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Abstract

In recent years, Stackelberg Security Games have been successfully applied to solve re-
source allocation and scheduling problems in several security domains. However, previous
work has mostly assumed that the targets are stationary relative to the defender and the
attacker, leading to discrete game models with finite numbers of pure strategies. This paper
in contrast focuses on protecting mobile targets that leads to a continuous set of strategies
for the players. The problem is motivated by several real-world domains including protect-
ing ferries with escort boats and protecting refugee supply lines. Our contributions include:
(i) A new game model for multiple mobile defender resources and moving targets with a
discretized strategy space for the defender and a continuous strategy space for the attacker.
(ii) An efficient linear-programming-based solution that uses a compact representation for
the defender’s mixed strategy, while accurately modeling the attacker’s continuous strat-
egy using a novel sub-interval analysis method. (iii) Discussion and analysis of multiple
heuristic methods for equilibrium refinement to improve robustness of defender’s mixed
strategy. (iv) Discussion of approaches to sample actual defender schedules from the de-
fender’s mixed strategy. (iv) Detailed experimental analysis of our algorithms in the ferry
protection domain.

1. Introduction

In the last few years, game-theoretic decision support systems have been successfully de-
ployed in several domains to assist security agencies (defenders) in protecting critical infras-
tructure such as ports, airports and air-transportation infrastructure (Tambe, 2011; Gatti,
2008; Marecki, Tesauro, & Segal, 2012; Jakob, Vaněk, & Pěchouček, 2011). These deci-
sion support systems assist defenders in allocating and scheduling their limited resources
to protect targets from adversaries. In particular, given limited security resources it is not
possible to cover or secure all target at all times; and simultaneously, because the attack-
er can observe the defender’s daily schedules, any deterministic schedule by the defender
can be exploited by the attacker (Paruchuri, Tambe, Ordóñez, & Kraus, 2006; Kiekintveld,
Islam, & Kreinovich, 2013; Vorobeychik & Singh, 2012; Conitzer & Sandholm, 2006).

One game-theoretic model that has been deployed to schedule security resources in such
domains is that of a Stackelberg game between a leader (the defender) and a follower (the
attacker). In this model, the leader commits to a mixed strategy, which is a randomized
schedule specified by a probability distribution over deterministic schedules; the follower
then observes the distribution and plays a best response (Korzhyk, Conitzer, & Parr, 2010).
Decision-support systems based on this model have been successfully deployed, including
ARMOR at the LAX airport (Pita, Jain, Marecki, Ordóñez, Portway, Tambe, Western,
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Paruchuri, & Kraus, 2008), IRIS for the US Federal Air Marshals service (Tsai, Rathi,
Kiekintveld, Ordonez, & Tambe, 2009), and PROTECT for the US Coast Guard (Shieh,
An, Yang, Tambe, Baldwin, DiRenzo, Maule, & Meyer, 2012).

Most previous work on game-theoretic models for security has assumed either stationary
targets such as airport terminals (Pita et al., 2008), or targets that are stationary relative to
the defender and the attacker, e.g., trains (Yin, Jiang, Johnson, Kiekintveld, Leyton-Brown,
Sandholm, Tambe, & Sullivan, 2012) and planes (Tsai et al., 2009), where the players can
only move along with the targets to protect or attack them). This stationary nature leads
to discrete game models with finite numbers of pure strategies. In this paper we focus
on security domains in which the defender needs to protect a mobile set of targets. The
attacker can attack these targets at any point in time during their movement, leading to a
continuous set of strategies. The defender can deploy a set of mobile escort resources (called
patrollers for short) to protect these targets. We assume the game is zero-sum, and allow
the values of the targets to vary depending on their locations and time. The defender’s
objective is to schedule the mobile escort resources to minimize attacker’s expected utility.
We call this problem Multiple mobile Resources protecting Moving Targets (MRMT).

The first contribution of this paper is a novel game model for MRMT called MRMTsg.
MRMTsg is an attacker-defender Stackelberg game model with a continuous set of strate-
gies for the attacker. In contrast, while the defender’s strategy space is also continuous, we
discretize it in MRMTsg for three reasons. Firstly, if we let the defender’s strategy space
to be continuous, the space of mixed strategies for the defender would then have infinite
dimensions, which makes exact computation infeasible. Secondly, in practice, the patrollers
are not able to have such fine-grained control over their vehicles, which makes the actual
defender’s strategy space effectively a discrete one. Finally, the discretized defender strat-
egy space is a subset of the original continuous defender strategy space, so the optimal
solution calculated under our formulation is a feasible solution in the original game and
gives a lower-bound guarantee for the defender in terms of expected utility for the origi-
nal continuous game. On the other hand, discretizing the attacker’s strategy space can be
highly problematic as we will illustrate later in this paper. In particular, if we deploy a
randomized schedule for the defender under the assumption that the attacker could only
attack at certain discretized time points, the actual attacker could attack at some other
time point, leading to a possibly worse outcome for the defender.

Our second contribution is CASS (Solver for Continuous Attacker Strategies), an efficient
linear program to exactly solve MRMTsg. Despite discretization, the defender strategy
space still has an exponential number of pure strategies. We overcome this shortcoming by
compactly representing the defender’s mixed strategies as marginal probability variables.
On the attacker side, CASS exactly and efficiently models the attacker’s continuous strategy
space using sub-interval analysis, which is based on the observation that given the defender’s
mixed strategy, the attacker’s expected utility is a piecewise-linear function. Along the way
to presenting CASS, we present DASS (Solver for Discretized Attacker Strategies), which
finds minimax solutions for MRMTsg games while constraining the attacker to attack at
discretized time points. For clarity of exposition we first derive DASS and CASS for the
case where the targets move on a one-dimensional line segment. We later show that DASS
and CASS can be extended to the case where targets move in a two-dimensional space.
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Our third contribution is focused on equilibrium refinement. Our game has multiple
equilibria, and the defender strategy found by CASS can be suboptimal with respect to un-
certainties in the attacker’s model, e.g., if the attacker can only attack during certain time
intervals. We present two heuristic equilibrium refinement approaches for this game. The
first, route-adjust, iteratively computes a defender strategy that dominates earlier strate-
gies. The second, flow-adjust, is a linear-programming-based approach. Our experiments
show that flow-adjust is computationally faster than route-adjust but route-adjust is more
effective in selecting robust equilibrium strategies.

Additionally, we provide several sampling methods for generating practical patrol routes
given the defender strategy in compact representation. Finally we present detailed experi-
mental analyses of our algorithm in the ferry protection domain. CASS has been deployed
by the US Coast Guard since April 2013.

The rest of the article is organized as follows: Section 2 provides our problem statement.
Section 3 presents the MRMTsg model and an initial formulation of the DASS and CASS for
a one-dimensional setting. Section 4 discusses equilibrium refinement, followed by Section
5 which gives the generalized formulation of DASS and CASS for two-dimensional settings.
Section 6 describes how to sample a patrol route and Section 7 provides experimental
results in the ferry protection domain. Section 8 discusses related work, followed by Section
9, which provides concluding remarks, and Section 10, which discusses future work. At the
end of the article, Appendix A provides a table listing all the notations used in the article,
and Appendix B provides the detailed calculation for finding the intersection points in the
2-D case.

2. Problem Statement

One major example of the practical domains motivating this paper is the problem of pro-
tecting ferries that carry passengers in many waterside cities. Packed with hundreds of
passengers, these may present attractive targets for an attacker. For example, the attacker
may ram a suicide boat packed with explosives into the ferry as happened with attacks on
French supertanker Limburg and USS Cole (Greenberg, Chalk, & Willis, 2006). In this
case, the intention of the attacker can only be detected once he gets very close to the ferry.
Small, fast and well-armed patrol boats (patrollers) can provide protection to the ferries
(Figure 1(a)), by detecting the attacker and stopping him with the armed weapons. How-
ever, there are often limited numbers of patrol boats, i.e., they cannot protect the ferries
at all times at all locations. We first focus on the case where ferries and patrol boats move
in a one-dimensional line segment (this is a realistic setting and also simplifies exposition);
we will discuss the two-dimensional case in Section 5.

2.1 Domain Description

In this problem, there are L moving targets, F1, F2, ..., FL. We assume that these targets
move along a one-dimensional domain, specifically a straight line segment linking two ter-
minal points which we will name A and B. This is sufficient to capture real-world domains
such as ferries moving back-and-forth in a straight line between two terminals as they do
in many ports around the world; an example is the green line shown in Figure 1(b). We
will provide an illustration of our geometric formulation of the problem in Figure 2.1. The
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(a) (b)

Figure 1: (a) Protecting ferries with patrol boats; (b) Part of the map of New York Har-
bor Commuter Ferry Routes. The straight line linking St. George Terminal and
Whitehall Terminal indicates a public ferry route run by New York City Depart-
ment of Transportation.

targets have fixed daily schedules. The schedule of each target can be described as a con-
tinuous function Sq : T → D where q = 1, ..., L is the index of the target, T = [0, 1] is a
continuous time interval (e.g., representing the duration of a typical daily patrol shift) and
D = [0, 1] is the continuous space of possible locations (normalized) with 0 corresponding
to terminal A and 1 to terminal B. Thus Sq(t) denotes the position of the target Fq at a
specified time t. We assume Sq is piecewise linear.

The defender has W mobile patrollers that can move along D to protect the targets,
denoted as P1, P2, ..., PW . Although capable of moving faster than the targets, they have a
maximum speed of vm. While the defender attempts to protect the targets, the attacker will
choose a certain time and a certain target to attack. (In the rest of the paper, we denote the
defender as “she” and the attacker as “he”). The probability of attack success depends on
the positions of the patrollers at that time. Specifically, each patroller can detect and try
to intercept anything within the protection radius re but cannot detect the attacker prior
to that radius. Thus, a patroller protects all targets within her protective circle of radius
re (centered at her current position), as shown in Figure 2.1.

� ��

� �

�

� �

Figure 2: An example with three targets (triangles) and two patrollers (squares). The
protective circles of the patrollers are shown with protection radius re. A patroller
protects all targets in her protective circle. Patroller P1 is protecting F2 and P2

is protecting F3.
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Symmetrically, a target is protected by all patrollers whose protective circles can cover
it. If the attacker attacks a protected target, then the probability of successful attack is a
decreasing function of the number of patrollers that are protecting the target. Formally, we
use a set of coefficients {CG} to describe the strength of the protection.

Definition 1. Let G ∈ {1, ...,W} be the total number of patrollers protecting a target Fq,
i.e., there are G patrollers such that Fq is within radius re of each of the G patrollers. Then
CG ∈ [0, 1] specifies the probability that the patrollers can successfully stop the attacker. We
require that CG1 ≤ CG2 if G1 ≤ G2, i.e., more patrollers offer better protection.

As with previous work in security games (Tambe, 2011; Yin et al., 2012; Kiekintveld,
Jain, Tsai, Pita, Ordóñez, & Tambe, 2009), we model the game as a Stackelberg game, where
the defender commits to a randomized strategy first, and then the attacker can respond to
such a strategy. The patrol schedules in these domains were previously created by hand;
and hence suffer the drawbacks of hand-drawn patrols, including lack of randomness (in
particular, informed randomness) and reliance on simple patrol patterns (Tambe, 2011),
which we remedy in this paper.

2.2 Defender Strategy

A pure strategy of the defender is to designate a movement schedule for each patroller.
Analogous to the target’s schedule, a patroller’s schedule can be written as a continuous
function Ru : T → D where u = 1, ...,W is the index the patroller. Ru must be compatible
with the patroller’s velocity range. A mixed defender strategy is a randomization over the
pure strategies, denoted as f .

2.3 Attacker Strategy

The attacker conducts surveillance of the defender’s mixed strategy and the targets’ sched-
ules; he may then execute a pure strategy response to attack a certain target at a certain
time. The attacker’s pure strategy can be denoted as 〈q, t〉 where q is the index of target
to attack and t is the time to attack.

2.4 Utility Function

We assume the game is zero-sum. If the attacker performs a successful attack on target Fq
at location x at time t, he gets a positive reward Uq(x, t) and the defender gets −Uq(x, t),
otherwise both players get utility zero. The positive reward Uq(x, t) is a known function
which accounts for many factors in practice. For example, an attacker may be more effective
in his attack when the target is stationary (such as at a terminal point) than when the target
is in motion. As the target’s position is decided by the schedule, the utility function can be
written as Uq(t) ≡ Uq(Sq(t), t). We assume that for each target Fq, Uq(t) can be represented
as a piecewise linear function of t.

2.5 Equilibrium

Since our game is zero-sum, the Strong Stackelberg Equilibrium can be calculated by finding
the minimax/maximin strategy (Fudenberg & Tirole, 1991; Korzhyk et al., 2010). That is,
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we can find the optimal defender strategy by finding a strategy that minimizes the maximum
of attacker’s expected utility.

Definition 2. For single patroller case, the attacker expected utility of attacking target Fq
at time t given defender mixed strategy f is

AttEUf (Fq, t) = (1− C1ωf (Fq, t))Uq(t) (1)

Uq(t) is the reward for a successful attack, ωf (Fq, t) is the probability that the patroller
is protecting target Fq at time t and C1 is the protection coefficient of single patroller. We
drop the subscript if f is obvious from the context. As C1 and Uq(t) are constants for a given
attacker’s pure strategy 〈q, t〉, AttEU(Fq, t) is purely decided by ω(Fq, t). The definition
with multiple patrollers will be given in Section 3.4. We further denote the attacker’s
maximum expected utility as

AttEUm
f = max

q,t
AttEUf (Fq, t) (2)

So the optimal defender strategy is a strategy f such that the AttEUm
f is minimized, formally

f ∈ arg minf ′ AttEUm
f ′ (3)

2.6 Assumptions

In our problem, the following assumptions are made based on discussions with domain
experts. Here we provide our justifications for these assumptions. While appropriate for the
current domain of application, relaxing these assumptions for future applications remains
an issue for future work; and we provide an initial discussion in Section 10.

• The attacker’s plan is decided off-line, i.e., the attacker does not take into account the
patroller’s current partial route (partial pure strategy) in executing an attack: This
assumption is similar to the assumption made in other applications of security games
and justified elsewhere (An, Kempe, Kiekintveld, Shieh, Singh, Tambe, & Vorob-
eychik, 2012; Pita, Jain, Ordonez, Portway, Tambe, Western, Paruchuri, & Kraus,
2009; Tambe, 2011). One key consideration is that given that attackers have limited
resources as well, for them to generate and execute complex conditional plans that
change based on “on-line” observations of defender’s pure strategy is both difficult
and risky.

• A single attacker is assumed instead of multiple attackers: This assumption arises
because performing even a single attack is already costly for the attacker. Thus,
having coordinating attackers at the same time will be even harder and therefore
significantly less likely for the attacker.

• The game is assumed to be zero-sum: In this case, the objectives of the defender and
attacker are in direct conflict: preventing an attack with higher potential damage is
a bigger success to the defender in our game.
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• The schedules for the targets are deterministic: For the domains we focus on, potential
delays in the targets’ schedules are usually within several minutes if any, and the
targets will try to catch up with the fixed schedules as soon as possible. Therefore,
even when delays occur, the deterministic schedule for a target can be viewed as a
good approximation of the actual schedule.

3. Models

In this section, we introduce our MRMTsg model that uses a discretized strategy space for
the defender and a continuous strategy space for the attacker. For clarity of exposition, we
then introduce the DASS approach to compute a minimax solution for discretized attacker
strategy space (Section 3.2), followed by CASS for the attacker’s continuous strategy space
(Section 3.3). We first assume a single patroller in Sections 3.1 through 3.3 and then
generalize to multiple patrollers in Section 3.4.

3.1 Representing Defender’s Strategies

In this subsection, we introduce the discretized defender strategy space and the compact
representation used to represent the defender’s mixed strategy. We show that the compact
representation is equivalent to the intuitive full representation, followed by several properties
of the compact representation.

Since the defender’s strategy space is discretized, we assume that each patroller only
makes changes at a finite set of time points T = {t1, t2, ..., tM}, evenly spaced across the
original continuous time interval. t1 = 0 is the starting time and tM = 1 is the normalized
ending time. We denote by δt the distance between two adjacent time points: δt = tk+1 −
tk = 1

M−1 . We set δt to be small enough such that for each target Fq, the schedule Sq(t)
and the utility function Uq(t) are linear in each interval [tk, tk+1] for k = 1, . . . ,M − 1, i.e.,
the target is moving with uniform speed and the utility of a successful attack on it changes
linearly during each of these intervals. Thus, if t0 is a breakpoint of Sq(t) or Uq(t) for any
q, it can be represented as t0 = δtK0 where K0 is an integer.

In addition to discretization in time, we also discretize the line segment AB that the
targets move along into a set of points D = {d1, d2, ..., dN} and restrict each patroller to be
located at one of the discretized points di at any discretized time point tk. Note that D is not
necessarily evenly distributed and the targets’ locations are not restricted at any tk. During
each time interval [tk, tk+1], each patroller moves with constant speed from her location di
at time tk to her location dj at time tk+1. Only movements compatible with the speed limit
vm are possible. The points d1, d2, ..., dN are ordered by their distance to terminal A, and
d1 refers to A and dN refers to B. Since the time interval is discretized into M points, a
patroller’s route Ru can be represented as a vector Ru = (dru(1), dru(2), ..., dru(M)). ru(k)
indicates the index of the discretized distance point where the patroller is located at time
tk.

As explained in Section 1, we discretized the defender’s strategy space not only for
computational reasons. It is not even clear whether an equilibrium exists in the original
game with continuous strategy space for both players. The discretization is made also
because of the practical constraint of patrollers.
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For expository purpose, we first focus on the case with a single defender resource and
then generalize to larger number of resources later. For a single defender resource, the
defender’s mixed strategy in full representation assigns a probability to each of the patrol
routes that can be executed. Since at each time step a patroller can choose to go to at most
N different locations, there are at most NM possible patrol routes in total and this number
is achievable if there is no speed limit (or vm is large enough). The exponentially growing
number of routes will make any analysis based on full representation intractable.

Therefore, we use the compact representation of the defender’s mixed strategy.

Definition 3. The compact representation for a single defender resource is a compact
way to represent the defender’s mixed strategy using flow distribution variables {f(i, j, k)}.
f(i, j, k) is the probability of the patroller moving from di at time tk to dj at time tk+1.

The complexity of the compact representation is O(MN2), which is much more efficient
compared to the full representation.

Proposition 1. Any strategy in full representation can be mapped into a compact repre-
sentation.

Proof sketch: If there are H possible patrol routes R1, R2, ..., RH , a mixed defender
strategy can be represented in full representation as a probability vector (p(R1), ...p(RH))
where p(Ru) is the probability of taking route Ru. Taking route Ru means the patroller
moves from dru(k) to dru(k+1) during time [tk, tk+1], so the edge ERu(k),Ru(k+1),k is taken
when route Ru is chosen. Then the total probability of taking edge Ei,j,k is the sum of
probabilities of all the routes Ru where Ru(k) = i and Ru(k + 1) = j. Therefore, given
any strategy in full presentation specified by the probability vector (p(R1), ...p(RH)), we
can construct a compact representation consisting of a set of flow distribution variables
{f(i, j, k)} where

f(i, j, k) =
∑

Ru:Ru(k)=i and Ru(k+1)=j

p(Ru). (4)

Figure 3 shows a simple example illustrating the compact representation. Numbers on
the edges indicate the value of f(i, j, k). We use Ei,j,k to denote the directed edge linking
nodes (tk, di) and (tk+1, dj). For example, f(2, 1, 1), the probability of the patroller moving
from d2 to d1 during time t1 to t2, is shown on the edge E2,1,1 from node (t1, d2) to node
(t2, d1). While a similar compact representation was used earlier by Yin et al. (2012), we
use it in a continuous setting.

Note that different mixed strategies in full representation can be mapped to the same
compact representation. Table 1 shows two different mixed defender strategies in full rep-
resentations that can be mapped to the same mixed strategy in compact representation as
shown in Figure 3. The probability of a route is labeled on all edges in the route in full
representation. Adding up the numbers of a particular edge Ei,j,k in all routes of a full
representation together, we can get f(i, j, k) for the compact representation.

Theorem 1. Compact representation does not lead to any loss in solution quality.
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Figure 3: Compact representation: x-axis shows time intervals; y-axis the discretized
distance-points in the one-dimensional movement space.

Full Representation 1

R1 = (d1, d1, d1) R2 = (d1, d1, d2) R3 = (d2, d1, d1) R4 = (d2, d1, d2)

��� ��� � �

Full Representation 2

R1 = (d1, d1, d1) R2 = (d1, d1, d2) R3 = (d2, d1, d1) R4 = (d2, d1, d2)

��� ��� ��� ���

Table 1: Two full representations that can be mapped into the same compact representation
shown in Figure 3.

Proof sketch: The complete proof of the theorem relies on the calculations in Section
3.2 and 3.3. Here we provide a sketch. Recall our goal is to find an optimal defender
strategy f that minimizes the maximum attacker expected utility AttEUm

f . As we will
show in the next subsections, ω(Fq, t) can be calculated from the compact representation
{f(i, j, k)}. If two defender strategies under the full representation are mapped to the same
compact representation {f(i, j, k)}, they will have the same ω function and then the same
AttEU function according to Equation 1. Thus the value of AttEUm

f is the same for the
two defender strategies. So an optimal mixed defender strategy in compact representation
is still optimal for the corresponding defender strategies in full representation.

We exploit the following properties of the compact representation.

Property 1. For any time interval [tk, tk+1], the sum of all flow distribution variables
equals to 1:

∑N
i=1

∑N
j=1 f(i, j, k) = 1.

Property 2. The sum of flows that go into a particular node equals the sum of flows that
go out of the node. Denote the sum for node (tk, di) by p(i, k), then p(i, k) =

∑N
j=1 f(j, i, k−

1) =
∑N

j=1 f(i, j, k). Each p(i, k) is equal to the marginal probability that the patroller is at
location di at time tk.

Property 3. Combining Property 1 and 2,
∑N

i=1 p(i, k) = 1.
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3.2 DASS: Discretized Attacker Strategies

In this subsection, we introduce DASS, a mathematical program that efficiently finds mini-
max solutions for MRMTsg-based games under the assumption that the attacker will attack
at one of the discretized time points tk. In this problem, we need to minimize v where v
is the maximum of attacker’s expected utility. Here, v is the maximum of AttEU(Fq, t) for
any target Fq at any discretized time point tk.

From Equation (1), we know that AttEU(Fq, t) is decided by ω(Fq, t), the probability
that the patroller is protecting target Fq at time t. Given the position of the target Sq(t), we
define the protection range βq(t) = [max{Sq(t)−re, d1},min{Sq(t)+re, dN}]. If the patroller
is located within the range βq(t), the distance between the target and the patroller is no
more than re and thus the patroller is protecting Fq at time t. So ω(Fq, t) is the probability
that the patroller is located within range βq(t) at time t. For the discretized time points
tk, the patroller can only be located at a discretized distance point di, so we define the
following.

Definition 4. I(i, q, k) is a function of two values. I(i, q, k) = 1 if di ∈ βq(tk), and
otherwise I(i, q, k) = 0.

In other words, I(i, q, k) = 1 means that a patroller located at di at time tk can pro-
tect target Fq. Note that the value of I(i, q, k) can be calculated directly from the input
parameters (di, Sq(t) and re) and stored in a look-up table. In particular, I(i, q, k) is not
a variable in the formulations that follow. It simply encodes the relationship between di
and the location of target Fq at tk. The probability that the patroller is at di at time tk is
p(i, k). So we have

ω(Fq, tk) =
∑

i:I(i,q,k)=1
p(i, k), (5)

AttEU(Fq, tk) =

(
1− C1

∑
i:I(i,q,k)=1

p(i, k)

)
Uq(tk). (6)

Equation (6) follows from Equations (1) and (5), expressing attacker’s expected utility for
discretized time points. Finally, we must address speed restrictions on the patroller. We set
all flows corresponding to actions that are not achievable to zero,1 that is, f(i, j, k) = 0 if
|dj − di| > vmδt. Thus, DASS can be formulated as a linear program. This linear program

1. Besides the speed limit, we can also model other practical restrictions of the domain by placing constraints
on f(i, j, k).
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solves for any number of targets but only one defender resource.

min
f(i,j,k),p(i,k)

z (7)

f(i, j, k) ∈ [0, 1], ∀i, j, k (8)

f(i, j, k) = 0, ∀i, j, k such that |dj − di| > vmδt (9)

p(i, k) =

N∑
j=1

f(j, i, k − 1), ∀i,∀k > 1 (10)

p(i, k) =
N∑
j=1

f(i, j, k), ∀i,∀k < M (11)

N∑
i=1

p(i, k) = 1, ∀k (12)

z ≥ AttEU(Fq, tk), ∀q,∀k (13)

Constraint 8 describes the probability range. Constraint 9 describes the speed limit. Con-
straints 10–11 describes Property 2. Constraint 12 is exactly Property 3. Property 1 can
be derived from Property 2 and 3, so it is not listed as a constraint. Constraint (13) shows
the attacker chooses the strategy that gives him the maximal expected utility among all
possible attacks at discretized time points; where AttEU(·) is described by Equation (6).

3.3 CASS: Continuous Attacker Strategies

In this subsection, we generalize the problem to one with continuous attacker strategy set
and provides a linear-programming-based solution CASS. CASS efficiently finds optimal
mixed defender strategy under the assumption that the attacker can attack at any time
in the continuous time interval T = [0, 1]. With this assumption, DASS’s solution quality
guarantee may fail: if the attacker chooses to attack between tk and tk+1, he may get
a higher expected reward than attacking at tk or tk+1. Consider the following example,
with the defender’s compact strategy between tk and tk+1 shown in Figure 4. Here the
defender’s strategy has only three non-zero flow variables f(3, 4, k) = 0.3, f(3, 1, k) = 0.2,
and f(1, 3, k) = 0.5, indicated by the set of three edges E+ = {E3,4,k, E3,1,k, E1,3,k}. A
target Fq moves from d3 to d2 at constant speed during [tk, tk+1]. Its schedule is depicted
by the straight line segment Sq. The dark lines L1

q and L2
q are parallel to Sq with distance

re. The area between them indicates the protection range βq(t) for any time t ∈ (tk, tk+1).
Consider the time points at which an edge from E+ intersects one of L1

q , L
2
q , and label them

as θrqk, r = 1 . . . 4 in Figure 4). Intuitively, these are all the time points at which a defender
patrol could potentially enter or leave the protection range of the target. To simplify the
notation, we denote tk as θ0

qk and tk+1 as θ5
qk. For example, a patroller moving from d3

to d4 (or equivalently, taking the edge E3,4,k) protects the target from θ0
qk to θ1

qk because

E3,4,k is between L1
1 and L2

1 in [θ0
qk, θ

1
qk], during which the distance to the target is less or

equal than protection radius re. Consider the sub-intervals between each θrqk and θr+1
qk , for

r = 0 . . . 4. Since within each of these five sub-intervals, no patroller enters or leaves the
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protection range, the probability that the target is being protected is a constant in each
sub-interval, as shown in Figure 5(a).
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Figure 4: An example to show how a target moving from d3 to d2 during [tk, tk+1] is pro-
tected. In a sub-interval [θrqk, θ

r+1
qk ], a patroller either always protects the target

or never protects the target. Equivalently, the target is either always within the
protective circle of a patroller or always outside the circle.

Suppose Uq(t) decreases linearly from 2 to 1 during [tk, tk+1] and C1 = 0.8. We can then
calculate the attacker’s expected utility function AttEU(Fq, t) for (tk, tk+1), as plotted in
Figure 5(b). AttEU(Fq, t) is linear in each sub-interval but the function is discontinuous at
the intersection points θ1

qk, . . . , θ
4
qk because of the patroller leaving or entering the protection

range of the target. We denote the limit of AttEU when t approaches θrqk from the left as:

lim
t→θr−qk

AttEU(Fq, t) = AttEU(Fq, θ
r−
qk )

Similarly, the right limit is denoted as:

lim
t→θr+qk

AttEU(Fq, t) = AttEU(Fq, θ
r+
qk )

If Fq is the only target, an attacker can choose to attack at a time immediately after θ2
qk,

getting an expected utility that is arbitrarily close to 1.70. According to Equation (6), we
can get AttEU(Fq, tk) = 1.20 and AttEU(Fq, tk+1) = 1.00, both lower than AttEU(Fq, θ

2+
qk ).

Thus, the attacker can get a higher expected reward by attacking between tk and tk+1,
violating DASS’s quality guarantee.

However, because of discontinuities in the attacker’s expected utility function, a maxi-
mum might not exist. This implies that the minimax solution concept might not be well-
defined for our game. We thus define our solution concept to be minimizing the supremum
of AttEU(Fq, t).
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(a) Probability that the target is protected
is a constant in each sub-interval.
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(b) The attacker’s expected utility is linear
in each sub-interval.

Figure 5: Sub-interval analysis in (tk, tk+1) for the example shown in Figure 4.]

Definition 5. The supremum of attacker’s expected utility is the smallest real number
that is greater than or equal to all elements of the infinite set {AttEU(Fq, t)}, denoted as
sup AttEU(Fq, t).

The supremum is the least upper bound of the function AttEU(Fq, t). So for CASS
model, Equation 2 should be modified as

AttEUm
f = sup

q,t
AttEUf (Fq, t) (14)

So a defender strategy f is minimax if AttEUm
f is maximized, i.e.,

f ∈ arg minf ′ sup AttEUf ′(Fq, t)

In the above example, the supremum of attacker’s expected utility in (tk, tk+1) is AttEU(Fq, θ
2+
qk ) =

1.70. In the rest of the paper, we will not specify when supremum is used instead of maxi-
mum as it can be easily inferred from the context.

How can we deal with the possible attacks between the discretized points and find an
optimal defender strategy? We generalize the process above (called sub-interval analysis)
to all possible edges Ei,j,k. We then make use of the piecewise linearity of AttEU(Fq, t)
and the fact that the potential discontinuity points are fixed, which allows us to construct
a linear program that solves the problem to optimality. We name the approach CASS
(Solver for Continuous Attacker Strategies).

We first introduce the general sub-interval analysis. For any target Fq and any time
interval (tk, tk+1), we calculate the time points at which edges Ei,j,k and L1

q , L
2
q intersect,

denoted as intersection points. We sort the intersection points in increasing order, denoted
as θrqk, r = 1 . . .Mqk, where Mqk is the total number of intersection points. Set θ0

qk = tk and

θ
Mqk+1
qk = tk+1. Thus (tk, tk+1) is divided into sub-intervals (θrqk, θ

r+1
qk ), r = 0, ...,Mqk.

Lemma 1. For any given target Fq, AttEU(Fq, t) is piecewise-linear in t. Furthermore,
there exists a fixed set of time points, independent of the defender’s mixed strategy, such
that AttEU(Fq, t) is linear between each adjacent pair of points. Specifically, these points
are the intersection points θrqk defined above.
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Proof: In each sub-interval (θrqk, θ
r+1
qk ) for a target Fq, a feasible edge Ei,j,k is either

totally above or below L1
q , and similarly for L2

q . Otherwise there will be a new intersection
point which contradicts the definition of the sub-intervals. If edge Ei,j,k is between L1

q and
L2
q , the distance between a patroller taking the edge and target Fq is less than re, meaning

the target is protected by the patroller. As edge Ei,j,k is taken with probability f(i, j, k),
the total probability that the target is protected (ω(Fq, t)) is the sum of f(i, j, k) whose
corresponding edge Ei,j,k is between the two lines in a sub-interval. So ω(Fq, t) is constant
in t in each sub-interval and thus the attacker’s expected utility AttEU(Fq, t) is linear in
each sub-interval according to Equation 2 as Uq(t) is linear in [tk, tk+1]. Discontinuity can
only exist at these intersection points and an upper bound on the number of these points
for target Fq is MN2.

Define coefficientArqk(i, j) to be C1 if edge Ei,j,k is between L1
q and L2

q in (θrqk, θ
r+1
qk ), and 0

otherwise. According to Equation (1) and the fact that ω(Fq, t) is the sum of f(i, j, k) whose
corresponding coefficient Arqk(i, j) = C1, we have the following equation for t ∈ (θrqk, θ

r+1
qk ).

AttEU(Fq, t) =

1−
N∑
i=1

N∑
j=1

Arqk(i, j)f(i, j, k)

 · Uq(t) (15)

Piecewise linearity of AttEU(Fq, t) means the function is monotonic in each sub-interval and
the supremum can be found at the intersection points. Because of linearity, the supremum
of AttEU in (θrqk, θ

r+1
qk ) can only be chosen from the one-sided limits of the endpoints,

AttEU(Fq, θ
r+
qk ) and AttEU(Fq, θ

(r+1)−
qk ). Furthermore, if Uq(t) is decreasing in [tk, tk+1],

the supremum is

AttEU(Fq, θ
r+
qk ) and otherwise it is AttEU(Fq, θ

(r+1)−
qk ). In other words, all other attacker’s

strategies in (θrqk, θ
r+1
qk ) are dominated by attacking at time close to θrqk or θr+1

qk . Thus, CASS
adds new constraints to Constraints 8–13 which consider attacks to occur at t ∈ (tk, tk+1).
We add one constraint for each sub-interval with respect to the possible supremum value
in this sub-interval:

min
f(i,j,k),p(i,k)

z (16)

subject to constraints (8 . . . 13)

z ≥ max{AttEU(Fq, θ
r+
qk ),AttEU(Fq, θ

(r+1)−
qk )} (17)

∀k ∈ {1 . . .M}, q ∈ {1 . . . L}, r ∈ {0 . . .Mqk}

This linear program stands at the core of CASS and we will not differentiate the name
for the solver and the name for the linear program in the following. All the linear con-
straints included by Constraint 17 can be added to CASS using Algorithm 1. The input
of the algorithm include targets’ schedules {Sq}, the protection radius re, the speed limit
vm, the set of discretized time points {tk} and the set of discretized distance points {di}.
Function CalInt(L1

q , L
2
q , vm) in Line 1 returns the list of all intersection time points between

all possible edges Ei,j,k and the parallel lines L1
q , L

2
q , with additional points tk as θ0

qk and

tk+1 as θ
Mqk+1
qk . Function CalCoef(L1

q , L
2
q , vm, θ

r
qk, θ

r+1
qk ) in Line 1 returns the coefficient

matrix Arqk. A
r
qk can be easily decided by checking the status at the midpoint in time. Set
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tmid = (θrqk+θr+1
qk )/2 and denote the patroller’s position at tmid when edge Ei,j,k is taken as

Ei,j,tmid
, thus Arqk(i, j) = C1 if Ei,j,tmid

∈ βq(tmid). Lines 1–1 add a constraint with respect

to the larger value of AttEU(Fq, θ
r+
qk ) and AttEU(Fq, θ

(r+1)−
qk ) to CASS for this sub-interval

(θrqk, θ
r+1
qk ). It means when the attacker chooses to attack Fq in this sub-interval, his best

choice is decided by the larger value of the two side-limits of AttEU in (θrqk, θ
r+1
qk ).

Algorithm 1: Add constraints described in Constraint 17

Input: Sq, re, vm, {tk}, {di};
for k ← 1, . . . ,M − 1 do

for q ← 1, . . . , L do
L1
q ← Sq + re, L

2
q ← Sq − re;

θ0
qk, . . . , θ

Mqk+1
qk ← CalInt(L1

q , L
2
q , vm);

for r ← 0, . . . ,Mqk do

Arqk ← CalCoef(L1
q , L

2
q , vm, θ

r
qk, θ

r+1
qk );

if Uq(t) is decreasing in [tk, tk+1] then
add constraint z ≥ AttEU(Fq, θ

r+
qk )

end
else

add constraint z ≥ AttEU(Fq, θ
(r+1)−
qk )

end

end

end

end

Theorem 2. CASS computes (in polynomial time) the exact solution (minimax) of the
game with discretized defender strategies and continuous attacker strategies.

Proof: According to Lemma 1, AttEU(Fq, t) is piecewise linear and discontinuity can
only occur at the intersection points θrqk. These intersection points divide the time space
into sub-intervals. Because of piecewise linearity, the supremum of AttEU(Fq, t) equals to
the limit of an endpoint of at least one sub-interval. For any defender’s strategy f that is
feasible, a feasible z of the linear program 16-17 is no less than any of the limit values at the
intersection points according to Constraint 17 and values at the discretized time points tk
according to Constraint 13, and thus v can be any upper bound of AttEU(Fq, t) for f . As z
is minimized in the objective function, z is no greater than the supremum of AttEU(Fq, t)
given any defender strategy f , and further z will be the minimum of the set of supremum
corresponding to all defender strategies. Thus we get the optimal defender strategy f .

The total number of variables in the linear program is O(MN2). The number of con-
straints represented in Algorithm 1 is O(MN2L) as the number of intersection points is at
most 2(M − 1)N2 for each target. The number of constraints represented in Constraints
8–13 is O(MN2). Thus, the linear program computes the solution in polynomial time.

Corollary 1. The solution of CASS provides a feasible defender strategy of the original
continuous game and gives exact expected value of that strategy.
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3.4 Generalized Model with Multiple Defender Resources

In this subsection, we generalize DASS and CASS to solve the problem with multiple de-
fender resources. When there are multiple patrollers, the patrollers will coordinate with
each other. Recall the protection coefficient CG in Definition 1, a target is better protected
when more patrollers are close to it (within radius re). So the protection provided to a
target is determined when all patrollers’ locations are known. Thus it is not sufficient to
calculate the probability that an individual edge is taken as in the single patroller case.
Under the presence of multiple patrollers, we need a more complex representation to ex-
plicitly describe the defender strategy. To illustrate generalization to the multiple defender
resources case, we first take two patrollers as an example. If there are two patrollers, the
patrol strategy can be represented using flow distribution variables {f(i1, j1, i2, j2, k)}. Here
the flow distribution variables are defined on the Cartesian product of two duplicated sets
of all feasible edges {Ei,j,k}. f(i1, j1, i2, j2, k) is the joint probability of the first patroller
moving from di1 to dj1 and the second patroller moving from di2 to di2 during time tk to
tk+1, i.e., taking edge Ei1,j1,k and Ei2,j2,k respectively. The corresponding marginal distri-
bution variable p(i1, i2, k) represents for the probability that the first patroller is at di1 and
the second at di2 at time tk. Protection coefficients C1 and C2 are used when one or two
patrollers are protecting the target respectively.

So the attacker’s expected utility can be written as

AttEU(Fq, t) = (1− (C1 · ω1(Fq, t) + C2 · ω2(Fq, t))) · Uq(t)

ω1(Fq, t) is the probability that only one patroller is protecting the target Fq at time t
and ω2(Fq, t) is the probability that both patrollers are protecting the target. For attacks
that happen at discretized points tk, we can make use of I(i, q, k) in Definition 4 and
I(i1, q, k) + I(i2, q, k) is the total number of patrollers protecting the ferry at time tk.

ω1(Fq, tk) =
∑

i1,i2:I(i1,q,k)+I(i2,q,k)=1
p(i1, i2, k)

ω2(Fq, tk) =
∑

i1,i2:I(i1,q,k)+I(i2,q,k)=2
p(i1, i2, k)

Constraints for attacks occurring in (tk, tk+1) can be calculated with an algorithm that
looks the same as Algorithm 1. The main difference is in the coefficient matrix Arqk and
the expression of AttEU. We set the values in the coefficient matrix Arqk(i1, j1, i2, j2) as C2

if both edges Ei1,j1,k and Ei2,j2,k are between L1
q and L2

q , and C1 if only one of the edges

protects the target. The attacker’s expected utility function in (θrqk, θ
r+1
qk ) is

AttEU(Fq, t) = (1−
∑

i1,j1,i2,j2

Arqk(i1, j1, i2, j2)f(i1, j1, i2, j2, k)) · Uq(t)

For a general case of W defender resources, we can use {f(i1, j1, ..., iW , jW , k)} to rep-
resent the patrol strategy.

Definition 6. The compact representation for multiple defender resources is a compact way
to represent the defender’s mixed strategy using flow distribution variables {f(i1, j1, ..., iW , jW , k)}.
{f(i1, j1, ..., iW , jW , k)} is the joint probability that patroller moving from diu at time tk to
dju at time tk+1 for u = 1 . . .W .
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Given the generalized compact representation, we get the following equations for calcu-
lating the attacker’s expected utility function and the protection probability:

AttEU(Fq, t) =

1−
W∑
Q=1

CQ · ωQ(Fq, t)

 · Uq(t)
ωQ(Fq, tk) =

∑
i1,...,iW :

W∑
u=1

I(iu,q,k)=Q
p(i1, . . . , iW , k)

Q is the number of patrollers protecting the target. We can modify Algorithm 1 to apply
for the multiple defender resource case. Set Arqk(i1, j1, ..., iW , jW ) as CQ if Q of the edges

{Eiu,ju,k} are between L1
q and L2

q .
We conclude the linear program for generalized CASS for multiple patrollers as follows.

min
f(i1,j1,...,iW ,jW ,k),p(i1,...,iW ,k)

z (18)

f(i1, j1, . . . , iW , jW , k) = 0, ∀i1, . . . , iW , j1, . . . , jW such that ∃u, |dju − diu | > vmδt
(19)

p(i1, . . . , iW , k) =

n∑
j1=1

. . .

n∑
jW =1

f(j1, i1, . . . , jW , iW , k − 1),∀i1, . . . , iW ,∀k > 1

(20)

p(i1, . . . , iW , k) =

n∑
j1=1

. . .

n∑
jW =1

f(i1, j1, . . . , iW , jW , k),∀i1, . . . , iW , ∀k < M

(21)
n∑

i1=1

. . .
n∑

iW =1

p(i1, . . . , iW , k) = 1, ∀k (22)

z ≥ AttEU(Fq, tk),∀q,∀k (23)

z ≥ max{AttEU(Fq, θ
r+
qk ),AttEU(Fq, θ

(r+1)−
qk )},∀k, ∀q,∀r (24)

The number of variables in the linear program is O(MN2W ) and the number of con-
straints is O(MNW ). It is reasonable to examine potentially more efficient alternatives.
We summarize the results of such an examination below concluding that using the current
linear program would appear to currently offer our best tradeoff in terms of solution qual-
ity and time at least for the current domains of application; although as discussed below,
significant future work might reveal alternatives approaches for other future domains.

The first question to examine is that of the computational complexity of the problem
at hand: generating optimal patrolling strategies for multiple patrollers on a graph. Unfor-
tunately, despite significant attention paid to the topic, currently, the complexity remains
unknown. More specifically, the question of computational complexity of generating patrols
for multiple defenders on graphs of different types has received significant attention (Letch-
ford, 2013; Korzhyk et al., 2010). These studies illustrate that in several cases the problem
is NP-hard, in some cases the problem is known to be polynomial time, but despite signifi-
cant effort, the problem complexity in many cases remains unknown (Letchford & Conitzer,
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2013). Unfortunately, our graph turns out to be different from the cases considered in their
work. Indeed, the DASS model can be explained as a game with homogeneous defender
resources patrolling on a graph, similar to the cases that have already been considered.
However, prior results cannot explain the complexity of our game as the structure of our
graph does not fit any of the prior graphs.

Given that computational complexity results are not directly available, we may examine
approaches to provide efficient approximations. Here we provide an overview of two such
approaches (providing experimental results in Section 7.1.6). Our first approach attempts
to provide a more compact representation in the hope of providing a speedup. To that end,
we apply an intuitive approach that uses individual strategy profile for each patroller and
then calculates a best possible mixed strategy combination. Unfortunately, this approach
is inefficient in run-time even for the DASS model and may result in a suboptimal solution.
Thus, although more compact, this approach fails to achieve our goal; we explain this
approach next.

Assume each patroller independently follows her own mixed strategy. Denote the indi-
vidual mixed strategy for patroller u as fu(iu, ju, tk), and the probability that a target is
protected by Q players can be represented as a polynomial expression of {fu(iu, ju, tk)} of
order Q. Then our optimization problem is converted to minimizing objective function z
with non-linear constraints. Assume we have two patrollers, and for a potential attack at
target q at time tk, we denote the probability that patroller u is protecting the target as
$u. $u is linear in fu, and the attacker’s expected utility for this attack can be represented
as

AttEU(Fq, tk) = (1− C1((1−$1)$2 + (1−$2)$1)− C2$1$2)Uq(tk)

So a constraint z ≥ AttEU(Fq, tk) is quadratic in f , due to the fact that the joint probability
is represented by the product of the individual probability of each patroller. These con-
straints are not ensured to have a convex feasible region and there is no known polynomial
algorithms for solving this kind of non-convex optimization problems. We attempt to solve
the problem by converting it into a mathematical program with a non-convex objective func-
tion and linear constraints, i.e., instead of minimizing z with constraints z ≥ AttEU(Fq, tk),
we incorporate the constraints into the objective function as

z = max
q,k
{AttEU(Fq, tk)} (25)

The results in Section 7.1.6 show that when we solve this mathematical program in MAT-
LAB using function fmincon with interior-point method for the DASS model, the algorithm
fails to get to a feasible solution efficiently and even when enough time is given, the solution
can still be suboptimal as it may get stuck at a local minimum. To conclude, although this
approach is more compact and helps in saving memory, it is inefficient in run-time and may
result in loss in solution quality.

Our second approach takes a further step to reduce the run-time complexity, making
it a polynomial approximation algorithm, but it can lead to a high degradation in solu-
tion quality. In this approach, we iteratively compute the optimal defender strategy for a
newly added resource unit given the existing strategies for the previous defender resources.
Namely, we first calculate f1(i1, j1, tk) as if only one patroller is available and then calculate
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f2(i2, j2, tk) given the value of f1(i1, j1, tk). In this way, we need to solve W linear programs
with complexity O(MN2) so this approach is much faster compared to the former one. Un-
fortunately, this approach fails to capture the coordination between the patrollers effectively
and thus may result in a high degradation in solution quality. For example, suppose there
are only two targets of constant utility U , one target stays at terminal A and the other one
stays at terminal B. Further, suppose the protection coefficient is always 1 when a target
is protected by one or more patrollers. When two patrollers are available, the optimal so-
lution would be each protect one of the targets all the way, so both targets are protected
with probability 1 and the expected utility function for the attacker is 0. If the defender
strategy is calculated for each patroller sequentially as discussed above, the solution would
be protect each target with probability 0.5 for both players, making the attacker’s expected
utility 0.25%U . In other words, we reach a suboptimal solution, wasting resources when
both patrollers end up protecting the same target with probability 0.25. In this case, we
can already see that there is a 0.25 probability that a target is unprotected when clearly
an optimal solution existed that protected all targets with probability 1. Thus, even with
just two patrollers this solution leads to a potentially significant loss in expected utility;
therefore, this solution clearly appears to be inadequate for our purposes.

Given the above discussion, it would appear that a fast approximation may lead to
significant losses in solution quality or may not be efficient enough. Fortunately for current
application domains, such as the current deployment of CASS for protecting ferries (e.g.,
the Staten Island Ferry in New York), the number of defender resources are limited. The
lack of resources is the main reason that optimization using security games becomes critical.
As a result, our current approach of CASS is adequate for current domains such as ferry
protection. Further research about scale-up is an issue for future work.

4. Equilibrium Refinement

A game often has multiple equilibria. Since our game is zero-sum, all equilibria achieve
the same objective value. However, if an attacker deviates from his best response, some
equilibrium strategies for the defender may provide better results than others.

Consider the following example game. There are two targets moving during [t1, t2] (no
further discretization): one moves from d3 to d2 and the other moves from d1 to d2 (See
Figure 6(a)). Suppose d3 − d2 = d2 − d1 = ∆d and re = 0.5∆d. There is only one patroller
available and the protection coefficient C1 = 1. Both targets’ utility functions decrease
from 10 to 1 in [t1, t2] (See Figure 6(b)). In one equilibrium, f3,2,1 = f1,2,1 = 0.5, i.e., the
patroller randomly chooses one target and follows it all the way. In another equilibrium,
f3,3,1 = f1,1,1 = 0.5, i.e., the patroller either stays at d1 or at d3. In either equilibrium,
the attacker’s best response is to attack at t1, with a maximum expected utility of 5.
However, if an attacker is physically constrained (e.g., due to launch point locations) to
only attack no earlier than t0 and t0 > θ1

1 (where θ1
1 is the only intersection time point and

θ1
1 = (t1 + t2)/2), against both defender strategies he will choose to attack either of the

targets at t0. The attacker’s expected utility is Uq(t0)/2 in the first equilibrium because
there is 50% probability that the patroller is following that target. However in the second
equilibrium, he is assured to succeed and get a utility of Uq(t0) because the distance between
the chosen target and d1 (or d3) is larger than re at t0, i.e., the chosen target is unprotected
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at t0. In this case, the defender strategy in the first equilibrium is preferable to the one in
the second; indeed, the first defender strategy dominates the second one, by which we mean
the first is equally good or better than the second no matter what strategy the attacker
chooses. We provide a formal definition of dominance in Section 4.1.
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(a) Two targets moves with schedules S1
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(b) Utility function is the same for both
targets and is decreasing linearly over
time.

Figure 6: An example to show one equilibrium outperforms another when the attacker is
constrained to attack in [t0, t2] if t0 > θ1

1.

Our goal is to improve the defender strategy so that it is more robust against constrained
attackers while keeping the defender’s expected utility against unconstrained attackers the
same. This task of selecting one from the multiple equilibria of a game is an instance of
the equilibrium refinement problem, which has received extensive study in game theory
(van Damme, 1987; Fudenberg & Tirole, 1991; Miltersen & Sørensen, 2007). For finite
security games, An, Tambe, Ordóñez, Shieh, and Kiekintveld (2011) proposed techniques
that provide refinement over Stackelberg equilibrium. However there has been little prior
research on the computation of equilibrium refinements for continuous games.

In this section, we introduce two equilibrium refinement approaches: “route-adjust”
(Section 4.1) and “flow-adjust” (Section 4.2). Both approaches can be applied to improve
any feasible defender strategy and when they are applied to an optimal defender strategy
in an existing equilibrium, we will get new equilibria with more robust optimal defender
strategies.

For expository simplicity, we still use the single-resource case as an example, but both
methods are applicable to the multiple-resources case. The results shown in evaluation
section experimentally illustrates these two refinement methods can significantly improve
the performance.

4.1 Route Adjust

Given that f is the defender strategy of one equilibrium of the game, if we can find a defender
strategy f ′ such that for any attacker strategy (q, t), the defender’s expected utility under
f ′ is equal to or higher than the one under f , and the one under f ′ is strictly higher than
the one under f for at least one specific attacker strategy, we say that f ′ dominates f .
Intuitively, the defender should choose f ′ instead of f as f ′ is at least as good as f for any
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attacker strategy and can achieve better performance for some attacker strategies. So an
equilibrium with strategy f ′ is more robust to unknown deviations on the attacker side. We
give the formal definition of dominance as follows.

Definition 7. Defender strategy f dominates f ′ if ∀q, t, DefEUf (Fq, t) ≥ DefEUf ′(Fq, t),
and ∃q, t, DefEUf (Fq, t) > DefEUf ′(Fq, t); or equivalently in this zero-sum game, ∀q, t,
AttEUf (Fq, t) ≤ AttEUf ′(Fq, t), and ∃q, t, AttEUf (Fq, t) < AttEUf ′(Fq, t).

Corollary 2. Defender strategy f dominates f ′ if ∀q, t, ω(Fq, t) ≥ ω′(Fq, t) and ∃q, t,
ω(Fq, t) > ω′(Fq, t).

Definition 7 simply restates the commonly used weak dominance definition in game
theory for this specific game. Corollary 2 follows from Equation (1).

In this section, we introduce the route-adjust approach which gives a procedure for
finding a defender strategy f1 that dominates the given defender strategy f0. Route-adjust
provides final routes using these steps: (i) decompose flow distribution f0 into component
routes; (ii) for each route, greedily find a route which provides better protection to targets;
(iii) combine the resulting routes into a new flow distribution, f1, which dominates f0 if
f1 is different from f0. The detailed process is listed in Algorithm 2. We illustrate this
approach using a simple dominated strategy shown in Figure 3.

To accomplish step (i), we decompose the flow distribution by iteratively finding a route
that contains the edge with minimum probability. As shown in Figure 7, we first randomly
choose a route that contains edge E1,2,2, as f(1, 2, 2) = 0.4 is the minimum among all flow
variables. We choose R2 = (d1, d1, d2), and set p(R2) = f(1, 2, 2) = 0.4. Then for each
edge of the route R2 we subtract 0.4 from the original flow, resulting in a residual flow. We
continue to extract routes from the residual flow until there is no route left. Denote by Z
the number of non-zero edges in the flow distribution graph, then Z is decreased by at least
1 after each iteration. So the algorithm will terminate in at most Z steps and at most Z
routes are found. The result of step (i) is a sparse description of a defender mixed strategy
in full representation. As we will discuss in Section 6, this decomposition constitutes one
method of executing a compact strategy.

For step (ii), we adjust each of the routes greedily. To that end, we first introduce the
dominance relation of edges and routes, using the intersection points θrqk and the coefficient
matrix Arqk(i, j) defined in Section 3.3.

Definition 8. Edge Ei,j,k dominates edge Ei′,j′,k in [tk, tk+1] if Arqk(i, j) ≥ Arqk(i
′, j′),

∀q = 1..L, ∀r = 0..Mqk, and ∃q, r such that Arqk(i, j) > Arqk(i
′, j′).

The dominance relation of edges is based on the comparison of protection provided to
the targets in each sub-interval. In the following dominance relation of routes, we denote
the edge Eru(k),ru(k+1),k as E(u, k) to simplify the notation, .

Definition 9. Route Ru = (dru(1), . . . , dru(M)) dominates Ru′ = (dru′ (1), . . . , dru′ (M)) if
∀k = 1 . . .M−1, E(u, k) = E(u′, k) or E(u, k) dominates E(u′, k) and ∃k such that E(u, k)
dominates E(u′, k).

Route Ru dominates Ru′ if each edge of Ru is either the same as or dominates the
corresponding edge in Ru′ and at least one edge in Ru dominates the corresponding edge
in Ru′ .
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Algorithm 2: Route-Adjust

Input: a mixed defender strategy f
Output: an updated mixed defender strategy f ′

(i) Decompose f into multiple routes by iteratively finding a route that contains
the edge with minimum probability:

(a) Initialize the remaining flow distribution f̃ = f and route set S = ∅.
Initialize probability distribution over routes p(Ru) = 0, ∀u.

(b) while max f̃(i, j, k) > 0 do

i. Set (i0, j0, k0) = arg mini,j,k:f̃(i,j,k)>0 f̃(i, j, k).

ii. Set fmin = f̃(i0, j0, k0).

iii. Find an arbitrary route Ru0 such that ru0(k0−1) = i0 and ru0(k0) =
j0 (i.e., edge Ei0,j0,k0 is in the route) and f̃(ru0(k), ru0(k+1), k) > 0,
∀k (i.e., all edges in the route has non-zero remaining flow).

iv. Add Ru0 to S and set p(Ru0) = fmin.

v. Set f̃(i, j, k) = f̃(i, j, k)− fmin if ru0(k − 1) = i and ru0(k) = j.

end

(ii) Adjust each route in S greedily to get a new set of routes S′ and the corre-
sponding new probability distribution p′:

(a) Initialize the new set S′ = ∅ and new probability distribution p′(Ru) = 0,
∀u.

(b) while S 6= ∅ do

i. Pick a route Ru from S.

ii. Adjust Ru to get new route Ru′ : for a given Ru and a specified
k∗, set ru′(k) = ru(k) if k 6= k∗. Set ru′(k

∗) = i0 such that: 1)
E(u1, k

∗− 1) and E(u1, k
∗) meet the speed constraint; 2) Ru′ dom-

inates Ru with the choice of i0; 3) Ru′ is not dominated by a route
with any other choice of i0. If no such i0 exists, set ru′(k

∗) = ru(k∗)

iii. Add Ru to S′ and set p′(Ru′) = p(Ru).

iv. Remove Ru from S.

end

(iii) Reconstruct a new compact representation f ′ from S′ and p′ according to
Equation 4.
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Figure 7: Step (i): decomposition. Every time a route containing the minimal flow variable
is subtracted and a residual graph is left for further decomposition. The origi-
nal flow distribution is thus decomposed into three routes R2, R1, and R3 with
probability 0.4, 0.2 and 0.4 respectively.

Denote the original route to be adjusted as Ru and the new route as Ru′ . A greedy
way to improve the route is to replace only one node in the route. If we want to replace
the node at time tk∗ , then we have ru′(k) = ru(k), ∀k 6= k∗ and dru(k∗) in the original
route is replaced with dru′ (k∗). So the patroller’s route changes only in [tk∗−1, tk∗+1]. Thus,
only edges E(u, k∗− 1) and E(u, k∗) in the original route are replaced by E(u′, k∗− 1) and
E(u′, k∗) in the new route.

We are trying to find a new route Ru′ that dominates the original route to provide equal
or more protection to the targets. So the selection of ru′(k

∗) needs to meet the requirements
specified in Algorithm 2. The first one describes the speed limit constraint. The second
one actually requires the changed edges E(u′, k∗ − 1) and E(u′, k∗) are either equal to or
dominate the corresponding edges in the original route (and dominance relation exist for at
least one edge). The third requirement attains a local maximum. If such a new node does
not exist for a specified k∗, we return the original route Ru.

We can iterate this process for the new route and get a final route denoted by Ru′ after
several iterations or when the state of convergence is reached. When the state of convergence
is reached, the resulting route Ru′ keeps unchanged no matter which k∗ is chosen for the
next iteration.

For the example in Figure 7, assume the only target’s moving schedule is d1 → d1 → d2,
d3 − d2 = d2 − d1 = ∆d, re = 0.1∆d and utility function is constant. We adjust each route
for only one iteration by changing the patroller’s position at time t3, i.e., ru(3). As t3 is
the last discretized time point, only edge E(u, 2) may be changed. For R1 = (d1, d1, d1),
we enumerate all possible patroller’s positions at time t3 and choose one according to the
three constraints mentioned above. In this case, the candidates are d1 and d2, so the
corresponding new routes are R1 (unchanged) and R2 = (d1, d1, d2) respectively. Note that
edge Ed1,d2,2 dominates Ed1,d1,2 because the former one protects the target all the way in
[t2, t3] and thus R2 dominates R1. So d2 is chosen as the patroller’s position at t3 and R2
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is chosen as the new route. The adjustment for all routes with non-zero probability after
decomposition is shown in Table 2.

Ru p(Ru) after decomposition Adjusted Routes

R1 = (d1, d1, d1) 0.2 (d1, d1, d2) = R2

R2 = (d1, d1, d2) 0.4 (d1, d1, d2) = R2

R3 = (d2, d1, d1) 0.4 (d2, d1, d2) = R4

Table 2: Step (ii): Adjust each route greedily.

Ru p′(Ru) after adjustment Composed Flow Distribution

R1 = (d1, d1, d1) 0

�� ��

��

��
���

��

R2 = (d1, d1, d2) 0.6
R3 = (d2, d1, d1) 0
R4 = (d2, d1, d2) 0.4

Table 3: Step (iii): compose a new compact representation.

The new routes we get after step (ii) are same as the original routes or dominate the
original routes. That is, whenever a route Ru is chosen according to the defender mixed
strategy resulting from step (i), it is always equally good or better to choose the corre-
sponding new route Ru′ instead, because Ru′ provides equal or more protection to the
targets than Ru. Suppose there are H possible routes in the defender strategy after step
(i), denoted as R1, ..., RH . After adjusting the routes, we get a new defender strategy
(p′(R1), p′(R2), ..., p′(RH)) in full representation (See Table 3). Some routes are taken with
higher probability (e.g. p′(R2) = 0.2 + 0.4 = 0.6) and some are with lower probability
(e.g. p′(R3) = 0) compared to the original strategy. For step (iii), we reconstruct a new
compact representation according to Equation 4. This is accomplished via a process that
is the inverse of decomposition and is exactly the same as how we map a strategy in full
representation into compact representation. For the example above, the result is shown in
Table 3.

Theorem 3. After steps (i)–(iii), we get a new defender strategy f1 that dominates the
original one f0 if f1 is different from f0.

Proof: We continue to use the notation that the decomposition in step (i) yields the
routes R1, ..., RH . For each flow distribution variable in the original distribution f0(i, j, k), it
is decomposed intoH sub-flows {f0

u(i, j, k)} according to the route decomposition. f0
u(i, j, k) =

p(Ru) if i = ru(k), j = ru(k + 1) and f0
u(i, j, k) = 0 otherwise. Thus we have the following

equation.

f0(i, j, k) =
∑H

u=1
f0
u(i, j, k) (26)

=
∑

u:ru(k)=i,ru(k+1)=j
f0
u(i, j, k) (27)

After adjust each route separately, each non-zero sub-flow f0
u(i, j, k) on edge E(u, k) is moved

to edge E(u′, k) as route Ru is adjusted to Ru′ . Reconstructing the flow distribution f1
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can also be regarded as adding up all the sub-flows after adjustment together on each edge.
That means, f1 is composed of a set of sub-flows after adjustment, denoted as {f1

u(i′, j′, k)}.
The subscript u represents for the index of the original route to indicate it is moved from
edge E(u, k). So f1

u(i′, j′, k) = f0
u(ru(k), ru(k + 1), k), if i′ = Ru′(k) and j′ = Ru′(k + 1);

otherwise f1
u(i′, j′, k) = 0. Similarly to Equation 27, we have the following equation for f1.

f1(i′, j′, k) =
∑H

u=1
f1
u(i′, j′, k) (28)

=
∑

u′:ru′ (k)=i′,ru′ (k+1)=j′
f1
u(i′, j′, k) (29)

Based on how the adjustment is made, Ru′ is same as or dominates Ru and thus E(u′, k)
is same as or dominates E(u, k). So if edge E(u, k) protects target Fq at time t, the
corresponding edge E(u′, k) after adjustment also protects target Fq at time t.

Recall from Section 3.3 that ω(Fq, t) is the sum of f(i, j, k) whose corresponding edge
Ei,j,k can protect the target Fq at time t. We denote by ω0(Fq, t) and ω1(Fq, t) the prob-
abilities of protection corresponding to f0 and f1 respectively. According to Equation 27,
ω0(Fq, t) can be viewed as the sum of all the non-zero sub-flows f0

u(i, j, k) where the corre-
sponding E(u, k) protects the target Fq at time t. If f0

u(i, j, k) is a term in the summation
to calculate ω0(Fq, t), it means E(u, k) protects Fq at t and thus the corresponding E(u′, k)
protects Fq at t, so the corresponding sub-flow f1

u(ru′(k), ru′(k+1), k) in f1 is also a term in
the summation to calculate ω1(Fq, t). It leads to the conclusion ω0(Fq, t) ≤ ω1(Fq, t). Note
that if ∀q, t, ω0(Fq, t) = ω1(Fq, t), then all routes kept unchanged in step (ii) as otherwise
it contradicts with the fact that the new route dominates the original route. According to
Corollary 2, we have f1 dominates f0 if it is different from f0.

In the example in Figure 7, f0(1, 1, 2) is decomposed into two non-zero terms f0
1 (1, 1, 2) =

0.2 and f0
3 (1, 1, 2) = 0.4 along with routes R1 and R3 (See Figure 7). After adjustment, we

get the corresponding subflows f1
1 (1, 2, 2) = 0.2, f1

3 (1, 2, 2) = 0.4. Recall that the target’s
schedule is d1 → d1 → d2. The flow distribution after adjustment (See Table 5) gives more
protection to the target in [t2, t3]. Since the flow is equal from t1 to t2 (and therefore the
protection is the same), overall the new strategy dominates the old strategy.

Therefore, if we apply route-adjust to the optimal defender strategy calculated by CASS
we get a more robust equilibrium. While step (iii) allows us to prove Theorem 3, notice
that at the end of step (ii), we have a probability distribution over a set of routes from
which we can sample actual patrol routes. For two or more defender resources, a generalized
version of Definition 8 can be used to define the dominance relation on the edge tuple
(Ei1,j1,k, ..., EiW ,jW ,k) with coefficient matrix for multiple patrollers Arqk(i1, j1, ..., iW , jW ).

There are other ways to adjust each route. Instead of adjusting only one node in the
route, we can adjust more consecutive nodes at a time, for example, we can adjust both
ru′(k

∗) and ru′(k
∗+1) by checking edges E(u′, k∗−1), E(u′, k∗) and E(u′, k∗+1). However,

we need to tradeoff the performance and the efficiency of the algorithm. This tradeoff will
be further discussed in Section 7.

4.2 Flow Adjust

Whereas route-adjust tries to select an equilibrium that is robust against attackers playing
suboptimal strategies, the second approach, flow-adjust, attempts to select a new equilibri-
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um that is robust to rational attackers that are constrained to attack during any time inter-
val [tk, tk+1]. As we will discuss below, flow-adjust focuses on a weaker form of dominance,
which implies that a larger set of strategies are now dominated (and thus could potentially
be eliminated) compared to the standard notion of dominance used by route-adjust; how-
ever flow-adjust does not guarantee the elimination of all such dominated strategies. We
denote by DefEUk

f the defender expected utility when an attacker is constrained to attack
during time interval [tk, tk+1] when the attacker provides his best response given the de-
fender strategy f . Formally, DefEUk

f = minq∈{1...L},t∈[tk,tk+1]{DefEUf (Fq, t)}. We give the
following definition of “local dominance”.

Definition 10. Defender strategy f locally dominates f ′ if DefEUk
f ≥ DefEUk

f ′, ∀k.2

Corollary 3. Defender strategy f locally dominates f ′ if

min
q∈{1...L},t∈[tk,tk+1]

{DefEUf (Fq, t)} ≥ min
q∈{1...L},t∈[tk,tk+1]

{DefEUf ′(Fq, t)}, ∀k,

or equivalently in this zero-sum game,

max
q∈{1...L},t∈[tk,tk+1]

{AttEUf (Fq, t)} ≤ max
q∈{1...L},t∈[tk,tk+1]

{AttEUf ′(Fq, t)}, ∀k.

Corollary 3 follows from the fact that the attacker plays a best response given the
defender strategy, and it means that f locally dominates f ′ if the maximum of attacker
expected utilities in each time interval [tk, tk+1] given f is no greater than that of f ′.

Compared to Definition 7, which gives the standard condition for dominance, local
dominance is a weaker condition; that is, if f dominates f ′ then f locally dominates f ′,
however the converse is not necessarily true. Intuitively, whereas in Definition 7 the attacker
can play any (possibly suboptimal) strategy, here the attacker’s possible deviations from
best response are more restricted. As a result, the set of locally dominated strategies
includes the set of dominated strategies. From Definition 10, if f locally dominates f ′, and
the attacker is rational (i.e., still playing a best response) but constrained to attack during
some time interval [tk, tk+1], then f is preferable to f ′ for the defender. A further corollary
is that even if the rational attacker is constrained to attack in the union of some of these
intervals, f is still preferable to f ′ if f locally dominates f ′. One intuition for the local
dominance concept is the following: suppose we suspect the attacker will be restricted to
a (unknown) subset of time, due to some logistical constraints. Such logistical constraints
would likely make the restricted time subset to be contiguous or a union of a small number
of contiguous sets. Since such sets are well-approximated by unions of intervals [tk, tk + 1],
local dominance can serve as an approximate notion of dominance with respect to such
attackers.

Flow-adjust looks for a defender strategy f1 that locally dominates the original defender
strategy f0. To achieve this, we simply adjust the flow distribution variables f(i, j, k) while
keeping the marginal probabilities p(i, k) the same. Figure 8 shows an example game with
two discretized intervals [t1, t2] and [t2, t3] (only the first interval is shown). Suppose the
maximal attacker expected utility is 5U0 in this equilibrium and is attained in the second

2. We don’t require that there exists at least one k such that DefEUk
f > DefEUk

f ′ .
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interval [t2, t3]. If the attacker’s utility for success is a constant U0 in the first interval
[t1, t2], then the defender strategy in [t1, t2] could be arbitrarily chosen because the attacker’s
expected utility in [t1, t2] in worst case is smaller than that of the attacker’s best response in
[t2, t3]. However, if a attacker is constrained to attack in [t1, t2] only, the defender strategy
in the first interval will make a difference. In this example, there is only one target moving
from d1 to d2 during [t1, t2]. The schedule of the ferry is shown as dark lines and the parallel
lines L1

1 and L2
1 with respect to protection radius re = 0.2(d2 − d1) are shown as dashed

lines. The marginal distribution probabilities p(i, k) are all 0.5 and protection coefficient
C1 = 1. In f0, the defender’s strategy is taking edges E1,1,1 and E2,2,1 with probability
0.5 and the attacker’s maximum expected utility is U0, which can be achieved around time
(t1 + t2)/2 when neither of the two edges E1,1,1 and E2,2,1 are within the target’s protection
range. If we adjust the flows to edge E1,2,1 and E2,1,1, as shown in Figure 8(b), the attacker’s
maximum expected utility in [t1, t2] is reduced to 0.5U0 as edge E1,2,1 is within the target’s
protection range all the way. So a rational attacker who is constrained to attack between
[t1, t2] will get a lower expected utility given defender strategy f1 than given f0, and thus
the equilibrium with f1 is more robust to this kind of deviation on the attacker side.
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(a) f0: the patroller is taking
edges E1,1,1 and E2,2,1 with
probability 0.5.
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(b) f1: the patroller is taking
edges E1,2,1 and E2,1,1 with
probability 0.5.

Figure 8: An example of flow adjust. An rational attacker who is constrained to attack in
[t1, t2] will choose to attack around time (t1 + t2)/2 to get utility U0 given f0 and
attack around t1 or t2 to get utility 0.5U0 given f1.

So in flow-adjust, we construct M − 1 new linear programs, one for each time interval
[tk∗ , tk∗+1], k∗ = 1 . . .M − 1 to find a new set of flow distribution probabilities f(i, j, k∗)
to achieve the lowest local maximum in [tk∗ , tk∗+1] with unchanged p(i, k∗) and p(i, k∗+ 1).
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The linear program for an interval [t∗k, tk∗+1] is shown below.

min
f(i,j,k∗)

v

f(i, j, k∗) = 0, if |dj − di| > vm ∗ δt

p(i, k∗ + 1) =

n∑
j=1

f(j, i, k∗), ∀i ∈ {1 . . . n}

p(i, k∗) =
n∑
j=1

f(i, j, k∗), ∀i ∈ {1 . . . n}

v ≥ AttEU(Fq, tk), ∀q ∈ {1 . . . L}, k ∈ {k∗, k∗ + 1}

v ≥ max{AttEU(Fq, θ
r+
qk∗), AttEU(Fq, θ

(r+1)−
qk∗ )}

∀q ∈ {1 . . . L}, r ∈ {0 . . .Mqk∗}

While the above linear program appears similar to the linear program of CASS, they have
significant differences. Unlike CASS, the marginal probabilities p(i, k∗) here are known
constants and are provided as input and as mentioned above, there is a separate program
for each [tk∗ , tk∗+1]. Thus, we get f(i, j, k∗) such that the local maximum in [tk∗ , tk∗+1] is
minimized. Denote the minimum as v1

k∗ . From the original flow distribution f0, we get
AttEUf0(Fq, t) and we denote the original local maximum value in [tk∗ , tk∗+1] as v0

k∗ . As
the subset {f0(i, j, k∗)} of the original flow distribution f0 is a feasible solution of the linear
program above, we have v1

k∗ ≤ v0
k∗ , noting that the equality happens for the interval from

which the attacker’s best response is chosen.
Note that any change made to f(i, j, k) in an interval [t∗k, tk∗+1] will not affect the

performance of f in other intervals as the marginal probabilities p(i, k) are kept the same,
i.e., changing f(i, j, k∗) based on the linear program above is independent from any change
to f(i, j, k), k 6= k∗. So we can solve the M − 1 linear programs independently. After
calculating f(i, j, k∗) for all k∗ = 1..M − 1, we can get the new defender strategy f1 by
combining the solutions f(i, j, k∗) of the different linear programs together. As v1

k∗ ≤ v0
k∗ ,

we have

max
q∈{1...L},t∈[tk∗ ,tk∗+1]

AttEUf0(Fq, t) ≤ max
q∈{1...L},t∈[tk∗ ,tk∗+1]

AttEUf1(Fq, t)

for all k∗ = 1..M − 1, i.e., f1 locally dominates f0.
On the other hand, while we have restricted the strategies to have the same p(i, k),

there may exist another strategy f2 with a different set of p(i, k) that locally dominates f1.
Finding locally dominating strategies with different p(i, k) from the original is a topic of
future research.

Although the two refinement approaches we provide do not necessarily lead to a non-
dominated strategy under the corresponding dominance definition, these two approaches
are guaranteed to find a more robust (or at least indifferent) equilibrium when faced with
constrained attackers compared to the original equilibrium we obtain from CASS. Clearly,
these two refinement approaches do not exhaust the space of refinement approaches —
other refinement approaches are possible that may lead to other equilibria that are better
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than (e.g. dominate) the one found by CASS. However, it is likely that different defender
strategies resulting from different equilibrium refinements are not comparable to each other
in terms of dominance, i.e., with some constrained attackers, one equilibrium might turn
out to be better and with other constrained attackers, another equilibrium might be better.
Their computational costs may differ as well. Thus, understanding this space of refinement
approaches in terms of their computational cost and output quality, and determining which
approach should be adopted under which circumstances is an important challenge for future
work.

5. Extension To Two-Dimensional Space

Both DASS and CASS presented in Section 3 are based on the assumption that both the
targets and the patrollers move along a straight line. However, a more complex model is
needed in some practical domains. For example, Figure 9 shows a part of the route map of
Washington State Ferries, where there are several ferry trajectories. If a number of patroller
boats are tasked to protect all the ferries in this area, it is not necessarily optimal to simply
assign a ferry trajectory to each of the patroller boat and calculate the patrolling strategies
separately according to CASS described in Section 3. As the ferry trajectories are close to
each other, a patrolling strategy that can take into account all the ferries in this area will be
much more efficient, e.g., a patroller can protect a ferry moving from Seattle to Bremerton
first, and then change direction halfway and protect another ferry moving from Bainbridge
Island back to Seattle.

Figure 9: Part of route map of Washington State Ferries

In this section, we extend the previous model to a more complex case, where the tar-
gets and patrollers move in a two-dimensional space and provide the corresponding linear-
program-based solution. Again we use a single defender resource as an example, and gen-
eralize to multiple defenders at the end of this section.

5.1 Defender Strategy for 2-D

As in the one-dimensional case, we need to discretize the time and space for the defender
to calculate the defender’s optimal strategy. The time interval T is discretized into a set
of time points T = {tk}. Let G = (V,E) represents the graph where the set of vertices V
corresponds to the locations that the patrollers may be at, at the discretized time points in
T , and E is the set of feasible edges that the patrollers can take. An edge e ∈ E satisfies
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the maximum speed limit of patroller and possibly other practical constraints (e.g., a small
island may block some edges).

5.2 DASS for 2-D

When the attack only occurs at the discretized time points, the linear program of DASS
and described in Section 3 can be applied to the two-dimensional settings when the distance
in Constraint 9 is substituted with Euclidean distance in 2-D space of nodes Vi and Vj .

min
f(i,j,k),p(i,k)

v (30)

f(i, j, k) ∈ [0, 1],∀i, j, k (31)

f(i, j, k) = 0, ∀i, j, k such that ||Vj − Vi|| > vmδt (32)

p(i, k) =

N∑
j=1

f(j, i, k − 1),∀i,∀k > 1 (33)

p(i, k) =
N∑
j=1

f(i, j, k), ∀i,∀k < M (34)

N∑
i=1

p(i, k) = 1,∀k (35)

v ≥ AttEU(Fq, tk),∀q,∀k (36)

Note that f(i, j, k) now represents the probability that a patroller is moving from node Vi to
Vj during [tk, tk+1]. Recall in Figure 2.1, a patroller protects all targets within her protective
circle of radius re. However, in the one-dimensional space, we only care about the straight
line AB, so we used βq(t) = [max{Sq(t) − re, d1},min{Sq(t) + re, dN}] as the protection
range of target Fq at time t, which is in essence a line segment. In contrast, here the whole
circle needs to be considered as the protection range in the two-dimensional space and the
extended protection range can be written as βq(t) = {V = (x, y) : ||V − Sq(t)|| ≤ re}. This
change affects the value of I(i, q, k) and thus the value of AttEU(Fq, tk) in Constraint 36.

5.3 CASS for 2-D

When the attacking time t can be chosen from the continuous time interval T , we need to
analyze the problem in a similar way as in Section 3.3. The protection radius is re, which
means only patrollers located within the circle whose origin is Sq(t) and radius is re can
protect target Fq. As we assume that the target will not change its speed and direction
during time [tk, tk+1], the circle will also move along a line in the 2-D space. If we track the
circle in a 3-D space where the x and y axes indicate the position in 2-D and the z axis is
the time, we get an oblique cylinder, which is similar to a cylinder except that the top and
bottom surfaces are displaced from each other (See Figure 10). When a patroller moves
from vertex Vi(∈ V ) to vertex Vj during time [tk, tk+1], she protects the target only when
she is within the surface. In the 3-D space we described above, the patroller’s movement
can be represented as a straight line.
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Figure 10: An illustration of the calculation of intersection points in the two-dimensional
setting. The x and y axes indicates the position in 2-D and the z axis is the
time. To simplify the illustration, z axis starts from time tk. In this example,
there are two intersection points occurring at time points ta and tb.

Intuitively, there will be at most two intersection points between the patroller’s route
in 3-D space and the surface. This can be proved by analytically calculating the exact
time of these intersection points. Assume the patroller is moving from V1 = (x1, y1) to
V2 = (x2, y2) and the target is moving from Sq(tk) = (x̂1, ŷ1) to Sq(tk+1) = (x̂2, ŷ2) during
[tk, tk+1] (an illustration is shown in Figure 10). To get the time of the intersection points,
we solve a quadratic equation with these coordination parameters and protection radius
re. We present the detailed calculation in Appendix B. If a root of the quadratic equation
is within the interval [tk, tk+1], it indicates that the patroller’s route intersects with the
surface at this time point. So there will be at most two intersection points. Once we find all
these intersection points, the same analysis in Section 3.3 applies and we can again claim
Lemma 1. So we conclude that we only need to consider the attacker’s strategies at these
intersection points. We use the same notation θrqk as in the one-dimensional case to denote
the sorted intersection points and get the following linear program for the 2-D case.

min
f(i,j,k),p(i,k)

v (37)

subject to constraints(31 . . . 36)

v ≥ max{AttEU(Fq, θ
r+
qk ),AttEU(Fq, θ

(r+1)−
qk )} (38)

∀k ∈ {1 . . .M}, q ∈ {1 . . . L}, r ∈ {0 . . .Mqk}

Algorithm 1 can still be used to add constraints to the linear program of CASS for the
2-D case. The main difference compared to CASS in the 1-D case is that since Euclidean
distance in 2-D is used in Constraint 32 we need to use the extended definition of βq(t) in
2-D when deciding the entries in the coefficient matrix Arqk(i, j).

For multiple defender resources, again the linear program described in Section 3.4 is ap-
plicable when the extended definition of βq(t) is used to calculate AttEU and Constraint 19
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is substituted with the following constraint:

f(i1, j1, . . . , iW , jW , k) = 0, ∀i1, . . . , iW , j1, . . . , jW such that ∃u, ‖Vju − Viu‖ > vmδt.

6. Route Sampling

We have discussed how to generate an optimal defender strategy in the compact represen-
tation; however, the defender strategy will be executed as taking a complete route. So
we need to sample a complete route from the compact representation. In this section, we
give two methods of sampling and show the corresponding defender strategy in the full
representation when these methods are applied.

The first method is to convert the strategy in the compact representation into a Markov
strategy. A Markov strategy in our setting is a defender strategy such that the patroller’s
movement from tk to tk+1 depends only on the location of the patroller at tk. We denote
by α(i, j, k) the conditional probability of moving from di to dj during time tk to tk+1 given
that the patroller is located at di at time tk. In other words α(i, j, k) represents the chance
of taking edge Ei,j,k given that the patroller is already located at node (tk, di). Thus, given
a compact defender strategy specified by f(i, j, k) and p(i, k), we have

α(i, j, k) = f(i, j, k)/p(i, k), if p(i, k) > 0. (39)

α(i, j, k) can be an arbitrary number if p(i, k) = 0. We can get a sampled route by first
determining where to start patrolling according to p(i, 1); then for each tk, randomly choose
where to go from tk to tk+1 according to the conditional probability distribution α(i, j, k).
The distribution from this sampling procedure matches the given marginal variables as each
edge Ei,j,k is sampled with probability p(i, k)α(i, j, k) = f(i, j, k). This sampling method
actually leads to a full representation where route Ru = (dru(1), dru(2), ..., dru(M)) is sampled

with probability p(ru(1), 1)
∏M−1
k=1 α(ru(k), ru(k + 1), k), the product of the probability of

the initial distribution and the probability of taking each step. This method is intuitively
straightforward and the patrol route can be decided online during the patrol, i.e., the
position of the patroller at tk+1 is decided when the patroller reaches its position at tk,
which makes the defender strategy more unpredictable. The downside of the method is
that the number of routes chosen with non-zero probability can be as high as NM . For
2-D case, the patroller is located at node Vi at time tk. The sampling process is exactly
the same when α(i, j, k) is used to denote the probability of moving from Vi to Vj during
[tk, tk+1].

The second method of sampling is based on the decomposition process mentioned in
Section 4.1 (step (i)). As we discussed above for the first sampling method, sampling is
essentially restoring a full representation from the compact representation. As shown in
Table 1, there are multiple ways to assign probabilities to different routes and the decom-
position process of “route-adjust” constructively defines one of them. So we can make use
of the information we get from the process, and sample a route according to the probability
assigned to each decomposed route. The number of routes chosen with non-zero probability
is at most N2M , much less than the first method and thus it becomes feasible to describe
the strategy in full representation, by only providing the routes that are chosen with posi-
tive probability. Different sampling approaches may be necessitated by different application
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requirements. Some applications might require that the defender obtain a strategy in full
representation and only be presented a small number of pure strategies. However, for other
applications, a strategy that can be decided on-line, potentially with a hand-held smart-
phone such as in (Luber, Yin, Fave, Jiang, Tambe, & Sullivan, 2013) may be preferred.
Therefore, based on the needs of the application, different sampling strategies might be
selected.

7. Evaluation

We use different settings in the ferry protection domain and compare the performance in
terms of the attacker’s expected utility AttEU(Fq, t). As it is a zero-sum game, a lower
value of AttEU indicates a higher value of defender’s expected utility.

We will run experiments both for 1-D and 2-D setting. We will evaluate the performance
of CASS and show the sampling results. We will also evaluate the improvement of the two
refinement approaches for 1-D. Section 7.1 shows our results for the 1-D setting; Section
7.2 for the 2-D setting.

7.1 Experiments for One Dimensional Setting

For 1-D setting, we first evaluate the performance of the solvers and then show how much
the performance can be improved by using the refinement methods. We also show sampled
routes for an example setting and evaluate CASS for varying number of patrollers.

7.1.1 Experimental Settings

We used the following setting for the experiments in one dimensional case. This is a complex
spatio-temporal game; rather than a discrete security game as in most previous work. There
are three ferries moving between terminals A and B and the total distance AB = 1. The
simulation time is 30 minutes. The schedules of the ferries are shown in Figure 11, where
the x-axis indicates the time and the y-axis is the distance from terminal A. Ferry 1 and
Ferry 3 are moving from A to B while Ferry 2 is moving from B to A. The maximum speed
for patrollers is vm = 0.1/min and the protection radius is re = 0.1. Experiments in the
one-dimensional case are using 2 patrollers (where C1 = 0.8, and C2 = 1.0), except in
Section 7.1.5 where we report on experiments with different numbers of patrollers.
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Ferry1
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Figure 11: Schedules of the ferries
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7.1.2 Performance of Solvers

We compare the strategies calculated by CASS with DASS and a baseline strategy. In the
baseline strategy, the two patrollers choose a ferry with a probability of 1/3 (uniformly
random) and move alongside it to offer it full protection, leaving the other two unprotected
(strategy observed in practice). First we wished to stress-test CASS by using more complex
utility functions than in the realistic case that follows. Therefore, we tested under 4 different
discretization levels (details about discretization levels are included in Table 4) with random
utilities, and at each discretization level, we created 20 problem instances. The problem
instances are different across levels. In this ferry protection domain, the utility function for
each ferry usually depends on the ferry’s position, so each instance has utilities uniformly
randomly chosen between [0, 10] at discretized distance points; an example is shown in
Figure 12(a). The chosen discretization levels have ensured that Uq(t) is linear in t in each
time interval [tk, tk+1] for each target Fq. In Figure 12(a), the x-axis indicates the distance d
from terminal A, the y-axis indicates the utility of a successful attack if the ferry is located
at distance d. In Figure 12(b), x-axis plots the four discretization levels and y-axis plots the
average attacker expected utility if he plays best response over the 20 instances for baseline,
DASS and CASS. CASS is shown to outperform DASS and baseline and the differences
are statistically significant (p < 0.01). Note that different sets of instances are generated
for different discretization levels, so we cannot compare the results across levels directly.
However, it is helpful in better understanding the models. From the figure, we find the
solution quality of DASS varies a lot and sometimes can be worse than the naive strategy
(e.g., level 1). This is because DASS calculates an optimal solution that considers only the
attacks at the discretized time points. In Figure 12(b), the solution quality is measured by
AttEUm, which is calculated as the maximum over the continuous attacker strategy set.
The gap between the optimal objective function of DASS and the actual AttEUm given the
optimal solution of DASS may vary for different strategies and different discretization levels.
Another interesting observation is that the average solution quality of CASS is almost the
same for all discretization levels. Despite the difference in instance sets, this result implies
that the improvement of a finer discretization may be limited for CASS.

Level δt (minutes) M δd N

1 10 4 0.5 3
2 5 7 0.25 5
3 2.5 13 0.125 9
4 2 16 0.1 11

Table 4: Details about discretization levels. In the experiments mentioned in this section,
the distance space is evenly discretized, parameterized by δd = di+1 − di.

Next we turn to more realistic utility function in this ferry domain, which is of U -shape
or inverse U -shape. Figure 13(a) shows a sample utility curve where the attacker gains
higher utility closer to the shore. We fix the utility at the shore as 10, vary the utility in
the middle (denoted as Umid), which is the value on the floor of the U -shape or the top of
the inverse U -shape and evaluate the strategies. In Figure 13(b), Umid is shown on x-axis
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Figure 12: Performance under different randomized utility function settings. The utility
function in this set of experiments is a function of the distance to Terminal A.
The utility function is piece-wise linear and the value at discretized distance
points di is chosen randomly between [0,10].

0 0.5 1
4

6

8

10

d − distance

U
 −

 u
til

ity

(a) Realistic attacker utility function with
Umid = 5

0 5 10 15 20
0

5

10

15

U
mid

S
up

(A
ttE

U
)

 

 

NAIVE
DASS
CASS

(b) Solution quality of different strategies

Figure 13: Performance under different realistic utility function settings. The utility func-
tion is U-shape or inverse U-shape. The utility around distance 0.5 is denoted
as Umid. We compare the defender strategy given by DASS and CASS with the
baseline when Umid is changing from 1 to 20.

and we compare performance of the strategies in terms of attacker’s expected utility when
he plays best response on the y-axis. We conclude that 1) the strategy calculated by CASS
outperforms the baseline and DASS; 2) DASS may actually achieve worse results than the
baseline.

Among all these different experiment settings of discretization and utility function, we
choose one instance and provide a more detailed analysis for it. We refer to this instance
as example setting in the following of this section. In this example setting, discretization
level 4 is used and the utility curve is as shown in Figure 13(a), other parameters involved
are described in Section 7.1.1. Figure 14 compares the attacker expected utility function
when DASS and CASS is used respectively. The x-axis indicates the time t, and the y-axis
indicates the attacker’s expected utility if he attacks Ferry 1 at time t. For the strategy cal-
culated by DASS, the worst performance at discretized time points is 3.50 (AttEU(F1, 20)),
however, the supremum of AttEU(F1, t), t ∈ [0, 30] can be as high as 4.99 (AttEU(F1, 4

+)),
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Figure 14: The attacker’s expected utility function given the defender strategy calculated by
DASS vs CASS under example setting. The expected utilities at the discretized
time points are indicated by squares for CASS and dots for DASS. The maximum
of AttEU under CASS is 3.82, 30%less than the maximum of AttEU under
DASS, which is 4.99.

which experimentally shows that taking into consideration the attacks between the dis-
cretized time points is necessary. For the strategy calculated by CASS, the supremum of
AttEU(F1, t) is reduced to 3.82.

7.1.3 Improvement Using Refinement Methods

We compare the refinement approaches described in Section 4 and analyze the tradeoff
between performance improvement and runtime. Three approaches are considered for com-
parison: route-adjust, flow-adjust and a variation of route-adjust, denoted by route-adjust2.
In step (ii) of route-adjust, we replace every node in the route one-by-one in sequence.3 In
step (ii) of route-adjust2, we replace every consecutive pair of nodes in the route in sequence.

We first show results for the example setting. In Figure 15(a), we compare the AttEU(Fq, t)
function of the defender strategy given by CASS and of the one after route-adjust for Ferry
1. It shows for an attack aiming at any target at any time, the defender strategy after
route-adjust refinement is equally good or better than the one in the original equilibrium,
and thus the defender performs equally or better no matter how the attacker is constrained
in time, i.e., the defender strategy after route-adjust dominates the original strategy. Figure
15(b) is the comparison between AttEU function of the defender strategy after route-adjust
and the one after route-adjust2 for Ferry 1. The one after route-adjust2 does not dominate
the one after route-adjust but overall the former appears to perform better than the latter
more frequently and by larger amounts. If we use the average value of AttEU function as a
metric of performance, we will show that route-adjust2 is better than route-adjust in this
example setting later in Table 5. Figure 15(c) shows the comparison between the AttEU
function of the defender strategy given by CASS and that of the defender strategy after

3. In supplementary experiments, we also tested route-adjust with more iterations, e.g., repeating the
process of replacing every node in sequence five times. The extra benefit is insignificant while the
runtime increases proportionally to the number of iterations. In light of this, we choose to replace each
node only once in the experiments reported in this article.
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Figure 15: Performance of equilibrium refinement approaches.

flow-adjust for Ferry 1. The strategy given by CASS is not dominated by the one after
flow-adjust under Definition 7, but if we investigate the maximum of AttEU in each time
interval [tk, tk+1], as shown in Table 6, we find that the defender strategy after flow-adjust
locally dominates the original strategy.

We list the worst case performance and the average performance of AttEU function over
all ferries in this example setting for four defender strategies (CASS, route-adjust, route-
adjust2, flow-adjust) in Table 5, from which we conclude that 1) the worst case performance
of all strategies of flow-adjust is the same, which means the defender achieves exactly same
expected utility towards an unconstrained rational attacker; 2) the average performance
of flow-adjust is slightly better than the CASS, but is outperformed by route-adjust and
route-adjust2, while it takes much less time to run compared to the other two; 3) in this
example setting, when we adjust two consecutive nodes at a time, the performance is better
than adjusting only one node at a time, but the difference is not significant and it is much
more expensive in terms of run-time.

Strategies Worst Case Performance Average Performance Runtime (minutes)

CASS 3.82 3.40 -

Route-Adjust 3.82 2.88 8.96

Route-Adjust2 3.82 2.76 32.31

Flow-Adjust 3.82 3.34 0.50

Table 5: Comparison of different refinement approaches in terms of average performance
and runtime. Only the runtime for the refinement process is calculated.
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time inter-
val [tk, tk+1]

maximum
before

maximum
after

time inter-
val [tk, tk+1]

maximum
before

maximum
after

[2, 4] 3.7587 3.6675 [16, 18] 3.8111 3.7291
[4, 6] 3.8182 3.8182 [18, 20] 3.8182 3.8182
[6, 8] 3.8153 3.6164 [20, 22] 3.8182 3.8182
[8, 10] 3.8137 3.6316 [22, 24] 3.8182 3.8182
[10, 12] 3.8052 3.6316 [24, 26] 3.8182 3.8182
[12, 14] 3.8050 3.5664 [26, 28] 3.8182 3.8182
[14, 16] 3.7800 3.2100 [28, 30] 3.8182 3.8182

Table 6: The maximum of attacker’s expected utility in each time interval decreases after
flow-adjust is used.

Figure 16(a) and Figure 16(b) shows the maximum and the average improvement of
route-adjust, route-adjust2 and flow-adjust, averaged over all the 20 instances of Level 4
with randomized utilities that have been used for Figure 12(b); and Figure 16(c) shows the
average runtime. The maximum improvement is the largest difference between the AttEU
function given defender strategy calculated by CASS and the one after refinement. The
average improvement is the average difference between the two functions. The standard
deviations over all instances are shown as error bars. Figure 16 confirms that all the refine-
ment approaches improve the defender strategy calculated by CASS in terms of both the
maximum performance and average performance and thus provide better defender strate-
gies given possible constrained attackers. Route-adjust2 achieves the most improvement,
then route-adjust, and flow-adjust the least. Flow-adjust achieves much less improvement
compared to the other two approaches. One explanation for this is that the constraints are
very strong as they require all marginal probabilities to be unchanged so it is likely that
little changes are made to the original defender strategy. The difference between route-
adjust2 and route-adjust is not as significant. In terms of run-time, flow-adjust is the least
expensive, route-adjust the second and route-adjust2 the most. Route-adjust2 is signifi-
cantly more expensive compared to the other two. So we conclude that route-adjust is a
better choice considering the tradeoff between improvement and the runtime.

7.1.4 Sampled Routes

We first convert the defender strategy under the example setting into a Markov strategy
and sample 1000 pair of patrol routes. The defender strategy used here is the one after
“route-adjust”. In each sample, a pair of routes is chosen step by step for the two patrol
boats according to the joint conditional probability distribution {α(i1, j1, i2, j2, k)}. The
routes for the two patrol routes are chosen simultaneously as they are coordinating with
each other. We cannot show each pair separately for all 1000 samples. Instead, Figure
17(a) shows the frequency of being taken out of the 1000 samples of each edge. The x-axis
indicates the time and the y-axis is the distance to terminal A. The width of the each edge
indicates the frequency of being chosen by at least one patroller. Although Figure 17(a)
does not precisely depict the samples, it provides a rough view of how the routes are taken
by the patrol boats.
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Figure 16: Comparison of refinement approaches.

Figure 17(b) shows the pair of routes that is of highest probability when we use the
decomposition method of sampling. The solid lines show the patrol boats’ routes and the
dashed lines show the ferries’ schedules. We get 3958 different pair of patrol routes in total
in the decomposition process and the shown pair of routes is chosen with probability 1.57%.
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Figure 17: Results for sampling under the example setting: (a) Frequency of each edge is
chosen when the first sampling method based on Markov strategy is used. (b)
Decomposed routes with highest probability superimposed on ferry schedules
when the second sampling method based on decomposition is used.
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Figure 18: Performance with varying number of patrollers.

7.1.5 Number of Patrollers

Figure 18(a) shows the improvement in performance of CASS with increasing number of
patrollers under discretization Level 1. The x-axis shows the number of patrollers and the
y-axis indicates the average of attacker’s maximal expected utility, i.e., the expected reward
when he plays his best response. The results are averaged over 20 random utility settings
of discretization Level 1. With fewer patrollers, the performance of the defender varies a lot
depending on the randomized utility function (as indicated by standard deviation shown as
the error bar). But the variance gets much smaller with more patrollers, which means the
defender has sufficient resources for different instances. Figure 18(b) shows the run-time for
CASS. The y-axis indicates the average of natural logarithm of runtime. Not surprisingly,
the run-time increases when the number of patrollers increases.

Figure 18(c) and 18(d) show the average performance and run-time of CASS with dis-
cretization Level 2, using the same set of utility settings as used in Level 1. Only results for
1 to 3 patrollers are shown. The program runs out of memory for 4 patrollers as there are
N8M = 2734375 flow distribution variables and at least N4M = 8757 constraints. Note
that the average solution quality of Level 2 is better than the result of Level 1 (e.g., the
average attacker EU for 1 patroller is 4.81 in Level 1 and 4.13 in Level 2), which indicates
a higher level of granularity can improve the solution quality. However, granularity clearly
affect the ability to scale-up; which means that we need to consider the tradeoff between the
solution quality and the memory used and one way to combat the scaling-up problem is to
reduce the level of granularity. Nonetheless, the number of patrollers we have encountered
in real-world scenarios such as at New York is of the order of 3 or 4, so CASS is capable at
least for key real-world scenarios.
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7.1.6 Approximation Approach for Multiple Defender Resources

We tested the first approximation approach for multiple defender resources described in
Section 3.4 for the example setting. We used the fmincon function with interior-point
method in MATLAB to minimize the non-linear objective function (Equation 25). Table
7 lists different run-time and the value of the objective function achieved given different
iteration number (denoted as MaxIter). The function is not ensured to provide a feasible
solution when the iteration number is not large enough, as shown in the first two rows.
We compared the result with our LP formulation of DASS, which was implemented in
MATLAB using linprog function. DASS can be solved within 8.032 seconds and provides
an optimal solution AttEUm = 3.5, this approximation approach is outperformed in both
run-time efficiency and solution quality. This approach fails to provide a feasible solution
efficiently and even when sufficient time is given (more than 400 times the run-time of the
LP formulation), the maximum attacker expected utility is 18% larger than the optimal
solution. This is mainly because the new formulation in the approximation approach is no
longer linear or convex, making it difficult to find a global maximum.

MaxIter Run− time(sec) AttEUm

3000 4.14 infeasible

10000 17.21 infeasible

900000 3298 4.0537

Table 7: Performance of approximation approach.

7.2 Experiments for Two Dimensional Setting

The settings in 2-D space are more complex even with single patroller. Here we show
an example setting motivated by the ferry system between Seattle, Bainbridge island and
Bremerton as shown in Figure 9. In this example setting, three terminals (denoted as A,B
and C) are non-collinear in the 2-D space as shown in the Figure 19(a). Ferry 1 and Ferry
2 are moving on the trajectory between Terminal B and C (denoted as Trajectory 1) and
Ferry 3 and Ferry 4 are moving on the trajectory between Terminal B and A (denoted as
Trajectory 2). The schedules of the four ferries are shown in Figure 19(b), where the x-axis
is the time and the y-axis is the distance from the common terminal B. Ferry 1 moves
from C to B, Ferry 2 moves from B to C, Ferry 3 moves from B to A and Ferry 4 moves
from A to B. Similar to the one-dimensional scenario in ferry domain, we assume the utility
is decided by the ferry’s position and the utility function is shown in Figure 19(c). The
x-axis is the distance from the common terminal B and the y-axis is the utility for the two
trajectories respectively. The 2-D space is discretized into a grid as shown in Figure 19(d)
with δx = 1.5 and δy = 1 indicating the interval in the x-axis and y-axis. A patroller will
be located at one of the intersection points of the grid graph at any discretized time points.
The simulation time is 60 minutes and M = 13, i.e., tk+1− tk = 5 minutes. The speed limit
for the patroller is ve = 0.38 and all the available edges that a patroller can take during
[tk, tk+1] are shown in Figure 19(d). Only one patroller is involved. The protection radius
is set to re = 0.5, and protection coefficient is C1 = 0.8.
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Figure 19: An example setting in two-dimensional space

Figure 20(a) compares the performance of DASS and CASS for Ferry 2. Ferry 2 is chosen
because in both strategies, the attacker’s best response is to attack Ferry 2. The x-axis is
the time t, and the y-axis is the attacker expected utility of attacking Ferry 1 at time t. The
maximum of AttEU of CASS is 6.1466, 12% lower compared to the result of DASS, which
is 6.9817. Figure 20(b) and 20(c) show two sampled route given the strategy calculated
by CASS on the 2-D map where the dashed lines represents for the ferry trajectories. The
patroller starts from the node with text “start” and follows the arrowed route, and ends at
the node with text “end” at the end of the patrol. She may stay at the nodes with text
“stay”. The patrol routes are shown in a intuitive way but can be ambiguous. The exact
route should be listed as a table with time and position. The routes are sampled based on
the converted Markov strategy, and the total number of patrol routes that may be chosen
with non-zero probability is 4.49× 1010.

8. Related Work

In this section we discuss literature related to our work. We will first discuss work on
the computation of game-theoretic patrolling strategies, then discuss work on continuous
games, and finally discuss work on equilibrium refinement.

As mentioned in the introduction, Stackelberg games have been widely applied to se-
curity domains, although most of this work has considered static targets (e.g., Korzhyk
et al., 2010; Krause, Roper, & Golovin, 2011; Letchford & Vorobeychik, 2012; Kiekintveld
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Figure 20: Experimental results under two-dimensional settings

et al., 2013). Agmon, Kraus, and Kaminka (2008) proposed algorithms for computing
mixed strategies for setting up a perimeter patrol in adversarial settings with mobile robot
patrollers. Similarly, Basilico, Gatti, and Amigoni (2009) computed randomized leader s-
trategies for robotic patrolling in environments with arbitrary topologies. Even when both
of the players are mobile, e.g., in hider-seeker games (Halvorson, Conitzer, & Parr, 2009),
infiltration games (Alpern, 1992) or search games (Gal, 1980), the targets (if any) were as-
sumed to be static. Tsai et al. (2009) applied Stackelberg games to the domain of scheduling
federal air marshals on board flights. The targets (i.e., flights) in this domain are mobile,
but the players are restricted to move along the targets to protect or attack them. This
stationary nature leads to discrete game models with finite numbers of pure strategies.

Bošanský, Lisý, Jakob, and Pěchouček (2011) and Vaněk, Jakob, Hrstka, and Pěchouček
(2011) studied the problem of protecting moving targets. However, they both considered
a model in which the defender, the attacker and targets have discretized movements on a
directed graph. Such discretization of attacker strategy spaces can introduce suboptimality
in the solutions, as we have shown with DASS. We, in our work, generalize the strate-
gy space of the attacker to the continuous realm and compute optimal strategies even in
such a setting. Furthermore, while we provide an efficient and scalable linear formulation,
Bošanský et al. presented a formulation with non-linear constraints, which faced problems
scaling up to larger games even with a single defender resource.
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Yin et al. (2012) considered the domain of patrolling in public transit networks (such
as the LA Metro subway train system) in order to catch fare evaders. Because the players
ride along trains that follow a fixed schedule, the domain is inherently discrete and they
modeled the patrolling problem as a finite zero-sum Bayesian game. Yin et al. proposed a
compact representation for defender mixed strategies as flows in a network. We adapt this
compact representation idea to a continuous domain. In particular, in our domain we need
to model the interaction between the defender’s flow and attacker’s continuous strategy
space. Our proposed sub-interval analysis used spatio-temporal reasoning to efficiently
reduce the problem into a finite LP.

Games with continuous strategy spaces have been well-studied in game theory. Much of
the economics literature has focused on games whose equilibria can be solved analytically
(and thus the question of computation does not arise), for example the classical theory
of auctions (see e.g., Krishna, 2009). Recent computational approaches for the analysis
and design of auctions have focused on discretized versions of the auction games (e.g.,
Thompson & Leyton-Brown, 2009; Daskalakis & Weinberg, 2012). There has been research
on efficiently solving two-player continuous games with specific types of utility functions,
such as zero-sum games with convex-concave utility functions (Owen, 1995) and separable
continuous games with polynomial utility functions (Stein, Ozdaglar, & Parrilo, 2008).
Johnson, Fang, and Tambe (2012) studied a continuous game model for protecting forests
from illegal logging. In their model the target (i.e., the forest) is stationary, and with further
simplifying assumptions (e.g., the forest having a circular shape) they were able to solve
the game efficiently. In contrast to existing work, our game model has moving targets in a
continuous domain, and the resulting utility functions are discontinuous and thus existing
approaches are not applicable. Our CASS algorithm solves the game optimally without
needing to discretize the attacker’s strategy space.

There is an extensive literature on equilibrium refinement; however most existing work
on the computation of equilibrium refinement focuses on finite games. For simultaneous-
move finite games, solution concepts such as perfect equilibrium and proper equilibrium
were proposed as refinements of Nash equilibrium (Fudenberg & Tirole, 1991). Miltersen
and Sørensen (2007) proposed an efficient algorithm for computing proper equilibria in fi-
nite zero-sum games. For finite security games, An et al. (2011) proposed a refinement
of Stackelberg equilibrium and techniques for computing such refinements. The resulting
defender strategy is robust against possibilities of constrained capabilities of the attacker.
These existing approaches rely on the finiteness of action sets, and is thus not applicable to
our setting. Simon and Stinchcombe (1995) proposed definitions of perfect equilibrium and
proper equilibrium for infinite games with continuous strategy sets, however they did not
propose any computational procedure for the resulting solution concepts. Exact computa-
tion of equilibrium refinements of continuous games such as MRMTsg remains a challenging
open problem.

9. Conclusion

This paper makes several contributions in computing optimal strategies given moving tar-
gets and mobile patrollers. First, we introduce MRMTsg, a novel Stackelberg game model
that takes into consideration spatial and temporal continuity. In this model, targets move
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with fixed schedules and the attacker chooses his attacking time from a continuous time
interval. Multiple mobile defender resources protect the targets within their protection
radius, and bring in continuous space in our analysis. Second, we develop a fast solution
approach, CASS, based on compact representation and sub-interval analysis. Compact rep-
resentations dramatically reduce the number of variables in designing the optimal patrol
strategy for the defender. Sub-interval analysis reveals the piece-wise linearity in attacker
expected utility function and shows there is a finite set of dominating strategies for the at-
tacker. Third, we propose two approaches for equilibrium refinement for CASS’s solutions:
route-adjust and flow-adjust. Route-adjust decomposes the patrol routes, greedily improves
the routes and composes the new routes together to get the new defender strategy. Flow-
adjust is a fast and simple algorithm that adjusts the flow distribution to achieve optimality
in each time interval while keeping the marginal probability at the discretized time points
unchanged. Additionally, we provide detailed experimental analyses in the ferry protection
domain. CASS has been deployed by the US Coast Guard since April 2013.

10. Future Work

There are several important avenues for future work. These include: (i) use a decreasing
function to model the protection provided to the targets instead of using a fixed protection
radius; (ii) handle practical constraints on patrol boat schedule as not all are easily imple-
mentable; (iii) efficiently handle more complex and uncertain target schedules and utility
functions.

Here we provide an initial discussion about the relaxation of the assumptions that we
listed in Section 2 and used throughout the paper:

• If we allow for complex and uncertain target schedules, we may model the problem as
a game where the targets follow stochastic schedules. Our framework may still apply
but may need to be enriched (e.g., using approaches such as use of MDPs to represent
defender strategies, see Jiang, Yin, Zhang, Tambe, & Kraus, 2013). Coordinating
multiple such defenders then becomes an important challenge. It may be helpful in
such cases to appeal to more of the prior work on multi-agent teamwork, given the
significant uncertainty in such cases leading to more need for on-line coordination
(Tambe, 1997; Stone, Kaminka, Kraus, & Rosenschein, 2010; Kumar & Zilberstein,
2010; Yin & Tambe, 2011).

• If we focus on environments where multiple attackers can coordinate their attacks,
then we may need to further enhance our framework. Prior results from Korzhyk,
Conitzer, and Parr (2011) over stationary targets and discrete time would be helpful
in addressing this challenge, although the case of moving targets in continuous space
and time in such cases provides a very significant challenge. Combining with the
previous item for future work, a complex multiple defender multiple attacker scenario
would appear to be a very significant computational challenge.
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A preliminary version of this work appears as the conference paper (Fang, Jiang, &
Tambe, 2013). There are several major advances in this article: (i) Whereas the earlier work
confined targets to move in 1-D space, we provide a significant extension of our algorithms
(DASS and CASS) in this article to enable the targets and the patrollers to move in 2-
D space; we also provide detailed experimental results on this 2-D extension. (ii) We
provide additional novel equilibrium refinement approaches and experimentally compare
their performance with the equilibrium refinement approach offered in our earlier work;
this allows us to offer an improved understanding of the equilibrium refinement space. (iii)
We discuss several sampling methods in detail to sample actual patrol routes from the mixed
strategies we generate – a discussion that was missing in our earlier work. (iv) We provide
detailed proofs that were omitted in the previous version of the work.
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Appendix A. Notation Table

Notation Meaning

MRMT The problem of multiple Mobile Resources protecting Moving Targets

MRMTsg Game model with a continuous set of strategies for the attacker for MRMT.

L Number of ferries.

Fq Ferry with index q.

A, B Terminal points.

T Continuous time interval or a finite set of time points.

D Continuous space of possible locations or a set of distance points.

Sq(t) Ferry schedule. Position of the target Fq at a specified time t.

W Number of patrollers.

Pu Patroller with index u.

vm Speed limit of patroller.

re Protection radius of patroller.

CG Probability that the attacker can be stopped with G patrollers.

Uq(t) Positive reward of a successful attack on target Fq at time t for the attacker.

M Number of discretized time points.

N Number of discretized distance points.

tk Discretized time point.

di Discretized distance point.

δt Distance between two adjacent time points.

Ru Patrol route for patroller Pu. Under discretization of the defender’s strategy space,
Ru can be described as a vector.

ru(k) The patroller is located at dru(k) at time tk.

f(i, j, k) Flow distribution variable. Probability that the patroller moves from di to dj
during time [tk, tk+1].

p(i, k) Marginal distribution variable. Probability that the patroller is located at di tk.

Ei,j,k The directed edge linking nodes (tk, di) and (tk+1, dj).

p(Ru) Probability of taking route Ru.

AttEU(Fq, t) Attacker expected utility of attacking target Fq at time t.

βq(t) Protection range of target Fq at time t

ω(Fq, t) Probability that the patroller is protecting target Fq at time t.

I(i, q, k) Whether a patroller located at di at time tk is protecting target Fq.

L1
q ,L

2
q Lines of Sq(t)± re.

θrqk The rth intersection point in [tk, tk+1] with respect to target Fq.

AttEU(Fq, θ
r±
qk ) Left/right-side limit of AttEU(Fq, t) at θrqk.

Mqk Number of intersection points in [tk, tk+1] with respect to target Fq.

Arqk(i, j) C1 if patroller taking edge Ei,j,k can protect target Fq in [θrqk, θ
r+1
qk ]; 0 otherwise.

E(u, k) Short for Eru(k),ru(k+1),k.

Table 8: Summary of notations involved in the paper.
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Appendix B. Calculation of Intersection Points in CASS for 2-D Settings

We calculate the time where the patroller’s route intersects with the protection range for
a target when the patroller is moving from V1 = (x1, y1) to V2 = (x2, y2) and the target
is moving from Sq(tk) = (x̂1, ŷ1) to Sq(tk+1) = (x̂2, ŷ2) during [tk, tk+1]. The patroller’s
position at a given time t ∈ [tk, tk+1] is denoted as (x, y) and the target’s position is denoted
as (x̂, ŷ). Then we have

x =
t− tk

tk+1 − tk
(x2 − x1) + x1, y =

t− tk
tk+1 − tk

(y2 − y1) + y1 (40)

x̂ =
t− tk

tk+1 − tk
(x̂2 − x̂1) + x1, ŷ =

t− tk
tk+1 − tk

(ŷ2 − ŷ1) + ŷ1 (41)

At an intersection point, the distance from the patroller’s position to the target’s position
equals to the protection radius re, so we are looking for a time t such that

(x− x̂)2 + (y − ŷ)2 = r2
e (42)

By substituting the variables in Equation 42 with Equations 40–41, and denoting

A1 =
(x2 − x1)− (x̂2 − x̂1)

tk+1 − tk
, B1 = x1 − x̂1,

A2 =
(y2 − y1)− (ŷ2 − ŷ1)

tk+1 − tk
, B2 = y1 − ŷ1,

Equation 42 can be simplified to

(A1t−A1tk +B1)2 + (A2t−A2tk +B2)2 = r2
e . (43)

Denote C1 = B1 − A1tk and C2 = B2 − A2tk, and we can easily get the two roots of this
quadratic equation, which are

ta,b =
−2(A1C1 +A2C2)± 2

√
(A1C1 +A2C2)2 − (A2

1 +A2
2)(C2

1 + C2
2 − r2

e)

2(A2
1 +A2

2)
. (44)

ta or tb is the time of a valid intersection point if and only if it is within the time interval
under consideration ([tk, tk+1]).
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