O(w)O(n), where w is the Treewidth of the underlying graph, and achieves a factor 5 ap-
proximation (Bodlaender, 2007) (Earlier approximation algorithms with similar runtimes
are Reed, 1992; Amir, 2001). In a book devoted to Treewidth Kloks (1994, p. 62) states:
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“We feel this is one of the biggest open problems in the research dealing with
Treewidth and Pathwidth at the moment. If the fast algorithms for solving NP-
hard problems for graphs with bounded Treewidth are ever to become of practi-
cal importance, it is undoubtedly of importance to find good tree-decompositions
for these graphs. Since the (current best) approximations do not make many of
these algorithms practical, it is of great interest to know whether approximations
with a small constant exist.”

Nearly twenty years later, it is still an open problem whether or not there is a polynomial-
time algorithm to approximate Treewidth to within a constant factor. Similarly, the approx-
imability of many related graph layout problems is also unresolved, including Minimum Cut
Linear Arrangement and Interval Graph Completion. In this paper, we make an important
step to resolve this problem by showing that Treewidth, Pathwidth, and a host of related
graph layout problems are hard to approximate to within any constant factor, under the
Small Set Expansion (SSE) conjecture (Raghavendra & Steurer, 2010).

The SSE conjecture is a strengthened version of the conjecture that P is different from
NP and warrants some explanation. In the next subsection (Section 1.1), we explain the
SSE conjecture, and how it relates to the P versus NP question and to related conjectures.
We then state our main hardness results for Treewidth, pebbling problems and graph layout
problems (Sections 1.2, 1.4, and 1.5), and discuss related results in Section 1.6.

1.1 The Small Set Expansion Conjecture

The P versus NP problem is the most important and intriguing open problem in the field of
computational complexity theory. Many decision problems in theory and practice have been
proven to be NP-hard, which indicates that they are impossible to compute in polynomial
time, under the widely believed conjecture that P 6= NP. The discovery of the PCP theorem
in the late 80’s (Arora, Lund, Motwani, Sudan, & Szegedy, 1998; Arora & Safra, 1998) made
it possible to prove that for many optimization problems, approximating the optimal value
to within a certain factor is as hard as computing the exact optimal value. In other words,
under the conjecture that P 6= NP, it is not possible to approximate certain optimization
problems within some factor that depends on the problem. Celebrated results show that
it is NP-hard to approximate MAX-3SAT within a ratio of 7

8 + ε for any ε > 0 (H̊astad,
2001), which gives the optimal lower bound, since there is a simple algorithm that achieves
an approximation ratio of 7

8 . Also, it is NP-hard to approximate clique to within a n1−ε

factor for any ε > 0 (H̊astad, 1999). Despite this success, for many important problems, the
hardness of approximation results obtained through the PCP theorem have not matched
the best approximation algorithms known. For example, there are still significant gaps in
our understanding of the optimal approximability factor for important problems such as:
Vertex Cover, Max-Cut, Bipartite Clique, and Kernel Clustering.

The formulation of the Unique Games Conjecture (UGC) due to Khot (2002) was in-
tended to clarify the approximability of many optimization problems. The conjecture pos-
tulates that the problem of determining the value of a certain type of game, known as a
unique game, is NP-hard. The conjecture has inspired a remarkable body of work since its
formulation. Under UGC, many of the known algorithms in approximation are proven to be
tight (for an excellent survey on this topic, see Khot & Vishnoi, 2005). For instance, under
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the UGC, the Vertex Cover problem is NP-hard to approximate within a factor of 2 − ε,
for any ε > 0 (Khot & Regev, 2008). Perhaps most strikingly, Raghavendra (2008) proved
that under the UGC, the semi-definite programming (SDP) approximation algorithm for a
large class of constraint satisfaction problems (CSP) are essentially the best one can hope
for. More specifically, he showed that every maximum constraint satisfaction problem (Max
CSP) has an associated sharp approximation threshold τ : for every ε > 0, one can achieve
a τ − ε approximation in polynomial time using SDP, but obtaining a τ + ε approximation
is NP-hard. Thus, the UGC has become the central open problem in inapproximability and
encapsulates the barrier of designing better polynomial time approximation algorithms for
a large class of problems.

Despite this tremendous progress, still there remain important yet stubborn problems
such as Treewidth, Balanced Separator, Minimum Linear Arrangement (MLA), and many
other graph layout problems whose approximation status remains unresolved even assuming
the UGC. Intuitively this is because the hard instances for these problems seem to require
a certain global structure such as expansion. (Expansion is a graph property that is akin to
high connectivity, and requires that every subset of vertices that is not too large has a large
boundary.) Typical reductions for these problems are gadget reductions which preserve
global properties of the unique games instance, such as the lack of expansion. Therefore,
barring radically new types of reductions that do not preserve global properties, proving
hardness for these problems seems to require a stronger version of UGC, where the instance
is guaranteed to have certain expansion properties.

In the work of Raghavendra and Steurer (2010), the Small Set Expansion (SSE) Conjec-
ture was introduced, and it was shown that it implies the UGC, and that the SSE Conjecture
follows if one assumes that the UGC is true for somewhat expanding graphs. In follow-up
work by Raghavendra et al. (2012), it was shown that the SSE Conjecture is in fact equiv-
alent to the UGC on somewhat expanding graphs, and that the SSE Conjecture implies
NP-hardness of approximation for balanced separator and MLA. In this light, the Small
Set Expansion conjecture serves as a natural unified conjecture that yields all of the impli-
cations of UGC and also hardness for expansion-like problems that could not be resolved
with the UGC.

Our main contribution in this paper is to prove that a wide range of other graph layout
problems are SSE-hard to approximate to within any constant factor. For these problems,
no evidence of hardness of approximation was known prior to our results. Moreover, we
show that Treewidth, Pathwidth, and Minimum Fill-In are SSE-hard to approximate within
any constant factor. This is the first result giving hardness of (relative) approximation for
these problems, and gives evidence that no constant factor approximation algorithm exists
for them.

It should be noted that the status of the SSE conjecture is very open at this point. In
particular, recent results (Arora, Barak, & Steurer, 2010; Barak, Raghavendra, & Steurer,
2011; Guruswami & Sinop, 2011) give subexponential-time algorithms for small set expan-
sion. Still despite this recent progress providing evidence against the SSE conjecture, it
remains open. Our SSE-hardness results for Treewidth and related problems may therefore
be viewed as establishing a new connection between a fundamental conjecture in complexity
theory, and the approximability of a ubiquitous problem in artificial intelligence.
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1.2 Width Parameters of Graphs

As mentioned earlier, determining the exact Treewidth of a graph and producing an asso-
ciated optimal tree decomposition (see Definition 2.1) is known to be NP-hard (Arnborg
et al., 1987), and a central open problem is to determine whether or not there exists a
polynomial time constant factor approximation algorithm for Treewidth (see e.g., Bodlaen-
der et al., 1995; Feige et al., 2005; Bodlaender, 2005). The current best polynomial time
approximation algortihm for Treewidth (Feige et al., 2005), computes the Treewidth tw(G)
within a factor O(

√
log tw(G)). On the other hand, the only hardness result to date for

Treewidth shows that it is NP-hard to compute Treewidth within an additive error of nε

for some ε > 0 (Bodlaender et al., 1995). No hardness of approximation is known and not
even the possibility of a polynomial-time approximation scheme for Treewidth has been
ruled out. In many important special classes of graphs, such as planar graphs (Seymour &
Thomas, 1994), asteroidal triple-free graphs (Bouchitté & Todinca, 2003), and H-minor-free
graphs (Feige et al., 2005), constant factor approximations are known, but the general case
has remained elusive.

On the positive side, there is a large body of literature developing fixed-parameter al-
gorithms for Treewidth. Exactly determining the Treewidth is fixed-parameter tractable:
there is a linear time algorithm for computing the (exact) Treewidth for graphs of con-
stant treewidth (Bodlaender, 1996). More specifically this exact algorithm runs in time
2poly(k)poly(n). Constant factor approximation algorithms achieve better dependence on
the treewidth, k, and n, with the best such algorithm running in time 2O(k)O(n) (Bodlaen-
der, 2007).

A related graph parameter is the so-called Pathwidth, which can be viewed as measuring
how close G is to a path. The Pathwidth pw(G) is always at least tw(G), but can be much
larger. The current state of affairs here is similar as for Treewidth; though the current best
approximation algorithm only has an approximation ratio of O(

√
log pw(G) log n) (Feige

et al., 2005), the best hardness result is NP-hardness of additive nε error approximation.

Using the recently proposed Small Set Expansion (SSE) Conjecture (Raghavendra &
Steurer, 2010) discussed earlier, we show that both tw(G) and pw(G) are hard to approx-
imate within any constant factor. In fact, we show something stronger: it is hard to
distinguish graphs with small Pathwidth from graphs with large Treewidth. Specifically:

Theorem 1.1. For every α > 1 there is a c > 0 such that given a graph G = (V,E)
it is SSE-hard to distinguish between the case when pw(G) ≤ c · |V | and the case when
tw(G) ≥ α · c · |V |.

In particular, both Treewidth and Pathwidth are SSE-hard to approximate within any
constant factor.

This is the first result giving hardness of (relative) approximation for these problems,
and gives evidence that no constant factor approximation algorithm exists for either of
them.

1.3 Minimum Fill-In

A closely related graph theoretic property is the Minimum Fill-In of a graph, the mini-
mum number of edges required to add to a graph to triangulate it (i.e., make it chordal).
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This property has important applications with sparse matrix computations (and in partic-
ular Gaussian elimination) and artificial intelligence (see the excellent survey in Heggernes,
2006).

Minimum Fill-in has been known to be fixed parameter tractable since 1994, when
Kaplan et al. (1994) gave an O(|E|16k) algorithm, where k is the number of edges required.
From there, several improvements to the running time have been given, with the most recent
in 2012 by Fomin and Villanger (2012), who gave the first subexponential parameterized

algorithm, running in time O(2O(
√
k log k) + k2|V | · |E|). In the work of Natanzon et al.

(1998), a polynomial time approximation algorithm was presented, which computed a value
at most 8k2, where k is the optimal solution. For graphs with degree bounded by d, their
algorithm achieves an approximation ratio of O(d2.5 log4(kd)).

This remains the best polynomial time approximation algorithm known to date. In
particular, it has remained an open question whether a polynomial time constant factor
approximation algorithm exists. In this paper, we show that this is not possible, assuming
the SSE Conjecture.

Theorem 1.2. It is SSE-hard to approximate the Minimum Fill-In of a graph to within a
constant factor.

1.4 Pebbling Problems

Graph pebbling is a rich and relatively mature topic in theoretical computer science. Peb-
bling is a game defined on a directed acyclic graph (DAG), where the goal is to pebble the
sink nodes of the DAG according to certain rules, using the minimum number of pebbles.
The rules for pebbling are as follows. A black pebble can be placed on a node if all of the
node’s immediate predecessors contain pebbles, and can always be removed. A white pebble
can always be placed on a node, but can only be removed if all of the node’s immediate
predecessors contain pebbles. A pebbling strategy is a process of pebbling the sink nodes
in a graph according to the above rules. The pebbling cost of a pebbling strategy is the
maximum number of pebbles used in the strategy. The Black-White pebbling cost of a
DAG is the minimum pebbling cost of all possible pebbling strategies. The black pebbling
cost is the minimum pebbling cost over all pebbling strategies that only use black pebbles.

Pebbling games were originally devised for studying programming languages and com-
piler construction, but have later found a broad range of applications in computational
complexity theory. Pebbling is a tool for studying the relationship between computation
time and space by means of a game played on directed acyclic graphs. It was employed to
model register allocation, and to analyze the relative power of time and space as Turing
machine resources. For a comprehensive recent survey on graph pebbling, see the work of
Nordström (2010).

Apart from the cost of a pebbling, another important measure is the pebbling time, which
is the number of steps (pebble placements/removals) performed. In the context of measuring
memory used by computations, this corresponds to computation time, and hence keeping
the pebbling time small is a natural priority. The extreme case of this is what we refer to
as One-Shot Pebbling, also known as progressive pebbling, considered in the literature (e.g.,
Sethi, 1973; Lengauer, 1981; Kirousis & Papadimitriou, 1986). In One-Shot Pebbling, we
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have the restriction that each node can receive a pebble only once. Note that this restriction
can cause a huge increase in the pebbling cost of the graph (Lengauer & Tarjan, 1982).

The One-Shot Pebbling problem is easier to analyze for the following reasons. In the
original pebbling problem, in order to achieve the minimum pebbling number, the pebbling
time might be required to be exponentially long, which becomes impractical when n is
large. On the other hand, the One-Shot Pebbling problem is more amenable to complexity
theoretic analysis as it minimizes the space used in a computation subject to the execution
time being minimum. In particular, the decision problem for One-Shot Pebbling is in NP
(whereas the unrestricted pebbling problems are PSPACE-complete).

The One-Shot Black Pebbling problem and One-Shot Black-White Pebbling problems
admit an O(

√
log n log n) approximation ratio. We show that they are SSE-hard to approx-

imate to within any constant factor. For black pebbling we show that this holds for single
sink DAGs with in-degree 2, which is the canonical setting for pebbling games (it seems
plausible that the black-white hardness can be shown to hold for this case as well, though
we have not attempted to prove this).

Theorem 1.3. It is SSE-hard to approximate the One-Shot Black Pebbling problem within
any constant factor, even in DAGs with a single sink and maximum in-degree 2.

Theorem 1.4. It is SSE-hard to approximate the One-Shot Black-White Pebbling problem
within any constant factor.

No hardness of approximation result of any form was known for One-Shot Pebbling
problems. We believe that these results can be extended to obtain hardness for more
relaxed versions of bounded time pebbling costs as well. We are currently working on this,
and have some preliminary results.

1.5 The Connection: Layout Problems

The graph width and One-Shot Pebbling problems discussed in the previous sections may
at first glance appear to be unrelated. However, both sets of problems are instances of a
general family of problems, known as graph layout problems. In a graph layout problem
(also known as an arrangement problem, or a vertex ordering problem), the goal is to find
an ordering of the vertices, optimizing some condition on the edges, such as adjacent pairs
being close. Layout problems are an important class of problems that have applications in
many areas such as VLSI circuit design.

A classic example is the Minimum Cut Linear Arrangement problem (MCLA). In this
problem, the objective is to find a permutation π of the vertices V of an undirected graph
G = (V,E), such that the largest number of edges crossing any point,

max
i
|{(u, v) ∈ E|π(u) ≤ i < π(v)}|, (1)

is minimized. MCLA is closely related to the Minimum Linear Arrangement problem
(MLA), in which the max in (1) is replaced by a sum.

The MCLA problem can be approximated to within a factor O(log n
√

log n). To the
best of our knowledge, there is no hardness of approximation for MCLA in the literature.
Its cousin MLA was recently proved SSE-hard to approximate within any constant factor
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(Raghavendra et al., 2012), and we observe that the same hardness applies to the MCLA
problem.

Theorem 1.5. It is SSE-hard to approximate the Minimum Cut Linear Arrangement prob-
lem within any constant factor.

Another example of graph layout is the Interval Graph Completion Problem (IGC). In
this problem, the objective is to find a supergraph G′ = (V,E′) of G with the same vertex set
V , such that G′ is an interval graph (i.e., the intersection graph of a set of intervals on the
real line) and having minimum number of edges. While not immediately appearing to be a
layout problem, using a simple structural characterization of interval graphs (Ramalingam
& Rangan, 1988) one can show that IGC can be reformulated as finding a permutation of
the vertices that minimizes the sum over the longest edges going out from each vertex, i.e.,
minimizing ∑

u∈V
max

(u,v)∈E
max{π(v)− π(u), 0}. (2)

See, for example, the work of Charikar et al. (2010). The current best approximation
algorithm for IGC achieves a ratio of O(

√
log n log log n) (Charikar et al., 2010). It turns

out that the SSE Conjecture can be used to prove super-constant hardness for this problem
as well.

Theorem 1.6. It is SSE-hard to approximate the Interval Graph Completion problem within
any constant factor.

There is a distinction in IGC of whether one counts the number of edges in the final
interval graph – this is the most common definition – or whether one only counts the
number of edges added to make G an interval graph (which makes the problem harder from
an approximability viewpoint). Our result holds for the common definition and therefore
applies also to the harder version. Note that Interval Graph Completion is well connected
to Pathwidth: the pathwidth of a graph G is one less than the smallest clique number of
an interval graph that contains G as a subgraph.

Theorems 1.5 and 1.6 are just two examples of layout problems that we prove hardness of
approximation for. By varying the precise objective function and also considering directed
acyclic graphs, in which case the permutation π must be a topological ordering of the
graph, one can obtain a wide variety of graph layout problems. We consider a set of eight
such problems, generated by three natural variations (see Section 2.3 for precise details),
and show super-constant SSE-based hardness for all of them in a unified way. This set of
problems includes MLA, MCLA, and IGC, but not problems such as Bandwidth (but on
the other hand, strong NP-hardness inapproximability results for Bandwidth are already
known Dubey, Feige, & Unger, 2011). See Table 1 in Section 2.3 for a complete list of
problems covered.

Theorem 1.7. Assuming the SSE Conjecture, all problems listed in Table 1 (see page 581)
are NP-hard to approximate to within any constant factor.

Let us now return to the problems discussed in the previous sections. It should not
be surprising that the One-Shot Black Pebbling problem is equivalent to a graph layout
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problem: the one-shot constraint reduces the problem to determining in which order to
pebble the vertices; such an ordering induces a pebbling strategy in an obvious way. (Given
a graph layout ordering, the vertices can be black pebbled in that order, with each black
pebble removed as soon as that vertex is no longer be needed. Conversely, any black
pebbling sequence induces the corresponding ordering on the vertices.) For the black-white
case, it is known that the One-Shot Black-White Pebbling cost of D is interreducible with
a layout problem on an undirected graph G. Both of these layout problems are included
in the set of problems we show hardness for, so Theorems 1.3 and 1.4 follow immediately
from Theorem 1.7.

Turning to the width parameters, Treewidth is equivalent to a graph layout problem
called elimination width. Here the objective function is somewhat more intricate than in
the set of basic layout problems we consider in Theorem 1.7, but we are able to extend
those results to hold also for elimination width. Pathwidth is also known to be equivalent
to a certain graph layout problem, and in fact is equivalent to the layout problem which
One-Shot Black-White Pebbling reduces to. We use these connections to prove the hardness
of approximation for both Treewidth and Pathwidth, thereby obtaining Theorem 1.1.

1.6 Previous Work

As the reader may have noticed, for all the problems mentioned, the best current algorithms
achieve similar poly-logarithmic approximation ratios. Given their close relation, this is of
course not surprising. Most of the algorithms are obtained by recursively applying some
algorithm for the c-balanced separator problem, in which the objective is to find a bipartition
of the vertices of a graph such that both sides contain at least a c fraction of vertices, and
the number of edges crossing the partition is minimized.

In the pioneering work on separators by Leighton and Rao (1999), an O(log n) approx-
imation algorithm for c-balanced separator was given, which was used to design O(log2 n)
approximation algorithm for a number of graph layout problems such as MLA, MCLA,
and Register Sufficiency. Later, Rao and Richa (1998) improved the approximation al-
gorithm for MLA to a ratio O(log n log log n), using a spreading metric method. In the
groundbreaking work of Arora et al. (2009), semidefinite programming was used to give
an improved approximation ratio of O(

√
log n) for c-balanced separator. Using their ideas,

improved algorithms for ordering problems have been found, such as the O(
√

log n log logn)
approximation algorithm for IGC and MLA (Charikar et al., 2010), the O(

√
log n) approxi-

mation algorithm for Treewidth (Feige et al., 2005) and the O(
√

log n log n) approximation
algorithm for Pathwidth (Feige et al., 2005).

It is known that the Register Sufficiency problem (also known as One-Shot Black Peb-
bling) admits a O(log2 n) approximation algorithm (Ravi, Agrawal, & Klein, 1991). We
observe that by plugging in the improved approximation algorithm for direct vertex sepa-
rator (Agarwal, Charikar, Makarychev, & Makarychev, 2005) into the algorithm by Ravi et
al. (1991), one can improve this to an O(

√
log n log n) approximation algorithm.

Again, in these algorithms, the approximation algorithm for c-balanced separator plays
a key role. An improved algorithm for c-balanced separator will also improve the approxi-
mation algorithms for the other problems. On the other hand, hardness of approximating
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c-balanced separator (Raghavendra et al., 2012) does not necessarily imply hardness of
approximating layout problems.

On the hardness side, our work builds upon the work by Raghavendra et al. (2012),
which showed that the SSE Conjecture implies superconstant hardness of approximation
for MLA (and for c-balanced separator). The only other hardness of relative approximation
that we are aware of for these problems is a result of the work of Ambühl et al. (2007),
showing that MLA does not have a PTAS unless NP has randomized subexponential time
algorithms.

1.7 Organization

The outline for the rest of the paper is as follows. In Section 2, we formally define the
layout problems studied as well as Treewidth, Pathwidth, and Minimum Fill-In. After
giving an overview of the reductions used in Section 3 we give the full proof of Theorem 1.7
in Section 4. Then, in Section 5 we give the lower bound on Treewidth which combined
with the results from Section 4 gives Theorem 1.1. In Section 6 we give the lower bound on
Minimum Fill-In. Finally in Section 7 we give some additional reductions for our pebbling
instances in order to achieve indegree 2 and single sinks, as promised in Theorem 1.3. We
end with some concluding remarks in Section 8.

2. Definitions and Preliminaries

For an undirected graph G = (V,E), and subsets S, S′ ⊆ V , E(S, S′) denotes the set of
edges that go between S and S′. In other words, E(S, S′) is the set of edges (u, v) ∈ E such
that u ∈ S and v ∈ S′.

2.1 Treewidth, Elimination Width, and Pathwidth

Definition 2.1 (Tree decomposition, Treewidth). Let G = (V,E) be a graph, T a tree,
and let V = (Vt)t∈T be a family of vertex sets Vt ⊆ V indexed by the vertices t of T . The
pair (T,V) is called a tree decomposition of G if it satisfies the following three conditions:

(T1) V = ∪t∈TVt;

(T2) for every edge e ∈ E, there exists a t ∈ T such that both endpoints of e lie in Vt;

(T3) for every vertex v ∈ V , {t ∈ T | v ∈ Vt} is a subtree of T ’.

The width of (T,V) is the number max{|Vt|−1 | t ∈ T}, and the Treewidth of G, denoted
tw(G), is the minimum width of any tree decomposition of G.

Definition 2.2. Let G = (V,E) be a graph, and let v1, . . . , vn be some ordering of its
vertices. Consider the following process: for each vertex vi in order, add edges to turn the
neighborhood of vi into a clique, and then remove vi from G. This is an elimination ordering
of G. The width of an elimination ordering is the maximum over all vi of the degree of vi
when vi is eliminated. The elimination width of G is the minimum width of any elimination
order.
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Theorem 2.3 (See e.g., Bodlaender, 2007). For every graph G, the elimination width of G
equals tw(G).

Thus Treewidth is another example of a layout problem. In principle this layout problem
can be formulated in the framework of Section 2.3, but the choice of cost function is now
more involved than the vertex- and edge-counting considered there.

Definition 2.4 (Path decomposition, Pathwidth). Given a graph G, we say that (T,V) is
a path decomposition of G if it is a tree decomposition of G and T is a path. The Pathwidth
of G, denoted pw(G), is the minimum width of any path decomposition of G.

As claimed earlier, Pathwidth is in fact equivalent with a graph layout problem. (See
the next section for the formal definition of layout.)

Theorem 2.5 (Kinnersley, 1992). For every graph G, we have pw(G) = Layout(G;V,max).

2.2 Minimum Fill-In

Definition 2.6 (Chordal, Triangulation). A graph G is chordal if and only if every cycle
of length at least 4 has a chord. For any (possibly non-chordal) graph G, a triangulation of
G is a supergraph of G which is chordal.

Definition 2.7 (Minimum Fill-In). The Minimum Fill-In of a graph G is the minimum
number of edges required to add to G to triangulate it; i.e., so that the resulting supergraph
is chordal.

The problem of determining the Minimum Fill-In of a graph is sometimes called the
Chordal Graph Completion problem.

A perfect elimination ordering of G is an elimination ordering such that no edges are
ever added to G. Put another way, for each vertex vi, its neighbours appearing after it in
the ordering form a clique.

Theorem 2.8 (Fulkerson & Gross, 1965). A graph G is chordal if and only if it has a
perfect elimination ordering.

Treewidth and Minimum Fill-In are related through the following theorem.

Theorem 2.9 (Folklore). Suppose G is a graph with Treewidth k. Then every triangulation
of G has a clique of size k + 1.

2.3 Graph Layout Problems

In this subsection, we describe the set of graph layout problems that we consider. A problem
from the set is described by three parameters, giving rise to several different problems. These
three parameters are by no means the only interesting graph layout problems (and some
of the settings give rise to more or less uninteresting layout problems). However, they are
sufficient to capture the problems we are interested in except Treewidth, which in principle
could be incorporated as well though we refrain from doing so in order to keep the definitions
simple (see Section 2.1 for more details).
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First a word on notation. Throughout the paper, G = (V,E) denotes an undirected
graph, and D = (V,E) denotes a directed (acyclic) graph. Letting n denote the number of
vertices of the graph, we are interested in bijective mappings π : V → [n]. We say that an
edge (u, v) ∈ E crosses point i ∈ [n] (with respect to the permutation π, which will always
be clear from context), if π(u) ≤ i < π(v).

We consider the following variations:

1. Undirected or directed acyclic: In the case of an undirected graph G, any ordering
π of the vertices is a feasible solution. In the case of a DAG D, only the topological
orderings of D are feasible solutions.

2. Counting edges or vertices: for a point i ∈ [n] of the ordering, we are interested in
the set Ei(π) of edges crossing this point. When counting edges, we use the cardinality
of Ei as our basic measure. When counting vertices, we only count the set of vertices
Vi to the left of i that are incident upon some edge crossing i. In other words, Vi is
the projection of Ei(π) to the left-hand side vertices. Formally:

Ei(π) = {e ∈ E |π(u) ≤ i < π(v) where e = (u, v)}
Vi(π) = {u ∈ V |π(u) ≤ i < π(v) for some (u, v) ∈ E}

We refer to |Ei(π)| or |Vi(π)| (depending on whether we are counting edges or vertices)
as the cost of π at i.

3. Aggregation by sum or max: given an ordering π, we aggregate the costs of each
point i ∈ [n], by either summation or by taking the maximum cost.

Given these choices, the objective is to find a feasible ordering π that minimizes the
aggregated cost.

Definition 2.10. (Layout value) For a graph H (either an undirected graph G or a DAG
D), a cost function C (either E or V ), and an aggregation function agg : R∗ → R (either
Σ or max), we define Layout(H;C, agg) as the minimum aggregated cost over all feasible
orderings of H. Formally:

Layout(H;C, agg) = min
feasible π

agg
i∈[n]
|Ci(π)|.

Example 2.11.

Layout(G;E,max) = min
π

max
i∈[n]
|Ei(π)|,

where π ranges over all orderings of V (G). This we recognize from Section 1.5 as the
Minimum Cut Linear Arrangement value of G.

Example 2.12.

Layout(D;V,max) = min
π

max
i∈[n]
|Vi(π)|,

where π ranges over all topological orderings of the DAG D. As we shall see in Section 2.4,
this is precisely the One-Shot Black Pebbling cost of D.
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Problem Also known as / Equivalent with

undir. edge sum Minimum/Optimal Linear Arrangement

undir. edge max Minimum Cut Linear Arrangement
CutWidth

undir. vertex sum Interval Graph Completion
SumCut

undir. vertex max Pathwidth
One-Shot Black-White Pebbling

DAG edge sum Minimum Storage-Time Sequencing
Directed MLA/OLA

DAG edge max

DAG vertex sum

DAG vertex max One-Shot Black Pebbling
Register Sufficiency

Table 1: Taxonomy of Layout Problems

Combining the different choices gives rise to a total of eight layout problems (some more
natural than others). Several of these appear in the literature under one or more names,
and some turn out to be equivalent1 to problems that at first sight appear to be different.
We summarize some of these names in Table 1. In some cases the standard definitions of
these problems look somewhat different than the definition given here (e.g., for Pathwidth,
One-Shot Pebbling, and Interval Graph Completion). For the Pebbling and Pathwidth
problems, we discuss these equivalences of definitions in the following two sections.

For Interval Graph Completion, recall from Section 1.5 that the objective is to minimize∑
u∈V

max
(u,v)∈E

max{π(v)− π(u), 0}.

In other words, we are counting the longest edge going to the right from each point i. If
the length of this edge is l then the edge contributes 1 to Vi(π), . . . , Vi+l−1(π) and hence
the objective can be rewritten as ∑

u∈V
|Vi(π)|,

so that Interval Graph Completion is precisely Layout(G;V,Σ).

2.4 Pebbling Problems

In this section we define pebbling problems and their one-shot versions.

Definition 2.13. (Pebbling Configurations) Let D = (V,E) be a directed acyclic graph
(DAG). A pebbling configuration of D is a pair (B,W ) of (disjoint) subsets of vertices
(representing the set B of vertices that have black pebbles, and the set W of vertices that
have white pebbles on them).

1. Here, we consider two optimization problems equivalent if there are reductions between them that change
the objective values by at most an additive constant.
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Definition 2.14. (Black and Black-White Pebbling Strategies) Let D = (V,E) be a di-
rected acyclic graph. A Black-White Pebbling strategy for D is a sequence of pebble config-
urations P = {P0, . . . , Pτ} such that:

(i) the first and last configurations contain no pebbles; that is P0 = Pτ = (∅, ∅).

(ii) each sink vertex u of D is pebbled at least once, i.e., there is some Pt = (Bt,Wt) such
that u ∈ Bt ∪Wt.

(iii) each configuration follows from the previous configuration by one of the following
rules:

(a) A black pebble can be removed from a vertex.

(b) A black pebble can be placed on a pebble-free vertex v if all of the immediate
predecessors of v are pebbled.

(c) A white pebble can be placed on a pebble-free vertex.

(d) A white pebble can be removed from a vertex v if all of the immediate predeces-
sors of v are pebbled.

A Black Pebbling Strategy for G is a Black-White Pebbling strategy in which no white
pebbles are used.

The cost of a pebbling strategy is cost(P) = max0≤t≤τ{|Bt ∪Wt|}. The Black-White
Pebbling cost of D is the minimum cost of any Black-White Pebbling strategy of D, and
similarly the Black Pebbling cost of D is the minimum cost of any Black Pebbling Strategy
of D.

Definition 2.15. (One-Shot Black and One-Shot Black-White Pebbling) A One-Shot Black
(resp. Black-White) pebbling strategy is a Black (resp. Black-White) Pebbling strategy in
which each node is only pebbled once. The One-Shot Black (resp. Black-White) pebbling
cost of D, denoted BP1s(D) (resp. BWP1s(D)) is the minimum cost of any One-Shot Black
(resp. Black-White) Pebbling strategy of D.

As mentioned in Table 1, One-Shot Pebbling problems can be formulated as Layout
problems.

Lemma 2.16. For every DAG D = (V,E), we have BP1s(D) = Layout(D,V,max).

Proof. Suppose π is the optimal ordering of Layout(D,V,max), we pebble the vertices ac-
cording to π. We remove a pebble from vertex u if and only if all of the successors of
u are pebbled. Since π is a topological order of D, this is a valid pebbling strategy. It
is easy to verify that after pebbling π(i), the number of pebbles on the graph is |Vi(π)|.
Therefore the number of pebbles used in the above strategy is Layout(D,V,max). On the
other hand, suppose Γ is the optimal pebbling strategy, let σ be the ordering of vertices
to receive a pebble in Γ. We consider the number of pebbles on the graph after pebbling
the i-th vertex in σ. For any vertex u that has a pebble, if the vertex has a successor
that has not yet been pebbled, then the pebble on u cannot be removed, since u cannot
be pebbled again. Therefore the number of pebbles on the graph is at least |Vi(σ)|. Thus
BP1s(D) ≥ maxi∈[n] |Vi(σ)| ≥ Layout(D,V,max).
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For One-Shot Black-White Pebbling, we have the following reductions by Lengauer
(1981), showing that One-Shot Black-White Pebbling is equivalent to the undirected Max-
Vertex Layout Problem.

Lemma 2.17 (Lengauer, 1981). For a given DAG D = (V,E), let GD = (V,ED) be an
undirected graph with ED = {(v, w) | (v, w) ∈ E} ∪ {(v, w) | ∃u, (v, u), (w, u) ∈ E}. Then

BWP1s(D) = Layout(GD, V,max)− 1.

Lemma 2.18 (Lengauer, 1981). For an undirected graph G = (V,E), let DG = (V ∪E,EG)
be a DAG with EG = {(v, e) | e ∈ E, v ∈ V, v ∈ e}. Then

Layout(G,V,max) = BWP1s(DG) + 2.

2.5 Small Set Expansion Conjecture

In this section we define the SSE Conjecture. Let G = (V,E) be an undirected d-regular
graph. For a set S ⊆ V of vertices, we write ΦG(S) for the (normalized) edge expansion of
S,

ΦG(S) =
|E(S, V \ S)|

d|S|
The Small Set Expansion Problem with parameters η and δ, denoted SSE(η, δ), asks if G
has a small set S which does not expand or whether all small sets are highly expanding.

Definition 2.19 (SSE(η, δ)). Given a d-regular graphG = (V,E) 2, SSE(η, δ) is the problem
of distinguishing between the following two cases:

Yes There is an S ⊆ V with |S| = δ|V | and ΦG(S) ≤ η.

No For every S ⊆ V with |S| = δ|V | it holds that ΦG(S) ≥ 1− η.

This problem was introduced by Raghavendra and Steurer (Raghavendra & Steurer,
2010), who conjectured that the problem is hard.

Conjecture 2.20 (Small Set Expansion Conjecture). For every η > 0, there is a δ > 0
such that SSE(η, δ) is NP-hard.

As has become common for a conjecture like this (such as the Unique Games Conjecture),
we say that a problem is SSE-hard if it is as hard to solve as the SSE problem. Formally, a
decision problem P (e.g., a gap version of some optimization problem) is SSE-hard if there
is some η > 0 such that for every δ > 0, SSE(η, δ) polynomially reduces to P.

Subsequently, Raghavendra et al. (2012) showed that the SSE Problem can in turn be
reduced to a quantitatively stronger form of itself. To state this stronger version, we need
to first define Gaussian noise stability.

Definition 2.21. Let ρ ∈ [−1, 1]. We define Γρ : [0, 1]→ [0, 1] by

Γρ(µ) = Pr
[
X ≤ Φ−1(µ) ∧ Y ≤ Φ−1(µ)

]
where Φ−1 is inverse function of normal distribution, and X and Y are jointly normal

random variables with mean 0 and covariance matrix

(
1 ρ
ρ 1

)
.

2. d is a constant
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The only property we shall need of Γρ is the following well-known fact on the asymptotic
behaviour for ρ close to 1 and µ bounded away from 0.

Fact 2.22. (Raghavendra et al., 2012) There is a constant c > 0 such that for all sufficiently
small ε and all µ ∈ [1/10, 1/2],

Γ1−ε(µ) ≤ µ(1− c
√
ε).

We can now state the strong form of the SSE Conjecture.

Conjecture 2.23 (SSE Conjecture, Equivalent Formulation). For every integer q > 0 and
ε, γ > 0, it is NP-hard to distinguish between the following two cases for a given d-regular
graph G = (V,E)

Yes There is a partition of V into q equi-sized sets S1, . . . , Sq such that ΦG(Si) ≤ 2ε for
every 1 ≤ i ≤ q.

No For every S ⊆ V , letting µ = |S|/|V |, it holds that ΦG(S) ≥ 1− (Γ1−ε/2(µ) + γ)/µ.

For future reference, let us make two remarks about the strong form of the conjecture.

Remark 2.24. In the Yes case of Conjecture 2.23, the number of edges leaving Si is at
most

|E(Si, V \ Si)|3 = ΦG(Si)d|S| ≤ 4ε|E|/q.

In particular, the total number of edges that are not contained in one of the Si’s is at most

1

2

∑
i

|E(Si, V \ Si)| ≤ 2ε|E|.

Remark 2.25. Using Fact 2.22 we see that, in the No case of Conjecture 2.23, we have

ΦG(S) ≥ c′
√
ε,

for some constant c′ > 0, provided µ ∈ [1/10, 1/2] and setting γ ≤
√
ε. In particular, for

every |V |/10 ≤ |S| ≤ 9|V |/10, we have |E(S, V \ S)| ≥ c
√
ε|E| (switching roles of S and

V \ S for |S| > |V |/2), for some constant c > 0 (not the same constant as in Fact 2.22).

3. Brief Overview of Reductions

In this section, we give a very brief overview of the reductions used to prove that the layout
problems of Table 1 are SSE-hard to approximate within any constant factor. The full
details of these reductions can be found in Section 4.

For the two undirected edge problems (i.e., MLA and MCLA), the hardness follows
immediately from the strong form of the SSE Conjecture (Conjecture 2.23) – for the case of
MLA this was proved in the work of Raghavendra et al. (2012) and the proof for MCLA is
similar. This is our starting point for the remaining problems. Unfortunately, the results do

3. E(S1, S2) indicates the number of edges between vertex set S1 and S2
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SSE
Problem

Undirected Edge
 Problems (MLA/MCLA)

 with expansion

Directed Problems

Undirected Vertex
 Problems

Nice Pebbling
Instances

Treewidth

Figure 1: Overview of Reductions. Dashed arrows indicate that the reduction is obtained by
the identity mapping, whereas solid arrows indicate a nontrivial transformation
from one problem to the other.

not follow from hardness for MLA/MCLA in a black-box way; for the soundness analyses
we end up having to use the expansion properties of the original SSE instance.

We then give a reduction from MLA/MCLA to the four directed problems. This reduc-
tion simply creates the bipartite graph where the vertex set is the union of the edges and
vertices of the original graph G, with directed arcs from an edge e to the vertices incident
upon e in G. The use of direction here is crucial: it essentially ensures that both the vertex
and edge counts of any feasible ordering corresponds very closely to the number of edges
crossing the point in the induced ordering of G.

To obtain hardness for the remaining two undirected problems, we perform a similar
reduction as for the directed case, creating the bipartite graph of edge-vertex incidences.
However, since we are now creating an undirected graph, we can no longer force the edges to
be chosen before the vertices upon which they are incident, which was a key property in the
reduction for the directed case. In order to overcome this, we duplicate each original vertex
a large number of times. This gives huge penalties to orderings which do not “essentially”
obey the desired direction of the edges, and makes the reduction work out.

The results for Treewidth, which are presented in Section 5, follows from an additional
analysis of the instances produced by the reduction for undirected vertex problems.

Finally, the reduction for directed problems, implying hardness for One-Shot Black
Pebbling, does not produce the kind of “nice” instances promised by Theorem 1.3. In
Section 7, we give some additional transformation to achieve these properties.

Figure 1 gives a high-level overview of these reductions.

4. Hardness For Layout Problems

In this section, we show that all of the layout problems defined in Section 2.3 are SSE-
hard to approximate within any constant factor. This also shows that Pathwidth and the
One-Shot Pebbling problems are hard to approximate within any constant.

4.1 Hardness for MCLA and MLA

In this section, we recall the proof in the work of Raghavendra et al. (2012) for MLA, and
observe that it applies to MCLA as well. For an undirected graph G, let us write MCLA(G)
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(resp., MLA(G)) for the MCLA value (resp., MLA value) of G, i.e.,

MLA(G) = Layout(G;E,Σ) = min
π

∑
i∈[n]

|Ei(π)|

MCLA(G) = Layout(G;E,max) = min
π

max
i∈[n]
|Ei(π)|.

Theorem 4.1. For every ε > 0, given a graph G = (V,E), it is SSE-hard to distinguish
between:

Yes MLA(G) ≤ O(ε · |V | · |E|) and MCLA(G) ≤ O(ε|E|)

No For every S ⊆ V with |V |/10 ≤ |S| ≤ 9|V |/10, it holds that |E(S, V \ S)| ≥ Ω(
√
ε|E|).

In particular, MLA(G) ≥ Ω(
√
ε · |V | · |E|) and MCLA(G) ≥ Ω(

√
ε|E|).

Proof. We use the instances for Conjecture 2.23 with q = 1/ε. Let G = (V,E) be an
instance for Conjecture 2.23.

In the Yes case, we have disjoint sets S1, . . . , Sq and for each set Sj , |Sj | = n/q = εn,
ΦG(Sj) ≤ 2ε. We give an ordering π : V → [1, .., n] of the vertices such that maxi∈[n] |Ei(π)| ≤
3ε|E| as follows. Order the vertices as S1, . . . , Sq (with the order within each Sj chosen ar-
bitrary) and let this order be π. For any i ∈ [n], we show that |Ei(π)| ≤ 3ε|E|. Suppose
π−1(i) is a vertex in Sj . Each edge in Ei(π) either has both end-points inside Sj , or its end-
points in two different Sk’s. The total number of edges inside Sj is at most εdn/2 = ε|E|.
Moreover, by Remark 2.24, the total number of edges with end-points in two different Sk’s
is at most 2ε|E|. Therefore, MCLA(G) ≤ maxi |Ei(π)| ≤ 3ε|E|. The MLA value can be
bounded similarly.

The property of the No instance is the same as in Conjecture 2.23 (via Remark 2.25),
and the implications for the MLA and MCLA values are immediate.

4.2 Reduction To Directed Graphs

Given an undirected graph G = (V,E), we construct a directed graph D = (V ′, E′) as
follows. In order to distinguish the elements of V and E from the elements of V ′ and E′,
we refer to elements of V as vertices, elements of E as edges, elements of V ′ as nodes, and
elements of E′ as arcs.

There is a node in D for each vertex and for each edge of G, i.e., V ′ = V ∪ E. The
graph D is bipartite with bipartition V,E, and there is an arc in D from e ∈ E to v ∈ V if
e is incident upon v. Formally,

V ′ = V ∪ E
E′ = {(e, v) | e ∈ E, v ∈ V, v ∈ e}.

See also Figure 2.

The remainder of this section is devoted to analyzing the reduction. First, it is easy to
give an upper bound on the four Layout values of D in terms of the MLA and MCLA values
of G.

586



Inapproximability of Treewidth and Related Problems

u

v w

uv w

(u,w)(u, v)

DG

Figure 2: The reduction from G to D.

Lemma 4.2. The DAG D constructed from G as above satisfies the following:

Layout(D;E,Σ) ≤ (MLA(G) +O(|E|)) · (d+ 1)

Layout(D;E,max) ≤ MCLA(G) + d.

Note that, for the purposes of applying this to the graphs of Theorem 4.1 the error term
of |E| (resp. d) is insignifcant compared to the MLA (resp. MCLA) value of G.

Proof. Consider an ordering π of V . For a set of vertices S of V , let uπ(S) ∈ S denote the
vertex of S that comes first in the ordering π.

We extend π to an ordering π′ of V ′ by inserting each edge e = (u, v) immediately before
the vertex uπ(e). It is easy to see that for each node z ∈ V ′,

|Ez(π′)| ≤ |Euπ(z)(π)|+ d

where Ev(π) for a vertex v is an abbreviation for Eπ(v)(π). This immediately implies

Layout(D;E,max) ≤ max
z∈V ′
|Ez(π′)| ≤ max

u∈V
|Eu(π)|+ d,

Setting π to be an optimal MCLA ordering of G, we obtain the second claim of the Lemma.
Similarly, using that |u−1

π (v)| ≤ d+ 1 for every v ∈ V , we get

Layout(D;E,Σ) ≤
∑
z∈V ′
|Ez(π′)| =

∑
v∈V

∑
z∈V ′

uπ(z)=v

|Ez(π′)| ≤ (d+ 1)
∑
v∈V
|Ev(π)|+ d|V ′|,

Setting π to be an optimal MLA ordering of G and using |V ′| = O(|E|), we obtain the first
claim of the Lemma.

Next we use Theorem 4.1 to argue the converse direction.

Lemma 4.3. Let 0 ≤ ε < 1. Suppose G has the property that for every |V |/10 ≤ |S| ≤
9|V |/10 we have |E(S, V \ S)| ≥ Ω(

√
ε|E|). Then,

Layout(D;V,Σ) ≥ Ω(
√
ε|E|2)

Layout(D;V,max) ≥ Ω(
√
ε|E|)
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Proof. Let π′ be any ordering of V ′. Using the expansion property of Theorem 4.1, we’ll
show that this ordering must have high cost. For a point i ∈ [N ], let Si be the set of vertices
of V that appear after i in π′.

The bound on Layout(D;V,max) is immediate: consider a point i ∈ [N ] such that
|Si| = |V |/2. By the expansion property |E(Si, V \ Si)| ≥ Ω(

√
ε|E|), and since each such

edge e has one of its endpoints before or at point i, the node e itself must appear before
point i and thus |Vi(π′)| ≥ |E(Si, V \ Si)| ≥ Ω(

√
ε|E|).

Let us then turn to Layout(D;V,Σ). Write ci for the fraction of edges e that appear
before (or at) point i in π′. We shall show that whenever 1/5 ≤ ci ≤ 4/5, we have |Vi(π′)| ≥
Ω(
√
ε|E|), giving a total of Layout(D;V,Σ) ≥ Ω(

√
ε|E|2).

By a simple counting argument, we have

d|Si| ≥ 2(1− ci)|E|,

implying |Si| ≥ (1 − ci)|V | which for ci ≤ 4/5 is at least a 1/5 fraction of vertices. If in
addition |Si| ≤ 9|V |/10, the argument above gives |Vi(π′)| ≥ Ω(

√
ε|E|). The remaining case

is that |Si| ≥ 9|V |/10. But then Si is incident upon at least a 9/10 fraction of edges. This
implies that the number of edges incident upon Si, appearing before i in π′, are at least
|E|(ci − 1/10) which for ci ≥ 1/5 is Ω(

√
ε|E|).

Combining Lemma 4.2 and Lemma 4.3, with Theorem 4.1, and using the fact that edge
costs are always larger than the corresponding vertex costs, we immediately obtain the
following theorem.

Theorem 4.4. Given a DAG D, Layout(D;E,max), Layout(D;E,Σ), Layout(D;V,max),
and Layout(D;V,Σ) are all SSE-hard to approximate within any constant factor, even in
DAG’s with maximum path length 1 (i.e., every vertex is a source or a sink).

Proof. Given a graph G, Theorem 4.1 says that it is SSE-hard to distinguish between

Yes MLA(G) ≤ O(ε · |V | · |E|) and MCLA(G) ≤ O(ε|E|)

No For every S ⊆ V with |V |/10 ≤ |S| ≤ 9|V |/10, it holds that |E(S, V \ S)| ≥ Ω(
√
ε|E|).

In particular, MLA(G) ≥ Ω(
√
ε · |V | · |E|) and MCLA(G) ≥ Ω(

√
ε|E|).

Applying the reduction to directed graphs, Lemma 4.2 tells us that the Yes case becomes

Layout(D;E,Σ) ≤ (d+ 1)O(ε|V ||E|+ |E|) = O(ε|E|2)

Layout(D;E,max) ≤ O(ε|E|),

and Lemma 4.3 tells us that the No case becomes

Layout(D;V,Σ) ≥ Ω(
√
ε|E|2)

Layout(D;V,max) ≥ Ω(
√
ε|E|).

thereby establishing a hardness factor of Ω(1/
√
ε) for each of the four problems (using that

Layout(D;V, ·) ≤ Layout(D;E, ·)).
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(u, w)(u, v)
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u1, . . . , uru
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Figure 3: The reduction from G to G′, illustrated for r = 3.

Remark 4.5. In fact we see that, as in Theorem 4.1, the four hardness results apply to the
same instance, so that it is SSE-hard to distinguish all of the four Layout values being high
from all of them being low.

As the One-Shot Black Pebbling problem is precisely Layout(D;V,max), we obtain hard-
ness for One-Shot Black Pebbling as an immediate corollary. However, the instances are
not single-sink DAGs with maximum indegree 2, as promised in Theorem 1.3. In Section 7
we show how to transform the instances further to obtain such DAGs.

4.3 Undirected Vertex Problems

The reduction for undirected vertex problems is very similar to the reduction for directed
problems given in the previous section. As before, we introduce nodes for every edge of
G. As in the directed case, we are interested in orderings where an edge appears before its
two endpoints, but we cannot use direction to force this anymore. Instead, we ensure that
orderings that are not like this incur a high cost by replicating each node corresponding to
a vertex of G many times.

Given an undirected graph G = (V,E), we construct a new graph G′ = (V ′, E′) as
follows.

There are r nodes in G′ for each vertex and one node for each edge of G, i.e., V ′ =
V × [r] ∪ E. For a vertex u ∈ V we write u1, . . . , ur to denote the r copies of u and refer
to each such set of r nodes as a vertex group. The graph G′ is bipartite with bipartition
V × [r], E, and there is an edge in G′ between e ∈ E and vi ∈ V × [r] if e is incident upon
v. Formally,

V ′ = {vi | v ∈ V, i ∈ [r]} ∪ {e | e ∈ E}
E′ = {(e, vi) | e ∈ E, v ∈ V, v ∈ e, i ∈ [r]}.

See also Figure 3.
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Lemma 4.6. The graph G′ constructed from G as above satisfies the following:

Layout(G′;V,Σ) ≤ (d+ r)MLA(G)

Layout(G′;V,max) ≤ MCLA(G).

Proof. We proceed as in the proof of Lemma 4.2. An ordering π of V naturally induces an
ordering π′ of V ′: put all r copies of u ∈ V consecutively, with vertices of V appearing in the
same order as in π, and insert each edge e ∈ E immediately before its first vertex. Again,
for an edge e ∈ E, let uπ(e) denote the endpoint of e that appears first in π. Similarly, for
a copy vi ∈ V ′ of v ∈ V , let uπ(vi) = v. It is easy to see that the constructed ordering π′

satisfies

|Vz(π′)| ≤ |Euπ(z)(π)|

for every z ∈ V ′. This immediately implies

Layout(G′;V,max) ≤ max
z∈V ′
|Vz(π′)| ≤ max

u∈V
|Eu(π)|,

Similarly, as in Lemma 4.2 we use that |u−1
π (π)| ≤ d+ r and get

Layout(G′;V,Σ) ≤
∑
z∈V ′
|Vz(π′)| ≤ (d+ r)

∑
v∈V
|Ev(π)|.

Lemma 4.7. Let 0 ≤ ε < 1. Suppose G has the property that for every |V |/10 ≤ |S| ≤
9|V |/10 we have |E(S, V \ S)| ≥ Ω(

√
ε|E|). Then, if r ≥ |V | · |E|, we have

Layout(G′;V,Σ) ≥ Ω(
√
ε · r · |V | · |E|)

Layout(G′;V,max) ≥ Ω(
√
ε|E|)

Proof. Let π′ be an ordering of V ′. First we have the following simple claim, establishing
that for good orderings, most vertices appear after their edges.

Claim 4.8. Suppose that for some vertex u ∈ V , at least r/2 of the copies of u in G′ appear
before some edge e = (u, v) ∈ E adjacent upon u. Then

max
i∈[N ]

|Vi(π′)| ≥ r/4� Ω(
√
ε · |E|)∑

i∈[N ]

|Vi(π′)| ≥ (r/4)2 � Ω(
√
ε · r · |V | · |E|).

Proof. Let I1 be the first half of the positions where copies of u appear before e, and I2 the
second half. Thus, |I1|, |I2| ≥ r/4. Then each element of I1 contributes to Vi(π

′) for each
i ∈ I2, giving the claimed bounds.

Thus we may without loss of generality assume that for each vertex u of V , at least r/2
of its r copies in G′ appear after all edges adjacent upon u. From now on, let us discard all
the ≤ r/2 “bad” copies of each vertex of V that appear before some of its edges. This only
decreases the cost of π′, and there are still ≥ r|V |/2 vertex nodes left.

Let i1 be the (first) point of π′ such that r|V |/10 vertex nodes are to the left of i1, and
i2 the (last) point of π′ such that r|V |/10 vertex nodes are to the right of i2.
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Claim 4.9. For any point i between i1 and i2, we have |Vi(π′)| ≥ Ω(
√
ε|E|).

Proof. Let S ⊆ V (resp. T ⊆ V ) be the set of vertices u such that some copy of u appears

before i (resp. after i). We then have |S|, |T | ≥ r|V |/10
r/2 ≥ |V |/5, and S ∪ T = V . Thus

we can partition V into S′ ⊆ S, T ′ ⊆ T such that |S′|, |T ′| ≤ 4|V |/5. By the expansion
property of G we have |E(S′, T ′)| ≥ Ω(

√
ε|E|). Further, we also have |Vi(π′)| ≥ |E(S′, T ′)|

as each e ∈ E(S′, T ′) must appear before i in π′ (because one of their endpoints is in S)
but have an edge crossing i (because the other of their endpoints is in T ).

From Claim 4.9, the proof of the lemma follows immediately.

As in the previous section, we can now combine Lemma 4.6 and Lemma 4.7, with
Theorem 4.1, to obtain:

Theorem 4.10. Given a graph G, Layout(G;V,max), Layout(G;V,Σ) are both SSE-hard
to approximate within any constant factor, even in bipartite graphs.

As the Pathwidth problem is precisely Layout(G;V,max), we obtain hardness for Path-
width as an immediate corollary. In the next section, we’ll show the stronger soundness
required for Theorem 1.1.

5. Hardness For Treewidth

In this section we shall complete our proof of Theorem 1.1 by showing that the hard instances
for Pathwidth from Theorem 4.10 also have large Treewidth.

Lemma 5.1. Let 0 ≤ ε < 1. Let G = (V,E) be an undirected graph with the property that
for every |V |/10 ≤ |S| ≤ 9|V |/10 we have |E(S, V \S)| ≥ Ω(

√
ε|E|), and let G′ be the graph

obtained by applying the reduction of Section 4.3 to G. Then, if r ≥ |V | · |E|, we have

tw(G′) ≥ Ω(
√
ε|E|)

To prove Lemma 5.1, we shall use the fact that the Treewidth of a graph is closely
related to an expansion-like property called the 1/2-separator number, defined in the work
of Bodlaender et al. (1995).

Definition 5.2 (1/2-vertex separator, 1/2-separator number). Let G = (V,E) be an undi-
rected graph. For W ⊆ V , a 1/2-vertex separator of W in G is a set S ⊆ V of vertices such
that every connected component of the graph G[V − S] contains at most |W |/2 vertices of
W . Let ψG(1/2,W ) denote the minimum size of a 1/2-vertex separator of W in G. We
define the 1/2-separator number K1/2(G) to be

K1/2(G) = max
W⊆V

ψG(1/2,W ).

Lemma 5.3 (Bodlaender et al., 1995). For every graph G = (V,E), it holds that tw(G) ≥
K1/2(G)− 1.

Using this, it is now straightforward to prove the lower bound on the Treewidth.
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Proof of Lemma 5.1. We’ll show that ψG′(1/2, V ′) ≥ Ω(
√
ε|E|) (i.e. we choose W = V ′).

Suppose C is an optimal 1/2-vertex separator of V ′ and it separates V ′ \ C into l sets
V ′1 , . . . , V

′
l , each of size at most |V ′|/2. We can merge two sets in V ′1 , . . . , V

′
l by combining

the vertex set of them. By merging different V ′i we may assume that we only have two sets
V ′1 and V ′2 , both of size at least |V ′|/5 (this can be achieved by always merging the two sets
with smallest number of vertices, whever there are more than two sets left).

Now, similarly to the proof of Claim 4.9, let S ⊆ V (resp. T ⊆ V ) be the set of vertices
v such that some copy of V appears in V ′1 (resp. V ′2). As |V ′1 |, |V ′2 | ≥ r|V |/5, this implies
that both |S|, |T | are at least |V |/5, and furthermore S∪T = V (since otherwise all r copies
of some vertex are in C, implying |C| ≥ r � Ω(

√
ε|E|)). We can thus choose a balanced

partition S′, T ′ such that S′ ⊆ S, T ′ ⊆ T , and we have |E(S′, T ′)| ≥ Ω(
√
ε|E|). But every

edge e = (u, v) such that u ∈ S′ and v ∈ T ′ must belong to C, since it is connected (in G′)
to every copy of u and v.

6. Hardness for Minimum Fill-In

In this section, we use the previous construction and results for Treewidth to prove the inap-
proximability of Minimum Fill-In. Specifically, we will show that applying the construction
to the SSE No instances produces graphs with high Minimum Fill-In, while Yes instances
yields graphs with low Minimum Fill-In.

Lemma 6.1. Let 0 ≤ ε < 1. Let G = (V,E) be an undirected graph with the property
that for every |V |/10 ≤ |S| ≤ 9|V |/10 we have |E(S, V \ S)| ≥ Ω(

√
ε|E|), and let G′ be the

graph obtained by applying the reduction of Section 4.3 to G. Then, if r ≥ |V | · |E|, at least
Ω(ε|E|2) edges must be added to triangulate G′.

Proof. We use the observation that G′ is bipartite. Consider a minimum triangulation of
G, which must have a clique of size tw(G′) + 1. By Lemma 5.1, one set of of the bipartition
of G must have Ω(

√
ε|E|) vertices in this clique, and since these vertices are independent

in G′, Ω(ε|E|2) edges must be added.

Note that this lemma holds independently of the choice of q. Now we prove a good
upper bound on Yes instances.

Lemma 6.2. Let ε > 0 and q = 1/ε2. Let G = (V,E) be a d-regular graph, and suppose
there is a partition of V into q equi-sized sets S1, . . . , Sq such that ΦG(Si) ≤ 2ε for every
1 ≤ i ≤ q.

Let G′ = (V ′, E′) be the graph obtained by applying the reduction of Section 4.3 to G.
Then G′ has a triangulation with |E′|+O(ε2|E|2) edges.

Suppose G = (V,E) is a Yes instance of Conjecture 2.23 with parameters q, ε, with
q = 1/ε2, and apply the previous construction with r ≥ |V | · |E| to get a graph G′ = (V ′, E′).
Then G′ has a triangulation with |E′|+O(ε2|E|2) edges.

Proof. Note that it suffices to find a “good” ordering of the vertices of G′ which is close to
being a perfect elimination ordering, i.e., that requires few additional edges to turn it into
a perfect elimination ordering. For each i, we define the set

Ei = {(u, v) ∈ E | u, v ∈ Si}.
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Also define the set of “cut” edges Ec = {(u, v) ∈ E | u ∈ Si, v ∈ Sj , i 6= j}. Clearly, the Ei
together with Ec form a partition of E. Further define subsets of Ec by Eic = E(Si, V \Si),
the set of cut edges of Si. By the definition of the Si, ΦG(Si) ≤ 2ε, and hence |Eic| ≤
4ε|E|/q = 4ε3|E|. We’ll identify the Ei and Ec as subsets of Y in the constructed graph.

Now let π be an ordering of V ′ such that all r|V | of the vertex copies appear first (in any
order), followed by the sets E1, . . . , Eq, Ec in that order, where within each set the vertex
order is arbitrary. Now consider the following supergraph H of G′ obtained by:

• making each set Ei ∪ Eic a clique

• making Ec a clique/

Claim 1: This only adds O(ε2|E|2) edges.

Note that |Ei ∪ Eic| ≤ d|Si| = d|V |
q = ε2 |E|2 . Thus making Ei ∪ Eic a clique requires

O(ε4|E|2) edges. Since there are q = 1
ε2

of these cliques in total, this requires O(ε2|E|2)
edges total. Finally, by Remark 2.24, |Ec| ≤ 2ε|E|, so making this a clique takes O(ε2|E|2)
edges as well.

Claim 2: Adding these edges makes π a perfect elimination ordering for H.

Consider a vertex copy vk ∈ X. Its neighbours in H are the edges which are incident
with v; if v ∈ Si, then these edges must all be in Ei ∪Eic. So every vertex in X satisfies the
perfect elimination property. Now consider (u, v) ∈ Ei ⊆ Y . Its “edge” neighbours are all
in Ei or Eic. Finally, for every “edge” vertex (u, v) ∈ Ec, its only neighbours that appear
after it with respect to π are also in Ec.

Putting these two claims together yields the desired result.

Combining these two lemmas prove Theorem 1.2.

7. Nicer Pebbling Instances

In this section we show how to transform our hard instances for One-Shot Black Pebbling
so as to have in-degree bounded by 2 and single sinks.

Lemma 7.1. Given a DAG D = (V,E) we can in polynomial time construct a DAG
D′ = (V ′, E′) such that D′ has a single sink and

BP1s(D) ≤ BP1s(D′) ≤ BP1s(D) + s+ 1,

where s is the number of sinks in D. Furthermore, the maximum in-degree in D′ is no
larger than the maximum in-degree in D, provided this quantity is at least 2.

Proof. Construct D′ by adding a binary tree with s leaves to D, and identifying the leaves
of the tree with the sinks of D. That is, D′ consists of a binary tree with s leaves on top
of a copy of D where the leaves of the binary tree are identified with the sinks of D. The
number of vertices of D′ is equal to |D| + |s| − 1. Note that any binary tree with s leaves
will suffice. The properties of D′ are easily verified. Since D′ is a super-DAG of D, its
pebbling cost must be at least BP1s(D). Conversely, a valid pebbling of D′ can be obtained
by using a One-Shot Pebbling of D but without removing pebbles from the sinks, and then
pebbling the tree.
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Figure 4: Pyramid of size 4

For the in-degree, we prove the following.

Lemma 7.2. Given a DAG D = (V,E) we can in polynomial time construct a DAG
D′ = (V ′, E′) such that every node of D′ has in-degree at most 2 and

BP1s(D) ≤ BP1s(D′) ≤ BP1s(D) + d,

where d is the maximum in-degree of D. Furthermore, if D has a single sink then so does
D′.

Before proving Lemma 7.2, let us see how to use the two Lemmas to derive Theorem 1.3.

Proof of Theorem 1.3. By (the proof of) Theorem 4.4, there is a reduction which takes an
instance (G = (V,E) for Conjecture 2.23 and produces a dag D such that BP1s(D) =
Layout(D;V,max) = O(ε|E|) if G is a Yes instance, and BP1s(D) = Ω(

√
ε|E|) if G is a No

instance. The number of sinks in D is |V | = 2|E|/d, which is much smaller than O(ε|E|)
provided d � 1/ε (which may be assumed without loss of generality). The maximum in-
degree in D is the maximum degree of G which is d = O(1). Applying the reduction of
Lemma 7.1 and then the reduction of Lemma 7.2 we obtain a dag D′ with a single sink and
in-degree 2 such that BP1s(D) ≤ BP1s(D′) ≤ BP1s(D) + d + 2|E|/d. Since d + 2|E|/d �
O(ε|E|) ≤ BP1s(D), we conclude that it is SSE-hard to distinguish between BP1s(D′) ≤
O(ε|E|) and BP1s(D′) ≥ Ω(

√
ε|E|).

7.1 Lemma 7.2

In this section we prove Lemma 7.2. First, recall the definition of a pyramid graph.

Definition 7.3. A pyramid graph of size d is a layered graph of indegree two, with d layers,
labelled 0, 1, . . . , d−1. Layer zero (the input layer) consists of d vertices, and layer i contains
d− i vertices. Call the vertices at layer i v1

i , . . . v
d−i
i . For all i, 1 ≤ i ≤ d− 1, 1 ≤ j ≤ d− i,

Vertex vji has incoming edges from vertices vji−1 and vj+1
i−1 . See Figure 4.

The reduction of Lemma 7.2 to produce DAGs of indegree 2 is as follows. Construct D′

by replacing each vertex u by a pyramid Pu of size d(u) (here, d(u) denotes the indegree of
u), where the d(u) vertices at layer 0 of Pu are identified with the predecessors of u, and u
is identified with the vertex at layer d(u)− 1 of Pu. See Figure 5.
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v1 v1v2 v2v3 v3v4 v4v5 v5v6 v6v7 v7

u1 u2 u1 u2

Figure 5: Reduction to DAGs of indegree 2

To prove the lemma we need to show that D′ constructed this way satisfies

BP1s(D) ≤ BP1s(D′) ≤ BP1s(D) + d,

where d is the maximum indegree of any vertex u of D.

In what follows whenever we say “pebbling strategy” of D or D′ we always refer to a
One-Shot Black Pebbling strategy of D or D′.

The upper bound on BP1s(D′) is trivial: if S is a valid pebbling strategy for D, then
clearly we can create a corresponding pebbling strategy for D′ by pebbling through the
pyramid whenever D pebbles the sink of the pyramid. This takes at most d additional
pebbles.

In the other direction, we want to show that a pebbling strategy for D′ can be converted
into a pebbling strategy for D. We first show that D′ can be assumed to be in a particular
normal form, and then using this normal form, we show how to simulate the pebbling.

Definition 7.4. Let S′ be a pebbling strategy of D′. That is, S′ is a sequence of con-
figurations, where each configuration is a set of black pebble placements, and such that
the sequence of configurations follows the black pebbling rules. We say that configuration
c ∈ S′ is saturated with respect to a pyramid Pu if c is the first time in S′ that there is a
black pebble path cutting the sink of Pu from all of the sources of Pu. (The cut does not
include any sources or the sink of Pu.) Note that this cut has size d− 1.

Claim 7.5. Let S′ be a pebbling strategy for D′. We can assume without loss of generality
that S′ has the following normal form. For each configuration c′ ∈ S′, if c′ is saturated with
respect to pyramid Pu, then the subsequent moves of S′ pebble the sink of Pu (in the obvious
way), removing all other black pebbles on the internal nodes of Pu.

Proof Sketch. We show that any pebbling strategy can be converted into a normal form
strategy of the same pebbling cost. At a saturated configuration c′, there must be d − 1
pebbles on internal nodes of Pu. If we subsequently pebble the sink of p, we never use
more than d − 1 pebbles on internal nodes of p, and all other pebbles on the graph stay
as they were. Thus the normal form does not use more pebbles than the original strategy.
Furthermore, since the internal nodes of a pyramid are only used to pebble the sink of this
pyramid, we have not lost anything by pebbling through to the sink and removing the other
internal black pebbles.
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From now on we assume that the pebbling S′ of D′ has the above normal form. That is,
if a configuration is saturated (with respect to a pyramid Pu), the next thing that happens
in S′ is to pebble the sink of Pu. (After pebbling the sink, we will have not touched whatever
pebbles were on the source nodes of Pu, and we will have a pebble on the sink node of Pu,
and no other internal pebbles on Pu.)

Our strategy for constructing a pebbling, S, of D, given a normal form pebbling, S′ of
D′ is as follows. For each node v of D, pebble v whenever it is first pebbled in S′, and
remove the pebble from v as soon as all successors of v (in the original graph D) are pebbled.
We want to argue that the cost of the pebbling strategy S is not greater than that of S′.
To see this, we use the following Lemma.

Lemma 7.6. In any minimal-length One-Shot Black Pebbling of a size d pyramid, the
number of pebbles on the pyramid at any point in time, up until all sources are pebbled,
must be at least the number of sources in that pyramid that have been pebbled so far.

Assuming the above Lemma it is clear that if S′ is a normal form pebbling of D′, then
for any pyramid Pu in D′, and any configuration c′, if there are k pebbles on Pu at c′, then
in the corresponding configuration c of D, there are at most k pebbles on source nodes of
Pu. To see this, first notice that by the above Lemma, any time a pyramid is being pebbled
in D′ up until the time when all source nodes of the pyramid are pebbled for the first time,
the number of pebbles on the pyramid will be at least as large as the number of source
nodes in D that contain pebbles. Then by the normal form property of D′, as soon as all
source nodes of D′ are pebbled for the first time, the strategy pebbles the sink of D′, and
thus again the number of corresponding pebbles on D is never greater than the number of
pebbles on D′.

Proof of Lemma 7.6. Let P be a size d pyramid graph, and let S be a One-Shot Black
Pebbling of P . Let c be a configuration occurring in S such that the set of source nodes
that have been pebbled up to c are the source nodes of P ′, where P ′ is a size d′ sub-
pyramid of P . We want to argue that c must contain at least d′ pebbles. Assume without
loss of generality that P ′ is the leftmost sub-pyramid of P , of size d′ < d (with source
vertices v1

0, . . . , v
d′
0 .) Consider the outer rightmost vertices of P ′ – those vertices with labels

v1
d′−1, v

2
d′−2, . . . , v

d′−1
1 , vd

′
0 . Relabel these outer rightmost vertices of P ′ by vd−1, ..., v0, where

vd−1 is the sink vertex of P ′, and for all i < d− 1, vi is the rightmost vertex in P ′ at level i.
Corresponding to each named vertex vi is a diagonal set of vertices, diag(vi), beginning at
vi and travelling southwest to a source vertex of P ′. Note that the sets diag(vi) are pairwise
disjoint. We will argue that for each i, 0 ≤ i ≤ d−1, at least one vertex from diag(vi) must
appear in c. To see this, first notice that for each vi, there is a vertex v′i that is an immediate
successor of vi and that lies outside of P ′. This vertex v′i must be pebbled at some point,
and furthermore it must be pebbled at some time after configuration c, since pebbling v′i
requires pebbling a source vertex of P that is not in P ′, and the only source vertices that
have been pebbled so far are the source vertices of P ′. But in order to pebble v′i in the
future, if S is a minimal-length pebbling, then there must be a black pebble on some vertex
in diag(vi) in c. (In a minimal-length pebbling of graph G, if any set of configurations is
removed from the pebbling, what results is no longer a black pebbling of G.) Thus, we have
shown that if c is any configuration in S such that d′ < d source vertices are pebbled thus
far, then there must be d′ vertices pebbled in c.
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8. Conclusion and Open Problems

We proved SSE-hardness of approximation for a variety of graph problems. Most im-
portantly we obtained the first inapproximability result for the Treewidth problem and
Minimum Fill-In.

Some remarks are in order. The status of the SSE conjecture is, at this point in time,
very uncertain, and our results should therefore not be taken as absolute evidence that
there is no polynomial time approximation algorithm for (e.g.) Treewidth. However, at the
very least, our results do give an indication of the difficulty involved in obtaining such an
algorithm for Treewidth, and builds a connection between these two important problems.
We also find it remarkable how simple our reductions and proofs are. We leave the choice
of whether to view this as a healthy sign of strength of the SSE Conjecture, or whether to
view it as an indication that the conjecture is too strong, to the reader.

There are many important open questions and natural avenues for further work, includ-
ing:

1. It seems plausible that these results can be extended to a wider range of graph layout
problems. For instance, our two choices of aggregators max and Σ can be viewed as
taking `∞ and `1 norms, and it seems likely that the results would apply for any `p
norm (though we are not aware of any previous literature studying such variants).

2. It would be nice to obtain hardness of approximation result for our problems based
on a weaker hardness assumption such as UGC. It is conjectured in the work of
Raghavendra et al. (2012) that the SSE conjecture is equivalent to UGC. Alternatively,
it would be nice to show that hardness of some of our problems imply hardness for
the SSE Problem.

3. For pebbling, it would be very interesting to obtain results for the unrestricted peb-
bling problems (for which finding the exact pebbling cost is even PSPACE-hard). As
far as we are aware, nothing is known for these problems, not even, say, whether one
can obtain a non-trivial approximation in NP. As mentioned in the introduction, we
are currently working on extending our One-Shot Pebbling results to bounded time
pebblings. We have some preliminary progress there and are hopeful that we can relax
the pebbling results to a much larger class of pebblings.
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