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Abstract

We design a decidable extension of the description logic SROIQ underlying the Web
Ontology Language OWL2. The new logic, called SR+OIQ, supports a controlled use
of role axioms whose right-hand side may contain role chains or role unions. We give a
tableau algorithm for checking concept satisfiability with respect to SR+OIQ ontologies
and prove its soundness, completeness and termination.

1. Introduction

The ever growing number and scope of application areas puts constant pressure on the
designers of ontology languages. Thus, the first version of the Web Ontology Language
OWL, which became a formal W3C recommendation in 2004, contained the description logic
(DL, for short) SHOIN that allowed the use of the basic DL ALC together with inverse
and transitive roles, role hierarchies, nominals and unqualified cardinality restrictions. Its
second reincarnation OWL2, adopted in 2009, is based on a more powerful formalism,
SROIQ, which extends SHOIN with such features as complex role chains, asymmetric,
reflexive and disjoint roles, and qualified cardinality restrictions (Horrocks & Sattler, 2004;
Horrocks, Kutz, & Sattler, 2006; Cuenca Grau, Horrocks, Motik, Parsia, Patel-Schneider,
& Sattler, 2008).

The addition of role inclusions that involve role chains was motivated by multiple use
cases in the life sciences domain which require means to describe ‘interactions between
locative properties and various kinds of part-whole properties’ (Cuenca Grau et al., 2008).
For example, the role inclusion axiom

hasLocation ◦ isPartOf v hasLocation

states that if an object x is located in y, and if y is part of z, then x is also located in
z (Rector, 2002). However, having resolved the issue of role chains in the left-hand side of
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role inclusion axioms, as in the example above, SROIQ and OWL2 fall short of providing
means to represent such chains and/or unions of roles on the right-hand side, which are often
required for modelling structured objects, in particular, in the emerging area of ontological
product modelling and collaborative design (Bock, Zha, Suh, & Lee, 2010).

Consider, for example, the product model of cars by Bock (2004) and Krdzavac and
Bock (2008), part of which is shown in the UML-like diagram below:
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Figure 1: A product model of a car (Krdzavac & Bock, 2008).

The fragment in Fig. 1 (A) involves two statements:

hasEngine ◦ hasCrankshaft ◦ powers v hasWheel ◦ hasHub (1)

says that whatever is powered by a crankshaft in an engine of a car is a hub in a wheel of
the same car and, conversely,

hasWheel ◦ hasHub v hasEngine ◦ hasCrankshaft ◦ powers (2)

states that a hub in a wheel of a car is powered by a crankshaft in an engine of that car.
The fragment in Fig. 1 (B) means that an engine in a car can power wheels, the generator
and the oil pump, which can be represented by the axiom

hasEngine ◦ powers v hasWheel t hasGenerator t hasOilPump. (3)

Finally, Fig. 1 (C) is supposed to mean that the role powers is transitive:

powers ◦ powers v powers. (4)

Role inclusion axioms of the form (1), (2), (4) were a feature of the original KL-ONE
terminological language (Brachman & Schmolze, 1985), where they were called ‘role-value-
maps’ and could be applied to certain individuals. Role inclusions with disjunctions on the
right-hand side also arise in the context of spatial reasoning with description logics (Wessel,
2001, 2002), where they are used to represent compositions of the RCC8-relations such as
PO ◦ TPP ⊆ PO ∪ TPP ∪ NTPP (in English: if a region x partially overlaps a region y
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and y is a tangential proper part of a region z, then either x partially overlaps z, or x is a
tangential proper part of z, or x is a non-tangential proper part of z).

Role inclusions with a complex right-hand side are not allowed by the syntax of SROIQ
and OWL2, which makes adequate representation of models such as in Fig. 1 problematic.
Indeed, in these languages, we cannot exclude situations when, for example, car1 is related
to hub1 via hasEngine ◦ hasCrankshaft ◦ powers and, at the same time, hub1 is part of car2.
Axiom (1) asserts the existence of an individual that is a wheel in car1 and has hub1.

The main issue with axioms such as (1) is that they are similar to rewrite rules in
semi-Thue systems, the word problem for which is known to be undecidable. One of the
simplest examples was given by Tseitin (1956) who showed that the associative calculus
(Thue system) with the axioms

ac = ca, ad = da, bc = cb, bd = db, edb = be, eca = ae, abac = abacc

is undecidable. Schmidt-Schauß (1989) used the undecidability of the word problem to show
that the logic underlying KL-ONE is undecidable. Baader (2003) proved (by a reduction
of semi-Thue systems) that the tractable description logic EL becomes undecidable when
extended with role inclusions containing role chains on the right-hand side. On the other
hand, he observed that role inclusions with a single role on the right-hand side do not
increase the complexity of EL. Horrocks and Sattler (2004) proved that the extension
of SHIQ with axioms of the form R ◦ S v R and S ◦ R v R is undecidable; however,
decidability can be regained by requiring that such axioms do not involve cycles. Axioms
of the form (3) also lead to undecidable logics: Wessel (2001, 2002) showed (by reduction
of PCP) that the extension of ALC with role axioms of the form S ◦ T v R1 t · · · t Rn is
undecidable.

Similar problems have been investigated by the modal logic community. In modal logic,
axioms of the form

�i1 . . .�inp→ �j1 . . .�jmp, (5)

known as modal reduction principles, have always attracted attention and still present a
great challenge (for example, it is open whether the extension of the basic modal logicK with
either of the axioms ���p→ ��p or ��p→ ���p is decidable). Axioms of the form (5)
give rise to grammars generated by the production rules i1·. . .·in → j1·. . .·jm, and the modal
logics axiomatised by such axioms are called grammar logics (del Cerro & Penttonen, 1988).
It was shown by Demri (2001) and Baldoni (1998) that if this grammar is regular, then the
corresponding modal logic is decidable in ExpTime; on the other hand, linear (context-
free) grammar logics can be undecidable. It follows, in particular, that the satsifiability
problem for ALC knowledge bases extended with role inclusions R1 . . . Rn v S1 . . . Sk is also
ExpTime-complete provided that the grammar generated by the rules S1 . . . Sk → R1 . . . Rn

is regular (Demri, 2001, Section 5.3).

In this paper, we design a decidable extension SR+OIQ of the description logic SROIQ
that supports a controlled use of role inclusion axioms with a complex right-hand side such
as in the examples above. Thus, we can use role inclusion axioms with a chain or union of
roles on the right-hand side, and we can also express equality of two role chains or unions
such as in (1) and (2). To ensure decidability, we impose certain regularity conditions on the
role axioms in a given ontology that generalise the syntactic restrictions of Horrocks et al.
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(2006) and Kazakov (2010). These conditions are checked in polynomial time and employed,
as a pre-processing step, to build finite automata for some roles in the ontology. Intuitively,
the automaton for a role R recognises role chains that are subsumed by R according to the
ontology and passes the concept C to the end of the chain whenever its beginning belongs
to ∀R.C.

Our decision algorithm builds on the tableau technique developed by Horrocks et al.
(2006) and uses some ideas of Halpern and Moses (1992, pp. 34-35) in order to pass sets
of concepts along role chains required by role inclusions with a complex right-hand side
such as (1)–(3). If there are no such axioms, our tableau algorithm behaves precisely as
the tableau algorithm for SROIQ; otherwise it may suffer multiple exponential blowups
(depending on the number of role inclusions with a complex right-hand side).

An alternative approach to modelling complex structures with description logics was
suggested by Motik, Cuenca Grau, Horrocks, and Sattler (2009). Their decidable formalism
is based on description graphs that can encode axioms of the form (1), but not in the
presence of transitivity (4) (in which case the language generated by the role chain in the
left-hand side of (1) is infinite and cannot be represented by a finite graph). To ensure
decidability, Motik et al. (2009) impose acyclicity conditions on the description graphs and
do not allow the same role to appear in the description graph and the DL ontology. For
example, we cannot straightforwardly combine a description graph encoding the model in
Fig. 1 with a vehicle tax ontology containing axioms such as

Car u ∃hasEngine.LargeEngine v ∃vehicleTax.HigherTax. (6)

In SR+OIQ, the addition of (6) to (1)–(4) does not cause a problem.

The structure of the paper is as follows. We define the syntax and semantics of the
description logic SR+OIQ in the next two sections. In particular, Section 3 defines and
gives the intuition behind the regularity conditions imposed by SR+OIQ on role axioms.
The aim of Section 4 is to illustrate by a number of examples the new challenges in the
tableau construction we are facing when dealing with SR+OIQ compared to the case of
SROIQ. We use these examples to motivate and explain the new ideas, notions and tech-
niques that are required for our tableau-based decision algorithm for SR+OIQ. Tableaux
for SR+OIQ are defined formally in Appendix A. In Appendix B, we give a tableau al-
gorithm for SR+OIQ and prove that it is sound, complete and always terminates. We
discuss the obtained results and open problems in Section 5.

2. Description Logic SR+OIQ

We begin by formally defining the syntax and semantics of the description logic SR+OIQ.
The alphabet of SR+OIQ consists of three countably infinite and disjoint sets NC , NR and
NI of concept names, role names and individual names, respectively. We also distinguish
some proper subset NN $ NC , whose members are called nominals. This alphabet is
interpreted in structures, or interpretations, of the form I = (∆I , ·I), where ∆I 6= ∅ is the
domain of interpretation, and ·I is an interpretation function that assigns to every A ∈ NC

a subset AI ⊆ ∆I , with AI being a singleton set if A ∈ NN ; to every R ∈ NR a binary
relation RI ⊆ ∆I ×∆I ; and to every a ∈ NI an element aI ∈ ∆I . Following the OWL2
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standards, we do not adopt the unique name assumption and allow aI = bI for distinct
a, b ∈ NI .

We now introduce the role and concept constructs that are available in SR+OIQ. For
each role name R ∈ NR, the inverse R− of R is interpreted by the relation

(R−)I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ RI}.

We call role names and their inverses basic roles, set N−R = NR ∪ {R− | R ∈ NR} and write
rn(R) = rn(R−) = R, for R ∈ NR. We define a SR+OIQ-role as a chain R1 . . . Rn or a
union R1 t · · · tRn of basic roles Ri, and interpret these new constructs by taking

(R1 . . . Rn)I = RI1 ◦ · · · ◦RIn,
(R1 t · · · tRn)I = RI1 ∪ · · · ∪RIn,

where ◦ denotes the composition of binary relations. Define a function inv(·) on role chains
by taking inv(R1 . . . Rn) = inv(Rn) . . . inv(R1), where inv(R) = R− and inv(R−) = R, for
R ∈ NR.

In the set NR of role names, we distinguish some proper subset NS and call its members
and their inverses simple roles; those basic roles that are not simple will be called non-
simple. Simple and non-simple roles will have to satisfy different constraints in concepts
and role inclusion axioms to be defined below.

SR+OIQ-concepts, C, are defined by the following grammar, where A ∈ NC , R is a
basic role, S a simple role, and n a positive integer (given in binary):

C ::= A | ⊥ | > | ¬C | C1 u C2 | C1 t C2 |
∃R.C | ∀R.C | ≤ nS.C | ≥ nS.C | ∃S.Self .

The interpretation of these concepts is defined as follows, where ]X is the cardinality of X:

>I = ∆I , ⊥I = ∅,
(¬C)I = ∆I \ CI , (C1 u C2)I = CI1 ∩ CI2 , (C1 t C2)I = CI1 ∪ CI2 ,
(∃R.C)I = {x ∈ ∆I | ∃y ∈ CI (x, y) ∈ RI},
(∀R.C)I = {x ∈ ∆I | ∀y ((x, y) ∈ RI → y ∈ CI)},
(∃S.Self )I = {x ∈ ∆I | (x, x) ∈ SI},
(≤ nS.C)I = {x ∈ ∆I | ]{y | (x, y) ∈ SI ∧ y ∈ CI} ≤ n},
(≥ nS.C)I = {x ∈ ∆I | ]{y | (x, y) ∈ SI ∧ y ∈ CI} ≥ n}.

A SR+OIQ-knowledge base (KB, for short) consists of a TBox, an RBox and an ABox.
A TBox, T , is a finite set of concept inclusions (CIs), which are expressions of the form
C1 v C2. Such a CI is satisfied in I if CI1 ⊆ CI2 , in which case we write I |= C1 v C2. An
ABox, A, is a finite set of assertions of the form

a : C, (a, b) : R, (a, b) : ¬S, a 6= b,
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where a and b are individual names, R a basic role, S a simple role, and C a concept. The
satisfaction relation for such ABox assertions is given by

I |= a : C iff aI ∈ CI ,
I |= (a, b) : R iff (aI , bI) ∈ RI ,
I |= (a, b) : ¬S iff (aI , bI) /∈ SI ,

I |= a 6= b iff aI 6= bI .

An RBox, R, is a finite set of disjointness constraints and role axioms. A disjointness
constraint Dis(S1, S2) is imposed on simple roles S1, S2; it is satisfied in I if SI1 ∩ SI2 = ∅.
A role axiom (RA) can be of the following six types, where S, S′ are simple roles; Q′, Q,
Q1, . . . , Qm non-simple roles; and R,R1, . . . , Rm are arbitrary basic roles:

(A) S v S′, QQ v Q, Q− v Q,

(B) R1 . . . Rm v Q, QR1 . . . Rm v Q, R1 . . . RmQ v Q, for m ≥ 1,

(C) R v QR1 . . . Rm, for m ≥ 1,

(D) R v Q1 t · · · tQm, for m > 1,

(E) Q′ = QR1 . . . Rm, for m ≥ 1,

(F) Q = Q1 t · · · tQm, for m > 1.

RAs of the form (A)–(D) are called role inclusions (RIs), while those of the form (E) and
(F) role equalities (REs). An RBox R may contain any set of role axioms satisfying the
regularity conditions to be defined and discussed in the next section.

Note that, although RAs in SR+OIQ are only restricted to the form (A)–(F), they
can encode more general role inclusions of the form (provided that they meet the regularity
conditions to be defined below)

(R1
1 . . . R

1
n1

) t · · · t (Rm
1 . . . Rm

nm
) v (Rm+1

1 . . . Rm+1
nm+1

) t · · · t (Rk
1 . . . R

k
nk

). (7)

(In particular, one can easily write an RBox capturing all the RAs (1)–(4) from the intro-
duction.) A detailed discussion of what can actually be represented by SR+OIQ RBoxes
will also be given in the next section.

If %i is a chain or union of roles, i = 1, 2, then %1 v %2 (or %1 = %2) is satisfied in I if
%I1 ⊆ %I2 (respectively, %I1 = %I2 ). We say that the KB K = (T ,R,A) is satisfiable if there
exists an interpretation I satisfying all the members of T , R and A. In this case we write
I |= K and call I a model of K.

Our main reasoning problem in this paper is concept satisfiability with respect to KBs:
given a SR+OIQ concept C and a KB K, decide whether there is a model I of K such
that CI 6= ∅. All other standard reasoning problems such as subsumption, KB satisfiability
or instance checking are known to be reducible to concept satisfiability with respect to
KBs. Moreover, concept satisfiability with respect to arbitrary KBs can be reduced to
concept satisfiability with respect to KBs of the form (∅,R, ∅) (with empty TBoxes and
ABoxes); (see Horrocks et al., 2006, Thm. 9).
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For a concept C, we denote by nom(C) the set of all nominals that occur in C, and by
role(C) the set of all basic roles R such that either R or inv(R) occurs in C; role(C,K) and
role(C,R) contain those basic roles and their inverses that occur in C or K/R.

3. Regular RBoxes

As mentioned in the introduction, unrestricted RAs can easily simulate all kinds of unde-
cidable problems. In this section, we define regular RBoxes that are allowed in SR+OIQ.
For SROIQ RAs—that is, RAs of the form (A) and (B)—our restrictions are the same
as those used by Kazakov (2010). As suggested by the term ‘regular,’ we are going to use
the regularity restrictions to construct finite automata for roles R that recognise role chains
subsumed by R in the RBox in question.

Suppose R is a set of RAs. To define the regularity conditions (to be given in Def-
inition 3), we require the following binary relation ≺′ on the set of role names occur in
R:

– rn(Ri) ≺′ rn(Q), i = 1, . . . ,m, for RIs of type (B),

– rn(R) ≺′ rn(Q), for RIs of type (C),

– rn(R) ≺′ rn(Qi), i = 1, . . . ,m, for RIs of type (D),

– rn(Ri) ≺′ rn(Q′), i = 1, . . . ,m, for REs of type (E).

Denote by �R the transitive and reflexive closure of ≺′. We write R1 'R R2 if both
R1 �R R2 and R2 �R R1, and R1 ≺R R2 if R1 �R R2 and R2 �R R1. By the depth dR(R)
of R in R we understand the largest n for which there exists a chain R1 ≺R R2 ≺R · · · ≺R
Rn ≺R R.

We represent R as the union R = RA ∪RB ∪RC ∪RD ∪RE ∪RF , where RX contains
those RAs from R that are of the form (X), X ∈ {A,B,C,D,E, F}. We also write RA,B

for RA ∪RB, etc.
For an RI r = (% v R) ∈ RA,B and role chains %′ and %′′, we write %′ vr %

′′ if either
%′ = %′1%%

′
2 and %′′ = %′1R%

′
2, or %′ = %′1inv(%)%′2 and %′′ = %′1inv(R)%′2, for some %′1 and %′2.

We write %′ vR %′′ if %′ vr %
′′, for some r ∈ RA,B, and denote by v∗R the reflexive and

transitive closure of vR. It follows immediately from the definitions of �R and v∗R that we
have:

Lemma 1 If % = %′R′%′′ and % v∗R R, then rn(R′) �R rn(R).

Following Kazakov (2010), we say that an RI (% v R′) ∈ RA,B is stratified in R if, for
every R 'R R′ with % = %1R%2, there exists R1 such that %1R v∗R R1 and R1%2 v∗R R′. We
call RA,B stratified if every RI % v R with % v∗R R is stratified in R.

For every role R in R, we define the following language LR(R) of role chains regarded
as words over basic roles:

LR(R) = {% | % v∗R R}.

Theorem 2 (Kazakov, 2010) Suppose R is an RBox with stratified RA,B. Then the
language LR(R) is regular, for every role R in R. Moreover, one can construct a non-
deterministic finite automaton recognising LR(R) the number of transitions in which does
not exceed O(|R|2dR(R)).
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We are now in a position to define regular RBoxes.

Definition 3 An RBox R is called regular if the following conditions are satisfied:

(c1) RA,B is stratified;

(c2) rn(R) ≺R rn(Q), for RIs of type (C);

(c3) rn(R) ≺R rn(Qi), i = 1, . . . ,m, for RIs of type (D);

(c4) rn(Ri) ≺R rn(Q′), i = 1, . . . ,m, for RAs of type (E);

(c5) there exists a quasi-order �1
R ⊇ �R for which

– rn(Q′) ≺1
R rn(Q), for each RA of type (E);

– rn(Q) ≺1
R rn(Qi), i = 1, . . . ,m, for each RA of type (F);

(c6) there exists a quasi-order �2
R ⊇ �R for which

– rn(Q) ≺2
R rn(Q′), for each RA of type (E);

– rn(Qi) ≺2
R rn(Q), i = 1, . . . ,m, for each RA of type (F);

(c7) there do not exist RAs r and r′ such that one of the following conditions holds:

– r′ = (Q′ = Q0R1 . . . Rm′), r = (Q = Q1 t · · · t Qm), rn(Q′) = rn(Q) and
rn(Q0) = rn(Qj), for some j, 1 ≤ j ≤ m;

– r′ = (Q′0 = Q0R
′
1 . . . R

′
m′), r = (Q′1 = Q1R1 . . . Rm), rn(Q′0) = rn(Q′1) and

rn(Q0) = rn(Q1);

– r′ = (Q′ = Q′1 t · · · t Q′m′), r = (Q = Q1 t · · · t Qm), rn(Q′) = rn(Q) and
rn(Q′i) = rn(Qj), for some i, j, 1 ≤ i ≤ m′, 1 ≤ j ≤ m.

In the remainder of this section, we discuss the regularity conditions (c1)–(c7) and il-
lustrate them by concrete examples. Note first that condition (c1) is required to ensure
decidability of SROIQ; as mentioned in the introduction, dropping it immediately leads
to undecidability (Demri, 2001; Horrocks & Sattler, 2004). To understand (c2), consider
the following:

Example 4 Let R = {RQ v Q′, Q′ v QR}. The former RI is of type (B), while the latter
one is of type (C). Clearly, Q′ v QR does not satisfy (c2), and so the RBox is not regular.
To see why this situation is ‘dangerous,’ we observe that R |= RQ v QR. Now, if the TBox
generates infinite chains of Q- and R−-arrows starting from the same point, then the RI
RQ v QR would generate the N×N-grid shown on the left-hand side of the picture below:
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It is routine then to reduce the undecidable N× N-tiling problem to KB satisfiability.
On the other hand, the RBox R′ = {R v QRQ−} is regular (rn(R) ≺R′ rn(Q)).

However, it cannot generate a proper N × N-grid (as shown on the right-hand side of the
picture above). To be able to encode the N × N-tiling problem, we require additional RIs
such as Q−Q v Q1 and Q−Q1Q v Q1. But then the resulting RBox will not satisfy
condition (c1).

Condition (c3) is similar to (c2); that its omission leads to undecidability was shown
by Wessel (2002). To illustrate (c4), we give one more example.

Example 5 Consider the RBox R = {Q′Q v Q1, Q
′ = Q−Q1}. Clearly, it does not satisfy

(c4), but with this condition omitted, we only have Q′ ≺R Q1 and Q ≺R Q1. Now observe
that the ‘dangerous’ RI Q−Q1Q v Q1 from Example 4 is a consequence of R.

Since the REs (E) and (F) imply Q′ v QR1 . . . Rm and Q v Q1 t · · · tQm of types (C)
and (D), condition (c5) is similar to (c2) and (c3). For (c6), consider the following:

Example 6 The RBox R = {Q1Q2 v Q2, Q3Q4 v Q3, Q4 = Q2S} is regular. However,
R1 = R ∪ {Q1 = Q3S

′} is not regular because rn(Q1) ≺R1 rn(Q2), rn(Q4) ≺R1 rn(Q3),
rn(S) ≺R1 rn(Q4), rn(S′) ≺R1 rn(Q1), and so (c1)–(c5) and (c7) are satisfied, while
(c6) is not. Now, R1 implies Q3S

′Q2 v Q2 and Q3Q2S v Q3, from which we obtain
Q3Q2SS

′Q2 v Q2. The RBox containing this RI generates a language that is not regular.

Finally, we require condition (c7) in view of the following:

Example 7 The RAs Q′ = QR and Q′ = Q t Q1 clearly imply Q v QR. As we saw in
Example 4, in the presence of the RI RQ v Q, this would lead to undecidability. Condition
(c7) does not allow RBoxes of this sort to be counted as regular.

As was already noted, we restrict SR+OIQ RBoxes to RAs of types (A)–(F) mainly
in order to simplify notation and proofs; see (7). Every RI R1 . . . Rn v P1 . . . Pm is
equivalent to the RI inv(Rn) . . . inv(R1) v inv(Pm) . . . inv(P1). In particular, the RI
inv(R) v inv(Qm) . . . inv(Q1)inv(Q) is equivalent to the RI R v QQ1 . . . Qm of type (C),
and so we can use the former in SR+OIQ RBoxes provided that rn(R) ≺ rn(Q). Every
RI R1 . . . Rn v P1 . . . PkP

′
1 . . . P

′
m can be replaced with the RIs R1 . . . Rn v P1 . . . PkT and

T v P ′1 . . . P
′
m, for a fresh role name T , without affecting the satisfiability of the KB. In
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particular, if rn(Ri) ≺ rn(Q), then we can represent R1 . . . Rn v P1 . . . PkQPk+1 . . . Pm

by means of three SR+OIQ RIs: R1 . . . Rn v R, inv(R) v inv(T )inv(Pk) . . . inv(P1) and
T v QPk+1 . . . Pm, for fresh role names R and T . Instead of R1 . . . Rn v P1 t · · · t Pm we
use R1 . . . Rn v R and R v P1 t · · · t Pm, for a fresh role name R. The same can be done
for role equality axioms.

The reflexivity constraint Ref (R) (saying that RI is reflexive) can be expressed by means
of the RI S v R and CI > v ∃S.Self , where S is a fresh simple role.

Example 8 The RI (1) from the introduction is represented in SR+OIQ by two RIs:

hasEngine ◦ hasCrankshaft ◦ powers v Q, (8)

Q v hasWheel ◦ hasHub, (9)

where Q is a fresh non-simple role name. One might suggest that (9) could be replaced with
the RI Q ◦ hasHub− v hasWheel. However, this is not the case: the interpretation given
below satisfies the former but not the latter (obviously, Q ◦ hasHub− v hasWheel does not
imply (9)).

hasWheel
Q

hasHub

hasWheel
Q

hasHub

Example 9 Consider the (regular) RBox R = {R v Q1R1, Q1 v Q2P, P = Q3R} and the
ABox A = {(x0, x1) : P}. Any model of R and A contains a sequence of (not necessarily
distinct) points x0, x1, x2, . . . arranged according to the patter shown in the picture below:

x0

x1

x2

x3

x4

x5

x6

x7

· · ·P

Q3

R
Q1

R1

Q2

P

Q3

R
Q1

R1

Q2

P

When applying the tableau algorithm to R and A (to be introduced in the remainder of
the paper), we construct the same model, but represent it as a tree-shaped structure by
omitting the Q1-, Q2- and Q3-arrows, which can always be restored. (In general, we always
omit the first role on the right-hand side of an axiom of type (C) and (E), and all roles
on the right-hand side of an axiom of type (D) and (F).) This is illustrated in the picture
below.
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x0

x1

x2

x3

x4
x5

x6

P

R−
R−1

P−
R−R−1

x0

x1

x2

x3

x4
x5

x6

P

R−
R−1

P−
R−R−1

Q3

Q1

Q2

Q3Q1

4. SR+OIQ Tableaux by Examples

We prove decidability of SR+OIQ using a tableau-based algorithm, which is a generalisa-
tion of the algorithm given by Horrocks et al. (2006). We assume that the reader is familiar
with the tableau technique for standard DLs such as ALCI (Baader, Calvanese, McGuin-
ness, Nardi, & Patel-Schneider, 2003). Our aim in this section is to explain, using concrete
examples, both the problems one encounters when constructing tableaux for SR+OIQ and
the way to resolve these problems suggested in the paper. Having worked through the
examples, the reader will have grasped the general idea of the tableaux for SR+OIQ.

We assume that all concepts are in negation normal form (NNF). In particular, when we
write ¬C, for a concept C, we actually mean the NNF of ¬C. Denote by con(C) the smallest
set that contains C and is closed under sub-concepts and ¬. For a KB K = (T ,R,A), we
denote by con(K) the union of con(C), for all concepts C occurring in K. For a basic role
R and Σ ⊆ con(K), we set Σ|∀R = {C | ∀R.C ∈ Σ}.

4.1 RIs with Role Chains on the Right-Hand Side

Example 10 Consider first the KB K = (T ,R,A), where

A = {a : A}, R = {R v QP}, T = {A v ∃R.>, A v ∀Q.B, A v ∀Q.C}.

We start the construction of a tableau for K by applying the standard tableau rules for ALC.
Thus, we create a root node x0 (corresponding to the only ABox individual a) and label it
with `(x0) = {A,∃R.>, ∀Q.B, ∀Q.C}, indicating thereby (some of) the concepts that should
contain a according to K. In view of ∃R.> ∈ `(x0), we then create an R-successor x1 of x0.
The interpretation, corresponding to the resulting tableau and shown on the left-hand side
of the picture below, is clearly a model of T and A, but not of R.

x0

`(x0)

x1R x0

`(x0)

x1

x2

R

Q P

To satisfy R, we need a Q-successor x2 of x0, which has x1 as its P -successor. However,
the resulting interpretation, shown on the right-hand side of the picture above, is not a
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tree. To keep the tableau tree-shaped, we would prefer to create x2 as a P−-successor of
x1 without drawing the Q-arrow from x0 to x2 explicitly. To trigger the creation of x2

and to ensure that a Q-arrow can always be inserted between x0 and x2, we add to each
label `(xi) a new ‘quasi-concept’ of the form ∀R.∃P−.`(xi)|∀Q, which encodes R v QP . The
intended meaning of this quasi-concept is as expected: every R-successor of xi must have a
P−-successor whose label contains all the concepts in `(xi)|∀Q = {C | ∀Q.C ∈ `(xi)}. (Note
that tableau nodes are not part of the syntax for quasi-concepts. The quasi-concepts, in
fact, extend the syntax with the expressions such as ∃R.S, where S is a set of ordinary
concepts.) If we agree to extend the standard tableau rules for ∀R and ∃P− to such quasi-
concepts, then we only need one new tableau rule (which will be generalised later on in the
paper):

(r1) if (R v QP ) ∈ R and ∀R.∃P−.`(x)|∀Q /∈ `(x), then set `(x) := `(x)∪{∀R.∃P−.`(x)|∀Q}.

Now, returning to our example, we apply (r1) to `(x0), `(x1) = ∅ and obtain:

`(x0) :=
{
A, ∃R.>, ∀Q.B, ∀Q.C, ∀R.∃P−.{B,C}

}
,

`(x1) :=
{
∀R.∃P−.∅, ∃P−.{B,C}

}
.

We then create a P−-successor x2 of x1 with `(x2) = {B,C,∀R.∃P−.∅}, as in the picture
below, and stop with a complete and clash-free tableau, which gives a model of K if we
insert the missing Q-arrow between x0 and x2.

x0

`(x0)

x1

`(x1)

x2

`(x2)

R P−

Note that inserting the missing Q-arrow in the example above becomes more problematic
if we extend T with the CI B v ∀Q−.¬A because then we shall have to add ¬A to `(x0),
and obtain a clash. However, we cannot do this without constructing that arrow explicitly.

To cope with this problem, together with `(x0)|∀Q, we can also pass to `(x2) the set

`−Q(x0) of those concepts C ∈ `(x0) that can potentially occur in ∀Q−.C ∈ `(x2), namely,

the set `(x0) ∩ con(K)|∀Q− . We can store this set in some special ‘memory’ of x2 in order

to compare it with `(x2)|∀Q− : if `(x2)|∀Q− 6⊆ `−Q(x0), then we report a clash. However, this

does not solve our problem yet. To see why, consider the extension of T with B v ∀Q−.C
(rather than B v ∀Q−.¬A). As C does not belong to `(x0), we would have to report a clash,
though an addition of C to `(x0) would not lead to a contradiction. A solution we suggest
for such situations is to make sure that, for every concept D in {C | ∀Q−.C ∈ con(K)} and
{∀Q.C | ∀Q.C ∈ con(K)}, either D ∈ `(x0) or ¬D ∈ `(x0).

To formalise the idea above as tableau rules, we require some new notation. We allow
quasi-concepts of the form `Q(x) = (tr, t∀, t−), where tr = Q, t∀ = `(x)|∀Q and t− =

`(x)∩ con(K)|∀Q− ; we also denote the first component of this triple by `rQ(x), the second by

`∀Q(x), and the third by `−Q(x). The special memory associated with node x will be denoted
by m(x); we assume that originally it is empty. We require the following tableau rules,
which supersede the former (r1):

(r1) if (R v QP ) ∈ R, rule (r3) is not applicable, and ∀R.∃P−.`Q(x) /∈ `(x), then set
`(x) := `(x) ∪ {∀R.∃P−.`Q(x)};
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(r2) if ∃P−.t ∈ `(x), for t = (tr, t∀, t−), and x has no P−-neighbour1 y with t∀ ⊆ `(y) and
t ∈ m(y), then we create a new P−-successor y of x and set `(y) = t∀ and m(y) = {t};

(r3) if (R v QP ) ∈ R and there is D ∈ {∀Q.C | ∀Q.C ∈ con(K)}∪{C | ∀Q−.C ∈ con(K)}
with {D,¬D} ∩ `(x) = ∅, then we set `(x) := `(x) ∪ {E}, for some E ∈ {D,¬D};

(clash) if (tr, t∀, t−) ∈ m(x) and `(x)|∀inv(tr) 6⊆ t
−, then report a clash.

Example 11 To illustrate, consider the KB K = (T ,R,A), where

A = {a : A}, R = {R v QP}, T = {A v ∃R.>, A v ∀Q.B, B v ∀Q−.C, C v ∀Q.D}.

We obtain the following complete and clash-free tableau for K:

`(x0) = {A,∃R.>, ∀Q.B}, (by v)

`(x0) := `(x0) ∪ {∀Q.D,C}, (by r3)

`(x0) := `(x0) ∪
{
∀R.∃P−.`Q(x0)

}
, `∀Q(x0) = {B,D}, `−Q(x0) = {C}, (by r1)

create x1 with x0Rx1, `(x1) = {∀Q.B, ∀Q.D,¬C}, (by ∃R, r3)

`(x1) := `(x1) ∪
{
∀R.∃P−.`Q(x1),∃P−.`Q(x0)

}
, `∀Q(x1) = {B,D}, `−Q(x1) = ∅,

(by r1, ∀R)

create x2 with x1P
−x2, m(x2) = {`Q(x0)} and `(x2) = `∀Q(x0) = {B,D}, (by r2)

`(x2) := `(x2) ∪
{
∀Q−.C,∀Q.B,∀Q.D,C, ∀R.∃P−.`Q(x2))

}
. (by v, r3, r1)

There is no clash because `(x2)|∀inv(Q) ⊆ `
−
Q(x0).

4.2 RIs with Role Unions on the Right-Hand Side

Our next example illustrates tableaux for RIs with unions on the right-hand side.

Example 12 Consider the KB K = (T ,R,A) with

A = {a : A}, R = {R v Q t T},
T = {A v ∃R−.C, A v ∃R−.D, C v ∀Q.A, C v ∀Q.B, C v ∀T.¬A,

D v ∀T.A, D v ∀T.B, D v ∀Q.¬B}.

By applying the standard rules, we obtain the tableau shown in the picture below:

x0

`(x0) = {A,∃R−.C,∃R−.D}

x1

`(x1) = {C,∀Q.A,∀Q.B,∀T.¬A}

x2

`(x2) = {D,∀T.A,∀T.B, ∀Q.¬B}

R− R−

1. Intuitively, a neighbour is a successor or a predecessor of a given node. A formal definition of this notion
will be given in Section B.
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Now, to satisfy R, we have to draw either a Q- or a T -arrow from x1 to x0, and also from
x2 to x0. As before, we do not do this explicitly. To ensure that such arrows can always
be drawn, we add to each `(xi) a quasi-concept of the form ∀R.(`(xi)|∀Q ∨ `(xi)|∀T ), where

as before `(xi)|∀P = {C | ∀P.C ∈ `(xi)}. The meaning of this quasi-concept should be
self-evident. Thus, we extend the `(xi) to:

`(x0) := `(x0) ∪
{
∀R.(∅ ∨ ∅)

}
,

`(x1) := `(x1) ∪
{
∀R.({A,B} ∨ {¬A})

}
,

`(x2) := `(x2) ∪
{
∀R.({¬B} ∨ {A,B})

}
.

But then we have to add either A,B or ¬A to `(x0) in view of the quasi-concept in `(x1),
and also either ¬B or A,B in view of the quasi-concept in `(x2). The only clash-free way
of doing this is to extend `(x0) with A,B. Clearly, we can draw a Q-arrow from x1 to x0

and a T -arrow from x2 to x0.

We can now formulate tableau rules for handling role unions in RIs, taking into account
quasi-concepts with triples considered above:

(r4) if (R v QtT ) ∈ R and there isD ∈ {∀P.C | ∀P.C ∈ con(K)}∪{C | ∀P−.C ∈ con(K)},
for P ∈ {Q,T} with {D,¬D} ∩ `(x) = ∅, then we set `(x) := `(x) ∪ {E}, for some
E ∈ {D,¬D};

(r5) if (R v Q t T ) ∈ R, rule (r4) is not applicable, and ∀R.(`Q(x) ∨ `T (x)) /∈ `(x), then
we set `(x) := `(x) ∪ {∀R.(`Q(x) ∨ `T (x))};

(r6) if (t1 ∨ t2) ∈ `(x), for ti = (tri , t
∀
i , t
−
i ), i = 1, 2, and there is no j ∈ {1, 2} such that

t∀j ⊆ `(x) and tj ∈ m(x), then take some j ∈ {1, 2} and set `(x) := `(x) ∪ t∀j and
m(x) := m(x) ∪ {tj}.

4.3 RIs with Role Chains on the Left-Hand Side

The technique illustrated in the examples above works perfectly well for RIs with a single
role in the left-hand side. To cope with more complex RIs, we follow Horrocks and Sattler
(2004) and Horrocks et al. (2006) and encode every R ∈ role(K) in a regular RBox R
by means of a nondeterministic finite automaton (NFA) AR = (SAR

, role(K), sR, δAR
, aR),

where SAR
is a finite set of states, role(K) is the input alphabet, sR ∈ SAR

is the initial
state of AR, δAR

: SAR
× role(K) → 2SAR is the transition function and aR ∈ SAR

is the
accepting state. If there are no REs in R, then AR accepts precisely those role chains that
belong to the language LR(R); in other words L(AR) = LR(R).

In the tableau construction, whenever ∀R.C ∈ `(x), we extend `(x) with the quasi-
concept ∀As

R.C, where s is the initial state of AR. Next, if ∀Ap
R.C ∈ `(x), y is a T -neighbour

of x and q ∈ δAR
(p, T ), then we extend `(y) with ∀Aq

R.C. Finally, if ∀Aa
R.C ∈ `(y), where a

is an accepting state of AR, we extend `(y) with C. To define tableau rules more formally,
we first confine attention to a single RI of the form r = (R v QP ).

We start by defining sets of quasi-concepts that are allowed for RBoxes containing r.
Denote by qc the set of all quasi-concepts of the form ∀Ap

R.C such that ∀R.C ∈ con(K)
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and p is a state of AR. For a set Σ ⊆ qc and a basic role T , we now set:

Σ|∀T = {∀Aq
R.C | ∀A

p
R.C ∈ Σ and q ∈ δAR

(p, T )}, (10)

qc∗(r) = {∀Ap
T .C | ∀A

p
T .C ∈ qc and there exists q ∈ δAT

(p,Q)} ∪ qc|∀Q− , (11)

qc(r) =
{
∀Ap

R.∃P
−.(tr, t∀, t−) | p a state of AR, t

r = Q, t∀ ⊆ qc|∀Q, t− ⊆ qc|∀Q−
}
. (12)

It will be convenient to think of the labels `(x) in tableaux as consisting of two disjoint
parts `(x) = c(x) ∪ a(x), with c(x) containing standard concepts and a(x) quasi-concepts;
that is: c(x) ⊆ con(K) and

a(x) ⊆ qc ∪ qc(r) ∪ {∃P−.t | ∀Ap
R.∃P

−.t ∈ qc(r)} ∪ {¬C | C ∈ qc∗(r)}.

We now allow quasi-concepts of the form aQ(x) = (Q, a(x)|∀Q, a(x) ∩ qc|∀Q−); we denote the

first component of this triple by arQ(x), the second by a∀Q(x), and the third by a−Q(x).
Using the new notation, we rewrite (r1)–(r3) as follows:

(r1) if r ∈ R and there exists C ∈ qc∗(r) with {C,¬C} ∩ a(x) = ∅, then we set a(x) :=
a(x) ∪ {D}, for some D ∈ {C,¬C};

(r2) if ∀R.C ∈ c(x) and ∀As
R.C 6∈ a(x), where s is the initial state of AR, then we set

a(x) := a(x) ∪ {∀As
R.C};

(r3) if r ∈ R, rule (r1) is not applicable for r and ∀As
R.∃P−.aQ(x) 6∈ a(x), where s is the

initial state of AR, then we set a(x) := a(x) ∪ {∀As
R.∃P−.aQ(x)};

(r4) if ∀Ap
R.C ∈ a(x), q ∈ δAR

(p, T ), y is a T -neighbour of x and ∀Aq
R.C 6∈ a(y), then we set

a(y) := a(y) ∪ {∀Aq
R.C};

(r5) if ∀Aa
R.C ∈ a(x), a an accepting state, and C /∈ c(x), then we set c(x) := c(x) ∪ {C};

(r6) if ∀Aa
R.∃P−.t ∈ a(x), where a is an accepting state, and ∃P−.t /∈ a(x), then we set

a(x) := a(x) ∪ {∃P−.t};

(r7) if ∃P−.t ∈ a(x), for t = (tr, t∀, t−), and x has no P−-neighbour y with t∀ ⊆ a(y) and
t ∈ m(y), then we create a new P−-successor y of x and set a(y) = t∀ and m(y) = {t}.

The clash rule remains the same as before, with a in place of `. Note that the rule (r7) can
be replaced with two rules such that one creates a new node y and sets a(y) = {t}, while
the other rule sets a(y) := a(y) ∪ t∀. In this case we do not need m(y). We illustrate the
new terminology and tableau rules by revisiting Example 11.

Example 11 (cont.) Consider again the KB K = (T ,R,A) with

A = {a : A}, R = {R v QP}, T = {A v ∃R.>, A v ∀Q.B, B v ∀Q−.C, C v ∀Q.D}.

In the tableau below, AQ and AR are NFAs with L(AQ) = {Q}, L(AR) = {R}, each having
two states: initial s and accepting a.

c(x0) = {A,∃R.>,∀Q.B}, a(x0) = {∀As
Q.B}, (by v, r2)
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a(x0) := a(x0) ∪
{
∀As

Q.D,∀Aa
Q− .C

}
, c(x0) := c(x0) ∪ {C}, (by r1, r5)

a(x0) := a(x0) ∪
{
∀As

R.∃P−.aQ(x0)
}

, where
a∀Q(x0) = {∀Aa

Q.D,∀Aa
Q.B}, a

−
Q(x0) = {∀Aa

Q− .C}, (by r3)

create x1 with x0Rx1, c(x1) = ∅, a(x1) = {∀As
Q.D,∀As

Q.B, ∀Aa
Q− .C}, (by ∃R, r1)

a(x1) := a(x1) ∪ {∀As
R.∃P−.aQ(x1)}, aQ(x1) = (Q, {∀Aa

Q.D,∀Aa
Q.B}, {∀Aa

Q− .C}), (by r3)

a(x1) := a(x1) ∪
{
∀Aa

R.∃P−.aQ(x0),∃P−.aQ(x0)
}

, (by r4, r6)

create x2 with m(x2) = {aQ(x0)}, x1P
−x2, c(x2) = ∅, a(x2) = {∀Aa

Q.D,∀Aa
Q.B}, (by r7)

c(x2) := {B,D,∀Q−.C}, a(x2) := a(x2) ∪
{
∀As

Q− .C
}

, (by r5, v, r2)

a(x2) := a(x2) ∪
{
∀As

Q.D,∀As
Q.B,¬∀Aa

Q− .C,∀A
s
R.∃P−.(Q, {∀Aa

Q.D,∀Aa
Q.B}, ∅)

}
,

(by r1, r3)

As a(x2)|∀inv(Q) = {∀Aa
Q− .C} ⊆ a−Q(x0), the resulting tableau is complete and clash-free.

4.4 Interaction of RIs with Role Chains on the Right-Hand Side

Example 13 Consider the KB K = (T ,R,A) with

A = {a : A}, R = {R v QP, Q v Q1P1},

T = {A v ∃R.>, A v ∀Q.B, B v ∀Q−.C, C v ∀Q.D, C v ∀Q1.B}.

Here we have two RIs of the form (C), with Q occurring on the right-hand side of R v QP
and in the left-hand side of Q v Q1P1. We expect the tableau algorithm to construct a
model of K as shown in the picture below:

x0

A, ∀Q.B, C, ∀Q.D, ∀Q1.B

x1 x2

B, ∀Q−.C, D

x3

B

R P− P−1

Q

Q1

However, if we apply the available rules, we can only produce the following tableau:

x0

∀As
R.∃P−.aQ(x0), ∀As

Q.∃P−1 .aQ1(x0)

x1

∃P−.aQ(x0)

x2

∀Aa
Q.D,∀Aa

Q.B

R P−

where aQ(x0) = (Q, {∀Aa
Q.D,∀Aa

Q.B}, {∀Aa
Q− .C}) and aQ1(x0) = (Q1, {∀Aa

Q1
.B}, ∅). As

there is no explicit Q-arrow between x0 and x2, we cannot apply (r4) to obtain the quasi-
concept ∀Aa

Q.∃P
−
1 .aQ1(x0), and so, by (r6), ∃P−1 .aQ1(x0) in x2, which would trigger the

construction of a P−1 -arrow from x2 to x3. To overcome this problem, we will use the quasi-
concept encoding the RI Q v Q1P1 in the construction of the quasi-concept for R v QP .
More precisely, we add ∀Aa

Q.∃P
−
1 .aQ1(x0) to a∀Q(x0), thus obtaining

a∀Q(x0) = {∀Aa
Q.D,∀Aa

Q.B, ∀Aa
Q.∃P−1 .aQ1(x0)}.
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As ∀As
R.∃P−.aQ(x0) is in a(x0), we apply (r4) and obtain ∀Aa

R.∃P−.aQ(x0), and so, by
(r6), also ∃P−.aQ(x0) in a(x1). We then construct x2 with a(x2) containing three quasi-
concepts ∀Aa

Q.D, ∀Aa
Q.B and ∀Aa

Q.∃P
−
1 .aQ1(x0), the last of which requires the existence of

a P−1 -successor x3.

In order to formalise the previous idea, we introduce a dependency relation C. Given
RIs R1 v Q1P1 and R2 v Q2P2, we write (R1 v Q1P1) C (R2 v Q2P2) if there are states
p, q of AR1 such that either q ∈ δAR1

(p,Q2) or q ∈ δAR1
(p,Q−2 ). In particular, we have

(Q v Q1P1) C (R v QP ). As R is regular, it is not hard to see that the relation C is
acyclic. Indeed, it follows from the definition of C, Lemma 1, Definition 3 and AR1 that
rn(Q2) ≺R rn(Q1) (since rn(Q2) �R rn(R1) and rn(R1) ≺R rn(Q1)).

Now, by induction on C we define sets qc(r) for RIs r = (R v QP ). For the C-minimal
r, qc(r) is defined by (12). Then, assuming that qc(r′) is defined for every r′ C r with
r = (R v QP ), we set

qc(r) = {∀Ap
R.∃P

−.t | p state in AR},

where t = (tr, t∀, t−), tr = Q, t∀ ⊆ qc|∀Q ∪
⋃

r′Cr qc(r′)|∀Q, t− ⊆ qc|∀Q− ∪
⋃

r′Cr qc(r′)|∀Q−
and, for r′ = (R′ v Q′P ′) and Σ(r′) ⊆ qc(r′),

Σ(r′)|∀T = {∀Aq
R′ .C | ∀A

p
R′ .C ∈ Σ(r′) and q ∈ δAR′ (p, T )}.

We also set

qc∗(r) = {∀Ap
T .C | there exists q ∈ δAT

(p,Q), ∀Ap
T .C ∈ qc ∪

⋃
r′Cr

qc(r′)} ∪

{∀Aq
T .C | q ∈ δAT

(p,Q−), ∀Ap
T .C ∈ qc ∪

⋃
r′Cr

qc(r′)}.

Returning to our example, we see that r1 C r, for r1 = (Q v Q1P1), r = (R v QP ),
and so qc(r1) remains as it was before, while qc(r) is becoming larger and, in particular,
contains {∀Ap

R.∃P−.(tr1, t∀1 , t
−
1 ) | p ∈ {s, a}}, where

t∀1 ⊆ {∀Aa
Q.D,∀Aa

Q.B, ∀Aa
Q.∃P−1 .(Q1, {∀Aa

Q1
.B}, ∅), ∀Aa

Q.∃P−1 .(Q1, ∅, ∅)}, t−1 ⊆ {∀A
a
Q− .C}.

For example, qc(r) contains the quasi-concept

∀As
R.∃P−.(Q, {∀Aa

Q.D,∀Aa
Q.B, ∀Aa

Q.∃P−1 .(Q1, {∀Aa
Q1
.B}, ∅)}, {∀Aa

Q− .C}).

The construction of a tableau for K in Example 13, using the newly defined sets qc(r), is
routine and left to the reader.

The dependency relation C between RIs in RBoxes will become more complex in the
presence of unions of roles.
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4.5 Role Equalities

Example 14 Consider the RBox R with two RAs: ST v R of type (B) and R = QP of
type (E). Clearly, R = QP can be replaced by the RIs R v QP and QP v R, but the
resulting RBox {ST v R, R v QP, QP v R} will not be regular. Let us observe now that
both RBoxes

R′ = {ST v R, QP v R} and R′′ = {ST v R, R v QP}

are regular. Denote by AR the NFA for R determined by R′, and by A1 the NFA for R
given by R′′ (see the picture below).

sstart

p

a

q

S

R

T

Q P

sstart

p

a

S

R

TAR A1

Let us see now whether we can use any of these automata in the rules (r2) and (r3) on
page 823 for the role R. Consider the KB K = (T ,R,A), where R is as above and

A = {a : A}, T = {A v ∃R.>, A v ∀Q.B, A v ∀Q.C, A v ∀R.D}.

First we try AR. By applying the tableau rules we obtain the following:

x0

A,∃R.>,∀R.D,∀Q.B,∀Q.C, ∀As
R.D,∀As

Q.B,∀As
Q.C

x1

∀Aa
R.D,D

R

Now we have to apply (r3) to the RI R v QP and add the quasi-concept ∀As
R.∃P−.aQ(x0)

to a(x0), where aQ(x0) = (Q, a(x0)|∀Q, a(x0) ∩ qc|∀Q−). Because of the Q-transition in AR,

we must then have ∀Aq
R.∃P−.aQ(x0) ∈ a(x0)|∀Q, which is impossible because a(x0)|∀Q cannot

be an element of itself.

Alternatively, we can use A1 for R. This gives us

x0

∀R.D,∀As
1.∃P−.aQ(x0), ∀As

1.D

x1

∃P−.aQ(x0), ∀Aa
1 .D,D

x2

∀Aa
Q.C,∀Aa

Q.B

R P−

with aQ(x0) = (Q, {∀Aa
Q.C,∀Aa

Q.B}, ∅), which defines a model of K when we add the missing
Q-arrow from x0 to x2.

Now, we replace the CI A v ∃R.> in K with A v ∃Q.∃P.> and use A1 for R. In this
case, we obtain the following tableau:

x0

∀R.D,∀As
1.∃P−.aQ(x0), ∀As

1.D

x1 x2Q P
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To produce a satisfying interpretation I, we have to add an R-arrow from x0 to x2. However,
this cannot be done ‘for free’ (as in Example 10) because x2 /∈ DI . An alternative would
be to use AR and R′ instead of R (because we do not have to apply (r3) to R v QP ). We
then obtain the following tableau:

x0

∀R.D,∀As
R.D

x1

∀Aq
R.D

x2

∀Aa
R.D,D

Q P

The addition of an R-arrow from x0 to x2 gives an interpretation I such that I |= QP v R
and x2 ∈ DI .

To sum up: the rule (r2) requires the NFA AR, while (r3) requires A1. So rule (r2) on
page 823 remains the same and we rewrite rule (r1) and (r3) to include role equalities as
follows:

(r1) if r ∈ R, for r = (R v QP ) or r = (R = QP ), and there exists C ∈ qc∗(r) with
{C,¬C} ∩ a(x) = ∅, then we set a(x) := a(x) ∪ {D}, for some D ∈ {C,¬C};

(r3) if r ∈ R, for r = (R v QP ) or r = (R = QP ), rule (r1) is not applicable for r
and ∀As

1.∃P−.aQ(x) 6∈ a(x), where s is the initial state of A1, then we set a(x) :=
a(x) ∪ {∀As

1.∃P−.aQ(x)}.

Note that in the case r = (R v QP ) NFA A1 is same as AR and in the case r = (R = QP )
NFA A1 is different from AR as described above.

5. Main Result and Discussion

The examples of the previous section provide the basic ingredients that can be added to
SROIQ tableaux of Horrocks et al. (2006) and Horrocks and Sattler (2007) in order to
obtain sound and complete tableaux for SR+OIQ. We present all the technical details
and definitions in Appendix A. A corresponding sound, complete and terminating tableau
algorithm is given in Appendix B. Thus, we obtain the following:

Theorem 15 Concept satisfiability with respect to SR+OIQ KBs is decidable.

It is to be noted that the decision algorithm in Appendix B is a (quite sophisticated)
extension of the standard tableau procedure for SROIQ; if the input RBox does not
contain RAs of the form (C)–(F) then our tableau algorithm behaves exactly as the SROIQ
procedure. To simplify presentation and avoid a number of technical details, we decided
not to optimise our tableau algorithm in this paper. In fact, there is plenty of room for
optimisations; for example, one can work on a more careful choice of quasi-concepts as well
as utilise the approach of Motik, Shearer, and Horrocks (2009).

The exact complexity of concept satisfiability with respect to SR+OIQ KBs is still
unknown. If the RBox contains one RA r1 of the form (C)–(F), our algorithm will have
to construct the set qc(r1) of quasi-concepts, which contains subsets of the previously
constructed sets of quasi-concepts qc(r0), and so may suffer an exponential blow-up. Fur-
thermore, the algorithm may suffer one more exponential blow-up every time we add an
extra RA of the form (C)–(F), and thereby extend the C-chains of RAs, because again the
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set of quasi-concepts may become exponentially larger. To investigate the complexity of
full SR+OIQ, it may be useful to consider first its various sub-languages. For example,
we conjecture that ALCI-concept satisfiability with respect to regular RBoxes that only
contain axioms of type (C) and the roles rn(Ri), i = 1, . . . ,m, do not appear in left-hand
side of RIs, is PSpace-complete. SI-concept satisfiability with respect to RBoxes which
contain only one axiom of the form R v QP , where rn(R), rn(Q), rn(P ) are different role
names that are not transitive, is also PSpace-complete.

The step from SROIQ to SR+OIQ is, to some extent, similar to the step from SHOIQ
to SROIQ: as SROIQ extends SHOIQ with role inclusion axioms containing role chains
in the left-hand side, SR+OIQ extends SROIQ with role inclusion axioms containing role
chains or unions in the right-hand side. Attempts to extend various DLs with such role
inclusions have been made since 1985 (Brachman & Schmolze, 1985; Baader, 2003; Wessel,
2001, 2002); however, all of them resulted in undecidable formalisms. Similar problems
were investigated in modal logic, where it was shown that regular grammar logics are de-
cidable (Demri, 2001). Our regularity condition for RAs axioms generalises the restrictions
of Horrocks et al. (2006) and Kazakov (2010). (However, a closer inspection of how our
results are related to grammar modal logics is needed.) Simanč́ık (2012) showed that com-
plex RIs in SROIQ can be encoded using SHOIQ axioms. It would be of interest to find
out whether a similar reduction is possible in the case of SR+OIQ.

One of the aims of introducing complex role inclusion axioms in DLs is to model complex
structured objects. Suppose, for example, that we have to represent the cycle shown on the
left-hand side of the picture below:

x0

x1

x2 x3

x4

QR1

R2

R3

R4

x0

x1

x2 x3

x4

QR1

R2

R3

R4

Q1

Q2

In SROIQ, we can only use the RI axiom R1R2R3R4 v Q, which produces the required
cycle only if there is a chain of the form R1R2R3R4. Using description graphs from the
work of Motik et al. (2009), we can express the existence of the cycle above as a whole. In
SR+OIQ, we can model this situation by the following regular RBox, where Q1 and Q2

are fresh role names:

R1 v QR−4 R
−
3 R
−
2 , R−2 v Q1R1, Q−1 v QR

−
4 R
−
3 ,

R3 v Q2R
−
4 , Q−2 v Q

−R1R2, R4 v Q−R1R2R3

(see the picture above). The RBox produces the required cycle if there is at least one Ri,
for i = 1, 2, 3, 4, in a model. In this connection, it would be of interest to consider the
extension of SHOIQ with RI axioms of the form (A) and (C).
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Appendix A. SR+OIQ Tableaux

As observed by Horrocks et al. (2006, Thm. 9), without loss of generality we can define
tableaux for SR+OIQ KBs with empty TBoxes and ABoxes. Let R be a regular RBox
and C0 a SR+OIQ concept. We assume that RC,D,E,F = {ri | i = 1, . . . , l}, where, for
some k1, k, l1 such that 1 ≤ k1 ≤ k ≤ l1 ≤ l,

ri = (Ri v QiPi1 . . . Pimi), for i = 1, . . . , k1,

ri = (Ri = QiPi1 . . . Pimi), for i = k1 + 1, . . . , k,

ri = (Ri = Ti1 t · · · t Timi), for i = k + 1, . . . , l1,

ri = (Ri v Ti1 t · · · t Timi), for i = l1 + 1, . . . , l.

For every R ∈ role(C0,R), we construct, as a preprocessing step, an NFA AR and special
NFAs Ai, for i = 1, . . . , l, as described below. Recall that L(A) denotes the language
recognised by A. If p is a state in A, then Ap is the NFA obtained from A by making p the
(only) initial state of A.

Define an RBox

R′ = RA,B ∪ {QiPi1 . . . Pimi v Ri | i = k1 + 1, . . . , k} ∪
{Tij v Ri | i = k + 1, . . . , l1, j = 1, . . . ,mi},

which only contains axioms of types (A) and (B). SinceR is regular and in view of conditions
(c1), (c4) and (c6) in Definition 3, the RBox R′ is stratified. By Theorem 2, we use R′ to
construct, for any R ∈ role(C0,R), an NFA AR = (SAR

, role(C0,R), sR, δAR
, aR) such that

L(AR) = LR′(R).
We also define RBoxes

Ri = R′ \ {QiPi1 . . . Pimi v Ri}, i = k1 + 1, . . . , k,

Ri = R′ \ {Tij v Ri | j = 1, . . . ,mi}, i = k + 1, . . . , l1,

and construct NFAs Ai such that L(Ai) = LRi(Ri), i = k1 + 1, . . . , l1. For i = 1, . . . , k1 and
i = l1 + 1, . . . , l, we simply set Ai = ARi .

Now, we are going to define formally the set qc(C0,R). The elements of qc(C0,R) are
called quasi-concepts (for C0 w.r.t. R); we use them to define labels for tableau nodes. In
the definition of qc(C0,R), we require a dependency relation C on RC,D,E,F .

For each role name Q ∈ {rn(Qi), rn(Ti1), . . . , rn(Timi) | 1 ≤ i ≤ l}, let AutIn(Q) be the
set of those i ∈ {1, . . . , l} for which there are states p and q of Ai such that q ∈ δAi(p,Q) or
q ∈ δAi(p,Q

−). We define C on RC,D,E,F by taking ri C rj if

– 1 ≤ j ≤ k and i ∈ AutIn(rn(Qj)), or

– k < j ≤ l and there is h ∈ {1, . . . ,mj} such that i ∈ AutIn(rn(Tjh)).

The following lemma shows that the transitive closure of C is acyclic:

Lemma 16 (i) If ri C rj then rj C ri does not hold.
(ii) If ri1 C ri2 and ri2 C ri3, then ri3 C ri1 does not hold.
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Proof. Observe first that if i ∈ AutIn(Q) then there is a Q- or Q−-transition of Ai, and so
we have rn(Q) �1

R rn(Ri). If i ≤ k then rn(Ri) ≺1
R rn(Qi), and so rn(Q) ≺1

R rn(Qi). If
i > k then rn(Ri) ≺1

R rn(Tih), and so rn(Q) ≺1
R rn(Tih), for all h ∈ {1, . . . ,mi}.

(i) Let ri C rj . Four cases are possible.
Case 1: i, j ≤ k. Then i ∈ AutIn(rn(Qj)), and so rn(Qj) ≺1

R rn(Qi). Similarly, if we
had rj C ri, then rn(Qi) ≺1

R rn(Qj), which is impossible.
Case 2: j ≤ k and i > k. Then i ∈ AutIn(rn(Qj)), and so rn(Qj) ≺1

R rn(Tih), for all
h ∈ {1, . . . ,mi}. If rj C ri then there is Tih0 , 1 ≤ h0 ≤ mi, such that j ∈ AutIn(rn(Tih0)).
Hence, rn(Tih0) ≺1

R rn(Qj), which is a contradiction.
Case 3: i ≤ k and j > k. This is a mirror image of case 2.
Case 4: i, j > k. Then there is Tjh0 , 1 ≤ h0 ≤ mj , such that i ∈ AutIn(rn(Tjh0)), and so

rn(Tjh0) ≺1
R rn(Tie), for all e ∈ {1, . . . ,mi}. Similarly, if we had rj C ri, then there is Tie0 ,

1 ≤ e0 ≤ mi, such that rn(Tie0) ≺1
R rn(Tjh), for all h ∈ {1, . . . ,mj}, which is impossible.

The proof of (ii) is similar and left to the reader. q

We will require the following notation. Let

qc = {∀Ap
R.C | ∀R.C ∈ con(C0) and p a state of AR}.

For a set Σ ⊆ qc and a basic role P , we set

Σ|∀P = {∀Aq
R.C | ∀A

p
R.C ∈ Σ and q ∈ δAR

(p, P )}.

Sometimes it will be convenient for us to write qc(r0) in place of qc and assume that r0Cri,
for all i, 1 ≤ i ≤ l. Now, assuming that qc(rj) is defined for every rj C ri where 0 ≤ j ≤ l
and 1 ≤ i ≤ l, we define qc(ri) to be the set of all ∀Aq

i .C such that

– q is a state of Ai;

– for i ≤ k, C = ∃P−imi
. · · · ∃P−i1 .(tr0, t∀0 , t

−
0 ) and tr0 = Qi;

– for i > k, C =
∨mi

h=1(trh, t
∀
h, t
−
h ) and trh = Tih;

– t∀h ⊆
⋃

rjCri
qc(rj)|∀trh ;

– t−h ⊆
⋃

rjCri
qc(rj)|∀inv(trh).

For Σ(ri) ⊆ qc(ri) and a basic role P , let

Σ(ri)|∀P = {∀Aq
i .C | ∀A

p
i .C ∈ Σ(ri) and q ∈ δAi(p, P )}.

Finally, we set

qc(C0,R) =
l⋃

i=0

qc(ri),

and, for Σ ⊆ qc(C0,R) and a basic role P ,

Σ|∀P =
l⋃

j=0

(Σ ∩ qc(rj))|∀P and Σ|∀ε = {∀Aq.C | ∀Ap.C ∈ Σ and q ∈ δA(p, ε)},
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where ε is the empty role chain. For Σ ⊆ qc(C0,R) and 1 ≤ i ≤ l, let

Ξ(ri,Σ) =

{
∃P−imi

. . . ∃P−i1 .(tr0, t∀0 , t
−
0 ), tr0 = Qi, if i ≤ k,∨mi

h=1(trh, t
∀
h, t
−
h ), trh = Tih, if i > k,

(13)

where t∀h = Σ|∀trh , t−h = Σ ∩ qc(C0,R)|∀inv(trh), 0 ≤ h ≤ mi. Clearly, ∀As
i .(Ξ(ri,Σ)) ∈ qc(ri).

Intuitively, if Σ is the label of a node u, that is, Σ = a(u), then Ξ(ri,Σ) is the quasi-concept
encoding the RA ri in the node u.

Example 17 Let R = {r1, r2}, where r1 = (R1 v Q1P1P2) and r2 = (R2 v T1 t T2).
The NFAs for the roles in R have two states: initial s and accepting a. Suppose

Σ = {∀As
Q1
.C1, ∀Aa

Q−1
.C2, ∀As

T1
.C3, ∀As

T2
.C4,∀As

T2
.C5, ∀Aa

T−1
.C6}.

Then

Ξ(r1,Σ) = ∃P−2 .∃P
−
1 .(Q1, {∀Aa

Q1
.C1}, {∀Aa

Q−1
.C2}),

Ξ(r2,Σ) = (T1, {∀Aa
T1
.C3}, {∀Aa

T−1
.C6}) ∨ (T2, {∀Aa

T2
.C4, ∀Aa

T2
.C5}, ∅).

Remark 18 If P is a symmetric role (i.e., (P− v P ) ∈ R), then each occurrence of P and
inv(P ) is treated as rn(P ). For example, {∀P.D,∀P−.C}|∀P− = {D,C}.

We are now in a position to define SR+OIQ tableaux. Note that the most essential
difference compared with the tableaux for SROIQ (Horrocks et al., 2006) are the rules
(p19), (p21) and (p22).

A tableau for C0 w.r.t.R is a structure of the form T = (S, c, a, E), where S is non-empty
set, c : S → 2con(C0), a : S → 2qc(C0,R), E : role(C0,R) → 2S×S such that the following
conditions hold:

(p1) C0 ∈ c(u0) for some u0 ∈ S,

(p2) if C ∈ c(u) then ¬C /∈ c(u), where C is either a concept name or ∃R.Self ,

(p3) > ∈ c(u) and ⊥ /∈ c(u) for any u,

(p4) if ∃R.Self ∈ c(u) then (u, u) ∈ E(R),

(p5) if ¬∃R.Self ∈ c(u) then (u, u) 6∈ E(R),

(p6) if (C1 u C2) ∈ c(u) then C1 ∈ c(u) and C2 ∈ c(u),

(p7) if (C1 t C2) ∈ c(u) then C1 ∈ c(u) or C2 ∈ c(u),

(p8) if ∃R.C ∈ c(u) then there is some v ∈ S with (u, v) ∈ E(R) and C ∈ c(v),

(p9) (u, v) ∈ E(R) iff (v, u) ∈ E(inv(R)),

(p10) if (≤ nS.C) ∈ c(u) then ]{v ∈ S | (u, v) ∈ E(S) and C ∈ c(v)} ≤ n,
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(p11) if (≥ nS.C) ∈ c(u) then ]{v ∈ S | (u, v) ∈ E(S) and C ∈ c(v)} ≥ n,

(p12) if (≤ nS.C) ∈ c(u) and (u, v) ∈ E(S), then C ∈ c(v) or ¬C ∈ c(v),

(p13) if o ∈ c(u) ∩ c(v), for some o ∈ nom(C0), then v = u,

(p14) for each o ∈ nom(C0), there is some vo ∈ S with o ∈ c(vo),

(p15) if Dis(R,S) ∈ R then E(R) ∩ E(S) = ∅,

(p16) if (u, v) ∈ E(R) and R v∗ S, then (u, v) ∈ E(S),2

(p17) if ∀R.C ∈ c(u) then ∀As
R.C ∈ a(u), where s is the initial state of AR,

(p18) if ∀Aa
R.C ∈ a(u), where a is an accepting state, then C ∈ c(u),

(p19) ∀As
i .C ∈ a(u), where s is the initial state of Ai and C = Ξ(ri, a(u)), for all u ∈ S

and 1 ≤ i ≤ l,

(p20) if (u, v) ∈ E(R) then a(u)|∀R ⊆ a(v),

(p21) if ∀Aa
i .C ∈ a(u), where i ≤ k, C = ∃inv(Pimi). · · · ∃inv(Pi1).(tr, t∀, t−) and a is an

accepting state, then there are v0, v1, . . . , vmi = u such that (vj , vj−1) ∈ E(inv(Pij)),
for 1 ≤ j ≤ mi, t

∀ ⊆ a(v0) and a(v0)|∀inv(tr) ⊆ t
−,

(p22) if ∀Aa
i .C ∈ a(u), where a is an accepting state, i > k and C =

∨mi
h=1(trh, t

∀
h, t
−
h ), then

there is j ∈ {1, . . . ,mi} such that t∀j ⊆ a(u) and a(u)|∀inv(trj ) ⊆ t
−
j ,

(p23) a(u)|∀ε ⊆ a(u).

Let T = (S, c, a, E) be a tableau, R a basic role and u, v ∈ S. If a(u)|∀R ⊆ a(v) and
a(v)|∀inv(R) ⊆ a(u), then we write ar(R, u, v). If there is an R-arrow from u to v then

ar(R, u, v) holds; see Proposition 20 (i). On the other hand, the meaning of ar(R, u, v) is
that we can always insert an R-arrow (for a non-simple role R) from u to v without violating
any of the tableau conditions.

Lemma 19 A concept C0 is satisfiable w.r.t. a SR+OIQ RBox R if and only if there
exists a tableau for C0 w.r.t. R.

Proof. (⇐) Let T = (S, c, a, E) be a tableau for C0 w.r.t. R. Define an interpretation
I = (∆I , ·I) by taking ∆I = S, CI = {u | C ∈ c(u)}, for a concept name C ∈ con(C0).
For a role name R, we define E(R) (by induction on ≺1

R) and RI in the following way. For
a role name R, we define E(R) and RI by induction on ≺1

R in the following way. For ≺1
R-

minimal R, we set E(R) = E(R). We extend E(·) with E(inv(R)) = {(u, v)|(v, u) ∈ E(R)}

2. Here v∗ is the transitive closure of v.
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and E(S1 . . . Sn) = E(S1) ◦ · · · ◦ E(Sn). Suppose now that E(S) is defined for all S ≺1
R R.

Then we set, where wi = Pi1 . . . Pimi and E(wi) = E(Pi1) ◦ · · · ◦ E(Pimi),

E(R) = E(R) ∪⋃
{i|R=Qi}

{(u, v) | ar(R, u, v) & ∃% ∈ L(Ai)∃z ((u, z) ∈ E(%) ∧ (v, z) ∈ E(wi))} ∪⋃
{i|R=inv(Qi)}

{(u, v) | ar(R, u, v) & ∃% ∈ L(Ai)∃z ((v, z) ∈ E(%) ∧ (u, z) ∈ E(wi))} ∪⋃
{i|∃j R=Tij}

{(u, v) | ar(R, u, v) & ∃% ∈ L(Ai) (u, v) ∈ E(%)} ∪

⋃
{i|∃j R=inv(Tij)}

{(u, v) | ar(R, u, v) & ∃% ∈ L(Ai) (v, u) ∈ E(%)},

RI = {(u0, un) | ∃u1, . . . , un−1 ((ui, ui+1) ∈ E(Si+1) ∧ S1S2 . . . Sn ∈ L(AR))}.

We need E(R) to adjust E(R) by taking account of the omitted R-arrows for RIs of the form
(C)–(F) as we do not use these RIs in the construction of AR. The picture below illustrates
such a situation for a role Q and two RIs QQ v Q and R v QP (E(Q) ⊆ E(Q) ⊆ QI).

u0 u1 u2 u3E(Q) RI (P−)I

E(Q)

QI

We have to show that I is a model of C0 and R. To this end, we require the following:

Proposition 20 (i) If (u, v) ∈ E(R) then ar(R, u, v).

(ii) If (u, v) ∈ E(R) then ar(R, u, v).

(iii) If % ∈ L(A), (u, v) ∈ E(%) and ∀As.C ∈ a(u) then ∀Aa.C ∈ a(v).

(iv) If (u, v) ∈ RI and ∀As
R.C ∈ a(u) then ∀Aa

R.C ∈ a(v).

Proof. (i) Follows from (p20) and (p9). More precisely, if (u, v) ∈ E(R) then, by (p9),
(v, u) ∈ E(inv(R)). By (p20), (u, v) ∈ E(R) implies a(u)|∀R ⊆ a(v), while (v, u) ∈ E(inv(R))
implies a(v)|∀inv(R) ⊆ a(u). Thus, we obtain ar(R, u, v).

(ii) Follows from (i) and the definition of E(R).

(iii) Let % = S1 . . . Sn. Since (u, v) ∈ E(%), we have u = u0, . . . , un = v with (ui−1, ui) ∈
E(Si), for i = 1, . . . , n. On other hand, since S1 . . . Sn ∈ L(A), there are s = p0, . . . , pn = a
such that pi ∈ δA(pi−1, Si). We have ∀Ap0 .C ∈ a(u0). If ∀Api .C ∈ a(ui), i < n, then (ii) and
pi+1 ∈ δA(pi, Si+1), (ui, ui+1) ∈ E(Si+1) give ∀Api+1 .C ∈ a(ui+1). So ∀Aa.C ∈ a(v).

(iv) Follows from (iii) and the definition of RI . q

We show now that I is a model of R by considering all types of constraints.

Dis(S1, S2): Then the Si are simple roles, SIi = E(Si), and so, by (p15), SI1 ∩ SI2 = ∅.
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S1 v S2: The Si are simple roles and SIi = E(Si). Thus, if (u, v) ∈ SI1 then (u, v) ∈ E(S1)
and, by (p16), (u, v) ∈ E(S2); hence (u, v) ∈ SI2 .

S1 . . . Sn v R: We have S1 . . . Sn ∈ L(AR). If (u, v) ∈ (S1 . . . Sn)I then there are u =
u0, . . . , un = v such that (ui−1, ui) ∈ (Si)

I , for i = 1, . . . , n. By the definition of
(Si)

I , there are ui−1 = ui0, . . . , u
i
ni

= ui with (uij−1, u
i
j) ∈ E(Si

j), for 1 ≤ j ≤ ni, and

Si
1S

i
2 . . . S

i
ni
∈ L(ASi). Therefore, S1

1 . . . S
1
n1
S2

1 . . . S
n
nn
∈ L(AR) and (u, v) ∈ RI .

RR v R, RS1 . . . Sn v R and S1 . . . SnR v R are considered analogously.

R− v R: As mentioned earlier, each occurrence of R− is treated as R. It follows that
(u, v) ∈ E(R) if and only if (v, u) ∈ E(R), and (u, v) ∈ E(R) if and only if (v, u) ∈ E(R).
In addition, (u, v) ∈ RI if and only if (v, u) ∈ RI . Indeed, let (u, v) ∈ RI . Then, by
the definition of RI , there exist u = u0, u1, . . . , un = v with (ui, ui+1) ∈ E(Si+1) and
S1S2 . . . Sn ∈ L(AR). Now we have (ui+1, ui) ∈ E(inv(Si+1)) and, by the construction
of AR, inv(Sn) . . . inv(S1) ∈ L(AR), and so (v, u) ∈ RI .

Ri v QiPi1 . . . Pimi : Let (u, v) ∈ RIi . Then, by (p19), we have ∀As
i .C ∈ a(u), where s is the

initial state of Ai and C = Ξ(ri, a(u)) = ∃inv(Pimi). · · · ∃inv(Pi1).(Qi, a(u)|∀Qi
, a(u) ∩

qc(C0,R)|∀inv(Qi)
). By Proposition 20, ∀Aa

i .C ∈ a(v), where a is an accepting state.

Now, by (p21), there are v0, v1, . . . , vmi = v such that (vj , vj−1) ∈ E(inv(Pij)),
a(u)|∀Qi

⊆ a(v0) and a(v0)|∀inv(Qi)
⊆ a(u) ∩ qc(C0,R)|∀inv(Qi)

⊆ a(u), that is, (v0, v) ∈
(Pi1 . . . Pimi)

I and ar(Qi, u, v0). Hence, (u, v0) ∈ QIi and (u, v) ∈ (QiPi1 . . . Pimi)
I .

Ri v Ti1 t · · · t Timi : Let (u, v) ∈ RIi . Then, by (p19), we have ∀As
i .C ∈ a(u), where s is the

initial state of Ai and C = Ξ(ri, a(u)) =
∨mi

h=1(Tih, a(u)|∀Tih
, a(u) ∩ qc(C0,R)|∀inv(Tih)).

By Proposition 20, ∀Aa
i .C ∈ a(v), where a is an accepting state. Now, by (p22), there is

j ∈ {1, . . . ,mi} such that a(u)|∀Tij
⊆ a(v) and a(v)|∀inv(Tij) ⊆ a(u)∩qc(C0,R)|∀inv(Tij) ⊆

a(u), i.e., ar(Tij , u, v). Hence, (u, v) ∈ T Iij and (u, v) ∈ (Ti1 t · · · t Timi)
I .

Ri = QiPi1 . . . Pimi : Let (u, v) ∈ RIi . Then there exists a role chain % ∈ L(ARi) such that
(u, v) ∈ E(%). If % ∈ L(Ai) then (u, v) ∈ (QiPi1 . . . Pimi)

I , and the proof is same as for
Ri v QiPi1 . . . Pimi . So suppose % /∈ L(Ai) is shortest possible. Since % v∗R′ Ri, there
is a sequence % vr1 %1 vr2 · · · vrn %n vrn+1 Ri, where rj ∈ R′, for 1 ≤ j ≤ n+1, and
at least one rj is not in Ri. If rj 6∈ Ri, for j < n+1, then we can find a shorter %, and
so rn+1 = (QiPi1 . . . Pimi v Ri). Therefore, % = %′0%

′
1 . . . %

′
mi

is such that %′0 v∗R′ Qi

and %′j v∗R′ Pij , for 1 ≤ j ≤ mi. Thus, (u, v) ∈ (QiPi1 . . . Pimi)
I .

Let now (u, v) ∈ (QiPi1 . . . Pimi)
I . Then there exists v0 such that (u, v0) ∈ QIi and

(v0, v) ∈ (Pi1 . . . Pimi)
I . In the case (u, v0) ∈ E(Qi)\E(Qi) then by construction of

E(Qi) we have (∃% ∈ L(Ai))(∃z) (u, z) ∈ E(%). If v = z then we have (u, v) ∈ RIi .
Otherwise the proof is same as for QiPi1 . . . Pimi v Ri.

Ri = Ti1 t · · · t Timi : Similar to the previous case.

To prove that I satisfies C0, we show that

C ∈ c(u) implies u ∈ CI , for each u ∈ S and each C ∈ con(C0). (14)
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Together with (p1), this will imply u0 ∈ (C0)I . We prove (14) by induction on the con-
struction of concepts. If C is a concept name then (14) follows from the definition. For ⊥
and >, it follows from (p3), and for C1 u C2, C1 t C2, ∃R.C, ≥ qS.C, and ∃S.Self , from
(p6), (p7), (p8), (p11) and (p4). The case of ¬C follows from (p2) and (p5) and case of
≤ qS.C follows from (p10) and (p12). Consider now the (only interesting) case C ≡ ∀R.D.
Let ∀R.D ∈ c(u) and (u, v) ∈ RI . By (p17) we have ∀As

R.D ∈ a(u), where s is the initial
state. Therefore, by Proposition 20, we have ∀Aa

R.D ∈ a(v) and a is an accepting state.
Now, by (p18), D ∈ c(v); by IH, v ∈ DI , and thus u ∈ (∀R.D)I .

For o ∈ nom(C0), by (p14), there is vo with o ∈ c(vo), and so vo ∈ oI . If u ∈ oI then
o ∈ c(u), and so, by (p13), u = vo. Thus, oI is a singleton set.

(⇒) Suppose I = (∆I , ·I) is a model of C0 and R. We define T = (S, c, a, E) by taking

S = ∆I , E(R) = RI , c(u) = {C ∈ con(C0) | u ∈ CI} ∪ {>}

and define a(u) as follows. First, we define by induction on C auxiliary sets a′(u, r), where
r is an RI of the from (C)–(F). Recalling that r0 C ri for all i, 1 ≤ i ≤ l, we set

a′(u, r0) = {∀As
R.C | s is the initial state, ∀R.C ∈ con(C0) and u ∈ (∀R.C)I} ∪

{∀Aq
R.C ∈ qc | for all S1S2 . . . Sn ∈ L(Aq

R), u ∈ (∀S1.∀S2. · · · ∀Sn.C)I

and if ε ∈ L(Aq
R) then u ∈ CI}.

Then, assuming that a′(u, r′) is defined for every r′ C ri, we set

a′(u, ri) = {∀Aq
i .C | ∃v ∈ ∆I ∃w ∈ (role(C0,R))∗ (w, q) ∈ prefix L(Ai),

(v, u) ∈ (w)I , C = Ξ(ri,
⋃

r′Cri

a′(v, r′))},

where (w)I = SI1 . . . S
I
n , for w = S1 . . . Sn, and

prefixL(Ai) = {(w, q) | q a state in Ai, ∀w′ ∈ L(Aq
i ) ww

′ ∈ L(Ai)}.

Note that {∀As
i .C | s the initial state, C = Ξ(ri,

⋃
r′Cri

a′(u, r′)} ⊆ a′(u, ri).
Finally, we set

a(u) =

l⋃
j=0

a′(u, rj).

We now prove that T is a tableau for C0 w.r.t. R. Properties (p1)–(p16) follow im-
mediately from the definitions of c and E , while (p17)–(p19) follow from the definitions
of c(u) and a(u). For (p20), suppose (u, v) ∈ E(R), ∀Ap.C ∈ a(u) and q ∈ δA(p,R).
Then ∀Ap.C ∈ a′(u, ri), for some i. If i > 0 then A = Ai and, by the definition of
a′(u, ri), there are u′ ∈ ∆I and w ∈ (role(C0,R))∗ with C = Ξ(ri,

⋃
r′Cri

a′(u′, r′)),

(w, p) ∈ prefix L(A) and (u′, u) ∈ (w)I . Let w′ = wR. Then (w′, q) ∈ prefix L(A) and
(u′, v) ∈ (w′)I , so ∀Aq.C ∈ a′(v, ri) ⊆ a(v).

u′

∀As
i .C

u

∀Ap
i .C

v

∀Aq
i .C

w R

835



Mosurovic, Krdzavac, Henson & Zakharyaschev

For i = 0 (i.e., when C is a concept C and ∀Ap.C ∈ a′(u, r0)), suppose ∀Aq.C /∈ a′(v, r0).
By the definition of a′(v, r0), this can be for two reasons (Horrocks et al., 2006):

– There is S2 . . . Sn ∈ L(Aq) and v /∈ (∀S2. · · · ∀Sn.C)I . However, this implies that
RS2 . . . Sn ∈ L(Ap) and u /∈ (∀R.∀S2. · · · ∀Sn.C)I , contrary to ∀Ap.C ∈ a′(u).

– ε ∈ L(Aq) and v /∈ CI . But then R ∈ L(Ap) and u /∈ (∀R.C)I , which is again a
contradiction.

Therefore, ∀Aq.C ∈ a′(v, r0), and so a(u)|∀R ⊆ a(v).
To show (p21) and (p22), suppose ∀Aa

i .C ∈ a(u), where a is an accepting state. By the
definition of a(u), there are v ∈ ∆I and w ∈ (role(C0,R))∗ such that (w, a) ∈ prefix L(Ai),
(v, u) ∈ (w)I and C = Ξ(ri,

⋃
r′Cri

a′(v, r′)) = Ξ(ri, a(v)). Since a is an accepting state, we

have w ∈ L(Ai), and so (v, u) ∈ (Ri)
I .

For (p21)—i.e., i ≤ k—we have C = ∃inv(Pimi). · · · ∃inv(Pi1).(tr, t∀, t−), where tr = Qi,
t∀ = a(v)|∀Qi

, t− = a(v) ∩ qc(C0,R)|∀inv(Qi)
. We also have (v, u) ∈ (QiPi1 . . . Pimi)

I , and

there are v0, v1, . . . , vmi = u such that (vj−1, vj) ∈ P Iij and (v, v0) ∈ QIi . Therefore, by

(p20), t∀ ⊆ a(v0) and a(v0)|∀inv(tr) ⊆ t
−.

For (p22)—i.e., i > k—we have C =
∨mi

h=1(trh, t
∀
h, t
−
h ), where trh = Tih, t∀h = a(v)|∀Tih

,

t−h = a(v) ∩ qc(C0,R)|∀inv(Tih) for 1 ≤ h ≤ mi. We also have (v, u) ∈ (Ti1 t · · · t Timi)
I ,

and there is j ∈ {1, . . . ,mi} such that (v, u) ∈ T Iij . Therefore, by (p20), t∀j ⊆ a(u) and

a(u)|∀inv(trj ) ⊆ t
−
j .

(p23) is considered in the same way as (p20). q

Appendix B. The Tableau Algorithm

The tableau algorithm, for SR+OIQ concepts C0 and RBoxes R, works on completion
graphs similarly to the algorithms given by Horrocks et al. (2006) and Horrocks and Sattler
(2007). To present it, we require some additional notation. We assume that the given R is
same as in Appendix A with RC,D,E,F = {ri | i = 1, . . . , l}. For 1 ≤ i ≤ l and a basic role
P , where P = Qi for i ≤ k, and P ∈ {Ti1, . . . , Timi} for i > k, let

qc∗(ri, P ) = {∀Ap.C | there exists q ∈ δA(p, P ), ∀Ap.C ∈
⋃

rjCri

qc(rj)}

∪ {∀Aq.C | q ∈ δA(p, inv(P )), ∀Ap.C ∈
⋃

rjCri

qc(rj)}.

We now set qc∗(ri) = qc∗(ri, Qi), for i ≤ k, and qc∗(ri) =
⋃mi

j=1 qc
∗(ri, Tij), for i > k.

The set qc∗(ri) of quasi-concepts is to be guessed by the algorithm. Let qc(C0,R) be the
minimal set such that:

– qc(C0,R) ∪ {¬∀Ap.C | ∀Ap.C ∈
⋃l

i=1 qc
∗(ri)} ⊆ qc(C0,R),

– if ∀Ap.C ∈ qc(C0,R) then C ∈ qc(C0,R),

– if ∃P.C ∈ qc(C0,R) then C ∈ qc(C0,R),
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– if (
∨m

j=1 Cj) ∈ qc(C0,R) then {C1, . . . ,Cm} ⊆ qc(C0,R).

Unlike qc(C0,R), the set qc(C0,R) contains sub-quasi-concepts. (Quasi-concepts of the
form ¬∀Ap.C will only be used to make sure that ∀Ap.C does not belong to a label.)

Given an SR+OIQ concept C0 and an RBox R, a completion graph for C0 and R is a
structure of the form G = (V1, V2, E1, E2, c, a, l,�), where

– V1∩V2 = ∅; the elements of V1 are called root nodes, and the elements of V2 are called
internal (or non-root) nodes;

– (V,E1) is a directed forest with nodes V = V1 ∪ V2 and arcs E1 (its roots have no
incoming arcs);

– E2 is a set of arcs between nodes and root nodes, as well as arcs of the form (x, x),
for x ∈ V2;

– for each (x, y) ∈ E, where E = E1 ∪ E2, we have l(x, y) ⊆ role(C0,R); if R′ ∈ l(x, y)
and R′ v∗ R, then y is called an R-successor of x; y is called an R-neighbour of x if y
is an R-successor of x or x is an inv(R)-successor of y; also, x is called an ε-neighbour
of x (cf. Horrocks et al., 2006);

– for each x ∈ V , c(x) ⊆ con(C0) ∪ {≤ mS.C |≤ nS.C ∈ con(C0), and m < n} and
a(x) ⊆ qc(C0,R);

– � is a symmetric binary relation on V ;

– for each o ∈ nom(C0), there is x ∈ V1 such that o ∈ c(x).

Following Horrocks et al. (2006) and Horrocks and Sattler (2007), we distinguish between
two sets of nodes: those in V1 can be arbitrarily interconnected (they are called root nodes),
while those in V2 form a tree structure (they are called internal nodes). Intuitively, a
completion graph is a collection of trees whose root nodes can be arbitrarily connected and
there may also be arcs from internal nodes to root nodes (see Fig. 2 on page 841). We also
distinguish between two sets of arcs: those in E1 connect nodes in the same tree, while
those in E2 are the remaining arcs in the graph.

To illustrate the difference between R-successors and neighbours, suppose (R′ v R) ∈ R

x yl(x, y) = {R′}

and l(x, y) = {R′}, as in the picture above. Then y is both an R′- and R-successor of x,
but x is neither an inv(R′)- nor an inv(R)-successor of y; y is both an R′- and R-neighbour
of x, and x is an inv(R′)- and inv(R)-neighbour of y.

To ensure that the tableau algorithm eventually comes to a stop, we use a blocking
technique that is similar to the one of Horrocks et al. (2006). A node x ∈ V2 is called
blocked if it is either directly or indirectly blocked. A node x ∈ V2 is directly blocked if none
of its (not necessarily immediate) E1-ancestors is blocked, and there are nodes x′, y and y′

such that:

– y′ is not a root,
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– (x′, x) ∈ E1, (y′, y) ∈ E1 and y is an E1-ancestor of x′,

– c(x) = c(y), c(x′) = c(y′), a(x) = a(y), a(x′) = a(y′) and l(x′, x) = l(y′, y).

In this case we say that y blocks x.

root y′ y x′ xl(y′, y) l(x′, x)

A node y is indirectly blocked if one of its E1-ancestors is blocked.
For a simple role S, x ∈ V and C ∈ con(C0), let

SG(x,C) ={y | y is an S-neighbour of x, C ∈ c(y) and

if x ∈ V1 then y is not indirectly blocked}.

We say that a completion graph G contains a clash if there is x ∈ V such that at least one
of the following conditions holds:

– ⊥ ∈ c(x),

– {A,¬A} ⊆ c(x), for a concept name A,

– {∀Ap.C,¬∀Ap.C} ⊆ a(x), for a quasi-concept ∀Ap.C ∈
⋃l

i=1 qc
∗(ri),

– x is an S-neighbour of x and ¬∃S.Self ∈ c(x),

– Dis(R,S) ∈ R, while y is both an R- and an S-neighbour of x, for some y ∈ V ,

– (≤ nS.C) ∈ c(x), while {y0, . . . , yn} ⊆ SG(x,C) with yi � yj , for 0 ≤ i < j ≤ n,

– for some o ∈ nom(C0), there is node y � x with o ∈ c(x) ∩ c(y),

– C = (tr, t∀, t−) ∈ a(x) and a(x)|∀inv(tr) 6⊆ t
−.

A completion graph that does not contain a clash is called clash-free.
To simplify the tableau rules, we require some terminology and notation originally used

by Horrocks et al. (2006) and Horrocks and Sattler (2007). An R-neighbour y of x is
said to be safe if either x ∈ V2 or x ∈ V1 and y is not blocked. The result (and the
procedure) of pruning a node y in G = (V1, V2, E1, E2, c, a, l,�), denoted Prune(y), is the
graph obtained from G in the following way: we remove every (y, z) from E and, if z ∈ V2,
Prune(z); we also remove y from V . The result (and the procedure) of merging nodes y
and x in G = (V1, V2, E1, E2, c, a, l,�), denoted Merge(y, x), is the graph obtained from G
as follows:

1. for all z such that (z, y) ∈ E:

– if {(x, z), (z, x)} ∩E = ∅, then add (z, x) to E (to E1 if x ∈ V2, otherwise to E2)
and set l(z, x) := l(z, y),

– if (z, x) ∈ E, then set l(z, x) := l(z, x) ∪ l(z, y),

– if (x, z) ∈ E, then set l(x, z) := l(x, z) ∪ {inv(R) | R ∈ l(z, y)}, and
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– remove (z, y) from E;

2. for all root nodes z such that (y, z) ∈ E2:

– if {(x, z), (z, x)} ∩ E = ∅, then add (x, z) to E2 and set l(x, z) := l(y, z),

– if (x, z) ∈ E, then set l(x, z) := l(x, z) ∪ l(y, z),

– if (z, x) ∈ E, then set l(z, x) := l(z, x) ∪ {inv(R) | R ∈ l(y, z)}, and

– remove (y, z) from E2;

3. set c(x) := c(x) ∪ c(y) and a(x) := a(x) ∪ a(y);

4. add x � z, for all z with y � z;

5. Prune(y).

Let G = (V1, V2, E1, E2, c, a, l,�) be a completion graph. The completion rules can extend
G in two ways: by adding a new leaf and by adding a new root. We say that a node x ∈ V2,
with (y, x) ∈ E1, is of level i in the forest (V,E1) if either i = 1 and y ∈ V1, or i > 1 and
y ∈ V2 is of level i−1 in (V,E1). A node x ∈ V1 is of level i in the graph (V1, E2∩ (V1×V1))
if either i = 0 and there exists o ∈ nom(C0) such that o ∈ c(x), or i > 0, x is not of level
≤ (i− 1) in (V1, E2 ∩ (V1×V1)) and there is y ∈ V1 of level i− 1 in (V1, E2 ∩ (V1×V1)) with
(y, x) ∈ E2.

The tableau rules will be applied according to the following strategy: the (o)-rule is of
highest priority; after that we apply the (=r)- and (≤r)-rules, starting with root nodes of
lower levels; applications of all other rules follow.

Our tableau algorithm is non-deterministic. It takes a SR+OIQ concept C0 and an
RBoxR as input and returns ‘yes’ or ‘no’ to indicate whether C0 is satisfiable w.r.t.R or not.
The algorithm starts by constructing the completion graph G = (V1, V2, E1, E2, c, a, l,�),
where

– V1 = {xo | o ∈ nom(C0)} ∪ {xC0},

– V2 = ∅,

– E1 = ∅, E2 = ∅,

– c(xo) = {o}, c(xC0) = {C0},

– a(xo) = ∅, a(xC0) = ∅,

– l = ∅,

– � is empty.

Then the algorithm non-deterministically applies one of the completion rules given in Ta-
bles 1 and 2; it keeps doing so till either the current completion graph contains a clash, in
which case the answer is ‘no’, or none of the rules is applicable, in which case the algorithm
returns ‘yes’.

To prove that this algorithm always comes to a stop and returns a correct answer, we
require the following lemma:
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Lemma 21 Let G = (V1, V2, E1, E2, c, a, l,�) be the structure constructed at some step of
the algorithm. Then, for every x ∈ V2, there exists exactly one y ∈ V such that (y, x) ∈ E1.

Proof. The proof is by induction on the number of steps. The basis of induction (V2 = ∅)
is trivial. So suppose that our claim holds for some step and consider what happens after
an application of a completion rule. By applying the rules (∃), (r8) and (≥) to a node x,
we add one or more nodes to V2, with x being the only predecessor of these nodes. Also,
we have to consider the rules (≤), (o) and (=r), which merge nodes, because other rules
do not change V2 and E1. Merging nodes changes the graph by possibly adding new edges,
deleting some edges and pruning some nodes. Observe that if we prune a node y then our
claim still holds because we delete the successors of y which belong to V2. Deleting an edge
does not spoil the claim either. Thus, it is enough to examine the cases when a new edge
is added to E1. If Merge(y, x) and x ∈ V1 then all newly added edges belong to E2, and so
after applying Merge(y, x) the claim still holds. The only interesting case is when we apply
Merge(z, y) in the rule (≤) with (≤ nS.C) ∈ c(x), y, z ∈ SG(x,C) and y, z ∈ V2. Because
of y, z ∈ V2, the nodes y and z have only one parent node, although z is not an ancestor of
y; so the following fours cases are possible.

Case 1: (y, x) ∈ E1 and (x, z) ∈ E1. Then no new edge is added to E1, and the claim
holds.

Case 2: (x, y) ∈ E1 and (x, z) ∈ E1. Again, we do not add a new edge to E1.
Case 3: (y, x) ∈ E1 and (z, x) ∈ E1. In this case x ∈ V2 and x has two parent nodes y

and z, which is impossible by IH.
Case 4: (y, x) ∈ E2 or (z, x) ∈ E2. This case is not possible either because x ∈ V1,

(≤ nS.C) ∈ c(x), y (or z) is an S-neighbour of x, and so before applying (≤) we have to
apply (≤r) or (=r) in view of their higher priority. q

We can now show termination.

Lemma 22 The tableau algorithm always terminates.

Proof. The sets con(C0), qc(C0,R), role(C0,R) we use in the labels of nodes and edges
are finite. Let l0 = ]nom(C0), l1 = ]con(C0), l2 = ]qc(C0,R), l3 = ]role(C0,R) and
nmax = max{n | (≥ nR.C) ∈ con(C0) or (≤ nR.C) ∈ con(C0)}. The completion graph
and the completion rules have following properties. Each node x is labelled with two sets
c(x) ⊆ con(C0) and a(x) ⊆ qc(C0,R). The number of different pairs of such labels does not
exceed 2l1+l2 . Each edge (x, y) is labelled with a set l(x, y) ⊆ role(C0,R), so the number
of different labels of edges is at most 2l3 . The number of different labels for a pair of nodes
connected by an arc is at most L = 2l3+2l1+2l2 . Therefore, any path in the forest (V,E1),
which starts from a root node and is of length ≥ L + 2, contains a blocked node. Every
application of any rule is determined by some (quasi-) concept and node, with the same rule
applicable to the same (quasi-) concept and node only once. The completion rules never
remove labels from nodes in the graph, and the only rules that remove nodes are (≤), (o)
and (=r). Only (∃), (≥), (≤r) and (r8) generate new nodes, and each such generation is
triggered by a (quasi-) concept of the form ∃R.C, ≥ nR.C, ≤ nR.C or ∃P.C in the label of
a node x. The number of the concepts is ≤ l1 + l2. The rules (≥) and (≤r) can generate at
most nmax successors of a given node, for each concept of the form ≥ nR.C or ≤ nR.C. The
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other two rules generate only one successor for each concept. It follows that the number of
created outgoing arcs for a node does not exceed l1 ·nmax + l2. If a node y is removed from
G by (≤), (o) or (=r), its label migrates to the node z. So the rules (∃), (≥), (≤r) and
(r8), which generate y that is later merged by (≤), (o) or (=r), will not be applied again to
the same node.

Now, we show that the number of nodes in the completion graph is limited. Together
with the observations above, this will mean that we can apply the completion rules finitely
many times, and so the algorithm will eventually come to a stop.

To this end, we require the following claim: if x ∈ V1 is of level i in (V1, E2 ∩ (V1×V1)),
y ∈ V2 is not indirectly blocked and (y, x) ∈ E2, then y is of level ≤ L + 2 − i in (V,E1).
Indeed, for i = 0, y is of level ≤ L+ 2 because y is not indirectly blocked and each node of
> L + 2 level is indirectly blocked. If x is of level i > 0 then the only way to add an edge
(y, x) ∈ E2 is first to apply the rule (o), which will add an E2-edge between some y0 ∈ V2

and x0 ∈ V1, and then repeatedly apply (=r). The node x0 is of level 0 in (V1, E2∩(V1×V1)),
while y0 is of level ≤ L + 2 in (V,E1). If we apply the rule (=r), then y0 will be merged
with some successor x1 ∈ V1 of x0 created by an application of (≤r). The node x1 is of level
≤ 1, and we add the edge (y1, x1) ∈ E2, where y1 is a parent of y0 and of level ≤ L+ 2− 1
in (V,E1); see Fig. 2. By repeating the same argument, we see that the node y is of level
≤ L+ 2− i in (V,E1).

y1

y0

x0

x1 y1

x0

x1

Figure 2: Before and after an application of (=r); the bold arcs are in E2 and the nodes •
are in V1.

The claim proved above means that if a node x ∈ V1 is of level L+2 in (V1, E2∩(V1×V1)),
then there is no y ∈ V2 with (y, x) ∈ E2. Hence, the rule (≤r) cannot be applied to a node
x of level L+ 2, and so there is no root node of level L+ 3.

The only rule that can add new nodes to V1 is (≤r). It can be applied at most l1 times
to a given node and add at most l1 · nmax successors. At the beginning V1\{xC0} contains
l0 nodes, so (≤r) can create at most l0 · l1 · nmax successors of these nodes. By applying
(≤r) to them again, we obtain ≤ l0 · (l1 · nmax)2 new nodes (of level ≤ 2). It follows that

]V1 ≤ 1 +
L+2∑
i=0

l0 · (l1 · nmax)i = O(l0 · (l1 · nmax)L+3).

The number of nodes in V2 is also limited. At the beginning V2 = ∅. For each node in V1,
the algorithm can create ≤ l1 · nmax + l2 arcs that lead to nodes in V2. Thus, the number
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of nodes of level 1 in V2 does not exceed ]V1 · (l1 ·nmax + l2); the number of their successors
is at most ]V1 · (l1 · nmax + l2)2; and finally,

]V2 ≤
L+2∑
i=1

]V1 · (l1 · nmax + l2)i = O(]V1 · (l1 · nmax + l2)L+3).

This completes the proof of the lemma. q

The next lemma shows that the answers returned by the algorithm are correct.

Lemma 23 The tableau algorithm returns ‘yes’ if and only if there exists a tableau for C0

w.r.t. R.

Proof. (⇒) Suppose the algorithm returns ‘yes’ by generating a clash-free completion graph
G = (V1, V2, E1, E2, c, a, l,�) to which no completion rule is applicable. Let V = V1 ∪ V2

and E = E1 ∪ E2. We write β(x) = x, if x ∈ V1 or x ∈ V2 is not blocked; and β(x) = y, if
x ∈ V2 and y blocks x.

Define a set paths(G) inductively by taking (cf. Horrocks et al., 2006):

– if x0 ∈ V1 then (x0, x0) ∈ paths(G); in this case we write Root(x0) = (x0, x0),

– if π ∈ paths(G), a node z ∈ V2 is not indirectly blocked and (tail(π), z) ∈ E1, then
the sequence π, (β(z), z) is in paths(G).

Here tail(π) = xn and tail ′(π) = x′n, for π = (x0, x
′
0), . . . , (xn, x

′
n). The members π of

paths(G) will be called paths in G.
We now define a tableau T = (S, c′, a′, E) by taking S = paths(G), c′(π) = c(tail(π)),

a′(π) = a(tail(π)) ∩ qc(C0,R), for π ∈ paths(G), and

E(R) ={(Root(x),Root(y)) | y is an R-neighbour of x} ∪
{(u,Root(y)) | y is an R-neighbour of tail(u)} ∪
{(Root(x), u) | tail(u) is an R-neighbour of x} ∪
{(u, u) | tail(u) is an R-neighbour of tail(u)} ∪
{(u, v) ∈ S × S | v = u, (β(y), y) and y is an R-neighbour of tail(u), or

u = v, (β(y), y) and y is an inv(R)-neighbour of tail(v)}.

We prove that T is a tableau for C0 w.r.t. R. Indeed, (p1) and (p14) follow from the
initial step of the tableau algorithm and the fact that the labels of the root nodes are never
removed; (p2) follows from the definition and the fact that the completion graph G is clash-
free; (p3) follows from the rules creating new nodes and that G is clash-free; (p9) and (p16)
follow from the definitions of E(R) and R-neighbour (and R-successor); (p6) and (p7) follow
from the fact that the rules (u) and (t) are not applicable; (p12) follows from the definitions
of E(R) and R-neighbour and the fact that the rule (guess) is not applicable; (p15) and (p5)
follow from the definitions of E(R) and R-neighbour and that the completion graph G is
clash-free; (p17) and (p18) follow from the fact that (r1) and (r3) are not applicable; (p19)
from the fact that (r5i) cannot be applied; and (p20) and (p23) follow from the definitions
of E(R) and the fact that (r2) and (r6) are not applicable. The remaining cases are less
straightforward. In some of them, we require the following:
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(u) if C1 u C2 ∈ c(x), x is not indirectly blocked and {C1, C2} 6⊆ c(x), then
c(x) := c(x) ∪ {C1, C2}

(t) if C1 t C2 ∈ c(x), x is not indirectly blocked and {C1, C2} ∩ c(x) = ∅, then
c(x) := c(x) ∪ {D}, for some D ∈ {C1, C2}

(∃) if ∃S.C ∈ c(x), x is not blocked and has no safe S-neighbour y with C ∈ c(y)
then create a new node y ∈ V2 with l(x, y) := {S}, c(y) := {C,>}, a(y) := ∅

(self) if ∃S.Self ∈ c(x), x is not blocked and x is not S-neighbour of x
then add (x, x) to E2, if it is not there yet, and set l(x, x) := l(x, x) ∪ {S}

(guess) if (≤ nS.C) ∈ c(x), x is not indirectly blocked and
there is an S-neighbour y of x such that {C,¬C} ∩ c(y) = ∅,
then set c(y) := c(y) ∪ {D}, for some D ∈ {C,¬C}

(≥) if (≥ nS.C) ∈ c(x), x is not blocked and there are no distinct and safe
y1, . . . , yn ∈ SG(x,C), then create n new successors y1, . . . , yn ∈ V2 of x; set
l(x, yi) := {S}, c(yi) := {C,>}, a(yi) := ∅, yi � yj , for 1 ≤ i < j ≤ n

(≤) if (≤ nS.C) ∈ c(x), x is not indirectly blocked, ]SG(x,C) > n and there are
y, z ∈ SG(x,C) for which y � z does not hold
then (1) if z is a root node or an E1-ancestor of y, then Merge(y, z),

(2) otherwise Merge(z, y)

(o) if, for o, o′ ∈ nom(C0), there is a node y 6= xo with o′ ∈ c(xo) ∩ c(y)
and such that xo � y does not hold in the completion graph,
then Merge(y, xo)

(≤r) if (≤ nS.C) ∈ c(x), x ∈ V1, and there is an S-neighbour y of x
such that y ∈ V2, (y, x) ∈ E2, C ∈ c(y) and y is not indirectly blocked;
and if there is no n′ ≤ n with (≤ n′S.C) ∈ c(x) and there are S-neighbours
z1, . . . , zn′ ∈ V1 of x with C ∈ c(zi) and zi � zj , for 1 ≤ i, j ≤ n′, i 6= j,
then (1) guess m, 1 ≤ m ≤ n, and set c(x) := c(x) ∪ {(≤ mS.C)},

(2) create m new nodes y1, . . . , ym ∈ V1 with
l(x, yi) := {S}, c(yi) := {C,>}, a(yi) := ∅ and yi � yj , 1 ≤ i < j ≤ m

(=r) if (≤ mS.C) ∈ c(x), x ∈ V1, and there is an S-neighbour y ∈ V2 of x with
C ∈ c(y), y is not indirectly blocked and there are S-neighbours
z1, . . . , zm ∈ V1 of x with C ∈ c(zi) and zi � zj , for 1 ≤ i, j ≤ m, i 6= j, and
there is j0, 1 ≤ j0 ≤ m for which y � zj0 does not hold,
then Merge(y, zj0)

Table 1: Completion rules for the SR+OIQ tableau algorithm.
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(r1) if ∀R.C ∈ c(x), x is not indirectly blocked and ∀As
R.C 6∈ a(x), s the initial state,

then a(x) := a(x) ∪ {∀As
R.C}

(r2) if ∀Ap
R.C ∈ a(x), q ∈ δAR

(p, T ) (where T can be ε), x is not indirectly blocked,
y is a T -neighbour of x and ∀Aq

R.C 6∈ a(y),
then a(y) := a(y) ∪ {∀Aq

R.C}

(r3) if ∀Aa
R.C ∈ a(x), a an accepting state, x is not indirectly blocked and C /∈ c(x),

then c(x) := c(x) ∪ {C}

(r4i) if x is not indirectly blocked and there is C ∈ qc∗(ri) with {C,¬C} ∩ a(x) = ∅,
then a(x) := a(x) ∪ {D}, for some D ∈ {C,¬C}

(r5i) if x is not indirectly blocked, (r4i) is not applicable, ∀As
i .C 6∈ a(x),

C = Ξ(ri, a(x)), for the initial state s, then a(x) := a(x) ∪ {∀As
i .C}

(r6) if ∀Ap.C ∈ a(x), x is not indirectly blocked, q ∈ δA(p, T ) (where T can be ε),
y is a T -neighbour of x and ∀Aq.C 6∈ a(y),
then a(y) := a(y) ∪ {∀Aq.C}

(r7) if ∀Aa.C ∈ a(x), a an accepting state, x is not indirectly blocked and C /∈ a(x),
then a(x) := a(x) ∪ {C}

(r8) if ∃P.C ∈ a(x), x is not blocked and x has no safe P -neighbour y with C ∈ a(y),
then create a new node y ∈ V2 and set l(x, y) := {P}, c(y) := {>}, a(y) := {C}

(r9) if C ∈ a(x), C =
∨m

j=1 Cj , x is not indirectly blocked, {C1, . . . ,Cm} ∩ a(x) = ∅,
then a(x) := a(x) ∪ {D}, for some D ∈ {C1, . . . ,Cm}

(r10) if C ∈ a(x), for C = (tr, t∀, t−), x is not indirectly blocked and t∀ 6⊆ a(x),
then set a(x) := a(x) ∪ t∀

Table 2: Completion rules for the SR+OIQ tableau algorithm (cont.)
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Proposition 24 Suppose u ∈ paths(G), x = tail(u) and x has a safe R-neighbour y ∈ V .
Then there is v ∈ paths(G) with (u, v) ∈ E(R), c′(v) = c(y) and a′(v) = a(y) ∩ qc(C0,R).

Proof. As y is an R-neighbour of x, either (x, y) ∈ E or (y, x) ∈ E. Four cases are possible:

– If (x, y) ∈ E1, we set v = u, (β(y), y).

– If (x, y) ∈ E2, then y ∈ V1 and we set v = Root(y).

– If (y, x) ∈ E1 then y is the only predecessor of x. In the case tail ′(u) = x, there
exists a path v such that tail(v) = y and u = v, (x, x); and in the case tail ′(u) 6= x
(i.e., when x blocks tail ′(u)), there exist a predecessor y′ of tail ′(u) (c(y′) = c(y),
a(y′) = a(y) and y′ is an R-neighbour of tail ′(u)) and a path v such that tail(v) = y′

and u = v, (x, tail ′(u)).

– If (y, x) ∈ E2 then x ∈ V1, u = Root(x). We set v = Root(y) if y ∈ V1. If y ∈ V2 then
y is not blocked (since y is safe), and so there exists a path v such that tail(v) = y.

In all of these cases, v is as required. q

(p4) If ∃S.Self ∈ c′(u) then ∃S.Self ∈ c(tail(u)). Since (self) is not applicable, tail(u) is
an S-neighbour of tail(u), and so (u, u) ∈ E(R).

(p8) If ∃R.C ∈ c′(u) then ∃R.C ∈ c(x), where x = tail(u). Since (∃) is not applicable, x
has a safe R-neighbour y with C ∈ c(y). By Proposition 24, there exists v ∈ paths(G) such
that (u, v) ∈ E(R) and C ∈ c′(v).

(p10) If ≤ nS.C ∈ c′(u) then ≤ nS.C ∈ c(x), where x = tail(u). Since the completion
graph G is clash-free and (≤) and (=r) are not applicable, ]SG(x,C) ≤ n. Suppose that
(u, v) ∈ E(R) and C ∈ c′(v). By the definition of E(R), the following cases are possible:

– u = Root(x), v = Root(y) and y is an R-neighbour of x. We have y ∈ SG(x,C) and,
since y ∈ V1, there is no v′ ∈ paths(G) different from v and such that y = tail(v′) or
y = tail ′(v′).

– x ∈ V2, v = Root(y) and y is an R-neighbour of x. This case is considered analogously.

– u = Root(x), y = tail(v) ∈ V2, v 6= u, (y, tail ′(v)) and y is an R-neighbour of x. This
case is not possible since ≤ nS.C ∈ c(x), x ∈ V1, (y, x) ∈ E2 and the rules (≤r) and
(=r) are not applicable.

– v = u and x is an R-neighbour of x. Then x ∈ SG(x,C) and there is no v′ ∈ paths(G)
different from u and such that (u, v′) ∈ E(R) and x = tail(v′) or x = tail ′(v′).

– v = u, (β(y), y) and y is an R-neighbour of x. Then y ∈ SG(x,C), y ∈ V2 and x is
the only predecessor of y. So there is no v′ ∈ paths(G) different from v and such that
(u, v′) ∈ E(R) and y = tail(v′) or y = tail ′(v′).

– u = v, (x, y), x = β(y) and y is an inv(R)-neighbour of tail(v). Then tail(v) ∈
SG(x,C), y ∈ V2 and tail(v) is only one predecessor of y; so there is no v′ ∈ paths(G)
different from v such that (u, v′) ∈ E(R) and tail(v) = tail(v′) or tail(v) = tail ′(v′).
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Therefore, ]{v ∈ S | (u, v) ∈ E(S) and C ∈ c(v)} ≤ ]SG(x,C) ≤ n.
(p11) If (≥ nS.C) ∈ c′(u) then (≥ nS.C) ∈ c(x), where x = tail(u). Since (≥) is not

applicable, x has safe S-neighbours y1, . . . , yn with C ∈ c(yi) and yi � yj , for 1 ≤ i, j ≤ n
and j 6= i. By Proposition 24, there exists vi ∈ paths(G) such that (u, vi) ∈ E(S) and
C ∈ c′(vi), for 1 ≤ i ≤ n. In addition, there can be at most one y with (y, x) ∈ E1 and, by
the proof of Proposition 24, if (yi, x) 6∈ E1 then tail(vi) = yi or tail ′(vi) = yi. So, vi and vj
are distinct for i 6= j, since tail(vi) 6= tail(vj) or tail ′(vi) 6= tail ′(vj) (in the case (yi, x) ∈ E1,
(x, yj) ∈ E1 and yi block yj , i.e., tail(vi) = tail(vj) = yi, we have tail ′(vi) 6= tail ′(vj)).

(p13) If o ∈ c′(u) ∩ c′(v) then o ∈ c(tail(u)), and so there is o′ ∈ nom(C0) such that
xo′ = tail(u) and u = Root(xo′). Similarly, there is o′′ ∈ nom(C0) with xo′′ = tail(v) and
v = Root(xo′′). Since the rule (o) is not applicable, xo′ = xo′′ , and so u = v.

(p22) Let ∀Aa
i .C ∈ a′(u), where a is an accepting state and C =

∨mi
h=1(trh, t

∀
h, t
−
h ). Then

∀Aa
i .C ∈ a(x), where x = tail(u). Since (r7) cannot be applied, C ∈ a(x), and since (r9) is

not applicable, there is j such that Cj = (trj , t
∀
j , t
−
j ) ∈ a(x). Now, as (r10) is not applicable,

we have t∀j ⊆ a(x); and since G is clash-free, a(x)|∀inv(trj ) ⊆ t−j . Thus, t∀j ⊆ a′(u) and

a′(u)|∀inv(trj ) ⊆ t
−
j .

(p21) Let ∀Aa
i .C ∈ a′(u), where C = ∃inv(Pimi). · · · ∃inv(Pi1).(tr, t∀, t−) and a is an

accepting state. Then ∀Aa
i .C ∈ a(tail(u)). We prove by induction on j that there is vj such

that ∃inv(Pij). · · · ∃inv(Pi1).(tr, t∀, t−) ∈ a(tail(vj)). For j = mi, set vmi = u. As (r7) is not
applicable to tail(vmi), ∃inv(Pimi). · · · ∃inv(Pi1).(tr, t∀, t−) ∈ a(tail(vmi)), which establishes
the induction basis. Assume now that our claim holds for j and prove it for j−1. As tail(vj)
is not blocked and (r8) is not applicable, there is a safe inv(Pij)-neighbour yj−1 of tail(vj)
such that ∃inv(Pi(j−1)). · · · ∃inv(Pi1).(tr, t∀, t−) ∈ a(yj−1). By Proposition 24, there is

vj−1 ∈ paths(G) with (vj , vj−1) ∈ E(inv(Pij)) and ∃inv(Pi(j−1)). · · · ∃inv(Pi1).(tr, t∀, t−) ∈
a(tail(vj−1)). For j = 0, we have (tr, t∀, t−) ∈ a(tail(v0)). Further, as (r10) cannot be
applied, we have t∀ ⊆ a(tail(v0)); and since G is clash-free, a(tail(v0))|∀inv(tr) ⊆ t−. Thus,

t∀ ⊆ a′(v0) and a′(v0)|∀inv(tr) ⊆ t
−.

(⇒) Take a tableau T = (S, c′, a′, E) for C0 w.r.t. R and extend it in the following way:

(e1) If ∀Aa
i .C ∈ a′(u), where C = ∃inv(Pimi). · · · ∃inv(Pi1).(tr, t∀, t−) and a is an accepting

state, then, by (p21), there are v0, v1, . . . , vmi = u such that (vj , vj−1) ∈ E(inv(Pij)),
for 1 ≤ j ≤ mi, t

∀ ⊆ a′(v0) and a′(v0)|∀inv(tr) ⊆ t−. In this case, we extend a′(vj) by

taking a′(vj) := a′(vj) ∪ {∃inv(Pij). · · · ∃inv(Pi1).(tr, t∀, t−)}, for 0 ≤ j ≤ mi.

(e2) If ∀Aa
i .C ∈ a′(u), where C =

∨mi
h=1(trh, t

∀
h, t
−
h ), then, by (p22), there is j ∈ {1, . . . ,mi}

such that t∀j ⊆ a′(u) and a′(u)|∀inv(trj ) ⊆ t−j . In this case, we extend a′(u) by taking

a′(u) := a′(u) ∪ {C,Cj}.

(e3) If there exists C ∈
⋃l

i=0 qc
∗(ri) such that C 6∈ a′(u), then a′(u) := a′(u) ∪ {¬C}.

(e4) If (≤ nS.C) ∈ c′(u) and ST (u,C) = {v ∈ S | (u, v) ∈ E(S), C ∈ c(v)} = {v1, . . . , vm}
then, in view of (p10), we have m ≤ n. In this case, we extend c′(u) by taking
c′(u) := c′(u) ∪ {≤ mS.C}.

We now apply the completion rules using the extended tableau T so that in the end the
algorithm obtains a clash-free completion graph G = (V1, V2, E1, E2, c, a, l,�) and returns
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‘yes’. For this purpose, we define a map µ : V → S and steer the applications of the non-
deterministic completion rules in such a way that c(x) ⊆ c′(µ(x)) and a(x) ⊆ a′(µ(x)), for
all nodes x ∈ V (cf. Horrocks, Kutz, & Sattler, 2005; Horrocks et al., 2006). Furthermore,
we require that, for each pair of nodes x, y and each role R, if y is an R-successor of x, then
(µ(x), µ(y)) ∈ E(R), and x � y implies µ(x) 6= µ(y). This will ensure that G is clash-free,
since tableau T is clash-free.

We define µ by induction as follows. To begin with, by (p14), for each o ∈ nom(C0),
there is some vo with o ∈ c′(vo), and by (p1), there is some u0 with C0 ∈ c′(u0). The
algorithm starts by constructing nodes xo, for each o ∈ nom(C0), and xC0 with c(xo) = {o}
and c(xC0) = {C0}. We set µ(xo) = vo and µ(xC0) = u0.

Observe that c(xo) ⊆ c′(µ(xo)) and c(xC0) ⊆ c′(µ(xC0)); also a(xo) = ∅ ⊆ a′(µ(xo)) and
a(xC0) = ∅ ⊆ a′(µ(xC0)). We now consider applications of the completion rules.

If (u) can be applied to x ∈ V with C1 u C2 ∈ c(x), then C1 u C2 ∈ c′(µ(x)), and so, by
(p6), C1, C2 ∈ c′(µ(x)). When we apply (u), C1, C2 are added to c(x), so we again
have c(x) ⊆ c′(µ(x)).

If (t) can be applied to x ∈ V with C1 t C2 ∈ c(x), then C1 t C2 ∈ c′(µ(x)), and so,
by (p7), {C1, C2} ∩ c′(µ(x)) 6= ∅. We apply (t) so that c(x) := c(x) ∪ {D} for some
D ∈ {C1, C2} ∩ c′(µ(x)), and again c(x) ⊆ c′(µ(x)).

If (∃) can be applied to x ∈ V with ∃S.C ∈ c(x), then ∃S.C ∈ c′(µ(x)), and so, by (p8),
there is a v with (µ(x), v) ∈ E(S) and C ∈ c′(v). By (p3), > ∈ c′(v) and, by (p16)
for S v∗ S′, we have (µ(x), v) ∈ E(S′). We apply (∃) so that a new node y is created
with l(x, y) := {S}, c(y) := {C,>} , a(y) := ∅ and µ(y) = v. But then c(y) ⊆ c′(µ(y)),
a(y) ⊆ a′(µ(y)) and (µ(x), µ(y)) ∈ E(S′).

If (self) can be applied to x ∈ V with ∃S.Self ∈ c(x), then ∃S.Self ∈ c′(µ(x)), and so,
by (p4), (µ(x), µ(x)) ∈ E(S). By (p16) for S v∗ S′, we have (µ(x), µ(x)) ∈ E(S′).
We apply (self) by adding the arc (x, x), if it is not there yet, and setting l(x, x) :=
l(x, x) ∪ {S}. Then we obtain (µ(x), µ(x)) ∈ E(S′).

If (guess) can be applied to x ∈ V with (≤ nS.C) ∈ c(x) and an S-neighbour y of x, then
(≤ nS.C) ∈ c′(µ(x)), (µ(x), µ(y)) ∈ E(S), and so, by (p12), {C,¬C} ∩ c′(µ(y)) 6= ∅.
We apply (guess) so that c(y) := c(y) ∪ {D}, for some D ∈ {C,¬C} ∩ c′(µ(y). Hence
c(y) ⊆ c′(µ(y)).

If (≥) can be applied to x ∈ V with (≥ nS.C) ∈ c(x), then (≥ nS.C) ∈ c′(µ(x)). By (p11),
there are v1, . . . , vn ∈ ST (µ(x), C), where ST (u,C) = {v ∈ S | (u, v) ∈ E(S), C ∈
c(v)}. We apply (≥) by creating n new successors y1, . . . , yn of x and setting l(x, yi) :=
{S}, c(yi) := {C,>}, a(yi) := ∅, yi � yj and µ(yi) = vi, for 1 ≤ i, j ≤ n, j 6= i. Then,
for S v∗ S′, we have (µ(x), µ(yi)) ∈ E(S′) and also c(yi) ⊆ c′(µ(yi)), for 1 ≤ i ≤ n.

If (≤) can be applied to x ∈ V with (≤ nS.C) ∈ c(x) and {y1, . . . , yn+1} ⊆ SG(x,C), then
(≤ nS.C) ∈ c′(µ(x)) and {µ(y1), . . . , µ(yn+1)} ⊆ ST (µ(x), C). By (p10), we have
]ST (µ(x), C) ≤ n, so there are j1, j2 such that µ(yj1) = µ(yj2) = v. Instead of yj1 ,
yj2 , we will write y, z; more precisely if yj1 is a root or an E1-ancestor of yj2 then
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we set z = yj1 and y = yj2 , otherwise we set z = yj2 and y = yj1 . We apply (≤) by
performing Merge(y, z). Since µ(z) = v, the required conditions on µ hold.

For (=r), the proof is similar to the previous case.

If (o) can be applied to y ∈ V with o′ ∈ c(xo) ∩ c(y), for some o, o′ ∈ nom(C0), then
o′ ∈ c′(µ(xo))∩ c′(µ(y)). By (p13), we have µ(xo) = µ(y), and therefore c(xo)∪ c(y) ⊆
c′(µ(xo)) ∪ c′(µ(y)) = c′(µ(xo)). Similarly, a(xo) ∪ a(y) ⊆ a′(µ(xo)). We apply (o) by
performing Merge(y, xo), so the required conditions for µ hold again.

If (≤r) can be applied to x ∈ V1 and an S-neighbour y of x with (≤ nS.C) ∈ c(x),
y ∈ V2, (y, x) ∈ E2 and C ∈ c(y), then (≤ nS.C) ∈ c′(µ(x)), (µ(x), µ(y)) ∈ E(S) and
C ∈ c′(µ(y)). By (p10), we have ]ST (µ(x), C) ≤ n, so ST (µ(x), C) = {v1, . . . , vm},
m ≤ n. We apply (≤r) so that c(x) := c(x) ∪ {(≤ mS.C)}, create m new nodes
y1, . . . , ym ∈ V1 with l(x, yi) := {S}, c(yi) := {C,>}, a(yi) := ∅, yi � yj and µ(yi) = vi
for all 1 ≤ i ≤ m, 1 ≤ j < i. Then, for S v∗ S′, we have (µ(x), µ(yi)) ∈ E(S′),
c(yi) ⊆ c′(µ(yi)), for 1 ≤ i ≤ m, and also, by (e4), c(x) ⊆ c′(µ(x)).

If (r1) can be applied to x ∈ V with ∀R.C ∈ c(x), then ∀R.C ∈ c′(µ(x)), and so, by
(p17), ∀As

R.C ∈ a′(µ(x)), where s is the initial state of AR. We apply (r1) so that
a(x) := a(x) ∪ {∀As

R.C}. Clearly, we have a(x) ⊆ a′(µ(x)).

If (r2) can be applied to x ∈ V with ∀Ap
R.C ∈ a(x), q ∈ δAR

(p, T ), and y is a T -neighbour
of x, then ∀Ap

R.C ∈ a′(µ(x)). If T 6= ε then (µ(x), µ(y)) ∈ E(T ) and, by (p20),
∀Aq

R.C ∈ a′(µ(y)). If T = ε then y = x and, by (p23), ∀Aq
R.C ∈ a′(µ(y)). In both

cases we apply (r2) so that a(y) := a(y) ∪ {∀Aq
R.C}, and again a(y) ⊆ a′(µ(y)).

If (r3) can be applied to x ∈ V with ∀Aa
R.C ∈ a(x), where a is an accepting state, then

∀Aa
R.C ∈ a′(µ(x)). By (p18), C ∈ c′(µ(x)). We apply (r3) so that c(x) := c(x) ∪ {C}.

Thus, c(x) ⊆ c′(µ(x)).

If (r4i) can be applied to x ∈ V with C ∈ qc∗(ri), then, by (e3), {C,¬C} ∩ a′(µ(x)) 6= ∅.
We apply (r4i) so that a(x) := a(x) ∪ {D}, for some D ∈ {C,¬C} ∩ a′(µ(x)). Thus,
a(x) ⊆ a′(µ(x)).

If (r5i) can be applied to x ∈ V , then ∀As
i .C 6∈ a(x), where s is the initial state of Ai and

C = Ξ(ri, a(x)). By (p19), ∀As
i .C
′ ∈ a′(µ(x)), where C′ = Ξ(ri, a

′(µ(x))). Suppose
C 6= C′. Since a(x) ⊆ a′(µ(x)), there exists C1 ∈ qc∗(ri) such that C1 ∈ a′(µ(x)) and
C1 6∈ a(x). As (r4i) is not applicable, we have ¬C1 ∈ a(x), and so ¬C1 ∈ a′(µ(x)),
which is a contradiction. Hence C = C′. We apply (r5i) so that a(x) := a(x)∪{∀As

i .C}.
Thus, a(x) ⊆ a′(µ(x)).

If (r6) can be applied to x ∈ V with ∀Ap.C ∈ a(x), q ∈ δAR
(p, T ), and y is a T -neighbour

of x, then ∀Ap.C ∈ a′(µ(x)). If T 6= ε then (µ(x), µ(y)) ∈ E(T ) and, by (p20),
∀Aq.C ∈ a′(µ(y)). If T = ε then y = x and, by (p23), ∀Aq.C ∈ a′(µ(y)). In either case,
we apply (r6) so that a(y) := a(y) ∪ {∀Aq.C}. Thus, a(y) ⊆ a′(µ(y)).

If (r7) can be applied to x ∈ V with ∀Aa.C ∈ a(x), where a is an accepting state, then
∀Aa.C ∈ a′(µ(x)). By (e1) and (e2), C ∈ a′(µ(x)). We apply (r7) in such a way that
a(x) := a(x) ∪ {C}. Thus, a(x) ⊆ a′(µ(x)).

848



A Decidable Extension of SROIQ with Complex Role Chains and Unions

If (r8) can be applied to x ∈ V with ∃P.C ∈ a(x), then ∃P.C ∈ a′(µ(x)), and so, by (e1),
there is some v with (µ(x), v) ∈ E(P ) and C ∈ a′(v). By (p16) for P v∗ S′, we
have (µ(x), v) ∈ E(S′). We apply (r8) by creating a new node y with l(x, y) := {P},
c(y) := {>}, a(y) := {C} and µ(y) = v. Thus, c(y) ⊆ c′(µ(y)), a(y) ⊆ a′(µ(y)) and
(µ(x), µ(y)) ∈ E(S′).

If (r9) can be applied to x ∈ V with C ∈ a(x), for C =
∨m

j=1 Cj , then C ∈ a′(µ(x)). This
means that C is added to a′(µ(x)) by (e2), and so, there is j such that Cj ∈ a′(µ(x)).
We apply (r9) so that a(x) := a(x) ∪ {Cj}. Thus, a(x) ⊆ a′(µ(x)).

If (r10) can be applied to x ∈ V with C ∈ a(x), for C = (tr, t∀, t−), then C ∈ a′(µ(x)). This
means that C is added to a′(µ(x)) by (e1) for µ(x) = v0, or by (e2). In either case,
t∀ ⊆ a′(µ(x)). We apply (r10) so that a(x) := a(x) ∪ t∀. Thus, a(x) ⊆ a′(µ(x)).

This completes the proof of the lemma. q

As an immediate consequence of Lemmas 19, 22 and 23, we obtain our main Theorem 15
according to which concept satisfiability w.r.t. SR+OIQ KBs is decidable. It is worth
noting that if the given RBox R does not contain RAs of the form (C)–(F) then our tableau
algorithm behaves in the same way as the algorithm for SROIQ (Horrocks et al., 2006).
However, if R contains one RA of the form (C)–(F) the algorithm will have to construct
the set qc(C0,R) of quasi-concepts, which contains subsets of the previously constructed
sets of quasi-concepts qc(r0), and so may suffer an exponential blow-up. More precisely,
the new quasi-concepts in qc(C0,R) are built from triples of the form (tr, t∀, t−), where
t∀ ⊆ qc(r0)|∀tr and t− ⊆ qc(r0)|∀inv(tr). Furthermore, the algorithm may suffer one more

exponential blow-up every time we add an extra RA of the form (C)–(F) and extend the
sequence ri1 C ri2 , ri2 C ri3 , . . . , rih−1

C rih because again the set of quasi-concepts may
become exponentially larger.
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