
Journal of Artificial Intelligence Research 48 (2013) 347-414 Submitted 05/13; published 11/13

Beth Definability in Expressive Description Logics

Balder ten Cate btencate@ucsc.edu
UC Santa Cruz

Enrico Franconi franconi@inf.unibz.it
Free University of Bozen-Bolzano

İnanç Seylan seylan@informatik.uni-bremen.de

University of Bremen

Abstract

The Beth definability property, a well-known property from classical logic, is inves-
tigated in the context of description logics: if a general L -TBox implicitly defines an
L -concept in terms of a given signature, where L is a description logic, then does there
always exist over this signature an explicit definition in L for the concept? This property
has been studied before and used to optimize reasoning in description logics. In this paper
a complete classification of Beth definability is provided for extensions of the basic descrip-
tion logic ALC with transitive roles, inverse roles, role hierarchies, and/or functionality
restrictions, both on arbitrary and on finite structures. Moreover, we present a tableau-
based algorithm which computes explicit definitions of at most double exponential size.
This algorithm is optimal because it is also shown that the smallest explicit definition of an
implicitly defined concept may be double exponentially long in the size of the input TBox.
Finally, if explicit definitions are allowed to be expressed in first-order logic, then we show
how to compute them in single exponential time.

1. Introduction

We address the Beth definability property (Beth, 1953) in the context of description logics
(DLs). The Beth definability property relates two notions of definability in a logic L ,
implicit definability and explicit definability. Implicit definability is a semantic notion: it
asks whether the interpretation of a given L -formula ϕ is fully determined by the universe
of discourse and the interpretation of some given predicates Σ in all models of a theory
T . Explicit definability on the other hand is more syntactic: it asks whether there is some
L -formula ψ over the set of predicates Σ that is equivalent to ϕ under T . Clearly, explicit
definability implies implicit definability. If the converse holds as well, then the logic L is
said to have the Beth definability property. Logics having this property are considered to be
well-balanced in terms of their syntax and semantics since it connects the model-theoretic
notion of implicit definability to explicit definability.

The Beth definability property can be naturally formulated for DLs by slightly chang-
ing the terminology in the paragraph above: formulas become concepts, theories become
TBoxes, and Σ consists of unary and binary predicates (respectively called concept names
and role names).

c©2013 AI Access Foundation. All rights reserved.



Ten Cate, Franconi, & Seylan

Example 1.1. Consider the following ALC-TBox T .

Parent ≡ ∃hasChild.>
Parent ≡ Father tMother
Father v Man
Mother v Woman
Man v ¬Woman

The concept name Mother is implicitly definable from Σ = {hasChild,Woman} under T .
Precisely what we mean by this will be clear once we present Definition 4.1; intuitively, we
mean that the instances of Mother in a model I of T can be exactly determined once we know
the domain of I and the instances of Σ in I. In fact, we can spell this implicit definition out
as the ALC-concept Woman u ∃hasChild.>. This concept is an explicit definition of Mother
from Σ under T because T |= Mother ≡Woman u ∃hasChild.> (cf. Definition 4.5).

Beth definability in DLs has found applications in optimizing reasoning. The first ap-
plication is related to extracting an equivalent acyclic L -terminology from a general TBox
in L (Baader & Nutt, 2003; ten Cate, Conradie, Marx, & Venema, 2006). An acyclic
terminology consists only of acyclic definitions for concept names and they are of particular
interest because reasoning with them is ‘easier’ than with general TBoxes. For example, sat-
isfiability of an ALC-terminology is a PSpace-complete problem whereas the same problem
for general ALC-TBoxes is ExpTime-complete (Donini, 2003). The second application is
related to an ontology-based data access setting, which assumes the existence of a database
instance (also referred to as ‘DBox’ in this context) and a TBox that may speak about
more predicates than the database instance (Seylan, Franconi, & de Bruijn, 2009). In this
setting, the user may ask concept queries over the signature of the TBox; and the idea is
to find an equivalent rewriting of the original query in terms of the predicates that appear
in the DBox. If such a rewriting exists, then determining the certain answers of the query
can be reduced to query answering in relational databases, which is known to be in AC0 in
data complexity in contrast to the general coNP-completeness of concept querying in ALC
with DBoxes (Seylan et al., 2009).

Both of these applications involve computing explicit definitions on the basis of implicit
definitions. Here, the problem is that this may not always be possible for some DLs, i.e.,
some DLs may lack the Beth definability property.

Example 1.2. In this example, we model a scenario about cars, their owners, and the
relationships between the owners and their cars. Consider the following ALCH-TBox T
consisting of the concept inclusion axioms

SportsCar v Car
FuelEfficientCar v Car
SportsCar v ¬FuelEfficientCar
¬∃proudOwner.Car v (∀loves.SportsCar u ¬∃owns.SportsCar)) t

(∀loves.FuelEfficientCar u ¬∃owns.FuelEfficientCar))

and the role inclusion axioms

proudOwner v owns
proudOwner v loves

348



Beth Definability in Expressive Description Logics

The concept ∃proudOwner.Car is implicitly definable from Σ = {owns, loves} under T , in the
sense that the instances of ∃proudOwner.Car in a model I of T can be exactly determined
once we know the domain of I and the instances of the roles in Σ. Indeed, an individual
is a proud owner of a car if and only if the individual owns something that he/she loves.
The fact that the left-to-right direction of this equivalence holds in every model of T follows
immediately from the role inclusion axioms, and similarly, the fact that the (contrapositive
of the) right-to-left direction holds in models of T follows immediately from the other TBox
axioms. This implicit definition can be made explicit using the role conjunction operator
as the concept ∃(owns u loves).>. However, it can be shown that no ALCH-concept is an
explicit definition of ∃proudOwner.Car from Σ under T . We will not formally prove this
here, but see the proof of Theorem 4.18 in Section 4.2 for a similar example. In particular,
this shows that ALCH lacks the Beth definability property.

A natural research agenda in this case is to identify DLs that have the Beth definability
property. Since this property is useful for computing explicit definitions on the basis of
implicit definitions, a vital question then is the complexity of this task, both in terms of
the time needed to compute the explicit definitions, and in terms of the size of the explicit
definitions obtained. This question was first studied by ten Cate et al. (2006) for a weaker
Beth definability property, which considers only concept names in the signature. In this
paper we are interested in the more general Beth definability property that takes into
account role names in the signature. We believe that this is more natural for DLs because
in a DL knowledge base, role names are considered to be a part of the signature. We present
a worst-case optimal algorithm for constructing explicit definitions.

Since the work of Craig (1957), it has been customary to establish Beth definability
via an interpolation theorem; and our work is no exception. In particular, we obtain our
positive results on Beth definability through a worst-case optimal algorithm for constructing
interpolants in the description logics that we consider.

Our contributions in this paper are as follows.

• We obtain a complete classification of the Beth definability property for extensions
of ALC with transitive roles, inverse roles, role hierarchies, and/or functionality re-
strictions, both on arbitrary structures (BP) and on finite structures (BPF). These
results are summarized in Table 1. Note that the finite model property (FMP) of all
sub-logics of SHOQ is shown by Lutz, Areces, Horrocks, and Sattler (2005); FMP
of all sub-logics of SHIO+ by Duc and Lamolle (2010); and the failure of FMP in
ALCFI and all its extensions is well-known (cf. Calvanese & Giacomo, 2003).

• We present a constructive algorithm based on an interpolating tableau calculus to
compute explicit definitions in ALC and all of its considered extensions having the
Beth definability property. This algorithm runs in double exponential time and com-
putes in the worst case an explicit definition of double exponential size if the concept
is implicitly definable. In this respect, the algorithm is optimal because we also show
that the smallest explicit definition of an implicitly defined concept may be double
exponentially long in the size of the input TBox for each of these DLs.

• We consider the case where explicit definitions are allowed to be expressed in first-
order logic. This is particularly relevant for the use case for computing certain answers

349



Ten Cate, Franconi, & Seylan

S H I F FMP BP BPF
+ + +

• + + +
• + + +
• • - + -

• + - -
• • + - -
• • + - -
• • • - - -

• + + +
• • + + +
• • + + +
• • • - + -
• • + - -
• • • + - -
• • • + - -
• • • • - - -

Table 1: BP and BPF from ALC to SHIF

of a query given a DBox and a TBox. We present an algorithm that computes a first-
order explicit definition of an implicitly defined concept in single exponential time for
all DLs with BP or BPF.

1.1 Related Work

The Beth definability property, in the general sense, has been first shown to hold for first-
order logic (Beth, 1953). Beth definability comes in different flavors and the one we are
interested in is related more to projective Beth definability. Here, projective refers to the
ability to specify the set of predicates Σ. The projective version is known be stronger than
Beth’s original formulation (cf. Hoogland, 2001) and first shown to hold for first-order logic
by Craig (1957). Since the seminal works of Beth and Craig, Beth definability has been
studied for many other logics.

Lang and Marquis (2008), also motivated from AI, study the propositional variant. The
modal and temporal variants have been extensively studied (cf. Gabbay & Maksimova,
2005). The k-variable fragment of first-order logic, for k ≥ 2, is known to lack the Beth
definability property, whereas the Guarded and Packed Fragments satisfy a non-projective
version of the Beth property (cf. Hoogland, 2001). The guarded-negation fragment was
recently shown to have the Beth definability property as well (Bárány, Benedikt, & ten
Cate, 2013).

Beth definability has practical applications in relational databases for query rewriting
using exact views (Nash, Segoufin, & Vianu, 2010; Afrati, 2011; Marx, 2007; Pasaila, 2011;
Bárány et al., 2013). Here, the idea is to decide if the answers to a given query can be inferred
from the content of a collection of views (that is, whether the theory consisting of the view
definitions implicitly defines the query in terms of the view predicates), and, if this is indeed
the case, to rewrite the query into a query over the schema consisting of the view predicates

350



Beth Definability in Expressive Description Logics

(that is, an explicit definition of the query in terms of the view predicates). View-based
query rewriting naturally arises in various settings, including query optimization, querying
under access restrictions, data integration, and privacy analysis.

Beth definability has also been studied in the DL literature. Similarly to the relational
database case, it finds applications in computing explicit definitions on the basis of implicit
definitions (Baader & Nutt, 2003; ten Cate et al., 2006; Seylan et al., 2009; Seylan, Fran-
coni, & de Bruijn, 2010). Some of these papers also present results on the size of explicit
definitions that can be obtained for implicitly defined concepts. Ten Cate et al. establish
a single exponential lower bound and a triple exponential upper bound for ALC. It is not
hard to see that the lower bound proof by ten Cate et al. carries to the Beth definability
property we consider. A matching single exponential upper bound on the size of explicit
definitions was claimed to be established by Seylan et al. (2010) in Theorem 1; however,
this theorem is wrong since a crucial step for its proof, namely Lemma 1, is erroneous.
In this paper, we improve the single exponential lower bound of ten Cate et al. to double
exponential and correct the single exponential upper bound of Seylan et al. to double expo-
nential, thus obtaining tight complexity bounds. These bounds in DLs are in sharp contrast
to first-order logic since there is no recursive bound on the minimal number of quantifier
alternations in explicit definitions in first-order logic (Friedman, 1976). BP has been first
shown to hold for ALC by Seylan et al. (2009) and it is stronger than the variant studied by
ten Cate et al.. Specifically, we show that all DLs we consider that support role hierarchies
actually lack BP, whereas they satisfy the variant of BP studied by ten Cate et al.. In this
respect, Theorem 10 by Seylan et al. (2010) claiming that these DLs have BP is erroneous.
The mistake in the proof is that Theorem 9, which presents a reduction from the concept
satisfiability problem w.r.t. TBoxes in SHI to the same problem in ALC, can not actually
be used for computing SHI-interpolants.

Since the work of Craig (1957), it has been customary to establish Beth definability
via an interpolation lemma; and our work is no exception. An interpolation lemma is
usually established by a model-theoretic or a proof-theoretic argument (Hoogland, 2001).
The advantage of the latter over the former is that it yields a procedure to construct the
interpolant. Several interpolation properties formulated for general TBoxes were studied
in the ALC- (ten Cate et al., 2006; Ghilardi, Lutz, & Wolter, 2006; Konev, Lutz, Walther,
& Wolter, 2009a; Seylan et al., 2009; Konev, Lutz, Ponomaryov, & Wolter, 2010; Lutz
& Wolter, 2011) and EL-family of DLs (Konev, Walther, & Wolter, 2009b; Lutz, Piro,
& Wolter, 2010; Nikitina & Rudolph, 2012; Lutz, Seylan, & Wolter, 2012a). A notable
variant is the uniform interpolation property. A uniform interpolant of a given L -TBox
T and a set of predicates Σ is another L -TBox T ′ such that T ′ uses only predicates from
Σ and the logical consequences of T and T ′ formulated over Σ coincide. In this paper,
we do not consider uniform interpolation because it is not the right interpolation property
for establishing tight bounds on the size of explicit definitions. This is witnessed by the
following observations. Deciding the existence of a uniform interpolant for a given ALC-
TBox and a set of predicates is known to be 2-ExpTime-complete (Lutz & Wolter, 2011),
whereas the same problem formulated for the interpolation property we study here is in
ExpTime. In the simpler DL EL, uniform interpolants are also more ‘expensive’ than the
non-uniform ones. In particular, deciding the existence of uniform interpolants in EL is
ExpTime-complete (Lutz et al., 2012a); and Nikitina and Rudolph (2012) establish triple

351



Ten Cate, Franconi, & Seylan

exponential tight bounds on the size of uniform interpolants. On the other hand, deciding
the existence of interpolants, as we consider in this paper but for the description logic EL,
is in PTime because this problem can be reduced to concept subsumption w.r.t. a TBox in
EL by Lemma 3 of Lutz, Seylan, and Wolter (2012b).

Most of the results in this paper were announced by ten Cate, Franconi, and Seylan
(2011) in an extended abstract. The current paper extends this work by full proofs of the
claimed results and the new material in Section 4.4.

1.2 Outline

We start by introducing in Section 2 the DLs for which we study BP and some reasoning
problems that are relevant for us in this paper. We also fix in this section our first-order
notation and the standard translation of DLs to first-order logic. We will be using first-
order logic extensively in Section 3.3. The hammer with which we nail all the positive
results, i.e., +, to the columns BP and BPF in Table 1, is a worst-case optimal algorithm
for constructing interpolants. Section 3 is dedicated to this interpolation result. Finally, all
our results about BP are presented in Section 4. Since the interpolation results are used to
prove BP, Section 3 naturally comes before Section 4, but the reader who is less interested
in the interpolation results may prefer to skip Section 3 initially.

2. Preliminaries

In this section, we introduce the description logics that we will study. They are frequently
used logics in the expressive ALC-family of description logics.

2.1 Description Logics

Let NC and NR be countably infinite and mutually disjoint sets of concept names and
role names, respectively. For reasons that will become clear in a moment, we also assume a
countably infinite subset of NR, denoted by NR+ , where NR \NR+ is also countably infinite.
The role names in NR+ are, intuitively, designated as being transitive, and are allowed to
be used only in description logics with transitive roles. An element of NC or NR is also
called a predicate, and a set Σ ⊆ NC ∪NR of concept and role names is called a signature.

To ease the exposition, we first introduce the description logic ALCFI, and we then
define the other description logics that we study. The concept language of ALCFI is defined
as follows:

Concepts: C,D ::= > | A | ¬C | C uD | ∃R.C | ≤ 1R
Roles: R ::= P | P−

where A ∈ NC and P ∈ NR \ NR+ . The concept constructors ⊥, t, ∀R.C, and ≥ 2R
are defined as abbreviations in the usual way. Also, by a slight abuse of notation, we will
sometimes write (P−)−, for P ∈ NR, in which case it refers to the role name P itself. An
ALCFI-TBox T is a finite set of concept inclusion axioms (CIAs) C v D, where C and D
are ALCFI-concepts.

The semantics of ALCFI-concepts and roles is given in terms of interpretations. An
interpretation is a pair I = 〈∆I , ·I〉 where ∆I is a non-empty set called the domain of

352



Beth Definability in Expressive Description Logics

>I = ∆I ,
(¬C)I = ∆I \ CI ,

(C uD)I = CI ∩DI ,
(∃R.C)I = {s ∈ ∆I | there exists t ∈ ∆I such that 〈s, t〉 ∈ RI and t ∈ CI},
(≤ 1R)I = {s ∈ ∆I | for all t, u ∈ ∆I , if 〈s, t〉 ∈ RI and 〈s, u〉 ∈ RI then t = u},

(P−)I = {〈s, t〉 | 〈t, s〉 ∈ P I}.

Table 2: Semantics of complex ALCFI-concepts and roles

I, and ·I is a function that maps each concept name A ∈ NC to a subset AI of ∆I and
each role name P ∈ NR to a binary relation P I on ∆I . In anticipation of the discussion of
description logics with transitive roles below, we require also that for each P ∈ NR+ , the
relation P I is transitive. The map ·I is extended to complex concepts and roles by means
of the inductive definitions provided in Table 2.

An interpretation I satisfies (or, is a model of) a CIA C v D if CI ⊆ DI , and I satisfies
(or, is a model of) a TBox T if it satisfies every CIA in T . We use the notation I |= C v D
and I |= T to express that I satisfies C v D, respectively, that I satisfies T .

The description logic ALCFI that we defined above is a member of a larger family of
description logics. The “basic” description logic ALC is defined as ALCFI without inverse
roles (i.e., without roles of the form P−) and without functionality restrictions (i.e., without
concepts of the form ≤ 1R). For X ⊆ {S,H, I,F}, the description logic ALCX extends
ALC with

1. Functionality restrictions (as in ALCFI) if F ∈ X,

2. Inverse roles (as in ALCFI) if I ∈ X,

3. Transitive roles if S ∈ X. By this, we mean that the role names in NR+ are allowed
to be used.

4. Role hierarchies if H ∈ X. By this, we mean that a TBox may contain role inclusion
axioms (RIAs) of the form R v S, where R and S are roles, which are satisfied in an
interpretation I if RI ⊆ SI .

For DLs that include both transitive roles (S) and functionality restrictions (F), a further
syntactic restriction is imposed: whenever ≤ 1R occurs in a concept, then R is required to
be a simple role with respect to the TBox at hand (Horrocks, Sattler, & Tobies, 2000). A
simple role is, intuitively, a role does not have a transitive subrole. The formal definition of
simplicity is as follows: let us write R vT S if either R = S or there are roles R1, . . . , Rn
such that R1 = R, Rn = S, and for all 1 ≤ i < n, T contains either the RIA Ri v Ri+1

or the RIA R−i v R−i+1. We say R is simple with respect to T if there does not exist
a role S such that S vT R and such that S is of the form P or P− with P ∈ NR+ .
The motivation for this standard syntactic restriction is that, without it, basic decision
problems such as satisfiability and concept subsumption with respect to a TBox (defined
below) quickly become undecidable (Horrocks et al., 2000).

353



Ten Cate, Franconi, & Seylan

For X ⊆ {S,H, I,F} with S ∈ X, it is customary to omit the prefix ALC in the nota-
tion ALCX. In particular, the description logic ALCSHIF (which is the most expressive
description logic we consider in this paper) is referred to simply as SHIF . SHIF is also
the theoretical basis of the Web Ontology Language OWL-Lite (Horrocks, Patel-Schneider,
& van Harmelen, 2003), which makes it an important DL from a practical viewpoint.

For an L -concept C, the set sub(C) consists of C and all its subconcepts. For a concept
C and a TBox T , rol(C, T ) denotes the set of roles occurring in C or T ; and sig(C, T )
denotes the set of concept names and role names occurring in C or T , i.e., the signature
of C and T . We use sig(C) as an abbreviation for sig(C, ∅). The size of an L -concept C
(L -role R), written |C| (resp. |R|), is the number of occurrences of symbols needed to write
C (resp. R). The size of an L -TBox T , written |T |, is defined analogously. Later on, in
Section 3.3 we will also consider other, more succinct, ways of representing concepts.

There are alternative ways to represent functionality restrictions and transitive roles in
the DL literature. For example, functionality and transitivity axioms of the form functR
or Trans(R) are sometimes treated as axioms in the TBox. Although such syntactic dif-
ferences can be considered minor as far as the standard reasoning tasks (cf. Section 2.2)
are concerned, interpolation results are sensitive to changes in the language. For example,
opting for TBox axioms of the form functR instead of freely allowing ≤ 1R as a construct
in the concept language would change the expressive power of languages we consider. In
Section 3.1, we show that ALCF has the interpolation property. The interested reader
is invited to check if our proof can be adapted to the case where we allow functionality
restrictions only as TBox axioms.

2.2 Decision Problems

A concept C is satisfiable with respect to TBox T if there exists a model I of T such that
CI 6= ∅. A CIA C v D follows from a TBox T (denoted by T |= C v D), if every model
of T is a model of C v D. We write T |= C ≡ D if both T |= C v D and T |= D v C hold
true.

The following decision problems will be relevant for us:

• Concept satisfiability with respect to a TBox :
Given C and T , to determine if C is satisfiable w.r.t. T .

• Concept subsumption with respect to a TBox :
Given C v D and T , to determine if T |= C v D.

Both problems are parametrized by a description logic L , in which the input concept(s)
and TBox are specified. The two problems are reducible to each (or, more accurately, to
each others complement) for all the logics we consider, due to the fact that their concept
languages are closed under negation. In fact, both problems are ExpTime-complete for
each of the description logics that we consider (Tobies, 2001).

The same decision problems can also be considered over the restricted class of finite
interpretations, i.e., interpretations whose domain is a finite set. We will refer to these
variants of the above decision problems as finite concept satisfiability and finite concept
subsumption. Thus, finite concept satisfiability with respect to a TBox is the problem of
deciding whether a given concept has a non-empty denotation in some finite model of a

354



Beth Definability in Expressive Description Logics

given TBox. It is known (Lutz, Sattler, & Tendera, 2005) that finite concept satisfiability
and finite concept subsumption are also ExpTime-complete for all the description logics we
consider here.

When the finite concept satisfiability problem coincides with the unrestricted satisfi-
ability problem, then we say that the description logic in question has the finite model
property.

Definition 2.1 (Finite model property). A DL L is said to have the finite model property
(FMP) if for every L -concept C and every L -TBox T , if C is satisfiable w.r.t. T , then
there is some finite interpretation I such that I is a model of T and CI 6= ∅.

It is well-known that ALCFI and its extensions lack the finite model property (Calvanese
& Giacomo, 2003).

2.3 First-Order Translation

It is well-known from the correspondence theory of modal/description logics that description
logic concepts can, in general, be translated into first-order logic formulae with one free
variable (Sattler, Calvanese, & Molitor, 2003). In this translation, each concept name A is
viewed as a unary predicate symbol and each role name R is viewed as a binary predicate
symbol of our first-order language. An interpretation, then, corresponds to a first-order
structure.

We assume that the reader is familiar with basic notation and terminology for first-order
logic. In particular, we will use the notation I, α |= ϕ to express that the first-order formula
ϕ is satisfied in the structure I under the first-order variable assignment α. Sometimes, it
will be convenient to use a different notation to express the same thing: if ϕ(x1, . . . , xn) is a
first-order formula whose free variables are x1, . . . , xn, and if a1, . . . , an are elements of the
domain of a structure I, we will write I |= ϕ [a1, . . . , an] to express that ϕ is satisfied in I
under the variable assignment that sends each variable xi to the corresponding element ai.
Note that this notation implicitly assumes an order on the free variables of ϕ, which will
always be clear from the context.

Definition 2.2. The mapping πx from SHIF-concepts to first-order formulae is defined
as follows:

πx(>) = >,
πx(A) = A(x),

πx(¬C) = ¬πx(C),

πx(C uD) = πx(C) ∧ πx(D),

πx(∃P.C) = ∃y[P (x, y) ∧ πy(C)],

πx(∃P−.C) = ∃y[P (y, x) ∧ πy(C)],

πx(≤ 1P ) = ∀z1∀z2[P (x, z1) ∧ P (x, z2)→ z1 = z2],

πx(≤ 1P−) = ∀z1∀z2[P (z1, x) ∧ P (z2, x)→ z1 = z2],

355



Ten Cate, Franconi, & Seylan

where πy is obtained from the above definition by replacing all occurrences of x by y and
vice versa. For a SHIF-TBox T , π(T ) is defined as

∧
ϕ∈T π(ϕ), where

π(C v D) = ∀x[πx(C)→ πx(D)]

π(R v S) = ∀x∀y[πxy(R)→ πxy(S)]

where, for P ∈ NR, πxy(P ) = P (x, y) and πxy(P
−) = P (y, x).

The translation above is model-preserving, i.e., for all SHIF-concepts C, interpretations
I, and first-order assignments α for I, we have α(x) ∈ CI iff I, α |= πx(C); and similarly
for CIAs, RIAs, and TBoxes.

3. Constructive Interpolation with Tableaux

This section provides a constructive proof of an interpolation property in the DLs we are
interested in. This property will be the essential part of the proof of BP in these DLs (cf.
Definition 4.7). Resorting to interpolation to show the Beth definability property in a logic
has been a standard technique since the seminal work of Craig (1957). We start by defining
this interpolation property.

Definition 3.1 (Interpolation property). A DL L is said to have the interpolation property
if and only if for all L -concepts C1, C2 and all L -TBoxes T1, T2, if T1 ∪ T2 |= C1 v C2,
then there is some L -concept I such that

• sig(I) ⊆ sig(C1, T1) ∩ sig(C2, T2),

• T1 ∪ T2 |= C1 v I, and

• T1 ∪ T2 |= I v C2.

Such a concept is called an interpolant of C1 and C2 under 〈T1, T2〉.

The interpolation property we consider is defined specifically to prove BP. Normally,
the Craig interpolation property for first-order logic is stated as follows: for all first-order
formulae ϕ and ψ, if ϕ |= ψ, then there exists a first-order formula ϑ such that sig(ϑ) ⊆
sig(ϕ) ∩ sig(ψ), ϕ |= ϑ, and ϑ |= ψ. We can however relate the interpolation property we
consider to first-order Craig interpolation using the standard translation of Definition 2.2.
Given L -concepts C1, C2 and L -TBoxes T1, T2, we have by the standard translation the
following equivalences:

T1 ∪ T2 |= C1 v C2

π(T1) ∧ π(T2) |= πx(C1)→ πx(C2)

π(T1) ∧ πx(C1) |= π(T2)→ πx(C2)

Thus, by setting ϕ = π(T1) ∧ πx(C1) and ψ = π(T2) → πx(C2), we know by Craig’s
Interpolation Theorem for first-order logic that we always have a first-order interpolant ϑ
for ϕ and ψ, if ϕ |= ψ (Craig, 1957). However, we do not know in general whether such
an interpolant can be expressed as an L -concept. Because of this reason we will work in

356



Beth Definability in Expressive Description Logics

the DL setting instead of full first-order. Our proofs are constructive in the sense that we
present effective procedures for computing the interpolants. This also allows us to establish
upper bounds on the size of interpolants.

This section is organized as follows. In Section 3.1, we show directly that the inter-
polation property holds for ALC and ALCF using a worst-case optimal tableau (plural:
tableaux) algorithm in the style of Goré and Nguyen (2007). Then in Section 3.2, we show
that the interpolation property also holds in the extensions of ALC and ALCF with tran-
sitive and inverse roles. Instead of establishing these results directly using tableaux, we
make use of some satisfiability and signature preserving reductions to ALC and ALCF .
Our main result says that the interpolants in these logics can be computed in double expo-
nential time. In Section 3.3, we study what happens when interpolants are allowed to be
expressed in full first-order logic and show that first-order interpolants can be computed in
single exponential time.

3.1 A Direct Algorithm for Computing Interpolants in ALCF

In this section, we assume thatALCF-concepts are defined recursively as in Section 2.1 using
also ⊥, t, ∀R.C, and ≥ 2R as primitives, i.e., we assume that, e.g., ≥ 2R is a constructor of
our concept language and not an abbreviation for ¬(≤ 1R) anymore. Moreover, we assume
that all concepts are in negation normal form (NNF), i.e., the negation occurs only in front
of concept names. It is well-known that every ALCF-concept can easily be transformed
to an equivalent one in NNF by pushing the negation inwards using the dualities between
concept constructors (Tobies, 2001), e.g., ∀R.C and ¬∃R.¬C. The NNF of the complement
of a concept C is written as ¬̇C. Another assumption we make is that ALCF-TBoxes
consist only of axioms of the form > v C. These assumptions make our tableau notation
more compatible with the standard tableau notation for DLs. More precisely, we want to
have a separate rule for each concept constructor in the language (Horrocks et al., 2000).
The main result we present in this section, namely Theorem 3.10, can easily be shown to
hold in the case where we do not make these assumptions.

Definition 3.2. Let C be an ALCF-concept and let T be an ALCF-TBox. The concept
closure cl(C, T ) of C and T is the smallest set of concepts satisfying the following conditions:

• C ∈ cl(C, T );

• if > v D ∈ T , then D ∈ cl(C, T );

• if D ∈ cl(C, T ) and E ∈ sub(D), then E ∈ cl(C, T );

• if ∃R.D ∈ cl(C, T ) then ∀R.D ∈ cl(C, T ).

For the rest of this section, fix two ALCF-concepts C0, D0 and two ALCF-TBoxes Tl,
Tr. We will denote the union Tl ∪ Tr by T . l stands for left and r for right and it is a
naming scheme adopted from Fitting (1996). It will allow us to identify from which TBox
(Tl or Tr) or concept (C0 or D0) an inference is made. A biased concept is an expression of
the form Cλ, where C is an ALCF-concept and λ ∈ {l, r} is a bias. Two relevant biased
concept closures cll and clr are defined as follows.

cll = {Cl | C ∈ cl(C0, Tl)} and clr = {Cr | C ∈ cl(¬̇D0, Tr)}.

357



Ten Cate, Franconi, & Seylan

We use the Greek letters λ, κ to denote a bias.
Our tableau rules will be producing subsets of cll∪ clr in a systematic way. To this aim,

we make use of the metaphor of a burden and relief. Intuitively, a subset Φ of cll ∪ clr has
a burden if the satisfiability of Φ depends on the satisfiability of one or more subsets of
cll ∪ clr that we call the reliefs of Φ.

Definition 3.3. Let Φ ⊆ cll ∪ clr. Then

• (C1 u C2)λ is an u-burden of Φ iff (C1 u C2)λ ∈ Φ and {(C1)λ, (C2)λ} 6⊆ Φ;

• (C1 t C2)λ is an t-burden of Φ iff (C1 t C2)λ ∈ Φ and {(C1)λ, (C2)λ} ∩ Φ = ∅;

• (≤ 1R)λ is an ≤ 1-burden of Φ iff (≤ 1R)λ ∈ Φ and {(∀R.C)κ | (∃R.C)κ ∈ Φ} 6⊆ Φ;

• (∃R.C)λ is an ∃-burden of Φ iff (∃R.C)λ is in Φ;

• (≥ 2R)λ is an ≥ 2-burden of Φ iff (≥ 2R)λ is in Φ.

A burden of Φ is any type of burden from above.

Definition 3.4. Let Φ ⊆ cll∪ clr, Cλ be a burden of Φ, and S = {Dl | > v D ∈ Tl}∪ {Dr |
> v D ∈ Tr}. Then Ψ ⊆ cll ∪ clr is called a Cλ-relief of Φ if

• C = (C1 u C2)λ and Ψ = {(C1)λ, (C2)λ} ∪ Φ;

• C = (C1 t C2)λ and either Ψ = Φ ∪ {(C1)λ} or Ψ = Φ ∪ {(C2)λ};

• C = (≤ 1R)λ and Ψ = Φ ∪ {(∀R.C)κ | (∃R.C)κ ∈ Φ};

• C = (∃R.C)λ and Ψ = {Cλ} ∪ {Dκ | (∀R.D)κ ∈ Φ} ∪ S;

• C = (≥ 2R)λ and Ψ = {Dκ | (∀R.D)κ ∈ Φ} ∪ S.

A biased 〈C0 v D0, T 〉-tableau (〈C0 v D0, T 〉-tableau for short) is a vertex-labeled
directed graph 〈V, E〉 with the labeling content : V → 2cll∪clr. Intuitively, for all edges 〈g, g′〉
constructed by our algorithm, g′.content will correspond to some Cλ-relief of g.content. Note
that a tableau is neither required to be a tree nor a directed acyclic graph (DAG) because
cycles may occur in general. We say that a node g in a tableau contains a clash if and only
if either one of the following holds.

• ⊥λ ∈ g.content,

• {Aλ, (¬A)κ} ⊆ g.content,

• {(≤ 1R)λ, (≥ 2R)κ} ⊆ g.content.

The tableau expansion rules given in Figure 1 expand a tableau by making use of the
semantics of concepts. A rule is said to be applicable to a node g if and only if its condition
is satisfied in g, no rule was applied to g before, and g does not contain a clash. In order to
guarantee a finite expansion, we use proxies in the following way. Whenever a rule creates
a new node g′ from g, before attaching the edge 〈g, g′〉 to E , the tableau is searched for a

358



Beth Definability in Expressive Description Logics

The Ru rule
Condition: (C1 u C2)λ is an u-burden of g.content.
Action: E ← E ∪ {〈g, g′〉} and g′.content ← Φ, where Φ is the (C1 u C2)λ-relief

of g.content.
The Rt rule
Condition: (C1 t C2)λ is an t-burden of g.content.
Action: E ← E ∪ {〈g, g1〉, 〈g, g2〉}, g1.content← Φ1, and g2.content← Φ2,

where Φ1,Φ2 are (C1 t C2)λ-reliefs of g.content.
The R≤1 rule
Condition: (≤ 1R)λ is an ≤ 1-burden of g.content.
Action: E ← E ∪ {〈g, g′〉} and g′.content ← Φ, where Φ is the (≤ 1R)λ-relief of

g.content.
The R∃ rule
Condition: Φ = {(C1)λ1 , . . . , (Cn)λn} such that Cλ ∈ Φ iff Cλ is an ∃- or ≥ 2-burden

of g.content.
Action: E ← E ∪ {〈g, gi〉 | 1 ≤ i ≤ n} and for 1 ≤ i ≤ n,

gi.content← Φi, where Φi is the (Ci)
λi-relief of g.content.

Figure 1: Tableau expansion rules for ALCF

node g′′ ∈ V such that g′.content = g′′.content. If such a g′′ is found, then the edge 〈g, g′′〉
is added to E and g′ is discarded.

We are interested in deciding T |= C0 v D0. The tableau algorithm consists of two
phases. The first phase starts with the initial 〈C0 v D0, T 〉-tableau T = 〈{g0}, ∅〉, where
g0.content = {(C0)l, (¬̇D0)r} ∪ {El | > v E ∈ Tl} ∪ {Er | > v E ∈ Tr}. T is then
expanded by repeatedly applying the tableau expansion rules in such a way that if more
than one rule is applicable to a node at the same time, then the first applicable rule in the
list [Ru,Rt,R≤1,R∃] is chosen. The first phase continues as long as some rule is applicable
to T. A 〈C0 v D0, T 〉-tableau is called complete if and only if it is the output of the first
phase of the tableau algorithm.

Lemma 3.5. The first phase of the tableau algorithm terminates in time 2O(n), where
n = |cll ∪ clr|. Moreover for the complete 〈C0 v D0, T 〉-tableau T = 〈V, E〉 it produces, we
have |V| ≤ 2n and |E| ∈ 2O(n).

Proof. By definition, the first phase continues as long as some rule is applicable to some
node in the tableau. Then by the definition of applicability, we have that at most one rule
is applied to a node in the tableau.

Let n = |cll ∪ clr|. By the definition of a proxy, we have |V| ≤ 2n since there are 2n

distinct subsets of cll ∪ clr. Combining this with the fact that there is at most one rule
application per node, we obtain 2n as a bound on the number of rule applications. Now,
it is easy to see that each rule executes in time polynomial in n, i.e., the execution time of
each rule is bounded by nk, where k is a constant. Then we have that the whole running

359



Ten Cate, Franconi, & Seylan

time of the first phase is 2n · nk. That is,

2n · nk = 2n+lognk

= 2n+k·logn

∈ 2O(n).

It only remains to show the bound on |E|. By the definition of tableau rules, the out-degree
of a node cannot exceed n. Therefore, |E| ≤ n · 2n, i.e., |E| ∈ 2O(n).

Let T be the complete 〈C0 v D0, T 〉-tableau obtained from the first phase of the algo-
rithm. The purpose of the second phase of the tableau algorithm, i.e., Algorithm 1, is to
construct the following functions:

1. status : V → {sat, unsat} is a total function,

2. int is a partial function from V to ALCF-concepts.

For a g ∈ V, the values that are assigned to g by these functions are denoted by g.status
and int(g). Intuitively, the status of a node g denotes if

d
Cλ∈g.contentC is satisfiable or not

w.r.t. T ; and int(g), if defined, is an interpolant of g.content in the following sense.

Definition 3.6. Let Φ ⊆ cll ∪ clr. A concept I is called an interpolant of Φ if and only if

• T |=
d
Cl∈ΦC v I and T |= I v

⊔
Cr∈Φ ¬C

• sig(I) ⊆ sig(
d
Cl∈ΦC) ∩ sig(

⊔
Cr∈Φ ¬C),

By the definition of Algorithm 1, it will be that for all g ∈ V, int(g) is defined if, and only
if, g.status = unsat. In order to compute int(g) for a node g ∈ V with g.status = unsat,
Algorithm 1 uses the interpolant calculation rules that are presented in Figures 2, 3, 4. The
rules in Figure 2 compute int(g) based solely on g.content; ones in Figure 3 take into account
g.content and for some successor g′ of g, the values g′.content and int(g′); and finally, ones
in Figure 4 take into account g.content and for every successor g′ of g, the values g′.content
and int(g′). We invite the reader to verify that, indeed, whenever Algorithm 1 assigns unsat
to g.status, for a node g of the tableau, then there is an interpolant calculation rule that
can be applied to compute int(g). Furthermore, each interpolant calculation rule is easily
seen to be sound. For example, the interpolant calculation rule Cu in Figure 3 is sound
because, if for a successor g′ of g, g′.content is the (C1 uC2)λ-relief of g.content and int(g′)
is an interpolant of g′.content (in the sense of Definition 3.6) then it is necessarily also an
interpolant of g.content.

Let T = 〈V, E〉 be a complete 〈C0 v D0, T 〉-tableau which is an output of the second
phase. T is said to be open if and only if g0.status = sat; and it is said to be closed if and
only if g0.status = unsat. If T is determined to be open after the second phase, then the
tableau algorithm returns “T 6|= C0 v D0”, otherwise it returns “T |= C0 v D0”.

The next three results establish some important properties of our tableau algorithm and
we use them to prove Theorem 3.10. The proofs of these results require the introduction
of standard but substantial amount of notation from the DL and modal logic literature. In
order to present Theorem 3.10 more clearly, we defer these proofs to Appendix C.

360



Beth Definability in Expressive Description Logics

Algorithm 1 Second phase of the tableau algorithm

Propagate:
do

• done← true.

• For every g ∈ V with g.status 6= unsat:

– if g contains a clash, then

1. g.status← unsat,

2. apply one of {Cl
⊥,C

r
⊥,C

ll
¬,C

rr
¬ ,C

lr
¬ ,C

rl
¬}, one whose condition is satisfied, to

calculate int(g),

3. done← false.

– if ∃g′ ∈ V with 〈g, g′〉 ∈ E , g′.status = unsat, and g′.content is some (C1 uC2)λ-,
(≤ 1R)λ-, (∃R.C)λ, or (≥ 2R)λ-relief of g.content, then

1. g.status← unsat,

2. apply one of {Cu,Cl6R
≤1,C

r6R
≤1,C

lR
≤1,C

rR
≤1,C

l6R
∃ ,C

r6R
∃ ,C

lR
∃ ,C

rR
∃ }, one whose condi-

tion is satisfied, to calculate int(g),

3. done← false.

– if ∃g1, g2 ∈ V with g1 6= g2, 〈g, g1〉, 〈g, g2〉 ∈ E , gi.status = unsat for each
i ∈ {1, 2}, gi.content is a (C1 t C2)λ-relief of g.content for each i ∈ {1, 2}, then

1. g.status← unsat,

2. apply one of {Cl
t,C

r
t}, one whose condition is satisfied, to calculate int(g),

3. done← false.

while done = false.
Assign:
For every g ∈ V with g.status 6= unsat, g.status← sat.

361



Ten Cate, Franconi, & Seylan

The Cl
⊥ rule

Condition: ⊥l ∈ g.content.
Action: int(g)← ⊥
The Cr

⊥ rule
Condition: ⊥r ∈ g.content.
Action: int(g)← >
The Cll

¬ rule
Condition: {Cl, (¬̇C)l} ⊆ g.content, for a C of the form A or ≤ 1R.
Action: int(g)← ⊥
The Crr

¬ rule
Condition: {Cr, (¬̇C)r} ⊆ g.content, for a C of the form A or ≤ 1R.
Action: int(g)← >
The Clr

¬ rule
Condition: {Cl, (¬̇C)r} ⊆ g.content, for a C of the form A or ≤ 1R.
Action: int(g)← C
The Crl

¬ rule
Condition: {Cr, (¬̇C)l} ⊆ g.content, for a C of the form A or ≤ 1R.
Action: int(g)← ¬̇C

Figure 2: Interpolant calculation rules for ALCF (content dependent rules)

Lemma 3.7. Let T = 〈V, E〉 be the output of the second phase. For all g ∈ V, if g.status =
unsat, then

1. g.content is unsatisfiable w.r.t. T ;

2. int(g) is defined and it is an interpolant of g.content; and

3. |int(g)| ∈ O(22n), where n = |cll ∪ clr|.

The next lemma establishes a double exponential upper bound for the runtime of Algo-
rithm 1. This is a consequence of interpolant calculation and our double exponential upper
bound on the size of these interpolants (cf. Lemma 3.7).

Lemma 3.8. The second phase of the tableau algorithm, i.e., Algorithm 1, runs in time
O(22n), where n = |cll ∪ clr|.

The next proposition establishes the soundness and the completeness of our algorithm
for concept subsumption w.r.t. TBoxes in ALCF .

Proposition 3.9. T is a closed 〈C0 v D0, T 〉-tableau if and only if T |= C0 v D0.

The tableau algorithm we presented in this section with the two phases is actually
an algorithm to compute interpolants of at most double exponential size in ALCF . This
upper bound is optimal because the results we establish in Section 4 imply that smallest
interpolants can be of double exponential size.

362



Beth Definability in Expressive Description Logics

The Cu rule
Condition: g′.content is the (C1 u C2)λ-relief of g.content.
Action: int(g)← int(g′).

The Cl6R
≤1 rule

Condition: g′.content is the (≤ 1R)l-relief of g.content and
there is no biased concept of the form (∃R.C)r ∈ g.content.

Action: int(g)← int(g′).

The Cr6R
≤1 rule

Condition: g′.content is the (≤ 1R)r-relief of g.content and
there is no biased concept of the form (∃R.C)l ∈ g.content.

Action: int(g)← int(g′).
The ClR

≤1 rule

Condition: g′.content is the (≤ 1R)l-relief of g.content and
there is some biased concept of the form (∃R.C)r ∈ g.content.

Action: int(g)← int(g′)u ≤ 1R.
The CrR

≤1 rule

Condition: g′.content is the (≤ 1R)r-relief of g.content and
there is some biased concept of the form (∃R.C)l ∈ g.content.

Action: int(g)← int(g′)t ≥ 2R.

The Cl6R
∃ rule

Condition: g′.content is the (∃R.C)l- or (≥ 2R)l-relief of g.content,
there is no biased concept of the form (∀R.D)r ∈ g.content.

Action: int(g)← ⊥.

The Cr6R
∃ rule

Condition: g′.content is the (∃R.C)r- or (≥ 2R)r-relief of g.content,
there is no biased concept of the form (∀R.D)l ∈ g.content.

Action: int(g)← >.
The ClR

∃ rule
Condition: g′.content is the (∃R.C)l- or (≥ 2R)l-relief of g.content,

there is some biased concept of the form (∀R.D)r ∈ g.content.
Action: int(g)← ∃R.int(g′).
The CrR

∃ rule
Condition: g′.content is the (∃R.C)r- or (≥ 2R)r-relief of g.content,

there is some biased concept of the form (∀R.D)l ∈ g.content.
Action: int(g)← ∀R.int(g′).

Figure 3: Interpolant calculation rules for ALCF (single successor dependent rules)

Theorem 3.10. For all ALCF-concepts C,D and all ALCF-TBoxes T1, T2 if T1 ∪ T2 |=
C v D then there exists an interpolant of C and D under 〈T1, T2〉 that can be computed in
time double exponential in |T1|+ |T2|+ |C|+ |D|.

Proof. Suppose C,D are ALCF-concepts and T1, T2, and T are ALCF-TBoxes such that
T1 ∪ T2 = T and T |= C v D. Then by Proposition 3.9, there is a closed 〈C v D, T 〉-

363



Ten Cate, Franconi, & Seylan

The Cl
t rule

Condition: g1.content, g2.content are (C1 t C2)l-reliefs of g.content.
Action: int(g)← int(g1) t int(g2).
The Cr

t rule
Condition: g1.content, g2.content are (C1 t C2)r-reliefs of g.content.
Action: int(g)← int(g1) u int(g2).

Figure 4: Interpolant calculation rules for ALCF (multiple successor dependent rules)

tableau T = 〈V, E〉. This means g0.status = unsat, and thus by Lemma 3.7, there is
some ALCF-concept I such that int(g0) = I and I is an interpolant of g0.content. Let
X =

d
>vE∈T1 E and Y =

⊔
>vE∈T2 ¬E. Since I is an interpolant of g0.content, we have

T |= C u X v I, T |= I v D t Y , and sig(I) ⊆ sig(C u X) ∩ sig(D t Y ). Then by the
fact that T |= X ≡ > and T |= Y ≡ ⊥, we obtain T |= C v I and T |= I v D; and by
sig(I) ⊆ sig(C uX) ∩ sig(D t Y ), we obtain sig(I) ⊆ sig(C, T1) ∩ sig(D, T2). Hence I is an
interpolant of C and D under 〈T1, T2〉. Finally by Lemma 3.8, I can be computed in time
double exponential in |T1|+ |T2|+ |C|+ |D|.

We end this section with a discussion of the techniques we used. The tableau algorithm
we defined is based on a tableau algorithm by Goré and Nguyen (2007). Here we extended
this algorithm for ALCF and added more machinery to compute interpolants. In general
interpolation follows as a corollary to a cut-free sequent or tableau calculus1 for a logic (e.g.,
see Rautenberg, 1983; Fitting, 1996; Kracht, 2007); but such a corollary does not give upper
bounds on the size and computation time of interpolants unless the calculus is combined
with a decision procedure. In this section, our goal was to obtain tight upper bounds on the
size and computation time of interpolants in ALCF . More traditional tableau algorithms
for DLs, e.g., the one by Horrocks et al. (2000), can also be used to establish similar results
(Seylan et al., 2009). Here the crucial idea is that the tableau algorithm should provide
an explicit representation of the tableau rule applications so that an interpolant can be
calculated by induction on the rule applications. We chose a non-traditional DL tableau
algorithm for our purposes because it is based on a non-labeled2 tableau calculus and such
calculi are actually more commonly used for proving interpolation results in modal logics
(e.g., Rautenberg, 1983).

3.2 Extending Interpolation to Transitive and Inverse Roles

In this section, we extend Theorem 3.10 to more logics in order to obtain our main inter-
polation result Theorem 3.22. To this aim, we present various polynomial reductions from
reasoning in one DL to another. The purpose of these reductions is to eliminate some con-
structors in the language. The technique we use for these reductions is well-known in the DL
literature and it is called the axiom schema instantiation technique (Calvanese, Giacomo,
& Rosati, 1998; Calvanese, Giacomo, Lenzerini, & Nardi, 2001). Similar techniques also

1. A tableau calculus is defined as a set of tableau rules.
2. A non-labeled tableau calculus provides no explicit representation of individuals in the interpretations.

364



Beth Definability in Expressive Description Logics

appear in modal logic (Kracht, 2007). The idea behind this technique can be summarized
as follows.

DLs are syntactic variants of modal logics. It is well-known that an axiom schema that
is valid in a modal logic corresponds to a certain condition on the accessibility relation in the
frames of that logic (Blackburn, de Rijke, & Venema, 2001). For example the axiom schema
4 : 2ϕ → 22ϕ defines the class of transitive frames. The axiom schema instantiation
technique is based on instantiating an axiom schema a finite number of times for each
concept in cl or a relevant concept closure, and adding these instances to the TBox to
obtain an equi-satisfiable TBox. The resulting TBox will then be free of the constructor in
the language for which we instantiated the axiom schema.

We note that the input in these reductions is normally a concept and a TBox; but
for interpolation, we are given a pair of concepts C1, C2 and a pair of TBoxes T1, T2.
Therefore, we require from these reductions that they do not mix the signature of sig(C1, T1)
and sig(C2, T2) in an ‘uncontrolled’ way. What exactly we mean by this will be clear in
Lemma 3.14 and Lemma 3.19. Naturally, this calls for extra notation.

Definition 3.11. An injective function ζ : X → NR, where X is a finite subset of NR ∪
{P− | P ∈ NR}, is called a role renaming if for all P ∈ NR, we have {P, P−} 6⊆ X. A role
renaming ζ is called safe for a signature Σ if range(ζ) ∩ Σ = ∅.

Given an L -concept C and a role renaming ζ, Zζ(C) is the concept obtained from C by
replacing every occurrence of every R ∈ dom(ζ) by ζ(R).

Intuitively, we use role renamings, as the name suggests, to rename roles in concepts. We
need to make sure that the renaming operation is well-defined and thus, we avoid mappings
where a role and its inverse are in the domain of the mapping. Safeness of the mapping
w.r.t. a signature is a property that we desire in the following reductions. We start with
transitive roles and thus, instantiate the axiom schema 2ϕ→ 22ϕ.

Definition 3.12. Let C0 be a SIF-concept, T be a SIF-TBox, and ζ be a safe role
renaming for sig(C0, T ) with dom(ζ) = sig(C0, T ) ∩ NR+ and range(ζ) ∩ NR+ = ∅. Then
τS(C0, T , ζ) is defined as the ALCFI-TBox τ1

S(C0, T , ζ)∪τ2
S(C0, T , ζ), where τ1

S(C0, T , ζ) =
{> v Zζ(C) | > v C ∈ T } and

τ2
S(C0, T , ζ) = {Zζ(∀R.C) v Zζ(∀R.∀R.C) | ∀R.C ∈ cl(C0, T ) and {R,R−} ∩NR+ 6= ∅}

Note that in the definition above, the signature of the resulting ALCFI-TBox will not be
equal to the signature of the original SIF-TBox T if C0 or T contains transitive roles.
Introducing these new non-transitive role names is necessary because we are not allowed
to use symbols from NR+ in logics without transitive roles (cf. Section 2.1). Although the
formulation of the following proposition is slightly different from the one of Lemma 6.23 by
Tobies (2001), the proof idea is the same.

Proposition 3.13. A SIF-concept C0 is satisfiable w.r.t. a SIF-TBox T if and only if
the ALCFI-concept Zζ(C0) is satisfiable w.r.t. the ALCFI-TBox τS(C0, T , ζ), where ζ is a
safe role renaming for sig(C0, T ) with dom(ζ) = sig(C0, T )∩NR+ and range(ζ)∩NR+ = ∅.

The reduction (for concept satisfiability w.r.t. TBoxes) in Definition 3.12 satisfies the
following property that will be essential for extending our interpolation results to logics

365



Ten Cate, Franconi, & Seylan

with transitive roles. In this respect, it also resembles the splitting reduction functions of
Kracht (2007).

Lemma 3.14. Let T1, T2 be SIF-TBoxes and let C1, C2 be SIF-concepts. Then

T1 ∪ T2 |= C1 v C2 iff τS(C1, T1, ζ) ∪ τS(¬̇C2, T2, ζ) |= Zζ(C1) v Zζ(C2)

where ζ is a safe role renaming for sig(C1 u ¬̇C2, T1 ∪ T2) with dom(ζ) = sig(C1 u ¬̇C2, T1 ∪
T2) ∩NR+ and range(ζ) ∩NR+ = ∅.

Proof. Let ζ be a safe role renaming for sig(C1 u ¬̇C2, T1 ∪ T2) as specified in the lemma.
We will use the following claims for the proof.

Claim 3.15. τS(C1 u ¬̇C2, T1 ∪ T2, ζ) = τS(C1 u ¬̇C2, T1, ζ) ∪ τS(C1 u ¬̇C2, T2, ζ).

Proof of claim. (⇒) Suppose C v D ∈ τS(C1 u ¬̇C2, T1 ∪ T2, ζ). Then either C v D ∈
τ1
S(C1 u ¬̇C2, T1 ∪ T2, ζ) or C v D ∈ τ2

S(C1 u ¬̇C2, T1 ∪ T2, ζ). If the former holds, then we
immediately obtain the desired result; thus, suppose the latter holds. Then C v D is of the
form Zζ(∀R.C) v Zζ(∀R.∀R.C), ∀R.C ∈ cl(C1u¬̇C2, T1∪T2), and {R,R−}∩NR+ 6= ∅. By
Definition 3.2 and ∀R.C ∈ cl(C1 u ¬̇C2, T1 ∪ T2), we obtain ∀R.C is in cl(C1 u ¬̇C2, T1) or
cl(C1 u ¬̇C2, T2). Then by Definition 3.12 and the fact that either R ∈ NR+ or R− ∈ NR+ ,
we have that Zζ(∀R.C) v Zζ(∀R.∀R.C) ∈ τS(C1 u ¬̇C2, T1, ζ) ∪ τS(C1 u ¬̇C2, T2, ζ), which
is what we wanted to show.

(⇐) It is rather easy to see that this direction of the claim holds. a

Claim 3.16. τS(C1 u ¬̇C2, T1, ζ) ∪ τS(C1 u ¬̇C2, T2, ζ) = τS(C1, T1, ζ) ∪ τS(¬̇C2, T2, ζ).

Proof of claim. (⇐) Suppose C v D ∈ τS(C1, T1, ζ) ∪ τS(¬̇C2, T2, ζ). The desired result
follows immediately if C v D = > v Zζ(C ′), for some > v C ′ ∈ T1∪T2. Otherwise, we have
by Definition 3.12 that C v D is of the form Zζ(∀R.C) v Zζ(∀R.∀R.C), ∀R.C ∈ cl(C1, T1)∪
cl(¬̇C2, T2) and either R ∈ NR+ or R− ∈ NR+ . Then by ∀R.C ∈ cl(C1, T1) ∪ cl(¬̇C2, T2)
and cl(C1, T1)∪ cl(¬̇C2, T2) ⊆ cl(C1 u ¬̇C2, T1)∪ cl(C1 u ¬̇C2, T2), we obtain ∀R.C ∈ cl(C1 u
¬̇C2, T1) ∪ cl(C1 u ¬̇C2, T2). Then by Definition 3.12 and the fact that either R ∈ NR+ or
R− ∈ NR+ , we have Zζ(∀R.C) v Zζ(∀R.∀R.C) ∈ τS(C1 u ¬̇C2, T1, ζ) ∪ τS(C1 u ¬̇C2, T2, ζ),
which is what we wanted to show.

(⇒) Suppose C v D ∈ τS(C1 u ¬̇C2, T1, ζ) ∪ τS(C1 u ¬̇C2, T2, ζ). The desired result follows
immediately if C v D = > v Zζ(C

′), for some > v C ′ ∈ T1 ∪ T2. Otherwise, we have
by Definition 3.12 that C v D is of the form Zζ(∀R.C) v Zζ(∀R.∀R.C), ∀R.C ∈ cl(C1 u
¬̇C2, T1) ∪ cl(C1 u ¬̇C2, T2), and either R ∈ NR+ or R− ∈ NR+ . Then by ∀R.C ∈ cl(C1 u
¬̇C2, T1) ∪ cl(C1 u ¬̇C2, T2), the fact that C1 u ¬̇C2 6= ∀R.C, and Definition 3.2, we obtain
∀R.C ∈ cl(C1, T1) ∪ cl(¬̇C2, T2). Then by Definition 3.12 and the fact that either R ∈ NR+

or R− ∈ NR+ , we have Zζ(∀R.C) v Zζ(∀R.∀R.C) ∈ τS(C1, T1, ζ) ∪ τS(¬̇C2, T2, ζ), which is
what we wanted to show. a

Now the lemma can be shown in the following way.

• T1 ∪ T2 |= C1 v C2, iff

366



Beth Definability in Expressive Description Logics

• C1 u ¬̇C2 is unsatisfiable w.r.t. T1 ∪ T2, iff

• Zζ(C1 u ¬̇C2) is unsatisfiable w.r.t. τS(C1 u ¬̇C2, T1 ∪ T2, ζ) (Proposition 3.13), iff

• Zζ(C1 u ¬̇C2) is unsatisfiable w.r.t. τS(C1 u ¬̇C2, T1, ζ) ∪ τS(C1 u ¬̇C2, T2, ζ) (first
claim), iff

• Zζ(C1 u ¬̇C2) is unsatisfiable w.r.t. τS(C1, T1, ζ) ∪ τS(¬̇C2, T2, ζ) (second claim), iff

• τS(C1, T1, ζ) ∪ τS(¬̇C2, T2, ζ) |= Zζ(C1) v Zζ(C2).

We need a similar reduction to eliminate inverse roles. De Giacomo (1996) presents a
method to reduce converse-PDL satisfiability to PDL satisfiability using the axiom schema
instantiation technique. Since DLs are notational variants of PDLs, this technique can
easily be adapted to DLs as done by Calvanese et al. (1998, 2001). The idea is to instantiate
the converse-PDL axiom schemas ϕ→ [α]〈α−〉ϕ and ϕ→ [α−]〈α〉ϕ.

Definition 3.17. Let C0 be an ALCFI-concept, let T be an ALCFI-TBox, and ζ be
a safe role renaming for sig(C0, T ) with dom(ζ) consisting of all inverse roles appearing
in C0 or T , and range(ζ) ∩ NR+ = ∅. Then τI(C0, T , ζ) is defined as the ALCF-TBox
τ1
I (C0, T , ζ) ∪ τ2

I (C0, T , ζ), where τ1
I (C0, T , ζ) = {> v Zζ(C) | > v C ∈ T } and

τ2
I (C0, T , ζ) = {Zζ(¬̇C) v Zζ(∀R−.∃R.¬̇C) | ∀R.C ∈ cl(C0, T )}

Note that in the definition above, the signature of the resulting ALCF-TBox will not be
equal to the signature of the original ALCFI-TBox T if C0 or T contains inverse roles.
Proposition 3.18 establishes the correctness of this reduction for concept satisfiability w.r.t.
TBoxes. A full proof of this proposition is given by Seylan (2012).

Proposition 3.18. An ALCFI-concept C0 is satisfiable w.r.t. an ALCFI-TBox T if and
only if the ALCF-concept Zζ(C0) is satisfiable w.r.t. the ALCF-TBox τI(C0, T , ζ), where ζ
is a safe role renaming for sig(C0, T ) with dom(ζ) consisting of all inverse roles appearing
in C0 or T and range(ζ) ∩NR+ = ∅.

The following property of this reduction will be useful in our interpolation results.

Lemma 3.19. Let T1, T2 be ALCFI-TBoxes and let C1, C2 be ALCFI-concepts. Then

T1 ∪ T2 |= C1 v C2 iff τI(C1, T1, ζ) ∪ τI(¬̇C2, T2, ζ) |= Zζ(C1) v Zζ(C2)

where ζ is a safe role renaming for sig(C1 u ¬̇C2, T1 ∪ T2) with dom(ζ) consisting of all
inverse roles appearing in C1 u ¬̇C2 or T1 ∪ T2 and range(ζ) ∩NR+ = ∅.

Proof. The following claims can be shown analogously to Claim 3.15 and Claim 3.16, re-
spectively.

Claim 3.20. τI(C1 u ¬̇C2, T1 ∪ T2, ζ) = τI(C1 u ¬̇C2, T1, ζ) ∪ τI(C1 u ¬̇C2, T2, ζ).

Claim 3.21. τI(C1 u ¬̇C2, T1, ζ) ∪ τI(C1 u ¬̇C2, T2, ζ) = τI(C1, T1, ζ) ∪ τI(¬̇C2, T2, ζ).

367



Ten Cate, Franconi, & Seylan

Then the argument is the same as the last step in the proof of Lemma 3.14.

Theorem 3.22. Let L be ALC or any of its extensions with constructors from {S, I,F}.
For all L -concepts C1, C2 and all L -TBoxes T1, T2, if T1∪T2 |= C1 v C2, then there exists
an interpolant of C1 and C2 under 〈T1, T2〉 that can be computed in time double exponential
in |T1|+ |T2|+ |C1|+ |C2|.

Proof. Theorem 3.10 already covers the case for L = ALCF .

For L = ALC. The tableau algorithm for ALCF (with which we proved Theorem 3.10)
can be used without modification to decide concept satisfiability w.r.t. a TBox in ALC.
In other words, given ALC-concepts C1, C2 and an ALC-TBox T = T1 ∪ T2, we can check
if T |= C1 v C2 using the same algorithm. Observe that during the execution of the
algorithm, R≤1 will never be applied and there will be no clashes involving a concept of the
form ≤ 1R. If the algorithm constructs a closed 〈C1 v C2, T 〉-tableau, then the interpolant
calculation algorithm will calculate an interpolant in ALCF . Since R≤1 was never applied
in the first phase and there is no clash involving a concept of the form ≤ 1R in the resulting
tableau, the interpolant calculation rules producing concepts of the form ≤ 1R or ≥ 2R,
namely ClR

≤1, CrR
≤1, and the ones in Figure 2, will never be applied in the second phase. Hence

the resulting interpolant is actually an ALC-concept. That there is always an interpolant
if T1 ∪T2 |= C1 v C2 and the double exponential upper bound on its computation time can
be shown as in Theorem 3.10.

For L ∈ {ALCI,ALCFI}. Let C1, C2 be L -concepts and T1, T2 be L -TBoxes such
that T1 ∪ T2 |= C1 v C2. Let ζ be a role renaming as specified in Lemma 3.19: such a role
renaming always exists. Then by Lemma 3.19, τI(C1, T1, ζ) ∪ τI(¬̇C2, T2, ζ) |= Zζ(C1) v
Zζ(C2), where C1, C2 are ALC-concepts (ALCF-concepts) and τI(C1, T1, ζ), τI(¬̇C2, T2, ζ)
are ALC-TBoxes (respectively ALCF-TBoxes). We compute an interpolant I of Zζ(C1)
and Zζ(C2) under 〈τI(C1, T1, ζ), τI(¬̇C2, T2, ζ)〉 in time that is at most double exponential
in the size of the input. We have

1. sig(I) ⊆ sig(Zζ(C1), τI(C1, T1, ζ)) ∩ sig(Zζ(C2), τI(¬̇C2, T2, ζ)),

2. τI(C1, T1, ζ) ∪ τI(¬̇C2, T2, ζ) |= Zζ(C1) v I,

3. τI(C1, T1, ζ) ∪ τI(¬̇C2, T2, ζ) |= I v Zζ(C2).

Let ζ1 be the restriction of ζ to rol(C1, T1) and ζ2 be the restriction of ζ to rol(¬̇C2, T2);
and set Σ1 = range(ζ1) and Σ2 = range(ζ2). Intuitively, Σ1 and Σ2 are exactly the sets of
new role names we introduced in τI(C1, T1, ζ) and τI(¬̇C2, T2, ζ), respectively. It is easy
to see that sig(Zζ(C1), τI(C1, T1, ζ)) ⊆ sig(C1, T1) ∪ Σ1, and sig(Zζ(C2), τI(¬̇C2, T2, ζ)) ⊆
sig(C2, T2) ∪ Σ2. Then by item 1 above, we have

sig(I) ⊆ (sig(C1, T1) ∪ Σ1) ∩ (sig(C2, T2) ∪ Σ2)

By a simple distributivity argument, we obtain

sig(I) ⊆ (sig(C1, T1) ∩ sig(C2, T2)) ∪ (Σ1 ∩ Σ2) ∪
(sig(C1, T1) ∩ Σ2) ∪ (sig(C2, T2) ∩ Σ1)

368



Beth Definability in Expressive Description Logics

Since sig(C1, T1) ∩ Σ2 = ∅ and sig(C2, T2) ∩ Σ1 = ∅,

sig(I) ⊆ (sig(C1, T1) ∩ sig(C2, T2)) ∪ (Σ1 ∩ Σ2)

Now let D be the L -concept that is obtained from I by replacing all occurrences of each
role name P ∈ Σ1 ∩Σ2 by the only role R− such that ζ(R−) = P . Since ζ is injective, this
is well defined. Moreover, we have Zζ(D) = I.

We claim that for every P ∈ Σ1∩Σ2, the role name R with ζ(R−) = P is in sig(C1, T1)∩
sig(C2, T2). Suppose P ∈ Σ1 ∩ Σ2. Then P ∈ range(ζ1) ∩ range(ζ2). Since ζ1 and ζ2

are defined as restrictions of ζ to rol(C1, T1) and rol(C2, T2), respectively, there is some
R− ∈ rol(C1, T1) ∩ rol(C2, T2) such that ζ(R−) = P . But then R ∈ sig(C1, T1) ∩ sig(C2, T2).

Now by the claim we have just shown, sig(I) ⊆ (sig(C1, T1)∩sig(C2, T2))∪(Σ1∩Σ2), and
the construction of D, we have sig(D) ⊆ sig(C1, T1) ∩ sig(C2, T2). Moreover, by Zζ(D) = I,
items 2 and 3 above, and Lemma 3.19, we obtain T1 ∪T2 |= C1 v D and T1 ∪T2 |= D v C2.
Hence D is an interpolant of C1 and C2 under 〈T1, T2〉. It is easy to see that the time
required to compute D is as stated in the theorem.

For L ∈ {S,SI,SF ,SIF}. In what follows, let L ′ be L without the transitive role
constructor, e.g., if L = SIF , then L ′ = ALCFI. We know by now that L ′ satisfies what
is stated in the theorem. Suppose that C1, C2 are L -concepts and T1, T2 are L -TBoxes
such that T1 ∪ T2 |= C1 v C2. The proof proceeds analogously to the inverse role case,
except of course we use Lemma 3.14.

To conclude, we have shown for each logic L stated in the theorem a constructive way
to compute an interpolant, if one exists, in time double exponential in the size of the input.
Hence the theorem follows.

3.3 Shorter First-Order Interpolants

We will now show that our interpolation algorithm can be adapted to compute first-order
interpolants in single exponential time. The proof will proceed along the following lines.
First we will show that the double exponential size of the interpolants is only due to the
repeated occurrence of subformulas and that our algorithm yields single exponential size
interpolants using a succinct (DAG-shaped as opposed to tree-shaped) concept representa-
tion. Next we apply an idea implicit in the work of Avigad (2003), namely that succinctly
represented first-order formulas can be transformed in polynomial time into equivalent or-
dinary tree-shaped first-order formulas over structures with at least two elements. This
allows us to compute single exponential first-order interpolants over structures with at least
two elements. After that, we show that single exponential interpolants over structures with
one element can be constructed by a reduction to propositional logic. By combining the in-
terpolants obtained via these two methods, we finally obtain the desired single exponential
first-order interpolant over arbitrary structures.

Step 1: Singly-exponential interpolants via succinct representation We start by
defining the notions that will allow us to represent DAG-shaped concepts.

Definition 3.23. Fix a description logic L . An axiom of the form A ≡ C, where A ∈ NC

and C is an L -concept, is called a concept definition axiom in L (or, an L -CDA). Let Σ

369



Ten Cate, Franconi, & Seylan

be a signature. An acyclic terminology over Σ in L is a set of L -CDAs

T = {A1 ≡ C1, . . . , An ≡ Cn}

where {A1, . . . , An} ∩ Σ = ∅ and sig(Ci) ⊆ Σ ∪ {A1, . . . , Ai−1} for i ∈ {1, . . . , n}.
A succinct-L -concept over Σ is a pair 〈A, T 〉, where T is an acyclic terminology over

Σ in L and A is a concept name belonging to sig(T ) \ Σ. The unfolding of a succinct-L -
concept 〈A, T 〉 is the L -concept over Σ that is obtained from A by repeatedly “applying”
the CDAs in T , i.e., replacing occurrences of their left-hand side by their right-hand side,
until no more CDA can be applied.

Note that acyclic terminologies are well-known in the DL literature (Baader & Nutt,
2003).

Example 3.24. Let T consist of the following.

Woman ≡ Person u Female

Man ≡ Person uMale

Human ≡ Woman tMan

Then T is an acyclic terminology over {Person,Female,Male}. The unfolding of the succinct-
concept 〈Human, T 〉 is

(Person u Female) t (Person uMale).

The unfolding of a succinct-concept is in general exponentially longer.

Proposition 3.25. Let L be any description logic. For each succinct-L -concept 〈A, T 〉
with unfolding C, |C| ∈ 2|T |

O(1)
.

Theorem 3.26. Let L be ALC or any of its extensions with constructors from {S, I,F}.
For all L -concepts C1, C2 and all L -TBoxes T1, T2, if T1∪T2 |= C1 v C2, then there exists
a succinct-L -concept 〈A, T 〉 over sig(C1, T1) ∩ sig(C2, T2) such that

• the unfolding of 〈A, T 〉 is an interpolant of C1 and C2 under 〈T1, T2〉, and

• 〈A, T 〉 can be computed in time single exponential in |T1|+ |T2|+ |C1|+ |C2|.

Proof. Let L be one of the DLs mentioned in the theorem, let T1 ∪ T2 |= C1 v C2, where
T1, T2 are L -TBoxes and C1, C2 are L -concepts, and let m = |T1|+ |T2|+ |C1|+ |C2|. As
in the proof of Theorem 3.22, we first reduce T1 ∪ T2 |= C1 v C2 to T ′1 ∪ T ′2 |= D1 v D2,
where T ′1 , T ′2 are ALC-TBoxes (ALCF-TBoxes) and D1, D2 are ALC-concepts (resp. ALCF-
concepts).

We show that the interpolant calculation step in Algorithm 1 for ALCF (and thus ALC,
see Figures 2, 3, 4) can be modified to compute a succinct-concept of single exponential size
as an interpolant, instead of a concept.

We associate to every node g in the tableau a distinct fresh concept name Xg. The
new algorithm still uses the same interpolation calculation rules but instead of directly
assigning an interpolant to every node g with g.status = unsat, we construct an acyclic
terminology T ′ over sig(D1, T ′1 ) ∩ sig(D2, T ′2 ), where the acyclic terminology makes use of

370



Beth Definability in Expressive Description Logics

the new concept names Xg, and such that the unfolding of the succinct-concept 〈Xg, T ′〉 is
an interpolant for g.content whenever g.status = unsat. The set T ′ is initialized as an empty
set, and throughout the computation of the algorithm, T ′ is extended in the natural way.
For instance, suppose Cl

t is applied to g. Then Cl
t adds to T ′ the CDA Xg ≡ Xg1 tXg2 ,

where g1 and g2 are the successors of the node g in the tableau. Another example is a
clash rule. Suppose Clr

¬ is applied to g for some {Cl, (¬̇C)r} ⊆ g.content. Then Clr
¬ adds to

T ′ the CDA Xg ≡ C. By Lemma 3.5, it follows that |T ′| ≤ 2O(m); and by the definition
of Algorithm 1, it follows that T ′ is an acyclic terminology over sig(D1, T ′1 ) ∩ sig(D2, T ′2 ).
Moreover, by T ′1 ∪ T ′2 |= D1 v D2, there is some Xg0 ≡ C ∈ T ′. Then 〈Xg0 , T ′〉 is a
succinct-concept over sig(D1, T ′1 ) ∩ sig(D2, T ′2 ) and its unfolding can easily be shown to be
an interpolant of D1 and D2 under T ′1 ∪ T ′2 .

In a way similar to the proof of Theorem 3.22, i.e., by replacing back the newly intro-
duced role names for inverse and transitive roles in T ′ with the originals, we obtain a new
terminology T ′′. Then the unfolding of 〈Xg0 , T ′′〉 is guaranteed to be an interpolant of C1

and C2 under 〈T1, T2〉. Moreover, 〈Xg0 , T ′′〉 is of size single exponential in m.

For the rest of the section, our purpose is to obtain an equivalent first-order formula from
a given succinct-concept in polynomial time. We will make use of the standard translation
(see Definition 2.2). In the following, we will not distinguish between DL interpretations
and first-order structures (we choose the unary and binary predicates of our first-order
language to be the symbols in NC and NR, respectively).

Step 2: Singly-exponential FO interpolants for interpretations with two ele-
ments For a first-order formula ϕ(x) and an interpretation I = 〈∆I , ·I〉 with s ∈ ∆I , we
write I, s |= ϕ(x) if and only if there is some first-order assignment α such that α(x) = s
and I, α |= ϕ(x). By |=≥2, we denote the restriction of the relation |= that only considers
interpretations I = 〈∆I , ·I〉 where |∆I | ≥ 2. Similarly, by |==1, we denote the restriction
of the relation |= that only considers interpretations I = 〈∆I , ·I〉 where |∆I | = 1.

The proof of the following theorem is inspired by a result of Avigad (2003), which
states that, over structures with at least two elements, one can efficiently eliminate acyclic
definitions from proofs. Theorem 3.27 can be viewed as an adaptation of this result to the
first-order translation of succinct-concepts in description logic.

Theorem 3.27. Given a succinct-SHIF-concept 〈B, T 〉 over a signature Σ, we can con-
struct in polynomial time a first-order formula ψ(x) over Σ, such that |=≥2 ψ(x)↔ πx(C),
where C is the unfolding of 〈B, T 〉.

Our proof of Theorem 3.27 will be based on a lemma that we state next. For expository
reasons, it is more convenient to state the lemma in terms of structures with constant
symbols. These constant symbols are not needed for Theorem 3.27. They are only used to
make the statement and proof of the following lemma more readable.

Lemma 3.28. Given an acyclic terminology T = {A1 ≡ C1, . . . , An ≡ Cn} in SHIF , we
can construct in polynomial time a first-order formula ϕT (x, y1, . . . , yn, z) with additional
constant symbols 0 and 1, such that, for all interpretations I satisfying 0I 6= 1I , and for
all elements a,~b, c ∈ ∆I (where ~b = b1, . . . , bn),

371



Ten Cate, Franconi, & Seylan

I |= ϕT [a,~b, c] if and only if ~b = k for some k ∈ {1, . . . , n}, and c =

{
1I if a ∈ CIk
0I otherwise

where k = 0I · · ·0I︸ ︷︷ ︸
k−1 times

1I0I · · ·0I︸ ︷︷ ︸
n−k times

and Ck is the unfolding of the succinct-concept 〈Ak, T 〉.

Proof. We define ϕT by induction on the number n of CDAs in T . If n = 1, then we can
simply define ϕT (x, y, z) as

ϕT (x, y, z) = (y = 1) ∧ ((πx(C1) ∧ z = 1) ∨ (¬πx(C1) ∧ z = 0))

Now, let n > 1 and let T ′ be obtained from T by removing the last CDA. In other words,
let T = T ′∪{An ≡ Cn}. By induction hypothesis, there is a formula ϕT ′(u,~v, w) satisfying
the required conditions w.r.t. T ′ (where ~v = v1, . . . , vn−1). We can distinguish the following
cases:

1. Cn is an atomic concept or functionality restriction over the signature Σ. In this case,
we can define ϕT as follows, where ~y = y1 . . . yn and ~v = v1 . . . vn−1.

ϕT (x, ~y, z) = ∃u,~v, w(ϕT ′(u,~v, w) ∧ x = u ∧ ~y = ~v0 ∧ z = w) ∨
(~y = 0 · · ·01 ∧ ((πx(Cn) ∧ z = 1) ∨ (¬πx(Cn) ∧ z = 0))))

Here, ~y = ~v0 is a shorthand for the formula
∧
i<n yi = vi ∧ yn = 0, and, similarly,

~y = 0 · · ·01 is shorthand for the formula
∧
i<n yi = 0 ∧ yn = 1.

2. Cn is of the form ¬Ai with i < n. In this case, we can define ϕT as follows:

ϕT (x, ~y, z) = ∃u,~v, w
(
ϕT ′(u,~v, w) ∧

((x = u ∧ ~y = ~v0 ∧ z = w) ∨
(~y = 0 · · ·01 ∧ u = x ∧ ~v = i ∧ ((w = 1 ∧ z = 0) ∨ (w = 0 ∧ z = 1))))

)
Here, the same notation conventions apply as in the previous item. In addition, ~v = i
is used as a shorthand for the formula vi = 1 ∧

∧
j 6=i vj = 0. The notations will also

be used in the following items.

3. Cn is of the form AiuAj with i, j < n. As a first attempt, define ϕT (x, ~y, z) as follows:

ϕT (x, ~y, z) = ∃u,~v, w ∃u′, ~v′, w′
(
ϕT ′(u,~v, w) ∧ ϕT ′(u′, ~v′, w′) ∧

((x = u ∧ ~y = ~v0 ∧ z = w) ∨
(~y = 0 · · ·01 ∧ u = u′ = x ∧ ~v = i ∧ ~v′ = j ∧

(w = w′ = z = 1 ∨ ((w = 0 ∨ w′ = 0) ∧ z = 0))))
)

This works, except for the fact that ϕT ′ occurs twice in the formula, which may
result in an exponential blowup. We solve this problem by replacing the conjunction
ϕT ′(u,~v, w) ∧ ϕT ′(u′, ~v′, w′) by

∀u′′, ~v′′, w′′((u′′ = u∧~v′′ = v∧w′′ = w)∨(u′′ = u′∧~v′′ = v′∧w′′ = w′)→ ϕT ′(u
′′, ~v′′, w′′))

372



Beth Definability in Expressive Description Logics

4. Cn is of the form ∃P.Ai with i < n. This is the most difficult case. The following
formula expresses the required property:

ϕT (x, ~y, z) = ∃u,~v, w
(
ϕT ′(u,~v, w) ∧

((x = u ∧ ~y = ~v0 ∧ z = w) ∨
(~y = 0 · · ·01 ∧ z = 1 ∧ Pxu ∧ ~v = i ∧ w = 1) ∨
(~y = 0 · · ·01 ∧ z = 0∧
∀u′, ~v′, w′(ϕT ′(u′, ~v′, w′) ∧ Pxu′ ∧ ~v′ = i→ w′ = 0)))

)
However, as before, this formula still has the problem that it contains two copies of
ϕT ′ . We fix this in two steps. First, we bring the universal quantifiers to the front,
and transform the above formula into the following equivalent formula:

∃u,~v, w ∀u′, ~v′, w′
(
ϕT ′(u,~v, w) ∧ ϕT ′(u′, ~v′, w′) →

((x = u ∧ ~y = ~v0 ∧ z = w) ∨
(~y = 0 · · ·01 ∧ z = 1 ∧ Pxu ∧ ~v = i ∧ w = 1) ∨
(~y = 0 · · ·01 ∧ z = 0 ∧ (Pxu′ ∧ ~v′ = i→ w′ = 0)))

)
Finally, as before, we replace the conjunction ϕT ′(u,~v, w) ∧ ϕT ′(u′, ~v′′, w′) by

∀u′′, ~v′′, w′′((u′′ = u∧~v′′ = v∧w′′ = w)∨(u′′ = u′∧~v′′ = v′∧w′′ = w′)→ ϕT ′(u
′′, ~v′′, w′′))

5. Cn is of the form ∃P−.Ai with i < n. This case is handled like the previous one.

Note that, in general, Cn could be a complex concept in which various Ai with i < n occur.
However, such complex CDAs can always be decomposed into multiple simpler CDAs of
the above kinds, at the cost of a polynomial increase in the size of the terminology.

It is clear from the construction that the formula ϕT obtained as above satisfies the
conditions stated in the lemma. That ϕT is obtained from T in polynomial-time follows
from the fact that, in the above inductive definition of ϕT , the previously constructed
formula ϕT ′ occurs only once.

We are now ready for the proof of Theorem 3.27.

Proof of Theorem 3.27. Let a succinct-concept 〈Ai, T 〉 be given, where T = {A1 ≡ C1, . . . ,
An ≡ Cn}. Let ϕ(x) = ϕT (x, i,1) and let ψ(x) = ∃u, v(u 6= v ∧ ϕ′(x)), where ϕ′(x) is
obtained from ϕ(x) by replacing 0 and 1 by u and v, respectively. Then we have that, for
every interpretation I with a domain of at least two elements, and for every a ∈ ∆I , the
following conditions are all equivalent:

1. I, a |= ψ(x)

2. I ′, a |= ϕ(x), for some interpretation I ′ that extends I by mapping the constant
symbols 0 and 1 to distinct elements of ∆I .

3. I ′, a |= C, where C is the unfolding of 〈Ai, T 〉.

4. I, a |= C, where C is the unfolding of 〈Ai, T 〉.

373



Ten Cate, Franconi, & Seylan

The equivalence of 1 and 2 is immediate from the construction of ψ. The equivalence of 2
and 3 follows from Lemma 3.28. The equivalence of 3 and 4 is immediate, since 0 and 1 do
not occur in C. This concludes the proof.

Definition 3.29. Let C,D be L -concepts and let T1, T2 be L -TBoxes such that T1 ∪ T2 |=
C v D. A first-order formula ϕ(x) is called a FO interpolant of C and D under 〈T1, T2〉 if
the following conditions hold:

• sig(ϕ(x)) ⊆ sig(C, T1) ∩ sig(D, T2),

• π(T1) ∪ π(T2) |= ∀x.πx(C)→ ϕ(x), and

• π(T1) ∪ π(T2) |= ∀x.ϕ(x)→ πx(D).

FO |=≥2-interpolant and FO |==1-interpolant are defined in the same way as above, except
that we replace all occurrences of |= by |=≥2 and |==1, respectively.

Proposition 3.30. Let L be ALC or any of its extensions with constructors from {S, I,F}.
For all L -concepts C1, C2 and all L -TBoxes T1, T2, if T1∪T2 |= C1 v C2, then there exists
a FO |=≥2-interpolant of C1 and C2 under 〈T1, T2〉 that can be computed in time single
exponential in |T1|+ |T2|+ |C1|+ |C2|.
Proof. Suppose T1 ∪ T2 |= C1 v C2. By Theorem 3.26, there is some succinct-concept
〈A, T 〉 over sig(C1, T1) ∩ sig(C2, T2) such that the unfolding I of 〈A, T 〉 is an interpolant
of C1 and C2 under 〈T1, T2〉, and 〈A, T 〉 can be computed in time single exponential in
|T1|+|T2|+|C1|+|C2|. Then by Theorem 3.27, there is some first-order formula ϕ(x) that can
be constructed in time polynomial in |T | (hence single exponential in |T1|+|T2|+|C1|+|C2|)
such that

• sig(ϕ(x)) ⊆ sig(I),

• |=≥2 ϕ(x)↔ πx(I).

It follows that ϕ(x) is a FO |=≥2-interpolant of C1 and C2 under 〈T1, T2〉 whose size is single
exponential in |T1|+ |T2|+ |C1|+ |C2|.

Step 3: Singly-exponential FO interpolants for interpretations with one element
We still have to obtain interpolants over structures with only one element. We will show
how to do this in Proposition 3.35. The essential idea is that interpolants over structures
with singleton domains are not much different from propositional interpolants. First, we
give a reduction from concept subsumption w.r.t. TBoxes over interpretations with singleton
domains to entailment in propositional logic.

Definition 3.31. Let C be a SHIF-concept. Then the mapping τPL(C) is defined induc-
tively as follows.

τPL(>) = >,
τPL(A) = A,

τPL(¬C) = ¬τPL(C),

τPL(C uD) = τPL(C) u τPL(D),

τPL(∃R.C) = AR u τPL(C),

τPL(≤ 1R) = >,

374



Beth Definability in Expressive Description Logics

where AP = AP− is a fresh concept name for every role name P ∈ NR. For a SHIF-TBox
T , we define

τPL(T ) = {τPL(C) v τPL(D) | C v D ∈ T } ∪ {AR v AS | R v S ∈ T }.

Here, the concept name AP , intuitively, expresses the non-emptiness of the role P .
Note that all transitive roles are ignored in the above translation, as their semantics is
trivially satisfied in interpretations whose domain is a singleton set. For a SHIF-concept
C, τPL(C) is an ALC-concept without role constructors. We view τPL(C) as a propositional
formula (where the concept names are the propositions, and we identify u and t with the
propositional connectives ∧ and ∨, respectively). Similarly, for a SHIF-TBox T , τPL(T )
is a set of ALC CIAs without role constructors, which we view as a set of propositional
formulae.

Proposition 3.32. Let T be a SHIF-TBox and let C, D be SHIF-concepts. Then

T |==1 C v D if and only if τPL(T ) |= τPL(C) v τPL(D).

Proof. (⇒) Let T |==1 C v D, and suppose I |= τPL(T ), and s ∈ τPL(C)I . We need to
show that s ∈ τPL(D)I . Let J be obtained by restricting the domain of I to the element
s and “reading off” the interpretation of each role name P from the concept name AP .
Formally,

• ∆J = {s};

• for all A ∈ NC , s ∈ AJ iff s ∈ AI ;

• for all P ∈ NR, PJ = {〈s, s〉} if s ∈ AIP , and PJ = ∅, otherwise.

By the definition above, it trivially follows for every P ∈ NR+ that PJ is transitive. More-
over, for every role R, we have

〈s, s〉 ∈ RJ if and only if s ∈ AIR. (1)

To see this, suppose first 〈s, s〉 ∈ RJ . If R = P for some P ∈ NR, then s ∈ AIP , i.e., s ∈ AIR;
and if R = P− for some P ∈ NR, then again s ∈ AIP and by the fact that AP = AP−
(see Definition 3.31), we obtain s ∈ AIR. Hence s ∈ AIR. For the other direction, suppose
s ∈ AIR. If R = P for some P ∈ NR, then 〈s, s〉 ∈ PJ , i.e., 〈s, s〉 ∈ RJ ; and if R = P− for
some P ∈ NR, then by the fact that AP = AP− , we have 〈s, s〉 ∈ PJ and thus, 〈s, s〉 ∈ RJ .
Hence (1) follows.

Claim 3.33. For every SHIF-concept C ′, we have s ∈ τPL(C ′)I if and only if s ∈ (C ′)J .

Proof of claim. The proof is by induction on the structure of C ′. The base case, where
C ′ = A or C ′ = >, is trivial, and the boolean cases follow immediately by the inductive
hypothesis. For C ′ = ∃R.D′, we have the following equivalences:

• s ∈ τPL(C ′)I ;

• s ∈ AIR and s ∈ τPL(D′)I (by semantics);

375



Ten Cate, Franconi, & Seylan

• 〈s, s〉 ∈ RJ and s ∈ (D′)J (by (1) and the inductive hypothesis);

• s ∈ (C ′)J (by semantics).

Finally, for C ′ =≤ 1R, since τPL(C ′) = > and s ∈ ∆I , we have s ∈ τPL(C ′)I . Moreover, by
the definition of J , we have s ∈ (C ′)J . But then s ∈ τPL(C ′)I iff s ∈ (C ′)J , which is what
we wanted to show. a

We now show that J |= T , i.e., J satisfies every CIA and RIA in T . That J satisfies
every CIA in T is a direct consequence of the previous claim; so we proceed with the case
for RIAs. Let R v S ∈ T and 〈s, t〉 ∈ RJ . By the definition of J , we have s = t. Hence
w.l.o.g. suppose that 〈s, s〉 ∈ RJ . Then by (1), s ∈ AIR. Since AR v AS ∈ τPL(T ) and
I |= τPL(T ), we then have s ∈ AIS . By (1) again, this implies 〈s, s〉 ∈ SJ . Hence J satisfies
R v S.

Now we proceed towards our goal s ∈ τPL(D)I as follows. By I |= τPL(T ), s ∈ τPL(C)I ,
and the previous claim, we obtain s ∈ CJ . Since J |= T , it follows by T |= C v D that
s ∈ DJ . Then using the previous claim, we conclude that s ∈ τPL(D)I .

(⇐) Let τPL(T ) |= τPL(C) v τPL(D), and suppose I |= T , and s ∈ CI , where ∆I = {s}.
We need to show that s ∈ DI . Define the interpretation J as follows:

• ∆J = {s};

• for all A ∈ NC , AJ = AI

• for all P ∈ NR, (AP )J = {s} if P I = {〈s, s〉}, and (AP )J = ∅ otherwise

We first show for every role R that

s ∈ AJR if and only if 〈s, s〉 ∈ RI . (2)

For left-to-right, suppose s ∈ AJR . If R = P for some P ∈ NR, then 〈s, s〉 ∈ P I , i.e.,
〈s, s〉 ∈ RI ; and if R = P− for some P ∈ NR, then by the fact that AP = AP− , we have
s ∈ AJP , which implies 〈s, s〉 ∈ RI . Hence 〈s, s〉 ∈ RI . For the other direction, suppose
〈s, s〉 ∈ RI . If R = P for some P ∈ NR, then s ∈ AJP , i.e., s ∈ AJR ; and if R = P− for some
P ∈ NR, then 〈s, s〉 ∈ P I , which implies by AP = AP− that s ∈ AJR . Hence (2) follows.

Claim 3.34. For every SHIF-concept C ′, we have s ∈ (C ′)I if and only if s ∈ τPL(C ′)J .

Proof of claim. The proof is by induction on the structure of C ′. The base case, where
C ′ = A or C ′ = >, is trivial, and the boolean cases follow immediately by the inductive
hypothesis. For C ′ = ∃R.D′, we have the following equivalences

• s ∈ (C ′)I ;

• 〈s, s〉 ∈ RI and s ∈ (D′)I (by semantics and ∆I = {s});

• s ∈ AJR and s ∈ τPL(D′)J (by (2) and the inductive hypothesis).

• s ∈ τPL(C ′)J (by semantics).

376



Beth Definability in Expressive Description Logics

Finally, for C ′ =≤ 1R, since ∆I = {s}, we have I |= > v≤ 1R, and thus, s ∈ (C ′)I .
Moreover, by τPL(C ′) = >, we have s ∈ τPL(C ′)J . But then s ∈ (C ′)I iff s ∈ τPL(C ′)J . a

We now show that J |= τPL(T ). By definition, every CIA in τPL(T ) is of the form (i)
τPL(C ′) v τPL(D′), where C ′ v D′ ∈ T ; or of the form (ii) AR v AS , where R v S ∈ T .
That J satisfies CIAs of the form (i) is a direct consequence of the previous claim; so
we focus on CIAs of the form (ii). Let AR v AS ∈ τPL(T ) and s ∈ AJR . Then by (2),
〈s, s〉 ∈ RI . Since I |= T and R v S ∈ T , we then have 〈s, s〉 ∈ SI . Then by (2) again,
s ∈ AJS . Hence J satisfies AR v AS .

Now we proceed towards our goal s ∈ DI as follows. By s ∈ CI and the previous claim,
we have s ∈ τPL(C)J . Then by J |= τPL(T ) and τPL(T ) |= τPL(C) v τPL(D), we obtain
s ∈ τPL(D)J . Using the previous claim again, we conclude that s ∈ DI .

Proposition 3.35. Let L be ALC or any of its extensions with constructors from {S,H, I,F}.
For all L -concepts C1, C2 and all L -TBoxes T1, T2, if T1∪T2 |= C1 v C2, then there exists
a FO |==1-interpolant of C1 and C2 under 〈T1, T2〉 that can be computed in time single
exponential in |T1|+ |T2|+ |C1|+ |C2|.

Proof. Let L be one of the DLs mentioned in the theorem and let C1, C2 be L -concepts
and let T1, T2 be L -TBoxes such that T1 ∪ T2 |= C1 v C2. Then it immediately follows
that T1 ∪ T2 |==1 C1 v C2. By Proposition 3.32, T1 ∪ T2 |==1 C1 v C2 implies τPL(T1) ∪
τPL(T2) |= τPL(C1) v τPL(C2). Now by Theorem 3.10, there is some interpolant I of τPL(C1)
and τPL(C2) under 〈τPL(T1), τPL(T2)〉 that can be computed in time double exponential in
|T1|+|T2|+|C1|+|C2|. However, in this case we are only dealing with propositional formulae
and the tableau algorithm can easily be modified to construct a tree-shaped proof instead of
a general graph-shaped one by eliminating the use of proxies. In fact, we have just described
a standard tableau algorithm for propositional logic. It is well-known that each node in
the tree has a polynomial out-degree in the size of the input and the height of the tree is
polynominal in the size of the input. By inspecting the proof of Theorem 3.10, one can easily
see that in this case I can be computed in time single exponential in |T1|+ |T2|+ |C1|+ |C2|.
Finally let D be the concept obtained from I by replacing each occurrence of a concept name
AR by ∃R.>. We have that πx(D) is a FO |==1-interpolant of C1 and C2 under 〈T1, T2〉. It
is easy to see that the time required to compute πx(D) is as stated in the proposition.

Step 4: Putting it all together The result that we were after now follows, by putting
the FO |==1-interpolants and the FO |=≥2-interpolants together:

Theorem 3.36. Let L be ALC or any of its extensions with constructors from {S, I,F}.
For all L -concepts C, D and L -TBoxes T1, T2, if T1 ∪ T2 |= C v D, then there exists an
FO interpolant ϕ(x) of C and D under 〈T1, T2〉 and ϕ(x) can be computed in time single
exponential in |T1|+ |T2|+ |C|+ |D|.

Proof. Let L be one of the DLs mentioned in the theorem, let C, D be L -concepts,
and let T1, T2 be L -TBoxes such that T1 ∪ T2 |= C v D. By Proposition 3.35, there is
some FO |==1-interpolant ψ(x) of C and D under 〈T1, T2〉 that can be computed in time
single exponential in |T1|+ |T2|+ |C|+ |D|; and by Proposition 3.30, there is some FO |=≥2-
interpolant ϕ(x) of C and D under 〈T1, T2〉 that can be computed in time single exponential

377



Ten Cate, Franconi, & Seylan

in |T1|+ |T2|+ |C|+ |D|. Let

ϑ(x) = (∃y∃z(y 6= z)→ ϕ(x)) ∧ (∀y∀z(y = z)→ ψ(x)).

Claim 3.37. π(T1)∪ π(T2) |= ∀x.πx(C)→ ϑ(x) and π(T1)∪ π(T2) |= ∀x.ϑ(x)→ πx(D).

Proof of claim. We prove the first part. The proof of the second part is analogous.
Let I = 〈∆I , ·I〉 be a model of T1 ∪ T2, i.e., of π(T1) ∪ π(T2), and α be a first-order

variable assignment with I, α |= πx(C). We need to show that I, α |= ϑ(x). To this aim,
we show I, α |= (∃y∃z(y 6= z)→ ϕ(x)) and I, α |= (∀y∀z(y = z)→ ψ(x)).

First suppose that I, α |= ∃y∃z(y 6= z). We are done if we prove that I, α |= ϕ(x).
I, α |= ∃y∃z(y 6= z) implies |∆I | ≥ 2. Then by I, α |= πx(C) and π(T1) ∪ π(T2) |=≥2

∀x.πx(C)→ ϕ(x), we obtain I, α |= ϕ(x), and we are done.
Now suppose that I, α |= ∀y∀z(y = z). We are done if we prove that I, α |= ψ(x).

I, α |= ∀y∀z(y = z) implies |∆I | = 1. Then by I, α |= πx(C) and π(T1) ∪ π(T2) |==1

∀x.πx(C)→ ψ(x), we obtain I, α |= ψ(x), and we are done.
Thus, both of the conjuncts of ϑ(x) are satisfied by I, α. But then I, α |= ϑ(x). a

By assumption we have that sig(ϕ(x)), sig(ψ(x)) ⊆ sig(C, T1) ∩ sig(D, T2). Since the
formulas ∃y∃z(y 6= z) and ∀y∀z(y = z) do not introduce new predicates, we have that
sig(ϑ(x)) ⊆ sig(C, T1) ∩ sig(D, T2). Therefore, ϑ(x) is a FO interpolant for C and D under
〈T1, T2〉. Moreover, since both of its conjuncts can be computed in single exponential time,
so can ϑ(x). Hence the theorem follows.

4. Results on Beth Definability

In this section, we present the main technical contributions of the paper. We first introduce
the notions of implicit and explicit definability for concepts and define the (projective) Beth
definability property, which are in fact the primary notions of interest in this paper. In what
follows, L denotes any of the description logics ALCX with X ⊆ {S,H, I,F}.

Definition 4.1 (Implicit definability). Let C be an L -concept, T an L -TBox, and Σ ⊆
sig(C, T ). C is implicitly definable from Σ under T if, for every two models I and J of T
satisfying ∆I = ∆J and, for all P ∈ Σ, P I = PJ , it holds that CI = CJ .

In other words, given a TBox, a concept C is implicitly definable if the set of all its
instances depends only on the extension of the predicates in Σ and the domain of discourse.
Deciding implicit definability in L means, given an L -concept C, L -TBox T , and a set of
predicates Σ ⊆ sig(C, T ), to check whether C is implicitly definable from Σ under T . For
every predicate P ∈ sig(C, T ) \ Σ, introduce a new predicate P ′ which is not in sig(C, T ).
Now let C̃ (respectively, T̃ ) be the concept (respectively, TBox) obtained by replacing every
occurrence of a predicate P 6∈ Σ in C (respectively, in T ) by P ′. Lemma 4.2, whose proof is
a routine adaptation of an analogous result for first-order logic (Boolos, Burgess, & Jeffrey,
2007), provides a characterization of implicit definability in terms of entailment. This well-
known characterization is often used as a definition of implicit definability (Hoogland &
Marx, 2002; Conradie, 2002).

Lemma 4.2. Let C be an L -concept, T be an L -TBox, and Σ ⊆ sig(C, T ). Then C is
implicitly definable from Σ under T if and only if T ∪ T̃ |= C ≡ C̃.

378



Beth Definability in Expressive Description Logics

In particular, Lemma 4.2 reduces implicit definability in L to the concept subsumption
problem in L w.r.t. TBoxes. It is also possible to reduce the concept subsumption problem
in L w.r.t. TBoxes to the problem of deciding implicit definability in L .

Lemma 4.3. Let C v D be an L -CIA, T be an L -TBox, Σ = sig(C u D, T ), and
A0 ∈ NC \ Σ. Then T |= C v D if and only if A0 is implicitly definable from Σ under
T ∪ {A0 v C u ¬D}.

Proof. (⇒) Suppose T |= C v D. Let I and J be models of T ∪ {A0 v C u¬D} such that
∆I = ∆J and for all P ∈ Σ, we have P I = PJ . Obviously, I and J are also models of T .
Then by T |= C v D, we have that (C u ¬D)I = (C u ¬D)J = ∅. But then AI0 = AJ0 = ∅.
Hence, A0 is implicitly definable from Σ under T ∪ {A0 v C u ¬D}.

(⇐) We show the contrapositive, i.e., if T 6|= C v D, then A0 is not implicitly definable
from Σ under T ∪ {A0 v C u ¬D}. Suppose T 6|= C v D. Then there is some model I of
T and some s ∈ ∆I such that s ∈ (C u ¬D)I . Let I1 = 〈∆I1 , ·I1〉 and I2 = 〈∆I2 , ·I2〉 be
such that

• ∆I1 = ∆I2 = ∆I ;

• AI1 = AI2 = AI , for all A ∈ (NC \A0);

• RI1 = RI2 = RI , for all R ∈ NR;

• AI10 = {s} and AI20 = ∅.

It is easy to see that I1 and I2 are models of T ∪ {A0 v C u ¬D}. Also observe that I1

and I2 are two interpretations with the same domain and they agree on what they assign
to predicates in Σ. But AI10 6= AI20 . Hence A0 is not implicitly definable from Σ under
T ∪ {A0 v C u ¬D}.

Using Lemma 4.2 (for the upper bound) and Lemma 4.3 (for the lower bound), the fol-
lowing theorem follows immediately, since the concept subsumption problem w.r.t. TBoxes
is ExpTime-complete for the description logics in question (Tobies, 2001).

Theorem 4.4. In ALC and any of its extensions with constructors from {S,H, I,F},
implicit definability is ExpTime-complete.

Explicit definability is the syntactic counterpart of implicit definability. Given a concept
C, signature Σ, and TBox T , it asks for the existence of a concept D formulated over Σ
such that the C and D denote the same set in every model of T .

Definition 4.5 (Explicit definability). Let C be an L -concept, T a L -TBox, and Σ ⊆
sig(C, T ). We say that C is explicitly definable from Σ under T if there is some L -concept
D such that T |= C ≡ D and sig(D) ⊆ Σ. Such a concept D is called an explicit definition
of C from Σ under T .

Proposition 4.6. Let C be an L -concept, T an L -TBox, and Σ ⊆ sig(C, T ). If C is
explicitly definable from Σ under T , then C is implicitly definable from Σ under T .

379



Ten Cate, Franconi, & Seylan

Proof. Suppose C is explicitly definable from Σ under T . Then there is some concept D
such that T |= C ≡ D. This implies by the definition of T̃ and C̃, and sig(D) ⊆ Σ that
T̃ |= C̃ ≡ D. Then we have T ∪ T̃ |= C ≡ D and T ∪ T̃ |= C̃ ≡ D by the monotonicity
of |=. These yield T ∪ T̃ |= C ≡ C̃. Then by Lemma 4.2, C is implicitly definable from Σ
under T .

Definition 4.7 (Beth definability property). L has the Beth definability property (BP) if
for all L -concepts C, all L -TBoxes T , and all signatures Σ ⊆ sig(C, T ), if C is implicitly
definable from Σ under T , then C is explicitly definable from Σ under T .

Observe that, in the above definition, Σ restricts the concept names and the role names
that are allowed to appear in the explicit definition. We can obtain a weaker version of the
Beth definability property by restricting only the concept names occurring in the explicit
definition. This is called the concept-name Beth definability property (CBP). In other words,
the CBP refers to the existence of explicit definitions over signatures of the form Σ ∪NR.

As we will explain later, we also have reasons to be interested in whether description
logics satisfy the Beth definability property over the restricted class of finite interpreta-
tions. It is known that the Beth definability property, when restricted to finite structures,
fails for first-order logic (see e.g., Hoogland, 2001), in spite of the fact that it holds in the
unrestricted case. We will specifically investigate Beth definability for description logics
restricted to finite interpretations. We call this the Beth definability property in the finite
(BPF). Formally, BPF is defined in the same way as BP, except that we replace, in the
definition, all occurrences of the word ‘interpretation’ or ‘model’ by ‘finite interpretation’ or
‘finite model’, and we replace the symbol |= by |=f , where |=f considers only finite interpre-
tations. In addition, we will speak about f-implicit definability and f-explicit definability.
It follows from Lemma 4.2 that, if L has FMP, then BP are BPF are equivalent for L .
Hence it only makes sense to specifically study BPF for logics without FMP.

4.1 Bounds on the Size of Explicit Definitions

We start by a positive result on BP which is a direct application of the interpolation theorem,
i.e., Theorem 3.22.

Theorem 4.8 (BP). Let L be ALC or any of its extensions with constructors from
{S, I,F}. Then for all L -concepts C, all L -TBoxes T , and all signatures Σ ⊆ sig(C, T ),
if C is implicitly definable from Σ under T , then C is explicitly definable from Σ under T ,
and the explicit definition of C can be computed in time double exponential in |T |+ |C|.

Proof. Let L be one of the DLs stated in the theorem, C be an L -concept, T be an
L -TBox, and Σ ⊆ sig(C, T ) such that C is implicitly definable from Σ under T . By
Lemma 4.2, we have that T ∪ T̃ |= C ≡ C̃ (where T̃ and C̃ are obtained from T and C,
respectively, by replacing all occurrences of predicates P 6∈ Σ by fresh predicates P ′ that
are not in sig(C, T )). Now by Theorem 3.22, there is an interpolant I of C and C̃ under
〈T , T̃ 〉 that can be computed in time double exponential in |T |+ |T̃ |+ |C|+ |C̃|. Since it
is an interpolant, sig(I) ⊆ sig(C, T ) ∩ sig(C̃, T̃ ) = Σ, and both (a) T ∪ T̃ |= C v I and
(b) T ∪ T̃ |= I v C̃. By (b) and T ∪ T̃ |= C̃ v C, we have T ∪ T̃ |= I v C, from which
T ∪ T̃ |= C ≡ I follows by (a). From the structure of T̃ , it now straightforwardly follows
that T |= C ≡ I.

380



Beth Definability in Expressive Description Logics

As for the time needed to compute I, observe that |T |+ |T̃ |+ |C|+ |C̃| = 2 · (|T |+ |C|).
Hence I can be computed in time double exponential in |T |+ |C|.

The proof of Theorem 4.8 uses Theorem 3.22. Similarly, if we use Theorem 3.36 in-
stead, we can show that first-order explicit definitions of implicitly defined concepts can
be computed in single exponential time. Note that Theorem 4.8 also establishes a double
exponential upper bound on the size explicit definitions in the considered logics. This upper
bound is optimal because we show in Theorem 4.11 below that explicit definitions in L
may need to be double exponentially big.

An essential tool in the proof of Theorem 4.11, will be the path-set construction that
was previously used by Lutz (2006) to characterize the succinctness of public announcement
logic compared to epistemic logic. The path-set construction has also been used by Ghilardi
et al. (2006) to establish a lower bound on the size of concepts ‘witnessing’ that a TBox is
not a conservative extension of another TBox.

Definition 4.9. If C is an ALC-concept, then the path-set PC of C is defined by structural
induction as follows, where ε denotes the empty sequence and · denotes concatenation of
finite sequences:

• P> = PA = {ε}, for A ∈ NC ;

• P¬C = PC ;

• PCuD = PC ∪ PD;

• P∃R.C = {ε} ∪ {R · p | p ∈ PC}.

Intuitively, PC describes the nestings of role constructors in C. We will use PC as a tool
for establishing lower bounds on the size of concepts.

Lemma 4.10. For every ALC-concept C, we have |C| ≥ |PC |.

Proof. The proof is by induction on the structure of C.
If C is an atomic concept of the form > or A (with A ∈ NC), then, by definition, |C| = 1

and |PC | = 1 since PC = {ε}. Hence |C| ≥ |PC |.
Next, let C = ¬D. By the inductive hypothesis, we have |D| ≥ |PD|. Then by |P¬D| =

|PD|, we obtain |D| ≥ |P¬D|. Finally, by the fact that |¬D| = |D| + 1, we obtain |¬D| ≥
|P¬D|. Hence |C| ≥ |PC |.

Next, let C = C1 u C2. By the inductive hypothesis, we have |C1| ≥ |PC1 | and |C2| ≥
|PC2 |. This implies |C1|+|C2| ≥ |PC1 |+|PC2 |. Then by the fact that |C1uC2| = |C1|+|C2|+1,
we obtain |C1uC2| ≥ |PC1 |+ |PC2 |. Finally, by |PC1 |+ |PC2 | ≥ |PC1uC2 |, we have |C1uC2| ≥
|PC1uC2 |. Hence |C| ≥ |PC |.

Finally, let C = ∃R.D. By the inductive hypothesis, we have |D| ≥ |PD|. This implies
|D|+ 2 ≥ |PD|+ 2. Then by the fact that |∃R.D| = |D|+ 2, we obtain |∃R.D| ≥ |PD|+ 2.
Finally, by |PD|+ 1 = |P∃R.D|, we have |∃R.D| ≥ |P∃R.D|. Hence |C| ≥ |PC |.

Theorem 4.11 (Explicit definition lower bound). Let Σ = {R,S} ⊆ NR. Then for every
n ∈ N, there is an ALC-concept Cn and an ALC-TBox Tn such that Σ ⊆ sig(Cn, Tn), |Tn|
and |Cn| are polynomial in n, Cn is implicitly definable from Σ under Tn, and the smallest
explicit definition of Cn from Σ under Tn is double exponentially long in n.

381



Ten Cate, Franconi, & Seylan

Proof. Fix an n ∈ N. Let A1, . . . , An be pairwise distinct concept names. We use these
concept names and their negations to represent in binary format a number in {0, . . . , 2n−1}.
More precisely, ¬An u . . . u ¬A1 represents 0, ¬An u ¬An−1 . . . u A1 represents 1, and
so on. Obviously, this implies that the least significant bit is at position 1. For every
i ∈ {0, . . . , 2n − 1}, we denote the concept that represents i by Ci. Note that in each Ci,
either Aj or ¬Aj is a conjunct of Ci, for all j ∈ {1, . . . , n}.

For k ∈ {1, . . . , n},

• let Xk = ¬A1 u . . . u ¬Ak−1 uAk and

• let Yk = A1 u . . . uAk−1 u ¬Ak.

Note that Xk and Yk are not concept names and we will use them only to abbreviate our
CIAs. We define Tn as the ALC-TBox consisting of the following CIAs.

• ¬An u . . . u ¬A1 v ∀R.⊥ u ∀S.⊥

• A1 t . . . tAn v ∃R.> t ∃S.>

• For every k ∈ {1, . . . , n} and σ ∈ Σ,

Xk v ∀σ.Yk ul

k<l≤n
((Al u ∀σ.Al) t (¬Al u ∀σ.¬Al))

Intuitively, the last item above allows us to decrease the counter value by one by flipping
the respective bits. Note that |Tn| is polynomial in n and that Tn is satisfiable. In fact, we
present models of Tn in Claim 4.14. If I is a model of Tn, we have for every s ∈ ∆I and
every i ∈ {1, . . . , n}, either s ∈ AIi or s ∈ (¬Ai)I by the virtue of I being an interpretation.
Therefore, for every s ∈ ∆I there is exactly one i ∈ {0, . . . , 2n − 1} such that s ∈ CIi .

Claim 4.12. Let i ∈ {1, . . . , 2n − 1}. Then

1. Tn |= Ci v ∀R.Ci−1 u ∀S.Ci−1

2. Tn |= Ci ≡ ∃R.Ci−1 t ∃S.Ci−1

Proof of claim. For 1, suppose I = 〈∆I , ·I〉 is a model of Tn, s ∈ ∆I with s ∈ CIi , and
σ ∈ {R,S} = Σ. It suffices to show that s ∈ (∀σ.Ci−1)I . If there is no t ∈ ∆I such that
〈s, t〉 ∈ σI then we are done immediately; therefore, suppose 〈s, t〉 ∈ σI . We need to show
t ∈ CIi−1.

We have that Ci = Bn u . . . uB1, where Bj = Aj or Bj = ¬Aj , for each j ∈ {1, . . . , n}.
Denote by Bj the concept ¬Aj if Bj = Aj , or else the concept Aj if Bj = ¬Aj . Since
s ∈ CIi , there is exactly one k ∈ {1, . . . , n} such that s ∈ XIk . Then by the CIA

Xk v ∀σ.Yk ul

k<l≤n
((Al u ∀σ.Al) t (¬Al u ∀σ.¬Al))

382



Beth Definability in Expressive Description Logics

in Tn, we have that t ∈ (Bn u . . . uBk+1 uBk u . . . uB1)I . It is not hard to see that

Ci−1 = Bn u . . . uBk+1 uBk u . . . uB1.

Hence we conclude that t ∈ CIi−1, which is what we wanted to show.

For 2. (⇒) Suppose I = 〈∆I , ·I〉 is a model of Tn and s ∈ ∆I with s ∈ CIi . Since i 6= 0,
by A1 t . . . t An v ∃R.> t ∃S.> ∈ Tn, Ci ∈ (∃R.>)I or Ci ∈ (∃S.>)I . That is, there is
some t ∈ ∆I such that either 〈s, t〉 ∈ RI or 〈s, t〉 ∈ SI . In both cases, t ∈ CIi−1 by 1. Hence
s ∈ (∃R.Ci−1 t ∃S.Ci−1)I .

(⇐) Suppose I = 〈∆I , ·I〉 is a model of Tn and s ∈ ∆I with s ∈ (∃R.Ci−1 t ∃S.Ci−1)I .
This means there is some t ∈ ∆I such that t ∈ CIi−1 and either 〈s, t〉 ∈ RI or 〈s, t〉 ∈ SI .
We proceed towards a contradiction so further suppose that s 6∈ CIi , i.e., s ∈ (¬Ci)I . Then
by the definition of an interpretation, s ∈ CIj , where j 6= i and j ∈ {0, . . . , 2n− 1}. If j = 0,
then by ¬Anu . . .u¬A1 v ∀R.⊥u∀S.⊥ ∈ Tn, we immediately get a contradiction. If j 6= 0,
then by 1, t ∈ CIj−1. Since i 6= j, we have (i− 1) 6= (j− 1). Thus, the binary representation

of i− 1 and j− 1 must differ in at least one bit. This implies by t ∈ CIj−1 and t ∈ CIi−1 that

there is some k ∈ {1, . . . , n} such that t ∈ AIk and t 6∈ AIk . Hence a contradiction. a

Now define concepts D0 . . . D2n−1 inductively as follows.

D0 = ∀R.⊥ u ∀S.⊥
Di = ∃R.Di−1 t ∃S.Di−1

Intuitively, Di has the shape of a binary tree (due to role names R,S) and the height of the
tree is O(i). This implies |C2n−1| is double exponential in n.

Claim 4.13. For every i ∈ {0, . . . , 2n − 1}, we have Tn |= Ci ≡ Di.

Proof of claim. The proof is by induction on i. The base case is when i = 0. Then by the
axioms in Tn, it trivially follows that Tn |= ¬A1 u . . .¬An ≡ ∀R.⊥ u ∀S.⊥. In other words,
Tn |= C0 ≡ D0. Hence the claim holds in the base case.

For the inductive step, suppose i > 0. By the previous claim, Tn |= Ci ≡ ∃R.Ci−1 t
∃S.Ci−1; and by the inductive hypothesis, Tn |= Ci−1 ≡ Di−1. But then Tn |= Ci ≡
∃R.Di−1 t ∃S.Di−1 which is what we wanted to show. a

By the previous claim, we have that for all i ∈ {0, . . . , 2n−1}, Di is an explicit definition
of Ci from Σ = {R,S} under Tn. Then by Proposition 4.6, Ci is implicitly definable from Σ
under Tn. In the rest of the proof, we show that each explicit definition of Ci from Σ under
Tn is at least double exponentially long. To this aim, we introduce interpretations that are
based on some elements of Σ∗, where Σ∗ denotes the set of all strings over the symbols in
Σ. More precisely, for every p ∈ Σ∗ with 0 ≤ |p| ≤ 2n − 1, we define the interpretation Ip
as follows.

• ∆Ip = {p′ ∈ Σ∗ | p′ is a prefix of p};

• for all A ∈ NC ,

383



Ten Cate, Franconi, & Seylan

– if A = Aj for some j ∈ {1, . . . , n}, then

AIp = {p′ ∈ ∆Ip | A is a conjunct of C|p|−|p′|},

– if A 6= Aj for all j ∈ {1, . . . , n}, then AIp = ∅;

• for all T ∈ NR,

– T Ip = {〈p1, p2〉 ∈ ∆Ip ×∆Ip | p2 = p1 · T}, if T ∈ Σ,

– T Ip = ∅, if T ∈ NR \ Σ.

The following claim is easy to show.

Claim 4.14. For every p ∈ Σ∗ with 0 ≤ |p| ≤ 2n − 1, we have

• Ip |= Tn, and

• ε ∈ CIp|p| .

Denote for every i ∈ {0, . . . , 2n − 1}, the set of all p ∈ Σ∗ such that |p| = i by Σi.

Claim 4.15. Let i ∈ {0, . . . , 2n − 1} and let C be an ALC-concept such that sig(C) ⊆ Σ =
{R,S} and Tn |= Ci ≡ C. Then Σi ⊆ PC .

Proof of claim. Suppose first i = 0. Then Σi = {ε}. Moreover, by definition we have
ε ∈ PC . Hence Σi ⊆ PC , which is what we wanted to show.

Now suppose i > 0. We proceed towards a contradiction. Suppose that there is some
pa ∈ Σi \ PC . Let pb be the prefix of pa with |pb| = i − 1. Since i > 0, pb is well-defined.
We claim that for all s ∈ ∆Ipb ⊆ ∆Ipa and D ∈ sub(C) such that {s · p | p ∈ PD} ⊆ PC ,

s ∈ DIpb if and only if s ∈ DIpa . (3)

The proof is by induction on the structure of D. Since the base and the boolean cases are
trivial, we only treat the case D = ∃σ.E, where σ ∈ Σ.

• (⇒). Suppose s ∈ DIpb . Then there is a t ∈ ∆Ipb such that 〈s, t〉 ∈ σIpb and t ∈ EIpb .
Since t is in ∆Ipa as well, the former yields 〈s, t〉 ∈ σIpa . It thus remains to show
that t ∈ EIpa . By definition, t = s · σ and PD = {ε} ∪ {σ · p | p ∈ PE}. Thus, our
assumption {s · p | p ∈ PD} ⊆ PC yields {s} ∪ {t · p | p ∈ PE} ⊆ PC . This implies
{t · p | p ∈ PE} ⊆ PC . Then by the induction hypothesis and t ∈ EIpb , we obtain
t ∈ EIpa , which is what we wanted to show for this direction of the proof.

• (⇐). Suppose s ∈ DIpa . Then there is a t ∈ ∆Ipa such that 〈s, t〉 ∈ σIpa and
t ∈ EIpa . By definition, t = s · σ and PD = {ε} ∪ {σ · p | p ∈ PE}. Thus, our
assumption {s · p | p ∈ PD} ⊆ PC yields {s} ∪ {t · p | p ∈ PE} ⊆ PC . This implies

{t · p | p ∈ PE} ⊆ PC . (4)

By (4) and ε ∈ PE , we obtain t ∈ PC . Since pa 6∈ PC , this means t 6= pa. But then
t ∈ ∆Ipb and 〈s, t〉 ∈ σIpb . By (4), t ∈ EIpa , and the induction hypothesis, we have
t ∈ EIpb . Hence s ∈ (∃σ.E)Ipb .

384



Beth Definability in Expressive Description Logics

Thus, we have shown that (3) holds. Now we arrive at a contradiction as follows. By

Claim 4.14, we have ε ∈ CIpai and ε ∈ CIpbi−1, since |pa| = i and |pb| = i − 1, respectively.

ε ∈ CIpbi−1 implies by the definition of Ci that ε 6∈ CIpbi . Then by Tn |= Ci ≡ C and Claim 4.14,

we obtain ε ∈ CIpa and ε 6∈ CIpb . But this contradicts with an immediate consequence of
(3), namely ε ∈ CIpb iff ε ∈ CIpa . Hence a contradiction. Thus, we conclude that Σi ⊆ PC
for i > 0. a

To show the theorem, we argue as follows. Suppose that C is an ALC-concept such
that Tn |= C2n−1 ≡ C and sig(C) ⊆ Σ. Then by the previous claim Σ2n−1 ⊆ PC . By its
definition, |Σ2n−1| = 22n−1 and thus, 22n−1 ≤ |PC |. Then by Lemma 4.10, 22n−1 ≤ |C|.
Hence the theorem follows.

Remark 4.16. With the role disjunction constructor, which is not present in ALC, Cn
would admit a single exponentially long explicit definition from Σ under Tn in Theorem 4.11.

Remark 4.17. The lower bound argument in Theorem 4.11 works for CBP as well by just
setting Σ = ∅.

Combined with Theorem 4.8, Theorem 4.11 implies that implicit definitions using gen-
eral TBoxes are exactly double exponentially more succinct than explicit definitions using
acyclic terminologies. This closes the open problem of ten Cate et al. (2006) about the size
of explicit definitions. Moreover, the same theorems establish an exact bound on the size of
equivalent rewritings of concept queries as considered by Seylan et al. (2009). Theorem 4.11
also shows that Theorem 1 by Seylan et al. (2010), which claims a single exponential upper
bound on the size of explicit definitions in ALC, is wrong. The source of the problem in
the proof of Theorem 1 is Lemma 1, which claims a single exponential upper bound on the
size of interpolants in ALC.

4.2 Failure of Beth Definability in the Presence of Role Hierarchies

We now show that BP fails in the description logics that we consider that include role
hierarchies (H). This shows that BP is indeed a stronger property than CBP because the
same logics have CBP (ten Cate et al., 2006).

Theorem 4.18. Let L be ALCH or any of its extensions with constructors from {S, I,F}.
Then L does not have BP.

Proof. Let Σ = {R1, R2} and consider the ALCH-TBox T that consists of

S v R1

S v R2

∃R1.A u ∀S.⊥ v ∀R2.¬A
∃R1.¬A u ∀S.⊥ v ∀R2.A

It is easy to see that T is satisfiable. In fact, we will present two models of T below.

Claim 4.19. ∃S.> is implicitly definable from Σ under T .

385



Ten Cate, Franconi, & Seylan

s t
S

R1

R2

w

a

v

b

R1

R2

R2

R1

Figure 5: Interpretations I and J that are used for disproving BP for ALCH

Proof of claim. Define XI = {s ∈ ∆I | ∃t ∈ ∆I .〈s, t〉 ∈ RI1 ∩ RI2}. We will show that,
whenever I |= T , then (∃S.>)I = XI . This establishes the claim, since XI depends only
on RI1 and RI2 .

First, we show (∃S.>)I ⊆ XI . Suppose that s ∈ (∃S.>)I . Then there is some t ∈ ∆I

such that 〈s, t〉 ∈ SI . By the RIAs in T , we then have that 〈s, t〉 ∈ RI1 ∩RI2 . Hence s ∈ XI .
Next, we show XI ⊆ (∃S.>)I . For contradiction, suppose that s ∈ XI and s 6∈ (∃S.>)I ,

i.e., s ∈ (∀S.⊥)I . Then there is some t ∈ ∆I such that 〈s, t〉 ∈ RI1 ∩ RI2 and 〈s, t〉 6∈ SI .
By the definition of an interpretation, either (i) t ∈ AI or (ii) t ∈ (¬A)I . If (i), then
by ∃R1.A u ∀S.⊥ v ∀R2.¬A ∈ T , we have t ∈ (¬A)I , which is a contradiction. If (ii),
then by ∃R1.¬A u ∀S.⊥ v ∀R2.A ∈ T , we have t ∈ AI , which is a contradiction. Hence
XI ⊆ (∃S.>)I . a

Let I = 〈∆I , ·I〉 be the interpretation where

• ∆I = {s, t},

• RI1 = RI2 = SI = {〈s, t〉};

• RI = ∅, for all R ∈ NR \ (Σ ∪ {S});

• BI = ∅, for all B ∈ NC .

Let J = 〈∆J , ·J 〉 be the interpretation where

• ∆J = {w, v, a, b},

• RJ1 = {〈w, a〉, 〈v, b〉}, RJ2 = {〈w, b〉, 〈v, a〉};

• RJ = ∅, for all R ∈ NR \ Σ;

• AJ = {a};

• BJ = ∅, for all B ∈ (NC \ {A}).

The interpretations I and J are depicted in Figure 5. It is not hard to see that I and J
are models of T . Furthermore, the two structures are indistinguishable by concepts in the
signature Σ, in the following sense:

Claim 4.20. For all SHIF-concepts C with sig(C) ⊆ Σ = {R1, R2}, we have

1. s ∈ CI if and only if w ∈ CJ ;

386



Beth Definability in Expressive Description Logics

2. s ∈ CI if and only if v ∈ CJ ;

3. t ∈ CI if and only if a ∈ CJ ;

4. t ∈ CI if and only if b ∈ CJ

The proof of this claim is straightforward, by simultaneous induction on the structure
of the concept C (alternatively, bisimulations can be used to establish the same result).

Since s ∈ (∃S.>)I and w 6∈ (∃S.>)J , it follows that there is no SHIF-concept C such
that sig(C) ⊆ Σ and T |= ∃S.> ≡ C. In summary, we have that the ALCH-concept ∃S.> is
implicitly definable from Σ under the ALCH-TBox T , but ∃S.> is not explicitly definable
from Σ under T in SHIF . We can conclude that BP fails for every description logic that
includes ALCH and that is included in SHIF .

Theorem 4.18 shows that Theorem 10 by Seylan et al. (2010), which claims that ALCH
and its extensions with S and/or I have BP, is incorrect. The mistake in the proof is
that Theorem 9, which presents a reduction from the concept satisfiability problem w.r.t.
TBoxes in SHI to the same problem in ALC, can not actually be used for computing
SHI-interpolants.

4.3 Failure of Beth Definability in the Finite

We now consider BPF (the analogue of Beth Definability over finite structures). Before
we start, we explain our motivations. Seylan et al. (2009) consider an ontology-based data
access setting, where traditional ABoxes are replaced by DBoxes. Syntactically, DBoxes
are defined in the same way as ABoxes, but their semantics is different: while an ABox
is merely assumed to express true facts, a DBox is assumed to list all true facts for some
specified subset of the signature (known as the set of data predicates). Thus, for example,
D = {A(a), R(a, b)} is a DBox for data predicates A and R, and, by the definition of the
semantics of DBoxes, we have that, in every model I of D, AI = {aI} and RI = {〈aI , bI〉}.
In this setting, the TBox may contain other predicates than the data predicates and the
authors use BP to determine whether a concept query over the signature of the TBox can be
rewritten to an equivalent first-order query over the data predicates. When this is possible,
computing the certain answers of the original query can then be reduced to computing
the answers of the rewriting over the DBox, viewed as a database. In the setting we have
described here, and for DLs without FMP, it is more natural to consider BPF than BP. The
reason is that, in every interpretation of a DBox, the data predicates are, by definition, finite
relations. In fact, the appropriate analogue of BP in this setting is one that is restricted
to interpretations in which the data predicates are finite and the rest of the signature is
unrestricted. This variant of BP can be viewed as a common generalization of BP and BFP.
We do not study it here, but the negative results that we will present below for BFP apply
to it as well.

Theorem 4.21 below establishes that BPF fails in L , where L is any DL (among the
ones we consider) lacking FMP. More precisely, we show that there is an L -TBox T , L -
concept C, and signature Σ such that C is f-implicitly definable from Σ under T , and that
there is no f-explicit definition in L , i.e., there is no L -concept D such that sig(D) ⊆ Σ
and T |=f C ≡ D. Intuitively, the reason for the failure of BPF in these logics will be that

387



Ten Cate, Franconi, & Seylan

they can not express the transitive closure of a role (see also the discussion below after the
proof of Theorem 4.21).

Theorem 4.21. Let L be ALCFI or any of its extensions with constructors from {S,H}.
Then L does not have BPF.

Proof. We will, in fact, prove something stronger: we will construct an implicit definition
for which there is no corresponding explicit definition even in full first-order logic.

Let A,B,X be concept names and let R be a role name. Suppose Σ = {R,A}. Consider
the ALCFI-TBox T that consists of the following.

> v ≤ 1R u ≤ 1R−

B v ∃R.B
A v X

∃R.(A u ¬B) v ¬X
∃R.¬X v ¬X

We will show that some concept is f-implicitly definable from Σ under T but it is not
f-explicitly definable from Σ under T . The concept in question is A u B. Note that this
concept is finitely satisfiable w.r.t. T , i.e., there is some finite model I of T such that
(A uB)I 6= ∅. In fact, we provide such a model In below.

For an interpretation I = 〈∆I , ·I〉. A sequence s0, . . . , sn of elements of ∆I is called
a finite R-path if n > 0 and 〈si, si+1〉 ∈ RI for all i < n. An infinite R-path is defined
analogously. An R-path such that the start and the end nodes are the same is called an
R-cycle. Now we will show two claims that will be useful for the proof of the theorem.

Claim 4.22. Let I be a finite model of T . If s ∈ BI , then 〈s, s〉 ∈ (RI)+, where (RI)+ is
the transitive closure of RI .

Proof of claim. Suppose that s ∈ BI . Then the axiom B v ∃R.B ∈ T implies the existence
of the following infinite R-path:

p = s0, s1, . . .

where s0 = s and for all i ≥ 0, we have si ∈ BI .
Since I is finite, there is some 0 ≤ n < m such that sn = sm. If n = 0, we immediately

have that 〈s, s〉 ∈ (RI)+. Otherwise, we claim that for all pairs 〈si, sj〉 in the sequence
〈sn, sm〉, 〈sn−1, sm−1〉, . . . , 〈s0, sm−n〉, we have si = sj . The base case follows immediately
from sn = sm. For the inductive step, we have by the inductive hypothesis that sn−i =
sm−i = t, for some t ∈ ∆I . Then by the definition of p, 〈sn−i−1, t〉 ∈ RI and 〈sm−i−1, t〉 ∈
RI , which imply by the axiom > v≤ 1R− ∈ T and I |= T that sn−i−1 = sm−i−1. Hence
we have that s = s0 = sm−n. But then 〈s, s〉 ∈ (RI)+, which is what we wanted to show. a

Claim 4.23. A uB is f-implicitly definable from Σ under T .

Proof of claim. For all interpretations I, define

YI = {s ∈ ∆I | 〈s, s〉 ∈ (RI)+ ∧ s ∈ AI}.

388



Beth Definability in Expressive Description Logics

We will show that, for all finite models I of T , (AuB)I = YI . This implies the claim, since
YI depends only on RI and AI .

(⇒) Suppose s ∈ (A u B)I . By Claim 4.22, we know that 〈s, s〉 ∈ (RI)+. But then
s ∈ YI .

(⇐) Suppose s ∈ YI . Then s ∈ AI and 〈s, s〉 ∈ (RI)+. Since s ∈ AI , it is enough to
show that s ∈ BI . By the definition of an interpretation, either s ∈ BI or s ∈ (¬B)I . If
s ∈ (¬B)I , then by 〈s, s〉 ∈ (RI)+, s ∈ (Au¬B)I , and the axioms ∃R.(Au¬B) v ¬X ∈ T
and ∃R.¬X v ¬X ∈ T , we have s ∈ (¬X)I which would be a contradiction by s ∈ AI and
A v X ∈ T . So it must be that s ∈ BI . a

The rest of the proof is all about showing that there is no f-explicit definition of A uB
from Σ under T . To this aim, we start by defining an interpretation In, parameterized by
a natural number n > 0.

• ∆In = {s0, . . . , s2n+1} ∪ {t0, . . . , t2n+1}

• RIn = {〈si, si+1〉 | 0 ≤ i ≤ 2n} ∪ {〈ti, ti+1〉 | 0 ≤ i ≤ 2n} ∪ {〈t2n+1, t0, }〉

• AIn = {sn, tn}

• BIn = XIn = {ti | 0 ≤ i ≤ 2n+ 1}

Claim 4.24. For every first-order formula ϕ(x) there is an n > 0 such that In |= ϕ [sn] if
and only if In |= ϕ [tn].

Proof. We apply the Gaifman locality theorem (cf. Libkin, 2004). In the present setting,
where we only have unary and binary relations, and we are concerned with formulas in a
single free variable, the Gaifman locality theorem is particularly easy to state. Given an
interpretation I and elements a, b ∈ ∆I , we say that a and b have distance at most n relative
to a signature Σ, if there is a sequence s0, . . . , sm with 0 ≤ m ≤ n such that s0 = a, sm = b,
and for all 0 ≤ i < m, pair 〈si, si+1〉 belongs to P I ∪ (P I)− for some binary relation (i.e.,
role name) P ∈ Σ. For any interpretation I, element a ∈ ∆I , and natural number n ≥ 0,
we denote by I �a,n the interpretation whose domain consists of the elements from ∆I that
have distance at most n from a, and whose relations are the ones from I restricted to this
subset of the domain. The Gaifman locality theorem can then be stated as follows: for
every first-order formula ϕ(x), there is a natural number n > 0 such that, for all structures
I and elements a, b ∈ ∆I , if I �a,n is isomorphic to I �b,n, via an isomorphism that maps a
to b, then I |= ϕ [a] if and only if I |= ϕ [b].

Now, let ϕ(x) be any first-order formula, and let n > 0 be the natural number given by
the Gaifman locality theorem. Consider the instance In that we constructed earlier. It is
immediately clear from the construction of In that In �sn,n is isomorphic to In �tn,n, via an
isomorphism that maps sn to tn. Therefore, In |= ϕ [sn] if and only if In |= ϕ [tn].

Claim 4.25. There is no SHIF-concept C such that sig(C) ⊆ Σ and T |=f (A uB) ≡ C.

Proof of claim. We proceed towards a contradiction. Suppose C is an ALCFI-concept such
that sig(C) ⊆ Σ = {R,A} and T |=f A uB ≡ C. Let ϕ(x) = πx(C). Since sn ∈ (A uB)In ,
T |=f A u B ≡ C, and the fact that In is a finite model of T , we have In 6|= ϕ [sn]; and

389



Ten Cate, Franconi, & Seylan

by the same reasoning, we have In |= ϕ [tn]. But by the previous claim, In |= ϕ [sn] if and
only if In |= ϕ [tn], which is a contradiction. a

In summary, we have that the ALCFI-concept A u B is f-implicitly definable from Σ
under the ALCFI-TBox T , but AuB is not f-explicitly definable from Σ under T even in
SHIF (or in first-order logic, for that matter). It follows that, if L is any proper extension
of ALCFI with constructors from {S,H}, then L does not have BPF.

We point out that the specific counterexample to BPF described in the proof of The-
orem 4.21 actually admits an explicit definition if one were to allow the use of transitive
closure. Specifically, it can be shown that A u (∃R.>) u (¬∃R+.¬∃R.>) is an explicit
definition, where R+ denotes the transitive closure of the role R.

4.4 The Transitive Closure Operator

The proof of Theorem 4.21 suggests that the failure of BPF in the considered logics may
be caused by the fact that they can not express transitive closure. This raises the question
whether one can regain BPF by adding the transitive closure constructor to ALCFI. In
this section, we show that ALCFI extended with the transitive closure constructor still
lacks BPF.

In the following, we denote by L+ the language obtained from L by additionally al-
lowing R+ as a role for every role R in L . This allows us to include such roles in the
inductive definition of concepts. However, if L includes functionality restrictions, then, as
usual, we forbid the use of transitive closure inside these functionality restrictions. In other
words, in concepts of the form ≤ 1R, R is not allowed to make use of the transitive closure
constructor.

The semantics of the transitive closure construct is as expected, namely, (R+)I is the
relation

{〈s, t〉 | there are s1, . . . , sn (n > 1) with s1 = s, sn = t, and 〈si, si+1〉 ∈ RI for 1 ≤ i < n}.

Theorem 4.26. ALCFI+ does not have BPF.

Proof. Consider the following ALCFI+-TBox T .

> v ≤ 1R−

> v ∃R.>
> v ∃R+.A

A v ¬B
∃R.B v ¬B
∃R.¬B v B

It is easy to see that T is finitely satisfiable, i.e., T has a finite model. In fact, we provide
finite models In, for n > 0, of T below. We first show that the concept name B is f-implicitly
definable from Σ = {R,A} under T and then show that there is no f-explicit definition of
this concept from Σ in the language. For an interpretation I, an R-path and R-cycle in I
are defined as in the proof of Theorem 4.21.

Claim 4.27. Let I be a finite model of T . Then for all s ∈ ∆I , we have 〈s, s〉 ∈ (R+)I .

Proof of claim. Identical to the proof of Claim 4.22 in the proof of Theorem 4.21. a

390



Beth Definability in Expressive Description Logics

Claim 4.28. We have

(a) T |=f > v ∃R−.>, and

(b) T |=f > v≤ 1R.

Proof of claim. Part (a) follows immediately from the previous claim.

To prove part (b), suppose, for the sake of a contradiction that T 6|=f > v≤ 1R. Then
there is some finite model I of T and s, t, u ∈ ∆I such that t 6= u and 〈s, t〉, 〈s, u〉 ∈ RI .
Since > v≤ 1R− ∈ T and I |= T and by part (a) of our claim, we have that (R−)I is
the graph of a total function on ∆I . Since t 6= u and 〈s, t〉, 〈s, u〉 ∈ RI , we also know that
the cardinality of the image Y of this function must be strictly smaller than the cardinality
of the domain, i.e., |Y | < |∆I |. This implies that Y ( ∆I . But this contradicts with
> v ∃R.> ∈ T and I |= T . Hence we conclude that T |=f > v≤ 1R. a

For s, t ∈ ∆I , we write odd(s, t) if there is an R-path of odd length from s to t, that is,
an R-path s0, . . . , sn such that s = s0, t = sn, and n is odd. Note that in an R-path like
s0, . . . , sn, we always have n > 0.

Claim 4.29. For all finite models I of T , we have

BI = {s ∈ ∆I | ∃t ∈ ∆I .odd(s, t) ∧ t ∈ AI}.

Proof of claim. (⇒) Suppose s ∈ BI . By the first claim, there is someR-cycle p = s0, . . . , sn,
where s0 = sn = s and n > 0. Since > v ∃R+.A ∈ T and I |= T , there is some t ∈ ∆I

such that 〈s, t〉 ∈ (R+)I and t ∈ AI . We claim that t = si, for some i ∈ {1, . . . , n− 1}. To
show this, we proceed towards a contradiction.

Suppose that our claim does not hold. Then there is some R-path t0, . . . , tm, where
t0 = s and tm = t. Obviously, this path is different from the R-cycle p since t does not
occur in p. Now by using T |=f > v≤ 1R from the previous claim, we can show that every
individual ti actually appears in p, which contradicts with the fact that t does not appear
in p. Hence we conclude that there is some i ∈ {1, . . . , n− 1} such that si = t.

We will now show that i is odd. By A v ¬B ∈ T , I |= T , and t ∈ AI , we have t 6∈ BI .
Then by using s ∈ BI and the axioms ∃R.B v ¬B ∈ T , ∃R.¬B v B ∈ T , one can easily
show by induction that i is odd. This implies odd(s, t).

Hence there is some t ∈ ∆I such that odd(s, t) and t ∈ AI , which is what we wanted to
show.

(⇐) Suppose s ∈ ∆I such that there is some t ∈ ∆I with odd(s, t) and t ∈ AI . This implies
that there is some R-path s0, . . . , sn such that s0 = s, sn = t, and n is odd. By t ∈ AI ,
A v ¬B ∈ T , and I |= T , we have t 6∈ BI . Then by using the fact that n is odd, the axioms
∃R.B v ¬B ∈ T and ∃R.¬B v B ∈ T , one can easily show by induction that s ∈ BI . a

Claim 4.29 implies that B is f-implicitly definable from Σ under T . The rest of the proof
shows that there is no f-explicit definition of B from Σ under T . For each n ≥ 0, let In be
the following interpretation:

• ∆In = {s0, . . . , s2n+3}

391



Ten Cate, Franconi, & Seylan

• RIn = {〈si, si+1〉 | 0 ≤ i < 2n+ 3} ∪ {〈s2n+3, s0〉}

• AIn = {sn+2},

• BIn = {si | 0 ≤ i ≤ 2n+ 3 and odd(si, sn+2)}.

Intuitively, In is an R-cycle of (even) length 2n + 4, some of whose elements satisfy the
concept name A and/or B. Observe that In, for n ≥ 0, is a model of T . Define the function
d : ∆In → N as follows.

d(si) =

{
i− (n+ 2) if i ≥ n+ 2
(n+ 2)− i if i < n+ 2

In other words, d(s) is the distance between s and sn+2.
For each ALCFI+-concept C, we will denote by md(C) the modal depth of C, that is,

the maximal nesting depth of role constructors in C. Formally,

• md(A) = md(>) = md(≤ 1R) = 0

• md(¬C) = md(C)

• md(C uD) = max{md(C),md(D)}

• md(∃R.C) = md(∃R+.C) = md(C) + 1

where A ∈ CA and R is of the form P or P− with P ∈ NR.

Claim 4.30. For all i ∈ {0, . . . , n} and all s, s′ ∈ ∆In \ {s ∈ ∆In | d(s) ≤ i}, we have

s ∈ CIn iff s′ ∈ CIn

for all ALCFI+-concepts with md(C) ≤ i and sig(C) ⊆ Σ.

Proof of claim. Let i ∈ {0, . . . , n}, s, s′ ∈ ∆In \ {s ∈ ∆In | d(s) ≤ i}, and C be an
ALCFI+-concept with md(C) ≤ i and sig(C) ⊆ Σ. The proof is by induction on i.

For i = 0. Since md(C) = 0 and sig(C) ⊆ Σ, C obeys the following grammar:

C ::= > | A |≤ 1S | ¬C | C u C

where S = R or S = R− (recall that we forbid the use of transitive closure inside function-
ality restrictions).

By induction on the structure of C, we show that s ∈ CIn iff s′ ∈ CIn .

• C = >. By the definition of an interpretation, we have s ∈ >In and s′ ∈ >In . Hence
s ∈ >In iff s′ ∈ >In .

• C = A (recall that A is the only concept name in Σ). By assumption, we have s 6= sn+2

and s′ 6= sn+2. Then by the definition of In, we obtain s 6∈ AIn and s′ 6∈ AIn . Hence
s ∈ AIn iff s′ ∈ AIn .

• C =≤ 1S. By the definition of In, we have for all t ∈ ∆In that |SIn(t)| = 1. Then in
particular, |SIn(s)| = |SIn(s′)| = 1. Hence s ∈ (≤ 1S)In iff s′ ∈ (≤ 1S)In .

392



Beth Definability in Expressive Description Logics

• C = ¬D. Follows easily by the inductive hypothesis for C.

• C = C1 u C2. Follows easily by the inductive hypothesis for C.

Hence we conclude that s ∈ CIn iff s′ ∈ CIn , for i = 0.
Next, consider the case that i > 0, and let md(C) ≤ i and sig(C) ⊆ Σ. Then we have

that C obeys the following grammar:

C ::= ∃S.E | ∃S+.E | ¬C | C u C

where md(E) ≤ i− 1, and S = R or S = R−. By induction on the structure of C, we show
that s ∈ CIn iff s′ ∈ CIn .

• C = ∃S.E with md(E) ≤ i − 1, and S = R or S = R−. By the definition of In, we
have that there is exactly one t ∈ ∆In with 〈s, t〉 ∈ SIn and exactly one t′ ∈ ∆In with
〈s′, t′〉 ∈ SIn . Moreover, t, t′ ∈ ∆In \ {s ∈ ∆In | d(s) ≤ i − 1}. We have that the
following are equivalent:

– s ∈ (∃S.E)In

– t ∈ EIn (since t is the only individual with 〈s, t〉 ∈ SIn)

– t′ ∈ EIn (by the inductive hypothesis for i)

– s′ ∈ (∃S.E)In (since t is the only individual with 〈s′, t′〉 ∈ SIn).

• D = ∃S+.E with md(E) = i−1, and S = R or S = R−. Suppose first s ∈ (∃S+.E)In .
Then there is some t ∈ ∆I such that 〈s, t〉 ∈ (SIn)+ and t ∈ EIn . We distinguish the
following cases:

– t 6= s′. Then by the definition of In, we immediately obtain 〈s′, t〉 ∈ (SIn)+; and
by t ∈ EIn this implies s′ ∈ (∃S+.E)In .

– t = s′. By the definition of In, we have 〈s′, s〉 ∈ (SIn)+. Moreover, s, s′ ∈
∆In \ {s ∈ ∆In | d(s) ≤ i − 1}. Then by the inductive hypothesis on i and
s′ ∈ EIn , we have s ∈ EIn , which implies by 〈s′, s〉 ∈ (SIn)+ that s′ ∈ (∃S+.E)In .

Hence s′ ∈ (∃S+.E)In in both cases, which is what we wanted to show. The direction
from right to left can be shown analogously.

• The other cases can be shown easily by the inductive hypothesis on C.

Hence the claim follows. a

Claim 4.31. There is no ALCFI+-concept C such that sig(C) ⊆ {A,R} and T |=f B ≡ C.

Proof of claim. We proceed towards a contradiction so suppose the existence of such a
concept C. By definition, md(C) = n, for some n ≥ 0; and s0, s1 ∈ ∆In \ {s ∈ ∆In | d(s) ≤
n}. Then by the previous claim, we have s0 ∈ CIn iff s1 ∈ CIn . Then by the fact that In
is a finite model of T and T |=f B ≡ C, we have s0 ∈ BIn iff s1 ∈ BIn . This implies by the
definition of In and Claim 4.29 that odd(s0, sn+2) iff odd(s1, sn+2), which is a contradiction.
Hence we conclude that there exists no ALCFI+-concept C such that sig(C) ⊆ {A,R} and
T |= B ≡ C. a

393



Ten Cate, Franconi, & Seylan

Now the proof of the theorem is as follows. By Claim 4.29, B is f-implicitly definable
from Σ = {A,R} under T . But by Claim 4.31, B is not f-explicitly definable from Σ under
T . Hence ALCFI+ does not have BPF.

5. Concluding Remarks

In this paper, we studied BP in expressive DLs with commonly used concept constructors.
All of these constructors appear in the Web Ontology Language OWL-Lite (Horrocks et al.,
2003). OWL-Lite is now superseded by OWL 2, which supports some other important con-
structors such as nominals, denoted by O in the language, and qualified number restrictions,
denoted by Q in the language. There are already some results available regarding BP in
logics having Q or O.

Q is a generalization of F and ten Cate et al. (2006) show via a model-theoretic argument
that CBP holds in ALCQ. We believe that BP can also be shown to hold for ALCQ and
ALCQI using a model-theoretic argument; although such an argument gives no upper
bound on the size of explicit definitions. Extending our upper bound results on the size of
explicit definitions to these logics appears to be more difficult because of the unavailability
of a natural and optimal tableau algorithm for these logics.

In logics with O, besides the concept and role names, we assume a set NI = {i, j, . . .}
of nominals. Syntactically, nominals are treated as atomic concepts but semantically each
nominal is interpreted as a singleton set. The presence of nominals gives rise to two differ-
ent Beth definability properties. In the first one, we are allowed to restrict the nominals
appearing in implicit/explicit definitions by making them part of the signature Σ; in the
second one, definitions are allowed to use any nominal from NI . Obviously, the first one
is a stronger property. Ten Cate et al. (2006) show that even the second property fails in
ALCO. They also observe that extending ALCO with concepts of the form @iC is enough
to regain CBP. Intuitively, @iC says that the point satisfying the nominal i also satisfies
the concept C.

In a similar way, one can try to identify an extension of ALCH that has BP. In the
proof of Theorem 4.18, our argument for the failure of BP in the considered logics was that
they can not express role conjunction. It remains open if ALCH extended with the role
conjunction constructor has BP. Another interesting open question is to identify a minimal
extension of ALCFI having BPF.

By Theorem 3.36, we know how to compute first-order explicit definitions of single
exponential size, given that a concept is implicitly defined under a TBox. We leave as
another open problem the existence of a matching lower bound, i.e., is there a family of
TBoxes implicitly defining a concept such that smallest explicit definitions in first-order
logic are single exponentially big?

Acknowledgments

We are grateful to Carsten Lutz and Maarten Marx for helpful discussions on the topic. A
substantial part of the research was carried out during an extended visit of İnanç Seylan to

394



Beth Definability in Expressive Description Logics

UC Santa Cruz in 2010, and we thank Phokion Kolaitis for his hospitality. We also thank
the anonymous reviewers for their extensive comments.

Balder ten Cate was supported by the NSF grants IIS-0905276 and IIS-1217869.

Appendix A. Quasimodels

Decision procedures based on semantic tableau do not construct a model of the given for-
mula/concept, but a finite representation of a model from which the model can be unfolded.
In this paper, we will use the term ‘quasimodel’ to denote such a finite representation follow-
ing Andréka, Németi, and van Benthem (1998). Various other names have been used in the
literature, including Hintikka structures (Schwendimann, 1998), model graph (Goré, 1999),
and even tableau (Horrocks & Sattler, 2007). Modulo some differences, the building blocks
of these structures are sets of finite concepts each of which is a subset of a relevant concept
closure. We will be using the definition of concept closure cl(C, T ) given in Section 3.1.

Remark A.1. For the rest of the appendix, we assume that ALCF-concepts are defined
recursively as in Section 2.1 using also ⊥, t, ∀R.C, and ≥ 2R as primitives; all concepts
are in NNF; and ALCF-TBoxes consist only of axioms of the form > v C. For a discussion
of these assumptions, we refer the reader to the beginning of Section 3.1.

Not every subset of the concept closure is suitable to take part in a quasimodel. Depend-
ing on the logic at hand, these sets satisfy some basic consistency requirements. Following,
e.g., Lutz et al. (2005), we will use the term ‘type’ to denote these sets satisfying these re-
quirements. Note, however, that the non-membership of a concept in a type does not imply
the membership of the negation of the concept in the type. In this respect, our types are
similar to Hintikka sets, which are also called downward-saturated sets (cf. Fitting, 1996).

Definition A.2. Let C0 be an ALCF-concept and let T be an ALCF-TBox. A τ ⊆
cl(C0, T ) is called an 〈C0, T 〉-type for ALCF if and only if for all A,C,C1, C2,∃R.C,≥
2R,≤ 1R ∈ cl(C0, T ),

(P⊥) ⊥ 6∈ τ ;

(P¬) {A,¬A} 6⊆ τ ;

(Pu) if C1 u C2 ∈ τ , then C1 ∈ τ and C2 ∈ τ ;

(Pt) if C1 t C2 ∈ τ , then C1 ∈ τ or C2 ∈ τ ;

(Pv) if > v C ∈ T , then C ∈ τ ;

(P./) {≤ 1R,≥ 2R} 6⊆ τ ;

(P≤1) if {≤ 1R,∃R.C} ⊆ τ , then ∀R.C ∈ τ .

When a type belongs to a quasimodel, it may force some other type to also belong to
the quasimodel, for instance to witness an existential statement. In fact, a quasimodel is a
collection of types coherent with each other in this sense.

395



Ten Cate, Franconi, & Seylan

Definition A.3. Let C0 be an ALCF-concept, T an ALCF-TBox and τ, υ two 〈C0, T 〉-
types for ALCF .

• We write τ
∃R.C
===⇒ υ if ∃R.C ∈ τ and {C} ∪ {C ′ | ∀R.C ′ ∈ τ} ⊆ υ.

• We write τ
≥2R
===⇒ υ if ≥ 2R ∈ τ and {C ′ | ∀R.C ′ ∈ τ} ⊆ υ.

• A set Q of 〈C0, T 〉-types for ALCF is a 〈C0, T 〉-quasimodel for ALCF if it satisfies:

(a) there is some τ0 ∈ Q such that C0 ∈ τ0;

(b) for every τ ∈ Q and ∃R.C ∈ τ , there is a type υ ∈ Q such that τ
∃R.C
===⇒ υ; and

(c) for every τ ∈ Q and ≥ 2R ∈ τ , there is a type υ ∈ Q such that τ
≥2R
===⇒ υ.

The following theorem will be useful in soundness and completeness proofs of the tableau
and interpolation algorithms. Its proof is inspired by Marx and Venema (2007).

Theorem A.4. An ALCF-concept C0 is satisfiable w.r.t. an ALCF-TBox T if and only if
there is some 〈C0, T 〉-quasimodel for ALCF .

Proof. (⇒) Given a model I = 〈∆I , ·I〉 of T with CI0 6= ∅, we carve out for all s ∈ ∆I , a
set of concepts L(s) ⊆ cl(C0, T ) as follows.

L(s) = {C ∈ cl(C0, T ) | s ∈ CI}.

Now let Q = {L(s) | s ∈ ∆I}.

Claim A.5. Each τ ∈ Q is a 〈C0, T 〉-type for ALCF .

Proof of claim. Suppose τ ∈ Q. Then τ = L(s) for some s ∈ ∆I . We verify the conditions
in Definition A.2.

• By definition, ⊥I = ∅ and thus s 6∈ ⊥I and thus ⊥ 6∈ L(s). Hence (P⊥) is satisfied.

• By the virtue of I being an interpretation, it is not the case that s ∈ AI and s ∈ (¬A)I .
Hence (P¬) is satisfied.

• If C1 u C2 ∈ L(s), then s ∈ (C1 u C2)I . Since I is an interpretation, s ∈ CI1 and
s ∈ CI2 . But then C1, C2 ∈ L(s). Hence (Pu) is satisfied.

• If C1tC2 ∈ L(s), then s ∈ (C1tC2)I . Since I is an interpretation, s ∈ CI1 or s ∈ CI2 .
But then C1 ∈ L(s) or C2 ∈ L(s). Hence (Pt) is satisfied.

• If > v C ∈ T , then ∆I ⊆ CI and thus s ∈ CI . But then C ∈ L(s). Hence (Pv) is
satisfied.

• Suppose for a contradiction that (P./) does not hold. Then s ∈ (≤ 1R)I and s ∈ (≥
2R)I . But this is a contradiction. Hence (P./) is satisfied.

• Suppose {≤ 1R,∃R.C} ⊆ τ . By assumption s ∈ (≤ 1R)I and s ∈ (∃R.C)I . Then it
follows that there is exactly one t ∈ ∆I such that 〈s, t〉 ∈ RI and t ∈ CI . But then
s ∈ (∀R.C)I . Hence (P≤1) is satisfied.

396



Beth Definability in Expressive Description Logics

Since we have shown that all the conditions in Definition A.2 are satisfied, we conclude that
τ is a 〈C0, T 〉-type for ALCF . a
We claim that Q is a 〈C0, T 〉-quasimodel. By Claim A.5, if τ ∈ Q, then τ is a 〈C0, T 〉-type
for ALCF . Thus it remains to show that condition (a), (b), and (c) from Definition A.3 are
satisfied.

For (a), since CI0 6= ∅, there is some s0 ∈ ∆I such that s0 ∈ CI0 and by the construction
of Q, L(s0) is in Q. Hence, condition (a) is satisfied.

For condition (b), suppose ∃R.C ∈ L(s) for some s ∈ ∆I . This means s ∈ (∃R.C)I ,
i.e., there is some individual t such that 〈s, t〉 ∈ RI and t ∈ CI . Then by the construction
of Q, we have C ∈ L(t). Now let ∀R.D ∈ L(s). Then by the construction of Q, we have
s ∈ (∀R.D)I . This implies by 〈s, t〉 ∈ RI that t ∈ DI . By the construction of Q again, we

obtain D ∈ L(t). Hence, L(s)
∃R.C
===⇒ L(t); and we conclude that (b) is satisfied.

The proof for (c) is analogous.

(⇐) Suppose that Q is a 〈C0, T 〉-quasimodel for ALCF . The idea of the proof is to construct
an interpretation I inductively using Q and then show that I |= T and CI0 6= ∅. For this
construction, we need to introduce some notation first.

Let I be an interpretation and let L : ∆I → Q. A pair 〈s, C〉 with s ∈ ∆I and
C ∈ cl(C0, T ) is called a defect of I w.r.t. L, if and only if,

• ∃R.C ∈ L(s) and there is no t ∈ ∆I such that 〈s, t〉 ∈ RI and C ∈ L(t), or

• ≥ 2R ∈ L(s) and |{t ∈ ∆I | 〈s, t〉 ∈ RI}| < 2.

Fix a map f : cl(C0, T )→ N, and let � be any linear order on the Cartesian product N×N
of order type ω (recall that a countably infinite linear order is said to have order type ω if
for each element in the order there are only finitely many elements that are less than it; it
is well known that there are linear orders on N× N of order type ω).

We are now ready to define by induction the interpretations Ii = 〈∆Ii , ·Ii〉 with ∆Ii ⊆ N
and mappings Li : ∆Ii → Q, for i ∈ N.
Base case. By condition (a) from Definition A.3, there is some type τ0 ∈ Q with C0 ∈ τ0.
Define the interpretation I0 as follows.

• ∆I0 = {s}, for some s ∈ N;

• for all A ∈ NC ,

– if A ∈ τ0, then AI0 = {s},
– if A 6∈ τ0, then AI0 = ∅;

• for all R ∈ NR, RI0 = ∅.

Set L0 = {s 7→ τ0}.
Inductive step. If there is no defect of Ii w.r.t. Li, then set Ii+1 = Ii and Li+1 = Li;
otherwise, let 〈s, C〉 be the least defect of Ii w.r.t. Li, i.e., for every defect 〈t,D〉 of Ii w.r.t.
Li, we have 〈s, f(C)〉 � 〈t, f(D)〉 (using the fact that ≺ has order type ω). By Li(s) ∈ Q
and conditions (b) and (c) from Definition A.3, there is some τ ∈ Q such that Li(s)

C
=⇒ τ .

If C = ∃R.D, then let t ∈ N \∆Ii and define

397



Ten Cate, Franconi, & Seylan

• ∆Ii+1 = ∆Ii ∪ {t},

• for all A ∈ NC ,

– if A ∈ τ , then AIi+1 = AIi ∪ {t},
– if A 6∈ τ , then AIi+1 = AIi ;

• for all S ∈ NR,

– if S = R, then SIi+1 = {〈s, t〉} ∪ SIi ,
– if S 6= R, then SIi+1 = SIi .

Also set Li+1 = Li ∪ {t 7→ τ}. If C =≥ 2R, then let t1, t2 ∈ N \∆Ii with t1 6= t2 and define

• ∆Ii+1 = ∆Ii ∪ {t1, t2},

• for all A ∈ NC ,

– if A ∈ τ , then AIi+1 = AIi ∪ {t1, t2},
– if A 6∈ τ , then AIi+1 = AIi ;

• for all S ∈ NR,

– if S = R, then SIi+1 = {〈s, t1〉, 〈s, t2〉} ∪ SIi ,
– if S 6= R, then SIi+1 = SIi .

Also set Li+1 = Li∪{t1 7→ τ, t2 7→ τ}. This finishes our inductive construction. Now define
the interpretation I as follows:

• ∆I =
⋃
i≥0 ∆Ii ,

• for all P ∈ NC ∪NR, P I =
⋃
i≥0 P

Ii .

Also set L =
⋃
i≥0 Li. Observe that L is a total mapping from ∆I to Q.

Claim A.6. For all concepts C ∈ cl(C0, T ) and all s ∈ ∆I , if C ∈ L(s) then s ∈ CI .

Proof of claim. Let s and C be as stated in the claim. Suppose C ∈ L(s). Then by the
definition of L, there is some i ∈ N such that C ∈ Li(s); let i be the smallest natural number
satisfying C ∈ Li(s), i.e., Ii is the interpretation that we introduced s. By induction on the
structure of C, we show that s ∈ CI . Since for all τ ∈ Q, we have ⊥ 6∈ τ by (P⊥), it follows
that C 6= ⊥. Hence, we consider the remaining cases for C.

• C = >. We have by assumption that s ∈ ∆I , i.e., s ∈ >I .

• C = A, for some A ∈ NC . Then by the definition of Ii and A ∈ Li(s), it immediately
follows that s ∈ AIi . This implies by the definition of I that s ∈ AI .

• C = ¬A, for some A ∈ NC . Since Li(s) ∈ Q, Li(s) satisfies (P¬). Then by ¬A ∈ Li(s),
we have A 6∈ Li(s). One can now easily show by induction that for all k ≥ i, we have
s 6∈ AIk . This implies by our assumption about i that for all k ∈ N, s 6∈ AIk . Then
by the definition of I, we obtain s 6∈ AI , i.e., s ∈ (¬A)I .

398



Beth Definability in Expressive Description Logics

• C = C1 u C2. Follows easily by the inductive hypothesis and (Pu).

• C = C1 t C2. Follows easily by the inductive hypothesis and (Pt).

• C = ∀R.D. Let t ∈ ∆I such that 〈s, t〉 ∈ RI . We need to show that t ∈ DI . By
〈s, t〉 ∈ RI , there is some k ∈ N such that 〈s, t〉 ∈ RIk ; w.l.o.g. assume that Ik is the
interpretation that we introduced t. It follows that there is some E ∈ cl(C0, T ) such

that 〈s, E〉 is a defect of Ik−1 w.r.t. Lk−1 and Lk(s)
E
=⇒ Lk(t). This implies D ∈ Lk(t).

Then by the definition of L, we obtain D ∈ L(t). By the inductive hypothesis, this
implies t ∈ DI . Hence, s ∈ (∀R.D)I .

• C = ∃R.D. By our assumption about i, we have that 〈s, C〉 is a defect of Ii w.r.t. Li.
By the definition of �, there are finitely many pairs 〈t, E〉 with t ∈ N and E ∈ cl(C0, T )
such that 〈t, f(E)〉 � 〈s, f(C)〉. This implies that there is some k > i such that we
‘fix’ the defect 〈s, C〉 at step k. Then there is some t ∈ ∆Ik such that 〈s, t〉 ∈ RIk and
D ∈ Lk(t). By the definition of I, we then have 〈s, t〉 ∈ RI and D ∈ L(t). By the
inductive hypothesis, the latter implies t ∈ DI . Hence, s ∈ (∃R.D)I .

• C =≤ 1R. Suppose for a contradiction that there are t1, t2 ∈ ∆I such that t1 6= t2
and 〈s, t1〉, 〈s, t2〉 ∈ RI . Then there are k1, k2 ∈ N such that 〈s, ti〉 ∈ RIki and Iki
is the interpretation that we introduced ti, for each i ∈ {1, 2}. By our construction,
this implies that there are concepts C1, C2 ∈ cl(C0, T ) such that 〈s, Ci〉 is a defect

of Iki−1 w.r.t. Lki−1 and Lki(s)
Ci=⇒ Lki(ti), for each i ∈ {1, 2}. It follows that

Ci 6=≥ 2R, for each i ∈ {1, 2}; otherwise, we would obtain a contradiction by (P./).
Thus, C1 = ∃R.D1 and C2 = ∃R.D2. Then by the definition of cl(C0, T ), we have
∀R.D1, ∀R.D2 ∈ cl(C0, T ); and by (P≤1), this implies ∀R.D1, ∀R.D2 ∈ Lk1(s) =
Lk2(s). Suppose w.l.o.g. that k1 < k2. Then D2 ∈ Lk1(t1). But this contradicts with
the fact that 〈s, ∃R.D2〉 is a defect of Ik2−1 w.r.t Lk2−1.

• C =≥ 2R. This case can be shown similarly to the case C = ∃R.D.

Since we considered all the possible cases, we conclude that the claim holds. a

Using Claim A.6, this direction of the Theorem can now be shown easily as follows. By
the base case of our inductive construction, there is some s ∈ ∆I0 such that C0 ∈ L0(s).
This implies C0 ∈ L(s) and then by Claim A.6, we obtain s ∈ CI0 . Moreover, by Claim A.6
and (Pv), we have I |= T . Hence C0 is satisfiable w.r.t. T .

Appendix B. Useful Lemmas for Tableau Correctness and Interpolation

For all Φ ⊆ cll ∪ clr, we define

Φ(l) = {C | Cl ∈ Φ ∩ cll} and Φ(r) = {C | Cr ∈ Φ ∩ clr}.

Φ(λ) is a shorthand for Φ(l) ∪ Φ(r). In the following the signature of a set of ALCF-
concepts S will be of concern. We define sig(S) =

⋃
C∈S sig(C). Let τ be a finite set of

ALCF-concepts and T be an ALCF-TBox. We say that τ is satisfiable w.r.t. T if and only
if

d
D∈τ D is satisfiable w.r.t. T . Moreover a Φ ⊆ cll ∪ clr is satisfiable w.r.t. T if and only

if Φ(λ) is satisfiable w.r.t. T .

399



Ten Cate, Franconi, & Seylan

Lemma B.1. Let Φ ⊆ cll ∪ clr be satisfiable w.r.t. T . We have

• if χ is an ?-burden of Φ for ? ∈ {u,≤ 1,∃,≥ 2} and Ψ is the χ-relief of Φ, then Ψ is
satisfiable w.r.t. T ;

• if χ is an t-burden of Φ, then there is some χ-relief Ψ of Φ such that Ψ is satisfiable
w.r.t. T .

Proof. Suppose that Φ is as stated in the Theorem, i.e., it is satisfiable w.r.t. T . This
means Φ(λ) is satisfiable w.r.t. T . By Theorem A.4 we then have that there is some
〈C, T 〉-quasimodel Q for ALCF , where C =

d
D∈Φ(λ)D. This means there is some τ ∈ Q

such that Φ(λ) ⊆ τ . We will also use the term 〈τ, T 〉-quasimodel for Q.
Assume that (C1 u C2)λ is an u-burden of Φ. Then the (C1 u C2)λ-relief of Φ is Ψ =

Φ ∪ {(C1)λ, (C2)λ}. By (Pu), {C1, C2} ⊆ τ and thus Ψ(λ) ⊆ τ . Hence Ψ(λ) is satisfiable
w.r.t. T .

Assume that (≤ 1R)λ is an ≤ 1-burden of Φ. Then the (≤ 1R)λ-relief of Φ is Ψ =
Φ ∪ {(∀R.C)κ | (∃R.C)κ ∈ Φ}. If (∃R.C)κ ∈ Φ, then ∃R.C ∈ τ and by (P≤1), ∀R.C ∈ τ .
Hence Ψ(λ) ⊆ τ and Ψ is satisfiable w.r.t. T .

Assume that (∃R.C)λ is an ∃-burden of Φ. Φ(λ) ⊆ τ so by condition (b) of Defini-
tion A.3, there is some υ ∈ Q such that υ ⊇ {C} ∪ {D | ∀R.D ∈ Φ(λ)}; and by (Pv),
{E | > v E ∈ T } ⊆ υ. Let Ψ be the (∃R.C)λ-relief of Φ. Then we have Ψ(λ) ⊆ υ. Hence
Ψ is satisfiable w.r.t. T .

Assume that (≥ 2R)λ is an ≥ 2-burden of Φ. Φ(λ) ⊆ τ so by condition (b) of Def-
inition A.3, there is some υ ∈ Q such that υ ⊇ {D | ∀R.D ∈ Φ(λ)}; and by (Pv),
{E | > v E ∈ T } ⊆ υ. Let Ψ be the ≥ 2R-relief of Φ. Then we have Ψ(λ) ⊆ υ.
Hence Ψ is satisfiable w.r.t. T .

Assume that (C1 t C2)λ is an t-burden Φ. Then for some (C1 t C2)λ-relief Ψ of Φ, we
have Ψ(λ) ⊆ τ by (Pt). Hence, there is some (C1 tC2)λ-relief of Φ that is satisfiable w.r.t.
T .

Proposition B.2. Let T be an ALCF-TBox and C0, C1, . . . , Cn, D be ALCF-concepts.

1. If T |= C0 u C1 u . . . u Cn v D, then

T |= ∃R.C0 u ∀R.C1 u . . . u ∀R.Cn v ∃R.D.

2. If T |= D v C1 t . . . t Cn, then

T |= ∃R.D v ∃R.C1 t . . . t ∃R.Cn.

3. If T |= C1 u . . . u Cn v D, then

T |=≥ 2R u ∀R.C1 u . . . u ∀R.Cn v ∃R.D.

Proof. For 1, we proceed towards a contradiction. Suppose T |= C0 u C1 u . . . u Cn v D
and T 6|= ∃R.C0u∀R.C1u . . .u∀R.Cn v ∃R.D. Then there is some model I of T such that
I |= C0 u C1 u . . . u Cn v D and I 6|= ∃R.C0 u ∀R.C1 u . . . u ∀R.Cn v ∃R.D. By the latter

400



Beth Definability in Expressive Description Logics

there is some s ∈ ∆I such that s ∈ (∃R.C0u∀R.C1u . . .u∀R.Cn)I and s 6∈ (∃R.D)I . That
is, there is some t ∈ ∆I such that 〈s, t〉 ∈ RI , t ∈ (C0 u C1 u . . . u Cn)I , and t ∈ (¬D)I .
But this contradicts with I |= C0 u C1 u . . . u Cn v D.

For 2, we proceed towards a contradiction. Suppose T |= D v C1 t . . . t Cn and
T 6|= ∃R.D v ∃R.C1 t . . . t ∃R.Cn. Then there is some model I of T such that I |= D v
C1 t . . . t Cn and I 6|= ∃R.D v ∃R.C1 t . . . t ∃R.Cn. By the latter there is some s ∈ ∆I

such that s ∈ (∃R.D)I and s 6∈ (∃R.C1 t . . . t ∃R.Cn)I . That is there is some t ∈ ∆I

such that 〈s, t〉 ∈ RI , t ∈ DI , and t ∈ (¬C1 u . . . u ¬Cn)I . But this contradicts with
I |= D v C1 t . . . t Cn.

Proposition B.3. Let C be an ALCF-concept and R be a role name. Then

|=≤ 1R u ∃R.C u ∀R.C ≡≤ 1R u ∃R.C.

Proof. That |=≤ 1R u ∃R.C u ∀R.C v≤ 1R u ∃R.C is trivial. For the other direction,
suppose for a contradiction that 6|=≤ 1R u ∃R.C v≤ 1R u ∃R.C u ∀R.C. This means there
is some interpretation I = 〈∆I , ·I〉 such that I 6|=≤ 1R u ∃R.C v≤ 1R u ∃R.C u ∀R.C.
Thus there is some s ∈ ∆I such that s ∈ (≤ 1R)I , s ∈ (∃R.C)I , and s ∈ (∃R.¬C)I . By
the last two there are t1, t2 ∈ ∆I such that 〈s, t1〉, 〈s, t2〉 ∈ RI , t1 ∈ CI , and t2 ∈ (¬C)I .
But by s ∈ (≤ 1R)I , t1 = t2 which is a contradiction.

Lemma B.4. Let Φ ⊆ cll ∪ clr. We have

1. if ⊥l ∈ Φ, then ⊥ is an interpolant of Φ;

2. if ⊥r ∈ Φ, then > is an interpolant of Φ;

3. for a concept C of the form A or ≤ 1R,

(a) if {Cl, (¬̇C)l} ⊆ Φ, then ⊥ is an interpolant of Φ;

(b) if {Cr, (¬̇C)r} ⊆ Φ, then > is an interpolant of Φ;

(c) if {Cl, (¬̇C)r} ⊆ Φ, then C is an interpolant of Φ;

(d) if {Cr, (¬̇C)l} ⊆ Φ, then ¬̇C is an interpolant of Φ;

4. if Ψ is the (C1uC2)λ-relief of Φ and I is an interpolant of Ψ, then I is an interpolant
of Φ;

5. if Ψ1 and Ψ2 are (C1 t C2)l-reliefs of Φ, and I1, I2 are interpolants of Ψ1,Ψ2 respec-
tively, then I1 t I2 is an interpolant of Φ;

6. if Ψ1 and Ψ2 are (C1 tC2)r-reliefs of Φ, and I1, I2 are interpolants of Ψ1,Ψ2 respec-
tively, then I1 u I2 is an interpolant of Φ;

7. if Ψ is the (≤ 1R)l-relief of Φ, there is no biased concept of the form (∃R.C)r ∈ Φ,
and I is an interpolant of Ψ, then I is an interpolant of Φ;

8. if Ψ is the (≤ 1R)r-relief of Φ, there is no biased concept of the form (∃R.C)l ∈ Φ,
and I is an interpolant of Ψ, then I is an interpolant of Φ;

401



Ten Cate, Franconi, & Seylan

9. if Ψ is the (≤ 1R)l-relief of Φ, there is some biased concept of the form (∃R.C)r ∈ Φ,
and I is an interpolant of Ψ, then Iu ≤ 1R is an interpolant of Φ;

10. if Ψ is the (≤ 1R)r-relief of Φ, there is some biased concept of the form (∃R.C)l ∈ Φ,
and I is an interpolant of Ψ, then It ≥ 2R is an interpolant of Φ;

11. if Ψ is the (∃R.C)l-relief of Φ, I is an interpolant of Ψ, and there is no biased concept
of the form (∀R.D)r ∈ Φ, then ⊥ is an interpolant of Φ;

12. if Ψ is the (∃R.C)r-relief of Φ, I is an interpolant of Ψ, and there is no biased concept
of the form (∀R.D)l ∈ Φ, then > is an interpolant of Φ;

13. if Ψ is the (∃R.C)l-relief of Φ, I is an interpolant of Ψ, and there is some biased
concept of the form (∀R.D)r ∈ Φ, then ∃R.I is an interpolant of Φ;

14. if Ψ is the (∃R.C)r-relief of Φ, I is an interpolant of Ψ, and there is some biased
concept of the form (∀R.D)l ∈ Φ, then ∀R.I is an interpolant of Φ;

15. if Ψ is the (≥ 2R)l-relief of Φ, I is an interpolant of Ψ, and there is no biased concept
of the form (∀R.D)r ∈ Φ, then ⊥ is an interpolant of Φ;

16. if Ψ is the (≥ 2R)r-relief of Φ, I is an interpolant of Ψ, and there is no biased concept
of the form (∀R.D)l ∈ Φ, then > is an interpolant of Φ;

17. if Ψ is the (≥ 2R)l-relief of Φ, I is an interpolant of Ψ, and there is some biased
concept of the form (∀R.D)r ∈ Φ, then ∃R.I is an interpolant of Φ;

18. if Ψ is the (≥ 2R)r-relief of Φ, I is an interpolant of Ψ, and there is some biased
concept of the form (∀R.D)l ∈ Φ, then ∀R.I is an interpolant of Φ.

Proof. For 1. Suppose Φ(l) = {X1, . . . , Xn} ∪ {⊥} and Φ(r) = {Y1, . . . , Ym}. But T |=
⊥ u X1 u . . . , Xn v ⊥ and T |= ⊥ v ¬Y1 t . . . t ¬Ym hold trivially. Since ⊥ is a logical
constant, ∅ = sig(⊥) ⊆ sig(Φ(l)) ∩ sig(Φ(r)). Hence 1 is satisfied.

For 2. Suppose Φ(r) = {Y1, . . . , Ym} ∪ {⊥} and Φ(l) = {X1, . . . , Xn}. But T |=
X1 u . . . , Xn v > and T |= > v ¬Y1 t . . . t ¬Ym t > hold trivially. Since > is a logical
constant, ∅ = sig(>) ⊆ sig(Φ(l)) ∩ sig(Φ(r)). Hence 2 is satisfied.

For 3a. Suppose Φ(l) = {X1, . . . , Xn} ∪ {C, ¬̇C} and Φ(r) = {Y1, . . . , Ym}. But T |=
X1u . . . , XnuC u¬̇C v ⊥ and T |= ⊥ v ¬Y1t . . .t¬Ym hold trivially. Since ⊥ is a logical
constant, ∅ = sig(⊥) ⊆ sig(Φ(l)) ∩ sig(Φ(r)). Hence 3a is satisfied.

The argument for 3b is analogous to the previous case.

For 3c. Suppose Φ(l) = {X1, . . . , Xn}∪{C} and Φ(r) = {Y1, . . . , Ym}∪{¬̇C}. But T |=
X1u . . .uXnuC v C, T |= C v ¬Y1t . . .t¬Ymt¬(¬̇C), and sig(C) ⊆ sig(Φ(l))∩sig(Φ(r))
hold trivially. Hence 3c is satisfied.

The argument for 3d is analogous to the previous case.

For 4. Suppose Ψ is a (C1uC2)l-relief of Φ, I is an interpolant of Ψ, Φ(l) = {X1, . . . , Xn}∪
{C1uC2}, and Φ(r) = {Y1, . . . , Ym}. By assumption, T |= X1u. . .uXnu(C1uC2)uC1uC2 v
I, i.e., T |= X1u. . .uXnu(C1uC2) v I and T |= I v ¬Y1t. . .t¬Ym. By assumption again,
sig(Ψ(l)) = sig(Φ(l)) and sig(Ψ(r)) = sig(Φ(r)), and thus sig(I) ⊆ sig(Φ(l)) ∩ sig(Φ(r)).

402



Beth Definability in Expressive Description Logics

Therefore I is an interpolant of Φ. The case for when Ψ is a (C1 uC2)r-relief of Φ and I is
an interpolant of Ψ can be shown analogously. Hence 4 is satisfied.

For 5. Suppose Ψ1 and Ψ2 are (C1 t C2)l-reliefs of Φ, I1, I2 are interpolants of Ψ1,Ψ2

respectively, Φ(l) = {X1, . . . , Xn} ∪ {C1 t C2}, and Φ(r) = {Y1, . . . , Ym}. By assumption,
T |= X1 u . . . uXn u (C1 t C2) u C1 v I1 and T |= X1 u . . . uXn u (C1 t C2) u C2 v I2.
Then we have the following.

T |= I1 t I2 w (X1 u . . . uXn u (C1 t C2) u C1) t
(X1 u . . . uXn u (C1 t C2) u C2)

T |= I1 t I2 w (X1 u . . . uXn u (C1 t C2)) u (C1 t C2)

T |= I1 t I2 w X1 u . . . uXn u (C1 t C2)

For the other half, by assumption T |= I1 v ¬Y1t . . .t¬Ym and T |= I2 v ¬Y1t . . .t¬Ym.
But then T |= I1 t I2 v ¬Y1 t . . .t¬Ym. Clearly, sig(I1 t I2) ⊆ sig(Φ(l))∩ sig(Φ(r)). Hence
5 is satisfied.

The argument for 6 is analogous to the previous case.
For 7. Suppose

• Ψ is a (≤ 1R)l-relief of Φ,

• I is an interpolant of Ψ,

• Φ(l) = {X1, . . . , Xn} ∪ {≤ 1R} ∪ {∃R.C1, . . . ,∃R.Ck}, where {∃R.C1, . . . ,∃R.Ck} =
{∃R.C ∈ Φ(l)},

• Φ(r) = {Y1, . . . , Ym},

• there is no biased concept of the form (∃R.C)r ∈ Φ.

Let E = ∀R.C1 u . . . u ∀R.Ck. By assumption,

T |= X1 u . . . uXnu ≤ 1R u ∃R.C1 u . . . u ∃R.Ck u E v I.

Then by Proposition B.3

T |= X1 u . . . uXnu ≤ 1R u ∃R.C1 u . . . u ∃R.Ck v I

which is what we wanted to show. For the other half, since there is no biased concept of
the form (∃R.C)r ∈ Φ, we have Φ(r) = Ψ(r). But then

T |= I v ¬Y1 t . . . t ¬Ym

which is what we wanted to show. By assumption sig(Ψ(l)) = sig(Φ(l)) and sig(Ψ(r)) =
sig(Φ(r)), and thus sig(I) ⊆ sig(Φ(l))∩ sig(Φ(r)). Therefore I is an interpolant of Φ. Hence
7 is satisfied.

8 can be shown analogously to the previous case.
For 9. Suppose

• Ψ is a (≤ 1R)l-relief of Φ,

403



Ten Cate, Franconi, & Seylan

• I is an interpolant of Ψ,

• Φ(l) = {X1, . . . , Xn} ∪ {≤ 1R} ∪ {∃R.C1, . . . ,∃R.Ck}, where {∃R.C1, . . . ,∃R.Ck} =
{∃R.C ∈ Φ(l)},

• Φ(r) = {Y1, . . . , Ym} ∪ {∃R.D1, . . . ,∃R.Dl}, where {∃R.D1, . . . ,∃R.Dl} = {∃R.C ∈
Φ(r)},

• there is some biased concept of the form (∃R.C)r ∈ Φ.

Let E = ∀R.C1 u . . . u ∀R.Ck. By assumption,

T |= X1 u . . . uXnu ≤ 1R u ∃R.C1 u . . . u ∃R.Ck u E v I.

Also, we trivially have the following.

T |= X1 u . . . uXnu ≤ 1R u ∃R.C1 u . . . u ∃R.Ck u E v≤ 1R.

Combining these two, we get

T |= X1 u . . . uXnu ≤ 1R u ∃R.C1 u . . . u ∃R.Ck u E v Iu ≤ 1R

which is what we wanted to show.
For the other half, let F = ∃R.¬C1 t . . . t ∃R.¬Cl. By the assumption about I,

T |= I v ¬Y1 t . . . t ¬Ym t ∀R.¬C1 t . . . t ∀R.¬Cl t F.

From this, we trivially get

T |= I v ¬Y1 t . . . t ¬Ym t ∀R.¬C1 t . . . t ∀R.¬Cl t Ft ≥ 2R.

Then by Proposition B.3,

T |= I v ¬Y1 t . . . t ¬Ym t ∀R.¬C1 t . . . t ∀R.¬Clt ≥ 2R,

which implies

T |= Iu ≤ 1R v ¬Y1 t . . . t ¬Ym t ∀R.¬C1 t . . . t ∀R.¬Cl,

and this is what we wanted to show. By assumption sig(Ψ(l)) = sig(Φ(l)) and sig(Ψ(r)) =
sig(Φ(r)), and thus sig(I) ⊆ sig(Φ(l)) ∩ sig(Φ(r)). Moreover, since there is some biased
concept of the form (∃R.C)r ∈ Φ, R ∈ sig(Φ(l)) ∩ sig(Φ(r)). In conclusion, sig(Iu ≤ 1R) ∈
sig(Φ(l)) ∩ sig(Φ(r)). Hence 9 is satisfied.

10 can be shown analogously to the previous case.
For 11. Suppose the following:

• Ψ is the (∃R.C)l-relief of Φ,

• I is an interpolant of Ψ,

• E =
d
>vC∈Tl C, F =

⊔
>vC∈Tr ¬C,

404



Beth Definability in Expressive Description Logics

• Φ(l) = {X1, . . . , Xn} ∪ {∃R.C} ∪ {∀R.D1, . . . ,∀R.Dk}, where {∀R.D1, . . . ,∀R.Dk} =
{∀R.D ∈ Φ(l)},

• there is no biased concept of the form (∀R.D)r ∈ Φ.

By the last assumption, Ψ(r) = {C | > v C ∈ Tr}. By assumption, T |= I v F . Since
T |= F v ⊥, we have that T |= I ≡ ⊥ and thus T |= ∃R.I ≡ ⊥. By assumption again
T |= C uD1u . . .uDkuE v I. Since T |= > v E, we have that T |= C uD1u . . .uDk v I.
By Proposition B.2

T |= ∃R.C u ∀R.D1 u . . . u ∀R.Dk v ∃R.I.

However by T |= ∃R.I ≡ ⊥ this means

T |= ∃R.C u ∀R.D1 u . . . u ∀R.Dk v ⊥.

Hence,
T |= X1 u . . . uXn u ∃R.C u ∀R.D1 u . . . u ∀R.Dk v ⊥

which is what we wanted to show. For the other half, let Φ(r) = {Y1, . . . , Ym}. Since
T |= I ≡ ⊥, we have trivially

T |= ⊥ v ¬Y1 t . . . t ¬Ym

As the final step, we need to show that

sig(⊥) ⊆ sig(Φ(l)) ∩ sig(Φ(r)).

But this follows easily since ⊥ is a logical constant. Hence 11 is satisfied.
For 12. Suppose the following:

• Ψ is the (∃R.C)r-relief of Φ,

• I is an interpolant of Ψ,

• E =
d
>vC∈Tl C, F =

⊔
>vC∈Tr ¬C,

• Φ(r) = {Y1, . . . , Ym} ∪ {∃R.C} ∪ {∀R.D1, . . . ,∀R.Dk}, where {∀R.D1, . . . ,∀R.Dk} =
{∀R.D ∈ Φ(r)},

• there is no biased concept of the form (∀R.D)l ∈ Φ.

By the last assumption, Ψ(l) = {C | > v C ∈ Tl}. By assumption, T |= E v I. Since
T |= > v E, we have that T |= I ≡ > and thus T |= ∀R.I ≡ >. By assumption again T |=
I v ¬Ct¬D1t. . .t¬DktF . Since T |= F v ⊥, we have that T |= I v ¬Ct¬D1t. . .t¬Dk.
By Proposition B.2

T |= ∀R.I v ∀R.¬C t ∃R.¬D1 t . . . t ∃R.¬Dk.

However by T |= > ≡ ∀R.I, this means

T |= > v ∀R.¬C t ∃R.¬D1 t . . . t ∃R.¬Dk.

405



Ten Cate, Franconi, & Seylan

Hence,
T |= > v ¬Y1 t . . . t ¬Ym t ∀R.¬C t ∃R.¬D1 t . . . t ∃R.¬Dk

which is what we wanted to show. For the other half, let Φ(l) = {X1, . . . , Xn}. Since
T |= I ≡ >, we have trivially

T |= X1 u . . . uXn v >

As the final step, we need to show that

sig(>) ⊆ sig(Φ(l)) ∩ sig(Φ(r)).

But this follows easily since > is a logical constant. Hence 12 is satisfied.
For 13. Suppose the following:

• Ψ is the (∃R.C)l-relief of Φ,

• I is an interpolant of Ψ,

• E =
d
>vC∈Tl C, F =

⊔
>vC∈Tr ¬C,

• Φ(l) = {X1, . . . , Xn} ∪ {∃R.C} ∪ {∀R.D1, . . . ,∀R.Dk}, where {∀R.D1, . . . ,∀R.Dk} =
{∀R.D ∈ Φ(l)},

• Φ(r) = {Y1, . . . , Ym} ∪ {∀R.C1, . . . ,∀R.Cl}, where l ≥ 1 and {∀R.C1, . . . ,∀R.Cl} =
{∀R.C ∈ Φ(r)}.

By assumption, T |= C u D1 u . . . u Dk u E v I. Since T |= > v E, we have that
T |= C uD1 u . . . uDk v I. By Proposition B.2

T |= ∃R.C u ∀R.D1 u . . . u ∀R.Dk v ∃R.I (5)

Now by (5), we have

T |= X1 u . . . uXn u ∃R.C u ∀R.D1 u . . . u ∀R.Dk v ∃R.I

which is what we wanted to show. Now we argue for the other half. By assumption,
T |= I v ¬C1 t . . . t ¬Cl t F . Since T |= F v ⊥, we have that T |= I v ¬C1 t . . . t ¬Cl.
By Proposition B.2

T |= ∃R.I v ¬∀R.C1 t . . . t ¬∀R.Cl (6)

Now by (6), we have

T |= ∃R.I v ¬Y1 t . . . t ¬Ym t ¬∀R.C1 t . . . t ¬∀R.Cl

which is what we wanted to show. As the final step, we need to show that

sig(∃R.I) ⊆ sig(Φ(l)) ∩ sig(Φ(r)).

But this follows easily since by assumption sig(I) ⊆ sig(Φ(l))∩sig(Φ(r)) and R ∈ sig(Φ(l))∩
sig(Φ(r)), where the latter is a consequence of l ≥ 1.

The argument for 14 is analogous to the previous case. Moreover 15, 16, 17, 18 can be
shown similarly to 11, 12, 13, 14, respectively.

406



Beth Definability in Expressive Description Logics

Appendix C. Tableau Correctness, Termination, and Interpolation

Lemma C.1. Let T = 〈V, E〉 be the output of the second phase. Then for every node g ∈ V:

1. g.status is either sat or unsat.

2. If g.status = unsat, then either one of the following holds.

• g is a sink node3 containing a clash;

• there is exactly one successor of g′ of g such that for some (C1uC2)λ ∈ g.content,
g′.content is a (C1 u C2)λ-relief of g.content and g′.status = unsat;

• there is exactly one successor of g′ of g such that for some (≤ 1R)λ ∈ g.content,
g′.content is a (≤ 1R)λ-relief of g.content and g′.status = unsat;

• there are exactly n successors g1, . . . , gn of g, where n is the cardinality of the
set {(C1)λ1 , . . . , (Cn)λn} of all ∃- or ≥ 2-burdens of g.content, gi.content is the
(Ci)

λi-relief of g.content for i ∈ {1, . . . , n}, and there is some i ∈ {1, . . . , n} such
that gi.status = unsat; or

• there are exactly two successors g1, g2 of g such that for some (C1 t C2)λ ∈
g.content, gi.content is a (C1tC2)λ-relief of g.content for i ∈ {1, 2}, g1.content 6=
g2.content, and gi.status = unsat for i ∈ {1, 2}.

3. If g.status = sat, then either one of the following holds.

• g is a sink node not containing a clash,

• there is exactly one successor of g′ of g such that for some (C1uC2)λ ∈ g.content,
g′.content is a (C1 u C2)λ-relief of g.content and g′.status = sat;

• there is exactly one successor of g′ of g such that for some (≤ 1R)λ ∈ g.content,
g′.content is a (≤ 1R)λ-relief of g.content and g′.status = sat;

• there are exactly n successors g1, . . . , gn of g, where n is the cardinality of the
set {(C1)λ1 , . . . , (Cn)λn} of all ∃- or ≥ 2-burdens of g.content, gi.content is the
(Ci)

λi-relief of g.content for i ∈ {1, . . . , n}, and for all i ∈ {1, . . . , n} we have
gi.status = sat; or

• there are exactly two successors g1, g2 of g such that for some (C1 t C2)λ ∈
g.content, gi.content is a (C1tC2)λ-relief of g.content for i ∈ {1, 2}, g1.content 6=
g2.content, and there is some i ∈ {1, 2} such that gi.status = sat.

Proof. 1 clearly follows from the fact that every node that is not assigned the status unsat
during the Propagate step of Algorithm 1 gets the status sat at the end (Assign) of Algo-
rithm 1.

Let g ∈ V. By the definition of the tableau algorithm, g satisfies exactly one of the
following structural conditions:

• g is a sink node;

3. a node with no outgoing edges

407



Ten Cate, Franconi, & Seylan

• there are exactly two successors g1, g2 of g such that for some (C1 tC2)λ ∈ g.content,
gi.content is a (C1 t C2)λ-relief of g.content for i ∈ {1, 2};

• there is exactly one successor of g′ of g such that for some (C1 u C2)λ ∈ g.content,
g′.content is a (C1 u C2)λ-relief of g.content;

• there is exactly one successor of g′ of g such that for some (≤ 1R)λ ∈ g.content,
g′.content is a (≤ 1R)λ-relief of g.content;

• there are exactly n successors g1, . . . , gn of g, where n is the cardinality of the set
{(C1)λ1 , . . . , (Cn)λn} of all ∃- or ≥ 2-burdens of g.content, and gi.content is the (Ci)

λn-
relief of g.content for i ∈ {1, . . . , n}.

Suppose first g.status = unsat then g clearly respects 2 because these are the only ways
for a node to get status unsat in Propagate. Suppose now g.status = sat. Then g.status is
determined in Assign of Algorithm 1. We distinguish between the structural properties of
g above.

Suppose g is a sink node. This means that no rule is applied to g. Then by g.status =
sat, we immediately obtain that g.status does not contain a clash; because if g.status
contains a clash, we would have g.status = unsat and this contradicts with the fact that
for every node g ∈ V, the value of g.status is only calculated once.

Suppose there are exactly two successors g1, g2 of g such that for some (C1 t C2)λ ∈
g.content, gi.content is a (C1 t C2)λ-relief of g.content for i ∈ {1, 2}. Since g.status = sat,
g.status was undefined right before Assign. This implies that there is some i ∈ {1, 2}
such that gi.status was undefined because otherwise g.status = unsat. Then after Assign,
gi.status = sat. Hence, g satisfies 3.

Suppose there is exactly one successor of g′ of g such that for some (C1 u C2)λ ∈
g.content, g′.content is a (C1 u C2)λ-relief of g.content. Since g.status = sat, g.status was
undefined right before Assign. This implies that, g′.status was undefined before Assign
because otherwise g.status = unsat. Then after Assign, g′.status = sat. Hence, g satisfies
3.

The remaining cases can be shown analogously. Hence the lemma follows.

Proof of Lemma 3.7. We start with some observations. Algorithm 1 assigns the status
unsat to nodes in V during the Propagate phase. These status assignment steps induce a
sequence 0, 1, 2. . . .. To each assignment step i, we can associate a set Vi such that Vi are
all the nodes with status unsat so far. Observe that from step i to step i + 1, we extend
Vi by a single node only. By induction on the number of status assignment steps, we first
show that for all g ∈ Vi,

• g.content is unsatisfiable w.r.t. T ;

• there is some ALCF-concept C such that

– int(g) = C,

– C is an interpolant of g.content,

– |int(g)| ≤ 2i+2 − 1.

408



Beth Definability in Expressive Description Logics

As the base case, we have that V0 = {g} for some sink node g ∈ V containing a clash.
Obviously, g.content is unsatisfiable. The interpolant calculation rules of Figure 2 cover all
the cases for this clash and thus, some ALCF-concept is assigned to int(g). By Lemma B.4,
int(g) is an interpolant of g.content. We claim that |int(g)| ≤ 2. For int(g) of the form >,
⊥, A, or ¬A, this is clear; and for int(g) of the form ≤ 1R (or ≥ 2R), we observe that
it can be encoded using one symbol for ≤ 1 (resp. ≥ 2) and one symbol for R. Hence,
|int(g)| ≤ 2 ≤ 2i+2 − 1 and the inductive hypothesis holds for the base case.

For the inductive step, let Vi+1 = Vi ∪ {g}. The inductive hypothesis holds for every
g′ ∈ Vi, trivially; thus, we only consider the case for g. By Lemma C.1, we have five cases
to distinguish:

1. g is a sink node containing a clash. This can be shown analogously to the base case.

2. There is exactly one successor of g′ of g such that for some (C1 u C2)λ ∈ g.content,
g′.content is a (C1 u C2)λ-relief of g.content and g′.status = unsat. By the inductive
hypothesis, g′.content is unsatisfiable w.r.t. T , int(g′) is an interpolant of g′, and
|int(g′)| ≤ 2i+2 − 1. Then by (the contrapositive version of) Lemma B.1, g.content
is unsatisfiable w.r.t. T . Moreover, Cu was applied to calculate int(g) and int(g) =
int(g′). By Lemma B.4, int(g) is an interpolant of g.content. We have by int(g) =
int(g′) and |int(g′)| ≤ 2i+2−1 that |int(g)| ≤ 2i+3−1. Hence the inductive hypothesis
holds for this case.

3. There are exactly two successors g1, g2 of g such that for some (C1tC2)λ ∈ g.content,
gj .content is a (C1 t C2)λ-relief of g.content for j ∈ {1, 2}, g1.content 6= g2.content,
and gj .status = unsat for j ∈ {1, 2}. By the inductive hypothesis, gj .content is
unsatisfiable w.r.t. T , int(gj) is an interpolant of gj , and |int(gj)| ≤ 2i+2 − 1, for j ∈
{1, 2}. Then by (the contrapositive version of) Lemma B.1, g.content is unsatisfiable
w.r.t. T . Moreover, depending on λ, either Cl

t or Cr
t was applied to calculate int(g).

By Lemma B.4, int(g) is an interpolant of g.content. We have that |int(g)| = |int(g1)|+
|int(g2)|+ 1. Then by the inductive hypothesis, we obtain

|int(g)| ≤ (2i+2 − 1) + (2i+2 − 1) + 1 = 2i+3 − 1.

Thus, the inductive hypothesis holds for this case.

4. The other cases can be shown similarly.

Hence, our claim follows.
Now, we use the claim that we have just shown to prove the lemma. Let g ∈ V with

g.status = unsat. By Lemma 3.5, we have |V| ≤ 2n, where n = |cll ∪ clr|. Thus, in the
worst case, there are 2n status assignment steps in Propagate because then V2n = V. Since
g.status = unsat, it follows that g ∈ V2n . Then by our claim, g.content is unsatisfiable w.r.t.
T , int(g) is defined and it is an interpolant of g.content, and |int(g)| ≤ 22n+2−1 = 4 ·22n−1.
But then int(g) ∈ O(22n). Hence the lemma follows.

Proof of Lemma 3.8. Algorithm 1 consists of two stages: Propagate and Assign.
In Assign, we make 2n assignments because by Lemma 3.5 the number of nodes in the

tableau is bounded by that number. Moreover, each assignment step takes a constant time.
So the whole Assign stage takes time O(2n).

409



Ten Cate, Franconi, & Seylan

In Propagate, we have a for loop inside a do-while loop. The for loop iterates over 2n

nodes and assigns, if possible, the status unsat to a node by checking in the worst case n
direct successors of the node. If the algorithm assigns the status unsat to a node g, then it
also assigns a concept to int(g). By Lemma 3.7, |int(g)| ≤ O(22n). Thus it spends most of
its time calculating int(g). Suppose the for loop finished its iteration over all nodes in the
tableau. Now if during its execution, none of the nodes got the status unsat, the do-while
loop terminates because done = true. In the worst case, a status will be assigned only to
one node in each iteration of the do-while loop. Hence the do-while loop iterates at most 2n

times and as we discussed each iteration takes time at most O(22n) because of interpolation
calculation. Since this dominates the runtime of Algorithm 1, the lemma follows.

Lemma C.2 (Soundness). If T is a closed 〈C0 v D0, T 〉-tableau, then T |= C0 v D0.

Proof. Let T be a closed 〈C0 v D0, T 〉-tableau. Since T is closed, g0.content = unsat. By
g0.content = {(C0)l, (¬̇D0)r} ∪ {El | > v E ∈ Tl} ∪ {Er | > v E ∈ Tr} and Lemma 3.7,
this implies

T |= C0 u
l

>vE∈Tl

E v D0 t
⊔

>vE∈Tr

¬E

But then T |= C0 v D0.

Definition C.3. Let T = 〈V, E〉 be the output of the second phase. We say that a node
g ∈ V is saturated if and only if

• g.status = sat and g is a sink node, or

• g.status = sat and R∃ was applied to g.

For g, g′ ∈ V , g′ is called a saturation of g if and only if g′ is saturated, and there is a path
g = g0, g1, . . . , gk = g′ with k ≥ 0 in T such that for each 0 ≤ i < k, we have gi.status = sat

and the edge 〈gi, gi+1〉 was created by an application of a rule in {Ru,Rt,R≤1}.

Lemma C.4. Let T = 〈V, E〉 be a complete tableau for 〈C0 v D0, T 〉. Then we have

1. If g ∈ V is saturated, then g.content(λ) is a 〈C0 u ¬̇D0, T 〉-type.

2. If g ∈ V with g.status = sat, then there is some saturation g′ of g with g′.content ⊇
g.content.

Proof. For 1, suppose that g is saturated. We need to show that g.content(λ) satisfies
Definition A.2. We start with g.content(λ) ⊆ cl(C0 u ¬̇D0, T ). Let C ∈ g.content(λ). Then
it follows that Cλ ∈ g.content, for some λ ∈ {l, r}. Since g.content ⊆ cll ∪ clr, we have that
Cλ ∈ cll ∪ clr. This implies C ∈ cl(C0, Tl) ∪ cl(¬̇D0, Tr). But then C ∈ cl(C0 u ¬̇D0, T ),
which is what we wanted to show.

Now we show that the properties in Definition A.2 are satisfied. By definition, g.status =
sat. g does not contain a clash because otherwise g.status = unsat which would contradict
our assumption. Hence, (P⊥), (P¬), and (P./) are satisfied. By definition, g is a sink node
or R∃ was applied to g. In both cases, we have that none of {Ru,Rt,R≤1} is applicable
to g: for the former, this follows from the fact that no rule is applicable to g; and for the

410



Beth Definability in Expressive Description Logics

latter, this follows from our rule precedence. Hence, (Pu), (Pt), (P≤1) are satisfied. Finally,
we have {C | > v C ∈ T } ⊆ g.content(λ) as an easy consequence of the definition of the
tableau algorithm. This means (Pv) is satisfied. Hence, we conclude that 1 holds.

For 2, suppose g ∈ V with g.status = sat. That there is some saturation g′ of g with
g′.content ⊇ g.content follows easily by Lemma C.1.

Lemma C.5 (Completeness). If T is an open 〈C0 v D0, T 〉-tableau, then T 6|= C0 v D0.

Proof. Suppose T = 〈V, E〉 is an open 〈C0 v D0, T 〉-tableau. Since T is open, we have
g0.status = sat. Then by Lemma C.4, there is some saturation g? of g0 such that g?.content ⊇
g0.content. Since g? is saturated, it follows by Lemma C.4 that g?.content(λ) is a 〈C0 u
¬̇D0, T 〉-type. Let τ0 = {C0u¬̇D0}∪g?.content(λ). We claim that τ0 is also a 〈C0u¬̇D0, T 〉-
type. Suppose for a contradiction that it is not. Since g?.content(λ) is such a type, it follows
that (Pu) is violated for C0 u ¬̇D0 ∈ τ0, i.e., {C0, ¬̇D0} 6⊆ τ0. Then by the definition of τ0,
this means {C0, ¬̇D0} 6⊆ g?.content(λ). But we know that {C0, ¬̇D0} ⊆ g0.content(λ) and
by g?.content ⊇ g0.content, this implies {C0, ¬̇D0} ⊆ g?.content(λ), i.e., a contradiction.
Hence we conclude that τ0 is a 〈C0 u ¬̇D0, T 〉-type. Define

Q = {τ0} ∪ {g.content(λ) | g ∈ V is saturated}.

We show that Q is a 〈C0 u ¬̇D0, T 〉-quasimodel because then T 6|= C0 v D0 follows by
Theorem A.4. It is easy to see that Q is a set of 〈C0 u ¬̇D0, T 〉-types: we have already
shown that τ0 is such a type; and for g.content(λ) with g ∈ V is saturated, this fact
follows immediately by Lemma C.4. It remains to show that conditions (a), (b), (c) from
Definition A.3 hold.

Condition (a) holds since τ0 ∈ Q and C0 u ¬̇D0 ∈ τ0.
Suppose that ∃R.C ∈ τ for some τ ∈ Q. We distinguish between τ = τ0 and τ =

g.content(λ) for some saturated g ∈ V. We first argue for the latter. Since g is saturated
and ∃R.C ∈ g.content(λ), R∃ was applied to g; since g is saturated, we have g.status = sat.
Then by Lemma C.1, there is some successor g′ of g in T such that {C} ∪ {D | ∀R.D ∈
τ} ⊆ g′.content(λ) and g′.status = sat. Then by Lemma C.4, there is some saturation g′′ of
g′ such that g′′.content ⊇ g′.content. Since g′′ is saturated, we have that g′′.content(λ) ∈ Q
and g′′.content(λ) is a 〈C0 u ¬̇D0, T 〉-type. But then τ

∃R.C
===⇒ g′′.content(λ). The case for

τ = τ0 follows analogously by using the fact that there is some successor g′ of g? in T such
that {C} ∪ {D | ∀R.D ∈ τ} ⊆ g′.content(λ) and g′.status = sat. Hence condition (b) from
Definition A.3 is satisfied.

That condition (c) holds can be shown very similarly to the previous case; we leave it
to the reader to verify this. Hence, we conclude that Q is a 〈C0 u ¬̇D0, T 〉-quasimodel.

Proposition 3.9 now follows immediately from Lemma C.2 and Lemma C.5.

References

Afrati, F. N. (2011). Determinacy and query rewriting for conjunctive queries and views.
Theoretical Computer Science, 412 (11), 1005–1021.

Andréka, H., Németi, I., & van Benthem, J. (1998). Modal languages and bounded fragments
of predicate logic. Journal of Philosophical Logic, 27, 217–274.

411



Ten Cate, Franconi, & Seylan

Avigad, J. (2003). Eliminating definitions and skolem functions in first-order logic. ACM
Transactions on Computational Logic, 4, 402–415.

Baader, F., & Nutt, W. (2003). Basic description logics. In The Description Logic Handbook,
pp. 43–95. Cambridge University Press.

Bárány, V., Benedikt, M., & ten Cate, B. (2013). Rewriting guarded negation queries. In
MFCS13, pp. 98–110.

Beth, E. W. (1953). On Padoa’s methods in the theory of definitions. Indagationes Math-
ematicae, 15, 330–339.

Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge University
Press.

Boolos, G. S., Burgess, J. P., & Jeffrey, R. C. (2007). Computability and Logic. Cambridge
University Press.

Calvanese, D., & Giacomo, G. D. (2003). Expressive description logics. In The Description
Logic Handbook, pp. 178–218. Cambridge University Press.

Calvanese, D., Giacomo, G. D., Lenzerini, M., & Nardi, D. (2001). Reasoning in expressive
description logics. In Handbook of Automated Reasoning, pp. 1581–1634.

Calvanese, D., Giacomo, G. D., & Rosati, R. (1998). A note on encoding inverse roles
and functional restrictions in ALC knowledge bases. In Description Logics, Vol. 11.
CEUR-WS.org.

ten Cate, B., Conradie, W., Marx, M., & Venema, Y. (2006). Definitorially complete de-
scription logics. In KR, pp. 79–89.

ten Cate, B., Franconi, E., & Seylan, İ. (2011). Beth definability in expressive description
logics. In IJCAI, pp. 1099–1106.

Conradie, W. (2002). Definability and changing perspectives: The beth property for three
extensions of modal logic. Master’s thesis, University of Amsterdam.

Craig, W. (1957). Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic, 22 (3), 269–285.

De Giacomo, G. (1996). Eliminating “converse” from Converse PDL. Journal of Logic,
Language and Information, 5 (2), 193–208.

Donini, F. M. (2003). Complexity of reasoning. In The Description Logic Handbook, pp.
96–136. Cambridge University Press.

Duc, C. L., & Lamolle, M. (2010). Decidability of description logics with transitive closure
of roles in concept and role inclusion axioms. In Description Logics, Vol. 573, pp.
372–383. CEUR-WS.org.

Fitting, M. (1996). First-order logic and automated theorem proving (2nd ed.). Springer-
Verlag.

Friedman, H. (1976). The complexity of explicit definitions. Advances in Mathematics,
20 (1), 18–29.

Gabbay, D. M., & Maksimova, L. (2005). Interpolation and Definability in Modal Logics
(Oxford Logic Guides). Clarendon Press.

412



Beth Definability in Expressive Description Logics

Ghilardi, S., Lutz, C., & Wolter, F. (2006). Did I damage my ontology? A case for conser-
vative extensions in description logics. In KR, pp. 187–197.

Goré, R. (1999). Tableau methods for modal and temporal logics. In Handbook of Tableau
Methods, pp. 297–396. Kluwer.

Goré, R., & Nguyen, L. A. (2007). Exptime tableaux with global caching for description
logics with transitive roles, inverse roles and role hierarchies. In TABLEAUX, pp.
133–148.

Hoogland, E. (2001). Definability and Interpolation: Model-theoretic investigations. Ph.D.
thesis, University of Amsterdam.

Hoogland, E., & Marx, M. (2002). Interpolation and definability in guarded fragments.
Studia Logica, 70 (3), 373–409.

Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics, 1 (1),
7–26.

Horrocks, I., & Sattler, U. (2007). A tableau decision procedure for SHOIQ. Journal of
Automated Reasoning, 39 (3), 249–276.

Horrocks, I., Sattler, U., & Tobies, S. (2000). Practical reasoning for very expressive de-
scription logics. Logic Journal of the IGPL, 8 (3), 239–264.

Konev, B., Lutz, C., Ponomaryov, D., & Wolter, F. (2010). Decomposing description logic
ontologies. In KR, pp. 236–246.

Konev, B., Lutz, C., Walther, D., & Wolter, F. (2009a). Formal properties of modularisation.
In Modular Ontologies, pp. 25–66. Springer.

Konev, B., Walther, D., & Wolter, F. (2009b). Forgetting and uniform interpolation in
large-scale description logic terminologies. In IJCAI, pp. 830–835.

Kracht, M. (2007). Modal consequence relations. In Handbook of Modal Logic, pp. 491–545.
Elsevier.

Lang, J., & Marquis, P. (2008). On propositional definability. Artificial Intelligence, 172,
991–1017.

Libkin, L. (2004). Elements of Finite Model Theory. Springer.

Lutz, C. (2006). Complexity and succinctness of public announcement logic. In AAMAS,
pp. 137–143.

Lutz, C., Areces, C., Horrocks, I., & Sattler, U. (2005). Keys, nominals, and concrete
domains. Journal of Artificial Intelligence Research, 23, 667–726.

Lutz, C., Piro, R., & Wolter, F. (2010). Enriching EL-concepts with greatest fixpoints. In
ECAI, pp. 41–46.

Lutz, C., Sattler, U., & Tendera, L. (2005). The complexity of finite model reasoning in
description logics. Information and Computation, 199 (1-2), 132–171.

Lutz, C., Seylan, İ., & Wolter, F. (2012a). An automata-theoretic approach to uniform
interpolation and approximation in the description logic EL. In KR.

413



Ten Cate, Franconi, & Seylan

Lutz, C., Seylan, İ., & Wolter, F. (2012b). Mixing open and closed world assumption in
ontology-based data access: Non-uniform data complexity. In Description Logics, Vol.
846, pp. 268–278. CEUR-WS.org.

Lutz, C., & Wolter, F. (2011). Foundations for uniform interpolation and forgetting in
expressive description logics. In IJCAI, pp. 989–995.

Marx, M. (2007). Queries determined by views: pack your views. In PODS, pp. 23–30.

Marx, M., & Venema, Y. (2007). Local variations on a loose theme: Modal logic and
decidability. In Finite Model Theory and Its Applications, pp. 371–426. Springer.

Nash, A., Segoufin, L., & Vianu, V. (2010). Views and queries: Determinacy and rewriting.
ACM Transactions on Database Systems, 35 (3).

Nikitina, N., & Rudolph, S. (2012). Expexpexplosion: Uniform interpolation in general EL
terminologies. In ECAI, pp. 618–623.

Pasaila, D. (2011). Conjunctive queries determinacy and rewriting. In ICDT, pp. 220–231.

Rautenberg, W. (1983). Modal tableau calculi and interpolation. Journal of Philosophical
Logic, 12 (4), 403–423.

Sattler, U., Calvanese, D., & Molitor, R. (2003). Relationships with other formalisms. In
The Description Logic Handbook, pp. 137–177. Cambridge University Press.

Schwendimann, S. (1998). A new one-pass tableau calculus for PLTL. In TABLEAUX, pp.
277–292.

Seylan, İ. (2012). DBoxes and Beth Definability in Description Logics. Ph.D. thesis, Free
University of Bozen-Bolzano.

Seylan, İ., Franconi, E., & de Bruijn, J. (2009). Effective query rewriting with ontologies
over DBoxes. In IJCAI, pp. 923–929.

Seylan, İ., Franconi, E., & de Bruijn, J. (2010). Optimal rewritings in definitorially complete
description logics. In Description Logics, Vol. 573, pp. 125–136. CEUR-WS.org.

Tobies, S. (2001). Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. Ph.D. thesis, RWTH-Aachen.

414


	Introduction
	Related Work
	Outline

	Preliminaries
	Description Logics
	Decision Problems
	First-Order Translation

	Constructive Interpolation with Tableaux
	A Direct Algorithm for Computing Interpolants in ALCF 
	Extending Interpolation to Transitive and Inverse Roles
	Shorter First-Order Interpolants

	Results on Beth Definability
	Bounds on the Size of Explicit Definitions
	Failure of Beth Definability in the Presence of Role Hierarchies
	Failure of Beth Definability in the Finite
	The Transitive Closure Operator

	Concluding Remarks
	Quasimodels
	Useful Lemmas for Tableau Correctness and Interpolation
	Tableau Correctness, Termination, and Interpolation
	References




