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Abstract

We show how game-theoretic solution concepts such as Nash equilibrium, correlated
equilibrium, rationalizability, and sequential equilibrium can be given a uniform definition
in terms of a knowledge-based program with counterfactual semantics. In a precise sense,
this program can be viewed as providing a procedural characterization of rationality.

1. Introduction

There is a general intuition that, in many situations, what players do depends on what
they know. This leads to the hope that we can describe players’ actions procedurally using
knowledge-based (kb) programs (Fagin, Halpern, Moses, & Vardi, 1995, 1997) of the form “if
I know (or do not know) X then I should do Y ”. For example, a kb program could say “If
you don’t know that Ann received the information, then send her a text message”, which
can be written

if ¬Ki(Ann received info) then send Ann a text message.

This kb program has the form of a standard if . . . then statement, except that the test in
the if clause involves i’s knowledge (expressed using the modal operator Ki).

Knowledge-based programs have been successfully applied in distributed computing,
both to help in the design of new protocols and to clarify our understanding of existing
protocols (see, e.g., Fagin et al., 1997; Dwork & Moses, 1990; Hadzilacos, 1987; Halpern,
Moses, & Waarts, 2001; Halpern & Zuck, 1992; Mazer & Lochovsky, 1990; Mazer, 1990;
Moses & Kislev, 1993; Moses & Tuttle, 1988; Neiger & Bazzi, 1992; Neiger & Toueg, 1993).
They have also been applied successfully in planning (Brafman, Latombe, Moses, & Shoham,
1997; Lang & Zanuttini, 2012, 2013; Reiter, 2001). In this paper, we initiate a project on
the use of kb programs in game theory. This seems like a particularly fruitful application
area, since this seems to be just the kind of reasoning that people employ in games and
decision-making problems.

We focus on one application of kb programs to game theory: characterizing solution con-
cepts. Many solution concepts have been considered in the game-theory literature, ranging
from Nash equilibrium and correlated equilibrium to refinements of Nash equilibrium such
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as sequential equilibrium and weaker notions such as rationalizability (see Osborne & Ru-
binstein, 1994, for an overview).

Typically, these solution concepts assume that players are rational, in the sense that each
player’s strategy represents a best response to the beliefs that he has about the strategies
that other players are using. Indeed, a number of epistemic characterizations of various
solution concepts have been provided in the literature. Of particular interest to us are
characterizations in terms of common knowledge of rationality. These characterizations
all have the following flavor: ~σ satisfies solution concept X iff there is a state ω in a
model M where (a) it is common knowledge that players are rational, (b) the players
are playing strategy profile ~σ, and (possibly) (c) M satisfies some additional property. No
additional properties are needed if X is rationalizability (Brandenburger & Dekel, 1987); we
get correlated equilibrium if we assume that players have a common prior in M (Aumann,
1987); we get Nash equilibrium if we assume that this prior takes strategy choices to be
uncorrelated (Aumann, 1987).1 Similar results can be proved for sequential equilibrium and
perfect equilibrium (Halpern & Moses, 2010).

The standard semantics of kb programs (see Section 2) essentially ensures that the kb
programs being run by the players are common knowledge. Thus, we might hope that
if we could find a kb program that captures rationality, then we could use it to give a
procedural characterization of various solution concepts. In this paper we show that this
goal is attainable.

Consider the following kb program EQΓ
i for player i, whereAi(Γ) denotes all the possible

actions available to player i in game Γ. (This program applies both to normal-form and
to extensive-form games. In an extensive-form game Γ, Ai(Γ) is the union of the actions
available at each of i’s information sets; we assume without loss of generality that the sets
of actions at different information sets are disjoint.)

for each action a ∈ Ai(Γ) do
if Ki(intendi(a) ∧

∧
a′∈Ai(Γ) EUi(a) ≥ EUi(a

′))

then play a.

Intuitively, we can think of this program as one that ensures that players are expected utility
maximizers: Player i follows an action only if playing that action maximizes i’s expected
utility. More literally, EQΓ

i says that player i should play action a if she currently intends
to do so (that is the intended semantics of intendi(a)), and her utility from doing so is no
less than her utility would be from playing an alternative action. Here EUi(a

′) represents i’s
expected utility if she were to play a′ (conditional on i’s beliefs at the current information
set when we consider extensive-form games).2 The utility is taken with respect to player
i’s current probability distribution (which can be viewed as a distribution over the strategy
profiles of the other players, and thus represents i’s beliefs about what other players are
doing).

1. Although Aumann (1987) does not state the result for Nash equilibrium explicitly, it follows easily from
his results on correlated equilibrium.

2. Note that EUi(a
′) incorporates a counterfactual. We are in a situation where i is actually intending to

play a, but EUi(a
′) is what her expected utility would be were she to play a′ instead. In the preliminary

version of this paper (Halpern & Moses, 2007), we made this counterfactual reasoning explicit by having
a counterfactual operator in the language. Following the suggestion of a reviewer, we have suppressed
the counterfactual here, so as to focus on the issues of most interest to us.
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Programs are generally viewed as describing when various actions are supposed to be
performed, thereby providing a procedural specification of behavior. Knowledge-based pro-
grams are, in general, somewhat different. For example, consider the program EQΓ

i . It
is written assuming that each player has already chosen her strategy. One possible way

to view
−−→
EQ

Γ
(i.e., (EQΓ

1 , . . . ,EQΓ
n)) is as specifying that, given a last-minute chance to

change their minds, none of the (utility-maximizing) players would have a reason to deviate
from their individual choices.

The test in EQΓ
i can be seen as embodying (one standard form of) rationality: it says

that i should act so as to maximize i’s expected utility. If it is common knowledge that
each player i follows EQΓ

i (recall that the semantics of kb programs essentially ensures
that the programs being run are commonly known), then, intuitively, the players should
have common knowledge of rationality, and so be in equilibrium. Indeed, as we show,

under appropriate assumptions, what is played when players act according to
−−→
EQ

Γ
is an

instance of a standard solution concept.
−−→
EQ

Γ
captures many solution concepts in a uniform

way. Solution concepts differ in the assumptions that are made about players’ beliefs. The
assumptions are essentially the ones that arose in the logical characterizations of solution
concepts mentioned above. Thus, for example, for correlated equilibrium, rather than
requiring common knowledge of rationality and that there is a common prior, we now

require that players use
−−→
EQ

Γ
and there is a common prior; similarly for the other solution

concepts.

The semantics of kb programs allows us to capture these assumptions about players’
beliefs by restricting to appropriate systems. The upshot is that we have a single kb program
that arguably gives a procedural embodiment of rationality. Moreover, common knowledge
that this program is being run provides us with a characterization of perhaps the most
common solution concepts used in game theory: Nash equilibrium, correlated equilibrium,
rationalizability, sequential equilibrium, and perfect equilibrium.

There has been considerable work in the last two decades focusing on the interplay be-
tween modal logic and game theory, and more specifically on epistemic logic and solution
concepts in games (see, e.g., Aumann & Brandenburger, 1995; Benthem, 2007, 2010; Bruin,
2010; Bonanno, 2002; Harrenstein, Hoek, Meyer, & Witteveen, 2002; Lorini & Schwarzen-
truber, 2010). This paper differs from that line of work in that it relates equilibrium notions
to knowledge-based programs, and shows the procedural commonality among equilibrium
notions, as well as how slightly varying the epistemic assumptions gives rise to the different
notions.

The rest of this paper is devoted to making these claims precise. In Section 2, we
review the relevant background on game theory and knowledge-based programs. To give
formal semantics to kb programs, we use the runs-and-systems framework (Fagin et al.,
1995), which has been used in the computer science literature to represent complex systems.
We specialize the framework so that it can represent the games that are of interest here.
In Section 3, we show that EQΓ characterizes Nash equilibrium, correlated equilibrium,
rationalizability, and sequential equilibrium in a game Γ, each in an appropriate context.
We conclude in Section 4 with a discussion of our results, their implications and possible
extensions, and a general discussion of the potential use of kb programs in game theory.
In particular, we argue that despite the non-negligible overhead involved in dealing with
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knowledge-based programs, using them gives us a flexible and powerful tool for capturing
intuitions such as best response.

2. Background and Definitions

In this section, we review the relevant background on games and knowledge-based programs,
and define the semantics of the knowledge-based program EQΓ

i formally. We describe only
what we need for proving our results. The reader is encouraged to consult a standard game
theory text (e.g., Osborne & Rubinstein, 1994) for more on game theory, and the work of
Fagin et al. (1995, 1997) for more on the runs-and-systems framework and on knowledge-
based programs.

2.1 Games and Strategies

A game Γ in extensive form is described by a game tree T = TΓ. A utility ui(h) is defined
for each terminal history h in the game tree (where a terminal history in a game tree is
just a path leading from the root to a leaf), specifying player i’s utility when that history is
played. Let ZΓ denote the set of all terminal histories. (We omit the subscript Γ if it is clear
from context.) Although it is typical to assume that only one player at a time moves in an
extensive-form game, we allow arbitrary subsets of players to move. This added generality
allows us to view normal-form games as a special case of extensive-form games. Thus,
associated with each non-leaf node is the subset of players whose move it is at that node.3

For each non-leaf node w of T , there is a bijection between the possible sets of moves that
can be played at w and the successors of w. If w′ is the successor of w that corresponds to
a particular set of moves, then w′ can be thought of as the outcome of playing those moves
at w. The nodes where a player i moves are partitioned into information sets.

A behavioral strategy σ for player i in an extensive-form game associates with each
information set I a distribution σ(I) over the actions that can be played at I. Thus,
a strategy for player i tells player i what to do at each node in the game tree where i
is supposed to move. The fact that a strategy determines actions as a function of the
information sets captures the intuition that, at all the nodes that player i cannot tell apart,
player i must do the same thing. A pure strategy Si for i is deterministic, specifying a single
action per information set. (Of course, a pure strategy can be viewed as a special case of
behavioral strategy; it is a behavioral strategy that puts probability 1 on a particular
action at each information set.) Since the game tree is assumed to be finite, there are
only finitely many pure strategy profiles. A mixed strategy σi for i is a distribution over
pure strategies.4 Note that a player using a mixed strategy randomizes only once, at the
beginning of the game; by way of contrast, a player using a behavioral strategy randomizes
at each information set. A pure (resp., mixed; behavioral) strategy profile is a tuple ~σ =
(σ1, . . . , σn) specifying a pure (resp., mixed; behavioral) strategy for each player. As usual,
given a profile ~x, we denote by ~x−i the partial profile containing a component for all players

3. For ease of exposition, at this point we consider only games where there are no moves by nature. There
is no difficulty in dealing with moves by nature; we discuss this in Section 4.

4. We consistently use Si to denote a pure strategy and σi to denote a mixed strategy or a behavioral
strategy.
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other than i. We denote by S = S(T ) the set of all pure strategy profiles ~S = (S1, . . . , Sn)
for the game tree T .

A normal-form game can be viewed as a special case of an extensive-form game where
each player makes only one move, and all players move simultaneously. The tree corre-
sponding to such a game has a depth of one: all nodes other than the root are leaves.

2.2 The Runs-and-Systems Framework

To explain kb programs, we must first describe the runs-and-systems framework. We assume
that, at any given point in time, a player in a game is in some local state. The local state
could include the history of the game up to this point, the strategy being used by the player,
and perhaps some other features of the player’s type, such as beliefs about the strategies
being used by other players. As we shall see, for the purposes of this paper, to model games,
a player’s local state will essentially consist of his strategy and his information set. A global
state is a profile of local states: one local state for each player.

A run is a sequence of global states; formally, a run is a function from times to global
states. Thus, r(m) is the global state in run r at time m. For definiteness, we assume that
time ranges over the natural numbers here. A point is a pair (r,m) consisting of a run r
and time m. Let ri(m) be i’s local state at the point (r,m); that is, if r(m) = (s1, . . . , sn),
then ri(m) = si. A system is a set of runs. A probabilistic system is a tuple PS = (R, ~µ),
where R is a system and ~µ = (µ1, . . . , µn) associates a probability µi on the runs of R with
each player i. Intuitively, µi represents player i’s prior beliefs. In the special case where
µ1 = · · · = µn = µ, the players have a common prior µ on R. In this case, we write just
(R, µ).

2.3 Modeling a Game as a System

With each game Γ, we associate a system RΓ. In describing the system RΓ, we have to
decide how to model the players’ local states, that is, what they know at each point in the
system? For the most part, the details do not matter for the analysis we do in this paper,
but they can have a critical effect on other analyses. We believe that one of the advantages
of the runs-and-systems approach is that it forces the modeler to think through carefully
what the players’ local states should be.

In the case of a normal-form game Γ, at time 0, we can take a player’s local state to
consist of the pure strategy that she is intending to play; the player’s local state at times
m ≥ 1 consists of the strategy she played (which we take to be the same as the one that
she was intending to play) and her utility. Even if we think of a player as having a mixed
strategy, we can think of the pure strategy in her local state as the pure strategy that the
player chooses after tossing her coin. We could, of course, also include the mixed strategy
in the player’s state. It turns out that doing so would make no difference; player i’s strategy
is encoded by the distribution µi on runs. The upshot of this approach to modeling things

is that we can identify a run in RΓ with a pure strategy profile in Γ; we denote by r
~S the

run coresponding to strategy profile ~S.

To take a simple example, consider the normal-form game Γn in Figure 1, between
two players, Alice (the row player) and Bob (the column player): There are four runs in
RΓn , corresponding to the four strategy profiles in the game. In the run r(T,L), we have
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L R
T (3, 3) (1, 4)
B (4, 1) (0, 0)

Figure 1: A simple 2-player game Γn.

r(T,L)(0) = (T, L) and r(T,L)(1) = ((T, 3), (L, 3)). In this run, Alice’s initial state is T , her
intended strategy, and her state at all times m ≥ 1 is (T, 3), her strategy and utility.

In an extensive-form game, we take the runs inRΓ to correspond to the terminal histories
in the game tree; there is one run rh corresponding to each history h. The points on a run
rh correspond to the nodes in the history h. That is, the global state rh(m) corresponds to
the mth node w in history h. (If m is greater than the length of h, then rh(m) = rh(|h|).)
Suppose that i moves at node w. Then we can take i’s local state at rh(m) to have the form
(Iw, a), where Iw is i’s information set at w, and a is the move that i makes at information
set Iw in history h. Intuitively, this is saying that i knows his information set, and the move
that he is intending to make. For the solution concepts we analyze in extensive-form games,
we assume that i is using a behavioral strategy. Thus, we can think of a as the outcome
of the coin toss at information set I in i’s behavioral strategy. We still need to represent
i’s local state at points that correspond to nodes w where i does not move. The details of
i’s local state at points where i does not move do not matter much. For definiteness, if i
does not move at the node w corresponding to (rh,m), then we take i’s local state to be
Iw′ , where w′ is the most recent node preceding w where i does move; if i has not moved
prior to w, then we take i’s local state to be just 〈 〉. If w is a final node in a terminal
history, we also encode i’s utility in i’s local state, just as we did for normal-form games.
Thus, i’s state encodes i’s information about what has happened thus far (this is the Iw
component), whether or not it is i’s move (this is captured by whether or not there is an
action component for i in the local state), what i intends to do if it is his move, and (at
points that correspond to the end of the game), each player’s utility.

In the solution concepts we focus on here for extensive-form games, we think of the
players as using a behavioral strategy. However, just as in normal-form games, we do
not encode i’s behavioral strategy in his local state. And again, it will turn out that the
behavioral strategy is encoded in the probability distribution on runs.5 We could have also
included the game Γ itself in each player’s local states, since we have implicitly assuming
that the game Γ is common knowledge. Doing so would not change anything in the analysis;
we have not done it simply to avoid cluttering the notation. Of course, this would be an
appropriate thing to do in games where players are not fully aware of what game is being
played (see, e.g., Halpern & Rêgo, 2013).

5. The alert reader may have spotted a potential problem here. Runs off the equilibrium path (and hence,
information sets off the equilibrium path) get probability 0, so it may seem that we cannot use the
probability on runs to infer i’s behavioral strategy at such information sets. But, as we shall see, the
probability on runs that we actually use is a nonstandard probability that is infinitesimally close to
the actual probability generated by the strategy profile. This nonstandard probability gives positive
probability to all runs, and hence can be used to infer i’s behavioral strategy. But this is an artifact of
our approach. In other contexts, we may well want to include i’s behavioral strategy in i’s local state.
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Consider the 2-player extensive-form game Γe in Figure 2, where player 1 moves at w1,
and player 2 moves at the information set {w2, w3}:
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Figure 2: The extensive-form game Γe.

There are four runs in RΓe , corresponding to the four terminal histories. Call these
histories h1–h4, going from top to bottom. Thus, in rh1 (where the utility is (3,4)), 1’s local
state at rh1(0) is ({w1}, a1), while 2’s local state is 〈 〉. At rh1(1), 1’s local state is {w1},
while 2’s is ({w2, w3}, b1), and at rh1(2), i’s local state is ({w1}, 3), while 2’s local state is
({w2, w3}, 4).

Since there is a bijection between runs inRΓ for a normal-form game Γ and pure strategy
profiles, a distribution µ on pure strategies in a normal-form game Γ can be identified with
a distribution on the runs in RΓ. Thus, we can associate with each mixed strategy profile ~σ
in a normal-form game Γ the probabilistic system (RΓ, µ~σ), where µ~σ is the distribution on
strategy profiles (and hence also on runs) induced by ~σ. Note that according to µ~σ, players’
strategy choices are uncorrelated; the probability that player i chooses Si and player j
chooses Sj is just the product of the probability that i chooses Si and the probability
that j chooses Sj . Similarly, in an extensive-form game Γ, a behavioral strategy profile ~σ
induces a distribution on histories, and hence also on the runs in RΓ. We again denote this
distribution µ~σ.

2.4 Knowledge-Based Programs

A knowledge-based program is a syntactic object. For our purposes, a knowledge-based
program for player i is taken to have the form

if κ1 then a1

if κ2 then a2

. . . ,
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where each aj is an action for i, and each κj is a Boolean combination of formulas of the
form Kiϕ, in which the ϕ’s can have nested occurrences of K` operators. We assume that
the tests κ1, κ2, . . . are mutually exclusive, so that, in a kb program for player i, at most one
of the tests evaluates to true in each local state for player i at which i moves. The program
EQΓ

i can be written in this form by simply replacing the for . . . do statement by one line
for each possible action of i in the game Γ. That is, for each action a ∈ Ai(Γ), there is a
line in EQΓ

i of the form

if Ki(intendi(a) ∧
∧

a′∈Si(A)

EUi(a) ≥ EUi(a
′)) then play a.

Since a player i intends to play at most one action at a point (r,m) in (RΓ, ~µ), the tests
in EQΓ

i are mutually exclusive. The tests are not necessarily exhaustive, since at a point
in which the strategy S that player i uses is not a best response, no test of the form above
is satisfied. Roughly speaking, if none of the tests is satisfied, then i does nothing (and
performs the null action skip).

We want to define what it means for a (probabilistic) system PS to be compatible
with a kb program. Intuitively, this is the case when all the moves made in PS are the
ones recommended by the kb program. For simplicity, we give just enough of the required
definitions here to be able to handle the case that PS has the form (RΓ, ~µ) and and the kb
program is EQΓ

i . For further details, the interested reader can consult Fagin et al. (1995,
1997).

As a first step to making this precise, for each standard system PS = (RΓ, ~µ), we
associate with each formula ϕ a set [[ϕ]]PS of points in PS. Intuitively, [[ϕ]]PS is the set of
points of RΓ where ϕ is true. For intendi(a) this is easy:

• [[intendi(a)]]PS is the set of points (r,m) of PS at which i moves at the node w in the
game tree associated with (r,m) and a is the action encoded in i’s local state.

Note that a kb program Pgi for player i can attempt to “override” i’s intentions; that is,
the program can have a line of the form “if κ then play a′” such that, at a point (r,m) in
the probabilistic system PS, κ is true (i.e., (r,m) ∈ [[κ]]PS), but the action in i’s local state
is a, not a′. In this case, as we shall see, Pg would not be compatible with PS.

The semantics of knowledge is defined as usual: the formula Kiϕ is true if ϕ is true at
all the points that i considers possible. We view all of i’s information at a point (r,m) as
being encapsulated by i’s local state at (r,m), which we denote ri(m). Thus, the set of
points that i considers possible at a point (r,m) is Ki(r,m) = {(r′,m′) : r′i(m

′) = ri(m)};
Ki(r,m) just consists of all the points where i has the same local state as at (r,m).

• [[Kiϕ]]PS is the set of points (r,m) such that Ki(r,m) ⊆ [[ϕ]]PS .

It remains to give semantics to formulas of the form EUi(a
′) ≥ EUi(a). Clearly the

expected utility that i would obtain if i were to play a′ at the point (r,m) depends on i’s
beliefs about what the other players are doing at (r,m). Roughly speaking, these beliefs
are obtained by conditioning i’s prior beliefs µi on Ki(r,m). But there is a small technical
problem here. The probability distribution µi is a distribution on runs; Ki(r,m) is a set of
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points. We cannot condition µi on Ki(r,m). To enable conditioning, we first associate with
Ki(r,m) the set R[Ki(r,m)] of those runs that go through points in Ki(r,m); that is,

R[Ki(r,m)] = {r′ : (r′,m) ∈ Ki(r,m)).

We then define µi,r,m = µi | R[Ki(r,m)]. (For the purposes of this paper, we do not specify
µi,r,m if µi(R[Ki(r,m)]) = 0. It turns out to be irrelevant to our discussion.) Recall that
there is a bijection between the runs inRΓ and pure strategy profiles. Moreover, since player
i knows his strategy, at all the runs in R[Ki(r,m)], player i is using the same strategy. Thus,
µi,r,m determines a distribution on ~S−i. We use this distribution to compute EUi(a) and
EUi(a

′). In the case of a normal-form game Γ, this suffices to compute i’s expected utility
if he were to play a′ (although a′ may not in fact be the strategy that i intends to use in
the runs in R[Ki(r,m)]), under the assumption that all other players do use the strategy
that they were intending to use; only i’s strategy changes. In an extensive-form game,
when considering a change from a to a′ in a run r, we keep all other actions fixed (i.e., the
actions of all other players throughout the run, and i’s actions off the information set I),
and consider the utility of the resulting run.

• If Γ is a normal-form game and PS = (RΓ, ~µ), then [[EUi(a) ≥ EUi(a
′)]]PS consists

of those points (r,m) at which the expected utility for i of using a is at least as high
as that of using a′, where the expectation is taken with respect to the distribution
on strategy profiles a−i of the other players, as determined by µi,r,m. If Γ is an
extensive-form game, and at the point (r,m) player i intends to play action a, i is in
information set I, and it is i’s move. To compute EUi(a

′), for each run r′ in Ki(r,m),
let hr′ [a/a

′] be the history in Γ where the same sequence of actions is played by each
player as in r′, except that at information set I, i plays a′ rather than a. Then
EUi(a

′) =
∑
r′∈Ki(r,m) µi,r,m(r′)ui(hr′ [a/a

′]). Again, [[EUi(a) ≥ EUi(a
′)]]PS consists of

all those points (r,m) where i moves and EUi(a
′) (computed as above) is no higher

than EUi(a).

Since player i knows his strategy (it appears in his local state), if (r,m) ∈ [[intendi(a)]]PS ,
then Ki(r,m) ⊆ [[intendi(a)]]PS . Similarly, since µi,r,m = µi,r′,m′ if (r′,m′) ∈ Ki(r,m), player
i knows his probability distribution, so if (r,m) ∈ [[EUi(a) ≥ EUi(a

′)]]PS , then Ki(r,m) ⊆
[[EUi(a) ≥ EUi(a

′)]]PS . Hence, the formula intendi(a) ∧
∧

a′∈Ai(Γ) EUi(a) ≥ EUi(a
′) is

equivalent to the epistemic formula Ki(intendi(a) ∧
∧

a′∈Ai(Γ) EUi(a) ≥ EUi(a
′)); that is,

intendi(a) ∧
∧

a′∈Ai(Γ) EUi(a) ≥ EUi(a
′) is true iff player i knows it. We have kept the Ki

in the kb program just to emphasize that this is a formula whose truth depends only on
what i knows and believes, and thus is a test that i can act on.

Intuitively, a system PS is compatible with a kb program profile
−→
Pg if PS could have

arisen if each player i uses Pgi. We formalize this as follows.

Definition 2.1 PS is compatible with the kb program profile ~Pg if for all r ∈ R and m ≥ 0,
there is an action profile ~a such that both (a) applying ~a to (r,m) results in (r,m+ 1) (see
below) and (b) for each i such that µi(R[Ki(r,m)]) > 0 and µi(r | R[Ki(r,m)]) > 0, either
there is a line if κ then ai in Pgi and (r,m) ∈ [[κ]]PS , or there is no such line and ai is the
null move skip.
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We have not explained what it means to apply an action profile ~a to a point (r,m).
The general definition involves viewing action profiles as transformers of global states (see
Fagin et al., 1995, 1997). Rather than going through the details of the general definition

here, we just give the definition in the case that PS has the form (RΓ, µ) and
−→
Pg is

−−→
EQ

Γ
.

That is all we need for this paper, and in this case, the definition is quite simple. If Γ is

a normal-form game, then the action profile ~a applied to r
~S(0) results in r

~S(1) iff ~a = ~S;

if m ≥ 1, then ~a applied to r
~S(m) results in r

~S(m + 1) iff a1 = · · · an = skip. If Γ is an
extensive-form game, then ~a applied to rh(m) results in rh(m + 1) iff ai = skip if i does
not move at the information set I associated with rh(m) (which means that, in particular,
if m is greater or equal to the length of h, then ai = skip for all players i) and, if i does
move at I, then ai is the move encoded in rhi (m). Roughly speaking, this means that for a

normal-form game Γ, PS = (RΓ, µ) is compatible with
−−→
EQ

Γ
iff, for each player i and run r

such that µ(r) > 0, what does according to
−−→
EQ

Γ
at r(0) is what i intends to do according

to his local state ri(0). Thus, if i intends to play strategy S, then it must be the case that
EUi(S) ≥ EUi(S

′) for all other strategies S′ for player i. The analogous statement is true
in extensive-form games, although to compute whether EUi(a) ≥ EUi(a

′) at a point (r,m),
we use the probability conditioned on R[Ki(r,m)]. That is, if ai is the action played by
i at (r,m), then ai really is a best response for i, given i’s beliefs at (r,m). While this
observation makes all the proofs of the results relatively straightforward, it is important to
note that this is really an instance of the general semantics of kb programs.

3. The Main Results

In this section, we show that EQΓ captures a number of standard solution concepts. We
start by considering solution concepts in normal-form games, and then move to extensive-
form games.

3.1 Capturing Solution Concepts in Normal-Form Games

We show EQΓ captures three of the most studied solution concepts in normal-form games:
Nash equilibrium, correlated equilibrium, and rationalizability. The differences in how they
are captured highlights the distinctions between the notions.

3.1.1 Nash Equilibrium

Recall that (R, µ) is a probabilistic system in which all players have a common prior µ on
runs.

Theorem 3.1 The mixed strategy profile ~σ is a Nash equilibrium of the normal-form game

Γ iff (RΓ, µ~σ) is compatible with
−−→
EQ

Γ
.

Proof First suppose that ~σ = (σ1, . . . , σn) is a Nash equilibrium of the game Γ. To see

that PS = (RΓ, µ~σ) is compatible with
−−→
EQ

Γ
, it suffices to show that if µ~σ(r

~S) > 0, then

Si is a best response with respect to µ~σ | R[Ki(r
~S , 0)]. (We need to consider only (r

~S , 0)
because Γ is a normal-form game, so there are no moves after time 0.)
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Note that µ~σ | R[Ki(r
~S , 0)] = ~σ−i (under the obvious identification of µ~σ | Ki(r, 0) with

a distribution on S−i). Since ~σ is a Nash equilibrium, Si must be a best response to ~σ−i.

Thus, for all strategies S′ ∈ Si(Γ), we must have that (r
~S , 0) ∈ [[EUi(S) ≥ EUi(S

′)]]PS . It

follows that PS = (RΓ, µ~σ) is compatible with
−−→
EQ

Γ
.

For the converse, suppose that (RΓ, µ~σ) is compatible with
−−→
EQ

Γ
. We want to show that

~σ is a Nash equilibrium. It suffices to show that each pure strategy Si in the support of σi
is a best response to ~σ−i. Let Si be in the support of σi. Choose a strategy profile ~S−i in

the support of ~σ−i. Then µ~σ(r
~S) > 0. Moreover, µ~σ | R[Ki(r

~S , 0)] = ~σ−i. Since (RΓ, µ~σ) is

compatible with
−−→
EQ

Γ
and µ~σ(r

~S) > 0, it must be the case that, for all strategies S′ ∈ Si(Γ),

(r
~S , 0) ∈ [[EUi(S) ≥ EUi(S

′)]]PS . That is, S is indeed a best response to ~σ−i.

Consider the game Γn described in Figure 1. It is easy to check that this game has three
Nash equilibria: there are two equilibria in pure strategies: (B,L) and (T,R). There is
also an equilibrium in mixed strategies where Alice randomizes (uniformly) between T and
B, and Bob randomizes between L and R. That means that there are three probabilistic
systems of the form (RΓn , µ) compatible with EQΓn . In the first, µ puts probability 1
on r(B,L); in the second, µ puts probability 1 on r(T,R), and in the third, µ puts uniform
probability on the four runs in the system.

3.1.2 Correlated Equilibrium

As is well known, players can sometimes achieve better outcomes than a Nash equilibrium
if they have access to a helpful mediator. Consider the simple 2-player game Γn described
in Figure 1. Recall that the total utility in each of the three Nash equilibria of the games
(that is, the sum of the utilities of the two players) is at most 5. We get a higher total
utility by using a trusted mediator, who makes a recommendation by choosing at random
between (T, L), (T,R), and (B,L). This gives each player an expected utility of 8/3; thus,
the total utility is 16/3. This is an example of a correlated equilibrium since, for example,
if the mediator chooses (T, L), and thus sends recommendation T to Alice and L to Bob,
then Alice considers it equally likely that Bob was told L and R, and thus has no incentive
to deviate; similarly, Bob has no incentive to deviate. In general, a distribution µ over pure
strategy profiles is a correlated equilibrium if players cannot do better than following a
mediator’s recommendation if the mediator makes recommendations according to µ. (Note
that, as in our example, if a mediator chooses a (pure) strategy profile (S1, . . . , Sn) according
to µ, the mediator recommends Si to player i; player i is told nothing about the strategy
profile except for Si.) Roughly speaking, a correlated equilibrium is a distribution η over
(pure) strategy profiles in which every strategy T for player i that has a positive probability
is a best response to the conditional probability η | T projected onto S−i. (Note that the
support of η | T consists of strategy profiles ~S′ such that S′i = T , so η | T can be viewed
as a distribution on S−i. Intuitively, if player i knows that the prior probability on pure
strategy profiles is η and is told to play T , then he believes that the probability on the
strategy profiles in S−i played by the other players is described by η | T (projected onto
S−i). Conversely, if η is a distribution over pure strategy profiles such that, for each player
i and every strategy T for player i that is given positive probability by η is a best response
to η | T , then η is a correlated equilibrium. Formally, we have the following definition.
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Definition 3.2 (Aumann, 1974) A distribution η on pure strategy profiles is a correlated
equilibrium if for each player i, each strategy S for player i such that η(S) > 0 (where we
identify S with the set of pure strategy profiles ~S′ such that S′i = S), and each strategy S′

for player i, we have∑
S−i∈S−i

ui(S, S−i)η(S−i | S) ≥
∑

S−i∈S−i

ui(S
′, S−i)η(S−i | S).

That is, η is a correlated equilibrium when, for every player i, if the mediator tells i to play a
strategy S that has positive probability according to η, then i does not gain from switching
to S′, given his beliefs about what the other players will do, conditional on player i being
told S.

Clearly a distribution η on strategy profiles in game Γ can be identified with a distri-
bution on the runs in RΓ. We can easily capture correlated equilibrium using EQΓ in a
way that generalizes Theorem 3.1. The only difference between Theorem 3.1 and Theo-
rem 3.3 is that while µ~σ in Theorem 3.1 is a product measure, the distribution η on runs in
Theorem 3.3 is not necessarily a product measure (indeed, it is a product measure iff the
correlated equilibrium is a Nash equilibrium).

Theorem 3.3 The distribution η on strategy profiles is a correlated equilibrium of the

(normal-form) game Γ iff (RΓ, η) is compatible with
−−→
EQ

Γ
.

Proof The proof proceeds along lines similar to that of Theorem 3.1.

Suppose that η is a correlated equilibrium in Γ and η(r
~S) > 0. Again, we must show

that Si is a best response to η | R[Ki(r
~S , 0)]. But R[Ki(r

~S , 0)] consists precisely of the runs
where player i plays Si. Thus, µ

i,r~S ,m
= η | Si. Since η is a correlated equilibrium, Si is a

best response to η | Si; it thus easily follows that (RΓ, η) is compatible with
−−→
EQ

Γ
.

For the converse, suppose that η is a distribution on strategy profiles such that (RΓ, η)

is compatible with
−−→
EQ

Γ
. We want to show that η is a correlated equilibrium. Suppose

that T is a strategy for player i that has positive probability according to η. Thus, there

is some run r = r
~S such that η(r) > 0 and Si = T . As we have seen, µi,r,0 = η | T . Since

(RΓ, η) is compatible with
−−→
EQ

Γ
, it must be the case that T is a best response to η | T ,

which determines i’s beliefs at (r, 0). Thus, η is a correlated equilibrium.

Note that the fact that i’s intended strategy is included in i’s local state for normal-form
games ensures that µ

i,r~S ,0
= η | Si. Intuitively, in a correlated equilibrium, the mediator

tells i what strategy to follow, and i uses this information in determining a best response.
Thus, i’s local state should model this information. By way of contrast, Theorem 3.1 would
hold even if the strategy were not part of i’s local state. Since ~σ is a product measure in
Theorem 3.1, it would still be the case that µi,r,0 = ~σ−i for all runs r.

3.1.3 Rationalizability

Our characterization of both Nash equilibrium and correlated equilibrium involves a com-
mon prior on runs. Dropping this assumption gives rise to another standard solution con-
cept: rationalizability (Bernheim, 1984; Pearce, 1984). Intuitively, a strategy for player i
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is rationalizable if it is a best response to some beliefs that player i may have about the
strategies that other players are following, assuming that each of these strategies is itself a
best response to beliefs that one of the other players has about strategies that other players
are following, and so on.

Following Osborne and Rubinstein (1994), say that a strategy S for player i in game Γ
is rationalizable if, for each player j, there is a set Zj ⊆ Sj(Γ) and, for each strategy T ∈ Zj ,
a probability measure ηj,T on S−j(Γ) whose support is a subset of Z−j such that

• S ∈ Zi; and

• for each player j and strategy T ∈ Zj , strategy T is a best response to (the beliefs)
ηj,T .

Intuitively, the strategies in Zi are the rationalizable strategies for player i. Player i can
justify playing a strategy T ∈ Zi because, by assumption, there is a distribution on Z−i
(representing i’s beliefs about the strategies that other players are using) against which T
is a best response. Moreover, each of the strategies to which i assigns positive probability
are themselve justifiable, since they are in Z−i, and so are best responses to beliefs that
place positive probability on strategies that are justifiable, and so on.

For ease of exposition, we consider only pure rationalizable strategies. This is essentially
without loss of generality. It is easy to see that a mixed strategy σi for player i is a best
response to some beliefs ηi of player i iff each pure strategy in the support of σi is a best
response to ηi. Moreover, we can assume without loss of generality that the support of ηi
consists only of pure strategy profiles.

Notice that in the game Γn of Figure 1, all strategies are rationalizable. Alice playing
T is justified if Alice believes that Bob will play R; Bob playing R is justified if he believes
that Alice will T ; Alice playing B is justified if Alice believes that Bob will play L; and Bob
playing L is justified if he believes that Alice will play R.

The following theorem characterizes rationalizability in our framework. Note that we
now do not assume a common prior, so that there is a vector ~µ = (µ1, . . . , µn), in which the
µi’s are not necessarily identical, describing the players’ beliefs.

Theorem 3.4 A pure strategy S for player i in the (normal-form) game Γ is rationalizable
iff there exists a probabilistic system PS = (RΓ, ~µ) and, for each player j, there exists a set
Zj ⊆ Sj such that (a) µj gives every strategy in Zj positive probability; (b) the support of

µj is contained in Z = Z1× · · · ×Zn, (c) S ∈ Zi, and (d) (RΓ, ~µ) is compatible with
−−→
EQ

Γ
.

Proof Suppose that PS = (RΓ, ~µ) is a probabilistic system satisfying the four properties
above. We want to show that S is rationalizable. Take the sets Zi guaranteed to exist
by the assumptions of the theorem to be the sets Zi in the definition of rationalizability.
For T ∈ Zj , let ηj,T be µj | T projected onto S−j . Note that µj | T is well defined,
since µj(T ) > 0. Moreover, the support of ηj,T is contained in Z−j , since the support of
µj is contained in Z. We now show that every T ∈ Zj is a best response to ηj,T . Since

µj(T ) > 0, there must be a run r
~S such that Sj = T and µj(r

~S) > 0. It is easy to see that

µ
j,r~S ,0

= µj | T = ηj,T . Since (RΓ, ~µ) is compatible with
−−→
EQ

Γ
, it must be the case that T

is a best response to ηj,T . Thus, S is rationalizable.
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For the converse, suppose that S ∈ Si is rationalizable. Thus, for each player j, there
exist a set Zj and, for each strategy T ∈ Zj , a measure ηj,T on S−j(Γ) such that T is a

best response to ηj,T . Define µj by taking µj(~S) = ηj,Sj (
~S−j)/|Zj | if Sj ∈ Zj , and taking

µj(~S) = 0 otherwise. First, observe that µj is a probability on S: For each strategy Sj ∈ Zj ,
we have µj(Sj × S−j) = ηj,Sj (S−j)/|Zj | = 1/|Zj |; the result easily follows. Moreover, for
S ∈ Sj , we have that µj(S) > 0 iff S ∈ Zj (of course, µj(S) is just µj(S × S−j). And since
the support of µj,T is contained in Z−j for each strategy T ∈ Sj , it easily follows that the
support of µj is contained in Z. Finally, S ∈ Zi, by construction. Since T is a best response

to ηj,T for all T ∈ Zj , it easily follows that PS = (RΓ, ~µ) is compatible with
−−→
EQ

Γ
.

To see that all strategies in Γn are rationalizable, we can actually take µ1 = µ2 to be
distributions that assign probability 1/2 to each of (T,R) and (B,L). It is easy to see
that this satisfies the conditions of Theorem 3.4, taking Z1 = {T,B} and Z2 = {L,R}.
However, we do not have to take µ1 = µ2. As long as the support of both µ1 and µ2 is
{(T,R), (B,L)}, any choice of µ1 and µ2 works.

Osborne and Rubinstein’s definition of rationalizability allows µj,T to be such that j
believes that other players’ strategy choices are correlated. In most of the literature, players
are assumed to believe that other players’ choices are made independently. If we add the
latter requirement, then we must impose the same requirement on the probability measures
µ1, . . . , µn in Theorem 3.4.

It is important in the characterization of rationalizability that i’s strategy be part of
i’s local state. Intuitively, i’s strategy together with his beliefs about the strategies of the
remaining players determine i’s type. In modeling rationalizability, it suffices to assume that
i’s strategy determines i’s beliefs, so we can identify i’s type with his strategy. By including
the strategy in the local state, we are basically allowing different types of player i.

3.2 Capturing Solution Concepts in Extensive-Form Games

We now consider solution concepts in extensive-form games. Recall that, in this case, we
assume that players are using behavioral strategies.

3.2.1 Nash Equilibrium

Here we get essentially the same result as Theorem 3.1: the behavioral strategy profile ~σ
is a Nash equilibrium in the extensive-form game Γ iff (RΓ, µ~σ) is compatible with EQΓ.
However, a number of new subtleties arise in extensive-form games. First, Nash equilib-
rium in an extensive-form game does not require that players make a best response off the
equilibrium path. This is dealt with in our definition of compatibility since the fact that we
consider only points (r,m) such that µi(Ki(r,m)) > 0 means that we are considering only
points on the equilibrium path.

Another subtlety arises from the fact that, in determining whether σi is a best response
to σ−i at a point (r,m), player i is allowed to change to a completely different strategy σ′i.
But the definition of EQΓ in extensive-form games only considers changing to a different
action. To show that this suffices, we appeal to a result known in the literature as the
one-deviation property (Osborne & Rubinstein, 1994). The one-deviation property holds
if, in order to check that a behavioral strategy σ is a best response to σ−i, it suffices to
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check local changes to σ; that is, it suffices to check behavioral strategies that differ from σ
by just modifying what σ does at one information set.

Let σ[I/a] be the behavioral strategy that is just like σ except that it assigns probability
1 to the action a at the information set I. Strategies of the form σ[I/a] are what we consider
to show that the one-deviation property holds at information set I. But a best response
at information set I allows changes not just at I, but at all information sets preceded
by I. Our analysis considers only what are called games with perfect recall. Roughly
speaking, in a game of perfect recall, all the players recall what moves they have made
and what information sets they have passed through. This recollection is formalized by
putting conditions on information sets. We omit the formal definition of perfect recall here
(see Osborne & Rubinstein, 1994). In a finite extensive-form game Γ with perfect recall,
for each player i, we can define a partial order �i on player i’s information sets such that
I �i I ′ if, for every history h ∈ I, there is a prefix h′ of h in I ′. Thus, I �i I ′ if I ′ is
preceded by I, or, equivalently, appears below I in the game tree. Given two information
sets, we say that I precedes I ′, and write I � I ′, if I = I ′ or I ′ comes after I in some history
of the game (i.e., if some node in I ′ is preceded by a node in I in the game tree). In games
of perfect recall, � is a partial order; there cannot be two distinct information sets I and
I ′ such that I � I ′ and I ′ � I. Given an information set I for player i, denote by [σ′i, I, σi]
the strategy for player i that agrees with σi on all information sets I ′ for player i such that
I � I ′ and agrees with σ′i on all other information sets.

We now recall the notion of best response for behavioral strategies given by Halpern
(2013). A belief system (Kreps & Wilson, 1982) is a function µ that associates with each
information set I a probability, denoted µI , on the histories in I. Given a behavioral strategy
~σ and a belief system µ in an extensive-form game Γ, let Pr~σ denote the distribution on
terminal histories induced by ~σ and define

EUi((~σ, µ) | I) =
∑
h∈I

∑
z∈Z

µI(h)Pr~σ(z | h)ui(z).

Thus, the expected utility of (~σ, µ) conditional on reaching I captures the expected payoff
to player i if ~σ is played from information set I on, given that the relative likelihood of
histories in I is determined by µ. Finally, if ~σ is a completely-mixed behavioral strategy
profile, let µ~σ be the belief system determined by ~σ in the obvious way:

µ~σI (h) = Pr~σ(h | I).

Definition 3.5 (Halpern, 2013) If ε ≥ 0 and I is an information set for player i that is
reached with positive probability by ~σ′, then σi is an ε-best response to ~σ′−i for i conditional
on having reached I using ~σ′ if, for every strategy τ for player i, we have

EUi(((σi, ~σ
′
−i), µ

~σ′
I ) | I) ≥ EUi(((τi, ~σ

′
−i), µ

~σ′
I ) | I)− ε.

The strategy σi is an ε-best response for i relative to ~σ′ if σi is an ε-best response to ~σ′−i for
i conditional on having reached I using ~σ′ for all information sets I for i that are reached
with positive probability by ~σ′. The strategy ~σi is a best response for i relative to ~σ′ (resp.,
best response for i conditional on having reached I using ~σ′) if σi is a 0-best response for i
relative to ~σ′ (resp., 0-best response for i conditional on having reached I).
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Thus, σi is a best response for i relative to ~σ′ if σi is a best response to σ′−i at each
information set I for player i that is reached with positive probability by ~σ′, where we
assume that ~σ′ determines the probability of the histories in I and, in best responding,
we allow player i to make arbitrary changes after I has been reached. determines the
probability of reaching I.

The next result is basically the one-deviation property; it shows that a strategy that is
optimal with respect to local changes is in fact a best response.

Theorem 3.6 Let Γ be a game of perfect recall. The strategy σi is a best response response
to σ−i relative to ~σ iff EUi(~σ) ≥ EUi(σi[I/a], ~σ−i) for each information set I for player i
that is reached with positive probability by ~σ and each action a that i can play at I.

Proof This is essentially proved by Selten (1975), so we just briefly sketch the argument
here. Clearly, if σi is a best response to σ−i relative to ~σ and I is reached by ~σ with
positive probability, then EUi(((~σ, µ

~σ
I ) | I) ≥ EUi((σi[I/a], ~σ−i), µ

~σ
I ) | I) for all informa-

tion sets I that are reached with positive probability according to µ~σ at which player i
moves, and all actions a it can take at I. For the converse, suppose that EUi(((~σ, µ

~σ
I ) |

I) ≥ EUi((σi[I/a], ~σ−i), µ
~σ
I ) | I) for all information sets I that are reached with positive

probability according to µ~σ at which player i moves, and all actions a it can take at I. By
way of contradiction, suppose that σi is not a best response to σ−i relative to ~σ. Then
there must be some information set I that is reached with positive probability by ~σ and
strategy τi for player i such that EUi(([σi, I, τi], ~σ−i), µ

~σ
I ) | I) > EUi(((~σ, µ

~σ
I ) | I). We get

an easy contradiction by considering a latest information set I for player i that is reached
with positive probability by ~σ at which this inequality holds (so that at all information set
I ′ 6= I such that I � I ′, the inequality does not hold). (Since Γ is a game of perfect recall,
the notion of “latest information set” is well defined.)

Theorem 3.7 The behavioral strategy profile ~σ is a Nash equilibrium of the extensive-form
game Γ iff (RΓ, µ~σ) is compatible with EQΓ.

We omit this proof, since it is easier (and similar in spirit) to the the proofs presented
later in this section.

3.2.2 Perfect Equilibrium

We start by considering (trembling-hand) perfect equilibrium (Selten, 1975). This is defined
in both normal-form games and extensive-form games. For ease of exposition, we focus on
the definition in extensive-form games, although essentially the same approach applies to
normal-form games.

The idea is that ~σ is a perfect equilibrium if, not only is σi a best response to ~σ−i,
but σi is a best response even if some players j 6= i “tremble”, and (with exceedingly small
probability) play a strategy other than σj . To make this precise, define a completely
mixed (behavioral) strategy for player i to be a strategy where, at each information set
for player i, each action that can be played is played with positive probability. Observe
that if ~σ is a completely mixed strategy in an extensive-form game Γ, then it will reach
every information set I of each player in Γ with positive probability. For an extensive-form
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game Γ, the strategy profile ~σ is a perfect equilibrium in Γ iff there exists a sequence ~σn

of completely mixed strategies such that ~σn → ~σ and, for all n and each information set I
of player i, σi is a best response to ~σn−i conditional on having reached I. Intuitively, ~σn−i
represents a “tremble”; ~σn−i, n = 1, 2, 3, . . . is a sequence of trembles converging to ~σ. The
strategy σi must be a best response to each tremble in this sequence. Thus, each strategy σi
in a perfect equilibrium profile ~σ is not a best response to all possible trembles, but to the
trembles along one particular path converging to ~σ. (The definition of perfect equilibrium
is essentially the same in normal-form games, except that there is no need to condition on
the information set.)

Our result depends on a characterization of perfect equilibrium given by Halpern (2009,
2013) that uses nonstandard probabilities, which can assign infinitesimal probabilities to
strategy profiles. A discrete nonstandard probability distribution on a set of runs is a discrete
probability distribution that assigns nonstandard probabilities to runs so that the sum over
all runs adds up to 1.

Halpern (2009) shows that by using nonstandard probability, we can capture Selten’s
intuition for trembling-hand equilibrium without needing to explicitly refer to sequences of
strategy profiles, as is done in Selten’s original definition. The idea is that the sequence
converging to ~σ in Selten’s original definition is replaced by a single completely mixed
strategy profile that is infinitesimally close to ~σ. To make this precise, we need a few
definitions. It is well known that to every nonstandard real number ρ, there is a closest
standard real number denoted st(ρ) ∈ IR, and called “the standard part of ρ”: the difference
|ρ − st(ρ)| is an infinitesimal. Given a nonstandard probability measure ν, we can define
the standard probability measure st(ν) by taking st(ν)(w) = st(ν(w)) for all states ω ∈ Ω.
Two possibly nonstandard distributions ν and ν ′ differ infinitesimally if st(ν) = st(ν ′).

While, as Selten shows, a perfect equilibrium always exists in normal-form games, it
does not necessarily exist in an arbitrary extensive-form game. However, it does exist in
extensive-form games of perfect recall. We can now state Halpern’s characterization of
trembling-hand equilibrium. We say that two behavioral strategies σi and σ′i for player
i differ infinitesimally if the distributions σi(I) and σ′i(I) differ infinitesimally for each
information set I for player I. Two strategy profiles ~σ = (σ1, . . . , σn) and ~σ′ = (σ′1, . . . , σ

′
n)

differ infinitesimally if σi differs infinitesimally from σ′i at I, for every i = 1, . . . , n.

Theorem 3.8 (Halpern, 2009, 2013) The behavioral strategy profile ~σ = (σ1, . . . , σn) is a
perfect equilibrium in an extensive-form game Γ of perfect recall iff there exists a nonstan-
dard completely mixed behavioral strategy profile ~σ′ that differs infinitesimally from ~σ such
that σi is a best response to σ′−i relative to ~σ′ for each player i.

When dealing with standard probabilities, in the definition of a probabilistic system
PS = (R, ~µ) being compatible with knowledge-based program profile

−→
Pg, we required that

the action played by Pgi at (r,m) be the same as that played in the system PS at (r,m)
only for runs r such that µi(r | R[Ki(r,m)]) > 0. We now want to restrict not just to runs
that have positive probability, but to runs that have “nontrivial” positive probability. The
obvious choice would be to require that st(µi(r | R[Ki(r,m)])) > 0. In settings where all
players are following a behavioral strategy, this requirement would would restrict to runs r
where, at all times m′ > m, if player j moves at the information set associated with (r,m′),
then the move made by j is given positive standard probability by the behavioral strategy.
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We would like this to be the case as well for the move made at (r,m). Since we encode
i’s intended move at (r,m) in i’s local state ri(m) (recall that the local state models i’s
information after i has made the coin toss), conditional on Ki(r,m), player i’s intended
move has probability 1, even if it has infinitesimal probability according to his strategy.

For simplicity, we describe the requirement that we want only in systems of the form
RΓ. In such systems, if I is an information set in Γ, let R[I] consist of all runs that go
through information set I. Note that if i moves at I, then R[I] is the disjoint union of
sets of the form R[Ki(r,m)], for runs r where i’s local state has the form (I, a). We now
define what it means for PS = (RΓ, ~µ), where ~µ is a profile of nonstandard probability
measures just as we did before, except that in clause (b), we replace the requirement that
µi(r | R[Ki(r,m)]) > 0 by st(µi(r | R[Ki(r,m)])) > 0, and if i moves at the information set
I associated with (r,m), then we further strengthen this requirement to st(µi(r | R[I])) > 0.
Since µ(r | R[I]) is a convex combination of terms of the form µ(r | R[Ki(r′,m)]), where
the sum is taken over the points (r′,m) such that the node associated with (r′,m) is in I
and µ(R[Ki(r′,m)]) > 0, and µ(r | R[Ki(r′,m)]) = 0 if (r,m) /∈ Ki(r′,m), it easily follows
that if st(µi(r | R[I])) > 0 then st(µi(r | R[I])) > 0.

For standard probability measures µi, it is easy to see that µi(R[Ki(r,m)]) > 0 and
that µi(r | R[Ki(r,m)]) > 0 iff both µi(R[Ki(r,m)]) > 0 and µi(r | R[I]), so this really is a
generalization of the standard definitions.6

Roughly speaking, this says that compatibility is required only at points on which i
places “significant” probability on the moves made by the strategy used by i. (This is made
more precise in the proof of Theorem 3.9.)

Note that since only one player i moves at a node w in an extensive-form game (since we
do not allow moves by nature), in the action profile ~a such that applying ~a to r(m) results

in r(m+1), we have aj = skip for j 6= i. This is because (r,m) /∈ [[κ]]PS for a test κ in
−−→
EQ

Γ

j ;
these tests κ are true only at points where j moves.

Theorem 3.9 The strategy profile ~σ is a perfect equilibrium of the extensive-form game Γ
of perfect recall iff there exists a (possibly nonstandard) completely mixed behavioral strategy

profile ~σ′ such that σi differs infinitesimally from σ′i and (RΓ, µ~σ′) is compatible with
−−→
EQ

Γ
.

Proof Suppose that ~σ = (σ1, . . . , σn) is a perfect equilibrium of Γ. By Theorem 3.8,
there exists a nonstandard completely mixed strategy profile ~σ′ that differs infinitesimally
from ~σ such that σi is a best response to σ′−i relative to ~σ′, for each player i = 1, . . . , n.

We show that PS = (RΓ, µ~σ′) is compatible with
−−→
EQ

Γ
. Suppose that the information set

I = Ki(r,m) associated with (r,m) is one where i moves, and that st(µ~σ′(r | R[I])) > 0.
(Note that since ~σ′ is completely mixed, it is guaranteed that µ~σ′(R[I]) > 0.) Let a be

6. The reader may wonder why we did not just take ri(m) to be i’s information set, rather than having
it include the action that i plans to do. While the former choice would have simplified the discussion
above, for the kb program EQΓ to be meaningful, i has to know what action he is about to do. Note
that what we are doing here is considering i’s information at two stages: before he has tossed the coin to
determine his next action, and after he has tossed it. We are conditioning on his information before he
tossed the coin, even though i’s local state models only the situation after he has tossed the coin. Using
this intuition we can extend the definition of compatibility beyond the scope of systems of the form RΓ,
as long as the system is generated by players running randomized programs (like behavioral strategies),
although making this precise is beyond the scope of this paper.
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the action encoded in ri(m); that is, a is the action that i plans to play at (r,m). Since
st(µ~σ(r | R[I])) > 0, it must be the case that the action a is given positive standard
probability by the (completely mixed) distribution σ′i(I). Since ~σ is a perfect equilibrium,
we have by Theorem 3.8 that σi is a best response to σ−i relative to ~σ. Let τi = [σ′i, I, σi].
By definition, τi and σi agree on their actions at I. Since σi gives a positive standard
probability at I, so does τi. By Theorem 3.6, τi must be at least as good a response as
τi[I/a

′] to ~σ′−i, for any action a′ that i can play at I. Since τi gives a positive standard
probability, τi[I/a] must be at least as good a response as τi[I/a

′] to ~σ′−i for any action
a′, conditional on reaching I using ~σ′. It is easy to see that the expected utility of τi[I/a]
(resp., τi[I/a

′]) conditional on reaching I is just the value of EUi(a) (resp., EUi(a
′)) at the

point (r,m). Thus, (r,m) ∈ [[EUi(a) ≥ EUi(a
′)]]PS , so PS is compatible with EQΓ.

For the converse, suppose that ~σ′ is a completely mixed behavioral strategy profile

such that σi differs infinitesimally from σ′i and (RΓ, µ~σ′) is compatible with
−−→
EQ

Γ
. Let

~σ = st(~σ′). Again, let τi = [σ′i, I, σi]. By Theorems 3.8 and 3.6, it suffices to show that for
each information set I for player i and each action a′ that i can play at I, the strategy τi is
at least as good a response as τi[I/a

′] to ~σ′−i conditional on having reached I using ~σ′. To
do this, it suffices to show that for each action a in the support of τi(I) = σi(I), strategy
τi[I/a] is at least as good a response as τi[I/a

′] to ~σ′−i conditional on having reached I using
~σ′. So fix an information set I where player i moves and suppose that a is in the support
of σi(I). Let r be a history that reaches I = Ki(r,m) in which i plays a at I and all the
players play an action that is given positive standard probability by ~σ (and hence also by
~σ′) at all points preceding (r,m). Thus, st(µ~σ(r | R[I])) > 0. Since PS is compatible with
EQΓ, it must be the case that (r,m) ∈ [[EUi(a) ≥ EUi(a

′)]]PS . As in the first half of the
proof, it now follows that τi[I/a] is at least as good a response as τi[I/a

′] to ~σ′−i conditional
on having reached I using ~σ′. Thus, ~σ is a perfect equilibrium.

3.2.3 Sequential Equilibrium

We next characterize sequential equilibrium in terms of EQΓ. Recall that a sequential equi-
librium (Kreps & Wilson, 1982) is an assessment, a pair (~σ, µ), where ~σ is a behavioral
strategy profile and µ is a belief system, that is, a function that determines for every infor-
mation set I a probability µI over the histories in I. Intuitively, if I is an information set
for player i, then µI is i’s subjective assessment of the relative likelihood of the histories in
I. Roughly speaking, an assessment is a sequential equilibrium if both (a) at every infor-
mation set where a player moves he chooses a best response given the beliefs he has about
the histories in that information set and the strategies of other players, and (b) his beliefs
are consistent with the strategy profile being played. We omit the formal definition here,
and instead use a characterization of sequential equilibrium due to Halpern (2009).

Theorem 3.10 (Halpern, 2009, 2013) An assessment (~σ, µ) is a sequential equilibrium
in an extensive-form game Γ with perfect recall iff there exist an infinitesimal ε and a
nonstandard completely mixed strategy profile ~σ′ that differs infinitesimally from ~σ such
that σi is an ε-best response to σ−i relative to ~σ, for each player i.

The only difference between sequential equilibrium and perfect equilibrium in this char-
acterization is that with perfect equilibrium σi must be a best response to σ−i relative to
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~σ while with sequential equilibrium, it need only be an ε-best response for some infinitesi-
mal ε. To capture this difference, when dealing with sequential equilibrium, we reinterpret
the formula EUi(a) ≥ EUi(a

′) so as to ignore infinitesimal differences. Thus, the formula
is true unless st(EUi(a

′) − EUi(a)) > 0 (or, equivalently, it is true if the standard part of
i’s expected utility using a is greater than or equal to the standard part of i’s expected

utility using a′). PS is st-compatible with
−−→
EQ

Γ
(standing for compatible with respect to

standard values) if PS is compatible with
−−→
EQ

Γ
under this reinterpretation of

−−→
EQ

Γ
. Clearly,

when all the probability distributions in PS are standard, the notions compatibility and

st-compatibility of
−−→
EQ

Γ
with PS coincide.

Theorem 3.11 The assessment (~σ, µ) is a sequential equilibrium of the finite extensive-
form game Γ of perfect recall iff there exists (possibly nonstandard) completely mixed strategy

profile ~σ′ such that σi differs infinitesimally from σ′i and (RΓ, µ~σ′) is st-compatible with
−−→
EQ

Γ
.

Proof The proof is almost identical to that of Theorem 3.9, replacing “best response” by
“ε-best response”, and “compatible” with “st-compatible”. We leave details to the reader.

3.2.4 Subgame-Perfect Equilibrium

Subgame-perfect equilibrium, defined by Selten (1965), is usually considered in games of
perfect information, where all information sets are singletons. In games of perfect informa-
tion, subgame perfection, sequential equilibrium, and trembling-hand perfect equilibrium
all agree, so we do not need to provide a separate characterization. However, subgame
perfection is actually defined for arbitrary games of perfect recall.

Given a game Γ of perfect information and a node w in Γ, the subtree of Γ rooted at w
determines a subgame that we denote Γw if, for every information set I in Γ that includes a
node w′ at or below w in Γ, all the nodes in I are below w in Γ. For example, the subtree of
the game Γe in Figure 2 does not determine a subgame, since the information set {w2, w3}
includes a node that is at or below w2 (namely, w2 itself), but w3 is not below w2. The
strategy profile ~σ is a subgame-perfect equilibrium if, for every subgame Γw of Γ, ~σ restricted
to the nodes in Γw is a Nash equilibrium in Γw. Note that subgame perfection places no
requirements on the action played at nodes that do not determine subgames, beyond the
fact that the action must be part of a Nash equilibrium at nodes higher in the tree that do
determine subgames.

We can use a program much like EQΓ to characterize subgame-perfect equilibrium
in arbitrary games of perfect recall. We need to make two changes to EQΓ. First, we
need to say that a best response is required only at points where subgame holds, where
(r,m) ∈ [[subgame]]PS if the node w associated with (r,m) determines a subgame. (Note
that [[subgame]]PS consists of all points in a game of perfect information.) Second, we need
to say that there are no constraints at points where subgame does not hold. So, for each
action a ∈ Ai(Γ), we now have two lines of the form

if Ki(intendi(a) ∧ subgame ∧
∧

a′∈Si(A) EUi(a) ≥ EUi(a
′)) then play a

if Ki(intendi(a) ∧
∧

a′∈Si(A) EUi(a) ≥ EUi(a
′)) then play a.

Call the resulting program SUBEQΓ
i .
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These changes make it clear that subgame perfect is a somewhat awkward notion in
games where players do not have perfect information. In any case, with this change, an
analogue of Theorem 3.9 holds for subgame perfect equilibria.

Theorem 3.12 The strategy profile ~σ is a subgame-perfect equilibrium of the extensive-
form game Γ of perfect recall iff there exists a (possibly nonstandard) completely mixed
behavioral strategy profile ~σ′ such that σi differs infinitesimally from σ′i and (RΓ, µ~σ′) is
subgame compatible with SUBEQΓ.

We omit the proof here, which is similar in spirit to that of Theorem 3.9.

4. Discussion and Conclusions

The essential intuition in many solution concepts is that (it is common knowledge that)
players are making a best response to their beliefs. We have shown that this “procedural”

intuition can be captured by a single knowledge-based program, denoted
−−→
EQ

Γ
. The dif-

ferences between these solutions concepts lies in differences in assumptions about players’
beliefs and in what counts as a best response.

• In Nash equilibrium, players believe that a mixed strategy profile is being played (and
have common belief about which one it is).

• In correlated equilibrium, the players believe that a correlated strategy profile is being
played (and have common belief about which one it is).

• In perfect equilibrium, they can be viewed as believing that a nonstandard completely
mixed strategy profile is being played (and having common belief about which one it
is), and caring only about what happens in situations with positive standard proba-
bility.

• In sequential equilibrium, they can similarly be viewed as believing that a nonstandard
completely mixed strategy profile is being played (and have common belief about
which one it is), and caring only about what happens at states with positive standard
probability and about best responses with respect to standard differences (an ε better
response for some infinitesimal ε is not viewed as being better).

• In rationalizability, different players may hold different beliefs about the strategy
profile being played.

While the unification given by kb programs arguably does give insight, there is clearly
a significant amount of overhead in the kb program framework. It is certainly reasonable
to ask whether it is worth dealing with the overhead just to get such a unification, given
that the intuitions are certainly well understood in the game-theory literature.

If the sole advantage of using kb programs was to prove the theorems in this paper,
then perhaps the answer is “no”, but we believe that the kb program framework offers
much more to game theory than just this unification. For one thing, kb programs can
capture the intuition of best response more generally. We give a few examples here:
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• Dealing with moves by nature: We have assumed for simplicity that there were no
moves by nature in the extensive-form games being analyzed. To deal with moves
by nature, we first expand the notion of a global state so that it includes the local
state of “nature”, not just the local states of the players. We can think of nature’s
local state as consisting of the current node in the game tree. In addition, we think of
nature, just like the players, as following a behavioral strategy (where nature’s move
depends on its local state). With these minor changes, all our results still go through,
with no change. In particular, all of the theorems in the paper continue to hold even
for games where nature moves, with no change in the proof.

• Bayesian games: In a Bayesian game, players have types. We can think of a type as
a description of a player’s private information. There is assumed to be a commonly-
known distribution over type profiles. A strategy can be viewed as a function from
types to actions. A player’s utility depends on both the action profile and the type
profile. The standard solution concept considered in Bayesian games is a Bayes-Nash
equilibrium. In a Bayes-Nash equilibrium, no player wants to switch to a different
strategy, since doing so results in a lower expected utility (see Osborne & Rubinstein,
1994, for details). We can again capture a Bayes-Nash equilibrium in our framework.
Now a player’s local state would include the player’s type, and a run can be charac-
terized by the strategy profile and type profile. This means that the set of runs in
RΓ is larger. With these changes, an analogue of Theorem 3.1 holds for Bayes-Nash
equilibrium.

• Beyond expected utility maximization: All of the solution concepts that we have con-
sidered in the paper are based on maximizing expected utility. But we can also con-
sider solution concepts based on other decision criteria. For example, Boutilier and
Hyafil (2004) consider minimax-regret equilibria, where each player uses a strategy
that is a best-response in a minimax-regret sense to the choices of the other players.
Similarly, we can use maximin equilibria (Aghassi & Bertsimas, 2006). As pointed
out by Chu and Halpern (2003), all these decision rules can be viewed as instances
of a generalized notion of expected utility, where (a) uncertainty is represented by a
plausibility measure, a generalization of a probability measure, (b) utilities are ele-
ments of an arbitrary partially ordered space, and (c) plausibilities and utilities are
combined using ⊕ and ⊗, generalizations of + and ×. Just by interpreting “EUi = u”
appropriately, we can capture these more exotic solution concepts as well. Moreover,
applying the same ideas and essentially the same proof we can capture solution con-
cepts in games in which the game itself is not common knowledge, or where players
are not aware of all available moves, as discussed by Halpern and Rêgo (2013).

All the results mentioned up to now are straightforward, and much in the spirit of the
results we have already shown. A more interesting situation arises when we consider games
of imperfect recall. Part of the overhead in the framework is the need to specify exactly
what the players’ local states are, that is, what they know. In the context of games of
perfect recall, this is perhaps not that important, but when we move to games of imperfect
recall, this becomes highly significant. Consider the single-player game depicted in Figure 3,
first introduced by Piccione and Rubinstein (1997).
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Figure 3: A game of imperfect recall.

It is not hard to show that the strategy that maximizes expected utility in this example
chooses move S at node x1, move B at node x2, and move R at the information set X
consisting of x3 and x4. Call this strategy σ. Let σ′ be the strategy of choosing move B
at x1, move S at x2, and move L at X. Piccione and Rubinstein argue that if node x1 is
reached, the player should reconsider, and decide to switch from σ to σ′. While this indeed
leads to a better payoff, the resulting strategy (i.e., starting with σ and switching to σ′ at
x2, if x2 is reached) is not a legal strategy in the original game; the player moves left at x3

and right at x4, although the two nodes are in the same information set.

The question of what the player’s local state is now becomes critical. We did not include
the player’s behavior strategy in his local state when we modeled extensive-form, but we
could have done so with no change. Suppose that we do so in this game of imperfect recall.
First note that if we include the player’s strategy in his local state, then in the system RΓ

corresponding to the game, if h is the history ending in z5, at the point (rh, 2), the player
knows that he is at x4, despite the information set. This is an instance of a more general
phenomenon: in a game of imperfect recall, the strategy that a player is using gives him
information about which node in an information set he is at. This cannot happen in a game
of perfect recall.

Suppose for ease of exposition that we include a player’s strategy in his local state.
What happens if a player switches strategy. How does his local state change then? If the
local state includes the new strategy (whether or not it includes the original strategy), then
in the set of runs that arises if the player sticks to σ at x2, but switches from σ to σ′ at x1,
when player reaches x3, he knows that he is at x3, and if he reaches x4, he knows that he
is at x4. The “information set” is not correctly representing the player’s knowledge at all!7

The key point here is that the runs-and-systems framework forces a modeler to consider
questions like whether a player is able to keep track of his changes of strategy; moreover, the
answers must be reflected in the choice of local state. There has been some recent work on

7. This point was already made by Halpern (1997).
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defining notions like sequential equilibrium in games of imperfect recall (see, e.g., Halpern
& Pass, 2011b; Kline, 2005; Marple & Shoham, 2012). We believe that the program EQΓ

and, more generally, the use of the runs-and-systems framework can provide some insight
into this problem.

Interesting new issues arise when we add computation to the picture. Equilibrium
notions that take computation into account have been considered by Halpern and Pass
(2011a). It seems that the notion of computational Nash equilibrium defined by Halpern and
Pass, where players choose a Turing machine to play for them, can be captured using EQΓ

as well. But that is only because, roughly speaking, there is no charge for the computation
of which Turing machine is a best response to the Turing machines chosen by the other
players. If we were to impose such a cost, then we might need more “computational” or
“algorithmic” notions of knowledge (such notions are discussed by Fagin et al., 1995, ch. 10).

We conclude with two other directions for further research. First, although we have
focused on using kb programs to characterize solution concepts here, the idea that an agent’s
actions depend on her knowledge and beliefs seems like a very natural way to characterize
strategies in games, and “meta-strategies” for classes of games. Sayings such as “look before
you leap” and “trust, but verify” are really shorthand for knowledge-based programs. We
believe that useful insights into how agents play games can be gained by thinking at the
knowledge level in this way. Indeed, it is not only preconditions on actions that depend
on knowledge and belief; an agent’s utility can also depend on her beliefs. This is the
key insight in psychological games (Geanakoplos, Pearce, & Stacchetti, 1989). It would be
interesting to extend knowledge-based programs to knowledge-based utilities.

Finally, although we have talked about kb programs as “procedural”, in fact, there is
no procedure given for the calculation of the relevant knowledge, which really amounts to a
best-response computation. In a non-probabilistic setting, there are conditions under which
a kb program can be implemented by a unique standard program (i.e., one without tests
for knowledge) as shown by Fagin et al. (1995, Section 7.2). Such results do not carry
over to probabilistic systems (since they give no indication of how to compute the relevant
probabilities). Nevertheless, given beliefs, kb programs can be viewed as defining how an
agent should act. When computing an equilibrium, the beliefs are typically determined by
the strategy profile. That is, we do not start with beliefs and then determine how to act.
Rather, in most of the solutions concepts we have considered here, we have a fixed point:
the beliefs determine the strategies (each player’s strategy is a best response to her beliefs),
and the strategies determine the beliefs. However, we believe that, in other applications
of kb programs, it may well be possible to view a kb program as providing a procedural
specification. We leave this topic to further research.
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