
Journal of Artificial Intelligence Research 49 (2014) 363-402 Submitted 09/13; published 02/14

Multiagent Only Knowing in Dynamic Systems

Vaishak Belle vaishak@cs.toronto.edu
Dept. of Computer Science, University of Toronto,
Toronto, Ontario, Canada M5S 3H5

Gerhard Lakemeyer gerhard@cs.rwth-aachen.de
Dept. of Computer Science, RWTH Aachen University,
52056 Aachen, Germany

Abstract
The idea of “only knowing” a collection of sentences, as proposed by Levesque, has been previ-

ously shown to be very useful in characterizing knowledge-based agents: in terms of a specification,
a precise and perspicuous account of the beliefs and non-beliefs is obtained in a monotonic setting.
Levesque’s logic is based on a first-order modal language with quantifying-in, thus allowing for
de re versus de dicto distinctions, among other things. However, the logic and its recent dynamic
extension only deal with the case of a single agent. In this work, we propose a first-order multi-
agent framework with knowledge, actions, sensing and only knowing, that is shown to inherit all
the features of the single agent version. Most significantly, we prove reduction theorems by means
of which reasoning about knowledge and actions in the framework simplifies to non-epistemic,
non-dynamic reasoning about the initial situation.

1. Introduction

When considering knowledge-based agents in dynamic worlds, much depends on what is known
and what is not, and how that evolves. Making a telephone call, for example, requires knowing the
referent, and if the number is not known, a lookup in the telephone directory must be attempted,
after which the agent would have sufficient information to complete the task. Essentially, the agent
deliberates on the act of sensing when the agent’s knowledge base (KB) informs the agent that
it is ignorant of some fact, perhaps one that is necessary for achieving a goal. Moreover, taking
a pragmatic point of view, it is desirable that when designing agents, the modeler would provide
certain facts but may leave others unsaid. Think of a simple blocks world domain where we find a
red block on the table. The agent would be told of the red block, but in the absence of a complete
description of the location of every other block in the domain, the agent has to make do with partial
information. Thus, at the very least, what is needed is a compact way to write down the knowledge
base, thereby providing a full specification of the beliefs and non-beliefs, an account of how that
changes after acting and sensing, and a query language that explicitly refers to this knowledge.1

One way to view the first requirement is to think that the beliefs of the agent are exactly those
that follow from the assumption that a KB is all that is believed. Perhaps the most general account
to capture the beliefs of a KB is OL: the logic of only knowing by Levesque (1990). Levesque’s
proposal is remarkably simple. He augments a logic of belief (Hintikka, 1962; Kripke, 1963; Fagin,

1. We use the terms “knowledge” and “belief” interchangeably with the understanding that knowledge need not neces-
sarily be true in the real world.
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Halpern, Moses, & Vardi, 1995), where (say) the modality K denotes knowledge, with a modality
O to capture the notion of “only knowing.” Beliefs are reasoned about in terms of valid sentences
of the form:

OKB ⊃Kα

which is to be read as “if KB is all that is believed by the agent, then the agent knows α.” What
is particularly interesting about the new modality is that it not only allows one to draw conclu-
sions about what is known but also about what is not. That is, Op ⊃ ¬Kq and, by introspec-
tion, Op ⊃ K¬Kq both come out valid. Note that this is quite different from classical epistemic
logic (Fagin et al., 1995), in the sense that if we replace O by K, then neither of these sentences
is valid. As a consequence, for example, from O(Tel(A, 1234) ∨ Tel(B, 1234)) the agent concludes
K(∃x. Tel(x, 1234) ∧ ¬KTel(x, 1234)). This says that the agent knows there is someone whose
telephone number is 1234 without knowing who, usually referred to as the de dicto versus de re
distinctions in knowledge (Kaplan, 1968). Thus, an agent is able to reason about its own ignorance,
in a quantificational language, without having to be told explicitly what it does not know.

While OL does capture the desiderata on beliefs, it does not include any notions of actions. To
obtain the many features of OL in a dynamic setting, a logic ES (Lakemeyer & Levesque, 2011)
was proposed that amalgamates OL and the situation calculus (McCarthy & Hayes, 1969; Reiter,
2001; Scherl & Levesque, 2003). The situation calculus is a popular and general formalism for
representing and reasoning about dynamic domains. ES is a (situation-suppressed) modal dialect
of the situation calculus2 that has formulas like those of traditional dynamic logic (Harel, Kozen, &
Tiuryn, 2000), such as

[pickup(obj5)](Holding(obj5) ∧ ¬Holding(obj3))

which says that after picking up obj5, the agent is holding obj5 but not obj3. In ES, one stipulates
the set of axioms capturing the application domain to be all that is known by the agent, and then
obtains entailments regarding beliefs, non-beliefs, and belief expansion that can resolve the agent’s
ignorance as it acts and perceives in the environment. For example,

φ = {�SF(senseFragility(x)) ≡ Fragile(x)},

roughly says that after any sequence of actions, if the agent were to perform a fragility sensing
action, SF would inform the robot whether the object sensed is fragile or not. If obj5 is an object
that is fragile in the real world, ES allows us to reason about entailments of the sort:

1. |= φ ∧ Fragile(obj5) ∧Oφ ⊃ ¬K(Fragile(obj5));

2. |= φ ∧ Fragile(obj5) ∧Oφ ⊃ [senseFragility(obj5)]K(Fragile(obj5));

which, in English, says that although the agent does not know that obj5 is fragile initially, he does
so after sensing.

ES not only allows Reiter-style basic action theories, but is also equipped with an important
result from (Reiter, 2001; Scherl & Levesque, 2003): the regression theorem for knowledge. That

2. Under certain assumptions, valid sentences in ES can be mapped as valid sentences in the classical situation calcu-
lus (Lakemeyer & Levesque, 2011). That is, ES can serve as a semantic basis for the situation calculus with a more
workable model theory.
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is, sentences and goals about the future, even those mentioning belief, are reduced to questions
(perhaps involving knowledge) about the initial state only. More importantly, a significant result
from OL called the representation theorem (Levesque & Lakemeyer, 2001) can be leveraged to
reduce epistemic queries about the initial state to a first-order reasoning task. In effect, no modal
reasoning will be necessary.

However, ES only deals with the single agent case. Many AI applications where such for-
malisms are needed involve multiple agents. We might imagine a robot following the lead of an-
other agent, perhaps a second robot, and they are to coordinate deliveries of items between rooms.
Similarly, we imagine two agents playing a game of cards against each other. In these and in others,
modeling and reasoning about beliefs and non-beliefs that agents have about the real world and the
other agents in this world is of interest. In the case of a card game, for example, especially a fair
one, agents might believe initially that all their opponents know are the rules of the game. This
might then justify certain strategies that depend on the lack of information on the opponent’s part.

Before extending ES to the multiagent case, however, we first need an account of only knowing
in the multiagent case. While a number of previous proposals (Lakemeyer, 1993; Halpern, 1993;
Halpern & Lakemeyer, 2001; Waaler & Solhaug, 2005) have attempted multiagent extensions to
OL, they are all propositional. Besides, they significantly deviate from Levesque’s simple model
theory. In recent work (Belle & Lakemeyer, 2010a), we were able to show that a natural general-
ization of OL to the n-agent case does exist for a first-order language. In this article, we continue
that line of work and propose a n-agent generalization to ES.3 For the projection problem (Reiter,
2001), where we are interested in reasoning about goals (perhaps involving multiagent beliefs) after
actions, we show that a regression property is provable. Finally, we also obtain a representation
theorem for the n-agent case by means of which no modal reasoning will be necessary. We survey
related literature in greater detail in Section 5 but both of these results differ from existing results
in the epistemic situation calculus (Scherl & Levesque, 2003), which extends the situation calculus
in having a notion of knowledge realized in terms of an accessibility relation between situations.
(That is, situations are viewed as possible worlds.) For instance, the regression property is different
from previous multiagent generalizations (Shapiro, Lespérance, & Levesque, 2002; Kelly & Pearce,
2008) of the epistemic situation calculus in that the background theory may involve nesting of only
knowing operators, such as “all that Alice knows is that Bob only knows the rules of the game.”
Capturing multiagent only knowing in possible-world models that include explicit accessibility re-
lations between worlds (Fagin et al., 1995), as required by the classical epistemic situation calculus,
is known to be problematic (Halpern & Lakemeyer, 2001; Belle & Lakemeyer, 2010a), and so
such statements do not have obvious counterparts in previous proposals. Similarly, the reduction of
knowledge to first-order reasoning is investigated in a very restricted setting by Reiter (2001), and
for the single agent case only.

The paper is structured as follows. We first introduce the logic, followed by a discussion of basic
action theories. Subsequently, we prove the regression property and a generalized representation
theorem. We end after discussing related work. Appendices contain proofs of the main results, that
is, the regression property and the representation theorem.

3. A preliminary version of this work appears in the proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, Atlanta, Georgia, USA, July 11-15, 2010 (Belle & Lakemeyer, 2010b).
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2. The Formalism

We let ESn be a first-order modal language consisting of formulas over symbols from the following
vocabulary:

• first-order variables of the object sort: x1, x2, . . . , y1, y2, . . .;

• first-order variables of the action sort: a1, a2, . . .;

• fluent predicates of arity k: F1, F2, . . .; for example, Wet;

• rigid predicates of arity k: G1,G2, . . .; for example, Fragile;

• fluent function symbols of arity k: f1, f2, . . .; for example, distance;

• rigid function symbols of arity k: g1, g2, . . .; for example, pickup, senseColor;

• countably infinite standard names: #1, #2, . . . for objects and actions;

• connectives and other symbols: =,∨,¬,∀,Ki,Oi, [a],�, parenthesis, period and comma.

In the following, for ease of exposition, we assume i ∈ {A, B} in Ki and Oi, that is, there are two
agents A and B. The extension to more agents is straightforward.

We remark that standard names are rigid designators, that is, they mean the same entity in
all possible worlds (see below). They can be thought of as constants but satisfying the unique
name assumption and an infinitary version of domain closure. Having these symbols means that
quantification can be understood substitutionally. Readers familiar with the classical situation cal-
culus (Reiter, 2001) may note that situation terms do not appear in the language. Therefore, we
have to distinguish fluents, whose values change after actions, and rigids, whose values do not, both
syntactically as well as semantically. ESn is also assumed to contain a distinguished predicate Poss
and distinguished functions SFi, both of which take an action as an argument. Essentially, Poss(a)
says that a is executable; SFi(a) refers to agent i’s sensing outcomes on performing a, as shown for
the single agent case in the previous section using the fragility sensing action. Section 3 will discuss
this in detail for multiple agents.

The terms of ESn are of the sort action or object, and they are the least set such that:

• every standard name and first-order variable is a term of the corresponding sort;

• if t1, . . . , tk are terms (of any sort) and f is a k-ary function, then f (t1, . . . , tk) is a term.

By a primitive term, we mean one of the form f (n1, . . . , nk) where f is a (fluent or rigid) function
symbol and all of the ni are standard names.

The well-formed formulas of ESn form the least set such that:

• if t1, . . . , tk are terms, and F is a k-ary predicate symbol then F(t1, . . . , tk) is an (atomic)
formula;

• if t1 and t2 are terms, then (t1 = t2) is a formula;
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• if t is an action term and α is a formula then [t]α is a formula;

• if α and β are formulas, and x is a first-order variable then the following are also formulas:
¬α, α ∨ β,∀xα,�α,Kiα,Oiα.

As usual, we treat other connectives such as ⊃ and ≡ as abbreviations. That is, α ⊃ β abbre-
viates ¬α ∨ β, and α ≡ β abbreviates (α ⊃ β) ∧ (β ⊃ α).

ESn has two epistemic modalities. We read Kiα as “i knows α,” and we read Oiα as “all that i
knows is α.” ESn also includes dynamic modalities. We read [a]α as “α holds after doing a” and
we read �α as “α holds after all possible action sequences.”

A formula without any free variables is called a sentence. We also refer to certain kinds of
formulas with the following terminology:

• A formula with no � operators is called bounded.

• A formula with no [t] or � operators is called static.

• A formula that does not mention Oi for any i is called basic. (The formula may mention KA

or KB.)

• A formula with no Ki,Oi, [t],Poss or SFi is called fluent.4

For example, P(#1) ∨ [t]KAP(#2) is bounded, but not static; P(#1) ∨KAP(#2) is static and basic,
but it is not a fluent formula; P(#1) ∨OAP(#2) ∨ Poss(t) is a static formula, but neither is it a basic
formula nor is it a fluent formula; (P(#1) ∨ P(#2)) ∧ Q( f (#3)) is a fluent formula.

2.1 The Semantics

A semantics is provided in terms of possible worlds. The purpose of the semantics is to determine
the values of fluents, both initially and after any sequence of actions. Therefore, in ESn, similar
to the idea of situation trees (Reiter, 2001), worlds determine the changing values of fluents after
actions; see Figure 1 for the intuition. More precisely,

• let Z denote all finite sequences of action names, including 〈〉, which is the empty sequence
(corresponding to the initial situation);

• then a world w ∈ W is any function from G × Z to {0, 1}, where G is the set of primitive
atoms, and from T × Z to N (preserving sorts), where T is the set of primitive terms, and
satisfying the rigidity constraint: if g is a rigid function or predicate symbol, then for all z and
z′ inZ, w[g(n1, ..., nk), z] = w[g(n1, ..., nk), z′].

To interpret arbitrary terms, we proceed as follows. As mentioned earlier, names are rigid
designators. Given a term t without variables, a world w and a sequence z, we define |t|zw (to be read
as “the co-referring standard name for t given w and z”) by:

1. |t|zw = t if t is a name;

4. In the situation calculus (Reiter, 2001), these correspond to formulas that are uniform in a situation term.
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hip, q, . . .

p, ¬q, . . . ¬p, ¬q, . . . ¬p, q, . . .

¬p, ¬q, . . .

Figure 1: A possible world.

2. | f (t1, . . . , tk)|zw = w[ f (n1, . . . , nk), z], where |ti|zw = ni.

Agents may, of course, have incomplete knowledge. To distinguish their uncertainty from the real
world, we stipulate epistemic states that model multiple possibilities. Standard accounts of multia-
gent epistemic states are based on Kripke frames (Fagin et al., 1995). For multiagent only knowing,
however, Kripke-based accounts turn out to be very problematic, as seen in the work of Halpern
(1993), Lakemeyer (1993), Halpern and Lakemeyer (2001) and Waaler and Solhaug (2005). For
example, Lakemeyer (1993) shows that certain types of epistemic states cannot be constructed in
his approach. In the work of Halpern (1993), epistemic operators do not interact in an intuitive
manner (Halpern & Lakemeyer, 2001). In the work of Halpern and Lakemeyer (2001), the semantic
notion of validity is defined directly in the language, making the proposal unnatural. Serious com-
plications are present in later proposals as well (Waaler & Solhaug, 2005). Moreover, none of these
have been extended to a quantified language. A discussion on these issues is not needed for the pur-
poses of this article; interested readers are referred to our earlier work (Belle & Lakemeyer, 2010a).
In that work, we then proposed an alternative called k-structures, which was shown to generalize
Levesque’s (1990) proposal to the many agent case in an appropriate and intuitive manner. These
structures deviate from Kripke-based accounts in defining epistemic states of increasing depths. As
it turns out, these structures also have a natural extension to the dynamic setting, which we present
below. We first define a notion of depth for formulas in the following way:

Definition 1 The i-depth of α ∈ ESn, denoted |α|i, is defined inductively as (Mi denotes Ki or Oi):

• |α|i = 1 for atomic formulas;

• |¬α|i = |α|i;

368



Multiagent Only Knowing in Dynamic Systems

• |∀xα|i = |α|i;

• |[a]α|i = |α|i;

• |�α|i = |α|i;

• |α ∨ β|i = max(|α|i, |β|i);

• |Miα|i = |α|i,

• |M jα|i = |α| j + 1 for j , i.

A formula α has depth k if max(|α|A, |α|B) = k.

Given a formula of A-depth k and of B-depth j, we say that the formula has A, B-depth of k, j for
brevity. We say α is objective if no epistemic operators are mentioned in α. A formula is called
i-objective if all epistemic operators which do not occur within the scope of another epistemic
operator are of the form M j, j , i, where Mi denotes Ki or Oi. A formula is called i-subjective if
every atom is in the scope of an epistemic operator and all epistemic operators which do not occur
within the scope of another epistemic operator are of the form Mi. Intuitively, i-subjective formulas
represent i’s beliefs about the world whereas i-objective formulas determine what is true about the
world from i’s perspective, which may include beliefs of agents other than i.

Example 2 Consider the formula �KAKBKA p ∨KB[t]q. Here:

• |�KAKBKA p ∨KB[t]q|A = max(|�KAKBKA p|A, |KB[t]q|A) = 3 because

1. |�KAKBKA p|A = |KAKBKA p|A = |KBKA p|A = 1 + |KA p|B = 2 + |p|A = 3,

2. |KB[t]q|A = 1 + |[t]q|B = 1 + |q|B = 2.

• |�KAKBKA p ∨KB[t]q|B = max(|�KAKBKA p|B, |KB[t]q|B) = 4 because

1. |�KAKBKA p|B = |KAKBKA p|B = 1 + |KBKA p|A = 1 + 3 (as shown above) = 4,

2. |KB[t]q|B = |[t]q|B = |q|B = 1.

Therefore, the depth of the formula is 4. Consider each of the disjuncts. �KAKBKA p is both
A-subjective as well as B-objective. On the other hand, KB[t]q is both B-subjective as well as
A-objective. Moreover, �KAKBKA p ∨KB[t]q is neither A-subjective nor B-subjective. For that
matter, it is neither A-objective nor B-objective.

The beliefs of an agent are captured by means of a k-structure defined over the setW:

Definition 3 A k-structure ek, where k ≥ 1, is defined inductively as:

− e1 ⊆ W × {{}},

− ek ⊆ W × Ek−1, where Em is the set of all m-structures.
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That is, a e1 is simply a set of worlds. A e2 is a set of the form {(w, e1), (w′, e′1), . . .} which states
that at w an agent, say A, believes B to consider worlds from e1 possible, and at w′ she believes B to
consider worlds from e′1 possible. This captures the intuition that A has partial information about
B, and so her beliefs about B differ at different worlds.5 When modeling a k-structure, say ek, for A
we denote it as ek

A. Analogously, when modeling a j-structure, say e j, for B we denote it as e j
B.

Such structures essentially represents the initial beliefs of the agent, that is, the initial state of
knowledge. But when actions occur, perhaps an agent acquires new information and as a result
of this some of the possibilities in an epistemic state may be discarded over the course of doing
actions (Scherl & Levesque, 2003). Following Lakemeyer and Levesque (2011), we capture this
feature by means of a compatibility relation 'i

z between worlds (relative to an agent i), which looks
for truth in the real world by means of sensing. We define w′ 'i

z w inductively by the following:

• w′ 'i
〈〉

w for all worlds w′ and w;

• w′ 'i
z·r w iff w′ 'i

z w and w′[SFi(r), z] = w[SFi(r), z].

We define a ek for A, a e j for B and a world w as a (k, j)-model (ek
A, e

j
B,w). The idea is that only

formulas with a maximal A-depth of k and with a maximal B-depth of j are to be interpreted wrt
(k, j)-models. To determine whether a formula is true or not after a sequence of actions z given a
(k, j)-model, we write ek

A, e
j
B,w, z |= α. The definition of truth is as follows:

1. ek
A, e

j
B,w, z |= P(t1, . . . , tk) iff w[P(n1, . . . , nk), z] = 1 where |ti|zw = ni;

2. ek
A, e

j
B,w, z |= t1 = t2 iff n1 and n2 are the same standard names, where |ti|zw = ni;

3. ek
A, e

j
B,w, z |= ¬α iff ek

A, e
j
B,w, z 6|= α;

4. ek
A, e

j
B,w, z |= α ∨ β iff ek

A, e
j
B,w, z |= α or ek

A, e
j
B,w, z |= β;

5. ek
A, e

j
B,w, z |= ∀xα iff ek

A, e
j
B,w, z |= αx

n for every name n of the appropriate sort;

6. ek
A, e

j
B,w, z |= [t]α iff ek

A, e
j
B,w, z · r |= α where |t|zw = r;

7. ek
A, e

j
B,w, z |= �α iff ek

A, e
j
B,w, z · z

′ |= α for every z′ ∈ Z;

8. ek
A, e

j
B,w, z |= KAα iff for all w′ 'A

z w, for all ek−1 (for B),

if (w′, ek−1
B ) ∈ ek

A then ek
A, e

k−1
B ,w′, z |= α;

9. ek
A, e

j
B,w, z |= OAα iff for all w′ 'A

z w, for all ek−1 (for B),

(w′, ek−1
B ) ∈ ek

A iff ek
A, e

k−1
B ,w′, z |= α.

In an analogous fashion, the semantics for KBα and OBα are specified. Here, Ki is the classical
epistemic operator. We may read Kiα as “(at least) α is believed” because Kiα certainly does not
preclude Ki(α ∧ β) from holding in general. On the other hand, if Oiα holds then the epistemic

5. Levesque’s (1990) notion of an epistemic state is simply a set of worlds. It is easy to see that if there is only a single
agent then we only need 1-structures, which then coincides with Levesque’s account.
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state is one which contains all and only the structures satisfying α. In essence (Levesque, 1990), the
definition for Oi differs from that for Ki in using an “iff” rather than an “if”.6

Given a sentence α of maximal A, B-depth k, j, we write ek
A, e

j
B,w |= α to mean ek

A, e
j
B,w, 〈〉 |= α.

We say that a sentence α of maximal A, B-depth k, j is satisfiable if there is a (k, j)-model (ek
A, e

j
B,w)

such that ek
A, e

j
B,w |= α. If Σ is any set of sentences of maximal A, B-depth of k, j and α is as above,

we write Σ |= α (read: “Σ entails α”) iff for every (k, j)-model such that ek
A, e

j
B,w |= α′ for every

α′ ∈ Σ then ek
A, e

j
B,w |= α. We write |= α (read: “α is valid”) to mean {} |= α.

We often write {}, e j
B,w |= α when α is A-objective because the k-structure for A is irrelevant.

Analogously, for B-objective formulas, we often write ek
A, {},w |= α. When the formula α is objec-

tive, we omit the structures for A and B altogether and simply write w |= α.

2.2 Properties

We differ slightly from usual semantical accounts in that the satisfaction relation is undefined for
formulas whose depth exceeds a certain number. Nevertheless, we are able to show that as far as
entailment is concerned, such an account does not present any serious limitations. Let us begin with
a few simple examples.

Example 4 Let p be an atom. Then the following sentences are valid. Our method for proving
these examples will be to look at the sentence to decide on the depth of the models. (We will use
TRUE to denote a tautologous sentence, such as ∀x. (x = x).)

1. OATRUE ⊃ ¬KA¬KB p.

The sentence is A-subjective and of A-depth 2. So consider any 2-structure for A that satisfies
OATRUE. Here is one: let e2

A = W× 2W. Clearly e2
A, {},w |= OATRUE. (We reiterate that

when the epistemic state for B is irrelevant, we will simply write (ek
A, {},w) and ignore the

structure for B.) It is easy to verify that no other e2 satisfies OATRUE. So now e2
A, {},w |=

¬KA¬KB p iff there is some (w′, e1
B) ∈ e2

A such that e2
A, e

1
B,w

′ |= KB p. By construction, there
is (w, e∗1B) ∈ e2

A where e∗1B = {(w, {}) | w |= p} and e2
A, e
∗1

B,w |= KB p.

2. OATRUE ⊃ ¬KAKB p.

Construct e2
A as in item 1. Then e2

A, {},w |= ¬KAKB p iff there is some (w′, e1
B) ∈ e2

A, such
that e2

A, e
1
B,w

′ |= ¬KB p. By construction, (w, e∗1B) ∈ e2
A where e∗1B = {(w, {}) | w 6|= p} and,

e2
A, e
∗1

B,w |= ¬KB p.

3. OA(p ∧OB p) ⊃KA p.

We will consider any 2-structure for A satisfying OA(p ∧ OB p) and prove that KA p is also
satisfied at the structure. So letWp = {w | w |= p}. Clearly e1

B = {(w, {}) | w ∈ Wp} is the
only 1-structure for B that satisfies OB p. Similarly, the 2-structure e2

A = {(w, e1
B) | w ∈ Wp}

is the only 2-structure for A that satisfies OA(p ∧OB p). It follows that e2
A, {},w |= KA p since

all w′ in (w′, e1
B) ∈ e2

A satisfy p by construction.

6. In the literature, for a closer examination of the relationship between these modalities, a third modality to denote
what the agent “at most” knows is often included in the logical language (Halpern & Lakemeyer, 2001; Levesque &
Lakemeyer, 2001). This modality need not concern us here. We refer interested readers to our earlier work on how a
semantics is given for such an operator using k-structures (Belle & Lakemeyer, 2010a).
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4. OA(p ∧OB p) ⊃KAKB p.

A 2-structure e2
A is constructed as in item 3. Then it follows that e2

A, {},w |= KAKB p since all
worlds

{w′′ | (w′′, {}) ∈ e1
B and (w′, e1

B) ∈ e2
A for some w′}

satisfy p by construction.

5. OA(p ∧OB p) ⊃ (KA¬KBKA p ∧KA¬KB¬KA p).

Using ideas from item 1 and 2, it follows that OB p ⊃ ¬KBKA p∧¬KB¬KA p is valid. Let e3
A

be any structure that satisfies OA(p∧OB p). Since for all (w′, e2
B) ∈ e3

A, e3
A, e

2
B,w

′ |= p∧OB p,
it follows that e3

A, e
2
B,w

′ |= ¬KBKA p ∧ ¬KB¬KA p. Therefore e3
A, {},w |= KA(¬KBKA p ∧

¬KB¬KA p).

Items 1 and 2 tell us if all that A knows is TRUE, then she correctly reasons about her ignorance:
she does not know whether B knows p. Items 3 and 4 tell us if A only knows {p,OB p}, then she
correctly believes that both she and B believe p. Finally, item 5 tells us since A believes B only
knows p, she believes B cannot tell whether A knows p.

In these examples, we (appropriately) chose structures of a certain depth to interpret the sen-
tences of a corresponding depth. However, as far as validity goes, models of any higher depth can
be considered. That is, if a formula of maximal A, B-depth k, j is true at all (k, j)-models, then the
formula is also true at all (k′, j′)-models, for k′ ≥ k and j′ ≥ j. To demonstrate this property, we
construct for every ek′

A , a k-structure eA↓
k′
k , such that they agree on all formulas of maximal A-depth

k. Analogously, a j-structure that agrees on all formulas of maximal B-depth j can be constructed
for every e j′

B .

Definition 5 Given ek′
A and e j′

B , we inductively define a k-structure eA↓
k′
k and a j-structure eB↓

j′

j for
k′ ≥ k ≥ 1 and j′ ≥ j ≥ 1, respectively:

• eA↓
1
1 = e1

A;

• eB↓
1
1 = e1

B;

• eA↓
k′
1 = {(w, {}) | (w, ek′−1

B ) ∈ ek′
A } for k′ > 1;

• eB↓
j′

1 = {(w, {}) | (w, e j′−1
A ) ∈ e j′

B } for j′ > 1;

• eA↓
k′
k = {(w, eB↓

k′−1
k−1 ) | (w, ek′−1

B ) ∈ ek′
A } for k > 1;

• eB↓
j′

j = {(w, eA↓
j′−1
j−1 ) | (w, e j′−1

A ) ∈ e j′

B } for j > 1.

With this definition in hand, we get the following property by relating k′-structures ek′
A and j′-

structures e j′

B , and their corresponding k-structures eA↓
k′
k and j-structures eB↓

j′

j respectively.

Lemma 6 Let k′ ≥ k and j′ ≥ j. For all α of maximum A-depth k and maximum B-depth j:

ek′
A , e

j′

B ,w |= α iff eA↓
k′
k , eB↓

j′

j ,w |= α.
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The proof is not hard, but tedious. The arguments for this result appear elsewhere (Belle & Lake-
meyer, 2010a), and so we do not reproduce them here.7

Theorem 7 For all formulas α of A, B-depth of k, j, if α is true at all (k, j)-models, then α is true at
all (k′, j′)-models, where k′ ≥ k and j′ ≥ j.

Proof: Suppose α is true at all (k, j)-models. Given any (ek′
A , e

j′

B ,w), by assumption eA↓
k′
k , eB↓

j′

j ,w |=

α. By the previous lemma, ek′
A , e

j′

B ,w |= α.

It follows then that one may speak about the valid sentences of the logic without explicitly specu-
lating what their depths or the depths of their models need to be. That is, we may simply assume
that models have “appropriate” depths, in the sense of having depths that equal or exceed the depth
of the sentences. For example, we obtain the following result that knowledge with k-structures has
K45n properties (Fagin et al., 1995), as well as the universal and existential versions of the Barcan
formula. Moreover, these properties hold after any number of actions have been performed.

Lemma 8 Let α and β be ESn-formulas. Then the following sentences are valid:

1. �(Kiα ∧Ki(α ⊃ β) ⊃Kiβ);

2. �(Kiα ⊃KiKiα);

3. �(¬Kiα ⊃Ki¬Kiα);

4. �(∀xKiα ⊃Ki∀xα);

5. �(∃xKiα ⊃Ki∃xα).

Proof: The proofs are very similar. We show item 3 and 4. Let i be A. The other case is symmetric.

3. Suppose ek
A, e

j
B,w, z |= ¬KAα. Then there is some w′ 'A

z w, (w′, ek−1
B ) ∈ ek

A such that
ek

A, e
k−1
B ,w′, z |= ¬α. Let w′′ be any world such that w′′ 'A

z w′, (w′′, e′B
k−1) ∈ ek

A. Clearly
ek

A, e
′
B

k−1,w′′, z |= ¬KAα. Since w′′ 'A
z w, we get that ek

A, e
j
B,w, z |= KA¬KAα.

4. Suppose ek
A, e

j
B,w, z |= ∀xKAα. Then ek

A, e
j
B,w, z |= (KAα)x

n for every name n. That is,
ek

A, e
j
B,w, z |= KAα

x
n for every n. Then for all w′ 'A

z w, such that (w′, ek−1
B ) ∈ ek

A we have
ek

A, e
k−1
B ,w′, z |= αx

n for every n iff by definition ek
A, e

k−1
B ,w′, z |= ∀xα. Therefore ek

A, e
j
B,w, z |=

KA∀xα.

Apart from K45n belief properties, the relationship between only knowing and knowledge can
also be established using the notion of validity:

Lemma 9 Suppose p and q are atoms, and α is any ESn-formula. Then the following are valid:

7. While actions are not considered in that work, these are interpreted wrt worlds and so the extension of the argument
is straightforward.
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1. Oiα ⊃Kiα;

2. Oi p ⊃ ¬Kiq.

Proof: Item 1 is an easy consequence of the semantics. For item 2, observe that by the definition
of only knowing, structures that satisfy p ∧ ¬q, which must exist because p and q are atoms, are
included in an epistemic state where Oi p holds. Therefore q cannot be known.

Item 1 says that whatever is only known is also believed by the agent. Item 2, of course, relates only
knowing and non-beliefs. It is straightforward to generalize the arguments for these properties to
also capture the valid sentences from Example 4 involving multiagent nested beliefs.

Finally, when specifying the agent, we want to allow for agents that have false beliefs. This is
permitted, and that can be demonstrated by means of the following property that shows that it is
possible to know (and only know) a formula that is false in the real world, and it is also possible to
not know (and not only know) a formula that is true in the real world.

Lemma 10 Let p be an atom. Then following sentences are satisfiable (let Mi denote Ki or Oi):

1. ¬p ∧Mi p;

2. p ∧ ¬Mi p.

Proof: We show Mi = OA. The case for Mi = OB is symmetric. The arguments for Mi = Ki is
analogous. For item 1, let w be a world such that w |= ¬p, andWp = {w′ | w′ |= p}. Let e1

A be the
set {(w′, {}) | w′ ∈ Wp}. It follows then that e1

A, {},w |= ¬p ∧OA p.

For item 2, suppose w∗ |= p, andW′
p = Wp − {w∗}. Let e1

A = {(w′, {}) | w′ ∈ W′
p}. Then, we

get e1
A, {},w

∗ |= p ∧ ¬OA p.

Before concluding this section, let us briefly reflect on the fact that k-structures have a finite
depth. So suppose A only knows Σ, of depth k. Using k-structures alone allows us to reason
about what is believed and what is not believed, up to depth k. For example, OAP(#1) entails
KAP(#1),¬KAP(#2),¬KAP(#3), . . . as shown in Lemma 9. Moreover, as already observed in Ex-
ample 4, the logic correctly captures that A is ignorant about beliefs at depth greater than k. That is,
using the simple example of an agent who only knows TRUE of depth 1, we saw that the sentences
OATRUE ⊃ ¬KA¬KB p and OATRUE ⊃ ¬KAKB p are valid. So, although the KB has finite
depth, we are able to ask queries α of any depth in the sense of determining whether the sentence
OiΣ ⊃Kiα is valid.

For most purposes, this restriction of having a parameter k seems harmless in the sense that
agents usually have a finite knowledge base with sentences of some maximal depth k and they should
be ignorant about what is known at depths higher than k. But there is one aspect which we cannot
handle: the property of simultaneously satisfying an infinite set of sentences of unbounded depth.
Indeed, k-structures cannot be used for this purpose simply because, for a fixed k, the satisfaction
relation is undefined for formulas beyond depth k.

One prominent application of such a property is the notion of common knowledge (Fagin et al.,
1995). We do not go over the details here, but the common knowledge modality allows the logic to
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reason about sentences such as (KiK j)kα, where α appears in the scope of k sequences of KiK j,
for any k. Even though the nature of common knowledge is infinitary, in the sense that it essentially
corresponds to an infinite conjunction, it can nonetheless be given a finite axiomatic characteriza-
tion, making it a useful operator for certain applications (Fagin et al., 1995). Thus, if we were to
include the notion of common knowledge in a logic, then we would get entailments about what is
believed at arbitrary depths. With our current model, however, this cannot be captured. While this
is certainly a restriction, we are willing to pay that price because in return we get, for the first time,
a very simple model theory for multiagent only knowing (Belle & Lakemeyer, 2010a).

3. Basic Action Theories

Let us now consider the equivalent of basic action theories of the situation calculus. Since situations
do not appear in the language, as in ES, the basic action theories do not require foundational axioms
like Reiter’s second-order induction axiom for situations (Reiter, 2001).

Definition 11 Given a set of fluents F , a set Σ ⊆ ESn of sentences is called a basic action theory
(BAT) over F iff Σ = Σ0 ∪ Σpre ∪ Σpost ∪ Σsense where Σ only mentions fluents from F and8

1. Σ0 is any set of fluent sentences;

2. Σpre is a singleton sentence of the form:

�Poss(a) ≡ π

where π is a fluent formula;9

3. Σpost is a set that includes sentences of the form:

�[a]F(~x) ≡ γF ,

one for each fluent predicate F, and sentences of the form:

�[a] f (~x) = u ≡ γ f ,

one for each fluent function f , where γF and γ f are fluent formulas;10

4. Σsense is a set of sentences similar to the one for Poss of the form:

�SFi(a) = x ≡ ϕi,

one for each agent i, where ϕi is a fluent formula.

8. We follow the usual convention that free variables are universally quantified from the outside.
9. We assume that � has lower syntactic precedence than the logical connectives, so that �Poss(a) ≡ π stands for
∀a.�(Poss(a) ≡ π).

10. The [a] construct has higher precedence than the logical connectives. That is, �[a] f (x1, . . . , xk) = y ≡ γ f abbreviates
∀a.�([a] f (x1, . . . , xk) = y ≡ γ f ).
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The idea is that Σ0 expresses what is true initially, Σpre is one large precondition axiom, Σpost are the
successor state axioms, one per fluent, which are formulated so as to incorporate Reiter’s solution
the frame problem. Σsense accommodates the intuition that the sensing results for agents may differ
for various actions. For example, when B senses that A is reading a letter, we would not expect B
to learn the contents of that letter. Here, we follow the convention (Scherl & Levesque, 2003) that
every action returns a sensing result. For actions such as forward, which do not return any sensing
information, SFi is defined to return a special standard name NIL.

Knowledge about the initial situation may be incomplete. More precisely, we have to distinguish
between what is true in the real world and what the agents know or believe about the world. Of
course, what A believes about the world may differ from B’s knowledge. Moreover, what A believes
B to know may differ from what B actually believes. One way to capture such generality is to
first insist on an action theory modeling the real world, say Υ. Then, we might imagine differing
basic action theories for subsequent levels of beliefs for the agents, as illustrated by the following
theory:11

Υ ∧OA(Σ ∧OB(Σ∗ ∧ . . .)) ∧OB(Σ′ ∧OA(Σ∗∗ ∧ . . .)) (1)

where Υ and Σ (with superscripts) are basic action theories that may differ arbitrarily. Here, Υ

represents what is true in the real world, and Σ (with superscripts) represent the agent’s beliefs. For
example, Σ∗ represents what A believes B to know. By extension, then, for n agents with k levels,
we would expect n · k + 1 action theories, each one perhaps differing arbitrarily from each other.

For ease of exposition, we will consider the following simple case in the remainder of the article.
The simple case stipulates that if Σ represents A’s view of the world, then he believes that Σ also
represents B’s view of the world. This is reasonable for applications such as simple card games,
which we consider below. None of our technical results, including the regression property and the
representation theorem, hinge on this stipulation, however. See Section 4.4 for discussions.

A background theory, then, is a special case of (1), as illustrated by the following sentence:

Υ ∧OA(Σ ∧OB(Σ ∧ . . .)) ∧OB(Σ′ ∧OA(Σ′ ∧ . . .)) (2)

where, again, Υ, Σ and Σ′ may differ arbitrarily.

Formally, in order to prepare for agents that may have beliefs to some arbitrary (but finite) depth,
we introduce the following inductive definition over a basic action theory Σ:

• let OKnowΣ[A, 1] = OAΣ;

• let OKnowΣ[B, 1] = OBΣ;

• for k > 1, let OKnowΣ[A, k] = OA(Σ ∧ OKnowΣ[B, k − 1]);

• for j > 1, let OKnowΣ[B, j] = OB(Σ ∧ OKnowΣ[A, j − 1]).

Given basic action theories Υ,Σ and Σ′, in the remainder of the article we will be interested in
theories of the form

Υ ∧ OKnowΣ[A, k] ∧ OKnowΣ′[B, j] (3)

11. In the sequel, background theory stipulations assume the nesting of only knowing operators. There are other possi-
bilities, of course, such as Oi(φ ∧ (K jα ∨K jβ)). We defer discussions on these to Section 4.4.
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which says that A believes the action theory Σ to k levels, i.e. he believes B to also believe Σ and
so on, while B believes the action theory Σ′ to j levels. Before presenting any technical results
on reasoning about actions, we show with an example how the formalism can be used to model
domains, and that it has appropriate properties regarding knowledge, introspection and sensing.

Example 12 Imagine two agents playing a simple card game. We imagine a deck of cards, num-
bered 1 through 52. Two face-down cards have been dealt, one to A and the other to B. Player i
picks her card, reads the card and decides to challenge player j ( j , i). When a challenge is posed,
the player with the card that has the highest number wins the game.

We begin by stipulating the preconditions of the domain. Let Σpre be the following:

�Poss(a) ≡
∃x[a = picki(x) ∧ ∀y(¬Holdingi(y))] ∨
∃x[a = seei(x) ∧ Holdingi(x)] ∨
a = challengei ∧ TRUE.

In English: sensing actions seei are explained below, but to sense we assume that i is holding the
object. We let picki be a physical action, and we require that for object x to be picked up, i is not
holding anything else. The other fluent-changing action in the domain is challengei, such that Σpost

has two elements:

�[a]Holdingi(x) ≡ a = picki(x) ∨ Holdingi(x).

�[a]Losei ≡ Losei ∨

a = challengei ∧ (num(cardi) < num(card j)) ∨
a = challenge j ∧ (num(card j) > num(cardi)).

where cardi is the card that has been dealt to i, num is a rigid function representing the card’s
number, and Losei indicates that i has lost the game. That is, if i challenges, he would win only with
the higher number.

Let us now formalize the sensing axioms. When A reads his card, we expect her to discover the
number on the card. Actions are public, but despite the fact that B observes A reading her card, B is
not expected to discover the contents of A’s card. This asymmetry can be captured by letting Σsense

contain the following sentence:

�[a]SFi(a) = y ≡
∃x[a = seei(x) ∧ y = num(x)] ∨
¬∃x[a = seei(x) ∧ y = NIL].

In English: i’s sensing results for the action seei(x) informs i about the number on card x, while
i’s sensing results for every other action returns NIL. That is, NIL is obtained when i senses on
physical actions, as well as when i observes j reading a card by means of see j.

Finally, we stipulate the initial theories, after which we are done. We let Σ0 be the following:

• ∀x[¬Holdingi(x)];

• num(cardA) , num(cardB);
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• ∀x[num(x) = #1 ∨ . . . ∨ num(x) = #52];

• #1 < #2 < #3 < . . . < #51 < #52;

• ¬LoseA ∧ ¬LoseB.

Here, we are supposing that cardA is the card that A was dealt, while cardB is the one that B was
dealt. Basically, Σ0 says that the numbers on cardA and cardB are different but they are one of
{1, . . . , 52} and that initially, no player has lost the game.

Σ0 represents the initial assumptions of the game. In general, players may have access to addi-
tional information. In an unfair setting, for instance, we might imagine that B knows A’s card before
A does. For our current purposes, however, we will simply assume that Σ0 is what i believes, as well
as what i believes j to believe, at all levels. To now model the real world, let

Υ0 = Σ0 ∪ {num(cardA) = #1, num(cardB) = #52}.

Letting Σ = Σ0 ∪ Σpre ∪ Σpost ∪ Σsense, and letting Υ = Σ ∪ Υ0, our development leads to a theory of
the following form:

Υ ∧ OKnowΣ[A, k] ∧ OKnowΣ[B, j] (4)

Prior to analyzing the entailments of (4), it is convenient to state a lemma regarding how a model
of (4) can be constructed. For that, we will use the notion of the modal depth of a formula, which
refers to the epistemic modalities in the formula.

Definition 13 The modal depth of a formula α is defined inductively:

• modal(α) = 0 for atomic formulas;

• modal(α ∨ β) = max(modal(α),modal(β));

• modal(∀xα) = modal(α);

• modal([t]α) = modal(α);

• modal(�α) = modal(α);

• modal(¬α) = modal(α);

• modal(Miα) = 1 + modal(α) where Mi ∈ {Ki,Oi}.

For example, p ∨ [t]q, where p and q are atoms, is a formula not mentioning epistemic operators
and so its modal depth is 0. KAKB p, in contrast, has a modal depth of 2. Essentially, the modal
depth simply counts the epistemic modalities in a formula and completely ignores the indices of
these modalities. Not surprisingly, it differs from the i-depth of formulas. For example, the modal
depth of KA p is 1, |KA p|A is 1, but |KA p|B is 2. In contrast, the modal depth of KAKA p is 2, but
its A-depth is 1 and its B-depth is 2, as in the case of KA p.

Suppose φ is any objective sentence, possibly a basic action theory. Let us denote the set of
worlds {w | w |= φ} asWφ. Further, let e1

φ = Wφ × {{}}. Let ek
φ = {(w, ek−1

φ ) | w ∈ Wφ} be defined
inductively. Then,
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Lemma 14 Suppose φ is an objective sentence. Suppose w is any world and eφk
A and eφ

j
B are

constructed as above. Then eφk
A, eφ

j
B,w |= OKnowφ[A, k] ∧ OKnowφ[B, j].

Proof: The proof is by an induction on the modal depth of the background theory, which Definition
13 provides. First note that when the modal depth of the background theory is l, then we have a
sentence of the form OKnowφ[A, k] ∧ OKnowφ[B, j] such that k ≤ l, j ≤ l and k or j is l.

Since OKnowφ[i, k] is interpreted wrt i’s epistemic state, we can treat the A-subjective and B-
subjective formulas of the background theory individually. The base case is for theories of modal
depth 1, where we are considering a sentence of the form Oiφ. To prove the base case, consider
any world w′. Clearly w′ '〈〉 w by definition. By construction, (w′, {}) ∈ eφ1

A iff w′ |= φ. Therefore
eφ1

A, {},w |= OAφ. Analogously for eφ1
B.

Suppose that the lemma holds for background theories of modal depth k − 1, that is, eφk−1
A

satisfies OKnowφ[A, k − 1]. This is analogously stated for B. Let (w′, eφk−1
B ) be any k-structure in

eφk
A. By construction w′ |= φ. By induction hypothesis, {}, eφk−1

B ,w′ |= OKnowφ[B, k − 1]. That is,
by construction, (w′, eφk−1

B ) ∈ eφk
A iff {}, eφk−1

B ,w′ |= φ ∧ OKnowφ[B, k − 1]. Therefore eφk
A, {},w |=

OA(φ ∧ OKnowφ[B, k − 1]), that is, eφk
A, {},w |= OKnowφ[A, k].

Using this lemma, we now consider some properties of (4):

Proposition 15 The following sentences are entailed by the sentence (4), with k > 1 and j > 1.

1. ¬KA(num(cardA) = #1).

Initially, A does not know the details of her card. (That is, non-beliefs are obtained via
only knowing.)

2. [pickA(cardA)][seeA(cardA)]KA(num(cardA) = #1).

After sensing, A knows he has the lowest number.

3. [pickA(cardA)][seeA(cardA)]KB∃xKA(num(cardA) = x).

After B observes A reading his card, B knows that A knows what cardA holds for him.
That is, B has de dicto knowledge about A’s knowledge.

4. [pickA(cardA)][seeA(cardA)]¬∃xKB(num(cardA) = x).

But it is not the case that B knows A’s card when he observes A sensing. That is, B does
not have de re knowledge about the card.

5. [pickA(cardA)][seeA(cardA)]KA¬∃xKB(num(cardA) = x).

Moreover, A knows that B does not know her card.

6. [pickA(cardA)][seeA(cardA)][pickB(cardB)][seeB(cardB)]Ki([challengeB]LoseA)
where i ∈ {A, B}.

After sensing, both A and B believe that A would lose the game if challenged by B.
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Figure 2: This depicts the compatibility of worlds after actions, shown wrt a 3-card deck for sim-
plicity’s sake. Here, worlds are characterized in terms of the numbers on the cards, and
therefore, they are simply labeled (n,m), where n denotes the number on A’s card and m
denotes the number on B’s card at the world. The first line represent’s A’s uncertainty ini-
tially, and the second after A senses #1, in which case all worlds where she does not have
that card are discarded. The third represents B’s belief about A’s epistemic state after he
observes A sensing her card. That is, while he does not know which card A has, he does
know that A considers only two worlds possible, grouped as shown, without knowing
which group represents truth.

Proof: Let M = (ek
A, e

j
B,w) be any model of (4). It is easy to see that ek

A and e j
B would be as in

Lemma 14, and w is any world satisfying Υ from (4). Below, we let r denote pickA(cardA) and let
r′ denote seeA(cardA).

1. Assume the contrary. Suppose that ek
A, e

j
B,w |= KA(num(cardA) = #1). Then for all (w′, ek−1

B ) ∈
ek

A, we get ek
A, e

k−1
B ,w′ |= (num(cardA) = #1).

Now, observe that Σ0 only says that the value of num(cardA) ∈ {1, . . . , 52}. Thus, by construc-
tion (and the definition ofW), there are worlds w∗ ∈ WΣ where (say) w∗ |= (num(cardA) =
#2), w∗ 'A

〈〉
w, and (w∗, ek−1

B ) ∈ ek
A for some ek−1

B . This is a contradiction.

2. After A executes r · r′, it follows that only those worlds w′ ∈ WΣ such that w′[SFA(r′), r]
= w[SFA(r′), r] = #1 are considered when evaluating A-subjective formulas. (These are
worlds that agree on the number on A’s card with the real world.) Therefore ek

A, e
j
B,w, r · r

′ |=

KA(num(cardA) = #1) since for every (w′, ek−1
B ) ∈ ek

A such that w′ 'A
r·r′ w, ek

A, e
k−1
B ,w′, r · r′ |=

(num(cardA) = #1) by the definition of the semantics and the sensing axioms Σsense.
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3. Consider any (w∗, e j−1
A ) ∈ e j

B. We get that w∗ 'B
r·r′ w iff w∗[SFB(r′), r] = w[SFB(r′), r]. Since

SFB(r) = SFB(r′) = NIL in all worlds satisfying Σ, for item 3 to hold it must follow that
for every (w′, e j−1

A ) ∈ e j
B, e

j−1
A , e j

B,w
′, r · r′ |= ∃xKA(num(cardA) = x), and so e j−1

A , e j
B,w

′, r ·
r′ |= KA(num(cardA) = n) for some n. Using arguments from item 2, this is easily shown
to be the case. That is, e j−1

A , e j
B,w

′ |= KA(num(cardA) = n) iff for every w′′ 'A
r·r′ w′, if

(w′′, e j−2
B ) ∈ e j−1

A , then e j−1
A , e j−2

B ,w′′ |= (num(cardA) = n). This holds because w′′ 'A
r·r′ w′

will hold when w′′, r · r′ |= (num(cardA) = n).

The intuitive argument is as follows. Suppose B only considered j-structures (w, e j−1
A ) possi-

ble, where w is the real world. Then he would be able to infer cardA’s number. But since his
epistemic state is {(w′, e j−1

A ), (w′′, e j−1
A ), . . .} he believes at each of the worlds w′ that A knows

his number as well as what this is, but he does not know of which of these is the real world.
In effect, there are some structures that inform B that A’s card is #1, and there are others that
inform him that A’s card is a different number, leaving him uncertain. For the case of a 3-card
deck, Figure 2 illustrates this development.

4. This follows from the arguments for the previous item. Basically, for every w′ ∈ WΣ ,
w′[SFB(r), r] = NIL = w[SFB(r), r]. When evaluating B-subjective formulas every (w′, e j−1

A ) ∈
e j

B is considered, including ones where (say) w′, r·r′ |= (num(cardA) = #2). Thus ek
A, e

j
B,w, r 6|=

KB(num(cardA) = #1).

5. Consider any (w′, ek−1
B ) ∈ ek

A such that w′ 'A
r·r′ w. By the arguments from item 4, it follows

that
ek

A, e
k−1
B ,w′, r · r′ 6|= ∃xKB(num(cardA) = x).

Therefore, ek
A, e

j
B,w, r · r

′ |= KA¬∃xKB(num(cardA) = x).

6. This property follows from logical deduction. After sensing, both players know their own
cards. A has the lowest number, while B has the highest. Since both agents know that their
numbers are unique, and these numbers are one of {1, . . . , 52}, both infer that A would lose
after being challenged.

4. Regression

A fundamental reasoning task in dynamic domains is projection (Reiter, 2001), where we are to
infer whether α holds after a sequence of actions a1, . . . , ak is executed:

Υ |= [a1] . . . [ak]α.

Reiter (2001) developed an important solution to the projection problem in the situation calculus
called regression. The idea is to reduce a query α about the future to a query α′ about the initial
situation by successively replacing fluents in α by the rhs of the successor state axioms until the
resulting sentence α′ contains no more actions. We then need to only verify whether α′ is entailed
by the initial theory.

In the context of multiagent systems, we might, for example, be interested in reasoning about
entailments about a background theory such as (3) that stipulates the beliefs of agents in the appli-
cation domain:

(3) |= [a1] . . . [ak]φ
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where φ perhaps mentions belief operators.

Reiter’s (2001) results were extended by Scherl and Levesque (2003) to handle knowledge in the
situation calculus, which was further shown to carry over to ES (Lakemeyer & Levesque, 2011). In
this section, we generalize these results for background theories of the form (3) involving multiagent
only knowing operators. We first recap the regression of objective formulas from ES.

4.1 Regressing Objective Formulas

Without any loss of generality, we assume that the query α is syntactically reformulated as follows:

1. quantifiers use distinct variables, and we say such formulas are rectified;

2. formulas are in a certain normal form called NF (defined below).

After applying these transformations, the query becomes amenable to regression. The first syntactic
manipulation is required because of the way regression handles quantifiers, which can lead to in-
correct transformations if the variables are not distinct. The second is required for giving a simple
formulation of regression.

Definition 16 A formula α is in NF if every function symbol f in α occurs only in equality expres-
sions of the form f (t1, . . . , tk) = t′, where ti and t′ are either variables or names.

It is immediate to verify that every formula can be rewritten to one in NF, and this transformation
is linear in the size of the formula. For instance, f (g(x)) = f ′(x) is equivalent to ∃y, u. f (y) =

u ∧ f ′(x) = u ∧ g(x) = y. Further, by this definition, if a term t appears either as an argument for a
function or as an action operator [t], then it follows that it is either an (action) name or a variable.
In the following we will use σ to denote sequences that consist of action variables or action names.

Lakemeyer and Levesque (2011) define the regression operator R, which is applicable to any
bounded objective formula.12 If such a formula is not rectified or not in NF, it is transformed to a
formula satisfying these conditions.

Definition 17 Define R[α], the regression of a bounded basic formula α wrt Υ, to be the fluent
formula R[〈〉, α]. For any sequence of action names or variables σ, R[σ, α] is defined inductively:

1. R[σ, t1 = t2] = (t1 = t2) if t1 and t2 do not mention functional fluents;

2. R[σ,∀xα] = ∀xR[σ, α];

3. R[σ, α ∨ β] = R[σ, α] ∨ R[σ, β];

4. R[σ,¬α] = ¬R[σ, α];

5. R[σ, [t]α] = R[σ · t, α];

6. R[σ,Poss(t)] = R[σ, πa
t ];

12. Roughly speaking, these correspond to the class of formulas that Reiter (2001) deems regressable in the situation
calculus.
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7. R[σ,G(t1, . . . , tk)] = G(t1, . . . ,Gk) for rigid predicate G;

8. R[σ, F(t1, . . . , tk)] for fluent predicate F is defined inductively on σ:

(a) R[〈〉, F(t1, . . . , tk)] = F(t1, . . . , tk);

(b) R[σ · t, F(t1, . . . , tk)] = R[σ, γF
a x1 ... xk
t t1 ... tk ];

9. R[σ, f (t1, . . . , tk) = t′] for fluent function f is defined inductively by:

(a) R[〈〉, f (t1, . . . , tk) = t′] = ( f (t1, . . . , tk) = t′);

(b) R[σ · t, f (t1, . . . , tk) = t′] = R[σ,∃y. (γ f )a
t

x1 ... xk
t1 ... tk

∧ y = t′].

Note that this definition includes π, γF and γ f which are the rhs of the precondition axiom and the
successor state axioms from Υ.

The main result regarding Definition 17 is that the evaluation of objective bounded sentences
reduces to a query about the initial theory.

Theorem 18 (Lakemeyer & Levesque, 2011) Let Υ be a basic action theory, whose initial theory is
Υ0, and let α be any objective bounded sentence. Then R[α] is a fluent sentence and satisfies:

Υ |= α iff Υ0 |= R[α].

4.2 Regressing Multiagent Beliefs

Let us now consider the more general case of regression for bounded sentences mentioning belief
operators. This first needs the equivalent of a successor state axiom for knowledge, which will tell
us how knowledge can be regressed wrt an action. The following theorem generalizes a similar
result by Lakemeyer and Levesque (2004) to the many agent case.

Theorem 19 (Successor State Axiom for Knowledge.)

|= �[a]Ki(α) ≡
∃x. SFi(a) = x ∧Ki(SFi(a) = x ⊃ [a]α).

Proof: Let i be A, with the other case being symmetric. For the only-if direction, suppose that
ek

A, e
j
B,w, z |= [r]KAα

a
r for an action name r. Abbreviate αa

r as α′. Suppose that ek
A, e

j
B,w, z |=

SFA(r) = n. It then suffices to show that ek
A, e

j
B,w, z |= KA(SFA(r) = n ⊃ [r]α′).

So suppose (w′, ek−1
B ) ∈ ek

A and w′[SFA(r), z] = n. Since w′ 'A
z·r w, it follows by assumption that

ek
A, e

k−1
B ,w′, z · r |= α′, i.e. ek

A, e
k−1
B ,w′, z |= [r]α′. Thus ek

A, e
k−1
B ,w′, z |= SFA(r) = n ⊃ [r]α′, and it

follows then that ek
A, e

j
B,w

′, z |= KA(SFA(r) = n ⊃ [r]α′).

Conversely, suppose that ek
A, e

j
B,w, z |= SFA(r) = n ∧KA(SFA(r) = n ⊃ [r]α′). We now need to

show that ek
A, e

j
B,w, z |= [r]KA(α′), i.e. for all (w′, ek−1

B ) ∈ ek
A such that w′ 'A

z w, ek
A, e

k−1
B ,w′, z·r |= α′.

Suppose w′ 'A
z·r w, i.e. w′[SFA(r), z] = n and (w′, ek−1

B ) ∈ ek
A for some ek−1

B . Then by assumption,
ek

A, e
k−1
B ,w′, z · r |= α′. So ek

A, e
k−1
B ,w′, z |= [r]α, from which we get ek

A, e
j
B,w, z |= KA([r]α′).
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This theorem essentially says that knowledge after an action depends on what was known before,
and what the future would look like contingent on the sensing result. Note that this theorem is not a
stipulation of the action theory (Scherl & Levesque, 2003), but a theorem of the logic.

We mentioned earlier that in the case of (3), we need three basic action theories Υ, Σ and Σ′. The
idea behind regression is to transform objective formulas wrt Υ, while subjective ones are regressed
wrt Σ and Σ′. Consequently, R is defined wrt Υ,Σ and Σ′. More precisely, we define a regression
operator R[Υ,Σ,Σ′, σ, α] wrt a basic action theory Υ for what is true in the real world, a basic
action theory Σ for what A believes at all levels, and a basic action theory Σ′ for what B believes at
all levels, as expected by (3).

Definition 20 We define R[Υ,Σ,Σ′, α], the regression of a bounded basic formula α wrt Υ,Σ

and Σ′, to be R[Υ,Σ,Σ′, 〈〉, α]. For a given sequence of action names or variables σ, we define
R[Υ,Σ,Σ′, σ, α] inductively by:

1.-9. See Definition 17. (Note that this definition uses the rhs of the precondition axiom and the
successor state axioms from Υ.)

10. R[Υ,Σ,Σ′, σ, SFA(t) = t′] = R[Υ,Σ,Σ′, σ, ϕA
a x
t t′ ] which uses the rhs of the sensing axioms

from Σ;

11. R[Υ,Σ,Σ′, σ, SFB(t) = t′] = R[Υ,Σ,Σ′, σ, ϕB
a x
t t′ ] which uses the rhs of the sensing axioms

from Σ′;

12. R[Υ,Σ,Σ′, σ,KAα] is defined inductively on σ by:

(a) R[Υ,Σ,Σ′, 〈〉,KAα] = KA(R[Σ,Σ,Σ, 〈〉, α]);

(b) R[Υ,Σ,Σ′, σ·t,KAα] = R[Υ,Σ,Σ′, σ, βa
t ], where β is rhs of the equivalence in Theorem

19 for the agent index A.

13. R[Υ,Σ,Σ′, σ,KBα] is defined inductively on σ by:

(a) R[Υ,Σ,Σ′, 〈〉,KBα] = KB(R[Σ′,Σ′,Σ′, 〈〉, α]);

(b) R[Υ,Σ,Σ′, σ·t,KBα] = R[Υ,Σ,Σ′, σ, βa
t ], where β is rhs of the equivalence in Theorem

19 for the agent index B.

The regression operator in the multiagent case works as follows. At the initial situation, regressing
KAα is equivalent to regressing α wrt the basic action theory Σ that A believes at all levels. Simi-
larly, at the initial situation, regressing KBα is equivalent to regressing α wrt the basic action theory
Σ′ that B believes at all levels. More generally, if we are regressing Kiα wrt an action sequence
σ · t, then this is equivalent to regressing the rhs of Theorem 19 wrt σ by first substituting t.

For simplicity, we often write R[σ, α] instead of R[Υ,Σ,Σ′, σ, α]. We are now ready to prove
the main result of this section for bounded basic sentences:13

13. Roughly speaking, these correspond to the class of regressable formulas in the epistemic situation calculus (Scherl
& Levesque, 2003).
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Theorem 21 Suppose α is a bounded basic sentence of maximal A,B-depth k, j. Let Υ,Σ and Σ′ be
basic action theories. Then R[〈〉, α] is a static sentence and satisfies:

Υ ∧ ψ |= α iff Υ0 ∧ ψ0 |= R[〈〉, α]

where ψ = OKnowΣ[A, k] ∧ OKnowΣ′[B, j]
ψ0 = OKnowΣ0[A, k] ∧ OKnowΣ0

′[B, j].

That is, we solve projection which is the task of verifying whether α is entailed by regressing α

and verifying that is an entailment of the conjunction of what is true initially and each agent only
knowing their initial beliefs. The proof for this theorem is provided in Appendix A.

Readers will have noticed that the theorem assumes a background theory where A has beliefs to
level k and B has beliefs to level j, given a query whose maximal A,B-depth is k, j. This syntactic
restriction is essential for our relatively simple regression operator to be well-defined. To see that,
suppose we are interested in verifying whether KAKB[r]α is entailed by OA(Σ), where Σ is a basic
action theory. By the definition of the regression operator given above, evaluating the query reduces
to regressing [r]α wrt Σ, but this is not a correct transformation because A does not have any beliefs
about B’s knowledge of the world. In fact, the formula KAKB[r]α does not seem amenable to
regression wrt OA(Σ) since it is simply not clear how one should regress the subformula KB[r]α.
But now note that the formula KAKB[r]α is of depth 2 and that the transformation is indeed correct
wrt initial knowledge for A of at least depth 2, such as OA(Σ ∧OBΣ).

Readers will also notice that we are restricting the regression operator to bounded basic sen-
tences. There are at least two reasons for this limitation. First, note that the language is not expres-
sive enough to refer to only knowing in non-initial situations; if an agent only knows a basic action
theory, one presumes that after an action the agent only knows another basic action theory. Regress-
ing the latter should intuitively lead to a sentence that talks about what was only known before the
action was executed, and this currently cannot be expressed in the language. Second, note that a
basic action theory contains sentences such as the successor state axioms which are not bounded.
So, if after an action we are left with a formula of the form Oi(α), where α by the above argument
would contain sentences that are not bounded, then this α would not be regressable. This is because
Theorem 18 is limited to regressing bounded formulas. Nevertheless, the regression operator covers
the same class of formulas as considered by Scherl and Levesque (2003), and is sufficient for most
practical purposes.

Example 22 We illustrate regression using the card game. Suppose we are interested in checking
whether (4) from Section 3 entails the following sentence:

[pickA(cardA)][seeA(cardA)](KA(num(cardA) = #1) ∧ ¬KB(num(cardA) = #1)). (5)

That is, after A picks her card and senses, she knows of her own card while B does not learn this.
Use r for pickA(cardA), r′ for seeA(cardA) and α for (num(cardA) = #1). Begin with

R[Υ,Σ,Σ, r · r′,KAα ∧ ¬KBα]

= R[Υ,Σ,Σ, r · r′,KAα] ∧ R[Υ,Σ,Σ, r · r′,¬KBα]
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Consider [r][r′]KAα. We have:

R[Υ,Σ,Σ, r · r′,KAα]

= R[Υ,Σ,Σ, r,∃x(SFA(r′) = x ∧KA(SFA(r′) = x ⊃ [r′]α))]

= ∃x. R[Υ,Σ,Σ, r, SFA(r′) = x] ∧ R[Υ,Σ,Σ, r,KA(SFA(r′) = x ⊃ [r′]α)]

= ∃x. R[Υ,Σ,Σ, r, num(cardA) = x] ∧

R[Υ,Σ,Σ, 〈〉,∃y. SFA(r) = y ∧KA(SFA(r) = y ⊃ [r]β)]

= ∃x. num(cardA) = x ∧ ∃y. y = NIL ∧KA(R[Σ,Σ,Σ, 〈〉, SFA(r) = y ⊃ [r]β])

= ∃x. num(cardA) = x ∧ ∃y. y = NIL ∧

KA(y = NIL ⊃ (num(cardA) = x ⊃ num(cardA) = #1))

Here, β denotes (SFA(r′) = x ⊃ [r′]α).

These reductions mostly involve repeated applications of the knowledge successor state axiom,
over logical connectives. Then, in step 4, when regressing knowledge wrt 〈〉, we replace all basic
action theories in theR operator with the one that A believes, as expected by Rule 12(a) of Definition
20. Regarding R’s result, since Υ0 contains num(cardA) = #1, it is not hard to see that

Υ0 ∧ OKnowΣ0[A, k] ∧ OKnowΣ0[B, j] |= R[Υ,Σ,Σ, r · r′,KAα].

Simplifying R[Υ,Σ,Σ, r · r′,¬KBα] is analogous, the only dissimilarity arising from regressing B’s
beliefs wrt r′, which obtains the sensing result NIL:

R[Υ,Σ,Σ, r · r′,¬KBα]

= ¬R[Υ,Σ,Σ, r · r′,KBα]

= ¬[∃x. x = NIL ∧ ∃y. y = NIL ∧KB(y = NIL ⊃ (x = NIL ⊃ num(cardA) = #1))].

One may verify that

Υ0 ∧ OKnowΣ0[A, k] ∧ OKnowΣ0[B, j] |= ¬R[Υ,Σ,Σ, r · r′,KBα].

Therefore,

Υ0 ∧ OKnowΣ0[A, k] ∧ OKnowΣ0[B, j] |= R[Υ,Σ,Σ, r · r′,KAα ∧ ¬KBα].

By means of Theorem 21, this allows us to conclude that the query (5) is indeed entailed by (4).

Example 23 We will regress nested beliefs in this example. Suppose we are interested in checking
whether (4) from Section 3 entails the following sentence:

[pickA(cardA)][seeA(cardA)]KA¬KB(num(cardA) = #1). (6)
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As we have done so above, let r denote pickA(cardA), r′ denote seeA(cardA), and α denote num(cardA) =
#1. Then:

R[Υ,Σ,Σ, r · r′,KA¬KBα]

= R[Υ,Σ,Σ, r,∃x(SFA(r′) = x ∧KA(SFA(r′) = x ⊃ [r′]¬KBα))]

= ∃x. R[Υ,Σ,Σ, r, num(cardA) = x] ∧ R[Υ,Σ,Σ, r,KA(x = num(cardA) ⊃ [r′]¬KBα)]

= ∃x. num(cardA) = x ∧

R[Υ,Σ,Σ, 〈〉,∃y(SFA(r) = y ∧KA(SFA(r) = y ⊃ [r]β))]

= ∃x. num(cardA) = x ∧ ∃y. y = NIL ∧KA(R[Σ,Σ,Σ, 〈〉, y = NIL ⊃ [r]β]).

Here, β denotes (num(cardA) = x ⊃ [r′]¬KBα).
The above reduction leads to:

∃x. num(cardA) = x ∧ ∃y. y = NIL ∧KA(y = NIL ⊃ R[Σ,Σ,Σ, 〈〉, [r]β]). (7)

Let us consider R[Σ,Σ,Σ, 〈〉, [r]β]. We have (on simplification):

R[Σ,Σ,Σ, 〈〉, [r]β]

= (num(cardA) = x) ⊃ R[Σ,Σ,Σ, 〈〉, [r][r′]¬KBα].

Following the reduction of R[Σ,Σ,Σ, 〈〉, [r][r′]¬KBα] as done in the previous example, it can be
shown that

Υ0 ∧ OKnowΣ0[A, k] ∧ OKnowΣ0[B, j] |= (7).

Using the regression property, that is, Theorem 21, we conclude that (6) is entailed by (4). There-
fore, we are done. (We reiterate that A has knowledge about B’s non-beliefs because A has beliefs
about what B only knows.)

Analogously, other entailments from Proposition 15 can be verified using regression.
While regression allows us to reduce questions about knowledge and action to queries about

initial beliefs, in the next section we go even further and replace reasoning about knowledge by
classical first-order reasoning.

4.3 A Representation Theorem

The representation theorem is a result by means of which reasoning about knowledge is reduced to
first-order theorem proving. The presentation below generalizes the single agent variant (Lakemeyer
& Levesque, 2004).

The basic idea is to substitute believed sentences with their instances. For example, suppose all
that i believes is the sentence φ:

φ = {Smaller(n2, n1), Smaller(n3, n1) ∨ Smaller(n4, n1)}.

That is, in a blocks world domain: n2 is smaller than n1, and n3 is smaller than n1 or n4 is smaller
than n1. Supposing we ask:

Ki∃x. (Smaller(x, n1) ∧ ¬KiSmaller(x, n1)) (8)
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That is, does φ know of a block that is smaller than n1, but does not know which one? The answer
is certainly yes because the list of smaller blocks known is incomplete, except for n2. The essential
step is to replace KiSmaller(x, n1) with x = n2. Then, it can be shown that the query reduces to
verifying if ∃x. (Smaller(x, n1) ∧ x , n2) is entailed by φ.

To make this intuition precise, we first define a procedure Res[α, φ], introduced originally by
Levesque (1990), to obtain the known instances of α that are entailed by φ, where both α and φ are
fluent formulas. When α does not mention free variables, then Res checks whether φ entails the
sentence α.

Definition 24 Let α be a fluent formula, and φ is a fluent sentence. Let n1, . . . , nk be all the names
occurring in φ and α and n′ is a name not occurring in φ or α. Then, Res[α, φ] is defined as:

1. If α has no free variables, then Res[α, φ] is TRUE if φ |= α and FALSE otherwise.

2. If x is a free variable in α, then Res[α, φ] is defined as:

((x = n1) ∧ Res[αx
n1
, φ]) ∨

. . . ∨

((x = nk) ∧ Res[αx
nk
, φ]) ∨

((x , n1) ∧ . . . ∧ (x , nk) ∧ Res[αx
n′ , φ]n′

x ).

For instance, if α was Smaller(x, n1) and φ is as above, then Res[α, φ] would simplify to:

(x = n2) ∧ Res[αx
n2
, φ]

where, further, Res[αx
n2
, φ] is TRUE because φ |= Smaller(n2, n1).

Given any formula Kiα and a φ that is only known by i, the idea is to reason about knowledge
by utilizing Res. Of course, as discussed earlier, in the multiagent case we have to account for
knowledge bases at the different levels, that is, by addressing background theories of the form (3).
So we proceed as follows. Let φ and φ′ denote the initial theories (fluent sentences) believed by A
and B at all levels respectively. Then, given any bounded basic sentence, we first use regression to
obtain a static basic sentence. For any static basic α, define ‖α‖φ,φ′ as follows:

Definition 25 Let φ and φ′ be fluent sentences, and α and β be static basic sentences. Then we
define the fluent sentence ‖α‖φ,φ′ by:

1. ‖α‖φ,φ′ = α if α is objective;

2. ‖¬α‖φ,φ′ = ¬‖α‖φ,φ′ ;

3. ‖α ∨ β‖φ,φ′ = ‖α‖φ,φ′ ∨ ‖β‖φ,φ′ ;

4. ‖∀xα‖φ,φ′ = ∀x‖α‖φ,φ′ ;

5. ‖KAα‖φ,φ′ = Res[‖α‖φ,φ, φ];

6. ‖KBα‖φ,φ′ = Res[‖α‖φ′,φ′ , φ′].
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Intuitively, given an objective KB φ that A believes at all levels and an objective KB φ′ that B
believes at all levels, a conceptually simple reduction operator can be obtained. The reader may
notice some similarity to the regression operator, viz. whenever KAα is encountered then the reduc-
tion is continued wrt the KB φ. Analogously, the reduction is continued wrt φ′ whenever KBα is
encountered.

We now present the main result for this section, by relating R and ‖ · ‖φ,φ′ :

Theorem 26 Let Υ,Σ and Σ′ be basic action theories. Suppose α is a basic bounded sentence of
maximal A,B-depth k, j, then

Υ ∧ ψ |= α iff |= Υ0 ⊃ ‖R[〈〉, α]‖Σ0,Σ0
′ .

where ψ = OKnowΣ[A, k] ∧ OKnowΣ′[B, j].

That is, a query α perhaps with action operators is entailed by the background theory iff the regressed
query reduced by the representation theorem wrt Σ0 and Σ0

′ is entailed by the set of sentences that
are true initially. Thus, no modal reasoning is necessary. The proof for this theorem appears in
Appendix B.

Example 27 Let us consider a projection query from Example 22. Consider, for example, the
question whether (4) from Section 3 entails:

[pickA(cardA)][seeA(cardA)]KA(num(cardA) = #1). (9)

By means of Theorem 26, we get that |= (4) ⊃ (9) iff

|= {num(cardA) = #1, num(cardB) = #52,Σ0} ⊃ ‖R[Υ,Σ,Σ, 〈〉, (9)]‖Σ0,Σ0
(10)

So for (10) to be true, first consider that R[Υ,Σ,Σ, 〈〉, (9)] simplifies to

∃x. x = num(cardA) ∧ ∃y. y = NIL ∧KAα (11)

where α is
y = NIL ⊃ (num(cardA) = x ⊃ num(cardA) = #1).

Next, observe that ‖(11)‖Σ0,Σ0
yields

∃x. x = num(cardA) ∧ ∃y. y = NIL ∧ Res[‖α‖Σ0,Σ0 ,Σ0]. (12)

We then note that Res[‖α‖Σ0,Σ0 ,Σ0] reduces to

x = #1 ∧ y = NIL. (13)

The reduction is as follows. Res[‖α‖Σ0,Σ0 ,Σ0] = Res[α,Σ0] because α is objective. Now, Res[α,Σ0]
has 2 free variables: x and y. By the definition of Res, all possible substitutions n and m are chosen
for x and y respectively from the names in Σ0 ∪ {α}, to check whether Res[αx y

n m,Σ0] is true. But that
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is the case only for substitutions #1 and NIL for x and y respectively. Therefore, Res[α,Σ0] yields
(13). Replacing (13) in (12), we get:

∃x[x = num(cardA) ∧ ∃y[y = NIL ∧ (x = #1 ∧ y = NIL)]]. (14)

Thus, from (10), we ask is it true that the following first-order formula is valid:

{num(cardA) = #1, num(cardB) = #52,Σ0} ⊃ (14).

The answer is clearly yes, and therefore, |= (4) ⊃ (9).

So standard first-order theorem proving can be employed for reasoning about multiagent systems in
ESn. There is a caveat, however. Unlike standard theorem proving, the set of basic bounded formu-
las that follow from a basic action theory by applying the representation theorem is not recursively
enumerable (Rogers Jr., 1987). More precisely, in item 1 of Res’s definition, note that we appeal
to validity, when returning TRUE, and appeal to falsifiability, when returning FALSE (Levesque &
Lakemeyer, 2001).

4.4 Discussions

Before wrapping up the section, let us reflect on the limitations of the regression property and the
representation theorem. Clearly, they represent a very special case, one of the form (say, for theories
of depth 2):

OA(φ ∧OBφ) ∧OB(ψ ∧OAψ)

where if an agent only knows φ, she also believes other agents hold the same beliefs. It is not hard
to generalize both the results to cases of the form:

OA(φ ∧OBφ
′) ∧OB(ψ ∧OAψ

′)

where, φ, φ′, ψ and ψ′ may differ arbitrarily. The idea, not surprisingly, is to relate the depth of
the formula to the sentence believed by the agent at a corresponding depth. For example, if p is
an atom, one would evaluate [r]KA p wrt φ and [r]KB p wrt ψ. At the next level, given a formula
[r]KA([r′]KB p), we would evaluate [r′]KB p wrt φ′, and given the resultant formula α, we would
evaluate [r]KAα wrt φ. More precisely, the regression operator and the representation theorem will
now be defined in terms of the sentences true in the real world, as well as the ones believed: φ, φ′, ψ
and ψ′. (That is, instead of three theories wrt which R is defined for knowledge bases of arbitrary
depths, as in Section 4, we would have at most 5 theories for knowledge bases of depth 2.) Using
the techniques presented here, it is then not hard to show that, yet again, we would obtain a property
analogous to Theorem 26, where no modal reasoning will be necessary. Because we allow beliefs
to differ arbitrarily after actions, we think expecting an initial specification that makes assumptions
about what agents only know is reasonable. (Note also that φ and φ′ can be any first-order theory,
that is, no complete knowledge assumption is made here or anywhere else in this paper.) Therefore,
this more general setting would cover a broad range of application domains. In return, only a slightly
involved definition for R and ‖ · ‖ is needed.

However, there may be domains that make a case for still other kinds of initial states, such as

OA(φ ∧ (KBψ ∨KBψ
′)) ∧KB(ψ ∧KA(¬φ))

390



Multiagent Only Knowing in Dynamic Systems

is one where A only knows that B knows ψ or B knows ψ′. It is also an example where the modeler
has not given a full characterization of B’s knowledge base. Appealing to the underlying semantics
to reason about properties of knowledge in such examples is well-defined, of course, since we are
simply checking the validity of well-formed formulas in the logic. As far as the effectiveness of
reasoning is concerned, note that most significantly, regression of basic bounded formulas is not
limited to the nature of the initial theory. So this aspect is not the problem. But we have very
little to say about the reduction of knowledge operators in these cases. Indeed, while a version of
Theorem 21 is provable, where after regression, one would replace basic action theories by their
initial components only, Theorem 26 need not hold. Thus, in such cases, modal reasoning will
perhaps be necessary.

5. Related Work

This article focused on only knowing and knowledge in a multiagent dynamic setting. In particular,
the modal dialect ES of the situation calculus, along with associated reduction theorems, were
generalized to the many agent case.

The underlying language of the situation calculus has received a lot of attention in the action
community. There are, of course, alternate formalisms, such as the fluent calculus (Thielscher,
1999) and other closely related approaches, such as those based on dynamic logics (Gerbrandy &
Groeneveld, 1997; Demolombe, 2003; Demolombe, Herzig, & Varzinczak, 2003; Van Ditmarsch,
Herzig, & De Lima, 2007). In particular, the action modality of ES, which we inherit here, is taken
from dynamic logic. However, there are significant differences. For example, Van Ditmarsch et al.
(2007) consider an epistemic extension to dynamic logic with a regression property, but they are
propositional, and do not consider only knowing. Demolombe (2003), on the other hand, considers
a form of only knowing, but his work, like the original ES, is restricted to the single agent case.
Also, there is no notion of regression. For more details on how the single agent version of ES is re-
lated to various other action proposals, see the discussion by Lakemeyer and Levesque (2004). It is
worth mentioning that the situation calculus itself has been previously extended to deal with multi-
ple agents (Shapiro et al., 2002). Recently, in fact, Kelly and Pearce (2008) formulate the evaluation
of epistemic queries, including queries about common knowledge (Fagin et al., 1995), by means
of a meta-level operator using regression. In contrast to these ideas, we are mainly concerned with
identifying how regression works in the presence of multiagent only knowing operators. As we have
argued earlier, by being able to define initial knowledge in terms of what is only known one obtains
a natural means of reasoning about both beliefs and non-beliefs. Moreover, the epistemic situation
calculus of Scherl and Levesque does not have an equivalent of the representation theorem. There-
fore, the other approaches would require a form of modal reasoning about the initial situation.14 In
other aspects, moreover, the approaches are not comparable. On the one hand, in contrast to Kelly
and Pearce we observed in Section 2.2 that common knowledge cannot be captured with our se-
mantics. On the other hand, integrating only knowing in the situation calculus when situation terms
are explicit, as in the above derivatives of the Scherl-Levesque scheme, is problematic (Lakemeyer,
1996; Lakemeyer & Levesque, 1998, 2004).

14. Special cases for the reduction of knowledge are treated, for example, by Reiter (2001) and Lakemeyer and
Lespérance (2012).
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We note that reasoning about knowledge in multiagent systems is an important area in artifi-
cial intelligence, and numerous formal systems have been studied (Fagin et al., 1995; Wooldridge,
2009). For example, properties similar to ones obtained for the card game studied in this article are
also considered in the work of Van Ditmarsch (2002). However, many of these systems are propo-
sitional. Most significantly, only knowing, and the feature that appropriate beliefs are entailments
of a knowledge base that is only known, are not addressed.

As we pointed out, Levesque (1990) was among the first to propose a notion of only knowing in
the logic OL, but there are a number of related notions (Halpern & Moses, 1984; Hoek & Thijsse,
2002; Pratt-Hartmann, 2000). We do not discuss them here, nor their relationships to OL, which
is treated elsewhere (Rosati, 2000; Halpern & Lakemeyer, 2001; Levesque & Lakemeyer, 2001).
Readers are also referred to the work of Levesque and Lakemeyer (2001) for a more comprehensive
study on OL; for example, it is shown that the compactness property does not hold for the objective
fragment of OL. Halpern and Pass (2009) consider a related probabilistic variant of only knowing
for studying certain kinds of strategies in game theory.

Since Levesque’s proposal, generalizations to the many agent case has been attempted in a num-
ber of papers (Lakemeyer, 1993; Halpern, 1993; Halpern & Lakemeyer, 2001; Waaler & Solhaug,
2005). But as we point out in earlier work (Belle & Lakemeyer, 2010a), these approaches have
undesirable features. Our k-structures approach (Belle & Lakemeyer, 2010a), on the other hand,
was shown to satisfactorily capture multiagent only knowing. In that work, we also discuss a num-
ber of other aspects of multiagent only knowing, including, for example, a sound and complete
axiomatization for the propositional case.15

Finally, we remark that the intuition of k-structures seems closely related to the proposal of
knowledge structures (Fagin, Halpern, & Vardi, 1991). Although restricted to a propositional lan-
guage, and although actions and only knowing are not considered, the proposal is also based on
epistemic states at various depths. (See Kaneko and Suzuki, 2003, for similar semantical notions in
game theory.) For an agent, a 1-world is simply a set of truth assignments to primitive propositions.
This roughly corresponds to a set of worlds, similar to a 1-structure. However, a 2-world considers
the triple: truth assignment to primitive propositions, a 1-world for A, and a 1-world for B. So this
differs from our proposal slightly. They also expect k-worlds to satisfy various constraints, includ-
ing one about knowledge always being correct. Despite these differences, they are also motivated
by the ease of capturing non-beliefs, and so an investigation on the correspondences between the
two approaches is perhaps worthy of study.

6. Conclusions

This work considered reasoning about only knowing with many agents in dynamic domains. The
language introduced is a first-order formalism that allows us to reason about knowledge, only know-
ing, actions and sensing. Only knowing has distinctive advantages from the view of a knowledge-
based agent where it is possible to specify the sentences that precisely characterize a knowledge
base, and then logically infer corresponding beliefs and non-beliefs (with quantifying-in) from that
characterization. Building on previous work on multiagent only knowing (Belle & Lakemeyer,
2010a) and a modal fragment of the situation calculus (Lakemeyer & Levesque, 2004), a semantical

15. OL’s axiomatization for the first-order language (Levesque, 1990) was shown to be incomplete by Halpern and
Lakemeyer (1995); they also show that any complete axiomatization cannot be recursive.
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account was first discussed. We showed that knowledge has appropriate properties, despite the se-
mantics slightly deviating from the usual Kripke-structure account. We then considered the notion
of a basic action theory, and explored projection tasks in terms of a simple card game. In particular,
non-trivial knowledge change mechanisms after sensing was demonstrated in the formalism.

One important methodology for reasoning about actions in the literature is regression, exten-
sively used in planning methodologies (Fritz, 2009), and we proved a version of regression for the
formalism. From this, reasoning about actions and knowledge reduces to reasoning about knowl-
edge in the initial state only. Next, we generalized the representation theorem (Levesque & Lake-
meyer, 2001) to further reduce reasoning about knowledge in the initial state to first-order reasoning.
Thus, no modal reasoning is necessary. We believe these results together with the underlying logic
enhance the current paradigms for the logical modeling of intelligent agents (Fagin et al., 1995;
Wooldridge, 2009), especially in the sense of formal specifications for knowledge-based systems.

There are many avenues for future work. An important observation on OL by Levesque (1990)
is that when the knowledge base includes beliefs about itself, a certain flavor of nonmonotonicity is
exhibited. In fact, the beliefs that logically follow can be related in a precise way to the fixed-point
definition of autoepistemic logic (Moore, 1985). We have previously shown (Belle & Lakemeyer,
2010a) that these notions generalize to the multiagent case as well, which can be used for multiagent
autoepistemic reasoning. For example, if Fred tells Sara that he recently bought a bird, Fred might
come to assume that Sara believes then that the bird flies, without him explicitly suggesting such a
fact. ESn, of course, would further allow these notions to be studied in a dynamic setting (Kakas,
Michael, & Miller, 2008; Lakemeyer & Levesque, 2009).

For long-lived agents, regression would become infeasible after millions of actions, and so we
would need to periodically update the knowledge base, which is referred to as progression (Lin &
Reiter, 1997). STRIPS technology, for instance, is a simple form of progression (Reiter, 2001).
Recently, the computational methodology of progression has been studied in the context of only
knowing (Lakemeyer & Levesque, 2009). The idea, roughly, is that if the agent only knows a basic
action theory Σ0 ∪ Σpre ∪ Σpost ∪ Σsense, then after an action, the agent only knows another basic
action theory Σ0

′ ∪ Σpre ∪ Σpost ∪ Σsense, where Σ0
′ is the progression of Σ0. Here, only knowing

characterizes the knowledge base in a precise way after doing actions. Our account might suggest
ways to study these notions in a multiagent setting, where after actions, an agent would update not
only her beliefs about the world but would also update her beliefs about what other agents know.

Finally, extensions for probabilistic nondeterminism (Gabaldon & Lakemeyer, 2007; Belle &
Lakemeyer, 2011) and the development of strategies and coalitions between agents (Alur, Hen-
zinger, & Kupferman, 2002; Giacomo, Lespérance, & Pearce, 2010) are worth exploring in an only
knowing framework, perhaps along the lines of Halpern and Pass (2009).
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Appendix A. Proof of Regression Property

In this section, we prove Theorem 21. We begin with a few useful lemmas before turning to the
main theorem. In what follows, we will make use of the following special construction. Given a
world w, we define another world wΣ which is like w except that it satisfies Σpre,Σpost and Σsense

sentences of Σ.

Definition 28 Let w be a world, z ∈ Z and Σ a basic action theory over fluents F . Then wΣ is a
world satisfying the following conditions:

1. for f < F , wΣ[ f (n1, . . . , nk), z] = w[ f (n1, . . . , nk), z];

2. for f ∈ F , wΣ is defined inductively by:

(a) wΣ[ f (n1, . . . , nk), 〈〉] = w[ f (n1, . . . , nk), 〈〉];

(b) wΣ[ f (n1, . . . , nk), z · r] = m iff wΣ , z |= (γ f )a y x1,...,xk
r m n1,...,nk

;

3. wΣ[Poss(r), z] = 1 iff wΣ , z |= πa
r ;

4. wΣ[SFi(r), z] = m iff wΣ , z |= ϕi
a x
r m;

where γ f , π and ϕ are the rhs of the successor state, precondition and sensing axioms respectively,
appearing in the basic action theory Σ.

The following properties can be shown regarding wΣ in relation to w:

Lemma 29 (Lakemeyer & Levesque, 2004)

1. For any w, wΣ exists and is unique.

2. If w |= Σ0 then wΣ |= Σ.

3. If w |= Σ then w = wΣ .

4. Let α be any bounded objective sentence, and suppose that it is rectified and in NF. Let z ∈ Z.
Then w |= R[z, α] iff wΣ , z |= α.

Proof: The proof for the lemma is given elsewhere (Lakemeyer & Levesque, 2004). Later in this
section, arguments analogous to their proof for item 4 will be needed, so we include the proof for
this item here.

Item 4 is proven by induction on the length of α. We treat the length of Poss(r) and SFi(r) as the
length of πa

r and ϕi
a
r plus 1. We only consider the non-trivial cases below:

case Poss(r).

We have wΣ , z |= Poss(r)

iff wΣ , z |= πa
r by definition of wΣ

iff w |= R[z, πa
r ] by induction
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iff w |= R[z,Poss(r)] by definition of R.

case SFi(r) = m.

We have wΣ , z |= SFi(r) = m

iff wΣ , z |= ϕi
a
r by definition of wΣ

iff w |= R[z, ϕi
a
r ] by induction

iff w |= R[z, SFi(r) = m] by definition of R.

case fluents f ∈ F . Note that, by definition of NF, ground atoms are of the form f (n1, . . . , nk) = m.
The proof is by sub-induction on z.

1. wΣ |= f (n1, . . . , nk) = m

iff w |= f (n1, . . . , nk) = m by definition of wΣ

iff w |= R[〈〉, f (n1, . . . , nk) = m] by definition of R.

2. wΣ , z · r |= f (n1, . . . , nk) = m

iff wΣ , z |= γ f
a y x1,...,xk
r m n1,...,nk

by definition of wΣ

iff w |= R[z, γ f
a y x1,...,xk
r m n1,...,nk

] by sub-induction
iff w |= R[z · r, f (n1, . . . , nk) = m] by definition of R.

We now proceed to prove similar properties about epistemic states. Given ek and a basic action
theory Σ, let us define eΣ

k inductively by:

1. eΣ
1 = {(wΣ , {}) | (w, {}) ∈ e1};

2. eΣ
k = {(wΣ , eΣ

k−1) | (w, ek−1) ∈ ek}.

In addition, using our notation for nested only knowing operators (see Section 3), for brevity, let

• ψ0 = OKnowΣ0[A, k] ∧ OKnowΣ0
′[B, j], and

• ψ = OKnowΣ[A, k] ∧ OKnowΣ′[B, j].

Then, item 2 of Lemma 29 is extended for knowledge in the following manner:

Lemma 30 Suppose ek
A, e

j
B,w |= ψ0. Then eΣ

k
A, eΣ′

j
B,w |= ψ.

Proof: The proof is a simple induction on the modal depth (Definition 13) of the background theory.
Recall that when the modal depth of the background theory is l, then we have a sentence of the form
OKnowΣ0[A, k] ∧ OKnowΣ0

′[B, j] such that k ≤ l, j ≤ l and k or j is l.

The base case is a theory of modal depth 1. So suppose e1
A, e

1
B,w |= OA(Σ0) ∧OB(Σ0

′). We will
now show (w′, {}) ∈ eΣ

1
A iff w′ |= Σ. From that, we get eΣ

1
A, {},w |= OAΣ. The case of eΣ′

1
B is entirely

analogous, by means of which we have shown eΣ
1
A, eΣ′

1
B,w |= OA(Σ) ∧OB(Σ′).

Suppose w |= Σ. Then w |= Σ0 and therefore, by assumption, (w, {}) ∈ e1
A. By Lemma 29,

w = wΣ and therefore, (w, {}) ∈ eΣ
1
A.
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Conversely, let (w, {}) ∈ eΣ
1
A. By definition, there is a (w′, {}) ∈ e1

A such that w′
Σ

= w. But since
w′ |= Σ0, it follows from Lemma 29 that w |= Σ. Thus, eΣ

1
A, {},w |= OA(Σ).

Assume that the hypothesis holds for theories of modal depth k − 1, that is, if ek−1
A satisfies

OKnowΣ0[A, k−1] then eΣ
k
A satisfies OKnowΣ[A, k−1], and similarly for B.Now, suppose ek

A, e
j
B,w |=

ψ0. Then, (w′, ek−1
B ) ∈ ek

A iff ek
A, e

k−1
B ,w′ |= Σ0∧OKnowΣ0[B, k−1].We now show (w′, ek−1

B ) ∈ eΣ
k
A iff

eΣ
k
A, e

k−1
B ,w′ |= Σ∧OKnowΣ[B, k−1], from which we get eΣ

k
A, {},w |= OKnowΣ[A, k]. The argument

is symmetric for e j
B, and therefore, the lemma’s claim follows.

Consider any ek−1
B and w such that eΣ

k
A, e

k−1
B ,w |= Σ ∧ OKnowΣ[B, k − 1]. Now, consider e′B

k−1

such that {}, e′B
k−1,w |= OKnowΣ0[B, k−1]. Since w |= Σ, by Lemma 29 w = wΣ and also, w |= Σ0. It

follows that (w, e′B
k−1) ∈ ek

A by assumption. By induction hypothesis, {}, eΣ
′k−1
B ,w |= OKnowΣ[B, k−

1]. By definition, (w, eΣ
′k−1
B ) ∈ eΣ

k
A. An easy argument shows that eΣ

′k−1
B = ek−1

B .
Conversely, consider any (w, ek−1

B ) ∈ ek
A. By assumption, {}, ek−1

B ,w |= Σ0 ∧ OKnowΣ0[B, k − 1].
By Lemma 14, wΣ |= Σ. By induction hypothesis, {}, eΣ

k−1
B ,w |= OKnowΣ[B, k − 1]. By definition,

(wΣ , eΣ
k−1
B ) ∈ eΣ

k
A.

We now generalize item 4 of Lemma 29 for knowledge.

Lemma 31 ek
A, e

j
B,w |= R[Υ,Σ,Σ′, z, α] iff eΣ

k
A, eΣ′

j
B,wΥ, z |= α.

Proof: The proof is by induction on z, and a sub-induction on α.
Let z = 〈〉. The case of objective formulas proceeds exactly as in Lemma 29. So let us consider

the case of A-subjective formulas.
We have eΣ

k
A, eΣ′

j
B,wΥ, z |= KAα

iff for all (w, ek−1
B ) ∈ eΣ

k
A, eΣ

k
A, e

k−1
B ,w |= α

iff for all (w, ek−1
B ) ∈ ek

A, eΣ
k
A, eΣ

k−1
B ,wΣ |= α by definition of eΣ

k
A

iff for all (w, ek−1
B ) ∈ ek

A, ek
A, e

k−1
B ,w |= R[〈〉, α] by sub-induction

iff ek
A, e

j
B,w |= KAR[〈〉, α]

iff ek
A, e

j
B,w |= R[〈〉,KAα] by definition of R.

The case of B-subjective formulas is symmetric.
Now, we consider the case of z · r. The proof is precisely as in the base case, except for subjec-

tive formulas, which we prove as follows. We show the argument for A-subjective formulas. The
arguments for B-subjective formulas is symmetric.

eΣ
k
A, eΣ′

j
B,wΥ, z · r |= KAα

iff eΣ
k
A, eΣ′

j
B,wΥ, z |= [r]KAα by definition

iff eΣ
k
A, eΣ′

j
B,wΥ, z |= βa

r where β is the rhs of Theorem 19 for [r]KAα

iff ek
A, e

j
B,w |= R[z, βa

r ] by the main induction
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iff ek
A, e

j
B,w |= R[z · r,KAα] by definition of R.

We are now ready to prove Theorem 21. We restate the claim below:

Theorem 21 Suppose α is a bounded basic sentence of maximal A,B-depth k, j. Let Υ,Σ and Σ′ be
basic action theories. Then R[〈〉, α] is a static sentence and satisfies:

Υ ∧ ψ |= α iff Υ0 ∧ ψ0 |= R[〈〉, α]

where ψ = OKnowΣ[A, k] ∧ OKnowΣ′[B, j]
ψ0 = OKnowΣ0[A, k] ∧ OKnowΣ0

′[B, j].

Proof: Let us denote Υ ∧ ψ as Γ and Υ0 ∧ ψ0 as Γ0.

For the only-if direction, suppose that Γ |= α and suppose that ek
A, e

j
B,w |= Γ0. That is, w |=

Υ0 and by Lemma 29, wΥ |= Υ. Further, by Lemma 30, eΣ
k
A, eΣ′

j
B,wΥ |= Γ. By assumption,

eΣ
k
A, eΣ′

j
B,wΥ |= α. Then, by Lemma 31, ek

A, e
j
B,w |= R[〈〉, α].

Conversely, suppose that Γ0 |= R[〈〉, α] and let ek
A, e

j
B,w |= Γ. Then w |= Υ0. Suppose that

e′kA, e
′ j
B,w |= ψ0. By assumption e′kA, e

′ j
B,w |= R[〈〉, α]. By Lemma 31, eΣ

′k
A, eΣ′

′ j
B,wΥ |= α. By

Lemma 29, wΥ = w. By Lemma 30, eΣ
′k
A, eΣ′

′ j
B,wΥ |= Γ. Since both ek

A and eΣ
′k
A are k-structures

for A where OKnowΣ[A, k] holds, a simple induction argument shows that eΣ
′k
A = ek

A. Analogously,
eΣ′
′ j
B and e j

B are the same. Therefore ek
A, e

j
B,w |= α.

Appendix B. Proof of Representation Theorem

In this section, we prove Theorem 26. We proceed first by relating valid fluent sentences in ESn to
its non-dynamic fragment OLn (Belle & Lakemeyer, 2010a). For this, we will only go over a few
essential details of OLn. Roughly speaking, OLn is ESn without the dynamic operators {[t],�} and
distinguished symbols {Poss, SFi.} A static world w ∈ W∗ is any function from primitive sentences
to {0, 1} and from primitive terms to standard names. Epistemic states in OLn are k-structures over
such static worlds. All other notions carry over to OLn, by simply ignoring dynamic aspects. For
example, we specify the semantics for KAα wrt the triple (ek

A, e
j
B,w) for w ∈ W∗ as follows:

• ek
A, e

j
B,w |= KAα iff for all w′ ∈ W∗, for all ek−1

B , if (w′, ek−1
B ) ∈ ek

A, then ek
A, e

k−1
B ,w′ |= α.

In other words, roughly, we dropped the action sequence z and the compatibility relation 'A
z from

the semantical definition of KAα in ESn. Terminology for formulas, such as objective and basic is
analogously defined for OLn.

We now present three formal properties regarding OLn and ESn sentences:

Lemma 32 For any α ∈ OLn, α is valid in OLn iff α is valid in ESn.

Lemma 33 If α ∈ ESn is a fluent sentence and z is any action sequence, then R[Υ,Σ,Σ′, z, α] is an
objective OLn-sentence.
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Both proofs are straightforward generalizations of analogous results regarding OL and ES, appear-
ing as Theorem 6, Lemma 9 and Lemma 10 in the work of Lakemeyer and Levesque (2004), and
therefore not reproduced here. For example, with Lemma 32, the main technical scheme is to relate
ES (and thus ESn) worlds and OL (and thus OLn) worlds. For Lemma 33, clearly objective OL
sentences are also objective OLn sentences, and so the claim follows.

Lemma 34 If α is a bounded basic sentence and z is any action sequence, then R[Υ,Σ,Σ′, z, α] is
a basic OLn sentence.

Proof: The proof is by induction on α. If α is a fluent sentence then the argument is immediate
owing to Lemma 33. For Poss, R[z,Poss(t)] = R[z, πa

t ], but πa
t is a fluent formula, so Lemma

33 applies. For SFi, R[z, SFi(t) = t′] = R[z, ϕi
a y
t t′ ], and again, ϕi

a y
t t′ is a fluent formula. For [t],

R[z, [t]α] = R[z · t, α] which is a basic OLn sentence by induction.
For KA, we do a sub-induction on z. The case for KB is analogous. R[〈〉,KAα] = KAR[〈〉, α].

Since by the main induction, R[〈〉, α] is basic, and so KAR[〈〉, α] is also basic. R[z · t,KAα] =

R[z, βa
t ], where β is the rhs of Theorem 19 for [t]KAα. By the sub-induction hypothesis and Lemma

33, βa
t is also basic.

We will now prove three main results that are essential for Theorem 26. To prepare for that, given
static worldsW∗ and an objective OLn-sentence φ, let:

• Wφ = {w | w |= φ,w ∈ W∗};

• eφ1 =Wφ × {{}};

• eφk = {(w, eφk−1) | w ∈ Wφ}.

In the sequel, benefiting from Lemma 32, we simply argue using OLn-models, that is, by ignoring
dynamic notions.

Lemma 35 Let φ and φ′ be objective OLn sentences and let eφk
A and eφ′

j
B be as above. Let α be any

objective formula with free variables x1, . . . , xk. For any vector of standard names n1, . . . , nk and
world w:

eφk
A, eφ′

j
B,w |= KAα

x1,...,xk
n1,...,nk iff |= Res[α, φ]x1,...,xk

n1,...,nk .

Analogously for KBα
x1,...,xk
n1,...,nk .

Proof: From Lemma 7, it follows that eφk
A, {},w |= KAα

x1,...,xk
n1,...,nk iff eφA↓

k
1, {},w |= KAα

x1,...,xk
n1,...,nk because

KAα has A-depth 1. So it is sufficient to show that:

eφA↓
k
1, {},w |= KAα

x1,...,xk
n1,...,nk iff |= Res[α, φ]x1,...,xk

n1,...,nk . (15)

Note that eφA↓
k
1 = {(w, {}) | w |= φ}, and so (15) can be simply proved in OL (Levesque & Lake-

meyer, 2001, Lemma 7.2.2).

Theorem 36 Let α be any basic OLn formula of maximal A,B-depth k, j and with free variables
x1, . . . , xk. Let eφk

A, eφ′
j
B be as before, w any world, and n1, . . . , nk be a vector of names. Then

eφk
A, eφ′

j
B,w |= αx1,...,xk

n1,...,nk iff w |= ‖α‖φ,φ′
x1,...,xk
n1,...,nk

.
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Proof: The proof is by induction on the structure of α. If α is an atom or an equality, the lemma
clearly holds since α is objective. By induction, the lemma also holds for negations, disjunctions
and quantifiers.

Now, consider KAα. (The case of KBα is symmetric.) We have

eφk
A, {},w |= KAα

x1,...,xk
n1,...,nk

iff eφk
A, e

k−1
B ,w′ |= αx1,...,xk

n1,...,nk for all (w′, ek−1
B ) ∈ eφk

A

iff w′ |= ‖α‖φ,φ′
x1,...,xk
n1,...,nk

by the induction hypothesis

iff eφk
A, {},w |= KA‖α‖φ,φ′

x1,...,xk
n1,...,nk

since ‖α‖φ,φ′
x1,...,xk
n1,...,nk

is objective

iff |= Res[‖α‖φ,φ′
x1,...,xk
n1,...,nk

, φ]x1,...,xk
n1,...,nk by Lemma 35

iff |= ‖KAα‖φ,φ′
x1,...,xk
n1,...,nk

by definition of Res

iff w |= ‖KAα‖φ,φ′
x1,...,xk
n1,...,nk

because the result of Res is an objective formula that does not use
predicates and function symbols. Therefore, ‖KAα‖φ,φ′

x1,...,xk
n1,...,nk

is either valid or unsatisfi-
able.

Theorem 37 Suppose α is of maximal A,B-depth k, j. Let φ, φ′ and θ be objective OLn sentences.
Then

θ ∧ ψ |= α iff |= θ ⊃ ‖α‖φ,φ′ .

where ψ = OKnowφ[A, k] ∧ OKnowφ′[B, j].

Proof: For the if direction, suppose (ek
A, e

j
B,w) is a model of ψ ∧ θ. It is easy to verify that ek

A = eφk
A

and e j
B = eφ′

j
B, and so, w is any world satisfying θ. Since ψ ∧ θ |= α, ek

A, e
j
B,w |= α iff w |= ‖α‖φ,φ′ by

Theorem 36. So any model of θ satisfies ‖α‖φ,φ′ . Therefore, θ |= ‖α‖φ,φ′ or |= θ ⊃ ‖α‖φ,φ′ .

Conversely, suppose θ |= ‖α‖φ,φ′ . Now, let (ek
A, e

j
B,w) be any model of ψ ∧ θ. It is easy to

verify that ek
A = eφk

A and e j
B = eφ′

j
B. Further, since w |= θ we have w |= ‖α‖φ,φ′ . By Theorem 36,

ek
A, e

j
B,w |= α.

Finally, we turn to the proof for Theorem 26. We restate the claim below.

Theorem 26 Let Υ,Σ and Σ′ be basic action theories. Suppose α is a basic bounded sentence of
maximal A,B-depth k, j, then

Υ ∧ ψ |= α iff |= Υ0 ⊃ ‖R[〈〉, α]‖Σ0,Σ0
′ .

where ψ = OKnowΣ[A, k] ∧ OKnowΣ′[B, j].

Proof: We have Υ ∧ OKnowΣ[A, k] ∧ OKnowΣ′[B, j] |= α

iff Υ0 ∧ OKnowΣ0[A, k] ∧ OKnowΣ0
′[B, j] |= R[〈〉, α] by the regression property Theorem 21

iff Υ0 ∧OKnowΣ0[A, k]∧OKnowΣ0
′[B, j] ⊃ R[〈〉, α] is valid in OLn by Lemma 32, owing to the

fact that R[〈〉, α] is also a (basic) OLn sentence by Lemma 34

iff Υ0 ⊃ ‖R[〈〉, α]‖Σ0,Σ0
′ is valid in OLn by Theorem 37.
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