
Journal of Artificial Intelligence Research 48 (2013) 115–174 Submitted 11/12; published 10/13

Taming the Infinite Chase: Query Answering

under Expressive Relational Constraints

Andrea Cal̀ı andrea@dcs.bbk.ac.uk

Department of Computer Science and Information Systems
University of London, Birkbeck College, UK

Georg Gottlob georg.gottlob@cs.ox.ac.uk

Department of Computer Science
University of Oxford, UK

Michael Kifer kifer@cs.stonybrook.edu

Department of Computer Science

Stony Brook University, USA

Abstract

The chase algorithm is a fundamental tool for query evaluation and for testing query
containment under tuple-generating dependencies (TGDs) and equality-generating depen-
dencies (EGDs). So far, most of the research on this topic has focused on cases where the
chase procedure terminates. This paper introduces expressive classes of TGDs defined via
syntactic restrictions: guarded TGDs (GTGDs) and weakly guarded sets of TGDs (WGT-
GDs). For these classes, the chase procedure is not guaranteed to terminate and thus may
have an infinite outcome. Nevertheless, we prove that the problems of conjunctive-query
answering and query containment under such TGDs are decidable. We provide decision
procedures and tight complexity bounds for these problems. Then we show how EGDs
can be incorporated into our results by providing conditions under which EGDs do not
harmfully interact with TGDs and do not affect the decidability and complexity of query
answering. We show applications of the aforesaid classes of constraints to the problem of
answering conjunctive queries in F-Logic Lite, an object-oriented ontology language, and
in some tractable Description Logics.

1. Introduction

This paper studies a simple yet fundamental rule-based language for ontological reasoning
and query answering: the language of tuple-generating dependencies (TGDs). This formal-
ism captures a wide variety of logics that so far were considered unrelated to each other:
the OWL-based languages EL (Baader, Brandt, & Lutz, 2005) and DL-Lite (Calvanese,
De Giacomo, Lembo, Lenzerini, & Rosati, 2007; Artale, Calvanese, Kontchakov, & Za-
kharyaschev, 2009) on the one hand and object-based languages like F-Logic Lite (Cal̀ı &
Kifer, 2006) on the other. The present paper is a significant extension of our earlier work
(Cal̀ı, Gottlob, & Kifer, 2008), which has since been applied in other contexts and gave rise
to the Datalog± family (Cal̀ı, Gottlob, & Pieris, 2011) of ontology languages. The present
paper focuses on the fundamental complexity results underlying one of the key fragments
of this family. Subsequent work has focused on the study of various special cases of this
formalism (Cal̀ı, Gottlob, & Lukasiewicz, 2012a), their complexity, and extensions based on
other paradigms (Cal̀ı, Gottlob, & Pieris, 2012b).

c©2013 AI Access Foundation. All rights reserved.

Cal̀ı, Gottlob & Kifer

Our work is also closely related to the work on query answering and query contain-
ment (Chandra & Merlin, 1977), which are central problems in database theory and knowl-
edge representation and, in most cases, are reducible to each other. They are especially
interesting in the presence of integrity constraints—or dependencies, in database parlance.
In databases, query containment has been used for query optimization and schema inte-
gration (Aho, Sagiv, & Ullman, 1979; Johnson & Klug, 1984; Millstein, Levy, & Friedman,
2000), while in knowledge representation it is often used for object classification, schema
integration, service discovery, and more (Calvanese, De Giacomo, & Lenzerini, 2002; Li &
Horrocks, 2003).

A practically relevant instance of the containment problem was first studied by John-
son and Klug (1984) for functional and inclusion dependencies and later by Calvanese,
De Giacomo, and Lenzerini (1998). Several additional decidability results were obtained by
focusing on concrete applications. For instance, the work by Cal̀ı and Martinenghi (2010)
considers constraints arising from Entity-Relationship diagrams, while that by Cal̀ı and
Kifer (2006) considers constraints derived from a relevant subset of F-logic (Kifer, Lausen,
& Wu, 1995), called F-Logic Lite.

Some literature studies variants or subclasses of tuple-generating dependencies (TGDs)
for the purpose of reasoning and query answering. A TGD is a Horn-like rule with existential-
ly-quantified variables in the head. Some early works on this subject dubbed the resulting
language Datalog with value invention (Mailharrow, 1998; Cabibbo, 1998). More formally,
a TGD ∀X∀YΦ(X,Y)→ ∃ZΨ(X,Z) is a first-order formula, where Φ(X,Y) and Ψ(X,Z)
are conjunctions of atoms, called body and head of the TGD, respectively. A TGD is sat-
isfied by a relational instance B if whenever the body of the TGD is satisfied by B then
B also satisfies the head of the TGD. It is possible to enforce a TGD that is not satisfied
by adding new facts to B so that the head, and thus the TGD itself, will become satisfied.
These new facts will contain labeled null values (short: nulls) in the positions corresponding
to variables Z. Such nulls are similar to Skolem constants. The chase of a database D in
the presence of a set Σ of TGDs is the process of iterative enforcement of all dependencies
in Σ, until a fixpoint is reached. The result of such a process, which we also call chase,
can be infinite and, in this case, this procedure cannot be used without modifications in
decision algorithms. Nevertheless, the result of a chase serves as a fundamental theoretical
tool for answering queries in the presence of TGDs (Cal̀ı, Lembo, & Rosati, 2003a; Fagin,
Kolaitis, Miller, & Popa, 2005) because it is representative of all models of D ∪ Σ.

In the present paper, we do not focus on a specific logical theory. Instead, we tackle
the common issue of the possibly non-terminating chase underlying several of the earlier
studies, including the works by Johnson and Klug (1984), by Cal̀ı and Martinenghi (2010),
and by Cal̀ı and Kifer (2006). All these works study constraints in the language of TGDs
and equality-generating dependencies (EGDs) using the chase technique, and all face the
problem that the chase procedure might generate an infinite result. We deal with this
problem in a much more general way by carving out a very large class of constraints for
which the infinite chase can be “tamed”, i.e., modified so that it would become a decision
procedure for query answering.

In Section 3, we define the notions of sets of guarded TGDs (GTGDs) and of weakly
guarded sets of TGDs (WGTGDs). A TGD is guarded if its body contains an atom called

116

Taming the Infinite Chase

guard that covers all variables occurring in the body. WGTGDs generalize guarded TGDs
by requiring guards to cover only the variables occurring at so-called affected positions
(predicate positions that may contain some labeled nulls generated during the chase). Note
that inclusion dependencies (or IDs) can be viewed as trivially guarded TGDs. The impor-
tance of guards lies in Theorem 3.5, which shows that there is a fixed set Σu of GTGDs plus
a single non-guarded TGD, such that query evaluation under Σu is undecidable. However,
we show that for WGTGDs the (possibly infinite) result of the chase has finite treewidth
(Theorem 3.14). We then use this result together with well-known results about the general-
ized tree-model property (Goncalves & Grädel, 2000; Grädel, 1999) to show that evaluating
Boolean conjunctive queries is decidable for WGTGDs (and thus also for GTGDs). Unfor-
tunately, this result does not directly provide useful complexity bounds.

In Section 4, we show lower complexity bounds for conjunctive query answering under
weakly guarded sets of TGDs. We prove, by Turing machine simulations, that query evalu-
ation under weakly guarded sets of TGDs is exptime-hard in case of a fixed set of TGDs,
and 2exptime-hard in case the TGDs are part of the input.

In Section 5, we address upper complexity bounds for query answering under weakly
guarded sets of TGDs. Let us first remark that showing D ∪ Σ |= Q is equivalent to
showing that the theory T = D ∪Σ ∪ {¬Q} is unsatisfiable. Unfortunately, T is in general
not guarded because Q is not and because WGTGDs are generally non-guarded first-order
sentences (while GTGDs are). Therefore, we cannot (as one might think at first glance)
directly use known results on guarded logics (Goncalves & Grädel, 2000; Grädel, 1999) to
derive complexity results for query evaluation. We thus develop completely new algorithms
by which we prove that the problem in question is exptime-complete in case of bounded
predicate arities and, even in case the TGDs are fixed, 2exptime-complete in general.

In Section 6, we derive complexity results for reasoning with GTGDs. In the general
case, the complexity is as for WGTGDs but, interestingly, when reasoning with a fixed set
of dependencies (which is the usual setting in data exchange and in description logics), we
get much better results: evaluating Boolean queries is np-complete and is in ptime in case
the query is atomic. Recall that Boolean query evaluation is np-hard even in case of a
simple database without integrity constraints (Chandra & Merlin, 1977). Therefore, the
above np upper bound for general Boolean queries is optimal, i.e., there is no class of TGDs
for which query evaluation (or query containment) is more efficient.

In Section 7, we describe a semantic condition on weakly guarded sets of TGDs. We
prove that whenever a set of WGTGDs fulfills this condition, answering Boolean queries is
in np, and answering atomic queries, as well as queries of bounded treewidth, is in ptime.

Section 8 extends our results to the case of TGDs with multiple-atom heads. The
extension is trivial for all cases except for the case of bounded predicate arity.

Section 9 deals with equality generating dependencies (EGDs), a generalization of func-
tional dependencies. Unfortunately, as shown in works by Chandra and Vardi (1985),
Mitchell (1983), Johnson and Klug (1984), Koch (2002), and Cal̀ı et al. (2003a), query an-
swering and many other problems become undecidable in case we admit both TGDs and
EGDs. It remains undecidable even if we mix the simplest class of guarded TGDs, namely,
inclusion dependencies, with the simplest type of EGDs, namely functional dependencies,
and even key dependencies (Chandra & Vardi, 1985; Mitchell, 1983; Johnson & Klug, 1984;
Cal̀ı et al., 2003a). In Section 9, we present a sufficient semantic condition for decidabil-

117

Cal̀ı, Gottlob & Kifer

BCQ type GTGDs WGTGDs

general 2exptime 2exptime

atomic or fixed 2exptime 2exptime

Query answering for variable TGDs.

BCQ type GTGDs WGTGDs

general np exptime

atomic or fixed ptime exptime

Query answering for fixed TGDs.

BCQ type GTGDs WGTGDs

general exptime exptime

atomic or fixed exptime exptime

Query answering for fixed predicate arity.

Figure 1: Summary of results. All complexity bounds are tight.

ity of query-answering under sets of TGDs and general EGDs. We call EGDs innocuous
when, roughly speaking, their application (i.e., enforcement) does not introduce new atoms,
but only eliminates atoms. We show that innocuous EGDs can be essentially ignored for
conjunctive query evaluation and query containment testing.

The TGD-based ontology languages in this paper are part of the larger family of ontology
languages called Datalog± (Cal̀ı et al., 2011). Our results subsume the main decidability
and np-complexity result by Johnson and Klug (1984), the decidability and complexity
results on F-Logic Lite by Cal̀ı and Kifer (2006), and those on DL-Lite as special cases. In
fact, Section 10 shows that our results are even more general than that.

The complexity results of this paper, together with some of their immediate conse-
quences, are summarized in Figure 1, where all complexity bounds are tight. Notice that
the complexity in the case of fixed queries and fixed TGDs is the so-called data complexity,
i.e., the complexity with respect to the data only, which is of particular interest in database
applications. The complexity for variable Boolean conjunctive queries (BCQs) and variable
TGDs is called combined complexity. It is easy to see (but we will not prove it formally
for all classes) that all complexity results for atomic or fixed queries extend to queries
of bounded width, where by width we mean treewidth or even hypertree width (Gottlob,
Leone, & Scarcello, 2002)—see also the works by Adler, Gottlob, and Grohe (2007), and
by Gottlob, Leone, and Scarcello (2001).

2. Preliminaries

In this section we define the basic notions that we use throughout the paper.

2.1 Relations, Instances and Queries

A relational schema R is a set of relational predicates, each having an arity—a non-negative
integer that represents the number of arguments the predicate takes. We write r/n to say

118

Taming the Infinite Chase

that a relational predicate r has arity n. Given an n-ary predicate r ∈ R, a position r[k],
where 1 6 k 6 n, refers to the k-th argument of r. We will assume an underlying relational
schema R and postulate that all queries and constraints use only the predicates in R. The
schema R will sometimes be omitted when it is clear from the context or is immaterial.

We introduce the following pairwise disjoint sets of symbols: (i) A (possibly infinite) set
∆ of data constants, which constitute the “normal” domain of the databases over the schema
R; (ii) a set ∆N of labeled nulls, i.e., “fresh” Skolem constants; and (iii) an infinite set ∆V of
variables, which are used in queries and constraints. Different constants represent different
values (unique name assumption), while different nulls may represent the same value. We
also assume a lexicographic order on ∆ ∪∆N , with every labeled null in ∆N following all
constant symbols in ∆. Sets of variables (or sequences, when the order is relevant) will
be denoted by X, i.e., X = X1, . . . , Xk, for some k. The notation ∃X is a shorthand for
∃X1 . . . ∃Xk, and similarly for ∀X.

An instance of a relational predicate r/n is a (possibly infinite) set of atomic formu-
las (atoms) of the form r(c1, . . . , cn), where {c1, . . . , cn} ⊆ ∆ ∪ ∆N . Such atoms are also
called facts. When the fact r(c1, . . . , cn) is true, we say that the tuple 〈c1, . . . , cn〉 belongs
to the instance of r (or just that it is in r, if confusion does not arise). An instance of
the relational schema R = {r1, . . . , rm} is the set comprised of the instances of r1, . . . , rm.
When instances are treated as first-order formulas, each labeled null is viewed as an ex-
istential variable with the same name, and relational instances with nulls correspond to
a conjunction of atoms preceded by the existential quantification of all the nulls. For in-
stance, {r(a, z1, z2, z1), s(b, z2, z3)}, where {z1, z2, z3} ⊆ ∆N and {a, b} ⊆ ∆, is expressed as
∃z1∃z2∃z3 r(a, z1, z2, z1) ∧ s(b, z2, z3). In the following, we will omit these quantifiers.

A fact r(c1, . . . , cn) is said to be ground if ci ∈ ∆ for all i ∈ {1, . . . , n}. In such a case,
also the tuple 〈c1, . . . , cn〉 is said to be ground. A relation or schema instance all of whose
facts are ground is said to be ground, and a ground instance of R is also called a database.

If A is a sequence of atoms 〈a1, . . . , ak〉 or a conjunction of atoms a1 ∧ . . . ∧ ak, we use
atoms(A) to denote the set of the atoms in A: atoms(A) = {a1, . . . , ak}. Given a (ground or
non-ground) atom a, the domain of a, denoted by dom(a), is the set of all values (variables,
constants or labeled nulls) that appear as arguments in a. If A is a set of atoms, we define
dom(A) =

⋃
a∈A dom(a). If A is a sequence or a conjunction of atoms then we define

dom(A) = dom(atoms(A)). If A is an atom, a set, a sequence, or a conjunction of atoms,
we write vars(A) to denote the set of variables in A.

Given an instance B of a relational schema R, the Herbrand Base of B, denoted HB(B),
is the set of all atoms that can be formed using the predicate symbols of R and arguments
in dom(B). Notice that this is an extension of the classical notion of Herbrand Base, which
includes ground atoms only.

An n-ary conjunctive query (CQ) overR is a formula of the form q(X1, . . . , Xn)← Φ(X),
where q is a predicate not appearing in R, all the variables X1, . . . , Xn appear in X, and
Φ(X), called the body of the query, is a conjunction of atoms constructed with predicates
from R. The arity of a query is the arity of its head predicate q. If q has arity 0, then the
conjunctive query is called Boolean (BCQ). For BCQs, it is convenient to drop the head
predicate and simply view the query as the set of atoms in Φ(X). If not stated otherwise,
we assume that queries contain no constants, since constants can be eliminated from queries
by a simple polynomial time transformation. We will also sometimes refer to conjunctive

119

Cal̀ı, Gottlob & Kifer

queries by just “queries”. The size of a conjunctive query Q is denoted by |Q|; it represents
the number of atoms in Q.

2.2 Homomorphisms

A mapping from a set of symbols S1 to another set of symbols S2 can be seen as a function
µ : S1 → S2 defined as follows: (i) ∅ (the empty mapping) is a mapping; (ii) if µ is a
mapping, then µ∪{X → Y }, where X ∈ S1 and Y ∈ S2 is a mapping if µ does not already
contain some X → Y ′ with Y 6= Y ′. If X → Y is in a mapping µ, we write µ(X) = Y .
The notion of a mapping is naturally extended to atoms as follows. If a = r(c1, . . . , cn)
is an atom and µ a mapping, we define µ(a) = r(µ(c1), . . . , µ(cn)). For a set of atoms,
A = {a1, . . . , am}, µ(A) = {µ(a1), . . . , µ(am)}. The set of atoms µ(A) is also called image
of A with respect to µ. For a conjunction of atoms C = a1 ∧ . . . ∧ am, µ(C) is a shorthand
for µ(atoms(C)), that is, µ(C) = {µ(a1), . . . , µ(am)}.

A homomorphism from a set of atoms A1 to another set of atoms A2, with dom(A1 ∪
A2) ⊆ ∆ ∪ ∆N ∪ ∆V is a mapping µ from dom(A1) to dom(A2) such that the following
conditions hold: (1) if c ∈ ∆ then µ(c) = c; (2) µ(A1) ⊆ A2, i.e., if an atom, a, is in A1,
then the atom µ(a) is in A2. In this case, we will say that A1 maps to A2 via µ.

The answer to a conjunctive query Q of the form q(X1, . . . , Xn)← Φ(X) over an instance
B of R, denoted by Q(B), is defined as follows: a tuple t ∈ (∆∪∆N)n, is in Q(B) iff there
is a homomorphism µ that maps Φ(X) to atoms of B, and 〈X1, . . . , Xn〉 to t. In this case,
by abuse of notation, we also write q(t) ∈ Q(B). A Boolean conjunctive query Q has a
positive answer on B iff 〈〉 (the tuple with no elements) is in Q(B); otherwise, it is said to
have a negative answer.

2.3 Relational Dependencies

We now define the main type of dependencies used in this paper, the tuple-generating
dependencies, or TGDs.

Definition 2.1. Given a relational schema R, a TGD σ over R is a first-order formula of
the form ∀X∀YΦ(X,Y) → ∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X,Z) are conjunctions of
atoms over R, called body and head of the TGD, respectively; they are denoted by body(σ)
and head(σ). Such a dependency is satisfied in an instance B of R if, whenever there is a
homomorphism h that maps the atoms of Φ(X,Y) to atoms of B, there exists an extension
h2 of h (i.e., h2 ⊇ h) that maps the atoms of Ψ(X,Z) to atoms of B.

To simplify the notation, we will usually omit the universal quantifiers in TGDs. We
will also sometimes call TGDs rules because of the implication symbol in them. Notice
that, in general, constants of ∆ can appear not only in the body, but also in the heads
of TGDs. For simplicity and without loss of generality, we assume that all constants that
appear in the the head of a TGDs also appear in the body of the same TGD.

The symbol |= will be used henceforth for the usual logical entailment, where sets of
atoms and TGDs are viewed as first-order theories. For such theories, we do not restrict
ourselves to finite models: we consider arbitrary models that could be finite or infinite. This
aspect is further discussed in Section 11.

120

Taming the Infinite Chase

2.4 Query Answering and Containment under TGDs

We now define the notion of query answering under TGDs. A similar notion is used in data
exchange (Fagin et al., 2005; Gottlob & Nash, 2006) and in query answering over incomplete
data (Cal̀ı et al., 2003a). Given a database that does not satisfy all the constraints in Σ,
we first define the set of completions (or repairs—see Arenas, Bertossi, & Chomicki, 1999)
of that database, which we call solutions.

Definition 2.2. Consider a relational schema R, a set of TGDs Σ, and a database D for
R. The set of instances {B | B |= D ∪ Σ} is called the set of solutions of D given Σ, and
is denoted by sol(D,Σ).

The following is the definition of the problem, which we denote by CQAns, of answering
conjunctive queries under TGDs. The answers defined here are also referred to as certain
answers (see Fagin et al., 2005).

Definition 2.3. Consider a relational schema R, a set of TGDs Σ, a database D for R,
and a conjunctive query Q on R. The answer to a conjunctive query Q on D given Σ,
denoted by ans(Q,D,Σ), is the set of tuples t such that for every B ∈ sol(D,Σ), t ∈ Q(B)
holds.

Notice that the components of t in the above definition are necessarily constants from
∆. When t ∈ ans(Q,D,Σ), we also write D ∪Σ ∪ {Q} |= q(t), where Q is represented as a
rule body(Q)→ q(X).

Containment of queries over relational databases has long been considered a fundamental
problem in query optimization, especially query containment under constraints such as
TGDs. Below we formally define this problem, which we call CQCont.

Definition 2.4. Consider a relational schemaR, a set Σ of TGDs onR, and two conjunctive
queries Q1, Q2 expressed over R. We say that Q1 is contained in Q2 under Σ, denoted by
Q1 ⊆Σ Q2, if for every instance B for R such that B |= Σ we have Q1(B) is a subset of
Q2(B).

2.5 The Chase

The chase was introduced as a procedure for testing implication of dependencies (Maier,
Mendelzon, & Sagiv, 1979), but later also employed for checking query containment (John-
son & Klug, 1984) and query answering on incomplete data under relational dependen-
cies (Cal̀ı et al., 2003a). Informally, the chase procedure is a process of repairing a database
with respect to a set of dependencies, so that the result of the chase satisfies the dependen-
cies. By “chase” we may refer either to the chase procedure or to its output. The chase
works on a database through the so-called TGD chase rule, which defines the result of the
applications of a TGD and comes in two flavors: oblivious and restricted.

Definition 2.5. [Oblivious Applicability] Consider an instance B of a schema R, and a
TGD σ = Φ(X,Y) → ∃ZΨ(X,Z) over R. We say that σ is obliviously applicable to B if
there exists a homomorphism h such that h(Φ(X,Y)) ⊆ B.

121

Cal̀ı, Gottlob & Kifer

Definition 2.6. [Restricted Applicability] Consider an instance B of a schema R, and a
TGD σ = Φ(X,Y)→ ∃ZΨ(X,Z) over R. We say that σ is restrictively applicable to B if
there exists a homomorphism h such that h(ϕ(X,Y)) ⊆ B, but there is no extension h′ of
h|X such that h′(ψ(X,Z)) ⊆ B.1

The oblivious form of applicability is called this way because it “forgets” to check
whether the TGD is already satisfied. In contrast, a TGD is restrictively applicable only if
it is not already satisfied.

Definition 2.7. [TGD Chase Rule] Let σ be a TGD of the form Φ(X,Y) → ∃ZΨ(X,Z)
and suppose that it is obliviously (resp., restrictively) applicable to an instance B via a
homomorphism h. Let h′ be an extension of h|X such that, for each Z ∈ Z, h′(Z) is a “fresh”
labeled null of ∆N not occurring in B, and following lexicographically all those in B. The
result of the oblivious (resp., restricted) application of σ on B with h is B′ = B∪h′(Ψ(X,Z)).

We write B
σ,h
−→O B′ (resp., B

σ,h
−→R B′) to denote that B′ is obtained from B through a

single oblivious (resp., restricted) chase step.

The TGD chase rule, defined above, is the basic building block to construct the chase of
a database under a set of TGDs. Depending on the notion of applicability in use—oblivious
or restricted—we get the oblivious or the restricted chase. The formal definition of the
chase is given below.

Definition 2.8. [Oblivious and Restricted Chase] Let D be a database and Σ a set of
TGDs. An oblivious (resp., restricted) chase sequence of D with respect to Σ is a sequence

of instances B0, B1, B2, . . . such that B0 = D and, for all i > 0, Bi
σi,hi

−→O Bi+1 (resp.,

Bi
σi,hi

−→R Bi+1) and σi ∈ Σ. We also assume that in any chase sequence the same pair
〈σi, hi〉 is never applied more than once. The oblivious (resp., restricted) chase of D with
respect to Σ, denoted Ochase(D,Σ) (resp., Rchase(D,Σ)), is defined as follows:

• A finite oblivious (resp., restricted) chase of D with respect to Σ is a finite oblivious

(resp., restricted) chase sequence B0, . . . , Bm such that Bi
σi,hi

−→O Bi+1 (resp., Bi
σi,hi

−→R

Bi+1) for all 0 6 i < m, and there is no σ ∈ Σ such that its application yields an
instance B′ 6= Bm. We define Ochase(D,Σ) = Bm (resp., Rchase(D,Σ) = Bm).

• An infinite oblivious (resp., restricted) chase sequence B0, B1, . . ., where Bi
σi,hi

−→O Bi+1

(resp., Bi
σi,hi

−→R Bi+1) for all i > 0, is fair if whenever a TGD σ = Φ(X,Y) →
∃ZΨ(X,Z) of Σ is obliviously (resp., restrictedly) applicable to Bi with homomor-
phism h, then there exists an extension h′ of h|X and k > 0 such that h′(head(σ)) ⊆
Bk. An infinite oblivious chase of D with respect to Σ is a fair infinite chase sequence

B0, B1, . . . such that Bi
σi,hi

−→O Bi+1 (resp., Bi
σi,hi

−→R Bi+1) for all i > 0. In this case,
we define Ochase(D,Σ) = limi→∞Bi (resp., Rchase(D,Σ) = limi→∞Bi).

It is easy to see that the chase can be infinite, if the sequence of applications of the chase
rule is infinite. We remark that the chase was defined for databases of ground tuples. How-
ever, the definition straightforwardly applies also to arbitrary instances, possibly containing

1. h|X denotes the restriction of h to the set of variables of X.

122

Taming the Infinite Chase

labeled nulls. We assume a fair deterministic strategy for constructing chase sequences. We
use Ochase [i](D,Σ) (resp., Rchase [i](D,Σ)) to denote the result of the i-th step of the obliv-
ious (resp., restricted) chase of D with respect to Σ. Notice that Ochase [i](D,Σ) (resp.,
Rchase [i](D,Σ)) is called the oblivious (resp., restricted) chase of D with respect to Σ up
to the derivation level i, as in the work by Cal̀ı et al. (2012a).

Example 2.9. In this example, we show an oblivious chase procedure. Consider the fol-
lowing set Σ = {σ1, σ2, σ3, σ4} of TGDs.

σ1 : r3(X,Y) → r2(X)
σ2 : r1(X,Y) → ∃Z r3(Y, Z)
σ3 : r1(X,Y), r2(Y) → ∃Z r1(Y, Z)
σ4 : r1(X,Y) → r2(Y)

and let D = {r1(a, b)}. The chase procedure adds to D the following sequence of atoms:
r3(b, z1) via σ2, r2(b) via σ4, r1(b, z2) via σ3, r3(z2, z3) via σ2, r2(z2) via σ4, and so on.

2.6 Query Answering and the Chase

The problems of query containment and answering under TGDs are closely related to each
other and to the notion of chase, as explained below.

Theorem 2.10 (see Nash, Deutsch, & Remmel, 2006). Consider a relational schema R, a
database D for R, a set Σ of TGDs on R, an n-ary conjunctive query Q with head-predicate
q, and an n-ary ground tuple t (with values in ∆). Then t ∈ ans(Q,D,Σ) iff there exists a
homomorphism h such that h(body(Q)) ⊆ Rchase(D,Σ) and h(head(Q)) = q(t).

Notice that the fact that h(body(Q)) ⊆ Rchase(D,Σ) and h(head(Q)) = q(t) is equiv-
alent to saying that q(t) ∈ Q(Rchase(D,Σ)), or that Rchase(D,Σ) ∪ {Q} |= q(t). The
result of Theorem 2.10 is important, and it holds because the (possibly infinite) restricted
chase is a universal solution (Fagin et al., 2005), i.e., a representative of all instances in
sol(D,Σ). More formally, a universal solution for D under Σ is a (possibly infinite) instance
U such that, for every instance B ∈ sol(D,Σ), there exists a homomorphism that maps U
to B. In the work by Nash et al. (2006) it is shown that the chase constructed with respect
to TGDs is a universal solution.

A freezing homomorphism for a query is a homomorphism that maps every distinct
variable in the query into a distinct labeled null in ∆N . The following well known result is
a slight extension of a result by Chandra and Merlin (1977).

Theorem 2.11. Consider a relational schema R, a set Σ of TGDs on R, and two conjunc-
tive queries Q1, Q2 on R. Then Q1 ⊆Σ Q2 iff λ(head(Q1)) ∈ Q2(Rchase(λ(body(Q1)),Σ)
for some freezing homomorphism λ for Q1.

From this and the results by Johnson and Klug (1984) and by Nash et al. (2006), we
easily obtain the following result, which is considered folklore.

Corollary 2.12. The problems CQAns and CQCont are mutually logspace-reducible.

123

Cal̀ı, Gottlob & Kifer

2.7 Oblivious vs. Restricted Chase

As observed by Johnson and Klug (1984) in the case of functional and inclusion depen-
dencies, things are more complicated if the restricted chase is used instead of the oblivious
one, since applicability of a TGD depends on the presence of other atoms previously added
to the database by the chase. It is technically easier to use the oblivious chase and it can
be used in lieu of the restricted chase because, as we shall prove now, a result similar to
Theorem 2.10 holds for the oblivious chase, i.e., it is also universal. This result, to the best
of our knowledge, has never been explicitly stated before. For the sake of completeness, we
present a full proof here.

Theorem 2.13. Consider a set Σ of TGDs on a relational schema R, and let D be
a database on R. Then there exists a homomorphism µ such that µ(Ochase(D,Σ)) ⊆
Rchase(D,Σ).

Proof. The proof is by induction on the number m of applications of the TGD chase rule
in the construction of the oblivious chase Ochase(D,Σ). We want to prove that, for all m
with m > 0, there is a homomorphism from Ochase [m](D,Σ) to Rchase(D,Σ).

Base case. In the base case, where m = 0, no TGD rule has yet been applied, so
Ochase [0](D,Σ) = D ⊆ Rchase(D,Σ) and the required homomorphism is simply the iden-
tity homomorphism µ0.

Inductive case. Assume we have applied the TGD chase rule m times and obtained
Ochase [m](D,Σ). By the induction hypothesis, there exists a homomorphism µm that maps
Ochase [m](D,Σ) into Rchase(D,Σ). Consider the (m+1)-th application of the TGD chase
rule, for a TGD of the form Φ(X,Y)→ ∃ZΨ(X,Z). By definition of applicability of TGDs,
there is a homomorphism λO that maps Φ(X,Y) to atoms of Ochase(D,Σ) and that it can
be suitably extended to another homomorphism, λ′O, such that λ′O maps each of the variables

in Z to a fresh null in ∆N not already present in Ochase [m](D,Σ). As a result of the appli-
cation of this TGD, all atoms in λ′O(Ψ(X,Z)) are added to Ochase [m](D,Σ), thus obtaining

Ochase [m+1](D,Σ). Consider the homomorphism λR = µm ◦ λO, which maps Φ(X,Y) to
atoms of Rchase(D,Σ). Since Rchase(D,Σ) satisfies all the dependencies in Σ (and so does
Ochase(D,Σ)), there is an extension λ′R of λR that maps Ψ(X,Z) to tuples of Rchase(D,Σ).
Denoting Z = Z1, . . . , Zk, we now define µm+1 = µm ∪ {λ

′
O(Zi) → λ′R(Zi)}16i6k. To com-

plete the proof, we now need to show that µm+1 is indeed a homomorphism. The addi-
tion of λ′O(Zi) → λ′R(Zi), with 1 6 i 6 k, is compatible with µm because none of the
λ′O(Zi) appears in µm. Therefore µm+1 is a well-defined mapping. Now, consider an atom
r(X,Z) in Ψ(X,Z). Then the atom λ′O(r(X,Z)) is added to Ochase(D,Σ) in the (m+1)-th
step and µm+1(r(X,Y)) = µm+1(r(λ

′
O(X), λ′O(Z))) = r(µm+1(λ

′
O(X), µm+1(λ

′
O(Z)). No-

tice that µm+1(λ
′
O(X)) = µm+1(λO(X)) = λR(X) = λ′R(X), and µm+1(λ

′
O(Z)) = λ′R(Z).

Therefore, µm+1(r(X,Z)) = r(λ′R(X), λ′R(Z)) = λ′R(r(X,Z)), which is in Rchase(D,Σ), by
construction. The desired homomorphism from Ochase(D,Σ) to Rchase(D,Σ) is therefore
µ =

⋃∞
i=0 µi.

Corollary 2.14. Given a set Σ of TGDs over a relational schema R and a database D for
R, Ochase(D,Σ) is a universal solution for D under Σ.

124

Taming the Infinite Chase

Corollary 2.15. Given a Boolean query Q over a schema R, a database D for R, and a
set of TGDs Σ, Ochase(D,Σ) |= Q if and only if Rchase(D,Σ) |= Q.

In the following, unless explicitly stated otherwise, “chase” will mean the oblivious chase,
and chase(D,Σ) will stand for Ochase(D,Σ).

2.8 Decision Problems

Recall that, by Theorem 2.10, D ∪ Σ |= Q iff chase(D,Σ) |= Q. Based on this, we define
two relevant decision problems and prove their logspace-equivalence.

Definition 2.16. The conjunctive query evaluation decision problem CQeval is defined as
follows. Given a conjunctive query Q with n-ary head predicate q, a set of TGDs Σ, a
database D and a ground n-tuple t, decide whether t ∈ ans(Q,D,Σ) or, equivalently,
whether chase(D,Σ) ∪ {Q} |= q(t).

Definition 2.17. The Boolean conjunctive query evaluation problem BCQeval is defined as
follows. Given a Boolean conjunctive query Q, a set of TGDs Σ, and a database D, decide
whether chase(D,Σ) |= Q.

The following result is implicit in the work of Chandra and Merlin (1977).

Lemma 2.18. The problems CQeval and BCQeval are logspace-equivalent.

Proof. Notice that BCQeval can be trivially made into a special instance of CQeval, e.g., by
adding a propositional atom as head atom. It thus suffices to show that CQeval polynomially
reduces to BCQeval. Let 〈Q,D,Σ, q(t)〉 be an instance of CQeval, where q/n is the head
predicate of Q and t is a ground n-tuple. Assume the head atom of Q is q(X1, . . . , Xn)
and t = 〈c1, . . . , cn〉. Then define Q′ to be the Boolean conjunctive query whose body is
body(Q) ∧ q′(X1, . . . , Xn), where q

′ is a fresh predicate symbol not occurring in D, Q, or Σ
It is easy to see that q(t) ∈ Q(chase(D,Σ)) iff chase(D ∪ {q′(c1, . . . , cn)},Σ) |= Q′.

By the above lemma and by the well-known equivalence of the problem of query contain-
ment under TGDs with the CQeval problem (Corollary 2.12), the three following problems
are logspace-equivalent: (1) CQ-eval under TGDs, (2) BCQeval under TGDs, (3) query
containment under TGDs. Henceforth, we will consider only one of these problems, the
BCQ-eval problem. By the above, all complexity results carry over to the other problems.

Dealing with multiple head-atoms. It turns out that dealing with multiple atoms in
TGD heads complicates the proof techniques, so we assume that all TGDs have a single
atom in their head. After proving our results for single-headed TGDs, we will extend these
results to the case of multiple-atom heads in Section 8.

2.9 Tree Decomposition and Related Notions

We now introduce the required notions about tree decompositions. A hypergraph is a pair
H = 〈V,H〉, where V is the set of nodes and H ⊆ 2V . The elements of H are thus subsets
of V ; they are called hyperedges. The Gaifman graph of a hypergraph H = 〈V,H〉, denoted

125

Cal̀ı, Gottlob & Kifer

by GH, is an undirected graph where V is the set of nodes and an edge (v1, v2) is in the
graph if v1 and v2 jointly occur in some hyperedge in H.

Given a graph G = 〈V,E〉, a tree decomposition of G is a pair 〈T, λ〉, where T = 〈N,A〉
is a tree, and λ a labeling function λ : N → 2V such that:

(i) for all v ∈ V there is n ∈ N such that v ∈ λ(n); that is, λ(N) =
⋃

n∈N λ(n) = V ;
(ii) for every edge e = (v1, v2) ∈ E there is n ∈ N such that λ(n) ⊇ {v1, v2};
(iii) for every v ∈ V , the set {n ∈ N | v ∈ λ(n)} induces a connected subtree in T .

The width of a tree decomposition 〈T, λ〉 is the integer value max{|λ(n)| − 1 | n ∈ N}.
The treewidth of a graph G = 〈V,E〉, denoted by tw(G), is the minimum width of all tree
decompositions of G. Given a hypergraphH, its treewidth tw(H) is defined as the treewidth
of its Gaifman graph: tw(H) = tw(GH). Notice that the notion of treewidth immediately
extends to relational structures.

3. Guarded and Weakly-Guarded TGDs: Decidability Issues

This section introduces guarded TGDs (GTGDs) and weakly guarded sets of TGDs (WGT-
GDs), which enjoy several useful properties. In particular, we show that query answering
under these TGDs is decidable.

Definition 3.1. Given a TGD σ of the form Φ(X,Y)→ Ψ(X,Z), we say that σ is a (fully)
guarded TGD (GTGD) if there exists an atom in the body, called a guard, that contains all
the universally quantified variables of σ, i.e., all the variables X,Y that occur in Φ(X,Y).

To define weakly guarded sets of TGDs, we first give the notion of an affected position
in a predicate of a relational schema, given a set of TGDs Σ. Intuitively, a position π is
affected in a set of TGDs Σ if there exists a database D such that a labeled null appears
in some atom of chase(D,Σ) at position π. The importance of affected positions for our
definitions is that no labeled null can appear in non-affected positions. We define this notion
below.

Definition 3.2. Given a relational schema R and a set of TGDs Σ over R, a position π of
a predicate p of R is affected with respect to Σ if either:

• (base case) for some σ ∈ Σ, an existentially quantified variable appears in π in head(σ),
or
• (inductive case) for some σ ∈ Σ, the variable appearing at position π in head(σ) also
appears in body(σ), and only at affected positions.

Example 3.3. Consider the following set of TGDs:

σ1 : p1(X,Y), p2(X,Y) → ∃Z p2(Y, Z)
σ2 : p2(X,Y), p2(W,X) → p1(Y,X)

Notice that p2[2] is affected since Z is existentially quantified in σ1. The variable Y in σ1
appears in p2[2] (which is an affected position) and also in p1[2] (which is not an affected
position). Therefore Y in σ1 does not make the position p2[1] an affected one. Similarly,

126

Taming the Infinite Chase

in σ2, X appears in the affected position p2[2] and also in the non-affected position p2[1].
Therefore, p1[2] is not affected. On the other hand, Y in σ2 appears in p2[2] and nowhere
else. Since we have already established that p2[2] is an affected position, this makes p1[1]
also an affected position.

Definition 3.4. Consider a set of TGDs Σ on a schema R. A TGD σ ∈ Σ of the form
Φ(X,Y) → ∃ Ψ(X,Z) is said to be weakly guarded with respect to Σ (WGTGD) if there
is an atom in body(σ), called a weak guard, that contains all the universally quantified
variables of σ that appear in affected positions with respect to Σ and do not also appear
in non-affected positions with respect to Σ. The set Σ is said to be a weakly guarded set of
TGDs if each TGD σ ∈ Σ is weakly guarded with respect to Σ.

A GTGD or WGTGD may have more than one guard. In such a case, we will pick a
lexicographically first guard or use some other criterion for fixing the guard of a rule. The
actual choice will not affect our proofs and results.

The following theorem shows the undecidability of conjunctive query answering under
TGDs. This result, in its general form, follows from undecidability results for TGD im-
plication (see Beeri & Vardi, 1981; Chandra, Lewis, & Makowsky, 1981b). We show here
that the CQ answering problem remains undecidable even in case of a fixed set Σ of single-
headed TGDs with a single non-guarded rule, and a ground atom as query. Our proof is
“from first principles” as it reduces the well-known halting problem for Turing machines to
query-answering under TGDs. More recently, Baget, Leclère, Mugnier, and Salvat (2011a)
showed that CQ answering is undecidable also in case Σ contains a single TGD, which,
however, contains multiple atoms in its head.

Theorem 3.5. There exists a fixed atomic BCQ Q and a fixed set of TGDs Σu, where all
TGDs in Σu are guarded except one, such that it is undecidable to determine whether for a
database D, D ∪ Σu |= Q or, equivalently, whether chase(D,Σu) |= Q.

Proof. The proof hinges on the observation that, with appropriate input facts D, using a
fixed set of TGDs that consists of guarded TGDs and a single unguarded TGD, it is possible
to force an infinite grid to appear in chase(D,Σu). By a further set of guarded rules, one
can then easily simulate a deterministic universal Turing machine (TM)M, which executes
every deterministic TM with an empty input tape, whose transition table is specified in
the database D. This is done by using the infinite grid, where the i-th horizontal line of
the grid represents the tape content at instant i. We assume that transitions of the Turing
machine M are encoded into a relation trans of D, where for example, the ground atom
trans(s1, a1, s2, a2, right) means “if the current state is s1 and symbol a1 is read, then switch
to state s2, write a2, and move to the right”.

We show how the infinite grid is defined. Let D contain (among other initialization
atoms that specify the initial configuration of M) the atom index (0), which defines the
initial point of the grid. Also, we make use of three constants right , left , stay for encoding
the three types of moves. Consider the following TGDs:

index (X)→ ∃Y next(X,Y)

next(X,Y)→ index (Y)

trans(T), next(X1, X2), next(Y1, Y2)→ grid(T, X1, Y1, X2, Y2)

127

Cal̀ı, Gottlob & Kifer

where T stands for the sequence of argument variables S1, A1, S2, A2,M , as appropriate
for the predicate trans. Note that only the last of these three TGDs is non-guarded. The
above TGDs define an infinite grid whose points have co-ordinates X and Y (horizontal
and vertical, respectively) and where for each point its horizontal and vertical successors
are also encoded. In addition, each point appears together with each possible transition
rule. It is not hard to see that we can simulate the progress of our Turing machineM using
suitable initialization atoms in D and guarded TGDs. To this end, we need additional
predicates cursor(Y,X), meaning that the cursor is in position X at time Y , state(Y, S),
expressing that M is in state S at time Y , and content(X,Y,A), expressing that at time
Y , the content of position X in the tape is A. The following rule encodes the behavior of
M on all transition rules that move the cursor to the right:

grid(S1, A1, S2, A2, right , X1, Y1, X2, Y2),

cursor(Y1, X1), state(Y1, S1), content(X1, Y1, A1)→

cursor(Y2, X2), content(X1, Y2, A2), state(Y2, S2),mark(Y1, X1)

Such a rule has also obvious sibling rules for “left” and “stay” moves. For the sake of
brevity only, the above rule contains multiple atoms in the head. This is not a problem, as
such rules have no existentially quantified variables in the head. Therefore, each TGD with
multiple head-atoms can be replaced by an equivalent set of TGDs with single-atom heads
and identical bodies.

Notice that the mark predicate in the head marks the tape cell that is modified at
instant Y1. We now need additional “inertia” rules, which ensure that all other positions
in the tape are not modified between Y1 and the following time instant Y2. To this end,
we use two different markings: keepf for the tape positions that follow the one marked
with mark , and keepp for the preceding tape positions. In this way, we are able, by making
use of guarded rules only, to ensure that, at every instant Y1, every tape cell X, such that
keepp(Y1, X) or keepf (Y1, X) is true, keeps the same symbol at the instant Y2 following
Y1. The rules below then propagate the aforementioned markings forward and backwards,
respectively, starting from the marked tape positions.

mark(Y1, X1), grid(T, X1, Y1, X2, Y2)→ keepf (Y1, X2)

keepf (Y1, X1), grid(T, X1, Y1, X2, Y2)→ keepf (Y1, X2)

mark(Y1, X2), grid(T, X1, Y1, X2, Y2)→ keepp(Y1, X1)

keepp(Y1, X2), grid(T, X1, Y1, X2, Y2)→ keepp(Y1, X1)

We also have inertia rules for all a ∈ {a1, . . . , aℓ, ♭}, where {a1, . . . , aℓ, ♭} is the tape alphabet:

keepf (Y1, X1), grid(T, X1, Y1, X2, Y2), content(X1, Y1, a)→ content(X1, Y2, a)

keepp(Y1, X1), grid(T, X1, Y1, X2, Y2), content(X1, Y1, a)→ content(X1, Y2, a)

Notice that we use the constant a instead of a variable in the above rules in order to have
the guardedness property. We therefore need two rules as above for every tape symbol, that
is, 2ℓ+ 2 inertia rules altogether.

Finally, we assume, without loss of generality, that our Turing machineM has a single
halting state s0 which is encoded by the atom halt(s0) in D. We then add a guarded

128

Taming the Infinite Chase

rule state(Y, S), halt(S) → stop. It is now clear that the machine halts iff chase(D,Σu) |=
stop, i.e., iff D ∪ Σu |= stop. We have thus reduced the halting problem to the problem
of answering atomic queries over a database under Σu. The latter problem is therefore
undecidable.

Definition 3.6. [Guarded chase forest, restricted GCF] Given a set of WGTGDs Σ and a
database D, the guarded chase forest (GCF) for D and Σ, denoted gcf(D,Σ), is constructed
as follows.

(a) For each atom (fact) d in D, add a node labeled with d.
(b) For every node v labeled with a ∈ chase(D,Σ) and for every atom b obtained from
a (and possibly other atoms) by a one-step application of a TGD σ ∈ Σ, if a is the
image of the guard of σ then add one node v′ labeled with b and an arc going from v
to v′.

Assuming the chase forest gcf(D,Σ) is built inductively, following precisely the strategy of
a fixed deterministic chase procedure, the set of all non-root nodes of the chase forest is
totally ordered by a relation ≺ that reflects their order of generation. The restricted GCF
for D and Σ, denoted rgcf(D,Σ), is obtained from gcf(D,Σ) by eliminating each subtree
rooted in a node w whose label is a duplicate of an earlier generated node. Thus, if v and
w are nodes labeled by the same atom, and v ≺ w, w and all nodes of the subtree rooted in
w are eliminated from gcf(D,Σ) so as to obtain rgcf(D,Σ). Note that in rgcf(D,Σ) each
label occurs only once, therefore we can identify the nodes with their labels and say, for
instance, “the node a” instead of “the node v labeled by a”.

Example 3.7. Consider again Example 2.9 on page 123. The corresponding (infinite)
guarded chase forest is shown in Figure 2. Every edge from an a-node to a b-node is labeled
with the TGD whose application causes the introduction of b. Notice that some atoms (e.g.,
r2(b) or r2(z2)) label more than one node in the forest. The nodes belonging also to the
restricted GCF are shaded in the figure.

r1(a, b)

σ3

r3(b, z1)

σ1

r2(b)

r1(b, z2)r2(b)

r3(z2, z3) r2(z2)

· · · · · · · · ·

σ4

σ3σ4

σ4

σ2

σ3

σ2

σ2

r1(z2, z4)

σ1

r2(z2)

Figure 2: Chase forest for Example 3.7.

The goal of the following material is to show that, for weakly guarded sets Σ of TGDs, the
possibly infinite set of atoms chase(D,Σ) has finite treewidth (Lemma 3.13). This will then
be used to show the decidability of query-answering under WGTGDs (Theorem 3.14). As
a first step towards proving that chase(D,Σ) has finite treewidth, we generalize the notion

129

Cal̀ı, Gottlob & Kifer

of acyclicity of an instance, and then point out the relationship between this notion and
treewidth. We will then show that chase(D,Σ) enjoys (a specific version of) our generalized
form of acyclicity (Lemma 3.11), from which the finite treewidth result immediately follows.

Definition 3.8. Let B be a (possibly infinite) instance for a schemaR and let S ⊆ dom(B).

• An [S]-join forest 〈F, µ〉 of B is an undirected labeled forest F = 〈V,E〉 (finite or
infinite), whose labeling function µ : V → B is such that:

(1) µ is an epimorphism, i.e., µ(V) = B;
(2) F is [S]-connected, i.e., for each c ∈ dom(B) − S, the set {v ∈ V | c ∈

dom(µ(v))} induces a connected subtree in F .

• We say that B is [S]-acyclic if B has an [S]-join forest.

Notice that we are dealing with a relational instance, but the above definition works for
any relational structure, including queries. Definition 3.8 generalizes the classical notion of
hypergraph acyclicity (Beeri, Fagin, Maier, Mendelzon, Ullman, & Yannakakis, 1981) of an
instance or of a query: an instance or a query, seen as a hypergraph, is hypergraph-acyclic
(which is the same as α-acyclic according to Fagin, 1983) if and only if it is [∅]-acyclic .

The following Lemma follows from the definitions of [S]-acyclicity.

Lemma 3.9. Given an instance B for a schema R, and a set S ⊆ dom(B), if B is [S]-
acyclic, then tw(B) 6 |S|+w, where w is the maximum predicate arity in R and tw(B) is
the treewidth of B.

Proof. By hypothesis, B is [S]-acyclic and therefore has an [S]-join forest 〈F, µ〉, where
F = 〈V,E〉. A tree decomposition 〈T, λ〉 with T = 〈N,A〉, is constructed as follows. First,
we take N = V ∪ {n0}, where n0 is an auxiliary node. Let Vr ⊆ V be the set of nodes that
are roots in the [S]-join forest F and let Ar be the set of edges from n0 to each node in Vr.
We define A = E ∪ Ar. The labeling function is defined as follows: λ(n0) = S, and for all
nodes v 6= n0, λ(v) = dom(µ(v)) ∪ S. We now show that 〈T, λ〉 is a tree decomposition.
Recalling the definition of tree decompositions in Section 2.9, (i) holds trivially because F
is a join forest and µ(V) = B. As for (ii), we notice that edges in the Gaifman graph of B
are such that for each atom d = r(c1, . . . , cm) in B there is a clique among nodes c1, . . . , cm.
Since for the same atom there exists v ∈ V such that µ(v) = d and λ(v) ⊇ dom(µ(v)), (ii)
holds immediately. Finally we consider connectedness. Let us take a value c appearing in
B as argument. If c ∈ S, the set {v ∈ N | c ∈ λ(v)} is the entire N , by construction, so
connectedness holds. If c 6∈ S, the set {v ∈ N | c ∈ λ(v)} induces a connected subtree in F
and therefore in T , since λ(v) = µ(v)∪S. Therefore, (iii) holds. Notice also that the width
of such a tree decomposition is at most |S|+ w by construction.

Definition 3.10. Let D be a database for a schema R, and HB(D) be the Herbrand Base
of D as defined in Section 2. We define:

• chase⊥(D,Σ) = chase(D,Σ) ∩HB(D), and
• chase+(D,Σ) = chase(D,Σ)− chase⊥(D,Σ)

130

Taming the Infinite Chase

In plain words, chase⊥(D,Σ) is the finite set of all null-free atoms in chase(D,Σ). In
contrast, chase+(D,Σ) may be infinite; it is the set of all atoms in chase(D,Σ) that have
at least one null as an argument. Note that chase⊥(D,Σ) ∪ chase+(D,Σ) = chase(D,Σ)
and chase⊥(D,Σ) ∩ chase+(D,Σ) = ∅.

Lemma 3.11. If Σ is a weakly guarded set of TGDs and D a database, then chase+(D,Σ)
is [dom(D)]-acyclic, and so is therefore chase(D,Σ).

In order to prove this result, we resort to an auxiliary lemma.

Lemma 3.12. Let D be a database and Σ a weakly guarded set of TGDs. Let as be a node
of rgcf(D,Σ) where the null value ζ ∈ ∆N is first introduced, and let af be a descendant
node of as in rgcf(D,Σ) that has ζ as an argument. Then, ζ appears in every node (=atom)
on the (unique) path from as to af .

Proof. Let a1 = as, a2, . . . , an = af be the path from as to af . By the definition of affected
positions, ζ appears only in affected positions in the atoms in the chase. Suppose, to the
contrary, that ζ does not appear in some intermediate atom in the above path. Then,
there is i, 2 6 i 6 n − 1, such that ζ does not appear in ai, but appears in ai+1. Since ζ
appears only in affected positions, in order to be in ai+1 it must either appear in ai or to
be invented when ai+1 was added. The first case is ruled out by the assumption, and the
second is impossible because ζ was first introduced in a1, not in ai+1—a contradiction.

We now come back to the proof of Lemma 3.11.

Proof. The proof is constructive, by exhibiting a [dom(D)]-join forest F = 〈V,E〉 for
chase(D,Σ). We take F as rgcf(D,Σ) and define, for each atom d ∈ rgcf(D,Σ), the
labeling function µ for F as µ(d) = d. Since every atom of chase(D,Σ) is “covered” by its
corresponding node of F , it only remains to show that chase(D,Σ) is [dom(D)]-connected.
Take a pair of distinct atoms a1, a2 in rgcf(D,Σ) that both have the same value c ∈ ∆N in an
argument. The atoms a1 and a2 must have a common ancestor a in rgcf(D,Σ) where c was
first invented: if they do not, the value c would have to be introduced twice in chase(D,Σ).
By Lemma 3.12, c appears in all atoms on the paths from a to a1 and from a to a2. It thus
follows that the set {v ∈ V | c ∈ µ(v)} induces a connected subtree in F .

Lemma 3.13. If Σ is a weakly guarded set of TGDs and D a database for a schema R,
then tw(chase(D,Σ)) 6 |dom(D)|+ w, where w is the maximum predicate arity in R.

Proof. The claim follows from Lemmas 3.9 and 3.11.

Theorem 3.14. Given a relational schema R, a weakly guarded set of TGDs Σ, a Boolean
conjunctive query Q, and a database D for R, the problem of checking whether D∪Σ |= Q,
or equivalently chase(D,Σ) |= Q, is decidable.

Proof (sketch). We first remind a key result of Courcelle (1990), that generalizes an earlier
result of Rabin (1969). Courcelle’s result states that the satisfiability problem is decidable
for classes of first-order theories (more generally, theories of monadic second-order logic)

131

Cal̀ı, Gottlob & Kifer

that enjoy the finite treewidth model property. A class C of theories has the finite-treewidth
model property if for each satisfiable theory T ∈ C it is possible to compute an integer f(T)
such that T has a model of treewidth at most f(T)—see also the works by Goncalves and
Grädel (2000) and by Grädel (1999), where a more general property, called the generalized
tree-model property, is discussed. We apply this to prove our theorem.

Let ¬Q be the universal sentence obtained by negating the existentially quantified con-
junctive query Q. For all classes of TGDs, D ∪ Σ |= Q iff chase(D,Σ) |= Q iff D ∪ Σ ∪ ¬Q
is unsatisfiable. Trivially, deciding whether D ∪ Σ |= Q is equivalent under Turing reduc-
tions to deciding whether D ∪ Σ 6|= Q. The latter holds iff D ∪ Σ ∪ {¬Q} is satisfiable
or, equivalently, iff chase(D,Σ) is a model of ¬Q which, in turn, holds iff chase(D,Σ) is a
model of D ∪ Σ ∪ {¬Q}. By Lemma 3.13, for WGTGDs, chase(D,Σ) has finite treewidth.
Our decision problem thus amounts to checking whether a theory belonging to a class C∗

of first-order theories (of the form D ∪ Σ ∪ {¬Q}) is satisfiable, where it is guaranteed
that whenever a theory in this class is satisfiable, then it has a model of finite treewidth
(namely, chase(D,Σ)), and where C∗ therefore enjoys the finite treewidth model property.
Decidability thus follows from Courcelle’s result.

Determining the precise complexity of query answering under sets of guarded and weakly
guarded sets of TGDs will require new techniques, which are the subject of the next sections.

4. Complexity: Lower Bounds

In this section we prove several lower bounds for the complexity of the decision problem of
answering Boolean conjunctive queries under guarded and weakly guarded sets of TGDs.

Theorem 4.1. The problem BCQeval under WGTGDs is exptime-hard in case the TGDs
are fixed. The same problem is 2exptime-hard when the predicate arity is not bounded.
Both hardness results also hold for fixed atomic ground queries.

Proof. We start with the exptime-hardness result for fixed WGTGD sets Σ. It is well-
known that apspace (alternating pspace, see Chandra, Kozen, & Stockmeyer, 1981a)
equals exptime. Notice that there are apspace-hard languages that are accepted by alter-
nating polynomial-space machines that use at most n worktape cells, where n is the input
size, and where the input is initially placed on the worktape. (This is well-known and can
be shown by trivial padding arguments). To prove our claim, it thus suffices to simulate the
behavior of such a restricted linear space (linspace) Alternating Turing Machine (ATM)
M on an input bit string I by means of a weakly guarded set of TGDs Σ and a database
D. Actually, we will show a stronger result: that a fixed set Σ of WGTGDs can simulate
a universal ATM that in turn simulates every linspace ATM that uses at most n tape
cells on every input. Here both the ATM transition table and the ATM input string will be
stored in the database D. Then D ∪ Σ |= Q for some atomic ground query Q iff the ATM
accepts the given input.2

Without loss of generality, we can assume that the ATMM has exactly one accepting
state sa. We also assume that M never tries to read beyond its tape boundaries. Let M

2. This technique was proposed by Cal̀ı et al. (2008). It is similar to a technique later described by Hernich,
Libkin, and Schweikardt (2011) in the proof of undecidability of the existence of so-called CWA (closed-
world assumption) universal solutions in data exchange.

132

Taming the Infinite Chase

be defined as
M = (S,Λ, ♭, δ, s0, {sa})

where S is the set of states, Λ = {0, 1, ♭} is the tape alphabet, ♭ is the blank tape symbol, δ
is the transition function, defined as δ : S ×Λ→ (S ×Λ×{ℓ, r,⊥})2 (⊥ denotes the “stay”
head move, while ℓ and r denote “left” and “right”, respectively), s0 ∈ S is the initial state,
and {sa} is the singleton-set of accepting states. SinceM is an alternating Turing machine
(ATM), its set of states S is partitioned into two sets: S∀ and S∃ (universal and existential
states, respectively). The general idea of the encoding is that configurations ofM (except
for the initial configuration κ) will be represented by fresh nulls vi, i > 1, that are generated
by the chase.

The relational schema. We now describe the predicates of the schema which we
use in the reduction. Notice that the schema is fixed and does not depend on the particular
ATM that we encode. The schema predicates are as follows.

(1) Tape. The ternary predicate symbol(a, c, v) denotes that in configuration v the cell
c contains the symbol a, with a ∈ Λ. Also, a binary predicate succ(c1, c2) denotes the
fact that cell c1 follows cell c2 on the tape. Finally, neq(c1, c2) says that two cells are
distinct.
(2) States. A binary predicate state(s, v) says that in configuration v the ATMM is in
state s. We use three additional unary predicates: existential , universal , and accept .
The atom existential(s) (resp., universal(s)) denotes that the state s is existential
(resp., universal), while accept(c) says that c is an accepting configuration, that is,
one whose state is the accepting state.
(3) Configurations. A unary predicate config(v) expresses the fact that the value v
identifies a configuration. A ternary predicate next(v, v1, v2) is used to say that both
configurations v1 and v2 are derived from v. Similarly, we use follows(v, v′) to say
that configuration v′ is derived from v. Finally, a unary predicate init(v) states that
the configuration v is initial.
(4) Head (cursor). We use the fact cursor(c, v) to say that the head (cursor) of the
ATM is on cell c in configuration v.
(5) Marking. Similarly to what is done in the proof of Theorem 3.5, we use mark(c, v)
to say that a cell c is marked in a configuration v. Our TGDs will ensure that all
non-marked cells keep their symbols in a transition from one configuration to another.
(6) Transition function. To represent the transition function δ ofM, we use a single
8-ary predicate transition: for every transition rule δ(s, a) = ((s1, a1,m1), (s2, a2,m2))
we will have transition(s, a, s1, a1,m1, s2, a2,m2).

The database D. The data constants of the database D are used to identify cells,
configurations, states and so on. In particular, we will use an accepting state sa and an
initial state s0 plus a special initial configuration κ. The database describes the initial
configuration of the ATM with some technicalities.

(a) We assume, without loss of generality, the n symbols of the input I to occupy the
cells numbered from 1 to n, i.e., c1, . . . , cn. For technical reasons, in order to obtain
a simpler TGD set below, we also use the dummy cell constants c0 and cn+1, that
intuitively represent border cells without symbols. For the i-th symbol ai of I, the
database has the fact symbol(a, ci, κ), for all i ∈ {1, . . . , n}.

133

Cal̀ı, Gottlob & Kifer

(b) An atom state(s0, κ) specifies thatM is in state s0 in its initial configuration κ.
(c) For every existential state sE and universal state sU , we have the facts existential(sE)
and universal(sU). For the accepting state, the database has the fact accept(sa).
(d) An atom cursor(c1, κ) indicates that, in the initial configuration, the cursor points
at the first cell.
(e) The atoms succ(c1, c2), . . . , succ(cn−1, cn) encode the fact that the cells c1, . . . , cn
of the tape (beyond which the ATM does not operate) are adjacent. For technical
reasons, we also use the analogous facts succ(c0, c1) and succ(cn, cn+1). Also, atoms
of the form neq(ci, cj), for all i, j such that 1 6 i 6 n, 1 6 j 6 n and i 6= j, denote
the fact that the cells c1, . . . , cn are pairwise distinct.
(f) The atom config(κ) says that κ is a valid configuration.
(g) The database has atoms of the form transition(s, a, s1, a1,m1, s2, a2,m2), which
encode the transition function δ, as described above.

The TGDs. We now describe the TGDs that define the transitions and the accepting
configurations of the ATM.

(a) Configuration generation. The following TGDs say that, for every configuration
(halting or non halting—we do not mind having configurations that are derived from
a halting one), there are two configurations that follow it, and that a configuration
that follows another configurations is also a valid configuration:

config(V), → ∃V1∃V2 next(V, V1, V2)

next(V, V1, V2) → config(V1), config(V2)

next(V, V1, V2) → follows(V, V1)

next(V, V1, V2) → follows(V, V2)

(b) Configuration transition. The following TGD encodes the transition where the
ATM starts at an existential state, moves right in its first configuration and left in
the second. Here C denotes the current cell, C1 and C2 are the new cells in the first
and the second configuration (on the right and on the left of C, respectively), and
the constants r, ℓ, and ⊥ represent the “right,” the “left,” and the “stay” moves,
respectively.

transition(S,A, S1, A1, r, S2, A2, ℓ),next(V, V1, V2),

state(S, V), cursor(C, V), symbol(A,C, V), succ(C1, C), succ(C,C2)→

state(S1, V1), state(S2, V2), symbol(A1, C1, V1), symbol(A2, C2, V2),

cursor(C1, V1), cursor(C2, V2),mark(C, V),

There are nine rules like the above one, corresponding to all the possible moves of
the head in the child configurations C1 and C2. These other moves are encoded via
similar TGDs. These rules suitably mark the cells that are written by the transition
by means of the predicate mark . The cells that are not involved in the transition
must retain their symbols, which is specified by the following TGD:

config(V), follows(V, V1),mark(C, V), symbol(C1, A, V),neq(C1, C)→ symbol(C1, A, V1)

134

Taming the Infinite Chase

(c) Termination. The rule state(sa, V) → accept(V) defines a configuration V to be
accepting if its state is the accepting state. The following TGDs state that, for an
existential state, at least one configuration derived from it must be accepting. For
universal states, both configurations must be accepting.

next(V, V1, V2), state(S, V), existential(S), accept(V1)→ accept(V)

next(V, V1, V2), state(S, V), existential(S), accept(V2)→ accept(V)

next(V, V1, V2), state(S, V), universal(S), accept(V1), accept(V2)→ accept(V)

Note that, for brevity, some of the TGDs we used have multiple atoms in the head.
However, these heads have no existentially quantified variables, so such multi-headed TGDs
can be replaced with sets of TGDs that have only one head-atom. Note also that the
database constants (r, ℓ, and ⊥, and sa) appearing in some rules can be eliminated by
introducing additional predicate symbols and database atoms. For example, if we add
the predicate acceptstate to the signature and the fact acceptstate(sa) to the database D,
the rule state(sa, V) → accept(V) can be replaced by the equivalent constant-free rule
acceptstate(X), state(X,V)→ accept(V).

It is not hard to show that the encoding described above is sound and complete. That is,
M accepts the input I if and only if chase(D,Σ) |= accept(κ). It is also easy to verify that
the set of TGDs we have used is weakly guarded—this can be done by checking that each
variable appearing only in affected positions also appears in a guard atom. For instance,
take the above rule next(V, V1, V2), state(S, V), existential(S), accept(V1)→ accept(V). It is
immediate to see that state[1] and existential [1] are non-affected (the TGDs never invent
new states), and that all variables appearing in affected positions only, namely V, V1, V2,
appear in the guard atom next(V, V1, V2). This proves the claim.

We now turn to the case where Σ is not fixed and has unbounded predicate arities.
For obtaining the 2exptime lower bound, it is sufficient to adapt the above proof so as
to simulate an ATM having 2n worktape cells, i.e., an aexpspace machine whose space is
restricted to 2n tape cells. Actually, to accommodate two dummy cells to the left and right
of the 2n effective tape cells, that are used for technical reasons, we will feature 2n+1 tape
cells instead of just 2n.

We will make sure that the input string is put on cells 1, . . . , n of the worktape. Given
that there are now many more than n worktape cells, we will fill all cells to the right of the
input string with the blank symbol ♭.

This time, the WGTGD set Σ will not be fixed, but will depend on n. Since a much
stronger result will be shown in Section 6 (Theorem 6.2), we do not belabor all the details
in what follows, but just explain how the above proof for fixed sets of TGDs needs to be
changed.

Rather than representing each tape cell by a data constant, each tape cell is now repre-
sented by a vector (b0, b1, b2, . . . , bn) of Boolean values from {0, 1}. The database D is the
same as before, except for the following changes:

• D contains the additional facts bool(0), bool(1), zero(0), one(1).
• Each fact symbol(a, ci, κ) is replaced by the fact symbol(a, b0, b1, b2, . . . , bn, κ), where
(b0, b1, b2, . . . , bn) is the Boolean vector of length n representing the integer i, with
0 6 i 6 n 6 2n+1.

135

Cal̀ı, Gottlob & Kifer

• The fact cursor(c1, κ) is replaced by the (n+ 2)-ary fact cursor(0, 0, · · · , 0, 1, κ).
• All succ and neq facts described under item (e) are eliminated. (Vectorized versions
of these predicates will be defined via Datalog rules—see below).

The TGD set from before is changed as follows. In all rules, each cell-variable C is
replaced by a vector C of n variables. For example, the atom succ(C1, C) now becomes
succ(C1,C) = succ(C0

1 , C
1
1 , . . . C

n
1 , C

0, C1, . . . , Cn).
We add Datalog rules for n-ary succ and neq predicates. For example, the n-ary predi-

cate succ can be implemented by the following rules:

bool(X0), . . . , bool(Xn−1) → succ(X0, . . . , Xn−1, 0 , X0, . . . , Xn−1, 1),
bool(X0), . . . , bool(Xn−2) → succ(X0, . . . , Xn−2, 0, 1 , X0, . . . , Xn−2, 1, 0),

...
bool(X0), . . . , bool(Xn−i) → succ(X0, . . . , Xn−i, 0, 1 . . . 1 , X0, . . . , Xn−i, 1, 0, . . . , 0),

...
→ succ(0, 1, . . . , 1 , 1, 0, . . . , 0)

These rules contain constants which can be easily eliminated by use of the zero and
one predicates, which are extensional database (EDB) predicates. We further add sim-
ple Datalog rules that use the vectorized succ predicate to define vectorized versions for
the less than and the neq predicates. Using less than, we add a single rule that, for the
initial configuration κ, puts blanks into all tape cells beyond the last cell n of the input:
less than(n,C)→ symbol(♭,C, κ), where n is an n-ary binary vector representing the num-
ber n (i.e., the input size).

The resulting set of rules is weakly guarded and correctly simulates the aexpspace (al-
ternating exponential space) Turing machine whose transition table is stored in the database
D. Our reduction is polynomial in time. Since aexpspace=2exptime, it immediately fol-
lows that when the arity is not bounded the problem is 2exptime-hard.

5. Complexity: Upper Bounds

In this section we present upper bounds for query answering under weakly guarded TGDs.

5.1 Squid Decompositions

We now define the notion of a squid decomposition, and prove a lemma called “Squid
Lemma” which will be a useful tool for proving our complexity results in the following
sub-sections.

Definition 5.1. Let Q be a Boolean conjunctive query with n body atoms over a schema
R. An R-cover of Q is a Boolean conjunctive query Q+ over R that contains in its body
all the body atoms of Q. In addition, Q+ may contain at most n other R-atoms.

Example 5.2. Let R = {r/2, s/3, t/3} and Q be the Boolean conjunctive query with
body atoms {r(X,Y), r(Y, Z), t(Z,X,X)}. The following query Q+ is an R-cover of Q:
Q+ = {r(X,Y), r(Y, Z), t(Z,X,X), t(Y, Z, Z), s(Z,U, U)}.

136

Taming the Infinite Chase

Lemma 5.3. Let B be an instance over a schema R and Q a Boolean conjunctive query
over B. Then B |= Q iff there exists an R-cover Q+ of Q such that B |= Q+.

Proof. The only-if direction follows trivially from the fact that Q is anR-cover of itself. The
if direction follows straightforwardly from the fact that whenever there is a homomorphism
h : vars(Q+) → dom(B), such that h(Q+) ⊆ B, then, given that Q is a subset of Q+, the
restriction h′ of h to vars(Q) is a homomorphism vars(Q) → dom(B) such that h′(Q) =
h(Q) ⊆ B. Therefore B |= Q+ implies B |= Q.

Definition 5.4. Let Q be a Boolean conjunctive query over a schema R. A squid decom-
position δ = (Q+, h,H, T) of Q consists of an R-cover Q+ of Q, a mapping h : vars(Q+)→
vars(Q+), and a partition of h(Q+) into two sets H and T , with T = h(Q+) − H, for
which there exists a set of variables Vδ ⊆ h(vars(Q+)) such that: (i) H = {a ∈ h(Q+) |
vars(a) ⊆ Vδ}, and (ii) T is [Vδ]-acyclic. If an appropriate set Vδ is given together with a
squid decomposition δ = (Q+, h,H, T), then, by a slight terminology overloading, we may
just speak about the squid decomposition (Q+, h,H, T, Vδ).

Note that a squid decomposition δ = (Q+, h,H, T) of Q does not necessarily define a
query folding (Chandra & Merlin, 1977; Qian, 1996) of Q+, because h does not need to be
an endomorphism of Q+; in other terms, we do not require that h(Q+) ⊆ Q+. However, h
is trivially a homomorphism from Q+ to h(Q+).

Intuitively, a squid decomposition δ = (Q+, h,H, T, Vδ) describes a way how a query
Q may be mapped homomorphically to chase(D,Σ). First, instead of mapping Q to
chase(D,Σ), we equivalently map h(Q+) = H ∪ T to chase(D,Σ). The set Vδ speci-
fies those variables of h(Q+) that ought to be mapped to constants, i.e., to elements of
dom(D). The atoms set H is thus mapped to ground atoms, that is, elements of the fi-
nite set chase⊥(D,Σ), which may be highly cyclic. The [Vδ]-acyclic atom set T shall be
mapped to the possibly infinite set chase+(D,Σ) which, however, is [dom(D)]-acyclic. The
“acyclicities” of chase+(D,Σ) and of T will be exploited for designing appropriate decision
procedures for determining whether chase(D,Σ) |= Q. All this will be made formal in the
sequel.

One can think of the set H in a squid decomposition δ = (Q+, h,H, T, Vδ) as the head of
a squid, and the set T as a join-forest of tentacles attached to that head. This will become
clear in the following example and the associated Figure 3.

Example 5.5. Consider the following Boolean conjunctive query:

Q = {r(X,Y), r(X,Z), r(Y, Z),
r(Z, V1), r(V1, V2), r(V2, V3), r(V3, V4), r(V4, V5),
r(V1, V6), r(V6, V5), r(V5, V7), r(Z,U1), s(U1, U2, U3),
r(U3, U4), r(U3, U5), r(U4, U5)}.

Let Q+ be the following Boolean query: Q+ = Q ∪ {s(U3, U4, U5)}. A possible squid
decomposition (Q+, h,H, T, Vδ) can be based on the homomorphism h, defined as follows:
h(V6) = V2, h(V4) = h(V5) = h(V7) = V3, and h(X) = X for any other variable X in Q+.
The result of the squid decomposition with Vδ = {X,Y, Z} is the query shown in Figure 3.

137

Cal̀ı, Gottlob & Kifer

Here the cyclic head H (encircled in the oval) is represented by its join graph,3 and the [Vδ]-
acyclic “tentacle” set T is depicted as a [Vδ]-join forest. Moreover, the forest representing
T is rooted in the “bag” of H-atoms, so that the entire decomposition takes on the shape
of a squid. Note that if we eliminated the additional atom s(U3, U4, U5), the original set
of atoms {r(U3, U4), r(U3, U5), r(U4, U5)} would form a non-[Vδ]-acyclic cycle, and therefore
they would not all be part of the tentacles.

tentacles

r(Z,U1)r(Z, V1)

r(V1, V2) s(U1, U2, U3)

r(V2, V3) s(U3, U4, U5)

r(V3, V3) r(U3, U4) r(U3, U5) r(U4, U5)

r(X,Y) r(X,Z)

r(Y, Z)

head

Figure 3: Squid decomposition from Example 5.5. Atoms in h(Q+) are shown.

The following two lemmas are auxiliary technical results.

Lemma 5.6. Let Q be a Boolean conjunctive query and let U be a (possibly infinite) [A]-
acyclic instance, where A ⊆ dom(U). Assume U |= Q, i.e., there is a homomorphism
f : dom(Q)→ dom(U) with f(Q) ⊆ U . Then:

(1) There is an [A]-acyclic subsetW ⊆ U such that: (i) f(Q) ⊆W and (ii) |W | < 2|Q|.
(2) There is a cover Q+ of Q such that |Q+| < 2|Q|, and there is a homomorphism g
that extends f and g(Q+) =W .

Proof.
Part (1). By the assumption,4 U is [A]-acyclic and f : dom(Q) → dom(U) is a homo-

morphism such that f(Q) ⊆ U . Since U is [A]-acyclic, it has a (possibly infinite) [A]-join
forest T = 〈〈V,E〉, λ〉. We assume, without loss of generality, that distinct vertices u, v of
T have different labels, i.e., λ(u) 6= λ(v). This assumption can be made by removing all
subforests rooted at nodes labeled by duplicate atoms. Let TQ be the finite subforest of T

3. The join graph of H has the atoms as nodes. An edge between two atoms exists iff the atoms share at
least one variable.

4. One may be tempted to conjecture that W = f(Q), but this does not work because acyclicity (and thus
also [A]-acyclicity) is not a hereditary property: it may well be the case that U is acyclic, while the
subset f(Q) ⊆ U is not. However, taking W = f(Q) works in case of arities at most 2.

138

Taming the Infinite Chase

that contains all ancestors in T of nodes s such that λ(s) ∈ f(Q). Let F = 〈〈V ′, E′〉, λ′〉 be
the forest obtained from T as follows.

• V ′ = {v ∈ V | λ(v) ∈ f(Q)} ∪K, where K is the set of all vertices of TQ that have at
least two children.
• If v, w ∈ V ′ then there is an edge from v to w in E′ iff w is a descendant of v in T ,
and if the unique shortest path from v to w in T does not contain any other node
from V ′.
• Finally, for each v ∈ V ′, λ′(v) = λ(v).

Let us define W = λ(V ′). We claim that the forest F is an [A]-join forest of W . Since
Condition (1) of Definition 3.8 ([S]-join forest) is immediately satisfied, it suffices to show
Condition (2), that is, that F satisfies the [A]-connectedness condition. Assume, for any
pair of distinct vertices v1 and v2 in F , that for some value b ∈ dom(U) − A it holds
b ∈ dom(λ′(v1)) ∩ dom(λ′(v2)). In order to prove the aforementioned [A]-connectedness
condition, we need to show that there is at least one path in F between v1 and v2 (here
we view F as a undirected graph), and that for every node v ∈ V ′ lying on each such
path we have b ∈ dom(λ′(v)). By construction of F , v1 and v2 are connected in T and v
lies on the (unique) path between v1 and v2 in T . Since T is an [A]-join forest, we have
b ∈ dom(λ(v)) = dom(λ′(v)). Thus F is an [A]-join forest of W .

Moreover, by construction of F , the number of children of each inner vertex of F is
at least 2, and F has at most |Q| leaves. It follows that F has at most 2|Q| − 1 vertices.
Therefore W is an [A]-acyclic set of atoms such that |W | 6 2|Q| and W ⊇ f(Q).

Part (2). Q can be extended to Q+ as follows. For each atom r(t1, . . . , tk) in W −f(Q),
add to Q a new query atom r(ξ1, . . . , ξk) such that for each 1 6 i 6 k, ξi is a newly invented
variable. Obviously, W |= Q+ and thus there is a homomorphism g extending f such that
g(Q+) =W . Moreover, by construction |Q+| < 2|Q|.

Lemma 5.7. Let G be an [A]-acyclic instance and let G′ be an instance obtained from G
by eliminating a set S of atoms where dom(S) ⊆ A. Then G′ is [A]-acyclic.

Proof. If T = 〈〈V,E〉, λ〉 is an [A]-join forest for G then an [A]-join forest T ′ for G′ can
be obtained from G by repeatedly eliminating each vertex v from T where λ(v) ∈ S. By
construction, each atom e eliminated from G in this way has the property that dom(e) ⊆ A.
Hence, for every value b ∈ dom(G)− A, the node u ∈ V such that λ(u) = e cannot belong
to the induced (connected) subtree {v ∈ V | b ∈ dom(λ(v))}. We thus get that G′ enjoys
the [A]-connectedness property.

The following Lemma will be used as a main tool in the subsequent complexity analysis.

Lemma 5.8 (Squid Lemma). Let Σ be a weakly guarded set of TGDs on a schema R,
D a database for R, and Q a Boolean conjunctive query. Then chase(D,Σ) |= Q iff
there is a squid decomposition δ = (Q+, h,H, T) and a homomorphism θ : dom(h(Q+)) →
dom(chase(D,Σ)) such that: (i) θ(H) ⊆ chase⊥(D,Σ), and (ii) θ(T) ⊆ chase+(D,Σ).

Proof. “If”. If there is a squid decomposition δ = (Q+, h,H, T) of Q and a homomorphism
θ as described, then the composition θ ◦ h is a homomorphism such that (θ ◦ h)(Q+) =

139

Cal̀ı, Gottlob & Kifer

θ(h(Q+)) ⊆ chase(D,Σ). Hence, chase(D,Σ) |= Q+ and, by Lemma 5.3, chase(D,Σ) |=
Q.

“Only if”. Assume U = chase(D,Σ) |= Q. Then, there exists a homomorphism f :
vars(Q)→ dom(U) with f(Q) ⊆ chase(D,Σ). By Lemma 3.11, chase+(D,Σ) is [dom(D)]-
acyclic. By Lemma 5.6, it then follows that there is a Boolean query Q+ with < 2|Q| atoms,
such that all atoms of Q are contained in Q+, and there is a homomorphism g : dom(Q+)→
dom(U) with g(Q+) ⊆ U , such that g(Q+) is [dom(D)]-acyclic.

Partition vars(Q+) into two sets vars⊥(Q+) and vars+(Q+) as follows:

• vars⊥(Q+) = {X ∈ vars(Q+) | g(X) ∈ dom(D)}
• vars+(Q+) = vars(Q+)− vars⊥(Q+).

Define a mapping h : vars(Q+) → vars(Q+) as follows. For each X ∈ vars(Q+), let h(X)
be the lexicographically first variable in the set {Y ∈ vars(Q+) | g(Y) = g(X)}. Let
us define Vδ as Vδ = h(vars⊥(Q+)). Moreover, let H be the set of all those atoms a of
h(Q+), such that vars(a) ⊆ Vδ = h(vars⊥(Q+)), and let T = h(Q+) − H. Note that, by
definition of H, g(H) ⊆ chase⊥(D,Σ) and, by definition of T , g(T) ⊆ chase+(D,Σ). Let
θ be the restriction of g to dom(h(Q+)). Clearly, θ, h, H, and T fulfill the conditions (i)
and (ii) of the statement of this lemma. It thus remains to prove that δ = (Q+, h,H, T) is
actually a squid decomposition of Q. For this, we only need to show that T is [Vδ]-acyclic.
To prove this, first observe that for each pair of variables X,Y in vars(Q+) such that
g(X) = g(Y) we have h(X) = h(Y). Therefore θ is, by construction, a bijection between
h(dom(Q+)) and dom(θ(Q+)). In particular, T ⊆ h(Q+) is isomorphic to θ(T) via the
restriction θT of θ to dom(T). Since θT (T) = θ(T) is obtained from the [dom(D)]-acyclic
instance θ(Q+) by eliminating only atoms all of whose arguments are in dom(D) (namely
the atoms in θ(H)), by Lemma 5.7, θT (T) is itself [dom(D)]-acyclic and, therefore, trivially
also [dom(D)∩ dom(θ(T))]-acyclic. Now, since for every X ∈ dom(T) it holds that X ∈ Vδ
iff θT (X) ∈ dom(D), it immediately follows that, since θT (T) is [dom(D)]-acyclic, T is
[Vδ]-acyclic.

5.2 Clouds and the Complexity of Query Answering under WGTGDs

The goal of this subsection is to prove the following theorem:

Theorem 5.9. Let Σ be a weakly guarded set of TGDs, D a database for a schema R,
and Q a Boolean conjunctive query. The problem of determining whether D ∪ Σ |= Q or,
equivalently, whether chase(D,Σ) |= Q is in exptime in case of bounded arity, and in
2exptime in general.

For the general case (of unbounded arities), we first outline a short high-level proof
aimed at specialists in Computational Logic. This proof makes sophisticated use of previous
results. We will then give a much longer, self-contained proof, that works for both the
general case and the case of bounded arities. The self-contained proof also introduces some
concepts that will be used in the following sections.

High Level Proof Sketch of Theorem 5.9 (General Case). We transform the original problem
instance (D,Σ, Q) into a guarded first-order theory Γ = τ(D,Σ, Q) such that chase(D,Σ) |=

140

Taming the Infinite Chase

Q iff Γ is unsatisfiable. The signature σ of Γ uses Σ as the set of constants plus a constant
for each element of dom(D). Moreover, σ includes all predicate symbols occurring in D, Σ,
or Q, plus a special nullary (i.e., propositional) predicate symbol q.

Γ contains all ground facts of D, plus all instances of each rule r ∈ Σ obtained from
r by replacing all variables of r that occur in non-affected positions with constants. Note
that the resulting rules are universally quantified guarded sentences. Moreover, for each
squid decomposition δ = (Q+, h,H, T, Vδ), and each possible replacement θ of the set of
variables Vδ by constants of the signature σ, Γ contains a guarded sentence φθδ obtained as
follows. Notice that Qθ

δ := θ(H) ∪ T is a Boolean acyclic conjunctive query. By the results
of Gottlob, Leone, and Scarcello (2003),5 Qθ

δ can thus be rewritten (in polynomial time)
into an equivalent guarded sentence ψθ

δ . We define φθδ to be (ψθ
δ → q), which is obviously

guarded, too. Let Γ− denote the sentences of Γ mentioned so far. From this construction
and the Squid Lemma (Lemma 5.8), it follows that chase(D,Σ) |= Q iff Γ− |= q. Now let
Γ = Γ− ∪ {¬q}. Obviously, Γ is unsatisfiable iff chase(D,Σ) |= Q.

Note that the reduction τ is an arity-preserving exptime-reduction. Let t be an ex-
ponential upper bound on the runtime required by reduction τ (and thus also on the size
of τ(D,Σ, Q)). A deterministic version of the algorithm in the work by Grädel (1999) for
deciding whether a guarded theory of unbounded arity is satisfiable or unsatisfiable runs in
double-exponential time O(2O(s·ww)), where s is the size of the theory and w is its maximum
predicate arity. Therefore, the overall runtime of first computing Γ = τ(D,Σ, Q) for an in-
put (D,Σ, Q) of size n and maximum arity w, and then checking whether Γ is unsatisfiable
is O(2O(t(n)·ww)), which is still only double-exponential. Deciding D ∪ Σ |= Q is thus in
2exptime. ✷

Note that in case of bounded w, a similar proof does not provide an exptime bound,
as 2t(n)·w

w

would still be doubly exponential due to the exponential term t(n), even if w is
constant. Actually, as noted by Bárány, Gottlob, and Otto (2010), evaluating non-atomic
conjunctive queries against guarded first-order theories of bounded predicate arity is in fact
2exptime-complete. Surprisingly, this remains true even for guarded theories D∪Σ where
D is a (variable) database and Σ a fixed guarded theory of a very simple form involving
disjunctions (Bourhis, Morak, & Pieris, 2013). We therefore needed to develop different
proof ideas.

In the rest of this section we present an independent and self-contained proof of Theo-
rem 5.9 by developing tools for analyzing the complexity of query answering under WGT-
GDs. To this end we introduce the notion of a cloud of an atom a in the chase of a database
D under a set Σ of WGTGDs. Intuitively, the cloud of a is the set of atoms of chase(D,Σ)
whose arguments belong to dom(a) ∪ dom(D). In other words, the atoms in the cloud
cannot have nulls that do not appear in a. The cloud is important because we will show
that the subtree of gcf(D,Σ) rooted in a depends only on a and its cloud.

Definition 5.10. Let Σ be a weakly guarded set of TGDs on a schema R and D be a
database for R. For every atom a ∈ chase(D,Σ) the cloud of a with respect to Σ and D is
the following set: cloud(D,Σ, a) = {b ∈ chase(D,Σ) | dom(b) ⊆ dom(a)∪dom(D)}. Notice

5. See Theorem 3 in that paper, its proof, the remark after that proof, and Corollary 3.

141

Cal̀ı, Gottlob & Kifer

that for every atom a ∈ chase(D,Σ) we have D ⊆ cloud(D,Σ, a). Moreover, we define

clouds(D,Σ) = {cloud(D,Σ, a) | a ∈ chase(D,Σ)}
clouds+(D,Σ) = {(a, cloud(D,Σ, a)) | a ∈ chase(D,Σ)}

Any subset S ⊆ cloud(D,Σ, a) is called a subcloud of a (with respect to Σ and D). The
set of all subclouds of an atom a is denoted by subclouds(D,Σ, a). Finally, we define
subclouds+(D,Σ) = {(a, C) | a ∈ chase(D,Σ) and C ⊆ cloud(D,Σ, a)}.

Definition 5.11. Let B be an instance (possibly with nulls) over a schema, R, and D be
a database over R. Let α and β be atoms from the Herbrand Base HB(B). We say that
α and β are D-isomorphic, denoted α ≃D β, or simply α ≃ β in case D is understood, if
there is a bijective homomorphism6 f : dom(α) → dom(β) such that f(α) = β (and thus
also f−1(β) = α). This definition extends directly to the cases when α and β are sets of
atoms or atom-set pairs (in a similar fashion as in clouds+(D,Σ)).

Example 5.12. If {a, b} ⊆ dom(D) and {ζ1, ζ2, ζ3, ζ4} ⊆ ∆N , we have: p(a, ζ1, ζ2) ≃
p(a, ζ3, ζ4) and (p(a, ζ3), {q(a, ζ3), q(ζ3, ζ3), r(ζ3)}) ≃ (p(a, ζ1), {q(a, ζ1), q(ζ1, ζ1), r(ζ1)}). On
the other hand, p(a, ζ1, ζ2) 6≃ p(a, ζ1, ζ1) and p(a, ζ1, ζ2) 6≃ p(ζ3, ζ1, ζ2).

Lemma 5.13. Given a database D for a schema R and an instance B for R, the D-
isomorphism relation ≃D on HB(B) (resp., 2HB(B) or HB(B) × 2HB(B), as in Defini-
tion 5.11) is an equivalence relation.

The above lemma follows directly from the definitions; it lets us define, for every set A
of atoms of HB(B), the quotiont set A/≃D

with respect to the above defined equivalence
relation ≃D. Such notion of quotient set naturally extends to sets of sets of atoms such as
clouds(D,Σ), or sequences (pairs, in particular) thereof.

Lemma 5.14. Let Σ be a weakly guarded set of TGDs and let D be a database for a schema
R. Let |R| denote the number of predicate symbols in R, and w be the maximum arity of
the symbols in R. Then:

(1) For every atom a ∈ chase(D,Σ), we have |cloud(D,Σ, a)| 6 |R| · (|dom(D)|+w)w.
Thus, cloud(D,Σ, a) is polynomial in the size of the database D if the arity w is
bounded and exponential otherwise.
(2) For each atom a ∈ chase(D,Σ), |subclouds(D,Σ, a)| 6 2|R|·(|dom(D)|+w)w .
(3) |clouds(D,Σ)/≃| 6 2|R|·(|dom(D)|+w)w , i.e., there are—up to isomorphism—at most
exponentially many possible clouds or subclouds in a chase, if the arity w is bounded,
otherwise doubly exponentially many.
(4) |clouds+(D,Σ)/≃| 6 |subclouds

+(D,Σ)/≃| 6 |R|·(|dom(D)|+w)w·2|R|·(|dom(D)|+w)w .

Proof. The claims are proved by combinatorial arguments as follows.

(1) All distinct atoms in a cloud are obtained by placing the symbols of a, plus possibly
symbols from dom(D), in at most w arguments of some predicate symbol in R. For
each predicate in R, the number of symbols to be thus placed is |dom(D)|+ w.

6. Recall that, by definition, the restriction of a homomorphism to dom(D) is the identity mapping.

142

Taming the Infinite Chase

(2) The different ways we can choose subclouds(D,Σ, a) clearly determines the set of
all subsets of cloud(D,Σ, a).
(3) It is easy to see that the size of the set of all non-pairwise-isomorphic clouds in the
chase is bounded by the number of possible subclouds of a fixed atom.
(4) Here, we are counting the number of all possible subclouds, each associated with
its “generating” atom. The inequality holds because, once we choose all non-pairwise-
isomorphic clouds, each of their possible generating atoms can have as arguments only
|dom(D)|+ w symbols with which to construct the subclouds.

Definition 5.15. Given a database D and a set of WGTGDs, let a be an atom in
chase(D,Σ). We define the following notions:

• a↓ is the set of all atoms that label nodes of the subtrees of gcf(D,Σ) rooted in a;
• ∇a = a↓ ∪ cloud(D,Σ, a);
• if S is a subset of atoms in gcf(D,Σ), then gcf[a, S]7 is inductively defined as follows:
(i) S ∪ {a} ⊆ gcf[a, S];
(ii) b ∈ gcf[a, S] if b ∈ a↓, and b is obtained via the chase rule applied using a TGD
with body Φ and head-atom ψ, and a homomorphism θ, such that θ(ψ) = b and
θ(Φ) ⊆ gcf[a, S].

Theorem 5.16. If D is a database for a schema R, Σ is a weakly guarded set of TGDs,
and a ∈ chase(D,Σ), then ∇a = gcf[a, cloud(D,Σ, a)].

Proof. By the definitions of ∇a and gcf[a, cloud(D,Σ, a)], we have gcf[a, cloud(D,Σ, a)] ⊆
∇a. It remains to show the converse inclusion: ∇a ⊆ gcf[a, cloud(D,Σ, a)]. Define
levela(a) = 0 and for each fact b ∈ cloud(D,Σ, a) − ∇a we also define levela(b) = 0.
For every other atom c ∈ a↓, levela(c) is defined as the distance (i.e., the length of the path)
from a to c in gcf(D,Σ).

We first show the following facts in parallel by induction on levela(b):

(1) If b ∈ ∇a then cloud(D,Σ, b) ⊆ gcf[a, cloud(D,Σ, a)].
(2) If b ∈ ∇a then b ∈ gcf[a, cloud(D,Σ, a)].

Statement (2) above is the converse inclusion we are after.

Induction basis. If levela(b) = 0, we have either (a) b ∈ cloud(D,Σ, a) − {a},
or (b) b = a. In case (a), cloud(D,Σ, a) ⊆ gcf[a, cloud(D,Σ, a)] and therefore b ∈
gcf[a, cloud(D,Σ, a)], which proves (1). Moreover, since b ∈ cloud(D,Σ, a), b cannot con-
tain more labeled nulls than a, so dom(b) − dom(D) ⊆ dom(a) − dom(D). Therefore
cloud(D,Σ, b) ⊆ cloud(D,Σ, a) ⊆ gcf[a, cloud(D,Σ, a)], which proves (2). In case (b),
b = a and thus cloud(D,Σ, a) = cloud(D,Σ, b) ⊆ gcf[a, cloud(D,Σ, a)], which proves (1).
Since b = a ∈ gcf[a, cloud(D,Σ, a)], (2) follows as well.

Induction step. Assume that (1) and (2) are satisfied for all c ∈ ∇a such that
levela(c) 6 i and assume levela(b) = i+ 1, where i > 0. The atom b is produced by a TGD
whose guard g matches some atom b− at level i, which is, by the induction hypothesis, in
gcf[a, cloud(D,Σ, a)]. The body atoms of such a TGD then match atoms whose arguments

7. D and Σ are implicit here, to avoid clutter.

143

Cal̀ı, Gottlob & Kifer

must be in cloud(D,Σ, b) and thus also in gcf[a, cloud(D,Σ, a)], again by the induction hy-
pothesis. Therefore, (2) holds for b. To show (1), consider an atom b′ ∈ cloud(D,Σ, b). In
case dom(b′) ⊆ dom(b−), we have cloud(D,Σ, b′) ⊆ cloud(D,Σ, b−) ⊆ gcf[a, cloud(D,Σ, a)].
Otherwise, b′ contains at least one new labeled null that was introduced during the gener-
ation of b. Given that Σ is a weakly guarded set and each labeled null in ∆N is introduced
only once in the chase, there must be a path from b to b′ in gcf(D,Σ) (and therefore also
in ∇b). A simple additional induction on levelb(b

′) shows that all the applications of TGDs
on that path must have been fired on elements of gcf[a, cloud(D,Σ, a)] only. Therefore,
b′ ∈ gcf[a, cloud(D,Σ, a)], which proves (1).

The corollary below follows directly from the above theorem.

Corollary 5.17. If D is a database for a schema R, Σ is a weakly guarded set of TGDs,
a, b ∈ chase(D,Σ), and (a, cloud(D,Σ, a)) ≃ (b, cloud(D,Σ, b)), then ∇a ≃ ∇b.

Definition 5.18. Let D be a database and a an atom. The canonical renaming cana :
dom(a) ∪ dom(D)→ ∆a ∪ dom(D), where ∆a = {ξ1, . . . , ξh} ⊂ ∆N is a set of labeled nulls
not appearing in a, is a 1-1 substitution that maps each element of dom(D) into itself and
each null-argument of a to the first unused element ξi ∈ ∆a. If S ⊆ cloud(D,Σ, a) then
cana(S) is well-defined and the pair (cana(a), cana(S)) will be denoted by can(a, S).

Example 5.19. Let a = g(d, ζ1, ζ2, ζ1) and S = {p(ζ1), r(ζ2, ζ2), s(ζ1, ζ2, b)}, where {d, b} ⊆
dom(D) and {ζ1, ζ2} ⊆ ∆N . Then cana(a) = g(d, ξ1, ξ2, ξ1), and cana(S) = {p(ξ1), r(ξ2, ξ2),
s(ξ1, ξ2, b)}.

Definition 5.20. If D is a database for a schema R, Σ is a weakly guarded set of TGDs
on R, S is a set of atoms and a ∈ S, then we write (D,Σ, a, S) |= Q iff there exists a
homomorphism θ such that θ(Q) ⊆ S ∪ a↓.

The following result straightforwardly follows from Theorem 5.16 and the previous def-
initions.

Corollary 5.21. If D is a database for a schema R, Σ is a weakly guarded set of TGDs,
a ∈ chase(D,Σ), and Q is a Boolean conjunctive query, then the following statements are
equivalent:

(1) ∇a |= Q
(2) (D,Σ, a, cloud(D,Σ, a)) |= Q
(3) (D,Σ, cana(a), cana(cloud(D,Σ, a))) |= Q
(4) there is a subset S′ ⊆ cloud(D,Σ, a) such that (D,Σ, cana(a), cana(S

′)) |= Q.

We will use the pair can(a, cloud(D,Σ, a)) as a unique canonical representative of the
equivalence class {(b, cloud(D,Σ, b)) | (b, cloud(D,Σ, b)) ≃ (a, cloud(D,Σ, a))} in
clouds+(D,Σ). Therefore, the set {can(a, cloud(D,Σ, a)) | a ∈ chase(D,Σ)} and the
quotient set clouds+(D,Σ)/≃ are isomorphic. Note that, by Lemma 5.14, these sets are
finite and have size exponential in |D|+ |Σ| if the schema is fixed (and double exponential
otherwise).

Now, given a database D for a schema R, a weakly guarded set of TGDs Σ on R, and an
atomic Boolean conjunctive query Q, we describe an alternating algorithm Acheck(D,Σ, Q)

144

Taming the Infinite Chase

that decides whetherD∪Σ |= Q. We assume thatQ has the form ∃Y1, . . . , Yℓ, q(t1, t2, . . . , tr),
where the t1, . . . , tr, with r > ℓ, are terms (constants or variables) in dom(D)∪{Y1, Y2, . . . , Yℓ}.

The algorithm Acheck returns “true” if it accepts some configuration, according to the
criteria explained below; otherwise, it returns “false”. Acheck uses tuples of the form
(a, S, S′,≺, b) as its basic data structures (configurations). Intuitively, each such configura-
tion corresponds to an atom a derived at some step of the chase computation together with
a set S′ of already derived atoms belonging the cloud of a. The informal meaning of the
parameters of a configuration is as follows.

(1) a is the root atom of the chase subtree under consideration.
(2) S ⊆ cloud(D,Σ, a); S is intuitively a subcloud containing a set of atoms of cloud(D,Σ, a)

that, while computing chase(D,Σ), are originally derived outside the subtree of the
guarded chase forest rooted in a (and are thus outside the subtree rooted in a of
rgcf(D,Σ)). We expect these atoms to serve as “side atoms” (i.e., atoms matching
non-guard atoms of a TGD) when deriving the desired atom b starting at a.

(3) S′ contains, at every step in the computation, the subset of cloud(D,Σ, a) that has
been computed so far, or can be assumed to be valid, as it will be verified in another
branch of the computation.

(4) ≺ is a total ordering of the atoms in S consistent with the order in which the atoms
of S are proved by the algorithm (by simulating the chase procedure).

(5) b is an atom that needs to be derived. In some cases (namely, on the “main” path
in the proof tree developed by Acheck), the algorithm will not try to derive a specific
atom, but will just match the query atom q(t1, . . . , tr) against the atoms of that path.
In that case, we use the symbol ⋆ in place of b.

We are now ready to describe the algorithm Acheck at a sufficiently detailed level. However,
we omit many low-level details.

Acheck first checks if D |= Q. If so, Acheck returns “true” and halts. Otherwise, the
algorithm attempts to guess a path, the so called main branch, that contains an atom q
that is an instance of Q. This is done as follows.

Initialization. The algorithm Acheck starts at D and guesses some atom a ∈ D,
which it will expand into a main branch that will eventually lead to an atom q matching
the query Q. To this end, the algorithm guesses a set S ⊆ cloud(D,Σ, a) and a total order
≺ on S, and then generates the configuration c0 = (a, S, S′,≺, ⋆). The set S′ is initialized
as S′ = S.

Form of a configuration—additional specifications. In each configuration,
the set set S is implicitly partitioned into two sets S⊥ and S+, where S⊥ ⊆ D and S+ =
{a1, a2, . . . , ak} is disjoint from D. The total order ≺ is such that all elements of S⊥ precede
those of S+. On S+, ≺ is defined as a1 ≺ a2 ≺ · · · ≺ a ≺ · · · ≺ ak.

Summary of tasks Acheck performs for each configuration. Assume the
Acheck algorithm generates a configuration c = (a, S, S′,≺, b), where b might be ⋆. Acheck
then performs the following tasks on c:

• Acheck verifies that the guessed set S of c is actually a subset of cloud(D,Σ, a). This
is achieved by a massive universal branching that will be described below under the

145

Cal̀ı, Gottlob & Kifer

heading “Universal Branching”. Let us, however, anticipate here how it works, as
this may contribute to the understanding of the other steps. Acheck will verify that
each of the atoms a1, . . . , ak is in chase(D,Σ), where, for each i ∈ {1, . . . , k}, the
proof of ai ∈ chase(D,Σ) can use as premises only the atoms of S that precede ai,
according to ≺. The algorithm thus finds suitable atoms d1, . . . , dk ∈ D and builds
proof trees for a1, . . . , ak. For each 1 6 i 6 k, it generates configurations of the
form (di, S, S

⊥ ∪ {a1, a2, . . . , ai−1},≺, ai). Each such configuration will be used as a
starting point in a proof of ai ∈ chase(D,Σ) assuming that a1, . . . , ai−1 ∈ chase(D,Σ)
has already been established. Acheck thus simulates a sequential proof of all atoms of
cloud(D,Σ, a) that are in S via a parallel universal branching from c.
• Acheck tests whether c is a final configuration (i.e., an accepting or rejecting one).
This is described under the heading “Test for final Configuration” below.
• If c is not a final configuration of Acheck, this means that its first component a is
not yet the one that will be matched to b (or the query, if b = ⋆). Acheck then
“moves down” the chase tree by one step by replacing a with a child of a. This step
is described under the heading “Existential Branching”.

In the following, let c = (a, S, S′,≺, b) be a configuration, where b may be ⋆.
Test for final configuration. If b ∈ D, then Acheck accepts this configuration,

and does not expand it further. If b = ⋆, then Acheck checks (via a simple subroutine)
whether Q matches a, i.e., if a is a homomorphic image of the query atom q(t1, . . . , tr). If
so, Acheck accepts c (and thus returns “true”) and does not expand it further. If b 6= ⋆,
Acheck checks whether a = b. If this is true, then Acheck accepts the configuration c and
does not expand it further. Otherwise, the configuration tree is expanded as described next.

Existential Branching. Acheck guesses a TGD ρ ∈ Σ having body Φ and head-
atom ψ, and whose guard g matches a via some substitution θ (that is, θ(g) = a) such
that θ(Φ) ⊆ S′. θ(ψ) then corresponds to a newly generated atom (possibly containing
some fresh labeled nulls in ∆N). Note that, if no such guess can be made, this existential
branching automatically fails and Acheck returns false. To define the configuration c1
that Acheck creates out of c, we first introduce an intermediate auxiliary configuration
ĉ = (â, Ŝ, Ŝ′, ≺̂, b̂), where:

(a) â = θ(ψ) is the new atom generated by the application of ρ with the substitution θ.

(b) Ŝ contains â and each atom d of S such that dom(d) ⊆ dom(â) ∪ dom(D). Thus, in
addition to the new atom â, Ŝ inherits all atoms that were in the subcloud S of the
parent configuration c that are “compatible” with â. In addition, Ŝ includes a set
newatoms(ĉ) of new atoms that are guessed by the Acheck algorithm. All arguments
of each atom of newatoms(ĉ) must be elements of the set dom(â) ∪ dom(D).

(c) Ŝ′ = Ŝ.
(d) ≺̂ is a total order on Ŝ′ obtained from ≺ by eliminating all atoms in S − Ŝ and by

ordering the atoms from newatoms(ĉ) after all the atoms from the set oldproven(ĉ) =
Ŝ′∩S′ (these are assumed to have already been proven at the parent configuration c).

(e) b̂ is defined as b̂ = b.

Next, Acheck constructs the configuration c1 out of ĉ by canonicalization: c1 = can â(ĉ),

that is c1 = (can â(â), can â(Ŝ), can â(Ŝ′), can â(≺̂), can â(b̂)), where can â(≺̂) is the total

order on the atoms in can â(Ŝ′) derived from ≺̂.

146

Taming the Infinite Chase

Intuitively, c1 is the “main” child of c on the way to deriving the query atom q(t1, . . . , tr)
assuming that all atoms of the guessed subcloud S are derivable.

Universal Branching. In the above generated configuration ĉ, the set Ŝ′ is equal
to Ŝ. As already said, this means that it is assumed for that configuration that the set of
atoms Ŝ is derivable. To verify that this is indeed the case, Acheck generates in parallel,
using universal computation branching, a set of auxiliary configurations for proving that all
the guessed atoms in can â(newatoms(ĉ)) are indeed derivable through the chase of D with
respect to Σ.

Let can â(newatoms(ĉ)) = {n1, . . . , nm} and let the linear order ≺̂ on Ŝ be a concate-
nation of the order ≺, restricted to oldproven(ĉ), and the order n1≺̂n2≺̂ · · · ≺̂nm. For each

1 6 i 6 m, Acheck generates a configuration c
(i)
2 defined as

c
(i)
2 = (can â(â), can â(Ŝ), can â(oldproven(ĉ)) ∪ {n1, . . . , ni−1}, can â(≺̂), ni).

This completes the description of the Acheck algorithm.

Theorem 5.22. The Acheck algorithm is correct and runs in exponential time in case of
bounded arities, and in double exponential time otherwise.

Proof.

Soundness. It is easy to see that the algorithm is sound with respect to the standard
chase, i.e., if Acheck(D,Σ, Q) returns “true”, then chase(D,Σ) |= Q. In fact, modulo
variable renaming, which preserves soundness according to Corollary 5.21, the algorithm
does nothing but chasing D with respect to Σ, even if the chase steps are not necessarily
in the same order as in the standard chase. Thus, each atom derived by Acheck occurs in
some chase. Since every chase computes a universal solution that is complete with respect
to conjunctive query answering, whenever Acheck returns “true”, Q is entailed by some
chase, and thus also by the standard chase, chase(D,Σ).

Completeness. The completeness of Acheck with respect to chase(D,Σ) can be shown
as follows. Whenever chase(D,Σ) |= Q, there is a finite proof of Q, i.e., a finite sequence
proof Q of generated atoms that ends with some atom q, which is an instance of Q. This
proof can be simulated by the alternating computation Acheck as follows: (i) steer the main
branch of Acheck towards (a variant of) q by choosing successively the same TGDs and
substitutions θ (modulo the appropriate variable renamings) as those used in the standard
chase for the branch of q; (ii) whenever a subcloud S has to be chosen for some atom a by
Acheck, choose the set of atoms cloud(D,Σ, a)∩ (D ∪ atoms(proof Q)), modulo appropriate
variable renaming; (iii) for the ordering ≺, always choose the one given by proof Q. The
fact that no Q-instance is lost when replacing configurations by their canonical versions is
guaranteed by Corollary 5.21.

Computational cost. In case of bounded arity, the size of each configuration c
is polynomial in D ∪ Σ. Thus, Acheck describes an alternating pspace (i.e., apspace)
computation. It is well-known that apspace = exptime. In case the arity is not bounded,
each configuration requires at most exponential space. The algorithm then describes a
computation in Alternating expspace, which is equal to 2exptime.

147

Cal̀ı, Gottlob & Kifer

Corollary 5.23. Let Σ be a weakly guarded set of TGDs, and let D be a database over
a schema R. Then, computing chase⊥(D,Σ) can be done in exponential time in case of
bounded arity, and in double exponential time otherwise.

Proof. It is sufficient to start with an empty set A and then cycle over ground atoms b in
the Herbrand base HB(D) while checking whether chase(D,Σ) |= b. If this holds, we add
b to A. The result is chase⊥(D,Σ). The claimed time bounds follow straightforwardly.

We can now finally state our independent proof of Theorem 5.9.

Proof of Theorem 5.9. We construct an algorithm Qcheck such that Qcheck(D,Σ, Q) outputs
“true” iff D∪Σ |= Q (i.e., iff chase(D,Σ) |= Q). The algorithm relies on the notion of squid
decompositions, and on Lemma 5.8; it works as follows.

(1) Qcheck starts by computing chase⊥(D,Σ).
(2) Qcheck nondeterministically guesses a squid decomposition δ = (Q+, h,H, T) of Q

based on a set Vδ ⊆ vars(h(Q+)), where H = {a ∈ h(Q+) | vars(a) ⊆ Vδ} and T is
[Vδ]-acyclic. Additionally, Qcheck guesses a substitution θ0 : Vδ → dom(D) such that
θ0(H) ⊆ chase⊥(D,Σ). Note that this is an np guess, because the number of atoms
in Q+ is at most twice the the number of atoms in Q.

(3) Qcheck checks whether θ0 can be extended to a homomorphism θ such that θ(T) ⊆
chase+(D,Σ). By Lemma 5.8, this is equivalent to check if chase(D,Σ) |= Q. Such
a θ exists iff for each connected subgraph t of θ0(T), there is a homomorphism θt
such that θt(t) ⊆ chase+(D,Σ). The Qcheck algorithm thus identifies the connected
components of θ0(T). Each such component is a [dom(D)]-acyclic conjunctive query,
some of whose arguments may contain constants from dom(D). Each such component
can thus be represented as a [dom(D)]-join tree t. For each such join tree t, Qcheck
now tests whether there exists a homomorphism θt such that θt(t) ⊆ chase+(D,Σ).
This is done by the subroutine Tcheck, that takes the TGD set Σ, the database D,
and a connected subgraph (i.e., a subtree) t of θ0(T) as input. The inner workings of
Tcheck(D,Σ, t) are described below.

(4) Qcheck outputs “true” iff the above check (3) gives a positive result.

The correctness of Qcheck follows from Lemma 5.8. Given that step (2) is nondeter-
ministic, the complexity of Qcheck is in npX , i.e., np with an oracle in X, where X is
a complexity class that is sufficiently powerful for: (i) computing chase⊥(D,Σ), and (ii)
performing the tests Tcheck(D,Σ, t).

We now describe the Tcheck subroutine.
General notions. Tcheck(D,Σ, t) is obtained from Acheck via the following modifi-

cations. Each configuration of Tcheck maintains a pointer Tpoint to a vertex of t (an atom
aq). Intuitively, this provides a link to the root of the subtree of t that still needs to be
matched by descendant configurations of c. In addition to the data structures carried by
each configuration of Acheck, each configuration of Tcheck also maintains an array subst

of length w, where w is the maximum predicate arity in R. Informally, subst encodes a
substitution that maps the current atom of t to (the canonicalized version of) the current
atom of chase(D,Σ).

148

Taming the Infinite Chase

Tcheck works like Acheck, but instead of nondeterministically constructing a main con-
figuration path of the configuration tree such that eventually some atom matches the query,
it nondeterministically constructs a main configuration (sub)tree τ of the configuration tree,
such that eventually all atoms of the join tree t get consistently translated into some vertices
of τ . An important component of each main configuration c of Tcheck is its current atom a.
Initially, a is some nondeterministically chosen atom of D. For subsequent configurations
of the alternating computation tree, a will take on nodes of gcf(D,Σ).

Initialization. Similarly to Acheck, the computation starts by generating an initial
configuration (a, S, S,≺, ⋆,Tpoint, subst), where a is nondeterministically chosen from the
database D, Tpoint points to the root r of t, and subst is a homomorphic substitution
that subst(r) = a, if r is homomorphically mappable on a; otherwise subst is empty. This
configuration will now be the root of the main configuration tree.

In general, the pointer Tpoint of each main configuration c = (a, S, S′,≺, ⋆,Tpoint, subst)
points to some atom aq of t, which has not yet been matched. The algorithm attempts to
expand this configuration by successively guessing a subtree of configurations, mimicking a
suitable subtree of gcf(D,Σ) that satisfies the subquery of t rooted at aq.

Whenever Tcheck generates a further configuration, just as for Acheck, Tcheck generates
via universal branching a number of configurations whose joint task is to verify that all
elements of S are indeed provable. (We do not provide further details on how this branching
is done.)

Expansion. The expansion of a main configuration c = (a, S, S′,≺, ⋆,Tpoint, subst)
works as follows. For a configuration c, Tcheck first checks whether there exists a homo-
morphism µ such that µ(subst(aq)) = a.

1. (µ exists.) If µ exists, we have two cases:

1.1. If aq is a leaf of t, then the current configuration turns into an accepting one.
1.2. If aq is not a leaf of t, then Tcheck nondeterministically guesses whether µ is

a good match, i.e., one that contributes to a global query answer and can be
expanded to map the entire tree t into gcf(D,Σ).

1.2.1. (Good match). In case of a good match, Tcheck branches universally and
does the following for each child aqs of aq in t. It nondeterministically (i.e.,
via existential branching) creates a new configuration

cs = cana
s
(as, Ss, S

′
s,≺s, ⋆,Tpoints, substs)

where Tpoints points to aqs, and where substs encodes the composition µ ◦
substs. The atom as is guessed, analogously to what is done in Acheck, by
guessing some TGD ρ ∈ Σ having body Φ and head atom ψ, such that
the guard atom g matches a via some homomorphism θ (that is, θ(g) = a)
and where θ(Φ) ⊆ S′. The cloud subsets Ss and S′

s are chosen again as in
Acheck. Intuitively, here Tcheck, having found a good match of aq on a, tries
to match the children of aq in t to children (and, eventually, descendants)
of a in gcf(D,Σ). Finally, the function cana

s
indicates that appropriate

canonizations are made to obtain cs from c (we omit the tedious details).

149

Cal̀ı, Gottlob & Kifer

1.2.2. (No good match). In case no good match exists, a child configuration

cnew = cana
new

(anew, S, S
′,≺, ⋆,Tpoint, subst)

of c is nondeterministically created, whose first component represents a child
anew of a, and where cnew inherits all of its remaining components from c.
Intuitively, after having failed at matching aq (to which, we remind, Tpoint
points) to a, Tcheck attempts at matching the same aq to some child of a in
gcf(D,Σ). By analogy with the previous case, anew is obtained by guessing
some TGD ρ ∈ Σ having body Φ and head atom ψ, such that the guard
atom g matches a via some homomorphism θ (that is, θ(g) = a), θ(Φ) ⊆ S′,
and where anew := θ(ψ). Again, the function term cana

new
indicates that

appropriate canonizations are applied (which we do not describe in detail).

2. (µ does not exist.) In this case, Tcheck proceeds exactly as in case 1.2.2, namely, it
attempts at matching the same aq to some child (or eventually some descendant) of
a in gcf(D,Σ).

Correctness. The correctness of Tcheck can be shown along similar lines as for
Acheck. An important additional point to consider for Tcheck is that, given that the query
t is acyclic, it is actually sufficient to remember at each configuration c only the latest
“atom” substitution subst. The correctness of Qcheck then follows from the correctness of
Tcheck and from Lemma 5.8.

Computational cost. As for the complexity of Qcheck, note that in case the arity
is bounded, Tcheck runs in apspace = exptime, and computing chase⊥(D,Σ) is in ex-

ptime by Corollary 5.23. Thus, Qcheck runs in time npexptime = exptime. In case of
unbounded arities, both computing chase⊥(D,Σ) and running Tcheck are in 2exptime,
therefore Qcheck runs in time np2exptime = 2exptime. ✷

By combining Theorems 4.1 and 5.9 we immediately get the following characterization
for the complexity of reasoning under weakly guarded sets of TGDs.

Theorem 5.24. Let Σ be a weakly guarded set of TGDs on a schema R, D a database for
R, and Q a Boolean conjunctive query. Determining whether D ∪ Σ |= Q or, equivalently,
whether chase(D,Σ) |= Q is exptime-complete in case of bounded predicate arities, even
if Σ is fixed and Q is atomic. In the general case of unbounded predicate arities, the same
problem is 2exptime-complete. The same completeness results hold for the problem of
query containment under weakly guarded sets of TGDs.

Generalization. The definition of WGTGDs can be generalized to classes of TGDs whose
unguarded positions are guaranteed to contain a controlled finite number of null-values
only. Let f be a computable integer function in two variables. Call a predicate position π
of a TGD set Σ f -bounded if no more than f(|D|, |Σ|) null values appear in chase(D,Σ) as
arguments in position π; otherwise call Σ f -unbounded. A set Σ of TGDs is f -weakly guarded
if each each rule of Σ contains an atom in its body that covers all variables which occur
within this rule in f -unbounded positions only. By a very minor adaptation of the proof of
Theorem 3.14, it can be seen that CQ-answering for the class of f -weakly guarded TGDs
is decidable. Moreover, by a simple modification of the Qcheck and Tcheck procedures,

150

Taming the Infinite Chase

allowing a polynomial number of nulls to enter “unguarded” positions, it can be shown that
CQ-answering for fixed sets Σ of W∗GTGDs is exptime-complete in the worst case, where
the class of W∗GTGD sets is defined as follows. A set Σ of TGDs belongs to this class if
Σ is f -weakly guarded for some function f for which there exists a function g, such that
f(|D|, |Σ|)| 6 |D|g(|Σ|).

6. Guarded TGDs

We now turn our attention to GTGDs. We first consider the case of a variable database D
as input. Later, we prove part of the complexity bounds under the stronger condition of
fixed database.

6.1 Complexity—Variable Database

Theorem 6.1. Let Σ be a set of GTGDs over a schema R and D be a database for R. Let,
as before, w denote the maximum predicate arity in R and |R| the total number of predicate
symbols in R. Then:

(1) Computing chase⊥(D,Σ) can be done in polynomial time if both w and |R| are
bounded and, thus, also in case of a fixed set Σ. The same problem is in exptime

(and thus exptime-complete) if w is bounded, and in 2exptime otherwise.
(2) If Q is an atomic or fixed Boolean query then checking whether chase(D,Σ) |= Q is
ptime-complete when both w and |R| are bounded. The same problem remains ptime-
complete even in case Σ is fixed. This problem is exptime-complete if w is bounded
and 2exptime-complete in general. It remains 2exptime-complete even when |R| is
bounded.
(3) If Q is a general conjunctive query, checking chase(D,Σ) |= Q is np-complete in
case both w and |R| are bounded and, thus, also in case of a fixed set Σ. Checking
chase(D,Σ) |= Q is exptime-complete if w is bounded and 2exptime-complete in
general. It remains 2exptime-complete even when |R| is bounded.
(4) BCQ answering under GTGDs is np-complete if both w and |R| are bounded, even
in case the set Σ of GTGDs is fixed.
(5) BCQ answering under GTGDs is exptime-complete if w is bounded and 2exptime-
complete in general. It remains 2exptime-complete even when |R| is bounded.

Proof. First, note that items (4) and (5) immediately follow from the first three items,
given that chase(D,Σ) is a universal model. We therefore just need to prove items (1)-(3).
We first explain how the hardness results are obtained, and then deal with the matching
membership results.

Hardness Results. The ptime-hardness of checking chase(D,Σ) |= Q for atomic (and
thus also fixed) queries Q and for fixed Σ follows from the fact that ground atom inference
from a fixed fully guarded Datalog program over variable databases is ptime-hard. In fact,
in the proof of Theorem 4.4 in the work by Dantsin, Eiter, Gottlob, and Voronkov (2001)
it is shown that fact inference from a single-rule Datalog program whose body has a guard
atom that contains all variables is ptime-hard. The np-hardness in item (3) is immediately
derived from the hardness of CQ containment (which in turn is polynomially equivalent to

151

Cal̀ı, Gottlob & Kifer

query answering) without constraints (Chandra & Merlin, 1977). The hardness results for
exptime and 2exptime are all derived via minor variations of the proof of Theorem 4.1.
For example, when |R| is unbounded and w is bounded, the tape cells of the polynomial
worktape are simulated by using polynomially many predicate symbols. For example, the
fact that in configuration v cell 5 contains symbol 1 can be encoded as S1

5(v). We omit
further details, given that a much stronger hardness result will be established via a full
proof in Theorem 6.2.

Membership results. The membership results are proved exactly as those for weakly
guarded sets of TGDs, except that instead of using the concept of cloud, we now use a
similar concept of restricted cloud, which coincides with that of a type of an atom in the
work by Cal̀ı et al. (2012a). The restricted cloud rcloud(D,Σ, a) of an atom a ∈ chase(D,Σ)
is the set of all atoms b ∈ chase(D,Σ) such that dom(b) ⊆ dom(a). By a proof that
is almost identical to the one of Theorem 5.16, we can show that if D is a database, Σ
a set of GTGDs, and if a ∈ chase(D,Σ), then ∇ra = gcf[a, rcloud(D,Σ, a)], where ∇ra
is defined as ∇ra = {a↓} ∪ rcloud(D,Σ, a). It follows that, for the main computational
tasks, we can use algorithms rAcheck, rQcheck, and rTcheck, which differ from the already
familiar Acheck, Qcheck, and Tcheck only in that restricted clouds instead of the ordinary
clouds are used. However, unlike the case when both |R| and w are bounded and a cloud
(or subcloud) can have polynomial size in |D ∪ Σ|, a restricted cloud rcloud(D,Σ, a) has
a constant number of atoms, and storing its canonical version cana(rcloud(D,Σ, a)) thus
requires logarithmic space only. In total, in case both |R| and w are bounded, due to the
use of restricted clouds (and subsets thereof) each configuration c of rAcheck and of rTcheck
only requires logarithmic space. Since alogspace = ptime, the ptime-results for atomic
queries in items (1) and (2) follow. Moreover, if both |R| and w are bounded, for general
(non-atomic and non-fixed) queries, the rQcheck algorithm decides if chase(D,Σ) |= Q in
np by guessing a squid decomposition (in nondeterministic polynomial time) and checking
(in alogspace=ptime) if there is a homomorphism from this squid decomposition into
chase(D,Σ). Thus, in this case, rQcheck runs in npptime = np, which proves the np upper
bound of Item (3). If, in addition, Q is fixed, then Q has only a constant number of squid
decompositions, and therefore rQcheck runs in ptimeptime = ptime, which proves the ptime
upper bound for fixed queries mentioned in item (2). The exptime and 2exptime upper
bounds are inherited from the same upper bounds for WGTGDs.

Note that one of the main results by Johnson and Klug (1984), namely, that query
containment under inclusion dependencies of bounded arities is np-complete, is a special
case of Item (3) of Theorem 6.1.

6.2 Complexity—Fixed Database

The next result tightens parts of Theorem 6.1 by showing that the above exptime and
2exptime-completeness results hold even in case of a fixed input database.

Theorem 6.2. Let Σ be set of GTGDs on a schema R. As before, let w denote the
maximum arity of predicate in R and |R| be the total number of predicate symbols. Then,
for fixed databases D, checking whether chase(D,Σ) |= Q is exptime-complete if w is

152

Taming the Infinite Chase

bounded and 2exptime-complete for unbounded w. For unbounded w, this problem remains
2exptime-complete even when |R| is bounded.

Proof. First, observe that the upper bounds (i.e., the membership results for exptime and
2exptime) are inherited from Theorem 6.1, so it suffices to prove the hardness results for
the cases where Q is a fixed atomic query.

We start by proving that checking chase(D,Σ) |= Q is exptime-hard if w is bounded.
It is well-known that apspace (alternating pspace) equals exptime.

As already noted in the proof of Theorem 4.1, it is sufficient to simulate an linspace

alternating Turing machine (ATM) M that uses at most n worktape cells on every input
(bit string) I of size n, where the input string is initially present on the worktape. In
particular, we will show thatM accepts the input I iff chase(D,Σ) |= Q.

Without loss of generality, we assume that (i) ATMM has exactly one accepting state,
a, which is also a halting state; (ii) the initial state of M is an existential state; (iii) M
alternates at each transition between existential and universal states; and (iv) M never
tries to read beyond its tape boundaries.

Let M be defined as M = (S,Λ, δ, q0, {sa}), where S is the set of states, Λ = {0, 1, ♭}
is the tape alphabet, ♭ ∈ Λ is the blank tape symbol, δ : S × Λ → (S × Λ × {ℓ, r,⊥})2

is the transition function (⊥ denotes the “stay” head move, while ℓ and r denote “left”
and “right” respectively), q0 ∈ S is the initial state, and {sa} is the singleton set of final
(accepting) states. Since M is an alternating TM, its set of states S is partitioned into
two sets, S∀ and S∃—universal and existential states, respectively. The general idea of the
encoding is that the different configurations ofM on input I of length n will be represented
by fresh nulls that are generated in the construction of the chase.

Let us now describe the schema R. First, for each integer 1 6 i 6 n, R contains the
predicate head i/1, such that head i(c) be true iff at configuration c the head of M is over
the tape cell i. R also has the predicates zeroi/1, onei/1, and blank i/1, where zeroi(c),
onei(c), and blank i(c) are true if in configuration c the tape cell i contains the symbol 0, 1,
or ♭, respectively. Furthermore, for each state s ∈ S, R has a predicate states/1, such that
states(c) is true iff the state of configuration c is s. R also contains: the predicate start/1,
where start(c) is true iff c is the starting configuration; the predicate config/1, which is true
iff its argument identifies a configuration; and the predicate next/3, where next(c, c1, c2)
is true if c1 and c2 are the two successor configurations of c. There are also predicates
universal/1 and existential/1, such that universal(c) and existential(c) are true if c is a
universal (respectively, existential) configuration. Finally, there is a predicate accepting/1,
where accepting(c) is true only for accepting configurations c, and a propositional symbol
accept , which is true iff the Turing MachineM accepts the input I.

We now describe a set Σ(M, I) of GTGDs that simulates the behavior ofM on input
I. The rules of Σ(M, I) are as follows.

1. Initial configuration generation rules. The following rule creates an initial state: →
∃X init(X). We also add a rule init(X) → config(X), which says that the initial
configuration is, in fact, a configuration.

2. Initial configuration rules. The following set of rules encodes the tape content of the
initial configuration, that is, the input string I. For each 1 6 i 6 n, if the i-th cell
of the tape contains a 0, we add the rule init(X) → zeroi(X); if it contains a 1, we

153

Cal̀ı, Gottlob & Kifer

add init(X) → onei(X). We also add the rule init(X) → existential(X) in order
to say, without loss of generality, that the initial configuration is an existential one.
Moreover, we add the rules init(X)→ head1(X) and init(X)→ states0(X) to define
the initial values of the state and the head position ofM on input I.

3. Configuration generation rules. We add a rule that creates two successor configuration
identifiers for each configuration identifier. Moreover, we add rules stating that these
new configuration identifiers indeed identify configurations:

config(X) → ∃X1,X2 next(X,X1, X2),

next(X,Y, Z) → config(Y),

next(X,Y, Z) → config(Z).

4. Transition rules. We show by example how transition rules are generated for each
transition in the finite control. Assume, for instance, that the transition table contains
a specific transition of the form: (s, 0) → ((s1, 1, r) , (s2, 0, ℓ)). Then we assert the
following rules, for 1 6 i 6 n:

head i(X), zeroi(X), states(X),next(X,X1, X2) → states1(X1)

head i(X), zeroi(X), states(X),next(X,X1, X2) → states2(X2).

Moreover, for each 1 6 i < n we have these rules:

head i(X), zeroi(X), states(X),next(X,X1, X2) → onei(X1)

head i(X), zeroi(X), states(X),next(X,X1, X2) → head i+1(X1),

and for each 1 < i 6 n we add these rules:

head i(X), zeroi(X), states(X),next(X,X1, X2) → zeroi(X2)

head i(X), zeroi(X), states(X),next(X,X1, X2) → head i−1(X2)

The other types of transition rules are constructed analogously. Note that the total
number of rules added is 6n times the number of transition rules. Hence it is linearly
bounded by the size n of the input string I toM.

5. Inertia rules. These rules state that tape cells in positions not under the head keep
their values. Thus, for each 1 6 i, j 6 n such that i 6= j we add the rules:

head i(X), zeroj(X),next(X,X1, X2) → zeroj(X1)

head i(X), onej(X),next(X,X1, X2) → onej(X1)

head i(X), blank j(X),next(X,X1, X2) → blank j(X1),

6. Configuration-type rules. These rules say that the immediate successor configurations
of an existential configuration are universal, and vice-versa:

existential(X),next(X,X1, X2) → universal(X1)

existential(X),next(X,X1, X2) → universal(X2)

universal(X),next(X,X1, X2) → existential(X1)

universal(X),next(X,X1, X2) → existential(X2).

154

Taming the Infinite Chase

7. Acceptance rules. These recursive rules state when a configuration is accepting:

statesa(X) → accepting(X)

existential(X),next(X,X1, X2), accepting(X1) → accepting(X)

existential(X),next(X,X1, X2), accepting(X2) → accepting(X)

universal(X),next(X,X1, X2), accepting(X1), accepting(X2) → accepting(X)

init(X), accepting(X) → accept .

This completes the description of the set of TGDs Σ(M, I). Note that this set is guarded,
has maximum predicate arity 3, can be obtained in logarithmic space from I and the
constant machine description ofM. It faithfully simulates the behavior of the alternating
linear space machineM in input I. It follows that Σ(M, I) |= accept iffM accepts input I.
Let D0 denote the empty database, and let Q0 be the ground-atom query accept . We then
have that Σ(M, I) ∪ D0 |= Q0 iff M accepts input I. This shows that answering ground
atom queries on fixed databases constrained by bounded arity GTGDs is exptime-hard.

Let us now illustrate how we obtain the 2exptime hardness result for guarded TGDs
when arities are unbounded, but when the number |R| of predicate symbols of the schema R
is bounded by a constant. Given that aexpspace=2exptime (aexpspace ≡ alternating
aexpspace), our aim is now to simulate an aexpspace Turing machine. It is sufficient
to simulate one that uses no more than 2n worktape cells, since the acceptance problem
for such machines is already 2exptime-hard. In fact, by trivial padding arguments, the
acceptance problem for every aexpspace machine can be transformed in polynomial time
into the acceptance problem for one using at most 2n worktape cells.

The problem is, however, that now we can no longer construct a polynomial number of
rules that explicitly address each worktape cell i, or each pair of cells i, j, since now there
is an exponential number of worktape cells. The idea now is to encode tape cell indexes
as vectors of symbols (v1, . . . , vk) where vi ∈ {0, 1}. As in the proof of Theorem 4.1, we
could define, with a polynomial number of rules, a successor relation succ that stores pairs
of indexes as succ(v1, . . . , vk, w1, . . . , wk). However, there is a further difficulty: we now
have two different types of variables: the variables Vi,Wj that range over the bits vi, wi in
the above-described bit vectors, and the variables X,Y, Z that range over configurations.
A major difficulty is that, given that our rules are all guarded, we must make sure that
these two types of variables, whenever they occur elsewhere in a rule body, also occur in
some guard. To this end, we will use a fixed database D01 that contains the single fact
zeroone(0, 1), and we will construct a “guard” relation g such that for each vector v of
n bits and its binary successor w, and for each configuration x with its two successor
configurations y and z, the relation g contains a tuple g(v,w, x, y, z). We will use several
auxiliary relations to construct g.

For technical reasons, the first two arguments of some atoms below will be dummy
variables T0 and T1 that will always be forced to take the values 0 and 1, respectively.
This way, where convenient, we will have the values 0 and 1 available implicitly in form of
variables, and we will not need to use these constants explicitly in our rules.

Given that our database is now non-empty, we do not need to create the initial config-
uration identifier via an existential rule as before. We can simply take 0 as the identifier

155

Cal̀ı, Gottlob & Kifer

of this initial configuration: zeroone(T0, T1) → init(T0, T1, T0). (Here, the first two argu-
ments of init(T0, T1, T0) just serve, as explained, to carry the values 0 and 1 along.) We
also add: init(T0, T1, T0) → config(T0, T1, T0) to assert that 0 is the identifier of the initial
configuration. Next we present the new configuration generation rules.

config(T0, T1, X) → ∃Y, ∃Z next(T0, T1, X, Y, Z),

next(T0, T1, X, Y, Z) → config(T0, T1, Y),

next(T0, T1, X, Y, Z) → config(T0, T1, Z).

We use further rules to create a relation b such that each atom b(0, 1,v, x, y, z) contains
a tuple for each vector v of n bits, and for each configuration x. For better readability,
whenever useful, we will use superscripts for indicating the arity of vector variables: for
instance, V(n) denotes V1, . . . , Vn. Moreover, 0(j) denotes the vector of j zeros and 1(j) the
vector of j ones. We start with the rule next(T0, T1, X, Y, Z) → b(T0, T1,T0

(n), X, Y, Z),
which defines an atom b(0, 1,0(n), x, y, z), for each configuration x and its next-successors
y and z.

The following n rules, for 1 6 i 6 n, generate an exponential number of new atoms, for
each triple X,Y, Z, by swapping 0s to 1s in all possible ways. Eventually, the chase will
generate all possible prefixes of n bits.

b(T0, T1, U1, . . . , Ui−1, T0, Ui+1, . . . , Un, X, Y, Z)→

b(T0, T1, U1, . . . , Ui−1, T1, Ui+1, . . . , Un, X, Y, Z).

We are now ready to define the guard-relation g through another group of guarded rules.
For each 0 6 r < n, we add:

b(T0, T1,U
(r), T0,T1

(n−r−1), X, Y, Z)→ g(U(r), T0,T1
(n−r−1),U(r), T1,T0

(n−r−1), X, Y, Z).

The above n rules define an exponential number of cell-successor pairs for each triple of
configuration identifiers X,Y, Z, where Y and Z are the “next” configurations following
X. In particular, the relation g contains precisely all tuples g(v,w, x, y, z), such that v is
an n-ary bit vector, w is its binary successor, x is a configuration identifier, y is its first
successor via the next relation, and z is its second successor via the next relation.

We are now ready to simulate an aexpspace Turing machineM′ over an input string
I by a set of GTGDs Σ(M′, I). Since this simulation is similar to the one presented in the
first part of this proof, we just sketch it and point out the main differences.

For the simulation, we use (in addition to the aforementioned auxiliary predicates)
predicates similar to the ones used earlier for the simulation of the exptime Turing machine
M. However, we only use a constant number of predicates. So, rather than using, atoms
head i(x), zeroi(x) and so on, we use their vectorized versions head(v, x), zero(v, x) and so
on, where v is a bit vector of length n that takes the role of an exponential index. Thus,
for example, the equivalent of the earlier rule

head i(X), zeroi(X), states(X),next(X,X1, X2)→ onei(X1)

is g(V,W, X,X1, X2), head(V, X), zero(V, X), state(X, s)→ one(V, X1). The earlier rule

head i(X), zeroi(X), states(X),next(X,X1, X2)→ head i−1(X2)

156

Taming the Infinite Chase

becomes g(V,W, X,X1, X2), head(W, X), zero(W, X), state(X, s) → head(V, X2). It is
now straightforward to see how the initialization rules can be written. Informally, for
copying the input string I to the worktape, we place the n input bits of I on the tape by
writing a rule for each such bit. We then add rules that fill all positions from n + 1 to 2n

with blanks. As this can be done in a similar way as in the second part of the proof of
Theorem 4.1, we omit the details.

The only remaining issue is the specification of the inertia rules. These rules deal with
pairs i, j of different, not necessary adjacent, tape cell positions in our earlier simulation.
Here we have only adjacent cell positions available so far. The problem can be solved in
different ways. One possibility is described below.

We can simply modify the definition of the predicate b by adding a second vector of
n bits to the b-atoms so that b-atoms actually have the form b(T0, T1,v,u, x, y, z), where
v and u range over all possible distinct pairs of bit vectors of length n. This u vector is
then carried over to the g-atoms. We can thus assume that the g-atoms now have the form
g(v,w,u, x, y, z). The former inertia rule head i(X), zeroj(X),next(X,X1, X2)→ zeroj(X1)
would then become g(V,W,U, X,X1, X2), head(W, X), zero(U, X)→ zero(U, X1).

What remains to be defined are the configuration and the acceptance rules. The con-
figuration rules are very similar to the ones used in the previous reduction, hence we leave
them as an exercise. The acceptance rules are as follows:

state(X, sa) → accepting(X)

existential(X), g(V,W, X,X1, X2), accepting(X1) → accepting(X)

existential(X), g(V,W, X,X1, X2), accepting(X2) → accepting(X)

universal(X), g(V,W, X,X1, X2), accepting(X1), accepting(X2) → accepting(X)

zeroone(T0, T1), accepting(T0) → accept .

This completes the description of the set of TGDs Σ(M′, I). Note that this set is
guarded and has a constant number of predicates. It can be obtained in logspace from I
and the constant machine description ofM. It also faithfully simulates the behavior of the
alternating exponential space machine M′ on input I. It follows that Σ(M′, I) |= accept
iff M′ accepts input I. Let Q0 be the BCQ defined as Q0 = {accept}. We then have
D01 ∪ Σ(M′, I) |= Q0 iff M′ accepts input I. This shows that answering ground atomic
queries on fixed databases under guarded TGDs with a fixed number of predicate symbols
(but unbounded arity) is 2exptime-hard.

7. Polynomial Clouds Criterion

In the previous section we have seen that, in case of bounded arity, query answering under
weakly guarded sets of TGDs is exptime-complete, while query answering under GTGDs
is np-complete. Note that, for unrestricted queries and databases, np-completeness is the
best we can obtain. In fact, even in the absence of constraints, the BCQ answering problem
is np-complete (Chandra & Merlin, 1977).

In this section, we establish a criterion that can be used as a tool for recognizing relevant
cases where query answering is in np even for weakly guarded sets of TGDs that are not
fully guarded. Note that we consider both a setting where the weakly guarded set Σ of

157

Cal̀ı, Gottlob & Kifer

TGDs is fixed and a setting where classes of TGD sets are considered. For these classes,
we require uniform polynomial bounds.

Definition 7.1. [Polynomial Clouds Criterion] A fixed weakly guarded set Σ of TGDs
satisfies the Polynomial Clouds Criterion (PCC) if both of the following conditions hold:

1. There exists a polynomial π(·) such that for each database D, |clouds(D,Σ)/≃| 6
π(|D|). In other words, up to an isomorphism, there are only polynomially many
clouds.

2. There is a polynomial π′(·) such that, for each database D and for each atom a:

• if a ∈ D then cloud(D,Σ, a) can be computed in time π′(|D|, |Σ|), and
• if a 6∈ D then cloud(D,Σ, a) can be computed in time π′(|D|, |Σ|) starting with
D, a, and cloud(D,Σ, b), where b is the predecessor of a in gcf(D,Σ).

We also say that Σ satisfies the PCC with respect to π and π′. Note that in the
above, |Σ| is constant and can be omitted. However, the use of |Σ| is justified by the
following. A class C of weakly guarded TGD sets satisfies the PCC if there are fixed
polynomials π and π′ such that each TGD set in C satisfies the PCC uniformly with
respect to π and π′ (i.e., each TGD set in this class has π, π′ as a bound).

Theorem 7.2. Let Σ be a fixed weakly guarded set of TGDs over a schema R, such that Σ
enjoys the Polynomial Clouds Criterion. Then:

• Deciding for a database D and an atomic or fixed Boolean conjunctive query Q whether
D ∪ Σ |= Q (equivalently, whether chase(D,Σ) |= Q) is in ptime.
• Deciding for a database D and a general Boolean conjunctive query Q whether D∪Σ |=
Q (equivalently, chase(D,Σ) |= Q) is in np.

Proof. A polynomial algorithm Acheck2 for atomic queries Q works as follows. We start
to produce the chase forest gcf(D,Σ) using the standard chase. In addition, immediately
after generating any node a and its cloud cloud(D,Σ, a) (in polynomial time), we will store
cana(a, cloud(D,Σ, a)) in a buffer, which we call cloud-store. Whenever a branch of the
forest reaches a vertex b such that canb(cloud(D,Σ, b)) is already in the cloud-store, further
expansion of that branch b is blocked. Since there can be only a polynomial number of
pairs cana(a, cloud(D,Σ, a)), the algorithm stops after a polynomial number of chase steps,
each step requiring only polynomial time. Now, by Corollary 5.17, the cloud-store already
contains all possible atoms of chase(D,Σ) and their clouds, up to isomorphism. To check
whether chase(D,Σ) |= Q holds for an atomic query Q, it is thus sufficient to test whether
every atom c that occurs in the cloud-store matches Q. In summary, Acheck2 runs in ptime.

The algorithm Qcheck2 for conjunctive queries works just like Qcheck, except that it
calls the algorithm Tcheck2 as a subroutine instead of Tcheck. The input to Tcheck2 is D,
Q, and also the cloud-store computed by Acheck2. We further assume that this cloud-store
identifies each entry e = cana(a, cloud(D,Σ, a)) by a unique integer e# using O(log n) bits
only. Tcheck2 is an alternating algorithm that works essentially like Tcheck, except for the
following modifications:

• Tcheck always guesses the full cloud S = cloud(D,Σ, a), instead of possibly guessing a
subcloud. In contrast, Tcheck2 just guesses the entry number e# of the corresponding
entry cana(a, cloud(D,Σ, a)) of the cloud-store.

158

Taming the Infinite Chase

• Tcheck2 verifies correctness of the cloud guess in alogspace using D, a, e#, as well
as b and e′#, where b is the main atom of the predecessor configuration and e′ is the
entry in the cloud-store featuring canb(b, cloud(D,Σ, b)). Note that such verification
is effectively possible due to condition (2) of Definition 7.1.
• Tcheck2 only needs to compute the main configuration tree—the one whose configu-
rations contain ⋆. The algorithm does not compute the auxiliary branches, since they
are no longer necessary, as the correctness check S is done in a different way.
• The configurations of Tcheck2 do not need to guess or memorize linear orders ≺ and
the set S+.

Given that Tcheck2 is an alogspace algorithm, Qcheck2 is an npalogspace procedure. Since
npalogspace = npptime = np, query answering is in np. In case of a fixed conjunctive query
Q, since Q has a constant number of squid decompositions, Qcheck2 runs in ptimeptime =
ptime.

Note that the Polynomial Clouds Criterion is not syntactic. Nevertheless, it is useful
for proving that query answering for some weakly guarded sets TGDs is in np, or even
in polynomial time for atomic queries. An application of this criterion is illustrated in
Section 10.

The following is a direct corollary of Theorem 6.1.

Theorem 7.3. (1) Every set Σ of GTGDs satisfies the PCC. (2) For any constant k, the
class of all GTGD sets of arity bounded by k satisfies the PCC.

The following result can be obtained by a minor adaptation of the proof of Theorem 7.2.

Theorem 7.4. Let Σ be a fixed weakly guarded set of TGDs that enjoys the Polynomial
Clouds Criterion, and let k be a constant. Then:

(1) For a database D and a Boolean conjunctive query of treewidth 6 k, deciding
whether D ∪ Σ |= Q (equivalently, chase(D,Σ) |= Q) is in ptime.
(2) The same tractability result holds for acyclic Boolean conjunctive queries.

By analogy to the PCC, one may define various other criteria based on other bounds.
In particular, we can define the Exponential Clouds Criterion (ECC) for classes of TGD
sets, which we will use in the next section, as follows:

Definition 7.5. [Exponential Clouds Criterion] Let C be a class of weakly guarded TGD
sets. C satisfies the Exponential Clouds Criterion (ECC) if both of the following conditions
are satisfied:

1. There is a polynomial π(·) such that for every database D and any set of TGDs Σ in
C of size n, |clouds(D,Σ)/≃| 6 2π(|D|+n).

2. There exists a polynomial π′(·) such that for every database D, any set of TGDs Σ in
C of size n, and any atom a:

• if a ∈ D, then cloud(D,Σ, a) can be computed in time 2π
′(|D|+n), and

• if a 6∈ D, then cloud(D,Σ, a) can be computed in time 2π
′(|D|+n) from D, a, and

cloud(D,Σ, b), where b is the predecessor of a in gcf(D,Σ).

159

Cal̀ı, Gottlob & Kifer

We have the following result on sets of TGDs enjoying the ECC:

Theorem 7.6. If Σ is a weakly guarded set of TGDs from a class C that enjoys the Expo-
nential Clouds Criterion, then deciding for a database D and a Boolean conjunctive query
Q (atomic or not) whether D ∪ Σ |= Q is in exptime.

Proof (sketch). The proof is very similar to that for Theorem 7.2. The main difference is
that ptime and alogspace are replaced by exptime and apspace, respectively. We then
get that query answering for atomic queries is in apspace = exptime, and that answering
non-atomic queries is in npapspace = npexptime = exptime. Thus, in this case, there is no
difference between atomic and non-atomic query answering: both are in exptime.

8. TGDs with Multiple-Atom Heads

As mentioned in Section 2, all complexity results proved so far for single-headed TGDs also
carry over to the general case, where multiple atoms may appear in rule heads. We make
this claim more formal here.

Theorem 8.1. All complexity results derived in this paper for sets TGDs whose heads are
single-atoms are equally valid for sets of multi-atom head TGDs.

Proof (sketch). It suffices to show that the upper bounds carry over to the setting of TGDs
with multiple-atom heads. We exhibit a transformation from an arbitrary set of TGDs Σ
over a schema R to a set of single-headed TGDs Σ′ over a schema R′ that extends R with
some auxiliary predicate symbols.

The TGD set Σ′ is obtained from Σ by replacing each rule of the form r : body(X) →
head1(Y), head2(Y), . . . , headk(Y), where k > 1 and Y is the set of all the variables that
appear in the head, with the following set of rules:

body(X) → V (Y)

V (Y) → head1(Y)

V (Y) → head2(Y)

...

V (Y) → headk(Y),

where V is a fresh predicate symbol, having the same arity as the number of variables in
Y. Note that, in general, neither Y is contained in X not the other way around. It is
easy to see that, except for the atoms of the form V (Y), chase(D,Σ) and chase(Σ′, D)
coincide. The atoms of the form V (Y) have completely new predicates and thus do not
match any predicate symbol in the conjunctive query Q. Therefore, chase(D,Σ) |= Q iff
chase(Σ′, D) |= Q.

Obviously, Σ′ can be constructed in logspace from Σ. Therefore, the extension of our
complexity results to the general case is immediate, except for the case of bounded arity.
Notice that the arity of each auxiliary predicate in the above construction depends on the
number of head-variables of the corresponding transformed TGD, which, in general, is not
bounded.

160

Taming the Infinite Chase

In case of bounded-arity WGTGDs, the exptime upper bound can still be derived
by the above transformation by showing that the class of TGD sets Σ′ obtained by that
transformation satisfies the Exponential Clouds Criterion of Section 7. To see that for each
database D and each such Σ′ there is only an exponential number of clouds, notice that
every “large” atom V (Y) is derived by a rule with a “small” weak guard g in its body,
i.e., a weak guard g of bounded arity. The cloud cloud(D,Σ′, g) of this weak guard g
clearly determines everything below g in the guarded chase forest; in particular, the cloud
of V (Y). Thus the set clouds(D,Σ′) of all clouds of all atoms is only determined by the
clouds of atoms of bounded arity. For immediately verifiable combinatorial reasons, there
can be only singly-exponentially many such clouds. This shows that |clouds(D,Σ′)/≃| is
singly-exponentially bounded. Therefore, the first condition of Definition 7.5 is satisfied. It
is not too hard to verify the second condition of Definition 7.5, too. Thus, query-answering
based on bounded-arity WGTGDs is in exptime. Given that GTGDs are a subclass of
WGTGDs, the same exptime bound holds for bounded-arity GTGDs, as well.

A completely different proof of the above theorem follows directly from the results
by Gottlob, Manna, and Pieris (2013a) for the class of GTGDs, and from those by Gottlob,
Manna, and Pieris (2013b) for the class of WGTGDs.

9. EGDs

In this section we deal with equality generating dependencies (EGDs), a generalization of
functional dependencies, which, in turn, generalize key dependencies (Abiteboul, Hull, &
Vianu, 1995).

Definition 9.1. Given a relational schema R, an EGD is a first-order formula of the form
∀XΦ(X)→ Xℓ = Xk, where Φ(X) is a conjunction of atoms over R, and Xℓ, Xk ∈ X. Such
a dependency is satisfied in an instance B if, whenever there is a homomorphism h that
maps the atoms of Φ(X) to atoms of B, we have h(Xℓ) = h(Xk).

It is possible to “repair”, or chase, an instance according to EGDs by analogy with the
chase based on TGDs. We start by defining the EGD chase rule.

Definition 9.2. [EGD Applicability] Consider an instance B of a schema R, and an EGD
η of the form Φ(X) → Xi = Xj over R. We say that η is applicable to B if there is a
homomorphism h such that h(Φ(X)) ⊆ B and h(Xi) 6= h(Xj).

Definition 9.3. [EGD Chase Rule] Let η be an EGD of the form Φ(X) → Xi = Xj and
suppose that it is applicable to an instance B via a homomorphism h. The result of the
application of η on B with h is a failure if {h(Xi), h(Xj)} ⊂ ∆ (because of the unique name
assumption). Otherwise, the result of this application is the instance B′ obtained from B by
replacing each occurrence of h(Xj) with h(Xi) if h(Xi) precedes h(Xj) in lexicographical
order. If h(Xj) precedes h(Xi) then the occurrences of h(Xi) are replaced with h(Xj)

instead. We write B
η,h
−→ B′ to say that B′ is obtained from B via a single EGD chase step.

Definition 9.4. [Chase sequence with respect to TGDs and EGDs] Let D be a database
and Σ = ΣT ∪ ΣE , where ΣT is a set of TGDs and ΣE is a set of EGDs. A (possibly
infinite) chase sequence of D with respect to Σ is a sequence of instances B0, B1, . . . such

161

Cal̀ı, Gottlob & Kifer

that Bi
σi,hi

−→ Bi+1, where B0 = D and σi ∈ ΣT ∪ ΣE for all i > 0. A chase sequence is said
to be failing if its last step is a failure. A chase sequence is said to be fair if every TGD or
EGD that is applicable at a certain step is eventually applied.

In case a fair chase sequence happens to be finite, B0, . . . , Bm, and no further rule appli-
cation can change Bm, then the chase is well defined as Bm, and is denoted by chase(D,Σ).
For our purposes, the order of application of TGDs and EGDs is irrelevant. In the following
therefore, when saying “the fair chase sequence”, we will refer to any fair chase sequence,
chosen according to some order of application of the dependencies.

It is well-known (see Johnson & Klug, 1984) that EGDs cause problems when combined
with TGDs, because even for very simple types of EGDs, such as plain key constraints, the
implication problem for EGDs plus TGDs and the query answering problem are undecidable.
This remains true even for EGDs together with GTGDs. In fact, even though inclusion
dependencies are fully guarded TGDs, the implication problem, query answering, and query
containment are undecidable when keys are used as EGDs and inclusion dependencies as
TGDs (Chandra & Vardi, 1985; Mitchell, 1983; Cal̀ı et al., 2003a).

Moreover, while the result of an infinite chase using TGDs is well-defined as the limit of
an infinite, monotonically increasing sequence (or, equivalently, as the least fixed-point of a
monotonic operator), the sequence of sets obtained in the infinite chase of a database under
TGDs and EGDs is, in general, neither monotonic nor convergent. Thus, even though we
can define the chase procedure for TGDs plus EGDs, it is not clear how the result of an
infinite chase involving both TGDs and EGDs should be defined.

For the above reasons, we cannot hope to extend the positive results for weakly guarded
sets of TGDs, or even GTGDs, from the previous sections to include arbitrary EGDs.
Therefore, we are looking for suitable restrictions on EGDs, which would allow us to: (i)
use the (possibly infinite) chase procedure to obtain a query-answering algorithm, and
(ii) transfer the decidability results and upper complexity bounds derived in the previous
sections to the extended formalism.

A class that fulfills both desiderata is a subclass of EGDs, which we call innocuous
relative to a set of TGDs. These EGDs enjoy the property that query answering is insensitive
to them, provided that the chase does not fail. In other words, when Σ = ΣT ∪ ΣE , where
ΣT is a set of TGDs, ΣE a set of EGDs, and ΣE is innocuous relative to ΣT , we can simply
ignore these EGDs in a non-failing chase sequence. This is possible because, intuitively, such
a non-failing sequence does not generate any atom that is not entailed by chase(D,ΣT).

More specifically, we start from the notion of innocuous application of an EGD. Intu-
itively, when making two symbols equal, an innocuous EGD application makes some atom
a equal to some other existing atom a0; this way, as the only consequence of the EGD
application, the original atom a is lost, but no new atom whatsoever is introduced. The
concept of innocuous EGD application is formally defined as follows.

Definition 9.5. [Innocuous EGD application] Consider a (possibly infinite) non-failing
chase sequence D = B0, B1, . . ., starting with a database D, with respect to a set Σ =
ΣT ∪ ΣE , where ΣT is a set of TGDs and ΣE is a set of EGDs. We say that the EGD

application Bi
η,h
−→ Bi+1, where η ∈ ΣE and i > 0, is innocuous if Bi+1 ⊂ Bi.

162

Taming the Infinite Chase

Notice that innocuousness is a semantic, not syntactic, property. It is desirable to have
innocuous EGD applications because such applications cannot trigger new TGD applica-
tions, i.e., TGD applications that were not possible before the EGD was applied.

Given that it might be undecidable whether a set of dependencies from a certain class
guarantees innocuousness of all EGD applications, one can either give a direct proof of
innocuousness for a concrete set of dependencies, as we will do in Section 10.2, or define
sufficient syntactic conditions that guarantee innocuousness of EGD applications for an
entire class of dependencies, as done, e.g., by Cal̀ı et al. (2012a).

Definition 9.6. Let Σ = ΣT ∪ ΣE , where ΣT is a set of TGDs and ΣE a set of EGDs,
where Σ = ΣT ∪ ΣE . ΣE is innocuous for ΣT if, for every database D such that the fair
chase sequence of D with respect to Σ is non-failing, each application of an EGD in such
sequence of D with respect to Σ is innocuous.

Theorem 9.7. Let Σ = ΣT ∪ΣE, where ΣT is a set of TGDs and ΣE a set of EGDs that is
innocuous for ΣT . Let D be a database such that the fair chase sequence of D with respect
to Σ is non-failing. Then D ∪ Σ |= Q iff chase(D,ΣT) |= Q.

Proof. Consider the fair chase sequence B0, B1, . . . of D = B0 in the presence of Σ, where

Bi
σi,hi

−→ Bi+1 for i > 0 and σ ∈ ΣT ∪ ΣE . Let us define a modified chase procedure which
we call the blocking chase, denoted by blockchase(D,Σ). The blocking chase uses two sets:
a set C of blocked atoms and a set of (unblocked) atoms A. When started on a database
D such that D |= ΣE (the case D 6|= ΣE is not possible as this implies an immediate chase
failure), C is initialized to the empty set (C = ∅) and A is initialized to D. After the
initialization, the blocking chase attempts to apply the dependencies in ΣT ∪ ΣE exactly
in the same way as in the standard fair chase sequence, with the following caveats. While
trying an application of 〈σi, hi〉:

• If σi is a TGD, and if hi(body(σi))∩C = ∅, then apply 〈σi, hi〉 and add the new atom
generated by this application to A.
• If σi is a TGD and hi(body(σi)) ∩ C 6= ∅, then the application of 〈σi, hi〉 is blocked,
and nothing is done.
• If σi is an EGD, then the application of 〈σi, hi〉 proceeds as follows. Add to C all the
facts that in the standard chase disappear in that step (because Bi ⊆ Bi−1, due to the
innocuousness), i.e., add to C the set Bi − Bi−1. Thus, instead of eliminating tuples
from A, the blocking chase simply bans them from being used by putting them in C.

Note that, by the construction of blockchase(D,Σ), whenever the block chase encounters an
EGD σi, 〈σi, hi〉 is actually applicable, so blockchase(D,Σ) is well-defined. Let us use Ci and
Ai to denote the values of C and A at step i, respectively. Initially, C0 = ∅ and A0 = D as
explained before. Observe that ∅ = C0 ⊆ C1 ⊆ C2 ⊆ · · · and D = A0 ⊆ A1 ⊆ A2 ⊆ · · · are
monotonically increasing sequences that have least upper bounds C∗ = ∪iCi and A

∗ = ∪iAi,
respectively. Clearly, (C∗, A∗) is the least fixpoint of the transformation performed by
blockchase(D,Σ) (with respect to component-wise set inclusion).

Now, let S be defined as S = A∗ − C∗. By the definition of S, we have: S |= Σ.
Moreover, there is a homomorphism h that maps chase(D,ΣT) to S. Note that h is the
limit homomorphism of the sequence h1, h2, h3, . . . (these his are the very homomorphisms

163

Cal̀ı, Gottlob & Kifer

used while computing the block chase), and can be defined as the set of all pairs (x, y)
such that there exists an i > 0 such that hi(hi−1(· · ·h1(x))) = y and y is not altered by
any homomorphism hj for j > i. Note that for every instance B that contains D, we have
B |= D. In particular, S |= D. Putting everything together, we conclude that S |= D ∪ Σ.

It is also well-known (see Nash et al., 2006) that for any set of atoms M such that
M |= S ∪ ΣT , there is a homomorphism hM such that hM (chase(D,ΣT)) ⊆ M . Now
assume D ∪ Σ |= Q. Then S |= Q and, because S ⊆ chase(D,ΣT), we also have that
chase(D,ΣT) |= Q. Conversely, if chase(D,ΣT) |= Q, then there is a homomorphism g,
such that g(Q) ⊆ chase(D,ΣT). Therefore, for any set of atoms M such that M |= D ∪ Σ,
since hM (chase(D,ΣT)) ⊆M , we have hM (g(Q)) ⊆M . The latter means that M |= Q.

We now come to the problem of checking, given a database D and a set Σ = ΣT ∪ ΣE ,
where ΣT is set of WGTGDs and ΣE are EGDs innocuous for ΣT , whether the fair chase

sequence (denoted B0, B1, . . .) of D with respect to Σ fails. Consider an application Bi
η,h
−→

Bi+1, with η ∈ ΣE of the form Φ(X) → Xℓ = Xk. When this application causes the chase
to fail, we have that h(Xℓ) and h(Xk) are distinct values in dom(D). Notice that Bj exists
for j 6 i, while it does not exist for any j > i.

Lemma 9.8. Consider a database D and a set of dependencies Σ = ΣT ∪ ΣE, where ΣT

is a weakly guarded set of TGDs and ΣE are EGDs that are innocuous for ΣT . Then
the fair chase sequence of D with respect to Σ fails iff there is an EGD η ∈ ΣE of the
form Φ(X) → Xℓ = Xk and a homomorphism h such that h(Φ(X)) ⊆ chase(D,ΣT),
h(Xℓ) 6= h(Xk), and {h(Xℓ), h(Xk)} ⊆ dom(D).

Proof (sketch).
“If”. Let B0, B1, . . . be the fair chase sequence of D with respect to Σ. First, it is not

difficult to show that, since ΣE is innocuous relative to ΣT , if the failure occurs at step ℓ

then all EGD applications Bi
σi,hi

−→ Bi+1, such that σi ∈ ΣE and i < ℓ − 1, are innocuous
(see a similar proof by Cal̀ı, Console, & Frosini, 2013) in the sequence B0, . . . , Bℓ−1. From
this, the “if” direction follows straightforwardly.

“Only if”. By assumption, η fails at some Bk, k > 1. Since applications of innocuous
EGDs can only remove tuples from the chase, it is easily seen that, if η is applicable to Bk via
an homomorphism h, then it is also applicable to chase(D,ΣT) via the same homomorphism
h, which settles the “only-if” part.

Theorem 9.9. Consider a database D and a set of dependencies Σ = ΣT ∪ΣE, where ΣT

are GTGDs (resp., WGTGDs) and ΣE are EGDs that are innocuous for ΣT . Checking
whether the fair chase sequence of D with respect to Σ fails is decidable, and has the same
complexity as query answering for GTGDs (resp., WGTGDs) alone.

Proof (sketch). Let neq be a new binary predicate, which will serve as inequality. The
extension of neq is defined as dom(D) × dom(D) − {(d, d) | d ∈ dom(D)} and can be
constructed in time quadratic in |dom(D)|. Now, for every EGD η of the form Φ(X) →
X1 = X2, where X1, X2 ∈ X, we define the following Boolean conjunctive query (expressed
as a set of atoms): Qη = Φ(X) ∪ {neq(X1, X2)}. Since, by construction, no new facts of
the form neq(σ1, σ2) are introduced in the chase, it is immediate to see, from Lemma 9.8,

164

Taming the Infinite Chase

that at least one of the above Qη has a positive answer if and only if the fair chase sequence
of D with respect to Σ fails. By Theorem 9.7, answering the query Qη can be done with
respect to the chase by ΣT alone, which is decidable.

Let Σ = ΣT ∪ ΣE be as in the above theorem, D be a database, and let Q be a query.
By the above theorem, we can check Σ ∪D |= Q with the help of the following algorithm:

1. check whether the fair chase sequence of D with respect to Σ fails with the algorithm
described in Theorem 9.9;

2. if the fair chase sequence of D with respect to Σ fails, then return “true” and halt;
3. if D ∪ ΣT |= Q then return “true”; otherwise return “false”.

This gives us the following corollary:

Corollary 9.10. Answering general conjunctive queries under weakly guarded sets of TGDs
and innocuous EGDs is ptime reducible to answering queries of the same class under a
weakly guarded sets of TGDs alone, and thus has the same complexity.

10. Applications

In this section we discuss applications of our results on weakly guarded sets of TGDs to
Description Logic languages and object-oriented logic languages.

10.1 DL-Lite

DL-Lite (Calvanese et al., 2007; Artale et al., 2009) is a prominent family of ontology
languages that has tractable query answering. Interestingly, a restriction of GTGDs called
linear TGDs (which have exactly one body-atom and one head-atom) properly extends
most DL-Lite languages, as shown by Cal̀ı et al. (2012a). The complexity of query answering
under linear TGDs is lower than that of GTGDs, and we refer the reader to the work of Cal̀ı
et al. (2012a) for more details.

Furthermore, Cal̀ı et al. (2012a) also show that the language of GTGDs properly extends
the description logic EL as well as its extension ELf , which allows inverse and functional
roles. The fact that TGDs capture important DL-based ontology languages confirms that
TGDs are useful tools for ontology modeling and querying.

10.2 F-Logic Lite

F-Logic Lite is an expressive subset of F-logic (Kifer et al., 1995), a well-known formalism
introduced for object-oriented deductive languages. We refer the reader to the work by Cal̀ı
and Kifer (2006) for details about F-Logic Lite. Roughly speaking, compared to full F-
Logic, F-Logic Lite excludes negation and default inheritance, and allows only a limited
form of cardinality constraints. F-Logic Lite can be encoded by a set of twelve TGDs and
EGDs, below, which we denote by ΣFLL:

ρ1: type(O,A, T), data(O,A, V)→ member(V, T).
ρ2: sub(C1, C3), sub(C3, C2)→ sub(C1, C2).
ρ3: member(O,C), sub(C,C1)→ member(O,C1).

165

Cal̀ı, Gottlob & Kifer

ρ4: data(O,A, V), data(O,A,W), funct(A,O)→ V =W .
Note that this is the only EGD in this axiomatization.

ρ5: mandatory(A,O)→ ∃V data(O,A, V).
Note that this TGD has an existentially quantified variable in the head.

ρ6: member(O,C), type(C,A, T)→ type(O,A, T).
ρ7: sub(C,C1), type(C1, A, T)→ type(C,A, T).
ρ8: type(C,A, T1), sub(T1, T)→ type(C,A, T).
ρ9: sub(C,C1),mandatory(A,C1)→ mandatory(A,C).
ρ10: member(O,C),mandatory(A,C)→ mandatory(A,O).
ρ11: sub(C,C1), funct(A,C1)→ funct(A,C).
ρ12: member(O,C), funct(A,C)→ funct(A,O).

The results of this paper apply to the above set of constraints, since ΣFLL is a weakly
guarded set, and the single EGD ρ4 is innocuous. The innocuousness of ρ4 is shown by
observing that, whenever the EGD is applied, it turns one atom into another; moreover,
all new data atoms created in the chase (see rule ρ5) have new labeled nulls exactly in the
position data[3], where the symbols to be equated also reside.

We now prove the relevant complexity results. We start by showing that BCQ answering
under F-Logic Lite is np-complete.

Theorem 10.1. Conjunctive query answering under F-Logic Lite rules is np-hard.

Proof (sketch). The proof is by reduction from the 3-colorability problem. Encode a
graph G = (V,E) as a conjunctive query Q which, for each edge (vi, vj) in E, has two atoms
data(X,Vi, Vj) and data(X,Vj , Vi), where X is a unique variable. Let D be the database
D = {data(o, r, g), data(o, g, r), data(o, r, b), data(o, b, r), data(o, g, b), data(o, b, g)}. Then,
G is three-colorable iff D |= Q, which is the case iff D ∪ ΣFLL |= Q. The transformation
from G to (Q,D) is obviously polynomial, which proves the claim.

Theorem 10.2. Conjunctive query answering under F-Logic Lite rules is in np.

Proof (sketch). As mentioned before, we can ignore the only EGD in ΣFLL since, being
innocuous, it does not interfere with query answering. Let Σ′

FLL denote the set of TGDs
resulting from ΣFLL by eliminating rule ρ4, i.e., let Σ′

FLL = ΣFLL − {ρ4}. To establish
membership in np, it is sufficient to show that: (1) Σ′

FLL is weakly guarded; (2) Σ′
FLL enjoys

the PCC (see Definition 7.1). Under the above condition, the membership in np can be
proved by exhibiting the following. (i) An algorithm, analogous to Acheck, that constructs
all “canonical” versions of the atoms of the chase and their clouds (which are stored in a
“cloud store”), in polynomial time. Then the algorithm should check whether an atomic
(Boolean) query is satisfied by an atom in the cloud store. (ii) An algorithm, analogous
to Qcheck, that guesses (by calling an analogous version of Tcheck) entire clouds through
guessing the cloud index (a unique integer) in the cloud store. Then the algorithm should
check, in alternating logarithmic space (alogspace), the correctness of the cloud guess.
In that check, it can use only the cloud of the main atom of the predecessor configuration.
The complexity of running this algorithm is shown to be npalogspace = np.

(1) is easy: the affected positions are data[3], member[1], type[1], mandatory[2], funct[2]
and data[1]. It is easy to see that every rule of Σ′

FLL is weakly guarded, and thus ΣFLL is
weakly guarded.

166

Taming the Infinite Chase

Now let us sketch (2). We need to show that Σ′
FLL satisfies the two conditions of

Definition 7.1. We prove that the first condition holds for Σ′
FLL as follows. Let Σfull

FLL =
Σ′
FLL−{ρ5}. These are all full TGDs (no existentially-quantified variables) and their appli-

cation does not alter the domain. We have chase(D,Σ′
FLL) = chase(chase(D,Σfull

FLL),Σ
′
FLL).

Let us now have a closer look at D+ = chase(D,Σfull
FLL). Clearly, dom(D+) = dom(D). For

each predicate symbol p, let Rel(p) denote the relation consisting of all the p-atoms in D+.
Let Ω be the family of all the relations that can be obtained from any of the relations Rel(p)
by performing an arbitrary selection followed by some projection (we forbid disjunctions in
the selection predicate). For example, let c, d ∈ dom(D). Then Ω will contain the relations
π1,2(σ{1=c}Rel(data)), π2(σ{1=d∧3=c}Rel(data)), and so on, where the numbers represent the
attributes to which selection is applied. Given that D+ is of size polynomial in D and that
the maximum arity of any relation Rel(p) is 3, the set Ω is of size polynomial in D+ and
thus polynomial in D. It can now be shown that Ω is preserved in a precise sense, when
going to the final result chase(D+,Σ′

FLL): for each relation Rel ′(p) corresponding to pred-
icate p in the final chase result, when performing a selection on values outside of dom(D)
and projecting on the columns not used in the selection, the set of all tuples of dom(D)-
elements in the result is a relation in Ω. For example, if v5 is a labeled null, then the set of
all T ∈ dom(D), such that member(v5, T) is an element of the final result, is a relation in
Ω. Similarly, if v7 and v8 are new values, the set of all values A, such that data(v7, A, v8)
is in the chase, is a relation in Ω. From this it follows that Σ′

FLL satisfies (2). In fact, all
possible clouds are determined by the polynomially many ways of choosing at most three
elements of Ω for each predicate. The proof of the preservation property can be done by
induction on the i-th new labeled null added. Roughly, for each such labeled null, created
by rule ρ5, we just analyze which sets of values (or tuples) are attached to it via rules ρ4,
then ρ6, ρ7, ρ8, ρ10, and so on, and conclude that these sets were already present at the
next lower level, and thus, by induction hypothesis, are in Ω.

The second condition of Definition 7.1 is proved by similar arguments.

From Theorems 10.1 and 10.2 we immediately get the following result.

Corollary 10.3. Conjunctive query answering under F-Logic Lite rules is np-complete for
general conjunctive queries, and in ptime for fixed-size or atomic conjunctive queries.

11. Conclusions and Related Work

In this paper we identified a large and non-trivial class of tuple-generating and equality-
generating dependencies for which the problems of conjunctive query containment and an-
swering are decidable, and provided the relevant complexity results. Applications of our
results span databases and knowledge representation. In particular, we have shown that
this class of constraints subsumes the classical work by Johnson and Klug (1984) as well as
more recent results from Cal̀ı and Kifer (2006). Moreover, we are able to capture relevant
ontology formalisms in the Description Logics (DL) family, in particular DL-Lite and EL.

The problem of query containment for non-terminating chase was addressed in the
database context by Johnson and Klug (1984), where the ontological theory contains in-
clusion dependencies and key dependencies of a particular form. The introduction of the
DL-Lite family of description logics in the works of Calvanese et al. (2007) and Artale et al.

167

Cal̀ı, Gottlob & Kifer

(2009) was a significant leap forward in ontological query answering due to the expressive-
ness of DL-Lite languages and their tractable data complexity. Conjunctive query answering
in DL-Lite has the advantage of being first-order rewritable, i.e., any pair 〈Q,Σ〉, where Q
is a CQ and Σ is a DL-Lite ontology (TBox), can be rewritten as a first-order query QΣ

such that, for every database (ABox) D, the answer to Q against the logical theory D ∪ Σ
coincides with the answer to QΣ against D. Since each first-order query can be written in
SQL, in practical terms this means that a pair 〈Q,Σ〉 can be rewritten as an SQL query
over the original database D.

Rewritability is widely adopted in ontology querying. The works by Cal̀ı, Calvanese,
De Giacomo, and Lenzerini (2001), and by Cal̀ı, Lembo, and Rosati (2003b) present query
rewriting techniques that deal with Entity-Relationship schemata and inclusion dependen-
cies, respectively. The work by Pérez-Urbina, Motik, and Horrocks (2010) presents a Data-
log rewriting algorithm for the expressive DL ELHIO¬ , which comprises a limited form of
concept and role negation, role inclusion, inverse roles, and nominals, i.e., concepts that are
interpreted as singletons. Conjunctive query answering in ELHIO¬ is ptime-complete in
data complexity, and the proposed algorithm is also optimal for other ontology languages
such as DL-Lite. Optimizations of rewriting under linear TGDs (TGDs with exactly one
atom in the body) are presented by Gottlob, Orsi, and Pieris (2011), and by Orsi and Pieris
(2011). Gottlob and Schwentick (2012) showed that the rewriting of a conjunctive query
under a set of linear TGDs can be of polynomial size in the query and the TGD set.

Other rewriting techniques for ptime-complete languages (in data complexity) have been
proposed for the description logic EL (Rosati, 2007; Lutz, Toman, & Wolter, 2009; Krötzsch
& Rudolph, 2007). Another approach worth mentioning is a combination of rewriting and
of the chase (see Kontchakov, Lutz, Toman, Wolter, & Zakharyaschev, 2010); this technique
was introduced for DL-Lite in order to tackle the performance problems that arise when
the rewriting according to the ontology is too large.

Recent works concentrate on semantic characterization of sets of TGDs under which
query answering is decidable (Baget et al., 2011a). The notion of first-order rewritability is
tightly connected to that of finite unification set (FUS). A FUS is semantically characterized
as a set of TGDs that enjoy the following property: for every conjunctive query Q, the
rewriting QΣ of Q obtained by backward-chaining through unification, according to the
rules in Σ, terminates. Another semantic characterization of TGDs is that of bounded
treewidth set (BTS), i.e., a set of TGDs such that the chase under such TGDs has bounded
treewidth. As seen in Section 3, every weakly guarded set of TGDs is a BTS. A finite
expansion set (FES) is a set of TGDs that guarantees, for every database, the termination
of the restricted chase, and therefore the decidability of query answering.

The Datalog± family (Cal̀ı et al., 2011) has been proposed with the purpose of providing
tractable query answering algorithms for more general ontology languages. In Datalog±, the
fundamental constraints are TGDs and EGDs. Clearly, TGDs are an extension of Datalog
rules. The absence of value invention (existential quantification in the head), thoroughly
discussed by Patel-Schneider and Horrocks (2007), is the main shortcoming of plain Datalog
in modeling ontologies and even conceptual data formalisms such as the Entity-Relationship
model (Chen, 1976). Sets of GTGDs or WGTGDs are Datalog± ontologies. Datalog±

languages easily extend the most common tractable ontology languages; in particular, the

168

Taming the Infinite Chase

main DL-Lite languages (see Cal̀ı et al., 2012a). The fundamental decidability paradigms
in the Datalog± family are the following:

• Chase termination. When the chase terminates, a finite instance is produced; obvi-
ously, by Theorem 2.10, query answering in such a case is decidable. The most notable
syntactic restriction guaranteeing chase termination is weak acyclicity of TGDs, for
which we refer the reader to the milestone paper of Fagin et al. (2005). More general
syntactic restrictions are studied by Deutsch, Nash, and Remmel (2008), Marnette
(2009), Greco, Spezzano, and Trubitsyna (2011), Baget et al. (2011a), and Grau,
Horrocks, Krötzsch, Kupke, Magka, Motik, and Wang (2012). A semantic property
of TGDs, called parsimony, is introduced by Leone, Manna, Terracina, and Veltri
(2012). Parsimony ensures decidability of query answering by termination of a special
version of chase, called parsimonious chase.
• Guardedness. This is the paradigm we studied in this paper. A thorough study of
the data complexity of query answering under GTGDs and linear TGDs, a subset
of the guarded class, is found in the work by Cal̀ı et al. (2012a). The interesting
classes of frontier guarded (FGTGDs) and weakly frontier-guarded TGDs (WFGT-
GDs) were considered and studied by Baget et al. (2011a), Baget, Mugnier, Rudolph,
and Thomazo (2011b), and Krötzsch and Rudolph (2011). The idea underlying these
classes is that, to obtain decidability, it is sufficient to guard only frontier variables,
that is, variables that occur both in the body and in the head of a rule.8 WFGT-
GDs are syntactically more liberal and more succinct than WGTGDs, but conjunc-
tive query answering under WFGTGDs is computationally more expensive in case of
bounded arities. It can be seen that querying under WFGTGDs is no more expressive
than querying under WGTGDs. In fact, for every WFGTGD set Σ and CQ Q, there
exists a WGTGD set Σ′ and a CQ Q′ such that for every database D, D ∪Σ |= Q iff
D ∪Σ′ |= Q′. A generalization of WFGTGDs, called greedy bounded-treewidth TGDs,
was proposed by Baget et al. (2011b), together with a complexity analysis. The guard-
edness paradigm has been combined with acyclicity by Krötzsch and Rudolph (2011),
where a generalization of both WFGTGDs and weakly acyclic TGDs is proposed.
• Stickiness. The class of sticky sets of TGDs (or sticky Datalog±, see Cal̀ı et al., 2012b)
is defined by means of syntactic restriction on the rule bodies, which ensure that each
sticky set of TGDs is first-order rewritable, being a FUS, according to Baget et al.
(2011a). Civili and Rosati (2012) have proposed an extension of sticky sets of TGDs.

The interaction between equality generating dependencies and TGDs has been the sub-
ject of several works, starting from the work of Johnson and Klug (1984), which deals with
functional and inclusion dependencies, proposing a class of inclusion dependencies called
key-based, which, intuitively, has no interaction with key dependencies thanks to syntactic
restrictions. The absence of interaction between EGDs and TGDs is captured by the notion
of separability, first introduced by Cal̀ı et al. (2003a) for key and inclusion dependencies,
and also adopted, though sometimes not explicitly stated, for instance, by Cal̀ı, Gottlob,
and Pieris (2012a), Artale et al. (2009) and Calvanese et al. (2007)—see the work by Cal̀ı,
Gottlob, Orsi, and Pieris (2012b) for a survey on the topic.

8. FGTGDs were independently discovered by Mantas Šimkus while working on his doctoral thesis.

169

Cal̀ı, Gottlob & Kifer

As shown by Cal̀ı et al. (2012a), stratified negation can be added straightforwardly to
Datalog±. More recently, guarded Datalog± was extended by two versions of well-founded
negation (see Gottlob, Hernich, Kupke, & Lukasiewicz, 2012; Hernich, Kupke, Lukasiewicz,
& Gottlob, 2013).

In ontological query answering, normally both finite and infinite models of theories are
considered. In some cases, restricting the attention to finite solutions (models) only is not
always equivalent to the general approach. The property of equivalence between query
answering under finite models and query answering under arbitrary models (finite and
infinite) is called finite controllability, and it was proved for restricted classes of functional
and inclusion dependencies by Johnson and Klug (1984). Finite controllability was proved
for the class of arbitrary inclusion dependencies in a pioneering work by Rosati (2011). An
even more general result appears in the work of Bárány et al. (2010), where it is shown that
finite controllability holds for guarded theories.

A related previous approach to guarded logic programming is guarded open answer set
programming (Heymans, Nieuwenborgh, & Vermeir, 2005). It is easy to see that a set of
GTGDs can be interpreted as a guarded answer set program, as defined by Heymans et al.
(2005), but guarded answer set programs are more expressive than GTGDs because they
allow negation.

Implementations of ontology-based data access systems take advantage of query answer-
ing techniques for tractable ontologies; in particular, we mention DLV∃ (Leone et al., 2012),
Mastro (Savo, Lembo, Lenzerini, Poggi, Rodriguez-Muro, Romagnoli, Ruzzi, & Stella, 2010)
and NYAYA (De Virgilio, Orsi, Tanca, & Torlone, 2012).

Acknowledgments

This is the extended version of results by the same authors, published in the KR 2008 Con-
ference and in the DL 2008 Workshop. Andrea Cal̀ı and Georg Gottlob are also affiliated
with the Oxford-Man Institute of Quantitative Finance, University of Oxford, UK. Andrea
Cal̀ı acknowledges support by the EPSRC project “Logic-based Integration and Querying
of Unindexed Data” (EP/E010865/1). Georg Gottlob acknowledges funding from the Eu-
ropean Research Council under the European Community’s Seventh Framework Program
(FP7/2007-2013) / ERC grant agreement DIADEM no. 246858. Michael Kifer was par-
tially supported by the NSF grant 0964196. The authors are grateful to Andreas Pieris,
Marco Manna, Michael Morak and the anonymous reviewers for their valuable comments
and suggestions to improve the paper.

References

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison-Wesley.

Adler, I., Gottlob, G., & Grohe, M. (2007). Hypertree width and related hypergraph in-
variants. Eur. Journal of Combinatorics, 28 (8), 2167–2181.

Aho, A., Sagiv, Y., & Ullman, J. D. (1979). Equivalence of relational expressions. SIAM
Journal of Computing, 8 (2), 218–246.

Arenas, M., Bertossi, L. E., & Chomicki, J. (1999). Consistent query answers in inconsistent
databases. In Proc of PODS 1999, pp. 68–79.

170

Taming the Infinite Chase

Artale, A., Calvanese, D., Kontchakov, R., & Zakharyaschev, M. (2009). The DL-lite family
and relations. J. Artif. Intell. Res., 36, 1–69.

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL envelope. In Proc. of IJCAI 2005,
pp. 364–369.

Baget, J.-F., Leclère, M., Mugnier, M.-L., & Salvat, E. (2011a). On rules with existential
variables: Walking the decidability line. Artif. Intell., 175 (9–10), 1620–1654.

Baget, J.-F., Mugnier, M.-L., Rudolph, S., & Thomazo, M. (2011b). Walking the complexity
lines for generalized guarded existential rules. In Proc. of IJCAI 2011, pp. 712–717.

Bárány, V., Gottlob, G., & Otto, M. (2010). Querying the guarded fragment. In Proc. of
LICS 2010, pp. 1–10.

Beeri, C., Fagin, R., Maier, D., Mendelzon, A. O., Ullman, J. D., & Yannakakis, M. (1981).
Properties of acyclic database schemes. In Proc. of STOC 1981, pp. 355–362.

Beeri, C., & Vardi, M. Y. (1981). The implication problem for data dependencies. In
Proc. of ICALP 1981, pp. 73–85.

Bourhis, P., Morak, M., & Pieris, A. (2013). The impact of disjunction on query answering
under guarded-based existential rules. In Proc. of IJCAI 2013.

Cabibbo, L. (1998). The expressive power of stratified logic programs with value invention.
Inf. Comput., 147 (1), 22–56.

Cal̀ı, A., Calvanese, D., De Giacomo, G., & Lenzerini, M. (2001). Accessing data integration
systems through conceptual schemas. In Proc. of ER 2001, pp. 270–284.

Cal̀ı, A., Console, M., & Frosini, R. (2013). On separability of ontological constraints.
Forthcoming.

Cal̀ı, A., Gottlob, G., & Kifer, M. (2008). Taming the infinite chase: Query answering under
expressive relational constraints. In Proc. of KR 2008, pp. 70–80.

Cal̀ı, A., Gottlob, G., & Lukasiewicz, T. (2009). A general datalog-based framework for
tractable query answering over ontologies. In Proc. of PODS 2009, pp. 77–86.

Cal̀ı, A., Gottlob, G., & Lukasiewicz, T. (2012a). A general datalog-based framework for
tractable query answering over ontologies. J. Web Semantics, 14, 57–83. Extended
version of (Cal̀ı, Gottlob, & Lukasiewicz, 2009).

Cal̀ı, A., Gottlob, G., Orsi, G., & Pieris, A. (2012b). On the interaction of existential rules
and equality constraints in ontology querying. In Proc. of Correct Reasoning 2012,
pp. 117–133.

Cal̀ı, A., Gottlob, G., & Pieris, A. (2011). New expressive languages for ontological query
answering. In Proc. of AAAI 2011.

Cal̀ı, A., Gottlob, G., & Pieris, A. (2012a). Ontological query answering under expressive
entity-relationship schemata. Inf. Syst., 37 (4), 320–335.

Cal̀ı, A., Gottlob, G., & Pieris, A. (2012b). Towards more expressive ontology languages:
The query answering problem. Artif. Intell., 193, 87–128.

Cal̀ı, A., & Kifer, M. (2006). Containment of conjunctive object meta-queries. In Proc. of
VLDB 2006, pp. 942–952.

171

Cal̀ı, Gottlob & Kifer

Cal̀ı, A., Lembo, D., & Rosati, R. (2003a). On the decidability and complexity of query
answering over inconsistent and incomplete databases. In PODS 2003, pp. 260–271.

Cal̀ı, A., Lembo, D., & Rosati, R. (2003b). Query rewriting and answering under constraints
in data integration systems. In Proc. of IJCAI 2003, pp. 16–21.

Cal̀ı, A., & Martinenghi, D. (2010). Querying incomplete data over extended er schemata.
TPLP, 10 (3), 291–329.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2007). Tractable
reasoning and efficient query answering in description logics: The DL-lite family. J.
Autom. Reasoning, 39 (3), 385–429.

Calvanese, D., De Giacomo, G., & Lenzerini, M. (2002). Description logics for information
integration. In Computational Logic: Logic Programming and Beyond, Vol. 2408 of
LNCS, pp. 41–60. Springer.

Calvanese, D., De Giacomo, G., & Lenzerini, M. (1998). On the decidability of query
containment under constraints. In Proc. of PODS 1998, pp. 149–158.

Chandra, A. K., Kozen, D., & Stockmeyer, L. J. (1981a). Alternation. J. of the ACM,
28 (1), 114–133.

Chandra, A. K., Lewis, H. R., & Makowsky, J. A. (1981b). Embedded implicational depen-
dencies and their inference problem. In Proc. of STOC 1981, pp. 342–354.

Chandra, A. K., & Merlin, P. M. (1977). Optimal implementation of conjunctive queries in
relational data bases. In Proc. of STOC 1977, pp. 77–90.

Chandra, A. K., & Vardi, M. Y. (1985). The implication problem for functional and inclusion
dependencies is undecidable. SIAM J. Comput., 14, 671–677.

Chen, P. P. (1976). The entity-relationship model - toward a unified view of data. Trans.
Database Syst., 1 (1), 9–36.

Civili, C., & Rosati, R. (2012). A broad class of first-order rewritable tuple-generating
dependencies. In Proc. of Datalog 2.0 2012, pp. 68–80.

Courcelle, B. (1990). The monadic second-order logic of graphs. I. recognizable sets of finite
graphs. Information and Computation, 85 (1), 12–75.

Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and expressive
power of logic programming. ACM Computing Surveys, 33 (3), 374–425.

De Virgilio, R., Orsi, G., Tanca, L., & Torlone, R. (2012). NYAYA: A system supporting
the uniform management of large sets of semantic data. In Proc. of ICDE 2012, pp.
1309–1312.

Deutsch, A., Nash, A., & Remmel, J. B. (2008). The chase revisited. In Proc. of PODS 2008,
pp. 149–158.

Fagin, R. (1983). Degrees of acyclicity for hypergraphs and relational database schemes.
J. ACM, 30 (3), 514–550.

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005). Data exchange: semantics and
query answering. Theor. Comput. Sci., 336 (1), 89–124.

172

Taming the Infinite Chase

Goncalves, M. E., & Grädel, E. (2000). Decidability issues for action guarded logics. In
Proc. of DL 2000, pp. 123–132.

Gottlob, G., Hernich, A., Kupke, C., & Lukasiewicz, T. (2012). Equality-friendly well-
founded semantics and applications to description logics. In Proc. of AAAI 2012.

Gottlob, G., Leone, N., & Scarcello, F. (2001). Hypertree decompositions: A survey. In
Proc. of MFCS 2001, pp. 37–57.

Gottlob, G., Leone, N., & Scarcello, F. (2002). Hypertree decompositions and tractable
queries. J. Comp. Syst. Sci., 64 (3).

Gottlob, G., Leone, N., & Scarcello, F. (2003). Robbers, marshals, and guards: game the-
oretic and logical characterizations of hypertree width. J. Comput. Syst. Sci., 66 (4),
775–808.

Gottlob, G., Manna, M., & Pieris, A. (2013a). Combining decidability paradigms for exis-
tential rules. To appear in TPLP.

Gottlob, G., Manna, M., & Pieris, A. (2013b). Querying hybrid fragments of existential
rules. Forthcoming.

Gottlob, G., & Nash, A. (2006). Data exchange: computing cores in polynomial time. In
Proc. of PODS 2006, pp. 40–49.

Gottlob, G., Orsi, G., & Pieris, A. (2011). Ontological queries: Rewriting and optimization.
In Proc. of ICDE 2011, pp. 2–13.

Gottlob, G., & Schwentick, T. (2012). Rewriting ontological queries into small nonrecursive
datalog programs. In Proc. of KR 2012.

Grädel, E. (1999). On the restraining power of guards. J. Symb. Log., 64 (4), 1719–1742.

Grau, B. C., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., & Wang, Z.
(2012). Acyclicity conditions and their application to query answering in description
logics. In Proc. of KR 2012.

Greco, S., Spezzano, F., & Trubitsyna, I. (2011). Stratification criteria and rewriting tech-
niques for checking chase termination. PVLDB, 4 (11), 1158–1168.

Hernich, A., Kupke, C., Lukasiewicz, T., & Gottlob, G. (2013). Well-founded semantics for
extended datalog and ontological reasoning. In Proc. of PODS 2013, pp. 225–236.

Hernich, A., Libkin, L., & Schweikardt, N. (2011). Closed world data exchange. ACM
Trans. Database Syst., 36 (2), 14–53.

Heymans, S., Nieuwenborgh, D. V., & Vermeir, D. (2005). Guarded open answer set pro-
gramming. In Proc. of LPNMR 2005.

Johnson, D. S., & Klug, A. (1984). Testing containment of conjunctive queries under
functional and inclusion dependencies. J. Comp. Syst. Sci., 28, 167–189.

Kifer, M., Lausen, G., & Wu, J. (1995). Logical foundations of object-oriented and frame-
based languages. J. ACM, 42, 741–843.

Koch, C. (2002). Query rewriting with symmetric constraints. In Proc. of FoIKS 2002, pp.
130–147.

173

Cal̀ı, Gottlob & Kifer

Kontchakov, R., Lutz, C., Toman, D., Wolter, F., & Zakharyaschev, M. (2010). The com-
bined approach to query answering in dl-lite. In Proc. of KR 2010.

Krötzsch, M., & Rudolph, S. (2007). Conjunctive queries for EL with composition of roles.
In Proc. of DL 2007.

Krötzsch, M., & Rudolph, S. (2011). Extending decidable existential rules by joining acyclic-
ity and guardedness. In Proc. of IJCAI 2011, pp. 963–968.

Leone, N., Manna, M., Terracina, G., & Veltri, P. (2012). Efficiently computable datalog;
programs. In Proc. of KR 2012.

Li, L., & Horrocks, I. (2003). A software framework for matchmaking based on semantic
web technology. In Proc. of WWW 2003.

Lutz, C., Toman, D., & Wolter, F. (2009). Conjunctive query answering in the description
logic EL using a relational database system. In Proc. of IJCAI 2009, pp. 2070–2075.

Maier, D., Mendelzon, A. O., & Sagiv, Y. (1979). Testing implications of data dependencies.
Trans. Database Syst., 4 (4), 455–469.

Mailharrow, D. (1998). A classification and constraint-based framework for configuration.
Artif. Intell. for Eng. Design, Anal. and Manuf., 12 (4), 383–397.

Marnette, B. (2009). Generalized schema-mappings: from termination to tractability. In
Proc. of PODS 2009, pp. 13–22.

Millstein, T., Levy, A., & Friedman, M. (2000). Query containment for data integration
systems. In PODS 2000.

Mitchell, J. C. (1983). The implication problem for functional and inclusion dependencies.
Inf. and Control, 56, 154–173.

Nash, A., Deutsch, A., & Remmel, J. (2006). Data exchange, data integration, and chase.
Tech. rep. CS2006-0859, UCSD.

Orsi, G., & Pieris, A. (2011). Optimizing query answering under ontological constraints.
PVLDB, 4 (11), 1004–1015.

Patel-Schneider, P. F., & Horrocks, I. (2007). A comparison of two modelling paradigms in
the semantic web. J. Web Semantics, 5 (4), 240–250.

Pérez-Urbina, H., Motik, B., & Horrocks, I. (2010). Tractable query answering and rewriting
under description logic constraints. J. Appl. Logic, 8 (2), 186–209.

Qian, X. (1996). Query folding. In Proc. of ICDE 1996, pp. 48–55.

Rabin, M. O. (1969). Decidability of second-order theories and automata on infinite trees.
Trans. Am. Math. Soc., 141 (1–35), 4.

Rosati, R. (2007). On conjunctive query answering in EL. In Proc. of DL 2007.

Rosati, R. (2011). On the finite controllability of conjunctive query answering in databases
under open-world assumption. J. Comput. Syst. Sci., 77 (3), 572–594.

Savo, D. F., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Romagnoli, V.,
Ruzzi, M., & Stella, G. (2010). Mastro at work: Experiences on ontology-based data
access. In Proc. of Description Logics.

174

