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Abstract
Multi-view learning aims to improve classification performance by leveraging the consistency

among different views of data. The incorporation of multiple views was paid little attention in the
studies of domain adaptation, where the view consistency based on source data is largely violated in
the target domain due to the distribution gap between different domain data. In this paper, we lever-
age multiple views for cross-domain document classification. The central idea is to strengthen the
views’ consistency on target data by identifying the associations of domain-specific features from
different domains. We present an Information-theoretic Multi-view Adaptation Model (IMAM)
using a multi-way clustering scheme, where word and link clusters can draw together seeming-
ly unrelated features across domains, which boosts the consistency between document clusterings
that are based on the respective word and link views. Moreover, we demonstrate that IMAM can
always find the document clustering with the minimal disagreement rate to the overlap of view-
based clusterings. We provide both theoretical and empirical justifications of the proposed method.
Our experiments show that IMAM significantly outperforms traditional multi-view algorithm co-
training, the co-training-based adaptation algorithm CODA, the single-view transfer model CoCC
and the large-margin-based multi-view transfer model MVTL-LM.

1. Introduction

In many mission-critical applications of data mining, natural language processing and information
retrieval, it is typically expensive and time-consuming to obtain appropriate training data to learn
the needed models. For example, sentiment classifiers for online reviews need to work properly on
data of different types of products; search engines must provide consistent quality of service on the
Web data in the markets of different languages or verticals. However, the training data commonly
exist only in a limited number of domains. Collecting and annotating data for all different domains
would become practically prohibitive.

Domain adaptation is a task that utilizes the training data out of the domain (i.e., out-of-domain
or source domain) to effectively transform the relevant knowledge to the domain where the task is
performed (i.e., in-domain or target domain). Abundant labeled data may exist in a source domain
such as webpage data for training a general Web search ranker, but they are not readily available in
target domains such as the ranking systems for image search or music search. The out-of-domain
data are commonly drawn from some form of feature distribution that is different from that of the
in-domain counterpart. Bridging the domain gap is a challenging issue for the model learned from
source domain to be generalized well in target domain. For practical reasons, domain adaptation
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is of great importance to many real-world applications, such as entity mention detection (Daumé
III & Marcu, 2006), document classification (Sarinnapakorn & Kubat, 2007), sentiment classifi-
cation (Blitzer, Dredze, & Pereira, 2007), part-of-speech tagging (Jiang & Zhai, 2007), and more
recently Web search ranking (Gao, Cai, Wong, & Zhou, 2010; Cai, Gao, Zhou, & Wong, 2011a,
2011b; Gao & Yang, 2014).

Many types of data can be represented by multiple independent sets of features, reflecting the
different views of the data. For example, in document classification, Web document features consist
of not only the word-based features but also the features based on link structures among the doc-
uments (Blum & Mitchell, 1998); in Web search, document rankers accept both query-dependent
features (e.g., tfidf, BM25, language-modeling IR scores, etc.) as well as query-independent fea-
tures (e.g., page rank, inlink/outlink numbers, url click count, etc.) (Gao, Blitzer, Zhou, & Wong,
2009). Traditionally, the learning scheme called multi-view learning aims to improve classifiers by
leveraging the redundancy and consistency among these distinct views (Blum & Mitchell, 1998;
Rüping & Scheffer, 2005; Abney, 2002). Existing methods of multi-view learning were designed
for the data from a single domain, which assumes that either view alone can predict the in-domain
class consistently and accurately. However, this view-consistency assumption is largely violated in
the setting of domain adaptation where training and test data are drawn from different distributions
(which is empirically justified in the experiment section). In such a case, domain adaptation with
multiple views of data needs to be investigated carefully.

Little research has been done on multi-view domain adaptation in the literature. Zhang, He,
Liu, Si, and Lawrence (2011) proposed an instance-based multi-view transfer learning approach
that integrates the loss of cross-domain classification and multi-view consistency in a large margin
framework. However, the instance-level approach assumes that some useful source training exam-
ples can be identified and reused to train the target model. It cannot mine the relationships at feature
level such as the correlation between source-specific and target-specific features, and may perform
poorly since target-specific features are the key for good adaptation performance (Blitzer, Kakade,
& Foster, 2011).

In this work, we present an Information-theoretical Multi-view Adaptation Model (IMAM) that
combines the paradigms of multi-view learning and domain adaptation based on an co-clustering
framework (Dhillon, Mallela, & Modha, 2003) and aims to transfer knowledge across domains in
multiple subspaces of features complementarily. IMAM exploits a multi-way-clustering-based clas-
sification scheme to simultaneously cluster documents, words and links into their respective clusters.
The word and link clusterings can automatically associate the specific features from different do-
mains that seemingly may not be directly correlated. Such correlations can bridge the domain gap
and then enhance the consistency of distinct views when clustering (i.e., classifying) the target data.
The more consistent the views, the better the document clustering, and then the better the word and
link clustering, which creates a cycle of positive feedback and gradually improves the adaptation
performance. In essence, the enhanced consistency of views helps to bridge the domain gap (i.e.,
by finding more cross-domain feature correlations), and vice versa. We also provide theoretical jus-
tifications for the proposed approach regarding the objective, convergence property and the optimal
solution. Our experimental results demonstrate that IMAM significantly outperforms the state-of-
the-art baselines including the traditional single-domain multi-view algorithm co-training (Blum &
Mitchell, 1998), the co-training-based domain adaptation algorithm CODA (Chen, Weinberger, &
Blitzer, 2011), the single-view transfer learning algorithm CoCC (Dai, Xue, Yang, & Yu, 2007a)
and the instance-level multi-view transfer learning algorithm MVTL-LM (Zhang et al., 2011).
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The rest of the paper is organized as follows: Section 2 reviews the related work; Section 3
describes the background concepts on which we build our model; Section 4 presents the proposed
the IMAM model and the corresponding algorithm; Section 5 analyses the realization of consistency
between distinct views in our model; Section 6 discusses the experiments and results; Finally, we
conclude in Section 7 with prospects on future work.

2. Literature Review

Domain adaptation assumes that multiple tasks can benefit from certain structures of data shared be-
tween different distributions. Existing methods can be divided into instance-based approach (Jiang
& Zhai, 2007; Dai, Yang, Xue, & Yu, 2007b), feature-based approach (Blitzer et al., 2007; Dai et
al., 2007a) and parameter-based approach (Dayanik, Lewis, Madigan, Menkov, & Genkin, 2006).
Pan and Yang (2010) presented a comprehensive survey of transfer learning which described do-
main adaptation as a sub-category of transfer learning. We would not give comprehensive review
on domain adaptation for this reason. Interested readers may refer to the survey paper (Pan & Yang,
2010) for details.

The work closely related to ours was done by Dai et al. (2007a), where they proposed a co-
clustering-based classification (CoCC) algorithm to learn from the out-of-domain data and apply
the learned classifier to the in-domain task. CoCC extended the information-theoretic co-clustering
method proposed by Dhillon et al. (2003), where in-domain constraints were added to word clusters
to provide a class structure and partial categorization knowledge. However, CoCC is a single-view
algorithm which cannot leverage the complementary nature of multiple views. Our framework is an
extension from single-view CoCC, and our algorithm is focused on strengthening the consistency of
predictions between distinct views across two domains, which is considered the key to the success
of multi-view domain adaptation.

Multi-view learning has been studied extensively under single-domain setting. Co-training is
the first multi-view algorithm, which trained a learner on each view of labeled examples and then
let each learner label the unlabeled examples that receive the highest confidence (Blum & Mitchell,
1998). It was proved that the two independent yet consistent views can be used to learn a con-
cept in the PAC framework based on few labeled and many unlabeled examples. Many extensions
were proposed following the idea of co-training. Collins and Singer (1999) introduced an explicit
objective function that measures the compatibility of learned hypotheses and used boosting to op-
timize the function. Dasgupta, Littman, and McAllester (2001) provided PAC-like guarantees for
co-training providing an upper bound for the error of classifiers learned from two views. Abney
(2002) relaxed the view independence assumption and suggested that there may be an underlying
principle which gives rise to a family of new methods: the disagreement rate of two independent
hypotheses upper bounds the error rate of either hypothesis. Sridharan and Kakade (2008) proposed
an information-theoretic framework for multi-view learning. They showed how to derive incompat-
ibility functions for certain loss functions of interest so that minimizing this incompatibility over
unlabeled data helps reduce expected loss on the test data. Nevertheless, multi-view learning gener-
ally is not effective for domain adaptation since they treat the domain divergence indiscriminately,
which is empirically justified in our experiments (see Experiments and Results section).

Multi-view adaptation is not well studied in the literature. Daumé III, Kumar, and Saha (2010)
proposed a co-regularization based approach (EA++) to semi-supervised domain adaptation. EA++
builds on the feature augmentation and harnesses unlabeled data in target domain to assist the trans-
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fer of information from source to target. Different from EA++ that aims to make the different
hypotheses learned from different distributions agree on unlabeled data, we consider a true multi-
view setting and try to make the hypotheses learned from different views consistent with each other.
Furthermore, EA++ builds the classifier on the transformed feature space via feature augmentation,
while our proposed method learns the hypotheses on the mapped feature space via multi-way clus-
tering. Chen et al. (2011) proposed CODA for adaptation based on co-training (Blum & Mitchell,
1998), which is however a pseudo multi-view algorithm for the original data that have only one
view. In order to apply CODA for the real multi-view data, the views have to be first concatenat-
ed and then split into multiple pseudo-views. Therefore, it is not suitable nor natural for the true
multi-view case as ours. He and Lawrence (2011) proposed a graph-based learning framework to
tackle the problems with both feature heterogeneity and task heterogeneity. Their algorithm is a
transductive learning approach. Zhang and Huan (2012) proposed an inductive multi-view learning
algorithm for multiple related tasks. They used co-regularization to obtain view-based classifier-
s that agree with each other on unlabeled data and ensure that the learned functions are similar
in each view across different tasks. Both of these two algorithms were designed for multi-task
learning rather than transfer learning. Zhang et al. (2011) proposed an instance-level multi-view
transfer algorithm that integrates classification loss and view consistency terms based on large mar-
gin framework. The instance-level approach assumes that some similar source training examples
can be identified and reused to train the target model. However, the performance of instance-based
approach is generally poor when new target features lack support from source data (Blitzer et al.,
2011). We focus on feature-level multi-view adaptation, where adaptation takes place in the multi-
ple transformed feature spaces simultaneously and complementarily. To the best of our knowledge,
there are no existing work focused on the feature-level multi-view domain adaptation except for
our preliminary study recently published (Yang, Gao, Tan, & Wong, 2012). This paper extends the
work of Yang et al. (2012) substantially by providing the detailed algorithm, theoretical justification
and comprehensive empirical evaluation, which were not specifically presented in the preliminary
version.

3. Background Concepts

Our multi-view approach is based on the co-clustering (Dhillon et al., 2003) and co-clustering-based
classification (CoCC) model (Dai et al., 2007a) for building the underlying clusters of each view.
Before going to the details of our model, we will briefly describe some background concepts and
lemmas related to the co-clustering techniques in this section.

Mutual information is a fundamental measure to quantify the mutual dependence of two ran-
dom variables. Let I(X,Y ) be the mutual information of variables X and Y , which is defined as
I(X,Y ) =

∑
x

∑
y p(x, y)log p(x,y)

p(x)p(y) (Cover & Thomas, 1991). Mutual information can also be
expressed in the form of Kullback-Leibler (KL) divergence, i.e., I(X,Y ) = D (p(x, y)||p(x)p(y)).
Given two discrete random variablesX and Y with joint probability distribution p(x, y), co-clustering
approach (Dhillon et al., 2003) aims to simultaneously clusterX into disjoint clusters X̂ , and Y into
disjoint clusters Ŷ . The quality of co-clustering is measured by the resulting loss based on mutual
information:

I(X,Y )− I(X̂, Ŷ )

For the given X and Y , since I(X,Y ) is fixed, minimizing the above equation is equivalent to
maximizing I(X̂, Ŷ ).
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For the simplicity of expression, a joint distribution q(x, y) = p(x̂, ŷ)p(x)
p(x̂)

p(y)
p(ŷ) is defined to

approximate the probability p(x, y) under co-clustering (X̂, Ŷ ). Note that the distribution q(x, y)
preserves the marginals of p(x, y). That is, for any x ∈ x̂, y ∈ ŷ, we have q(x) = p(x) because

q(x) =
∑
y

q(x, y) =
∑
ŷ

∑
y∈ŷ

p(x̂, ŷ)
p(x)

p(x̂)

p(y)

p(ŷ)
=
∑
ŷ

p(x̂, ŷ)
p(x)

p(x̂)
= p(x).

Likewise we have q(y) = p(y).
Dhillon et al. (2003) proved that the loss in mutual information between pre- and post-clustering

can be reformulated as the KL-divergence between p(x, y) and an approximation q(x, y), which is
given as the following lemma:

Lemma 3.1. For a fixed co-clustering (X̂, Ŷ ), the loss in mutual information can be expressed as

I(X,Y )− I(X̂, Ŷ ) = D (p(x, y)||q(x, y)) ,

where D(·||·) is the KL-divergence, and q(x, y) is the distribution of the form

q(x, y) = p(x̂, ŷ)
p(x)

p(x̂)

p(y)

p(ŷ)
,

where x ∈ x̂ and y ∈ ŷ.

For completeness and clarity, we reproduce the illustrative example given by Dhillon et al.
(2003) for interpreting Lemma 3.1. Consider the joint distribution of (X,Y ) represented by a 6*6
matrix below: 

.05 .05 .05 0 0 0

.05 .05 .05 0 0 0
0 0 0 .05 .05 .05
0 0 0 .05 .05 .05
.04 .04 0 .04 .04 .04
.04 .04 .04 0 .04 .04


It follows naturally that the rows are divided into three clusters: x̂1 = {x1, x2}, x̂2 = {x3, x4} and
x̂3 = {x5, x6}, and the columns clustering is: ŷ1 = {y1, y2, y3}, ŷ2 = {y4, y5, y6}. The resulting
joint distribution of (X̂, Ŷ ) is given by:  .3 0

0 .3
.2 .2


It can be verified that the mutual information loss in this co-clustering is .0957, which is the mini-
mum among all the possible co-clusterings.

4. Information-Theoretic Multi-view Adaptation Model (IMAM)

We will first introduce the motivation, and then will describe our model and its algorithm.
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4.1 Motivation

Traditional multi-view learning such as co-training framework (Blum & Mitchell, 1998) employs
two basic assumptions: (1) the target functions in each view agree on the labels of most examples
(consistency assumption); and (2) the views are independent given the class label (independence
assumption). The first assumption reduces the complex learning problem to the search of compatible
functions; and the second assumption allows the model to achieve high-confidence predictions since
it becomes unlikely for consistent classifiers trained on independent views to agree on an incorrect
label.

Considering the training and test data drawn from different distributions, nonetheless, the con-
sistency assumption is mostly violated because the distinct views agreeing on the labels of source
data are unnecessarily compatible on the labels of target examples due to the domain gap. There-
fore, it can be expected that traditional multi-view learning framework will not work effectively
across different domains, which can be empirically justified in the comparison experiments. Hence,
how to enhance the consistency among multiple views and bridge the gap among different domains
simultaneously is the key issue for the multi-view domain adaptation approach to succeed.

Without loss of generality, we will focus on cross-domain document classification in this paper
where the document representation consists of two views such as word and link. Given text docu-
ments from two domains, there would be a set of common word features available on both domains,
considered as domain-independent features, and the remaining words would be regarded as either
source-specific or target-specific features. The same taxonomy regarding domain-independent and
domain-specific features also apply to the inter-document links, e.g., the hyperlinks or citations
features.

From a single view’s perspective, source-specific and target-specific features can be drawn to-
gether by mining their co-occurrence with domain-independent features. IMAM exploits multi-
way clustering to correlate those seemingly unrelated domain-specific features via the domain-
independent features which act as a bridge. Such correlations help bridge the domain gap and facili-
tate the adaptation (Dai et al., 2007a). From multiple view’s perspective, if the word and link clusters
constructed over the two domains are of high quality, the corresponding target document clustering
resulted from either view can be subsequently improved due to the effect of co-clustering (Dhillon
et al., 2003). It can be expected that the predictive power of distinct views on the target data tends
to become more concordant and approaches to the optimal solution. Our model leverages comple-
mentary cooperation between different views to yield better adaptation performance.

Next, we will present some representational preliminaries and the objective function of our
multi-view adaptation model, and then an iterative two-phase algorithm is presented to optimize the
objective.

4.2 The Graphical Representation

Let DS be the training documents of source domain and DT be the unlabeled documents of the
target domain. The source and target data are assumed to draw from different feature spaces where
the i.i.d. assumption no longer holds. Some features are defined in source or target domain only
while some others are defined in both domains. We simply expand the feature space to include all
features of both domains where the missing features in either domain are replenished as 0. LetW be
the vocabulary of the entire document collection D = DS ∪DT . Each d ∈ D can be represented by
a bag-of-words set {w|w ∈ d∧w ∈W}. Let L be the set of all links (hyperlinks or citations) in the
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collection. Each d can be also represented by a bag-of-links set {l|l ∈ d∧ l ∈ L}. D and L naturally
form independent sets of features respectively corresponding to word view and link view. Let C
denote the set of class labels shared between the two domains. Each source document ds ∈ DS is
labeled with a unique class label c ∈ C. Our objective is to assign the appropriate class label to
target document dt ∈ DT as accurately as possible. Note that we assume there is no labeled data
available in target domain, which follows the transductive learning scheme. Transductive approach
is a typical domain adaptation setting, which is more general and widely applicable to different
scenarios including the inductive setting where only a small number of labeled target data exist.

Figure 1 shows the graphical multi-view adaption model representation, where D̂, Ŵ and L̂ are
the respective clusterings of documents, words and links. Additionally, the multi-way clusterings
mutually constrain each other and are subject to various explicit and implicit association relation-
ships. Explicit association includes two types of constraints: (1) Document clustering is constrained
by word clustering and link clustering; (2) Word or link clustering is constrained by document clus-
tering and class labels. Implicit association means that the class label knowledge is transferred from
source documents to target documents through word and link clusters.

Figure 1: The graphical representation of the proposed multi-view adaptation model.

Our model incorporates such a multi-way clustering scheme that simultaneously clusters doc-
uments, words and links. The clustering functions are defined as CD(d) = d̂ for documents,
CW (w) = ŵ for words and CL(l) = l̂ for links, where d̂, ŵ and l̂ represent the corresponding
clusters.

4.3 Preliminaries – Co-clustering-Based Classification

Dai et al. (2007a) proposed a co-clustering-based classification framework, namely CoCC, to learn
a classifier from source-domain documents and then use it to classify target-domain documents. In
their approach, co-clustering was leveraged as a bridge to transfer the knowledge from source to
target.

Co-clustering aims to simultaneously cluster target documents DT into clusters D̂T and words
W into clusters Ŵ . Since the problem is to classify target-domain documents, the key is to make use
of the knowledge about classes in the data of source domain for the co-clustering process. Such kind
of correlation between the source document class knowledge and the target document clustering can
be established by considering their respective relationship with the word clusters as an intermediary.
A good word clustering should minimize the loss in mutual information between class labels and
words before and after clustering for the source data, and meanwhile it should minimize the same
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loss between documents and words for the target data. Therefore, the loss function of CoCC (Dai et
al., 2007a) is formulated as follows:

I(DT ,W )− I(D̂T , Ŵ ) + λ
[
I(C,W )− I(C, Ŵ )

]
where λ is a trade-off parameter that balances the effect to word clusters from co-clustering and
word clustering.

4.4 Objective Function

We extend the information-theoretic framework for co-clustering (Dhillon et al., 2003) and co-
clustering-based classification (Dai et al., 2007a) by incorporating the loss terms from multiple
views. Co-clustering aims to minimize the loss of mutual information between pre- and post-
clustering with respect to a pair of clustering variables, such as documents and words. The ob-
jective of our Information-theoretic Multi-view Adaptation Model (IMAM) is to minimize the loss
by trading off different views:

Θ = αΘW + (1− α)ΘL (1)

where

ΘW = I(DT ,W )− I(D̂T , Ŵ ) + λ
[
I(C,W )− I(C, Ŵ )

]
(2)

ΘL = I(DT , L)− I(D̂T , L̂) + λ
[
I(C,L)− I(C, L̂)

]
. (3)

ΘW and ΘL are the loss terms based on word view and link view, respectively, and α is the trade-off
coefficient. In Eq. 2, I(DT ,W ) − I(D̂T , Ŵ ) measures the loss of word-document co-clustering,
I(C,W )− I(C, Ŵ ) measures the loss between vocabulary and class labels, and λ is the weight of
the loss for word clustering. Class labels act as indirect constraints added on vocabulary via source
documents and are propagated to target documents through co-clustering. In Eq. 3, we have the
similar loss term for the link view. When α = 1, the function relies on text information only, which
reduces to CoCC (Dai et al., 2007a). But unlike CoCC (Dai et al., 2007a), we aim to learn the
cross-domain classifiers for multi-view data.

It is worth noting that by substituting Eq. 2 and 3 in Eq. 1 and ignoring the constant terms, we
can reformulate the problem as the following maximization, which is kind of easier to interpret:

αI(D̂T , Ŵ ) + (1− α)I(D̂T , L̂) + λ
[
αI(C, Ŵ ) + (1− α)I(C, L̂)

]
where the first two terms enforce that the view consistency on D̂T , which means that the document
clusters D̂T should preserve their mutual information with both words and links as much as possible,
and the last two terms enforce transfer of information from source to target via agreement with labels
C, which indicates that the source label knowledge should be maximally preserved by both word
and link clusters.

Given the multi-view data data from different domains, the central problem would be how dif-
ferent views could cooperate each other to form consistent target class output in the scenario where
different domain data follow different distributions. This is challenging because the view consisten-
cy based on source data is largely violated in the target domain due to the domain gap. To tackle
this problem, we aim to simultaneously enhance the consistency among multiple views and bridge
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the gap among different domains in a unified objective. IMAM exploits multi-way clustering to en-
rich common words (and links) by drawing together those seemingly unrelated source-specific and
target-specific words (and links). Such correlations bridge the domain gap and facilitate the adap-
tation process. On the other hand, IMAM takes the weighted combination of view-based loss of
mutual information. As pointed out in Section 5 (Consistency of Multiple Views), the optimal doc-
ument clustering is to optimize the weighted sum of word-view and link-view document clustering
functions, and try to minimize the disagreement between different views. Moreover, the multi-way
clustering scheme imposes the constraints on all of document and word/link clustering, which can
make them mutually benefit from each other. In summary, IMAM uses such a boosting procedure
to enhance the view consistency and bridge domain gap simultaneously, and can be expected to
improve the adaptation performance on the multi-view data.

4.5 IMAM Algorithm

Based on q(x, y) defined in Section 3, we can also define the corresponding conditional distribu-
tion q(x|ŷ) = q(x,y)

p(y) under co-clustering. For any x ∈ x̂, we can easily prove that q(x|ŷ) =

p(x|x̂)p(x̂|ŷ). Therefore, for any w ∈ ŵ, l ∈ l̂, d ∈ d̂ and c ∈ C, we can calculate a set of
conditional distributions including q(w|d̂), q(d|ŵ), q(l|d̂), q(d|l̂), q(c|ŵ), q(c|l̂).

The objective of Eq. 1 is hard to optimize directly because it contains mutual information of
two clusterings, which is a combinatorial optimization problem. Therefore, we transform it to the
form of KL-divergence between two conditional distributions in Lemma 4.1 in order to facilitate
our search for the optimal value. Let D(p(x|y)||q(x|y)) denote KL-divergence between p(x|y) and
q(x|y), which is defined as

D(p(x|y)||q(x|y)) =
∑
x

p(x|y)log
p(x|y)

q(x|y)
.

We have the following lemma, and using the similar technique as in Dhillon et al. (2003), we provide
its proof in the Appendix A.

Lemma 4.1 (Objective functions). Equation 1 can be turned into the form of alternate minimization
between two objectives:
(i) For document clustering while keeping word and link clustering fixed, we minimize

Θ =
∑
d

p(d)φD(d, d̂) + φC(Ŵ , L̂)

where φC(Ŵ , L̂) is a constant1 and

φD(d, d̂) = αD(p(w|d)||q(w|d̂)) + (1− α)D(p(l|d)||q(l|d̂)).

(ii) For word and link clustering while keeping document clustering fixed, we minimize

Θ = α
∑
w

p(w)φW (w, ŵ) + (1− α)
∑
l

p(l)φL(l, l̂)

1. We can prove that φC(Ŵ , L̂) = λ
[
α(I(C,W )− I(C, Ŵ )) + (1− α)(I(C,L)− I(C, L̂))

]
, where MI between

class label and other variables is constant.
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Algorithm 1 Algorithm for IMAM
Input:

Document-term matrices DS ×W and DT ×W ;
Document-link matrices DS × L and DT × L;
Class label c ∈ C assigned to each doc d ∈ DS ;
# of document clusters (i.e., # of classes);

Output:
Class label assigned to each document d ∈ DT ;

1: Set t = 0. Initialize document clustering C(0)D using NBC. Initialize word clustering C(0)W and link clus-
tering C(0)L randomly;

2: Initialize distributions q(0)(w|d̂), q(0)(l|d̂), q(0)(d|ŵ), q(0)(d|l̂), q(0)(c|ŵ), q(0)(c|l̂);
3: repeat
4: Document clustering: For each d, find its new cluster index using Eq. 4;
5: Keep q(t+1)(c|ŵ) = q(t)(c|ŵ) and q(t+1)(c|l̂) = q(t)(c|l̂);

Update q(t+1)(w|d̂), q(t+1)(l|d̂), q(t+1)(d|ŵ), q(t+1)(d|l̂);
6: Word clustering: For each word w, find its new cluster index using Eq. 5;

Link clustering: For each link l, find its new cluster index using Eq. 6;
7: Update q(t+2)(w|d̂), q(t+2)(l|d̂), q(t+2)(d|ŵ), q(t+2)(d|l̂), q(t+2)(c|ŵ) and q(t+2)(c|l̂);
8: t = t+ 2;
9: until no document’s cluster index needs to adjust

10: for each unlabeled d ∈ DT do
11: Assign d the class label based on Eq. 7;
12: end for

where for any feature v (e.g., w and l) in feature set V (e.g., W and L)

φV (v, v̂) = D(p(d|v)||q(d|v̂)) + λD(p(c|v)||q(c|v̂)).

The intuition of the optimization is that given the document-word and document-link matrices,
let us simultaneously re-order documents in the two matrices such that all documents mapping to the
first document cluster are arranged first, followed by all documents mapping to the second cluster,
and so on. A good document clustering tries to ensure the consistency between different views.
Next, let us simultaneously re-order words and links in document-word and document-link matrices
in a similar way. A good word (or link) clustering draws indirectly related domain-specific words
(or links) together since both of them may co-occur with domain-independent words (or links) in
the documents. The document-word-link interaction helps finding an optimal multi-way clustering.

Lemma 4.1 allows us to alternately reorder either documents or both words and links, which is
shown as Algorithm 1, in such a way that the mutual information loss decreases monotonically (see
Lemma 4.2).

4.5.1 ALGORITHM

The algorithm starts with an initial multi-clustering (C(0)
D , C(0)

W , C(0)
L ) and iteratively refines it

until the algorithm converges. The algorithm uses a two-phase iterative procedure to minimize
the loss, in which it first searches for the best document clustering while keeping word and link
clustering unchanged, and then clusters words and links while document clustering remains fixed.

In step 1, Naive Bayes classifier (NBC) is trained on source data DS and used to predict the
class of target data DT , which produces the initial document clustering of entire D. Note that the
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cluster index of source documents is fixed with class labels. Thus, the allocation of each target
document to certain cluster also means that the document is assigned with the corresponding class
label. It is worth noting since the objective Eq. 1 is non-convex, it will be somewhat sensitive to the
initialization. Hence, instead of random initialization, we use NBC to generate the initial document
clusterings so as to keep it start from some good points.

Step 4 updates the cluster index for each d:

C(t+1)
D (d) = arg min

d̂

[
αD(p(w|d)||q(t)(w|d̂)) + (1− α)D(p(l|d)||q(t)(l|d̂))

]
(4)

Step 6 updates the cluster index of each w:

C(t+2)
W (w) = arg min

ŵ

[
D(p(d|w)||q(t+1)(d|ŵ)) + λD(p(c|w)||q(t+1)(c|ŵ))

]
(5)

and then updates the cluster index of each l:

C(t+2)
L (l) = arg min

l̂

[
D(p(d|l)||q(t+1)(d|l̂)) + λD(p(c|l)||q(t+1)(c|l̂))

]
(6)

Note that Algorithm 1 does not separately update the membership of each word and link since
there are implicit association relationships between the word clustering and link clustering via doc-
ument clustering. The document clustering acts as the bridge to make word clustering and link
clustering mutually affect each other.

After finishing the multi-way clustering procedure, we assign each target document d ∈ DT

with the class label predicted by

c∗ = arg min
c∈C

[
αD(p(w|c)||q(w|d̂)) + (1− α)D(p(l|c)||q(l|d̂))

]
(7)

Lemma 4.2 below guarantees the convergence of the algorithm, and its proof is given in the
Appendix B by borrowing the similar technique from Dhillon et al. (2003). Note that finding a
global minimum for multi-way clustering is NP-hard, and IMAM uses a greedy approach to find a
local minimum, which does not guarantee the global optimum. But usually we can run experiments
multiple times and then average over the performance of different runs.

Lemma 4.2 (Convergence). IMAM monotonically reduces the objective given in Equation 1. That
is,

Θ(t) ≥ Θ(t+1)

Θ(t+1) ≥ Θ(t+2)

where t = 0, 2, 4, . . .

5. Consistency of Multiple Views

In this section, we present how the consistency of document clustering on target data could be en-
hanced among multiple views, which is the key issue of our multi-view adaptation method. We
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particularly discuss the relationship between the disagreement rate of views and the optimal docu-
ment clustering function.

In each iteration of Algorithm 1, the optimal document clustering function C(t+1)
D (see Eq. 4)

is to minimize the weighted sum of KL-divergences used in optimal word-view and link-view doc-
ument clustering functions as shown above. The optimal word-view clustering functions can be
denoted as follows:

C(t+1)
DW

(d) = arg min
d̂

D(p(w|d)||q(t)(w|d̂)) (8)

and similarly the link-view function as

C(t+1)
DL

(d) = arg min
d̂

D(p(l|d)||q(t)(l|d̂)) (9)

Our central idea is that the document clusterings C(t+1)
DW

and C(t+1)
DL

based on the two views are
drawn closer in each iteration due to the word and link clusterings (Eq. 5 and 6) that bring together
seemingly unrelated source-specific and target-specific features. Meanwhile, C(t+1)

D combines the
two views and reallocates the documents so that it maintains the consistency with the view-based
clusterings as much as possible.

5.1 Disagreement Rate of Views

Suppose Ω = {Fi|Fi(d) = d̂, d̂ ∈ D̂} is the set of all document clustering functions where the
number of clusters is fixed. For any document, a consistency indicator function with respect to any
two clustering functions can be defined as follows (Round indicator t is omitted for simplicity):

Definition 1 (Indicator function) For any d ∈ D, and any Fi ∈ Ω, Fj ∈ Ω

δFi,Fj (d) =

{
1, if Fi(d) = Fj(d);
0, otherwise

Then we define the disagreement rate between two view-based clustering functions:

Definition 2 (View disagreement rate) For any Fi ∈ Ω and Fj ∈ Ω

η(Fi,Fj) = 1−
∑

d∈D δFi,Fj (d)

|D|
(10)

Obviously, η(CDW , CDL) denotes the disagreement rate between the word-view and link-view
clustering functions. Abney (2002) suggests that the disagreement rate of two independent hy-
potheses upper-bounds the error rate of either hypothesis. By minimizing the disagreement rate on
unlabeled data, the error rate of each view can be minimized (so does the overall error). However,
the disagreement rate function is not continuous nor convex, which is difficult to optimize directly2.
Alternatively, we minimize the mutual information loss in Eq. 1 as a surrogate for the disagreement
rate function. We believe that the mutual information loss is a good surrogate because, as discussed
in Section 4.4, Eq. 1 aims to enhance the view consistency, which is equivalent to minimizing the
disagreement rate of views. Moreover, we show empirically that by optimizing Eq. 1 the disagree-
ment rate η(CDW , CDL) is indeed monotonically decreased with the iterations in our experiments
(see Section 6).

2. Abney (2002) used a greedy approach.
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5.2 View Combination

Note that in practice the view-based document clusterings in Eq. 8 and Eq. 9 are not computed
explicitly. Instead, Eq. 4 directly optimizes the view combination and produces the document clus-
tering. Therefore, it is necessary to disclose how consistent the combined view-based clustering
could be with the individual view-based clusterings.

For any Fi ∈ Ω, we obtain the disagreement rate η(Fi, CDW ∩ CDL), where CDW ∩ CDL de-
notes the clustering resulting from the overlap of the individual view-based clusterings. Note that
the co-training style algorithms usually assume that the multiple views are redundant. Thus, the
intersection of them would not be empty. We obtain Lemma 5.1 as below, and its proof is given in
the Appendix C.

Lemma 5.1. The optimal document clustering function CD in IMAM model always minimizes the
disagreement rate for any Fi ∈ Ω such that

η(CD, CDW ∩ CDL) = min
Fi∈Ω

η(Fi, CDW ∩ CDL)

And meanwhile, η(CD, CDW ∩ CDL) = η(CDW , CDL).

Lemma 5.1 suggests that IMAM always finds the document clustering with the minimal dis-
agreement rate to the overlap of the individual view-based clusterings, and the minimal value of
disagreement rate equals to the disagreement rate of the individual view-based clusterings.

6. Experiments and Results

In this section, we empirically evaluate the IMAM algorithm for the cross-domain document clas-
sification tasks in comparison with the state-of-the-art baselines.

6.1 Data and Setup

Cora (McCallum, Nigam, Rennie, & Seymore, 2000) is an online archive which contains approxi-
mately 37,000 computer science research papers and over 1 million links among documents. The
documents are categorized into a hierarchical structure. We selected a subset of Cora, which con-
tains 5 top categories and 10 sub-categories (the numbers are in the parenthesis):

- DA 1: /data structures algorithms and theory/computational complexity/ (711)
- DA 2: /data structures algorithms and theory/computational geometry/ (459)
- EC 1: /encryption and compression/encryption/ (534)
- EC 2: /encryption and compression/compression/ (530)
- NT 1: /networking/protocols/ (743)
- NT 2: /networking/routing/ (477)
- OS 1: /operating systems/realtime/ (595)
- OS 2: /operating systems/memory management/ (1,102)
- ML 1: /machine learning/probabilistic methods/ (687)
- ML 2: /machine learning/genetic algorithms/ (670)

Based on this dataset, we used a similar way as Dai et al. (2007a) to construct our training
and test sets. For each set, we chose two top categories, one as positive class and the other as
the negative. Different sub-categories were deemed as different domains. The task is defined as
top category classification. For example, the subset denoted as DA-EC consists of source domain:
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DA 1(+), EC 1(-); and target domain: DA 2(+), EC 2(-). The method ensures the domains of
labeled and unlabeled data related due to same top categories, but the domains are different because
they are drawn from different sub-categories. Such preprocessing is a common practice for data
preparation for adaptation purpose. Some previous work (Ling, Dai, Xue, Yang, & Yu, 2008; Dai
et al., 2007a) found that baseline SVM as well as transductive SVM classifiers trained on source-
domain data performed much worse on the target domain, implying large domain gap between them.
We have the same finding on this dataset by using transductive SVM.

We preprocessed the data for both text and link information. For the texts, we removed stop
words and low-frequency words with count less than 5. For the links, we removed the links with less
than 5 citation counts. Then the standard TF-IDF (Salton & Buckley, 1988) technique was applied
to both the text and link datasets. Moreover, we generated the merged dataset by concatenating both
the word and link features together.

Reuters-21578 (Lewis, 2004) is widely used for the evaluation of automatic text categorization
algorithms. Reuters-21578 corpus also has a hierarchical structure, which contains 5 top categories.
We used the pre-processed version of the corpus that is public accessible3. The statistics of this
dataset can be seen in Table 1. Based on these data, we generated separate information representing
two views: the first view corresponds to the features using the TF-IDF scores of terms; the second
view corresponds to the topic-based features (i.e. document-topic distributions) obtained by apply-
ing probabilistic Latent Semantic Analysis (pLSA)4 on the term counts information, where the topic
number was set to 200.

Subset Source Target
Orgs-People OrgsPeople.src (1,237) OrgsPeople.tar (1,208)
Orgs-Places OrgsPlaces.src (1,016) OrgsPlaces.tar (1,043)
People-Places PeoplePlaces.src (1,077) PeoplePlaces.tar (1,077)

Table 1: The statistics of Reuters-21578 dataset.

Using Cora dataset, we conducted experiments with IMAM for studying the influence of differ-
ent parameters and the manifestation of view disagreement rate. Also, we compared IMAM with
various state-of-the-art domain adaptation algorithms on both Cora and Reuters datasets. In order
to avoid the infinity values, we applied Laplacian smoothing when computing the KL-divergence.

6.2 Parameter Sensitivity

We first studied the influence of some important parameters, i.e., the number of word/link clusters,
α, and λ.

6.2.1 INFLUENCE OF CLUSTER NUMBER

Figure 2 shows the error rate curves varying with different number of word (and link) clusters on
the 4 subsets: DA-EC, DA-NT, DA-OS and EC-NT. The X-axis represents the number of word (and
link) clusters which is tuned from 32 to 512. According to the performance shown in the figure, we
empirically set the number of word (and link) clusters to 128.

3. http://www.cse.ust.hk/TL/dataset/Reuters.zip.
4. http://lear.inrialpes.fr/people/verbeek/code/plsa.tar.gz.
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Figure 2: Error rate curves varying with different number of word/link clusters.

6.2.2 INFLUENCE OF α

Figure 3 shows that the performance curves vary with different values of α. The error rate generally
decreases first and then increases when α is augmented. As always, the algorithm performs worst
when the model heavily relies on either the text information (0.9 ≤ α ≤ 1.0) or the link structure
(0 ≤ α ≤ 0.1). And setting α between 0.5 and 0.8 achieved the best results on most of the sub-
sets. This implies that the two views of document are complementary. Therefore, in the remaining
experiments, we set the value of α to 0.7.

Figure 3: Error rate curves varying with different settings of α.

6.2.3 INFLUENCE OF λ

λ is used for propagating class labels from source document class to target document clustering
through word and link clusters. Surprisingly, we did not observe its significant influence on most
of the subsets. This is because we used NBC to initialize document clusterings for a good starting
point, and the class information, though not accurately, could be largely propagated to the words
and link clusters at the next iteration. This observation is similar to that of Dai et al. (2007a) when
the number of their word clusters was appropriately provided. We empirically set λ to 0.5 after
trying 0, 0.25, 0.5, 1, 2 and 4.
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DA-EC DA-NT DA-OS DA-ML EC-NT Average
η on source 0.179 0.157 0.188 0.184 0.210 0.184
η on target 0.251 0.224 0.275 0.211 0.234 0.239

Table 2: The view disagreement rates under different domains using co-training.

Iteration 1 2 3 4 5 γ

DA-EC ε 0.194 0.153 0.149 0.144 0.144 0.998
η 0.340 0.132 0.111 0.101 0.095

DA-NT ε 0.147 0.083 0.071 0.065 0.064 0.996
η 0.295 0.100 0.076 0.069 0.064

DA-OS ε 0.129 0.064 0.052 0.047 0.041 0.998
η 0.252 0.092 0.068 0.060 0.052

DA-ML ε 0.166 0.102 0.071 0.065 0.064 0.984
η 0.306 0.107 0.076 0.062 0.054

EC-NT ε 0.311 0.250 0.228 0.219 0.217 0.988
η 0.321 0.137 0.112 0.096 0.089

Table 3: View disagreement rate (η) and error rate (ε) both decrease with iterations. Their correla-
tion is denoted as γ.

6.3 View Disagreement Rate η

In this section, we studied the view disagreement rate for two different purposes: (1) we experi-
mentally verified that the view consistency assumption was violated due to distinct domains for the
traditional multi-view learning using co-training, which justified our motivation to reduce the view
disagreement rate; (2) we examined the property of view disagreement rate based on our method
and revealed its relationship with the cross-domain classification performance.

6.3.1 η WITH CO-TRAINING

In this experiment, for each subset, the source data were splitted into two portions, one portion
for training and the other for testing. The traditional multi-view algorithm co-training (Blum &
Mitchell, 1998) was trained on the source training set, and then the model was evaluated on the
source test set and the target test set separately. The first result corresponds to the single-domain
performance and the second corresponds to cross-domain performance.

As shown in Table 2, it is clear that the view disagreement rate on the target domain is consid-
erably higher than that on the source domain. It implies that the domain gap is likely to deteriorate
view consistency. As Abney (2002) pointed out, view consistency is directly related to classification
error rate, which is upper bounded by the view disagreement rate. Our finding from this experiment
seems consistent with this claim, and furthermore, it implies that it would be helpful to overcome
domain gap by enhancing the view consistency on target data.

6.3.2 η WITH IMAM

Here we examined the variance of disagreement rate η(CDW , CDL) between view-based clusterings
and its correlation with the error rate ε.
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We used the Pearson’s correlation to measure the dependence of the disagreement rate and error
rate, which takes the value between -1 (perfect negative correlation) and 1 (perfect positive cor-
relation). Table 3 shows the monotonic decrease of disagreement rate η and error rate ε with the
iterations, and their correlation γ is nearly perfectly positive. This indicates that IMAM may grad-
ually improves adaptation performance by strengthening the consistency between different views,
and alternatively, IMAM increases classification performance, which then causes the different views
to be more consistent. Both procedures are therefore reciprocal causation. This is achieved by
the mutual reinforcement of word and link clustering that draws together those target-specific and
source-specific features, which are originally unrelated but could co-occur with the common fea-
tures across the two domains.

6.4 Convergence

The convergence property of IMAM is shown as Figure 4. IMAM uses a two-phase iterative pro-
cedure to find a local optimal point. The convergence is guaranteed by Lemma 4.2. We can see
that the number of documents needed to be reassigned into different clusters decreases very fast
during the first 5 iterations and reaches 0 after 10 iterations. Thus, we terminate the algorithm after
a maximum of 15 iterations.

Figure 4: Number of documents needed to be reassigned into different clusters varies with itera-
tions.

6.5 Algorithms for Comparison

We compared IMAM with a variety of the state-of-the-art algorithms including Transductive SVM5

(TSVM) (Joachims, 1999) which is a semi-supervised classifier, co-training (Co-Train) (Blum &
Mitchell, 1998), the co-clustering-based single-view transfer learning CoCC (Dai et al., 2007a),
the large-margin-based multi-view transfer learning MVTL-LM (Zhang et al., 2011) and the co-
training-based adaptation algorithm CODA6 (Chen et al., 2011). We used both Cora and Reuters
datasets for the comparative study.

On both datasets, for the ease of presentation, we used the postfix -C, -L and -CL to denote that
the classifier was fed with data of different views. For Cora dataset, -C, -L and -CL represent the text

5. http://svmlight.joachims.org/.
6. http://www1.cse.wustl.edu/˜mchen/code/coda.tar.
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Subset TSVM-C TSVM-L TSVM-CL Co-Train MVTL-LM CODA CoCC-C CoCC-L CoCC-CL IMAM
DA-EC 0.293 0.157 0.214 0.230 0.192 0.234 0.149 0.227 0.187 0.138
DA-NT 0.175 0.137 0.114 0.163 0.108 0.076 0.106 0.132 0.115 0.069
DA-OS 0.276 0.261 0.262 0.175 0.068 0.109 0.075 0.086 0.067 0.039
DA-ML 0.217 0.114 0.107 0.171 0.183 0.150 0.109 0.098 0.095 0.047
EC-NT 0.305 0.220 0.177 0.296 0.261 0.178 0.225 0.296 0.239 0.191
EC-OS 0.355 0.201 0.245 0.175 0.176 0.187 0.137 0.116 0.125 0.074
EC-ML 0.333 0.205 0.168 0.206 0.264 0.322 0.203 0.269 0.237 0.173
NT-OS 0.364 0.501 0.396 0.220 0.288 0.240 0.107 0.142 0.115 0.070
NT-ML 0.205 0.106 0.101 0.132 0.071 0.025 0.054 0.094 0.047 0.031
OS-ML 0.202 0.170 0.179 0.128 0.126 0.087 0.051 0.051 0.062 0.021
Average 0.272 0.207 0.196 0.190 0.174 0.161 0.122 0.151 0.129 0.085

Table 4: Error rate of classification adaptation on Cora dataset.

Subset TSVM-C TSVM-L TSVM-CL Co-Train MVTL-LM CODA CoCC-C CoCC-L CoCC-CL IMAM
OrgsPeople 0.246 0.263 0.227 0.251 0.230 0.177 0.185 0.219 0.191 0.153
OrgsPlaces 0.278 0.304 0.263 0.270 0.249 0.226 0.214 0.235 0.221 0.192

PeoplePlaces 0.294 0.335 0.286 0.318 0.260 0.275 0.245 0.262 0.248 0.218
Average 0.273 0.301 0.259 0.280 0.246 0.226 0.215 0.239 0.220 0.188

Table 5: Error rate of classification adaptation on Reuters-21578 dataset.

view, link view and two views, respectively; for Reuters dataset, they correspond to term view, topic
view and two views. If the examined classifier is inherently multi-view, both of the views’s data
were fed to it. Such algorithm include TSVM-CL, co-training, MVTL-LM, CoCC-CL, and IMAM.
Since CODA is a pseudo multi-view adaptation algorithm, to fit our scenario, the CODA was fed
with the merged view which could be automatically split into the sub-views. For each algorithm,
the parameters were tuned by using five-fold cross-validation on training data. To cancel out local
optimal results, we repeated the algorithms five times for each subset and reported the average error
rate.

All the algorithms were trained on the source data and then tested on the target data. The
classification error rate on target data is used as evaluation metric, which is defined as the ratio of
the number of misclassified documents to that of total documents.

6.6 Performance Comparison

Table 4 shows the results of comparison on Cora dataset, and Table 5 shows the same on Reuters-
21578. We have consistent findings on the two datasets.

On both datasets, TSVM performed poorly for adaptation when using either content or link fea-
tures alone. Simply merging the two sets of features makes some improvements, implying that text
and link in Cora data (or, term and topic in Reuters data) can be complementary, but it may degrade
the confidence of the classifier on some instances whose features become conflicting because of
merging. Co-training can avoid this problem by boosting the confidence of classifiers built on the
distinct views in a complementary way, and its performance is comparable with TSVM though it
uses a weaker base classifier. Since both TSVM and co-training do not consider the distribution
gap, they performed clearly worse than CoCC even though CoCC is a single-view approach.

On both datasets, CODA outperformed co-training and MVTL-LM by splitting the feature space
into multiple pseudo views and iteratively adding the shared source and target features based on
their compatibility across domains. However, it could not be comparably effective than IMAM. It
seems that the pseudo views automatically generated by CODA are not as complementary as the
original view partition on these two datasets. It performed even worse than the COCC under single-
view setting, indicating that sometimes pseudo views might be detrimental. The relatively lower
performance of CODA may be explained as follows. It might happen that the original formation
of the two views on our data was reasonably good, but after they were combined into one view,
it was likely that CODA could be stuck in a poor locally optimal decomposition of features due
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to the non-smooth, non-convex nature of its objective function. Since its model parameters were
initialized randomly, repeating the algorithm did not guarantee a better solution. In contrast, the
objective function of IMAM, although non-convex, is smooth, and also, instead of using random
initialization we used NBC to initialize the document clusters to ensure a good starting point.

IMAM significantly outperformed both CoCC-C and CoCC-L on all the subsets. In average,
the error rate of IMAM is 30.3% lower than that of CoCC-C (or 43.7% lower than that of CoCC-
L). This is because IMAM effectively leverages distinct and complementary views. Compared to
CoCC, using source training data to improve the view consistency on target data is the key compe-
tency of IMAM. Moreover, IMAM performed much better than the CoCC-CL. Unlike CoCC-CL
which simply concatenates the two-view data, our technique is to strengthen the view consistency
by bootstrapping two CoCC models iteratively and complementarily. In our model the two CoCC
models communicate complementarily in each iteration, which consequently boosts the consistency
between the two views.

The result shows that multi-view adaptation using MVTL-LM performs worse than IMAM on
most subsets. A general explanation suggests that instance-based approach relying on instance
weighting are not effective when the data of different domains are drawn from different feature
spaces. Although MVTL-LM regulates view consistency on both domains’ instances, it cannot
identify the useful correlation between the target-specific and source-specific features, which is the
key to the success of adaptation especially when the domain gap is large and little commonality
could be found. In contrast, CoCC and IMAM can use co-clustering or multi-way clustering to find
such correlation.

Note that we use different ways to generate the multi-view data for the two datasets. Different
from Cora dataset which has natural multiple views, i.e., text and link, we generate the term and
topic views for Reuters-21578 dataset based on the text information only. Nevertheless, the results
on both datasets show that IMAM works well on different types of multi-view data by using the
multi-way clustering to enhance the view consistency.

7. Conclusion and Future Work

We presented a novel feature-level multi-view adaptation approach called IMAM for cross-domain
document classification. The thrust of our technique is to incorporate distinct views of document
features into the multi-way clustering framework and gradually strengthen the view consistency for
classifying target documents. The improvements over the state-of-the-art baselines are substantial.
We provided both theoretical and empirical justifications regarding the properties of the proposed
algorithm. Experiments show that it considerably outperforms the state-of-the-art baselines includ-
ing the multi-view single-domain algorithm co-training, the co-training-based adaptation CODA,
the single-view adaptation CoCC as well as the instance-level multi-view adaptation MVLT-LM.

Multi-view domain adaptation is a promising direction since its underlying principle and prac-
tice are still open questions. As part of our ongoing work, we will further explore the foundations
and limitations of multi-view domain adaptation. For example, multiple views might hurt adapta-
tion performance when domains or views are very “dissimilar”. Although it was not observed in
our experiments, it needs to be analyzed more deeply. In addition, due to practical reasons, we did
not directly optimize the consistency measure, i.e., view disagreement rate. Instead, we adopted the
information-theoretical framework to optimize the mutual information loss, which worked well but
may not be the ideal solution. In the future, we will study the techniques of directly optimize the
consistency measure of views.
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Appendix A. Proof of Lemma 4.1

Proof. The proof of Lemma 4.1 can be divided into two parts.
(i) For document clustering:

Note that the word and link clusterings keep fixed in this phase. Thus the mutual information
between class label and word (or link) clusters remains unchanged during the document clustering
phase, that is,

φC(Ŵ , L̂) = λ
[
α(I(C,W )− I(C, Ŵ )) + (1− α)(I(C,L)− I(C, L̂))

]
is a constant. By using Eq. 1, we can obtain

Θ− φC(Ŵ , L̂)

= αΘW + (1− α)ΘL − φC(Ŵ , L̂)

= α
[
I(DT ;W )− I(D̂T ; Ŵ )

]
+ (1− α)

[
I(DT ;L)− I(D̂T ; L̂)

]
= α

∑
d̂

∑
ŵ

∑
d∈d̂

∑
w∈ŵ

p(d,w) log
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p(d̂)p(ŵ)
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p(d, l)p(d̂)p(l̂)

p(d̂, l̂)p(d)p(l)

= α
∑
d̂

∑
ŵ

∑
d∈d̂

∑
w∈ŵ

p(d,w) log
p(d,w)

q(d,w)
+ (1− α)

∑
d̂

∑
l̂

∑
d∈d̂

∑
l∈l̂

p(d, l) log
p(d, l)

q(d, l)

= α
∑
d̂

∑
ŵ

∑
d∈d̂

∑
w∈ŵ

p(d)p(w|d) log
p(w|d)

q(w|d̂)
+ (1− α)

∑
d̂

∑
l̂

∑
d∈d̂

∑
l∈l̂

p(d)p(l|d) log
p(l|d)

q(l|d̂)

= α
∑
d̂

∑
d∈d̂

p(d)
∑
ŵ

∑
w∈ŵ

p(w|d) log
p(w|d)

q(w|d̂)
+ (1− α)

∑
d̂

∑
d∈d̂

p(d)
∑
l̂

∑
l∈l̂

p(l|d) log
p(l|d)

q(l|d̂)

=
∑
d̂

∑
d∈d̂

p(d)
[
αD(p(w|d)||q(w|d̂)) + (1− α)D(p(l|d)||q(l|d̂))

]
=
∑
d

p(d)φD(d, d̂)

(ii) For word and link clustering:
Note that the document clusterings remains unchanged in this phase. Using the similar technique

as above, we can obtain

Θ = α
∑
w

p(w)φW (w, ŵ) + (1− α)
∑
l

p(l)φL(l, l̂)

By combining steps (i) and (ii), Lemma 4.1 can be proved.
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Appendix B. Proof of Lemma 4.2

Proof. The proof of Lemma 4.2 can be divided into two parts.
(i) For document clustering: Note that the word and link clusterings keep fixed in this phase.

Θ
(t) − φ(t)

C
(Ŵ , L̂)

(a)
=

∑
d̂

∑
d:C(t)

D
(d)=d̂

p(d)
[
αD(p(w|d)||q(t)(w|d̂)) + (1− α)D(p(l|d)||q(t)(l|d̂))

]

=
∑
d̂

∑
d:C(t)

D
(d)=d̂

p(d)

α∑
w

p(w|d) log
p(w|d)
q(t)(w|d̂)

+ (1− α)
∑
l

p(l|d) log
p(l|d)
q(t)(l|d̂)


(b)
≥

∑
d̂

∑
d:C(t)

D
(d)=d̂

p(d)

α∑
w

p(w|d) log
p(w|d)

q(t)(w|C(t+1)
D

(d))
+ (1− α)

∑
l

p(l|d) log
p(l|d)

q(t)(l|C(t+1)
D

(d))


(c)
=

∑
d̂

∑
d:C(t+1)

D
(d)=d̂

p(d)

α∑
w

p(w|d) log
p(w|d)
q(t)(w|d̂)

+ (1− α)
∑
l

p(l|d) log
p(l|d)
q(t)(l|d̂)



(d)
=

∑
d̂

∑
d:C(t+1)

D
(d)=d̂

p(d)

α∑
ŵ

∑
w:C(t+1)

W
(w)=ŵ

p(w|d) log
p(w|d)

q(t)(w|ŵ)q(t)(ŵ|d̂)
+ (1− α)

∑
l̂

∑
l:C(t+1)

L
(l)=l̂

p(l|d) log
p(l|d)

q(t)(l|l̂)q(t)(l̂|d̂)



=
∑
d̂

∑
d:C(t+1)

D
(d)=d̂

p(d)

α∑
ŵ

∑
w:C(t+1)

W
(w)=ŵ

p(w|d) log
p(w|d)

q(t)(w|ŵ)
+ (1− α)

∑
l̂

∑
l:C(t+1)

L
(l)=l̂

p(l|d) log
p(l|d)
q(t)(l|l̂)


︸ ︷︷ ︸

I

+
∑
d̂

∑
d:C(t+1)

D
(d)=d̂

p(d)

α∑
ŵ

∑
w:C(t+1)

W
(w)=ŵ

p(w|d) log
1

q(t)(ŵ|d̂)
+ (1− α)

∑
l̂

∑
l:C(t+1)

L
(l)=l̂

p(l|d) log
1

q(t)(l̂|d̂)



= I +
∑
d̂

[
α

∑
ŵ

 ∑
d:C(t+1)

D
(d)=d̂

∑
w:C(t+1)

W
(w)=ŵ

p(d)p(w|d)

 log
1

q(t)(ŵ|d̂)

+ (1− α)
∑
l̂

 ∑
d:C(t+1)

D
(d)=d̂

∑
l:C(t+1)

L
(l)=l̂

p(d)p(l|d)

 log
1

q(t)(l̂|d̂)

]

= I +
∑
d̂

α∑
ŵ

q
(t+1)

(d̂, ŵ) log
1

q(t)(ŵ|d̂)
+ (1− α)

∑
l̂

q
(t+1)

(d̂, l̂) log
1

q(t)(l̂|d̂)


(e)
≥ I +

∑
d̂

q
(t+1)

(d̂)

α∑
ŵ

q
(t+1)

(ŵ|d̂) log
1

q(t+1)(ŵ|d̂)
+ (1− α)

∑
l̂

q
(t+1)

(l̂|d̂) log
1

q(t+1)(l̂|d̂)


=

∑
d̂

∑
d:C(t+1)

D
(d)=d̂

p(d)

[
α

∑
ŵ

∑
w:C(t+1)

W
(w)=ŵ

p(w|d) log
p(w|d)

q(t)(w|ŵ)q(t+1)(ŵ|d̂)

+ (1− α)
∑
l̂

∑
l:C(t+1)

L
(l)=l̂

p(l|d) log
p(l|d)

q(t)(l|l̂)q(t+1)(l̂|d̂)

]

(f)
=

∑
d̂

∑
d:C(t+1)

D
(d)=d̂

p(d)

[
α

∑
ŵ

∑
w:C(t+1)

W
(w)=ŵ

p(w|d) log
p(w|d)

q(t+1)(w|ŵ)q(t+1)(ŵ|d̂)
+

(1− α)
∑
l̂

∑
l:C(t+1)

L
(l)=l̂

p(l|d) log
p(l|d)

q(t+1)(l|l̂)q(t+1)(l̂|d̂)

]

=
∑
d̂

∑
d:C(t+1)

D
(d)=d̂

p(d)

α∑
ŵ

∑
w:C(t+1)

W
(w)=ŵ

p(w|d) log
p(w|d)

q(t+1)(w|d̂)
+ (1− α)

∑
l̂

∑
l:C(t+1)

L
(l)=l̂

p(l|d) log
p(l|d)

q(t+1)(l|d̂)


=

∑
d̂

∑
d:C(t+1)

D
(d)=d̂

p(d)
[
αD(p(w|d)||q(t+1)

(w|d̂)) + (1− α)D(p(l|d)||q(t+1)
(l|d̂))

]

(g)
= Θ

(t+1) − φ(t+1)
C

(Ŵ , L̂)

521



YANG & GAO

where (a) follows from Lemma 4.1, (b) follows from Step 4 of the IMAM algorithm, (c) fol-
lows by rearranging the summation, (d) and (f) follow since we hold the word and link clusters
fixed in Step 4, (e) follows by non-negativity of the KL-divergence, and (g) follows from Lem-
ma 4.1. Since the word and link clusters remain unchanged during the document clustering, i.e.,
φ

(t)
C (Ŵ , L̂) = φ

(t+1)
C (Ŵ , L̂), we can prove that Θ(t) ≥ Θ(t+1).

(ii) For word and link clustering: Note that the document clusterings remains unchanged in this
phase. By using the properties of Step 6 and the similar technique as above, we can prove that

Θ(t+1) = α
∑
ŵ

∑
w:C(t+1)

W
(w)=ŵ

p(w)φ
(t+1)
W (w, ŵ) + (1− α)

∑
l̂

∑
l:Ĉ

(t+1)
L

(l)=l̂

p(l)φ
(t+1)
L (l, l̂)

≥ α
∑
ŵ

∑
w:C(t+2)

W
(w)=ŵ

p(w)φ
(t+2)
W (w, ŵ) + (1− α)

∑
l̂

∑
l:C(t+2)

L
(l)=l̂

p(l)φ
(t+2)
L (l, l̂)

= Θ(t+2)

By combining steps (i) and (ii), it follows that in every iteration the algorithm IMAM monoton-
ically decreases the objective function.

Appendix C. Proof of Lemma 5.1

Proof. For any document d ∈ D and any document cluster d̂ ∈ D̂,
(i) If CDW (d) = CDL(d)

For brevity, we denote the cluster by d̂∗, i.e., CDW (d) = CDL(d) = d̂∗. By using Eq. 4, Eq. 8
and Eq. 9, we can obtain{
D(p(w|d)||q(w|d̂∗)) ≤ D(p(w|d)||q(w|d̂))

D(p(l|d)||q(l|d̂∗)) ≤ D(p(l|d)||q(l|d̂))

⇒ αD(p(w|d)||q(w|d̂∗)) + (1− α)D(p(l|d)||q(l|d̂∗)) ≤ αD(p(w|d)||q(w|d̂)) + (1− α)D(p(l|d)||q(l|d̂))

⇒ CD(d) = CDW
(d) = CDL

(d) = d̂∗

⇒ δCD,CDW
∩CDL

(d) = 1

(ii) If CDW (d) 6= CDL(d)
Obviously, we have δCD,CDW ∩CDL (d) = 0. By combining (i) and (ii), we can obtain

δCD,CDW ∩CDL (d) = δCDW ,CDL (d) =

{
1, if CDW (d) = CDL(d);
0, otherwise

For any Fi ∈ Ω, the indicator function δFi,CDW ∩CDL (d) can be rewritten as

δFi,CDW ∩CDL (d) =


1, if CDW (d) = CDL(d) = Fi(d);
0, if CDW (d) = CDL(d) 6= Fi(d);
0, otherwise

Thus, we have δCD,CDW ∩CDL (d) ≥ δFi,CDW ∩CDL (d). This inequation holds true for any Fi ∈ Ω.
Therefore, based on the definition of disagreement rate we can obtain

η(Fi, CDW ∩ CDL) = 1−
∑
d∈D δFi,CDW

∩CDL
(d)

|D| ≥ 1−
∑
d∈D δCD,CDW

∩CDL
(d)

|D| = η(CD, CDW ∩ CDL)

Meanwhile, we can obtain η(CD, CDW ∩ CDL) = η(CDW , CDL).
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Daumé III, H., Kumar, A., & Saha, A. (2010). Co-regularization based semi-supervised domain
adaptation. In Proceedings of Advances in Neural Information Processing Systems 23, De-
cember 6-9, 2010, Vancouver, Canada, pp. 478–496.

Dayanik, A. A., Lewis, D. D., Madigan, D., Menkov, V., & Genkin, A. (2006). Constructing in-
formative prior distributions from domain knowledge in text classification. In Proceedings
of the 29th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, Seattle, Washington, USA, August 6-11, 2006, pp. 493–500.

Dhillon, I. S., Mallela, S., & Modha, D. S. (2003). Information-theoretic co-clustering. In Proceed-
ings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, August 24 - 27, 2003, pp. 210–219.

Gao, W., Blitzer, J., Zhou, M., & Wong, K. F. (2009). Exploiting bilingual information to improve
web search. In Proceedings of the 47th Annual Meeting of the Association for Computational
Linguistics and the 4th International Joint Conference on Natural Language Processing of
the AFNLP, August 2-7, 2009, Singapore, pp. 1075–1083.

Gao, W., Cai, P., Wong, K. F., & Zhou, A. Y. (2010). Learning to rank only using training data from
related domain. In Proceedings of the 33rd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, July 19-23, 2010, Geneva, Switzerland,
pp. 162–169.

Gao, W., & Yang, P. (2014). Democracy is good for ranking: Towards multi-view rank learning and
adaptation in web search. In Proceedings of the 7th International ACM Conference on Web
Search and Data Mining, Feburary 25-27, 2014, New York City, USA, pp. 63–72.

He, J. R., & Lawrence, R. (2011) A graph-based framework for multi-task multi-view learning.
In Proceedings of the 28th International Conference on Machine Learning, Washington, Jun
28-Jul 2, 2011, pp. 25–32.

Lewis, D. D. (2004). Reuters-21578 test collection. http://www.daviddlewis.com/.

Joachims, T. (1999). Transductive inference for text classification using support vector machines.
In Proceedings of the 16th International Conference on Machine Learning, Bled, Slovenia,
June 27-30, 1999, pp. 200–209.

Jiang, J., & Zhai, C. X. (2007). Instance weighting for domain Adaptation in NLP. In Proceedings of
the 45th Annual Meeting of the Association for Computational Linguistics, June 23-30, 2007,
Prague, Czech Republic, pp. 264–271.

Ling, X., Dai, W. Y., Xue, G. R., Yang, Q., & Yu, Y. (2008). Spectral domain-transfer learning. In
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, pp. 488–496.

McCallum, A. K., Nigam, K., Rennie, J., & Seymore, K. (2000). Automating the construction of
Internet portals with machine learning. Information Retrieval, 3(2):127–163.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering, 22(10):1345–1359.
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