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Abstract

For almost two decades, monotonic, or “delete free,” relaxation has been one of the
key auxiliary tools in the practice of domain-independent deterministic planning. In the
particular contexts of both satisficing and optimal planning, it underlies most state-of-the-
art heuristic functions. While satisficing planning for monotonic tasks is polynomial-time,
optimal planning for monotonic tasks is NP-equivalent. Here we establish both negative and
positive results on the complexity of some wide fragments of optimal monotonic planning,
with the fragments being defined around the causal graph topology. Our results shed some
light on the link between the complexity of general optimal planning and the complexity
of optimal planning for the respective monotonic relaxations.

1. Introduction

In domain-independent deterministic (or “classical”) planning, the world states are repre-
sented by complete assignments to a set of variables, the operators allow for deterministic
modifications of these assignments, and the objective is to find a sequence of operators that
sequentially modifies a given initial assignment to an assignment that satisfies a certain
predefined goal property. In the last two decades, solvers for this problem have made spec-
tacular advances in their empirical efficiency, and this especially in the context of state-space
heuristic search planning techniques. This efficiency has been made possible largely by the
ability to exploit monotonic, or “delete-free,” relaxations of the planning tasks (McDermott,
1999; Bonet & Geffner, 2001; Hoffmann & Nebel, 2001).

At a high level, monotonic relaxation replaces the regular value switching semantics of
planning operators with the value accumulating semantics. That is, if an operator switches
the value of a variable v from x to y, then the relaxed version of that operator “extends”
the value of v from {x} to {x, y}. The key point here is that applying operators under value
accumulating semantics does not reduce the applicability of operators in the future. Two
properties of monotonic relaxation make it especially valuable to automated planning. First,
while deterministic planning is PSPACE-complete even for rather conservative propositional
formalisms, planning for monotonic tasks is polynomial-time (Bylander, 1994), and thus can
be exploited for deriving heuristic estimates. Second, in numerous problems of practical
interest, plans for monotonic relaxations are not that distant from the true plans for these
problems (Hoffmann, 2005; Helmert & Mattmüller, 2007; Helmert & Domshlak, 2009; Bonet
& Helmert, 2010). Hence, starting from the seminal HSP (Bonet & Geffner, 2001) and
FF (Hoffmann & Nebel, 2001) planning systems, exploiting, and in particular, explicitly
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planning for, monotonic relaxations became an important ingredient of most systems for
domain-independent deterministic planning. (For a comprehensive survey, see, e.g., Betz &
Helmert, 2009.)

Ideally, a planner reasoning about the cost of the plans for monotonic relaxations should
reason about the cost of optimal plans for monotonic relaxations. Unfortunately, while
regular planning for monotonic tasks is polynomial-time, optimal planning for these tasks
is NP-equivalent (Bylander, 1994), and constant-factor approximations for this problem are
provably hard as well (Betz & Helmert, 2009). Still, admissible heuristic estimates can in
principle exploit tractable fragments of optimal planning for monotonic relaxations (Katz
& Domshlak, 2010). However, to the best of our knowledge, no substantial fragments of
tractability have been revealed for monotonic optimal planning to date.

Identifying significant fragments of tractability for optimal monotonic planning is pre-
cisely our focus here. Our special interest is in establishing connections between the com-
plexity of optimal planning and that of optimal planning for the monotonic relaxations of
the respective planning tasks. This interest is motivated by the new and important role
of methods that combine tractable fragments of regular deterministic planning with mono-
tonic relaxation heuristics (Helmert, 2004; Keyder & Geffner, 2008a; Katz & Domshlak,
2010; Katz, Hoffmann, & Domshlak, 2013a, 2013b; Katz & Hoffmann, 2013). In turn, this
comparative perspective has brought us to consider planning tasks in terms of finite-domain
representations that go beyond the standard propositional representation formalisms such
as STRIPS (Fikes & Nilsson, 1971) and ADL (Pednault, 1989). Some explanation, and
possibly even justification, for this choice of analysis are in place here.

Due to their close relationship to first-order and propositional logics, propositional rep-
resentations have dominated the area of automated planning since the early days of AI re-
search. For instance, the propositional PDDL language is still a de facto standard problem
description language in the planning community (Fox & Long, 2003). However, proposi-
tional languages blur a lot of important structure that is present in typical planning tasks of
interest. As we discuss later on, finite-domain representations (FDR) that go beyond propo-
sitional state variables (Bäckström & Klein, 1991; Bäckström & Nebel, 1995; Helmert,
2009) allowed for much deeper and much more discriminative analysis of automated plan-
ning complexity. In turn, some of these formal developments have already been translated
into practical advances in planning, allowing for the introduction of effective enhancements
of monotonic relaxation heuristics (Fox & Long, 2001; Helmert, 2004; Helmert & Geffner,
2008; Keyder & Geffner, 2008a; Cai, Hoffmann, & Helmert, 2013; Katz et al., 2013a,
2013b), abstraction heuristics (Edelkamp, 2001; Helmert, Haslum, & Hoffmann, 2007; Katz
& Domshlak, 2010), decomposition-based planning (Nissim, Brafman, & Domshlak, 2010;
Nissim & Brafman, 2012), search-topology analysis (Hoffmann, 2011), and many others.

Nonetheless, under the value accumulating semantics of monotonic relaxation, FDR no
longer maintains its key advantage over propositional representations, because there no
longer seems to be any reason to prefer explicit representation of certain mutual exclusion
relationships between the propositions. Therefore, in principle, the results presented in
what follows can be phrased, and sometimes even extended, in the context of propositional
representations such as STRIPS. Why, then, have we chosen to view the complexity of
optimal relaxed planning through the lens of FDR? The primary reason is our interest in
comparative complexity analysis of optimal planning and optimal planning for the respective
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monotonic relaxations. Departing from previously discovered fragments of tractability for
both satisficing and optimal planning, we approach the following two high-level questions:

1. For what fragments of deterministic planning, if any, is optimal planning hard but
optimal (monotonically) relaxed planning easy?

2. For what fragments of deterministic planning, if any, is optimal planning easy yet
optimal (monotonically) relaxed planning hard?

For regular planning, the best classification we have these days for its worst-case time
complexity exploits the properties of some graphical structures induced by the planning
tasks, together with various properties of the FDR state variables such as the size of their
domains. Hence, discussing optimal relaxed planning for FDR tasks keeps us in direct
relation to that well-explored complexity map of regular deterministic planning. Moreover,
we show that some known links between the planning complexity and graph-topological
properties of the FDR tasks are even stronger in the case of optimal relaxed planning.

The second reason for our choice is that recent work has already revealed interesting
interplays between (either complete or partial) monotonic relaxation of finite-domain vari-
ables and graphical structures induced by the FDR tasks. The respective results are in the
context of computational complexity of non-optimal planning (Katz et al., 2013b), heuris-
tic estimates (Keyder & Geffner, 2008b; Katz et al., 2013a; Katz & Hoffmann, 2013), and
search-topology analysis (Hoffmann, 2011). For instance, Hoffmann (2011) showed that, if
the causal graph of the FDR task is acyclic, and every variable transition is invertible, then
the h+ heuristic induced by optimal relaxed plans from the evaluated states has no local
minima. This result in particular testifies that examining monotonic relaxations through
the lens of FDR can lead to some crisp and concisely formulated results. The same can
be found in our work here: While we show how some of our results can be easily reformu-
lated, and sometimes even generalized, in terms of STRIPS, some of our other results do
not conform so easily to STRIPS reformulation.

Finally, while the immediate value of our results in this work is mostly theoretical, we
would like to see them as a step towards exploiting optimal relaxed planning to devise
heuristic functions for deterministic planning. Some of our results, such as Theorem 4, can
in fact be directly used within the framework of implicit abstractions (Katz & Domshlak,
2010), while some other results can possibly be exploited within various frameworks of
partial monotonic relaxation such as, e.g., the recent red-black planning framework of Katz
et al. (2013b, 2013a). To what extent this will actually happen remains, of course, to
be seen. However, the very focus of both implicit abstractions and red-black planning on
finite-domain task representations should make it much easier to assess the relevance of our
results to these frameworks.

2. Formalism, Background, and Related Results

We use the notation [n] to refer to the set {1, . . . , n}. In directed graphs, the edge from x
to y is denoted by (x, y), and in undirected graphs, the edge between x and y is denoted by
{x, y}. By ||x|| we refer to the representation size of object x, not to be confused with |x|,
which denotes the number of elements in set x.
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2.1 FDR, MFDR, and Monotonic Relaxation

Here we adopt the terminology and notation of Katz et al. (2013b). A planning task
in finite-domain representation (FDR) is given by a quintuple Π = ⟨V,A, I,G, cost⟩,
where:

• V is a set of state variables, with each v ∈ V being associated with a finite domain
D(v). A partial variable assignment p is a function on a variable subset V(p) ⊆ V that
assigns each v ∈ V(p) a value p[v] ∈ D(v) of its domain. A partial variable assignment
s is called a state if V(s) = V .

• I is an initial state. The goal G is a partial variable assignment to V .

• A is a finite set of actions. Each action a is a pair ⟨pre(a), eff(a)⟩ of partial variable
assignments to V called precondition and effect, respectively.

• cost : A→ R0+ is a real-valued, nonnegative action cost function.

Auxiliary notation:

— For a partial assignment p and a variable subset V ′ ⊆ V(p), by p[V ′] we denote the
assignment provided by p to V ′. For ease of presentation, we sometimes also specify
partial assignments as sets of constructs v ← d, in which v ∈ V and d ∈ D(v).

— For a variable v ∈ V , by Av ⊆ A we denote the actions affecting the value of v, that
is, Av = {a | v ∈ V(eff(a))}. For a sequence of actions ρ and a state variable v ∈ V ,
by ρ↓v we denote the restriction of ρ to the actions in Av.

The semantics of FDR tasks is as follows. An action a is applicable in a state s iff
s[v] = pre(a)[v] for all v ∈ V(pre(a)). Applying a in state s changes the value of every v ∈
V(eff(a)) to eff(a)[v]; the resulting state is denoted by sJaK. By sJ⟨a1, . . . , ak⟩K we denote the
state obtained from sequential application of the (respectively applicable) actions a1, . . . , ak
starting at state s. Such an action sequence is an s-plan if sJ⟨a1, . . . , ak⟩K[V(G)] = G,
and it is an optimal s-plan if the sum of its action costs is minimal among all s-plans. The
computational task of (optimal) planning is finding an (optimal) I-plan. In what follows,
(optimal) I-plans are often referred simply as (optimal) plans for Π.

A monotonic finite-domain representation (MFDR) planning task is given by a
quintuple Π = ⟨V,A, I,G, cost⟩ exactly as for FDR tasks, but the semantics is different.1

Informally, inMFDR tasks the state variables accumulate their values, rather than switching
between them. More specifically, an MFDR state s is a function that assigns each v ∈ V a
non-empty subset s[v] ⊆ D(v) of its domain. An MFDR action a is applicable in state s iff
pre(a)[v] ∈ s[v] for all v ∈ V(pre(a)). Applying an MFDR action a in state s changes the
value of v ∈ V(eff(a)) from s[v] to s[v]∪{eff(a)[v]}. Respectively, an MFDR action sequence
⟨a1, . . . , ak⟩ applicable in state s is an s-plan if G[v] ∈ sJ⟨a1, . . . , ak⟩K[v] for all v ∈ V(G).
In all other respects, MFDR and FDR semantics are identical.

1. It is not entirely clear to whom the original formulation of monotonic relaxation for multi-valued variable
domains should be attributed, but it can be traced back at least to the work of Helmert (2006) on the
Fast Downward planning system.
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While FDR planning is PSPACE-complete even for propositional state variables, plan-
ning for MFDR tasks is polynomial time (Bylander, 1994). Starting with the HSP (Bonet
& Geffner, 2001) and FF (Hoffmann & Nebel, 2001) planning systems, exploiting this at-
tractive property of MFDR for deriving heuristic estimates via the notion of monotonic
relaxation became a key ingredient of many planning systems. Given an FDR planning task
Π = ⟨V,A, I,G⟩, the monotonic relaxation of Π is the MFDR task Π+ = Π. For any
state s of Π, the optimal relaxation heuristic h+(s) is defined to be the cost of the optimal
plan for the MFDR task ⟨V,A, s,G⟩, and by (optimal) relaxed planning for Π we refer
to (optimal) planning for Π+. If ρ+ is a plan for Π+, then ρ+ is referred to as a relaxed
plan for Π.

Finally, for both FDR and MFDR, we sometimes distinguish between planning tasks in
terms of a pair of standard graphical structures induced by the description of these tasks.

• The causal graph CGΠ of Π is a digraph over nodes V . An arc (v, v′) is in CGΠ iff v ̸=
v′ and there exists an action a ∈ A such that (v, v′) ∈ V(eff(a))∪V(pre(a))×V(eff(a)).
In this case, we say that (v, v′) is induced by a. By succ(v) and pred(v) we respectively
denote the sets of immediate successors and predecessors of v in CGΠ.

• The domain transition graph DTG(v,Π) of a variable v ∈ V is an arc-labeled
digraph over the nodes D(v) such that an arc (d, d′) labeled with pre(a)[V \ {v}]
and cost(a) belongs to the graph iff both eff(a)[v] = d′, and either pre(a)[v] = d or
v ̸∈ V(pre(a)).

2.2 Causal Graph Treewidth and Planning Complexity

Introduced by Halin (1976), tree-width went unnoticed until it was independently rediscov-
ered by Robertson and Seymour (1984) and Arnborg, Cornell, and Proskurowski (1987). It
has since received widespread attention due to its numerous graph-theoretic and algorithmic
applications. Informally, the tree-width of a graph is a measure of how close the structure
of the graph is to a tree. For example, the tree-width of a tree is 1, regardless of its size,
whereas the tree-width of a complete graph over n nodes is n− 1. Formally, the tree-width
of a graph is defined via the notion of tree decomposition as follows.

A tree decomposition of a connected undirected graph G = (V,E) is a pair ⟨T, α⟩, where
T = (V T , ET ) is a tree, i.e., a connected acyclic graph, and α : V T 7→ 2V such that:

1. For every v ∈ V , the set {t ∈ V T | v ∈ α(t)} in T is non-empty and connected.

2. For every (v, u) ∈ E there is a t ∈ V T such that {v, u} ⊆ α(t).

The width of a tree decomposition ⟨T, α⟩ of G is max{|α(t)| | t ∈ V T } − 1, and the tree-
width of G, tw(G), is the minimum width over all tree decompositions of G. Following
what appears to be standard terminology, by tree-width of a digraph G we refer to the
tree-width of the undirected graph induced by G (Berwanger, Dawar, Hunter, Kreutzer, &
Obdzrálek, 2012).

With the development of parametrized complexity analysis (Downey & Fellows, 1999;
Flum & Grohe, 2006), it has been shown that many NP-hard problems can be solved in
polynomial time when restricted to induce certain problem-specific graphical structures
of a fixed tree-width. In particular, constraint satisfaction and constraint optimization
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problems over finite-domain variables can be solved in time polynomial in the size of the
explicit description of these problems, and exponential only in the tree-width of the induced
constraint graph (Dechter, 2003). Since the causal graph captures a high-level structure
of the planning problems, one would expect its tree-width to play a similar role in the
worst-case time complexity of both satisficing and optimal FDR planning. Unfortunately,
the results in this direction have mostly been negative.

• Under a standard assumption on parametric complexity hierarchy thatW[1] ̸⊆ nu-FPT
(Flum & Grohe, 2006), Chen and Gimenez (2010) proved that, for any family of
digraphs C, FDR planning for tasks inducing causal graphs in C is polynomial-time if
and only if the size of connected components in C is bounded by a constant. As the
family of all digraphs with tree-width of 1 trivially fails to satisfy the latter condition,
the immediate corollary of this result is that even satisficing FDR planning restricted
to causal graphs with the tree-width of 1 is not polynomial.

• While the construction in the proof of Chen and Gimenez (2010) uses FDR tasks
with variable domains of parametric size, the work of Gimenez and Jonsson (2009b)
shows that the negative result for causal graphs with the tree-width of 1 holds even if
restricted to such planning tasks with fixed variable domains. Specifically, Gimenez
and Jonsson show that FDR planning over chain causal graphs is NP-hard even if
restricted to variables with domains of size 5.

These negative results on the role of the causal graph’s tree-width in computational
tractability of FDR planning are strong, but apparently tell only part of the story. As
shown by Brafman and Domshlak (2006, 2013), the causal graph’s tree-width does play
a role in the worst-case time complexity of FDR planning, but in a tight interplay with
another parameter called the task’s local depth. Informally, local depth of an FDR task Π
captures a minmax amount of work required on a single variable in order to solve Π. Since
later we refer to this result of Brafman and Domshlak, a precise specification of local depth
is warranted here: denoting by Plans(Π) the (possibly infinite) set of all plans for an FDR
task Π, the local depth of Π is

δΠ = min
ρ∈Plans(Π)

max
v∈V
{|ρ↓v |},

that is, δΠ is the maximal number of value changes of a single state variable, along a plan that
minimizes that quantity among the plans for Π. By Theorem 6 of Brafman and Domshlak
(2013), FDR tasks Π can be solved in time polynomial in ||Π|| and exponential only in
O(tw(CGΠ) · δΠ). Up to some possible stratifications based on succinct representation of
internal variable domain dynamics, such as those suggested by Fabre, Jezequel, Haslum,
and Thiébaux (2010), this appears to be the strongest link discovered so far between the
complexity of general FDR planning and the graph-topological properties of the causal
graphs. Note also that this positive result applies only to satisficing planning; it is applicable
to optimal planning only in very limited settings (Fabre et al., 2010; Brafman & Domshlak,
2013).
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3. Negative Results: The Bottleneck of Variable Domains

Our focus here is on connections between the worst-case time complexity of optimal relaxed
planning and the structure of the problems’ causal graphs. Note that the causal graphs
of FDR tasks are trivially invariant under monotonic relaxation: since Π+ = Π, we have
CGΠ+ = CGΠ. As we just mentioned, previous works have already revealed certain con-
nections between the structure of the causal graphs, and in particular its tree-width, and
the complexity of FDR planning. In what follows, we show that this link is even stronger
and somewhat more intriguing in the case of optimal relaxed planning. Having said that,
we begin with a set of negative results which, at least at first glance, suggest that no such
link is actually likely.

Definition 1 A connected digraph G = (N,E) is a fork if it contains exactly one node
r ∈ N with non-zero out-degree, that is, E = {(r, n) | n ∈ N \ {r}}. Similarly, G is
an inverted fork if it contains exactly one node r ∈ N with non-zero in-degree, that is,
E = {(n, r) | n ∈ N \ {r}}. The respective special nodes r in fork and inverted-fork graphs
are called the roots of the graphs.

Considering FDR planning tasks with fork and inverted fork causal graphs, the first
impression might be that these FDR fragments are restricted enough to allow for polynomial-
time planning. This, however, is not the case: even non-optimal planning for FDR tasks
with such simple causal graphs is hard, and this even if all variables but the roots are further
restricted to be binary-valued (Domshlak & Dinitz, 2001). On the other hand, especially
since non-optimal relaxed planning for FDR is polynomial-time, these results have no direct
influence on the complexity of optimal relaxed planning for the respective FDR fragments.
Nonetheless, surprisingly or not, this problem is hard.

Theorem 1 Optimal relaxed planning is NP-equivalent even if restricted to FDR tasks
with fork and inverted-fork structured causal graphs. Moreover, the result holds even if all
state variables but the roots are restricted to binary domains.

Proof: The proof is by polynomial reductions from the NP-equivalent problems of (mini-
mum) Directed Steiner Tree and (minimum) Set Cover (Karp, 1972).

Directed Steiner Tree: Given a digraph G = (N,E) with arc weights w : E → R0+, a
set of terminals Z ⊂ N , and a root vertex nr, find a minimum weight arborescence
(directed tree) T rooted in nr ∈ N such that all terminals Z are included in T .

Set Cover: Given a collection C of subsets of a finite set S, find a minimum cardinality
subset C ′ ⊆ C such that every element of S belongs to at least one member of C ′.

Fragment I: Given a Directed Steiner Tree problem ⟨G = (N,E), w, Z, nr⟩, the corre-
sponding fork-structured FDR task Π = ⟨V,A, I,G, cost⟩ is constructed as follows. The
variable set V contains a variable per terminal node in G, plus an extra variable r, that
is, V = {r} ∪ VZ where VZ = {vz | z ∈ Z}. The domain of r, D(r) = N , corresponds
to the nodes of G, and all other variables are binary-valued, with D(vz) = {0, 1}. In the
initial state, I[r] = nr and I[v] = 0 for all v ∈ VZ . The goal is to achieve value 1 for all
v ∈ VZ . For each arc e = (x, y) ∈ E, the action set A contains a root-changing action
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ae with pre(ae) = {r ← x}, eff(ae) = {r ← y}, and cost(ae) = w(e). Likewise, for each
terminal z ∈ Z, A contains a vz-changing action az with pre(az) = {r ← z, vz ← 0},
eff(az) = {vz ← 1}, and cost(az) = 0. This construction is clearly polynomial, the causal
graph of Π forms a fork rooted at r, and the variable domains in Π are as required by the
theorem. It also holds that:

(i) For any relaxed plan ρ for Π, the set of arcs {e | ae ∈ ρ↓r} in G induces a connected
sub-graph G′ containing nr such that all terminals Z are included in G′ (or otherwise
at least one of the leaf variables could not have been changed by ρ to its goal value).
Likewise, there is a directed path in G′ from nr to every other node n in G′ (or
otherwise the respective value n of the root variable r could not have been achieved
along ρ). Hence, in particular, G′ contains an arborescence rooted in nr that includes
all terminals Z.

(ii) Vice versa, let T be an arborescence of G rooted in nr that includes all terminals
Z = {z1, . . . , zm}, and let {e1, . . . , ek} be a topological ordering of the arcs of T . Then
⟨ae1 , . . . , aek , az1 , . . . , azm⟩ is a relaxed plan for Π, and the cost of ρ is precisely the
weight of T .

Hence, optimal relaxed plans for Π induce minimum directed Steiner trees for ⟨G = (N,E), w, Z, nr⟩,
and vice versa.

Fragment II: Given a Set Cover problem ⟨S,C⟩ with S = {1, 2, . . . ,m} and |C| = n,
the corresponding inverted-fork structured FDR task Π = ⟨V,A, I,G, cost⟩ is constructed as
follows. The variable set V contains a variable per member of C, plus an extra variable r,
that is, V = {r}∪{vc | c ∈ C}. The domain of r is D(r) = {0}∪S, and all other variables are
binary-valued, with D(vc) = {0, 1}. In the initial state, I[v] = 0 for all v ∈ V . The goal is to
achieve value m for the special variable r. For i ∈ S, and each subset c ∈ C such that i ∈ c,
the action set A contains a root-changing action ai;c with pre(ai;c) = {r ← (i− 1), vc ← 1},
eff(ai;c) = {r ← i}, and cost(ai;c) = 0. Likewise, for each c ∈ C, A contains a vc-changing
action ac with pre(ac) = {vc ← 0}, eff(ac) = {vc ← 1}, and cost(ac) = 1. The construction
is polynomial, the causal graph of Π forms an inverted fork rooted at r, and the variable
domains in Π are as required by the theorem. Note that, due to the chain-like structure of
the domain transition graphs in Π, there is no difference between the plans for Π and for
Π+, and it is easy to verify that any plan for Π induces a cover of S of the same cost, and
vice versa. Hence, optimal relaxed plans for Π induce minimum set covers for ⟨S,C⟩, and
vice versa. �

Corollary 1 Optimal relaxed planning is NP-equivalent even if restricted to FDR tasks
with the causal-graph tree-width of 1.

This corollary is immediate from Theorem 1 as the undirected graphs induced by both
forks and inverted forks are a special case of trees and thus have tree-width of 1. At first
glance, the message of Corollary 1 is discouraging with respect to our agenda: the structure
of the causal graphs does not seem to play a major role in the complexity of optimal
relaxed planning for FDR. Our next result, however, seems to be even more discouraging
with respect to the prospects of tractability of optimal relaxed planning for FDR.
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Theorem 2 Optimal relaxed planning is NP-equivalent even if restricted to FDR tasks
with two state variables.

Proof: The proof is by a polynomial reduction from the (minimum) directed Steiner tree
problem, and in fact, the proof is very similar to that of the fork case of Theorem 1. Given
a Directed Steiner Tree problem ⟨G = (N,E), w, Z, nr⟩ with Z = {z1, . . . , zm}, we compile
it to an FDR task Π = ⟨{v1, v2}, A, I,G, cost⟩ as follows. The domain of v1 corresponds
to the nodes of G, and the domain of v2 corresponds to the terminal nodes and the root
node, that is, D(v1) = N and D(v2) = Z ∪ {nr}. In the initial state, both I[v1] = nr and
I[v2] = nr, and the goal is to achieve value zm for v2. For each arc e = (x, y) ∈ E, the
action set A contains a v1-changing action ae with pre(ae) = {v1 ← x}, eff(ae) = {v1 ← y},
and cost(ae) = w(e). Likewise, denoting nr by z0, for 1 ≤ i ≤ m, A contains a v2-changing
action azi with pre(azi) = {v1 ← zi, v2 ← zi−1}, eff(azi) = {v2 ← zi}, and cost(azi) = 0.
The construction is polynomial, and its correctness stems from analysis identical to that of
the proof of Theorem 1. �

Theorem 2 shows that even the dimensionality of the FDR state spaces plays a secondary
role, if any, in the complexity of optimal relaxed planning. By that, however, it answers
one of the two macro-questions on our agenda:

Corollary 2 There exist fragments of FDR for which optimal planning is polynomial-time,
while optimal relaxed planning is NP-equivalent.

This corollary is immediate from Theorem 2 and polynomial-time solvability of optimal
planning for FDR tasks with a fixed number of state variables.

4. Positive Results I: State Variables with Fixed-Size Domains

Depending on the reader’s background and intuitions, Theorem 2 can either surprise or seem
somewhat predictable. In any case, it was Theorem 2 that led us to consider a different
(and this time fruitful) fragmentation of optimal relaxed planning.

A closer look at Theorem 1 and Lemma 2 reveals that the size of the FDR variable
domains might be crucial in the complexity of optimal relaxed planning: While the proofs
of these two claims rely heavily on the parametric domain size of some of the state variables,
these proofs also imply that optimal relaxed planning is hard even if only a single FDR
variable comes with a parametric domain size. Departing from this observation, we now
show that, after all, the topology of the causal graph does play an interesting role in worst-
case time complexity classification of optimal relaxed planning for FDR tasks. In particular,
it turns out that bounding the tree-width of the causal graph by a constant is all it takes
to achieve polynomial-time optimal relaxed planning for FDR tasks with fixed-size variable
domains.

Theorem 3 For any family of directed graphs C, if the tree-width in C is bounded by a
constant, then optimal relaxed planning for FDR tasks with fixed-size variable domains and
causal graphs in C is polynomial-time.
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Proof: The proof of Theorem 3 is inspired by and closely resembles the approach of Brafman
and Domshlak (2013) discussed in Section 2.2. Given an FDR task Π = ⟨V,A, I,G, cost⟩,
we compile it into a constraint optimization problem COPΠ+ = (X ,Φ) over finite-domain
variables X , functions Φ, and the global objective to minimize Σφ∈Φφ(X ). If Π+ is unsolv-
able, then all the assignments to X evaluate the objective function to ∞. Otherwise, the
optimum of the objective is obtained on and only on the assignments to X that correspond
to optimal plans for Π+, that is, to optimal relaxed plans for Π.

Let |V | = n, ∆ = maxv∈V |D(v)|, and recall that pred(v) for state variable v ∈ V denotes
the set of v’s immediate predecessors in the causal graph.

• For each state variable v ∈ V , X contains a variable xv that represents the choice of a
subset of actions from Av to participate in the plan we are looking for. These possible
choices form the domain D(xv) of xv, and each such choice is represented by a set of
size smaller or equal to ∆, with each element of that set being a quadruple

(d, id, a, t),

with d ∈ D(v), id ∈ {v} ∪ pred(v), t ∈ {1, . . . , n∆}, and, if id = v, then a ∈ {a′ ∈
Av | eff(a′)[v] = d} and otherwise a =⊥. At a high level, if we view state variables as
active decision makers, then d is a value that the relaxed variable v aims to achieve
and accumulate at time point t, either by itself using action a, or by delegating this
task to another variable id. As we show later on, no variable should accumulate more
than ∆ values, and since the accumulated values are never lost, optimal plans for Π+

cannot be longer than n∆ actions.

• For each state variable v ∈ V , Φ contains a non-negative, extended real-valued func-
tion φv from D(xv). Likewise, for each pair of state variables {v, w} such that the
causal graph CGΠ contains either arc (v, w) or arc (w, v), Φ contains an indicator
function φv,w : D(xv) × D(xw) → {0,∞}. To simplify the specification of φv,w, we
define a set of auxiliary constraints as follows.

(S1) [Precondition Constraint] An assignment ⟨θv1 , . . . , θvn⟩ to X satisfies S1 iff, for all
v ∈ V , (d, v, a, t) ∈ θv implies that, for each w ∈ V(pre(a)),

pre(a)[w] ∈ {I[w]} ∪ {d′ | (d′, ·, ·, t′) ∈ θw, t
′ < t}. (1)

(S2) [Delegation Constraint] An assignment ⟨θv1 , . . . , θvn⟩ to X satisfies S2 iff, for all v ∈ V ,
(d,w,⊥, t) ∈ θv implies that, for some a ∈ Av ∩Aw with d ∈ eff(a)[v], (·, w, a, t) ∈ θw.

(S3) [Goal Achievement Constraint] An assignment ⟨θv1 , . . . , θvn⟩ to X satisfies S3 iff, for
all v ∈ V(G),

G[v] ∈ {I[v]} ∪ {d | (d, ·, ·, ·) ∈ θv}. (2)

Constraint S1 ensures that preconditions of actions to which a variable is committed
are provided on time. Constraint S2 ensures that the “outsourced” value achievements are
fulfilled at the required time points. Finally, constraint S3 simply verifies that the value of
v induced by θv is a goal value. Importantly, S3 corresponds to a set of n unary constraints,
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and S1 and S2 can both be represented as a set of binary constraints over X . Given that,
functions Φ are specified as

φv(θv) =
∑

(·,v,a,·)∈θv

cost(a),

φv,w(θv, θw) =

{
0, {θv, θw} satisfies S1(xv, xw), S2(xv, xw), S3(xv) and S3(xw)

∞, otherwise
,

(3)

where S1(xv, xw), S2(xv, xw), and S3(xv) correspond to the binary and unary constraints
induced respectively by S1, S2, and S3 on the COP variables xv and xw.

Let us now take a closer look at COPΠ+ constructed as above for the problems in the
scope of Theorem 3.

(1) The constraint network of COPΠ+ corresponds to the undirected graph induced by the
causal graph CGΠ+ (= CGΠ). Hence, since the tree-width of the latter is bounded by
a constant by the scope of the theorem, so is the tree-width of the constraint network
of COPΠ+ . While finding an optimal tree decomposition of a graph G is NP-hard,
a tree decomposition of G with width c · tw(G) for a low constant c can be found
in time polynomial in the size of G (Robertson & Seymour, 1991; Becker & Geiger,
1996; Amir, 2010). Hence, COPΠ+ can be solved in time polynomial in the size of its
representation using the standard message-passing algorithm for constraint optimization
over trees (Dechter, 2003).

(2) Recall that the values of the COP variable xv are sets of quadruples (d, id, a, t) of size
≤ ∆. Then, the size of the xv’s domain D(xv) is upper-bounded by

(|D(v)|︸ ︷︷ ︸
d

· n︸︷︷︸
id

· (|Av|+ 1)︸ ︷︷ ︸
a

· (n∆)︸ ︷︷ ︸
t

)∆, (4)

and since ∆ = O(1), we have |D(xv)| = O(poly(||Π||)). Together with (1), that implies
that COPΠ+ can be solved in time O(poly(||Π||)).

We now prove the correctness of this compilation by showing that, if Π+ is unsolvable,
then all the assignments to X evaluate the objective function Σφ∈Φφ(X ) to ∞, and other-
wise, the objective is minimized on and only on the assignments to X that correspond to
optimal plans for Π+.

First, given an assignment θ = ⟨θv1 , . . . , θvn⟩ to X such that Σφ∈Φφ(θ) < ∞, we show
that θ induces a valid plan ρθ for Π+ of cost Σφ∈Φφ(θ). Note that, since Σφ∈Φφ(θ) <∞,
by Eq. 3 we have θ satisfying constraints S1-S3.

Consider the multi-set Z =
∪

v∈V {(a, t) | (·, v, a, t) ∈ θv} induced by θ, and let

Z = {(a1, t1), . . . , (am, tm)}, m = |Z|,

be an arbitrary ordering of Z such that, for 1 ≤ j < i ≤ m, it holds that tj ≤ ti. For
1 ≤ i ≤ m, let v be the variable “in charge of performing the action ai” in θ, that is,
(eff(ai)[v], v, ai, ti) ∈ θv. For each w ∈ V(pre(ai)), Eq. 1 in constraint S1 implies that either
pre(ai)[w] = I[w] or there is some (pre(ai)[w], id, a, t) ∈ θw with t < ti. In the latter case,
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if id = w, then by the construction of ρθ, a = aj for some j < i, and by the definition
of D(xw), pre(ai)[w] = eff(aj)[w]. Otherwise, if id = w′ for some w′ ̸= w, then by the
definition of S2, pre(ai)[w] = eff(a′)[w] for some (·, w′, a′, t) ∈ θw′ . Thus, a′ = aj for some
j < i, and pre(ai)[w] = eff(aj)[w]. Therefore, the action sequence

ρθ = ⟨a1, . . . , am⟩

is applicable in the initial state I of Π+, and given that, θ satisfying S3 implies that ρθ
is a plan for Π+. Finally, it is immediate from the construction of ρθ and Eq. 3 that
cost(ρθ) = Σφ∈Φφ(θ).

We now show that any optimal plan ρ = ⟨a1, . . . , am⟩ for Π+ induces an assignment
θρ = ⟨θv1 , . . . , θvn⟩ to X such that Σφ∈Φφ(θρ) = cost(ρ). By the definition of MFDR,
for 1 ≤ i ≤ m and for each state variable v ∈ V , IJa1, . . . , ai−1K[v] ⊆ IJa1, . . . , aiK[v].
By optimality of ρ, for 1 ≤ i ≤ m, there exists at least one variable v ∈ V for which
IJa1, . . . , ai−1K[v] ⊂ IJa1, . . . , aiK[v]. In particular, that implies that actions {a1, . . . , am}
are all different, and for each variable v ∈ V , if

ρ/v
△
= {ai | IJa1, . . . , ai−1K[v] ⊂ IJa1, . . . , aiK[v]},

then2 |ρ/v| ≤ ∆.

Adopting an arbitrary ordering {v1, . . . , vn} of the state variables V , for 1 ≤ j ≤ n, let
ρ/vj = {aj1 , . . . , ajmj

}. In turn, for 1 ≤ l ≤ mj , let djl ∈ D(vj) be the value achieved and

accumulated for vj by the action ajl , i.e., IJa1, . . . , ajlK[vj ] \ IJa1, . . . , ajl−1K[vj ] = {djl}. For
1 ≤ l ≤ mj , if ajl ̸∈

∪j−1
k=1 ρ/vk, then θvj is set to contain (djl , vj , ajl , jl), and otherwise, θvj

is set to contain (djl , vk,⊥, jl) for k = min {k′ | ajl ∈ ρ/vk′}.
By the construction of θρ, each action a from ρ is present in the value of exactly one

variable xv, and by Eq. 3, φv(θv) sums up the cost of a exactly once. Hence, if θρ satisfies
the constraints S1-S3 that are enforced by the step functions φv,w, we have Σφ∈Φφ(θρ) =
cost(ρ). The former also directly follows from the construction of θρ. For 1 ≤ j ≤ n,
let θvj = {(djl , idjl , ajl , tjl)}

mj

l=1. By the definition of the values djl as above, the set of
values {dj1 , . . . , djmj

} is exactly the set of values of vj that gets accumulated by the relaxed

plan ρ from I, and thus satisfaction of S3 follows from ρ being a plan for Π+. Again, by
the construction of θρ, the sequence of time points {tj1 , . . . , tjmj

} corresponds to the time

points of the first achievements of {dj1 , . . . , djmj
}, respectively, along ρ, and for each such

first achiever ajl along ρ, it is captured and properly scheduled either by θvi or by a neighbor
of vi in the causal graph. Hence, the constraints S1 and S2 are all satisfied as well. This
finalizes the proof for the compilation correctness, and thus of Theorem 3. �

Note that Theorem 3 in particular answers the second macro-question on our agenda:

Corollary 3 There exist fragments of FDR for which (even satisficing) planning is NP-
equivalent, while optimal relaxed planning is polynomial-time.

2. That corresponds to the well-known fact that, under our notation, optimal plans in MFDR cannot be
longer than

∑
v∈V |D(v)| ≤ n∆.
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This corollary is immediate from Theorem 3 and the discovery of Gimenez and Jonsson
(2009b) that FDR planning over chain causal graphs is NP-hard even if restricted to variables
with domains of size 5.

Following our “STRIPS vs. FDR” discussion in the introduction, Theorem 3 trivially
implies that optimal relaxed planning for STRIPS tasks Π can be done in time polynomial
in ||Π|| and exponential only in the tree-width of the causal graph. This is actually an
example of a tractability fragment for which one can only benefit from switching to a
propositional representation: While the formulation of the result remains the same, the
coverage of the result grows because, if the size of the FDR variable domains is bounded by
∆ = O(1), then the tree-width of the causal graph under STRIPS representation is at most
∆ times larger than this under FDR. However, it can also be smaller, down to identical.
Later, however, we present some results that directly benefit from the finite-domain input
representation of the planning tasks.

Our discussion in the remainder of this section addresses the readers familiar with the
work of Brafman and Domshlak (2013) in detail. This discussion can be skipped without
any loss of continuity.

v1 v2 vn

vn+1

At first view, the compilation in the proof of Theo-
rem 3 brings to mind the compilation in the algorithm
behind the proof of Theorem 6 of Brafman and Domsh-
lak (2013). One might thus naturally ask whether that
algorithm cannot be used directly for the proof of our
Theorem 3. As it stands, however, the algorithm of
Brafman and Domshlak does not yield polynomial-
time complexity on those tasks with which Theorem 3
is concerned. To see why, consider an FDR task Π = ⟨V,A, I,G, cost⟩ with V = {v1, . . . , vn+1},
where, for all vi, D(vi) = {0, 1}, I[vi] = 0, and G[vi] = 1, and A = {a1, . . . , an} with
V(pre(ai)) = ∅, V(eff(ai)) = {vi, vn+1}, and eff(ai)[vi] = eff(ai)[vn+1] = 1. The causal graph
of Π, depicted above, has tree-width of 1. However, for any plan ρ for Π+, maxv∈V {|ρ↓v |} ≥
n, and the local depth δΠ+ is n. This is because Π+ cannot be solved without applying each
of the n actions A at least once, and each of these actions affects the value of the variable
vn+1. Hence, finding even a non-optimal plan for Π+ using the algorithm of Brafman and
Domshlak (2013) will take time exponential in ||Π||.

As a final note, it actually can be shown that the algorithm of Brafman and Domshlak
(2013) is optimal and polynomial-time on a sub-class of MFDR tasks like those in Theorem 3
but also restricted to single-effect operators. It is multiple-effect actions that complicate
matters, and require a different algorithmic approach to guarantee planning tractability.

5. Positive Results II: M-unfoldable State Variables

Despite the discouraging results in Section 3, we now return to consider FDR tasks with
parametric-size domains. Recall that, while the variable values of monotonic relaxation Π+

correspond to sets of values of the respective variables in Π, these large variable domains in
Π+ are given implicitly, via the variable domains D(v1), . . . ,D(vn) of Π. This conciseness of
representation, however, hides many aspects of the problem structure in Π+ that otherwise
might have be exploited for planning efficiency. In particular, reasoning about the domain
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transition graphs induced by the FDR tasks has been successfully exploited in complexity
analysis of FDR (Jonsson & Bäckström, 1998; Domshlak & Dinitz, 2001; Katz & Domshlak,
2008; Gimenez & Jonsson, 2009a). In contrast, in monotonic relaxations, the true domain
transition graphs of Π+, denoted henceforth as DTG(v,Π+), cannot always be represented
explicitly because the number of nodes in these graphs is exponential in ||Π||. However,
this is not always, or does not always have to be, the case, and below we focus on planning
with such “accessible” monotonic variables.

Definition 2 Given an FDR planning task Π = ⟨V,A, I,G, cost⟩, the effective domain
D⊕(v) of v ∈ V in Π+ consists of all value subsets ϑ ∈ D+(v) = 2D(v) \ ∅ that are reachable
from {I[v]} in DTG(v,Π+). That is, ϑ ∈ D⊕(v) iff

(i) I[v] ∈ ϑ, and

(ii) for each value d ∈ ϑ, there is a directed path from I[v] to d in the unlabeled digraph
induced by DTG(v,Π) such that all the values along that path belong to ϑ.

The elements of D⊕(v) are called the effective values of v in Π+.

Definition 3 Let Π be an infinite set of FDR tasks, and Γ be a property of state variables
that, for each task Π ∈ Π, partitions the state variables of Π into those that satisfy Γ
(referred as Γ-variables), and those that do not satisfy Γ. We say that Γ-variables in Π are
monotonically unfoldable (M-unfoldable) if there exists an integer k ∈ N such that,
for every task Π ∈ Π and every Γ-variable v of Π, |D⊕(v)| = O(||Π||k).

Γ in Definition 3 can be any property of FDR state variables, and in particular, any
property defined with respect to the tasks’ causal graphs, such as “root,” “sink,” “nodes
whose causal graph in-degrees are larger than their causal graph out-degrees,” etc. Infor-
mally, Γ-variables of a set of FDR tasks Π are M-unfoldable if, for every task Π ∈ Π and
every Γ-variable v of Π, the “relevant subgraph” of DTG(v,Π+) can be described explicitly
in space polynomial in the representation size of Π. For instance, v is trivially M-unfoldable
if the size of its domain in Π is bounded by a constant, or even by O(log(||Π||)). More gen-
erally, let DTG†(v,Π) be the digraph obtained from the (labels ignored) domain transition
graph DTG(v,Π) by unifying parallel edges. It is not hard to verify from Definitions 2 and 3
that v is M-unfoldable if and only if the number of arborescence subgraphs of DTG†(v,Π)
rooted in I[v], and covering G[v] if v ∈ V(G), is O(poly(||Π||)).

We now return to consider fork-structured FDR tasks. While in Theorem 1 we considered
fork-structured FDR tasks with only root variables being unrestricted, we now consider an
“inverse” fragment, corresponding to fork-structured FDR tasks with only root variables
being restricted. Optimal FDR planning for such tasks is polynomial-time for |D(r)| =
2 (Katz & Domshlak, 2010), but it is NP-equivalent for |D(r)| > 2 (Katz & Keyder, 2012).
In contrast, Theorem 4 below shows that optimal relaxed planning for fork-structured FDR
tasks is polynomial-time for a much wider class of root variables. Moreover, a simple
observation behind the construction in the proof of Theorem 4 is later generalized to capture
a much richer fragment of causal graphs.

Theorem 4 Optimal relaxed planning is polynomial time for any set of FDR tasks Π
with fork-structured causal graphs and M-unfoldable root variables.
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Proof: Let Π = ⟨V,A, I,G, cost⟩ be a fork-structured FDR task with root r and Vleafs =
V \ {r} = {v1, . . . , vn}. We assume that goal values are specified for all variables in Vleafs;
this is because none of the leaves in Vleafs \ V(G) need to change their value at all, and thus
they can be schematically removed from the problem. Given such a FDR task Π, an optimal
plan for its relaxation Π+ can be constructed as follows.

• All the effective values ϑ ∈ D⊕(r) consistent with the goal (that is, G[r] ∈ ϑ if
r ∈ V(G)) are processed one by one, independently. For each such effective value ϑ,
we extract the following information.

(1) For the root variable r, we determine a cheapest path from I[r] to ϑ inDTG(r,Π+),
with π(ϑ) denoting the action sequence inducing that path.

(2) For each leaf variable v ∈ Vleafs, we

(a) schematically remove from the domain transition graph DTG(v,Π) all the
arcs labeled with actions a that are “not supported by ϑ”, that is, actions a
with r ∈ V(pre(a)) and pre(a)[r] ̸∈ ϑ, and then

(b) determine a cheapest path from I[v] to G[v] in that arc-reduced domain
transition graph, with πϑ(G[v]) denoting the action sequence inducing that
path.

• Return the concatenation of action sequences π(ϑ∗) ·πϑ∗(G[v1]) · . . . ·πϑ∗(G[vn]) where

ϑ∗ = argmin
ϑ∈D⊕(r)

[
cost(π(ϑ)) +

n∑
i=1

cost(πϑ(G[vi]))

]
,

and cost(π) for an action sequence π is the sum of the costs of actions along π.

The algorithm is polynomial-time given an explicit description of the effective part of
DTG(r,Π+), and thus it is polynomial-time if r is M-unfoldable. Recall that, since the
causal graph is acyclic, no action affects more than one variable. The correctness of the
algorithm stems from a simple observation that, for any relaxed plan ρ for a fork-structured
FDR task Π, ρ′ = ρ↓r · ρ↓v1 · . . . · ρ↓vn is also a relaxed plan for Π, and (trivially) of identical
cost. Hence, while searching for an optimal relaxed plan for Π, we can restrict ourselves to
plans of the latter form, and it is immediate from the description of the algorithm that it
finds the cheapest such plan. �

As an aside, following our “STRIPS vs. FDR” discussion, note that Theorem 4 provides
an example for exploiting “value grouping” induced by the FDR representation of the plan-
ning tasks. The simple algorithm in the proof exploits the fact that only the actions that
change the value of a leaf variable depend on its value, and this prevents restrictions from
being placed on either the size of the leaf domains, or on the structure of their domain
transition graphs. Of course, Theorem 4 can also be reformulated in terms of STRIPS, yet
this would require the respective partition of the propositions to be given/discovered, which
is essentially equivalent to starting with something like FDR input in the first place.

While the scope of the tractability result in Theorem 4 is fairly limited in terms of
the causal graph structure, the nice property of the sets of optimal relaxed plans for fork-
structured FDR tasks, exploited in the proof of Theorem 4, can be generalized to a much
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wider fragment of causal graphs. In turn, this generalization allows us to provide our next
tractability result for a wide fragment of optimal relaxed planning for FDR.

Lemma 1 Let Π = ⟨V,A, I,G, cost⟩ be an FDR task with a directed acyclic causal graph,
and let {v1, . . . , vn} be an arbitrary topological ordering of V with respect to CGΠ. Then,
for any plan ρ for Π+, ρ′ = ρ↓v1 · . . . · ρ↓vn is also a plan for Π+.

Proof: Directed acyclicity of the causal graph in particular implies that no action affects
more than one variable. The proof of the lemma stems from combining this property with
(i) the fact that ρ′ preserves the order of the actions ρ↓vi as in ρ, and (ii) the core property
of monotonic relaxations Π+ that, for any variable v, any value d ∈ D(v), and any state s
of the relaxed task Π+, if d ∈ s[v], then d ∈ s′[v] for any s′ reachable from s in Π+.

Since CGΠ forms a DAG and the state variables are ordered according to a topological
ordering of CGΠ, V(pre(a)[v1]) ⊆ {v1} for all actions a ∈ ρ↓v1 . Thus, order preservation of
ρ↓v1 along ρ′ with respect to ρ implies that ρ↓v1 is applicable in I, with IJρ↓v1 K[v1] = IJρK[v1],
and IJρ↓v1 K[vi] = I[vi] for i > 1. Assume now that, for i ≥ 1, ρ↓v1 · . . . · ρ↓vi is applicable in
I, and

IJρ↓v1 · . . . · ρ↓vi K[vj ] =
{
IJρK[vj ], j ≤ i

I[vj ], j > i
. (5)

Together with the topological ordering of V and order preservation of ρ↓vi+1 along ρ′ with
respect to ρ, Eq. 5 implies that ρ↓vi+1

is applicable in IJρ↓v1 · . . . · ρ↓vi K, and
IJρ↓v1 · . . . · ρ↓vi KJρ↓vi+1

K[vj ] = {
IJρK[vj ], j = i+ 1

IJρ↓v1 · . . . · ρ↓vi K[vj ], otherwise
. (6)

Putting Eqs. 5 and 6 together then proves the induction hypothesis, and for i = n, Eq. 5
boils down to

IJρ′K = IJρ↓v1 · . . . · ρ↓vn K = IJρK.
�

Definition 4 Let Π be an infinite set of FDR tasks. We say that the tasks in Π are M-
unfoldable if all state variables in Π are M-unfoldable.

Theorem 5 Let Π be an infinite set of M-unfoldable FDR tasks with directed acyclic causal
graphs. If both the tree-width and node in-degree of the causal graphs in Π are bounded by
a constant, then optimal relaxed planning for Π is polynomial-time.

Proof: Similarly to the proof of Theorem 3, the proof of Theorem 5 is based on a planning-
to-COP compilation. Given an FDR task Π = ⟨V,A, I,G, cost⟩, we compile its monotonic
relaxation Π+ into a constraint optimization problem COPΠ+ = (X ,Φ) over variables X ,
functions Φ, and the global objective to minimize Σφ∈Φφ(X ) such that, if Π+ is unsolvable,
then all the assignments to X evaluate the objective function to ∞, and otherwise, the
optimum of the objective is obtained on and only on the assignments to X that correspond
to optimal plans for Π+. The specific construction of COPs here relies on the property of
monotonic relaxations of DAG-structured FDR tasks expressed by Lemma 1.
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Given an FDR task Π = ⟨V,A, I,G, cost⟩ as in the theorem, COPΠ+ = (X ,Φ) is specified
as follows. For each state variable v ∈ V ,

• X contains a variable xv with domain D(xv) = D⊕(v), that is, the effective domain
of v in Π+, and

• Φ contains a non-negative, extended real-valued function φv over v and its immediate
ancestors in the causal graph, that is, over {xv} ∪ {xw | w ∈ pred(v)}.

Assuming an arbitrary fixed ordering {w1, . . . , wk} of v’s immediate ancestors pred(v), for
each ϑpred ∈ D⊕(pred(v)) = D⊕(w1) × · · · × D⊕(wk), let DTG(v,Π+|ϑpred) denote the
restriction of DTG(v,Π+) to only edges “supported by ϑpred”: an edge marked with an
action a remains in DTG(v,Π+|ϑpred) if and only if, for each w ∈ V(pre(a))\{v}, pre(a)[w] ∈
ϑpred[w]. Given that, for each effective value ϑ ∈ D⊕(v) and each ϑpred ∈ D⊕(pred(v)),
φv(ϑ,ϑpred) =∞ if ϑ is not reachable from I[v] in DTG(v,Π+|ϑpred), or if G[v] is specified
yet G[v] ̸∈ ϑ. Otherwise, φv(ϑ,ϑpred) equals the cost of a cheapest path from I[v] to ϑ
in DTG(v,Π+|ϑpred). In what follows, the action sequence inducing that cheapest path is
denoted by π(ϑ|ϑpred).

The properties of COPΠ+ constructed as above for the problems in the scope of Theo-
rem 5 are as follows.

(1) The constraint network of COPΠ+ corresponds to (the undirected graph induced by)
the moral graph of the causal graph CGΠ. Since both in-degree and tree-width of CGΠ

are bounded by a constant, then so is the tree-width ω
COP

of the constraint network. As
we mentioned before, given a graph G, a tree decomposition of a graph G with width
c · tw(G) for a low constant c can be found in time polynomial in the size of G and
exponential only in tw(G). Hence, since ω

COP
= O(1), COPΠ+ can be solved in time

polynomial in the size of its explicit representation.

(2) Since Π is M-unfoldable, the domain size of each COP variable is O(poly(||Π||)). To-
gether with (1), that implies that COPΠ+ can be solved in time O(poly(||Π||)).

(3) By the definitions of monotonic relaxation and of domain transition graphs, explicit
description of all DTG(v,Π+) for an M-unfoldable FDR task Π is polynomial in ||Π||.
Hence, the construction of functional components Φ, and thus of the entire COPΠ+ , can
be done in time O(poly(||Π||)).

(4) By the construction of COPΠ+ and Lemma 1, for any topological ordering {v1, . . . , vn}
of V , every complete assignment θ to the COP variables X such that∑

v∈V
φv(θ[v],θ[pred(v)]) = α ̸=∞

induces a relaxed plan

π(θ[v1]|θ[pred(v1)]) · . . . · π(θ[vn]|θ[pred(vn)])

of cost α for Π, and vice versa. Thus, if Π+ is solvable, then, given an assignment θ∗

to X on which the minimization objective of COPΠ+ is obtained, we can derive from it
(in O(poly(||Π||)) time) an optimal relaxed plan for Π. Otherwise, if Π+ is unsolvable,
then all the assignments to X evaluate the objective function to ∞.
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Figure 1: Illustration for the example used in the discussion of Theorem 5.

This finalizes the proof of Theorem 5, and Corollary 4 below generalizes it to digraphs that
are “almost DAGs.” �

Note that Theorem 5 provides yet another example of exploiting “value grouping” in-
duced by the FDR representation of the planning tasks. Consider a planning task family
Π(n) = ⟨V,A, I,G, cost⟩ in which V = {v1, . . . , vn}; for 1 ≤ i ≤ n, D(vi) = {di,1, . . . , di,n};
I[vi] = di,1; G[vi] = di,n; and actions

A =
∪

1≤i,j≤n
1≤k≤n−1

{ai,k,j = ⟨{vi ← di,k, vi−1 ← di−1,j}︸ ︷︷ ︸
pre

, {vi ← di,k+1}︸ ︷︷ ︸
eff

⟩}.

Figure 1a illustrates the causal graph and the domain transition graphs for the task Π(3).
The causal graphs in Π(n) form directed chains, and thus both the tree-width and node
in-degree of the causal graphs in Π(n) equal 1. Likewise, the effective domain D⊕(vi) of

each vi in Π+
(n) is of size n, and thus the tractability of optimal relaxed planning for Π(n)

is directly covered by Theorem 5. In contrast, if each variable value di,j is represented by
a separate propositional variable, inducing the causal graph as in Figure 1b, then both the
tree-width and node in-degree in the family of the induced causal graphs are of the order
of n, and in fact, the causal graph is not even acyclic. Therefore, Theorem 5 is no longer
directly applicable.

Corollary 4 Let Π be an infinite set of M-unfoldable FDR tasks. If the size of the strongly
connected components, the tree-width, and the node in-degree of the causal graphs in Π are
all bounded by a constant, then optimal relaxed planning for Π is polynomial-time.

Proof: Any FDR task Π with a causal graph whose strongly connected components (SCCs)
are of size at most k can be compiled into an equivalent FDR task Πm with a directed acyclic
causal graph by merging the variables of each SCC into a single variable (Seipp & Helmert,
2011). This compilation can be done in time polynomial in ||Π|| and exponential only in k.
The causal graph CGΠm is obtained from the causal graph CGΠ by contracting all nodes of
each SCC. Since node contraction can only decrease the tree-width, we have tw(CGΠm) ≤
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tw(CGΠ), and thus tw(CGΠm) = O(1). Likewise, if the maximal node in-degree in CGΠ

is c, then the maximal node in-degree in CGΠm is ck, and thus it is also O(1). Finally,
the domain of a variable u in Πm that is obtained by merging some Π’s SCC {vu1 , . . . , vuk′},
k′ ≤ k, corresponds to the cross-product of the domains of these SCC’s variables. It is
easy to verify from Definition 2 that D⊕(u) ⊆ D⊕(vu1 ) × · · · × D⊕(vuk′), and thus, together
with k = O(1), M-unfoldability of all vu1 , . . . , v

u
k′ implies |D⊕(u)| = O(poly(||Π||)), fitting3

Definition 3. �

Returning now to the statement of Theorem 5, a few comments on its extensions beyond
Corollary 4 are in place. First, note that Theorem 5 as it is does not generalize Theorem 4 for
fork-structured FDR tasks because the latter allows for general, and not only M-unfoldable,
leaf variables. However, it is easy to see that Theorem 5 can be stratified to allow for
such generalization. Since no other variable depends on a leaf v, all we care about in v is
achieving G[v]. Thus, for any optimal relaxed plan ρ, ρ↓v induces a simple path, and not a
general arborescence, in DTG(v,Π). Hence, using binary-valued (“G[v] achieved: yes/no”)
COP variables xv for the DAG leaf v, and specifying the respective functions φv using the
procedure in the proof of Theorem 4, the scope of Theorem 5 is extended to generalize
Theorem 4.

Second, in the case of DAG-structured causal graphs, Definition 2 of effective domains,
on which the notion of M-unfoldability is based, is overly conservative. Instead of deriving
the effective domains for the variables in isolation, we can derive them in a topological order
of the causal graph, given the already derived effective domains of the immediate ancestors.
In specific domains, this can substantially extend the scope of M-unfoldability for FDR tasks
with DAG causal graphs.

Finally, Theorem 5 requires not only the tree-width, but also the in-degree of the causal
graph to be bounded by a constant. As such an extra condition, the latter is sufficient,
but not necessary. Below, under the notion of prevail decomposability, we list two local
properties of state variables that guarantee polynomial-time optimal relaxed planning on
arbitrary acyclic causal graphs with a fixed tree-width. It is very likely that other such
helpful properties exist, and thus the boundaries of prevail decomposability can be further
extended. Nicely, optimal relaxed planning will remain polynomial-time even if different
state variables satisfy different such properties, and even if some state variables are not
prevail decomposable, but have fixed in-degree.

Definition 5 Let Π be an infinite set of FDR tasks, and Γ be a property of state variables
that, for each task Π ∈ Π, partitions the state variables of Π into those that satisfy Γ
(referred as Γ-variables), and those that do not satisfy Γ. We say that Γ-variables in Π are
prevail decomposable if, for every task Π ∈ Π and every Γ-variable v of Π, either

(i) the set PRv = {pre(a)[pred(v)] | a ∈ Av} of preconditions of actions Av on variables
other than v is of size O(log(||Π||)), or

3. Note that it is possible that D⊕(u) ⊂ D⊕(vu1 )×· · ·×D⊕(vuk′). For instance, if V = {x, y}, D(x) = D(y) =
{0, 1}, I = {x ← 0, y ← 0}, G = {x ← 1, y ← 1}, and A = {⟨{x ← 0, y ← 1}, {x ← 1}⟩, ⟨{y ← 0, x ←
1}, {y ← 1}⟩}, then D⊕(x) = {{0}, {0, 1}}, D⊕(y) = {{0}, {0, 1}}, but D⊕(xy) = {{x← 0, y ← 0}}. In
fact, this example can be easily extended so that the “merged” variable xy is M-unfoldable, while both
x and y are not.
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(ii) the set ARBv of arborescence subgraphs of DTG(v,Π) rooted in I[v], and covering G[v]
if v ∈ V(G), is of size O(log(||Π||)).

We say that the tasks in Π are prevail decomposable if all state variables in Π are
prevail decomposable.

Note that prevail decomposability of type (i) is tangential to the notion ofM-unfoldability:
neither does the former imply the latter, nor the other way around. In contrast, prevail
decomposability of type (ii) is a direct stratification of M-unfoldability because the latter
considers a compacted version DTG†(v,Π) of DTG(v,Π), and furthermore, allows for a
polynomial (rather than logarithmic) bound on the number of arborescence subgraphs.

Theorem 6 Let Π be an infinite set of M-unfoldable, prevail decomposable FDR tasks with
directed acyclic causal graphs. If the tree-width of the causal graphs in Π is bounded by a
constant, then optimal relaxed planning for Π is polynomial-time.

Proof: Here as well, our proof of Theorem 6 follows the planning-to-COP compilation
methodology. However, the compilation under prevail decomposability must differ from the
one in the proof of Theorem 5 since we can no longer rely on fixed in-degree of the causal
graphs to derive the fixed tree-width of the constraint networks from the fixed tree-width
of the causal graphs. For ease of presentation, we first specify the compilation assuming
all the state variables satisfy the specific condition (i) of Definition 5. We then extend the
specification to cover the alternative condition (ii) of Definition 5 as well.

For our construction we need to establish a certain graph-theoretic formalism and a
respective notation. Let G = (V,E) be a graph, and let N : V → 2V be the node neigh-
borhood function of G, that is, N(v) = {u | {v, u} ∈ E}. The splitting of v ∈ V with
the support S ⊆ N(v) transforms G by adding new vertex v′ and edge {v, v′}, and, for all
u ∈ S, removing edge {v, u} and adding edge {v′, u}. Informally, splitting can be seen as
a (non-unique) reverse process to edge contraction, and the nodes added to G by splittings
are called stretch nodes. For example, Figure 2b depicts the graph obtained from the graph
in Figure 2a by splitting the node v with the support of {x, y, u} ⊂ N(v) = {x, y, u, w},
adding a stretch node v(1).

A graph G∗ is an expansion of G if G can be transformed to G∗ by a sequence of splittings.
For example, Figure 2c depicts the graph obtained from the graph in Figure 2a by first
splitting the node v with the support of {x, y} ⊂ N(v) = {x, y, u, w}, and then splitting v
with the support of {u,w} ⊂ N(v) = {v(1), u, w}. More specifically, G∗ = (V ∗, E∗) is an
expansion of G = (V,E) if and only iff there exist functions f : V ∗ → V and g : E → E∗

such that

(a) For v ∈ V , the subgraph of G∗ induced by f−1(v) = {v′ ∈ V ∗ | f(v′) = v} is a tree, and

(b) For {v, u} ∈ E, if g({v, u}) = {v′, u′} then f(v′) = v and f(u′) = u.

The tree subgraph T ∗(v) of G∗ induced by f−1(v) is called the stretch tree of v. There is a
bijective correspondence between the leaves of T ∗(v) and the neighbors N(v) of v via the
function g: for each {v, u} ∈ E, there is exactly one edge in E∗, g({v, u}), that directly
connects between T ∗(v) and T ∗(u). In other words, f induces a partition of V ∗, with each
part being the stretch tree T ∗(v) for some v ∈ V , and g maps the edges of G to those edges
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Figure 2: Node splitting and graph expansions.

of G∗ that connect between the parts of this partition. Finally, if the node degree in G∗
is bounded by 3, then G∗ is called sub-cubic. For example, the expansion in Figure 2c is
sub-cubic, while the expansion in Figure 2b is not.

The above terminology is mostly adopted from Markov and Shi (2011). In addition, we
call an expansion G∗ of G fully separating if the stretch trees in G∗ are connected only at
the stretch nodes, and not at the original nodes, of G. That is, G∗ = (V ∗, E∗) is a fully
separating expansion of G = (V,E) if there exists a function τ : V → V ∗ such that, for each
v ∈ V , it holds that τ(v) ∈ f−1(v) and, for each edge {τ(v), v′} ∈ E∗, v′ ∈ f−1(v). For
example, the expansion in Figure 2c is not fully separating, while the expansion in Figure 2d
is.4

Given the above notion of graph expansion, if we now have a problem to be solved on a
graph G, and efficiency of solving this problem depends badly, possibly exponentially, on the
node degree in G, then we can try to reformulate this problem over a sub-cubic expansion
G∗ of G. However, if the efficiency of the problem in question also depends badly on the
graph’s tree-width, then the tree-width of G∗ should be as close as possible to that of G.
(The tree-width of G∗ cannot be smaller than the tree-width of G because G∗ has G as a
minor.) While there are numerous efficient schemes for sub-cubic graph expansion, most
of them can create expansions of arbitrarily larger tree-width than that of their expandees.
Recently, however, Markov and Shi (2011) showed that this negative side-effect can always
be eliminated, and sometimes even efficiently.

Theorem 3.1 of Markov and Shi (2011) states their main result: there is a polynomial-
time algorithm that, given a graph G and its tree decomposition of width w, computes a
sub-cubic expansion G∗ of G with tw(G∗) ≤ w + 1. In particular, this result implies that
any graph G admits a sub-cubic expansion whose tree-width is no more than tw(G)+1, and
that this expansion can be constructed efficiently for arbitrary graph families with a fixed

4. Without any effective loss of generality, one can assume that τ(v) = v, that is, the nodes in V are never
mapped to stretch nodes, but only to their “mirrors” in V ∗. However, here we decided to stick to the
explicit use of the τ function to avoid confusion between the nodes V and the identically named nodes
in V ∗.
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tree-width.5 Moreover, it is straightforward to verify that any expansion can be transformed
in linear time into a fully separating expansion, without increasing the tree-width and node
degrees. Therefore, Theorem 3.1 of Markov and Shi (2011) holds even if we request fully
separating sub-cubic expansions.6

Our COP compilation exploits such “tree-width friendly” expansions of causal graphs.
Since our focus in Theorem 5 is on digraph families C with the tree-width in C being
bounded by a constant, by Theorem 3.1 of Markov and Shi (2011), any digraph G ∈ C
can be efficiently associated with a fully separating sub-cubic expansion G∗ with tree-width
≤ tw(G) + 1. Note, however, that the construction of G∗ ignores the orientation of the arcs
in G: while G is a digraph, G∗ is an undirected graph, and its construction is based on a
tree decomposition of the undirected graph induced by G. Since our COP compilation does
depend on the direction of the arcs in the causal graph, we will have to restore in G∗ the
relevant bits of this information about G.

But first we give some auxiliary notation.

• Given a fully separating expansion G∗ of (the undirected graph induced by) a digraph
G = (V,E), we consider stretch trees T ∗(v) as if rooted in the respective nodes τ(v),
and by T ∗

v′(v) we denote the subtree of T ∗(v) rooted at v′ ∈ T ∗(v).

• Recalling that the graphs G of our interest here are DAGs, and that the leaves of T ∗(v)
are bijectively associated with the neighbors N(v) of v in G, let N in(v), Nout(v) ⊆
N(v) be the partition of v’s neighbors in G into immediate ancestors and immediate
descendants of v, respectively.

• By N in
v′ (v) ⊆ N in(v) and Nout

v′ (v) ⊆ Nout(v) we denote the respective neighbors of
v that are associated with the leaves of the stretch subtree T ∗

v′(v). That is, we have
u ∈ N in

v′ (v) ∪Nout
v′ (v) if and only if, for some leaf v′′ of T ∗

v′(v) and some u′′ ∈ T ∗(u),
G∗ contains edge {v′′, u′′} (i.e., g({v, u}) = {v′′, u′′}).

We now proceed with specifying our COP compilation for the FDR tasks as in Theorem 6.
Given such a task Π = ⟨V,A, I,G, cost⟩, let G∗ = (V ∗, E∗) be a fully separating, sub-cubic
expansion G∗ of the causal graph CGΠ with tree-width ≤ tw(CGΠ) + 1. The respective
constraint optimization problem COPΠ+ = (X ,Φ) is specified as follows.

For each v ∈ V , X contains a variable xv that is schematically associated with the root
τ(v) of T ∗(v), and a variable xv′/v for each stretch-tree node v′ ∈ T ∗(v) \ {τ(v)}. The
domain of the variable xv is

D(xv) =

{
{ϑ | ϑ ∈ D⊕(v), G[v] ∈ ϑ}, v ∈ V(G)

D⊕(v), otherwise
. (7)

The domain of each variable xv′/v is

D(xv′/v) = {0, 1}mv ×D(xv), (8)

5. While determining optimal tree decomposition of a graph is NP-hard, it can be done in polynomial time
for graph families having fixed tree-width (Bodlaender, 1996).

6. Requiring the expansions to be fully separating is more of a luxury than a need: relying on this property
simplifies the compilation scheme described next, but that scheme can also be modified so to not require
full separation.
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where mv = |PRv|. That is, D(xv′/v) is a set of some pairs ⟨δ, ϑ⟩, with δ ∈ {0, 1}mv and ϑ ∈
D⊕(v). For each δ ∈ {0, 1}mv , by DTG(v,Π+|δ) we denote the restriction of DTG(v,Π+)
to edges “supported by δ”: Assuming an arbitrarily fixed numbering of the elements of
PRv = {pr1, . . . , prmv

}, an edge marked with an action a such that pre(a)[pred(v)] = pri ∈
PRv remains in DTG(v,Π+|δ) if and only if δ[i] = 1. For ϑ ∈ D⊕(v), by c(ϑ|δ) we denote
the cost of a cheapest path from I[v] to ϑ in DTG(v,Π+|δ); in case of unreachability,
c(ϑ|δ) =∞.

Similarly to the way each node of the causal graph’s expansion G∗ is associated with a
COP variable, it is also associated with a non-negative, extended real-valued function. For
each state variable v ∈ V :

(I) The stretch tree root τ(v) is associated with a function φv. The scope of φv is

Q(φv) = {xv} ∪ {xv′/v | v′ ∈ N∗(τ(v))},

whereN∗ : V ∗ → 2V
∗
is the node neighborhood function in G∗. Note that |N∗(τ(v))| ≤

3 because G∗ is sub-cubic. For each ϑ ∈ D(xv) and each assignment θ = {⟨δv′ , ϑv′⟩}v′∈N∗(τ(v))

to Q(φv) \ {xv},

φv(ϑ,θ) =

{
c(ϑ|δH(θ)), ∀v′ ∈ N∗(τ(v)) : ϑv′ = ϑ

∞, otherwise
, (9)

where δH(θ) is the Hadamard, or entrywise, product of all the indicator vectors
{δv′}v′∈N∗(τ(v)) in θ.

(II) Each leaf stretch node v′ ∈ T ∗(v) is associated with a 0/∞ indicator function φv′/v,
the scope of which is

Q(φv′/v) = {xv′/v, xu′/u},

where u′ is the leaf node of T ∗(u) such that g({v, u}) = {v′, u′}. Here the orientation
of the arcs within the causal graph CGΠ matters. Specifically, if {v, u} represents a
causal graph arc from u to v , then φv′/v zeroes on the assignments (⟨δv′ , ·⟩, ⟨δu′ , ϑu′⟩)
such that

• the vector δv′ enables all and only all the preconditions in PRv that are, passively
or actively, supported by the value ϑu′ of u, and

• the vector δu′ enables all the preconditions PRu, since v does not condition the
u-changing actions in our DAG-structured planning task Π.

That is, for each ⟨δv′ , ϑv′⟩ ∈ D(xv′/v) and each ⟨δu′ , ϑu′⟩ ∈ D(xu′/u),

φv′/v(⟨δv′ , ϑv′⟩, ⟨δu′ , ϑu′⟩) =


0, δu′ = 1 ∧

∀1 ≤ i ≤ mv : (δv′ [i] = 0)↔ (u ∈ V(pri) ∧ pri[u] ̸∈ ϑu′)

∞, otherwise

.

(10)
Note that the value of φv′/v is independent of the ϑv′ component of ⟨δv′ , ϑv′⟩, ⟨δu′ , ϑu′⟩.
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Otherwise, if {v, u} represents a causal graph arc7 from v to u, then conversely,

φv′/v(⟨δv′ , ϑv′⟩, ⟨δu′ , ϑu′⟩) =


0, δv′ = 1 ∧

∀1 ≤ i ≤ mu : (δu′ [i] = 0)↔ (v ∈ V(pri) ∧ pri[v] ̸∈ ϑv′)

∞, otherwise

.

(11)

(III) Each internal stretch node v′ ∈ T ∗(v) is also associated with a 0/∞ indicator function
φv′/v, but its scope comprises the variable xv′/v, together with all the variables xv′′/v
that correspond to the immediate descendants of v′ in T ∗

v′(v). That is,

Q(φv′/v) = {xv′/v} ∪ {xv′′/v | v′′ ∈ N∗(v′) ∩ T ∗
v′(v)}.

For each ⟨δv′ , ϑv′⟩ ∈ D(xv′/v) and each assignment θ = {⟨δv′′ , ϑv′′⟩} to Q(φv′/v) \
{xv′/v}, φv′/v zeroes on (⟨δv′ , ϑv′⟩,θ) if and only if the vector δv′ enables all and
only all the preconditions in PRv that are (passively or actively) supported by all the
immediate ancestors u ∈ N in

v′ (v) via the values these ancestors “commit to” at the
respective stretch-tree root COP variables xu. That is,

φv′/v(⟨δv′ , ϑv′⟩,θ) =

{
0, δv′ = δH(θ) ∧ ∀v′′ ∈ N∗(v′) ∩ T ∗

v′(v) : ϑv′′ = ϑv′

∞, otherwise
. (12)

In other words, starting with Eqs. 10 and 11, the support provided by N in
v′ (v) to v is

communicated to v by the indicator vectors δv′′ in θ, and it is aggregated/summarized
in Eq. 12 by the Hadamard vector product δH(θ).

Complexity-wise, the properties of the COPΠ+ constructed as above are as follows.

(1) The constraint network of COPΠ+ is obtained from the expansion G∗ by replacing each
subgraph of G∗ induced by nodes Q(φα) with a clique over Q(φα). Let G∗Q be a graph
with nodes Q(φα), xα ∈ X , and edges {Q(φα), Q(φβ)} for (only) all pairs α, β such that
Q(φα) ∩Q(φβ) ̸= ∅. By the construction of the COP functions Φ, G∗Q is isomorphic to
G∗. Likewise, since |Q(φα)∩Q(φβ)| ≤ 1 for all pairs of functions φα, φβ , the tree-width
ω

COP
of the constraint network is ≤ tw(G∗Q) ·maxα |Q(φα)|. Together that implies

ω
COP
≤ tw(G∗Q)·max

α
|Q(φα)| = tw(G∗)·max

α
|Q(φα)| ≤ 4·tw(G∗) ≤ 4·(tw(CGΠ)+1) = O(1).

Hence, since finding a constant-factor approximation to the graph’s tree-width is poly-
nomial in the size of the graph and exponential only in its tree-width, COPΠ+ can be
solved in time polynomial in the size of its representation.

(2) By M-unfoldability of Π and Eq. 7, for v ∈ V , the domain size of each COP variable xv
is O(poly(||Π||)). The domain of each stretch node variable xv′/v is a cross-product of
two sets. The size of the second set in Eq. 8 is O(poly(||Π||)) because so is the domain
size of the respective variable xv. The size of the first set in Eq. 8 is 2|PRv| and, by
Definition 5, 2|PRv | = 2O(log(||Π||)) = O(poly(||Π||)). Together with (1), this implies that
COPΠ+ can be solved in time O(poly(||Π||)).

7. Since Theorem 6 is devoted to directed acyclic causal graphs, we do not address here the case in which
CGΠ contains both (v, u) and (u, v).
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(3) By the definition of monotonic relaxation and the definition of domain transition graphs,
explicit description of all DTG(v,Π+) for an M-unfoldable FDR task Π is polynomial
in ||Π||. Hence, the construction of functional components Φ as in Eqs. 9-12, and thus
of the entire COPΠ+ , can be done in time O(poly(||Π||)).

We now proceed to prove the correctness of COPΠ+ = (X ,Φ). That is, we will prove
that if Π+ is unsolvable, then all the assignments to X evaluate the objective function
Σφ∈Φφ(X ) to∞, and otherwise, the objective is minimized on and only on the assignments
to X that correspond to optimal plans for Π+.

First, given an assignment θ to X such that Σφ∈Φφ(θ) < ∞, we show that θ induces
a valid plan ρθ for Π+ of cost Σφ∈Φφ(θ). By Eqs. 9 and 12, Σφ∈Φφ(θ) < ∞ implies that,
for each v ∈ V and each xv′/v in the stretch tree T ∗(v), θ[xv′/v] ∈ {⟨·,θ[xv]⟩}. That is,
the relaxation value of v assigned by θ to xv is consistently propagated to all the nodes of
T ∗(v), and in particular, to its leaves.

Let a leaf node xv′/v in T ∗(v) connect T ∗(v) with T ∗(u) for some causal graph neighbor
u ∈ N(v), and let θ[xv′/v] = ⟨δv′ ,θ[xv]⟩. If u ∈ N in(v), then by Eq. 10, φv′/v(θ) ̸= ∞
implies that δv′ encodes all and only all preconditions in PRv that are not disabled by the
relaxation value θ[xu] of u. Otherwise, if u ∈ Nout(v), then, by the DAG structure of CGΠ,
u has nothing to do with preconditions of actions affecting v+, and by Eq. 11, φv′/v(θ) ̸=∞
implies that δv′ = 1 trivially enables all the preconditions in PRv.

Given that, for each (leaf or internal) stretch node in T ∗(v), let θ[xv′/v] = ⟨δv′ ,θ[xv]⟩.
By the conjunctive structure of the preconditions in FDR and the Hadamard vector product
in Eq. 12, φv′/v(θ) ̸= ∞ implies that δv′ encodes all and only all the preconditions in PRv

that are not disabled by the values θ[xu] of all u ∈ N in
v′ (v). Finally, by the definition of graph

expansion,
∪

v′∈N∗(τ(v))N
in
v′ (v) = N in(v). Thus, by Eq. 11, φv(θ) ̸=∞ implies that θ[xv] is

reachable from I[v] in the properly restricted domain transition graph DTG(v,Π+|θ[Xv])
where Xv = {xu | u ∈ pred(v)}, and that φv(θ) equals the cost of the cheapest such
path. The rest follows from the DAG structure of CGΠ and Lemma 1. The proof of the
opposite direction is straightforward from the construction of COPΠ+ and the “serialization”
Lemma 1. �

In our final note we return to the definition of prevail decomposability, and specifically, to
its second sufficient condition that, for all state variables v ∈ V , the set ARBv of arborescence
sugraphs of DTG(v,Π) rooted in I[v], and covering G[v] if v ∈ V(G), is of size O(log(||Π||)).
While this condition was not addressed in our COP construction so far, switching from
the first to the second sufficient condition of prevail decomposability requires only that
the semantics of the indicator vectors δ be changed: Instead of encoding the support that
pred(v) provide to individual preconditions of actions in Av, they should encode the support
that pred(v) provide to the entire arborescences ARBv in DTG(v,Π). Since the condition
requires |ARBv| = O(log(||Π||)), this support can be encoded and reasoned about efficiently.
Note that the choice between the two conditions can be made on a variable-by-variable basis,
and thus the two conditions are not mutually exclusive but complementary.
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Π FDR MFDR
causal graph extra condition in P? in P?

fixed size Yes No Th. 2

ω = O(1) |D(v)| = O(1) No Yes Th. 3

ω = O(1) & DAG |D(v)| = O(1) No Yes Th. 3

ω = O(1) & DAG in-degree = O(1) No Yes, if M-unfoldable Th. 5

ω = O(1) & DAG No Yes, if M-unfoldable and Th. 6
prevail decomposable

Table 1: A summary of our main results for optimal MFDR planning, contrasted with the
previously established complexity of the corresponding fragments of optimal FDR
planning. In the table, Π is a fragment of FDR/MFDR planning, characterized
in terms of the causal graph tree-width ω, causal graph in-degree, and upper
bound |D(v)| on the size of the variable domains. M-unfoldability and prevail
decomposability are two properties of MFDR tasks that have been introduced and
exploited in this work.

6. Summary and Future Work

We took a step towards a fine-grained classification of worst-case time complexity of optimal
monotonic planning, with a focus on “what gets harder” and “what gets easier” when
switching from optimal planning to optimal relaxed planning, in the context of finite-domain
planning task representations. Along the way, we established both negative and positive
results on the complexity of some wide fragments of this problem, with the negative results
emphasizing the role of the structure of state variable domains, and the positive results
emphasizing the role of the causal graph topology. Table 1 lists our main results for optimal
monotonic planning, contrasted with the complexity of the corresponding fragments of
optimal FDR planning. The key conclusions are as follows.

1. Optimal planning for monotonic relaxations is hard even if restricted to very simple
causal graph structures, but the complexity there stems from the size of the state
variable domains.

2. Restricted to planning tasks with constant-bounded state variable domains, the prob-
lem becomes solvable in time exponential only in the tree-width of the causal graph,
while it is known to be very much not so even for non-optimal regular planning.

3. While the tree-width of digraphs is independent of the edge directions, exploiting
the directed structure of the causal graph together with its tree-width allows the
computational tractability to be expanded beyond fixed-size state variable domains.

The latter conclusion opens an interesting venue for further investigation. While we
addressed only directed acyclic causal graphs, the scope of tractability can perhaps be ex-
panded by exploiting some existing “directed” notions of graph width (Johnson, Robertson,
Seymour, & Thomas, 2001; Hunter & Kreutzer, 2008; Berwanger et al., 2012). This might
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be especially appealing because the tree-width of most standard planning benchmarks un-
der their natural FDR encodings does not appear to be fixed across the respective families
of the tasks.

Another interesting direction would be to examine the results and techniques intro-
duced here in a wider context: that of the recently introduced framework of red-black
relaxations (Katz et al., 2013b). In red-black (RB) planning, the variables are partitioned
into two sets: the “black” set adopts the regular, value switching semantics of FDR, while
the “red” set adopts the monotonic, value accumulating semantics of MFDR. In the context
of satisficing planning, complexity analysis of RB planning complexity through the lens of
causal graph topology has already led to some advances in the practice of heuristic-search
planning (Katz et al., 2013a; Katz & Hoffmann, 2013). To take a similar step in optimal
planning, admissible heuristics that are based on RB relaxations must be devised. That, in
turn, calls for identifying tractable fragments of optimal RB planning. We are cautiously
optimistic that some of the results and techniques presented in this paper will be found valu-
able in the context of RB planning as well. For instance, the positive result in Theorem 4
for fork-structured MFDR tasks can be straightforwardly extended to RB tasks with only
root variables taking the monotonic semantics and all the leaves keeping their regular, FDR
semantics. Similarly, the positive result in Theorem 5 for DAG-structured MFDR tasks can
be straightforwardly extended to RB tasks with black-painted leaf variables. An interesting
question in that respect is whether computational tractability of optimal RB planning can
be extended to causal graphs in which some internal nodes get to keep their original FDR
semantics.
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