A Decidable Extension of $\mathcal{S R O I Q}$ with Complex Role Chains and Unions

Milenko Mosurovic
MILENKO@AC.ME
Faculty of Natural Sciences and Mathematics, University of Montenegro, Montenegro.
Nenad Krdzavac
NENADKR@TESLA.RCUB.BG.AC.RS
Faculty of Organizational Sciences, University of Belgrade, Serbia.
\section*{Henson Graves}
HENSON.GRAVES@HOTMAIL.COM
Algos Associates, 2829 West Cantey Street, Fort Worth, TX 76109 U.S.
Michael Zakharyaschev
MICHAEL@DCS.BBK.AC.UK
Department of Computer Science and Information Systems, Birkbeck, University of London, U.K.

Abstract

We design a decidable extension of the description logic $\mathcal{S R O} \mathcal{O} \mathcal{Q}$ underlying the Web Ontology Language $O W L$ 2. The new logic, called $\mathcal{S} \mathcal{R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$, supports a controlled use of role axioms whose right-hand side may contain role chains or role unions. We give a tableau algorithm for checking concept satisfiability with respect to $\mathcal{S R}{ }^{+} \mathcal{O I} \mathcal{Q}$ ontologies and prove its soundness, completeness and termination.

1. Introduction

The ever growing number and scope of application areas puts constant pressure on the designers of ontology languages. Thus, the first version of the Web Ontology Language $O W L$, which became a formal W3C recommendation in 2004, contained the description logic (DL, for short) $\mathcal{S H O} \mathcal{I N}$ that allowed the use of the basic DL $\mathcal{A L C}$ together with inverse and transitive roles, role hierarchies, nominals and unqualified cardinality restrictions. Its second reincarnation $O W L 2$, adopted in 2009, is based on a more powerful formalism, $\mathcal{S R O I} \mathcal{Q}$, which extends $\mathcal{S H O} \mathcal{I N}$ with such features as complex role chains, asymmetric, reflexive and disjoint roles, and qualified cardinality restrictions (Horrocks \& Sattler, 2004; Horrocks, Kutz, \& Sattler, 2006; Cuenca Grau, Horrocks, Motik, Parsia, Patel-Schneider, \& Sattler, 2008).

The addition of role inclusions that involve role chains was motivated by multiple use cases in the life sciences domain which require means to describe 'interactions between locative properties and various kinds of part-whole properties' (Cuenca Grau et al., 2008). For example, the role inclusion axiom

$$
\text { hasLocation } \circ \text { isPartOf } \sqsubseteq \text { hasLocation }
$$

states that if an object x is located in y, and if y is part of z, then x is also located in z (Rector, 2002). However, having resolved the issue of role chains in the left-hand side of
role inclusion axioms, as in the example above, $\mathcal{S R O I Q}$ and $O W L 2$ fall short of providing means to represent such chains and/or unions of roles on the right-hand side, which are often required for modelling structured objects, in particular, in the emerging area of ontological product modelling and collaborative design (Bock, Zha, Suh, \& Lee, 2010).

Consider, for example, the product model of cars by Bock (2004) and Krdzavac and Bock (2008), part of which is shown in the UML-like diagram below:

Figure 1: A product model of a car (Krdzavac \& Bock, 2008).
The fragment in Fig. 1 (A) involves two statements:

$$
\begin{equation*}
\text { hasEngine } \circ \text { hasCrankshaft } \circ \text { powers } \sqsubseteq \text { hasWheel } \circ \text { hasHub } \tag{1}
\end{equation*}
$$

says that whatever is powered by a crankshaft in an engine of a car is a hub in a wheel of the same car and, conversely,

$$
\begin{equation*}
\text { hasWheel } \circ \text { hasHub } \sqsubseteq \text { hasEngine } \circ \text { hasCrankshaft } \circ \text { powers } \tag{2}
\end{equation*}
$$

states that a hub in a wheel of a car is powered by a crankshaft in an engine of that car. The fragment in Fig. 1 (B) means that an engine in a car can power wheels, the generator and the oil pump, which can be represented by the axiom

$$
\begin{equation*}
\text { hasEngine } \circ \text { powers } \sqsubseteq \text { hasWheel } \sqcup \text { hasGenerator } \sqcup \text { hasOilPump. } \tag{3}
\end{equation*}
$$

Finally, Fig. $1(\mathrm{C})$ is supposed to mean that the role powers is transitive:

$$
\begin{equation*}
\text { powers o powers } \sqsubseteq \text { powers. } \tag{4}
\end{equation*}
$$

Role inclusion axioms of the form (1), (2), (4) were a feature of the original KL-ONE terminological language (Brachman \& Schmolze, 1985), where they were called 'role-valuemaps' and could be applied to certain individuals. Role inclusions with disjunctions on the right-hand side also arise in the context of spatial reasoning with description logics (Wessel, 2001, 2002), where they are used to represent compositions of the $\mathcal{R C C} 8$-relations such as $\mathrm{PO} \circ \mathrm{TPP} \subseteq \mathrm{PO} \cup \mathrm{TPP} \cup$ NTPP (in English: if a region x partially overlaps a region y
and y is a tangential proper part of a region z, then either x partially overlaps z, or x is a tangential proper part of z, or x is a non-tangential proper part of z).

Role inclusions with a complex right-hand side are not allowed by the syntax of $\mathcal{S R O} \mathcal{I} \mathcal{Q}$ and $O W L$ 2, which makes adequate representation of models such as in Fig. 1 problematic. Indeed, in these languages, we cannot exclude situations when, for example, car1 is related to hub1 via hasEngine o hasCrankshaft o powers and, at the same time, hub1 is part of car2. Axiom (1) asserts the existence of an individual that is a wheel in car1 and has hub1.

The main issue with axioms such as (1) is that they are similar to rewrite rules in semi-Thue systems, the word problem for which is known to be undecidable. One of the simplest examples was given by Tseitin (1956) who showed that the associative calculus (Thue system) with the axioms

$$
a c=c a, \quad a d=d a, \quad b c=c b, \quad b d=d b, \quad e d b=b e, \quad e c a=a e, \quad a b a c=a b a c c
$$

is undecidable. Schmidt-Schauß (1989) used the undecidability of the word problem to show that the logic underlying KL-ONE is undecidable. Baader (2003) proved (by a reduction of semi-Thue systems) that the tractable description logic $\mathcal{E} \mathcal{L}$ becomes undecidable when extended with role inclusions containing role chains on the right-hand side. On the other hand, he observed that role inclusions with a single role on the right-hand side do not increase the complexity of $\mathcal{E} \mathcal{L}$. Horrocks and Sattler (2004) proved that the extension of $\mathcal{S H} \mathcal{I} \mathcal{Q}$ with axioms of the form $R \circ S \sqsubseteq R$ and $S \circ R \sqsubseteq R$ is undecidable; however, decidability can be regained by requiring that such axioms do not involve cycles. Axioms of the form (3) also lead to undecidable logics: Wessel $(2001,2002)$ showed (by reduction of PCP) that the extension of $\mathcal{A L C}$ with role axioms of the form $S \circ T \sqsubseteq R_{1} \sqcup \cdots \sqcup R_{n}$ is undecidable.

Similar problems have been investigated by the modal logic community. In modal logic, axioms of the form

$$
\begin{equation*}
\square_{i_{1}} \ldots \square_{i_{n}} p \rightarrow \square_{j_{1}} \ldots \square_{j_{m}} p \tag{5}
\end{equation*}
$$

known as modal reduction principles, have always attracted attention and still present a great challenge (for example, it is open whether the extension of the basic modal logic K with either of the axioms $\square \square \square p \rightarrow \square \square p$ or $\square \square p \rightarrow \square \square \square p$ is decidable). Axioms of the form (5) give rise to grammars generated by the production rules $i_{1} \cdot \ldots \cdot i_{n} \rightarrow j_{1} \cdot \ldots \cdot j_{m}$, and the modal logics axiomatised by such axioms are called grammar logics (del Cerro \& Penttonen, 1988). It was shown by Demri (2001) and Baldoni (1998) that if this grammar is regular, then the corresponding modal logic is decidable in ExpTime; on the other hand, linear (contextfree) grammar logics can be undecidable. It follows, in particular, that the satsifiability problem for $\mathcal{A L C}$ knowledge bases extended with role inclusions $R_{1} \ldots R_{n} \sqsubseteq S_{1} \ldots S_{k}$ is also ExpTime-complete provided that the grammar generated by the rules $S_{1} \ldots S_{k} \rightarrow R_{1} \ldots R_{n}$ is regular (Demri, 2001, Section 5.3).

In this paper, we design a decidable extension $\mathcal{S} \mathcal{R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ of the description logic $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Z}$ that supports a controlled use of role inclusion axioms with a complex right-hand side such as in the examples above. Thus, we can use role inclusion axioms with a chain or union of roles on the right-hand side, and we can also express equality of two role chains or unions such as in (1) and (2). To ensure decidability, we impose certain regularity conditions on the role axioms in a given ontology that generalise the syntactic restrictions of Horrocks et al.
(2006) and Kazakov (2010). These conditions are checked in polynomial time and employed, as a pre-processing step, to build finite automata for some roles in the ontology. Intuitively, the automaton for a role R recognises role chains that are subsumed by R according to the ontology and passes the concept C to the end of the chain whenever its beginning belongs to $\forall R . C$.

Our decision algorithm builds on the tableau technique developed by Horrocks et al. (2006) and uses some ideas of Halpern and Moses (1992, pp. 34-35) in order to pass sets of concepts along role chains required by role inclusions with a complex right-hand side such as (1)-(3). If there are no such axioms, our tableau algorithm behaves precisely as the tableau algorithm for $\mathcal{S R O I Q}$; otherwise it may suffer multiple exponential blowups (depending on the number of role inclusions with a complex right-hand side).

An alternative approach to modelling complex structures with description logics was suggested by Motik, Cuenca Grau, Horrocks, and Sattler (2009). Their decidable formalism is based on description graphs that can encode axioms of the form (1), but not in the presence of transitivity (4) (in which case the language generated by the role chain in the left-hand side of (1) is infinite and cannot be represented by a finite graph). To ensure decidability, Motik et al. (2009) impose acyclicity conditions on the description graphs and do not allow the same role to appear in the description graph and the DL ontology. For example, we cannot straightforwardly combine a description graph encoding the model in Fig. 1 with a vehicle tax ontology containing axioms such as

$$
\begin{equation*}
\text { Car } \sqcap \exists \text { hasEngine.LargeEngine } \sqsubseteq \exists \text { vehicleTax.HigherTax. } \tag{6}
\end{equation*}
$$

In $\mathcal{S R}^{+} \mathcal{O I \mathcal { Q }}$, the addition of (6) to (1)-(4) does not cause a problem.
The structure of the paper is as follows. We define the syntax and semantics of the description logic $\mathcal{S R}^{+} \mathcal{O I Q}$ in the next two sections. In particular, Section 3 defines and gives the intuition behind the regularity conditions imposed by $\mathcal{S R}^{+} \mathcal{O I Q}$ on role axioms. The aim of Section 4 is to illustrate by a number of examples the new challenges in the tableau construction we are facing when dealing with $\mathcal{S R}^{+} \mathcal{O} \mathcal{I}$ compared to the case of $\mathcal{S R O I Q}$. We use these examples to motivate and explain the new ideas, notions and techniques that are required for our tableau-based decision algorithm for $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$. Tableaux for $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ are defined formally in Appendix A. In Appendix B, we give a tableau algorithm for $\mathcal{S R}^{+} \mathcal{O I Q}$ and prove that it is sound, complete and always terminates. We discuss the obtained results and open problems in Section 5.

2. Description Logic $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$

We begin by formally defining the syntax and semantics of the description logic $\mathcal{S R}^{+} \mathcal{O I Q}$. The alphabet of $\mathcal{S} \mathcal{R}^{+} \mathcal{O} \mathcal{I} \mathcal{C}$ consists of three countably infinite and disjoint sets $\mathcal{N}_{C}, \mathcal{N}_{R}$ and \mathcal{N}_{I} of concept names, role names and individual names, respectively. We also distinguish some proper subset $\mathcal{N}_{N} \varsubsetneqq \mathcal{N}_{C}$, whose members are called nominals. This alphabet is interpreted in structures, or interpretations, of the form $\mathcal{I}=\left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}\right)$, where $\Delta^{\mathcal{I}} \neq \emptyset$ is the domain of interpretation, and $\cdot^{\mathcal{I}}$ is an interpretation function that assigns to every $A \in \mathcal{N}_{C}$ a subset $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, with $A^{\mathcal{I}}$ being a singleton set if $A \in \mathcal{N}_{N}$; to every $R \in \mathcal{N}_{R}$ a binary relation $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$; and to every $a \in \mathcal{N}_{I}$ an element $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$. Following the OWL 2
standards, we do not adopt the unique name assumption and allow $a^{\mathcal{I}}=b^{\mathcal{I}}$ for distinct $a, b \in \mathcal{N}_{I}$.

We now introduce the role and concept constructs that are available in $\mathcal{S R}{ }^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$. For each role name $R \in \mathcal{N}_{R}$, the inverse R^{-}of R is interpreted by the relation

$$
\left(R^{-}\right)^{\mathcal{I}}=\left\{(y, x) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid(x, y) \in R^{\mathcal{I}}\right\}
$$

We call role names and their inverses basic roles, set $\mathcal{N}_{R}^{-}=\mathcal{N}_{R} \cup\left\{R^{-} \mid R \in \mathcal{N}_{R}\right\}$ and write $r n(R)=r n\left(R^{-}\right)=R$, for $R \in \mathcal{N}_{R}$. We define a $\mathcal{S} \mathcal{R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$-role as a chain $R_{1} \ldots R_{n}$ or a union $R_{1} \sqcup \cdots \sqcup R_{n}$ of basic roles R_{i}, and interpret these new constructs by taking

$$
\begin{aligned}
\left(R_{1} \ldots R_{n}\right)^{\mathcal{I}} & =R_{1}^{\mathcal{I}} \circ \cdots \circ R_{n}^{\mathcal{I}} \\
\left(R_{1} \sqcup \cdots \sqcup R_{n}\right)^{\mathcal{I}} & =R_{1}^{\mathcal{I}} \cup \cdots \cup R_{n}^{\mathcal{I}}
\end{aligned}
$$

where o denotes the composition of binary relations. Define a function $\operatorname{inv}(\cdot)$ on role chains by taking $\operatorname{inv}\left(R_{1} \ldots R_{n}\right)=\operatorname{inv}\left(R_{n}\right) \ldots \operatorname{inv}\left(R_{1}\right)$, where $\operatorname{inv}(R)=R^{-}$and $\operatorname{inv}\left(R^{-}\right)=R$, for $R \in \mathcal{N}_{R}$.

In the set \mathcal{N}_{R} of role names, we distinguish some proper subset \mathcal{N}_{S} and call its members and their inverses simple roles; those basic roles that are not simple will be called nonsimple. Simple and non-simple roles will have to satisfy different constraints in concepts and role inclusion axioms to be defined below.
$\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$-concepts, C, are defined by the following grammar, where $A \in \mathcal{N}_{C}, R$ is a basic role, S a simple role, and n a positive integer (given in binary):

$$
\left.\begin{aligned}
C::= & A \\
& \mid \quad \perp \\
& \exists R . C
\end{aligned}|\quad| \quad|\quad \neg C| \begin{array}{c|c|c|c}
& C_{1} \sqcap C_{2} & C_{1} \sqcup C_{2}
\end{array} \right\rvert\,
$$

The interpretation of these concepts is defined as follows, where $\sharp X$ is the cardinality of X :

$$
\begin{aligned}
& \top^{\mathcal{I}}=\Delta^{\mathcal{I}}, \quad \perp^{\mathcal{I}}=\emptyset \\
& (\neg C)^{\mathcal{I}}=\Delta^{\mathcal{I}} \backslash C^{\mathcal{I}}, \quad\left(C_{1} \sqcap C_{2}\right)^{\mathcal{I}}=C_{1}^{\mathcal{I}} \cap C_{2}^{\mathcal{I}}, \quad\left(C_{1} \sqcup C_{2}\right)^{\mathcal{I}}=C_{1}^{\mathcal{I}} \cup C_{2}^{\mathcal{I}}, \\
& (\exists R . C)^{\mathcal{I}}=\left\{x \in \Delta^{\mathcal{I}} \mid \exists y \in C^{\mathcal{I}}(x, y) \in R^{\mathcal{I}}\right\}, \\
& (\forall R . C)^{\mathcal{I}}=\left\{x \in \Delta^{\mathcal{I}} \mid \forall y\left((x, y) \in R^{\mathcal{I}} \rightarrow y \in C^{\mathcal{I}}\right)\right\}, \\
& (\exists S . \text { Self })^{\mathcal{I}}=\left\{x \in \Delta^{\mathcal{I}} \mid(x, x) \in S^{\mathcal{I}}\right\}, \\
& (\leq n S . C)^{\mathcal{I}}=\left\{x \in \Delta^{\mathcal{I}} \mid \sharp\left\{y \mid(x, y) \in S^{\mathcal{I}} \wedge y \in C^{\mathcal{I}}\right\} \leq n\right\}, \\
& (\geq n S . C)^{\mathcal{I}}=\left\{x \in \Delta^{\mathcal{I}} \mid \sharp\left\{y \mid(x, y) \in S^{\mathcal{I}} \wedge y \in C^{\mathcal{I}}\right\} \geq n\right\} .
\end{aligned}
$$

A $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$-knowledge base (KB, for short) consists of a TBox, an RBox and an ABox. A TBox, \mathcal{T}, is a finite set of concept inclusions (CIs), which are expressions of the form $C_{1} \sqsubseteq C_{2}$. Such a CI is satisfied in \mathcal{I} if $C_{1}^{\mathcal{I}} \subseteq C_{2}^{\mathcal{I}}$, in which case we write $\mathcal{I} \models C_{1} \sqsubseteq C_{2}$. An $A B o x, \mathcal{A}$, is a finite set of assertions of the form

$$
a: C, \quad(a, b): R, \quad(a, b): \neg S, \quad a \neq b
$$

where a and b are individual names, R a basic role, S a simple role, and C a concept. The satisfaction relation for such ABox assertions is given by

$$
\begin{array}{rll}
\mathcal{I} \models a: C & \text { iff } & a^{\mathcal{I}} \in C^{\mathcal{I}}, \\
\mathcal{I} \models(a, b): R & \text { iff } & \left(a^{\mathcal{I}}, b^{\mathcal{I}}\right) \in R^{\mathcal{I}}, \\
\mathcal{I} \models(a, b): \neg S & \text { iff } & \left(a^{\mathcal{I}}, b^{\mathcal{I}}\right) \notin S^{\mathcal{I}}, \\
\mathcal{I} \models a \neq b & \text { iff } & a^{\mathcal{I}} \neq b^{\mathcal{I}} .
\end{array}
$$

An R Box, \mathcal{R}, is a finite set of disjointness constraints and role axioms. A disjointness constraint Dis $\left(S_{1}, S_{2}\right)$ is imposed on simple roles S_{1}, S_{2}; it is satisfied in \mathcal{I} if $S_{1}^{\mathcal{I}} \cap S_{2}^{\mathcal{I}}=\emptyset$. A role axiom (RA) can be of the following six types, where S, S^{\prime} are simple roles; Q^{\prime}, Q, Q_{1}, \ldots, Q_{m} non-simple roles; and R, R_{1}, \ldots, R_{m} are arbitrary basic roles:
(A) $S \sqsubseteq S^{\prime}, ~ Q Q \sqsubseteq Q, Q^{-} \sqsubseteq Q$,
(B) $R_{1} \ldots R_{m} \sqsubseteq Q, Q R_{1} \ldots R_{m} \sqsubseteq Q, R_{1} \ldots R_{m} Q \sqsubseteq Q$, for $m \geq 1$,
(C) $R \sqsubseteq Q R_{1} \ldots R_{m}$, for $m \geq 1$,
(D) $R \sqsubseteq Q_{1} \sqcup \cdots \sqcup Q_{m}$, for $m>1$,
(E) $Q^{\prime}=Q R_{1} \ldots R_{m}$, for $m \geq 1$,
(F) $Q=Q_{1} \sqcup \cdots \sqcup Q_{m}$, for $m>1$.

RAs of the form (A)-(D) are called role inclusions (RIs), while those of the form (E) and (F) role equalities (REs). An RBox \mathcal{R} may contain any set of role axioms satisfying the regularity conditions to be defined and discussed in the next section.

Note that, although RAs in $\mathcal{S R}^{+} \mathcal{O} \mathcal{I}$ are only restricted to the form (A)-(F), they can encode more general role inclusions of the form (provided that they meet the regularity conditions to be defined below)

$$
\begin{equation*}
\left(R_{1}^{1} \ldots R_{n_{1}}^{1}\right) \sqcup \cdots \sqcup\left(R_{1}^{m} \ldots R_{n_{m}}^{m}\right) \sqsubseteq\left(R_{1}^{m+1} \ldots R_{n_{m+1}}^{m+1}\right) \sqcup \cdots \sqcup\left(R_{1}^{k} \ldots R_{n_{k}}^{k}\right) . \tag{7}
\end{equation*}
$$

(In particular, one can easily write an RBox capturing all the RAs (1)-(4) from the introduction.) A detailed discussion of what can actually be represented by $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ RBoxes will also be given in the next section.

If ϱ_{i} is a chain or union of roles, $i=1,2$, then $\varrho_{1} \sqsubseteq \varrho_{2}$ (or $\varrho_{1}=\varrho_{2}$) is satisfied in \mathcal{I} if $\varrho_{1}^{\mathcal{I}} \subseteq \varrho_{2}^{\mathcal{I}}$ (respectively, $\left.\varrho_{1}^{\mathcal{I}}=\varrho_{2}^{\mathcal{I}}\right)$. We say that the $\operatorname{KB} \mathcal{K}=(\mathcal{T}, \mathcal{R}, \mathcal{A})$ is satisfiable if there exists an interpretation \mathcal{I} satisfying all the members of \mathcal{T}, \mathcal{R} and \mathcal{A}. In this case we write $\mathcal{I} \models \mathcal{K}$ and call \mathcal{I} a model of \mathcal{K}.

Our main reasoning problem in this paper is concept satisfiability with respect to KBs: given a $\mathcal{S} \mathcal{R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ concept C and a $\mathrm{KB} \mathcal{K}$, decide whether there is a model \mathcal{I} of \mathcal{K} such that $C^{\mathcal{I}} \neq \emptyset$. All other standard reasoning problems such as subsumption, KB satisfiability or instance checking are known to be reducible to concept satisfiability with respect to KBs. Moreover, concept satisfiability with respect to arbitrary KBs can be reduced to concept satisfiability with respect to KBs of the form ($\emptyset, \mathcal{R}, \emptyset$) (with empty TBoxes and ABoxes); (see Horrocks et al., 2006, Thm. 9).

For a concept C, we denote by $\operatorname{nom}(C)$ the set of all nominals that occur in C, and by $\operatorname{role}(C)$ the set of all basic roles R such that either R or $\operatorname{inv}(R)$ occurs in $C ; \operatorname{role}(C, \mathcal{K})$ and role (C, \mathcal{R}) contain those basic roles and their inverses that occur in C or $\mathcal{K} / \mathcal{R}$.

3. Regular RBoxes

As mentioned in the introduction, unrestricted RAs can easily simulate all kinds of undecidable problems. In this section, we define regular RBoxes that are allowed in $\mathcal{S R}^{+} \mathcal{O I} \mathcal{Q}$. For $\mathcal{S R O I Q}$ RAs-that is, RAs of the form (A) and (B)-our restrictions are the same as those used by Kazakov (2010). As suggested by the term 'regular,' we are going to use the regularity restrictions to construct finite automata for roles R that recognise role chains subsumed by R in the RBox in question.

Suppose \mathcal{R} is a set of RAs. To define the regularity conditions (to be given in Definition 3), we require the following binary relation \prec^{\prime} on the set of role names occur in \mathcal{R} :
$-r n\left(R_{i}\right) \prec^{\prime} r n(Q), i=1, \ldots, m$, for RIs of type (B),
$-r n(R) \prec^{\prime} r n(Q)$, for RIs of type (C),
$-r n(R) \prec^{\prime} r n\left(Q_{i}\right), i=1, \ldots, m$, for RIs of type (D),
$-r n\left(R_{i}\right) \prec^{\prime} r n\left(Q^{\prime}\right), i=1, \ldots, m$, for REs of type (E).
Denote by $\preceq_{\mathcal{R}}$ the transitive and reflexive closure of \prec^{\prime}. We write $R_{1} \simeq_{\mathcal{R}} R_{2}$ if both $R_{1} \preceq_{\mathcal{R}} R_{2}$ and $R_{2} \preceq_{\mathcal{R}} R_{1}$, and $R_{1} \prec_{\mathcal{R}} R_{2}$ if $R_{1} \preceq_{\mathcal{R}} R_{2}$ and $R_{2} \preceq_{\mathcal{R}} R_{1}$. By the depth $d_{\mathcal{R}}(R)$ of R in \mathcal{R} we understand the largest n for which there exists a chain $R_{1} \prec_{\mathcal{R}} R_{2} \prec_{\mathcal{R}} \cdots \prec_{\mathcal{R}}$ $R_{n} \prec_{\mathcal{R}} R$.

We represent \mathcal{R} as the union $\mathcal{R}=\mathcal{R}_{A} \cup \mathcal{R}_{B} \cup \mathcal{R}_{C} \cup \mathcal{R}_{D} \cup \mathcal{R}_{E} \cup \mathcal{R}_{F}$, where \mathcal{R}_{X} contains those RAs from \mathcal{R} that are of the form $(X), X \in\{A, B, C, D, E, F\}$. We also write $\mathcal{R}_{A, B}$ for $\mathcal{R}_{A} \cup \mathcal{R}_{B}$, etc.

For an RI $\boldsymbol{r}=(\varrho \sqsubseteq R) \in \mathcal{R}_{A, B}$ and role chains ϱ^{\prime} and $\varrho^{\prime \prime}$, we write $\varrho^{\prime} \sqsubseteq_{r} \varrho^{\prime \prime}$ if either $\varrho^{\prime}=\varrho_{1}^{\prime} \varrho \varrho_{2}^{\prime}$ and $\varrho^{\prime \prime}=\varrho_{1}^{\prime} R \varrho_{2}^{\prime}$, or $\varrho^{\prime}=\varrho_{1}^{\prime} \operatorname{inv}(\varrho) \varrho_{2}^{\prime}$ and $\varrho^{\prime \prime}=\varrho_{1}^{\prime} \operatorname{inv}(R) \varrho_{2}^{\prime}$, for some ϱ_{1}^{\prime} and ϱ_{2}^{\prime}. We write $\varrho^{\prime} \sqsubseteq_{\mathcal{R}} \varrho^{\prime \prime}$ if $\varrho^{\prime} \sqsubseteq_{r} \varrho^{\prime \prime}$, for some $\boldsymbol{r} \in \mathcal{R}_{A, B}$, and denote by $\sqsubseteq_{\mathcal{R}}^{*}$ the reflexive and transitive closure of $\sqsubseteq_{\mathcal{R}}$. It follows immediately from the definitions of $\preceq_{\mathcal{R}}$ and $\sqsubseteq_{\mathcal{R}}^{*}$ that we have:
Lemma 1 If $\varrho=\varrho^{\prime} R^{\prime} \varrho^{\prime \prime}$ and $\varrho \sqsubseteq_{\mathcal{R}}^{*} R$, then $r n\left(R^{\prime}\right) \preceq_{\mathcal{R}} r n(R)$.
Following Kazakov (2010), we say that an $\mathrm{RI}\left(\varrho \sqsubseteq R^{\prime}\right) \in \mathcal{R}_{A, B}$ is stratified in \mathcal{R} if, for every $R \simeq_{\mathcal{R}} R^{\prime}$ with $\varrho=\varrho_{1} R \varrho_{2}$, there exists R_{1} such that $\varrho_{1} R \sqsubseteq_{\mathcal{R}}^{*} R_{1}$ and $R_{1} \varrho_{2} \sqsubseteq_{\mathcal{R}}^{*} R^{\prime}$. We call $\mathcal{R}_{A, B}$ stratified if every $\mathrm{RI} \varrho \sqsubseteq R$ with $\varrho \sqsubseteq_{\mathcal{R}}^{*} R$ is stratified in \mathcal{R}.

For every role R in \mathcal{R}, we define the following language $L_{\mathcal{R}}(R)$ of role chains regarded as words over basic roles:

$$
L_{\mathcal{R}}(R)=\left\{\varrho \mid \varrho \sqsubseteq_{\mathcal{R}}^{*} R\right\} .
$$

Theorem 2 (Kazakov, 2010) Suppose \mathcal{R} is an RBox with stratified $\mathcal{R}_{A, B}$. Then the language $L_{\mathcal{R}}(R)$ is regular, for every role R in \mathcal{R}. Moreover, one can construct a nondeterministic finite automaton recognising $L_{\mathcal{R}}(R)$ the number of transitions in which does not exceed $O\left(|\mathcal{R}|^{2 d_{\mathcal{R}}(R)}\right)$.

We are now in a position to define regular RBoxes.

Definition 3 An RBox \mathcal{R} is called regular if the following conditions are satisfied:
(c1) $\mathcal{R}_{A, B}$ is stratified;
(c2) $r n(R) \prec_{\mathcal{R}} r n(Q)$, for RIs of type (C);
(c3) $r n(R) \prec_{\mathcal{R}} r n\left(Q_{i}\right), i=1, \ldots, m$, for RIs of type (D);
(c4) $r n\left(R_{i}\right) \prec_{\mathcal{R}} r n\left(Q^{\prime}\right), i=1, \ldots, m$, for RAs of type (E);
(c5) there exists a quasi-order $\preceq_{\mathcal{R}}^{1} \supseteq \preceq_{\mathcal{R}}$ for which
$-r n\left(Q^{\prime}\right) \prec_{\mathcal{R}}^{1} r n(Q)$, for each RA of type (E);
$-r n(Q) \prec_{\mathcal{R}}^{1} r n\left(Q_{i}\right), i=1, \ldots, m$, for each RA of type (F);
(c6) there exists a quasi-order $\preceq_{\mathcal{R}}^{2} \supseteq \preceq_{\mathcal{R}}$ for which
$-r n(Q) \prec_{\mathcal{R}}^{2} r n\left(Q^{\prime}\right)$, for each RA of type (E);
$-r n\left(Q_{i}\right) \prec_{\mathcal{R}}^{2} r n(Q), i=1, \ldots, m$, for each RA of type (F);
(c7) there do not exist RAs \boldsymbol{r} and \boldsymbol{r}^{\prime} such that one of the following conditions holds:

$$
\begin{aligned}
& -\boldsymbol{r}^{\prime}=\left(Q^{\prime}=Q_{0} R_{1} \ldots R_{m^{\prime}}\right), \boldsymbol{r}=\left(Q=Q_{1} \sqcup \cdots \sqcup Q_{m}\right), r n\left(Q^{\prime}\right)=r n(Q) \text { and } \\
& \quad r n\left(Q_{0}\right)=r n\left(Q_{j}\right), \text { for some } j, 1 \leq j \leq m ; \\
& -\boldsymbol{r}^{\prime}=\left(Q_{0}^{\prime}=Q_{0} R_{1}^{\prime} \ldots R_{m^{\prime}}^{\prime}\right), \boldsymbol{r}=\left(Q_{1}^{\prime}=Q_{1} R_{1} \ldots R_{m}\right), r n\left(Q_{0}^{\prime}\right)=r n\left(Q_{1}^{\prime}\right) \text { and } \\
& \quad r n\left(Q_{0}\right)=r n\left(Q_{1}\right) ; \\
& -\boldsymbol{r}^{\prime}=\left(Q^{\prime}=Q_{1}^{\prime} \sqcup \cdots \sqcup Q_{m^{\prime}}^{\prime}\right), \boldsymbol{r}=\left(Q=Q_{1} \sqcup \cdots \sqcup Q_{m}\right), r n\left(Q^{\prime}\right)=r n(Q) \text { and } \\
& \\
& r n\left(Q_{i}^{\prime}\right)=\operatorname{rn}\left(Q_{j}\right), \text { for some } i, j, 1 \leq i \leq m^{\prime}, 1 \leq j \leq m .
\end{aligned}
$$

In the remainder of this section, we discuss the regularity conditions (c1)-(c7) and illustrate them by concrete examples. Note first that condition (c1) is required to ensure decidability of $\mathcal{S R O \mathcal { I } \mathcal { Q } \text { ; as mentioned in the introduction, dropping it immediately leads }}$ to undecidability (Demri, 2001; Horrocks \& Sattler, 2004). To understand (c2), consider the following:

Example 4 Let $\mathcal{R}=\left\{R Q \sqsubseteq Q^{\prime}, Q^{\prime} \sqsubseteq Q R\right\}$. The former RI is of type (B), while the latter one is of type (C). Clearly, $Q^{\prime} \sqsubseteq Q R$ does not satisfy (c2), and so the RBox is not regular. To see why this situation is 'dangerous,' we observe that $\mathcal{R} \models R Q \sqsubseteq Q R$. Now, if the TBox generates infinite chains of Q - and R^{-}-arrows starting from the same point, then the RI $R Q \sqsubseteq Q R$ would generate the $\mathbb{N} \times \mathbb{N}$-grid shown on the left-hand side of the picture below:

It is routine then to reduce the undecidable $\mathbb{N} \times \mathbb{N}$-tiling problem to KB satisfiability.
On the other hand, the RBox $\mathcal{R}^{\prime}=\left\{R \sqsubseteq Q R Q^{-}\right\}$is regular $\left(r n(R) \prec_{\mathcal{R}^{\prime}} r n(Q)\right)$. However, it cannot generate a proper $\mathbb{N} \times \mathbb{N}$-grid (as shown on the right-hand side of the picture above). To be able to encode the $\mathbb{N} \times \mathbb{N}$-tiling problem, we require additional RIs such as $Q^{-} Q \sqsubseteq Q_{1}$ and $Q^{-} Q_{1} Q \sqsubseteq Q_{1}$. But then the resulting RBox will not satisfy condition (c1).

Condition (c3) is similar to (c2); that its omission leads to undecidability was shown by Wessel (2002). To illustrate (c4), we give one more example.

Example 5 Consider the RBox $\mathcal{R}=\left\{Q^{\prime} Q \sqsubseteq Q_{1}, Q^{\prime}=Q^{-} Q_{1}\right\}$. Clearly, it does not satisfy (c4), but with this condition omitted, we only have $Q^{\prime} \prec_{\mathcal{R}} Q_{1}$ and $Q \prec_{\mathcal{R}} Q_{1}$. Now observe that the 'dangerous' RI $Q^{-} Q_{1} Q \sqsubseteq Q_{1}$ from Example 4 is a consequence of \mathcal{R}.

Since the REs (E) and (F) imply $Q^{\prime} \sqsubseteq Q R_{1} \ldots R_{m}$ and $Q \sqsubseteq Q_{1} \sqcup \cdots \sqcup Q_{m}$ of types (C) and (D), condition (c5) is similar to (c2) and (c3). For (c6), consider the following:

Example 6 The RBox $\mathcal{R}=\left\{Q_{1} Q_{2} \sqsubseteq Q_{2}, Q_{3} Q_{4} \sqsubseteq Q_{3}, Q_{4}=Q_{2} S\right\}$ is regular. However, $\mathcal{R}_{1}=\mathcal{R} \cup\left\{Q_{1}=Q_{3} S^{\prime}\right\}$ is not regular because $r n\left(Q_{1}\right) \prec_{\mathcal{R}_{1}} r n\left(Q_{2}\right)$, rn $\left(Q_{4}\right) \prec_{\mathcal{R}_{1}} r n\left(Q_{3}\right)$, $r n(S) \prec_{\mathcal{R}_{1}} r n\left(Q_{4}\right), r n\left(S^{\prime}\right) \prec_{\mathcal{R}_{1}} r n\left(Q_{1}\right)$, and so (c1)-(c5) and (c7) are satisfied, while (c6) is not. Now, \mathcal{R}_{1} implies $Q_{3} S^{\prime} Q_{2} \sqsubseteq Q_{2}$ and $Q_{3} Q_{2} S \sqsubseteq Q_{3}$, from which we obtain $Q_{3} Q_{2} S S^{\prime} Q_{2} \sqsubseteq Q_{2}$. The RBox containing this RI generates a language that is not regular.

Finally, we require condition (c7) in view of the following:
Example 7 The RAs $Q^{\prime}=Q R$ and $Q^{\prime}=Q \sqcup Q_{1}$ clearly imply $Q \sqsubseteq Q R$. As we saw in Example 4, in the presence of the RI $R Q \sqsubseteq Q$, this would lead to undecidability. Condition (c7) does not allow RBoxes of this sort to be counted as regular.

As was already noted, we restrict $\mathcal{S R}^{+} \mathcal{O I Q}$ RBoxes to RAs of types (A)-(F) mainly in order to simplify notation and proofs; see (7). Every RI $R_{1} \ldots R_{n} \sqsubseteq P_{1} \ldots P_{m}$ is equivalent to the RI $\operatorname{inv}\left(R_{n}\right) \ldots \operatorname{inv}\left(R_{1}\right) \sqsubseteq \operatorname{inv}\left(P_{m}\right) \ldots \operatorname{inv}\left(P_{1}\right)$. In particular, the RI $\operatorname{inv}(R) \sqsubseteq \operatorname{inv}\left(Q_{m}\right) \ldots \operatorname{inv}\left(Q_{1}\right) \operatorname{inv}(Q)$ is equivalent to the RI $R \sqsubseteq Q Q_{1} \ldots Q_{m}$ of type (C), and so we can use the former in $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{R}$ RBoxes provided that $r n(R) \prec r n(Q)$. Every RI $R_{1} \ldots R_{n} \sqsubseteq P_{1} \ldots P_{k} P_{1}^{\prime} \ldots P_{m}^{\prime}$ can be replaced with the RIs $R_{1} \ldots R_{n} \sqsubseteq P_{1} \ldots P_{k} T$ and $T \sqsubseteq P_{1}^{\prime} \ldots P_{m}^{\prime}$, for a fresh role name T, without affecting the satisfiability of the KB. In
particular, if $r n\left(R_{i}\right) \prec r n(Q)$, then we can represent $R_{1} \ldots R_{n} \sqsubseteq P_{1} \ldots P_{k} Q P_{k+1} \ldots P_{m}$ by means of three $\mathcal{S} \mathcal{R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ RIs: $R_{1} \ldots R_{n} \sqsubseteq R$, $\operatorname{inv}(R) \sqsubseteq \operatorname{inv}(T) \operatorname{inv}\left(P_{k}\right) \ldots \operatorname{inv}\left(P_{1}\right)$ and $T \sqsubseteq Q P_{k+1} \ldots P_{m}$, for fresh role names R and T. Instead of $R_{1} \ldots R_{n} \sqsubseteq P_{1} \sqcup \cdots \sqcup P_{m}$ we use $R_{1} \ldots R_{n} \sqsubseteq R$ and $R \sqsubseteq P_{1} \sqcup \cdots \sqcup P_{m}$, for a fresh role name R. The same can be done for role equality axioms.

The reflexivity constraint $\operatorname{Ref}(R)$ (saying that $R^{\mathcal{I}}$ is reflexive) can be expressed by means of the RI $S \sqsubseteq R$ and CI $\rceil \sqsubseteq \exists S$.Self, where S is a fresh simple role.

Example 8 The RI (1) from the introduction is represented in $\mathcal{S R}^{+} \mathcal{O} \mathcal{I Q}$ by two RIs:

$$
\begin{align*}
& \text { hasEngine } \circ \text { hasCrankshaft } \circ \text { powers } \sqsubseteq Q \text {, } \tag{8}\\
& Q \sqsubseteq \text { hasWheel } \circ \text { hasHub, } \tag{9}
\end{align*}
$$

where Q is a fresh non-simple role name. One might suggest that (9) could be replaced with the RI $Q \circ$ hasHub ${ }^{-} \sqsubseteq$ hasWheel. However, this is not the case: the interpretation given below satisfies the former but not the latter (obviously, $Q \circ$ hasHub ${ }^{-} \sqsubseteq$ hasWheel does not imply (9)).

Example 9 Consider the (regular) RBox $\mathcal{R}=\left\{R \sqsubseteq Q_{1} R_{1}, Q_{1} \sqsubseteq Q_{2} P, P=Q_{3} R\right\}$ and the ABox $\mathcal{A}=\left\{\left(x_{0}, x_{1}\right): P\right\}$. Any model of \mathcal{R} and \mathcal{A} contains a sequence of (not necessarily distinct) points $x_{0}, x_{1}, x_{2}, \ldots$ arranged according to the patter shown in the picture below:

When applying the tableau algorithm to \mathcal{R} and \mathcal{A} (to be introduced in the remainder of the paper), we construct the same model, but represent it as a tree-shaped structure by omitting the $Q_{1^{-}}, Q_{2^{-}}$and Q_{3}-arrows, which can always be restored. (In general, we always omit the first role on the right-hand side of an axiom of type (C) and (E), and all roles on the right-hand side of an axiom of type (D) and (F).) This is illustrated in the picture below.

4. $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ Tableaux by Examples

We prove decidability of $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ using a tableau-based algorithm, which is a generalisation of the algorithm given by Horrocks et al. (2006). We assume that the reader is familiar with the tableau technique for standard DLs such as $\mathcal{A L C I}$ (Baader, Calvanese, McGuinness, Nardi, \& Patel-Schneider, 2003). Our aim in this section is to explain, using concrete examples, both the problems one encounters when constructing tableaux for $\mathcal{S R}+\mathcal{O} \mathcal{Q}$ and the way to resolve these problems suggested in the paper. Having worked through the examples, the reader will have grasped the general idea of the tableaux for $\mathcal{S R}^{+} \mathcal{O} \mathcal{I}$.

We assume that all concepts are in negation normal form (NNF). In particular, when we write $\neg C$, for a concept C, we actually mean the NNF of $\neg C$. Denote by $\operatorname{con}(C)$ the smallest set that contains C and is closed under sub-concepts and \neg. For a $\operatorname{KB} \mathcal{K}=(\mathcal{T}, \mathcal{R}, \mathcal{A})$, we denote by $\operatorname{con}(\mathcal{K})$ the union of $\operatorname{con}(C)$, for all concepts C occurring in \mathcal{K}. For a basic role R and $\Sigma \subseteq \operatorname{con}(\mathcal{K})$, we set $\left.\Sigma\right|_{R} ^{\forall}=\{C \mid \forall R . C \in \Sigma\}$.

4.1 RIs with Role Chains on the Right-Hand Side

Example 10 Consider first the $\mathrm{KB} \mathcal{K}=(\mathcal{T}, \mathcal{R}, \mathcal{A})$, where

$$
\mathcal{A}=\{a: A\}, \quad \mathcal{R}=\{R \sqsubseteq Q P\}, \quad \mathcal{T}=\{A \sqsubseteq \exists R . \top, A \sqsubseteq \forall Q . B, A \sqsubseteq \forall Q . C\} .
$$

We start the construction of a tableau for \mathcal{K} by applying the standard tableau rules for $\mathcal{A L C}$. Thus, we create a root node x_{0} (corresponding to the only ABox individual a) and label it with $\ell\left(x_{0}\right)=\{A, \exists R . \top, \forall Q . B, \forall Q . C\}$, indicating thereby (some of) the concepts that should contain a according to \mathcal{K}. In view of $\exists R$. $\top \in \ell\left(x_{0}\right)$, we then create an R-successor x_{1} of x_{0}. The interpretation, corresponding to the resulting tableau and shown on the left-hand side of the picture below, is clearly a model of \mathcal{T} and \mathcal{A}, but not of \mathcal{R}.

To satisfy \mathcal{R}, we need a Q-successor x_{2} of x_{0}, which has x_{1} as its P-successor. However, the resulting interpretation, shown on the right-hand side of the picture above, is not a
tree. To keep the tableau tree-shaped, we would prefer to create x_{2} as a P^{-}-successor of x_{1} without drawing the Q-arrow from x_{0} to x_{2} explicitly. To trigger the creation of x_{2} and to ensure that a Q-arrow can always be inserted between x_{0} and x_{2}, we add to each label $\ell\left(x_{i}\right)$ a new 'quasi-concept' of the form $\forall R . \exists P^{-} .\left.\ell\left(x_{i}\right)\right|_{Q} ^{\forall}$, which encodes $R \sqsubseteq Q P$. The intended meaning of this quasi-concept is as expected: every R-successor of x_{i} must have a P^{-}-successor whose label contains all the concepts in $\left.\ell\left(x_{i}\right)\right|_{Q} ^{\forall}=\left\{C \mid \forall Q . C \in \ell\left(x_{i}\right)\right\}$. (Note that tableau nodes are not part of the syntax for quasi-concepts. The quasi-concepts, in fact, extend the syntax with the expressions such as $\exists R . S$, where S is a set of ordinary concepts.) If we agree to extend the standard tableau rules for $\forall R$ and $\exists P^{-}$to such quasiconcepts, then we only need one new tableau rule (which will be generalised later on in the paper):
(r1) if $(R \sqsubseteq Q P) \in \mathcal{R}$ and $\forall R . \exists P^{-} .\left.\ell(x)\right|_{Q} ^{\forall} \notin \ell(x)$, then set $\ell(x):=\ell(x) \cup\left\{\forall R . \exists P^{-} .\left.\ell(x)\right|_{Q} ^{\forall}\right\}$.
Now, returning to our example, we apply (r1) to $\ell\left(x_{0}\right), \ell\left(x_{1}\right)=\emptyset$ and obtain:

$$
\begin{aligned}
\ell\left(x_{0}\right) & :=\left\{A, \exists R \cdot \top, \forall Q \cdot B, \forall Q \cdot C, \forall R \cdot \exists P^{-} \cdot\{B, C\}\right\}, \\
\ell\left(x_{1}\right) & :=\left\{\forall R \cdot \exists P^{-} . \emptyset, \exists P^{-} \cdot\{B, C\}\right\} .
\end{aligned}
$$

We then create a P^{-}-successor x_{2} of x_{1} with $\ell\left(x_{2}\right)=\left\{B, C, \forall R . \exists P^{-} . \emptyset\right\}$, as in the picture below, and stop with a complete and clash-free tableau, which gives a model of \mathcal{K} if we insert the missing Q-arrow between x_{0} and x_{2}.

Note that inserting the missing Q-arrow in the example above becomes more problematic if we extend \mathcal{T} with the CI $B \sqsubseteq \forall Q^{-} . \neg A$ because then we shall have to add $\neg A$ to $\ell\left(x_{0}\right)$, and obtain a clash. However, we cannot do this without constructing that arrow explicitly.

To cope with this problem, together with $\left.\ell\left(x_{0}\right)\right|_{Q} ^{\forall}$, we can also pass to $\ell\left(x_{2}\right)$ the set $\ell_{Q}^{-}\left(x_{0}\right)$ of those concepts $C \in \ell\left(x_{0}\right)$ that can potentially occur in $\forall Q^{-} . C \in \ell\left(x_{2}\right)$, namely, the set $\left.\ell\left(x_{0}\right) \cap \operatorname{con}(\mathcal{K})\right|_{Q^{-}} ^{\forall}$. We can store this set in some special 'memory' of x_{2} in order to compare it with $\left.\ell\left(x_{2}\right)\right|_{Q^{-}} ^{\forall}:$ if $\left.\ell\left(x_{2}\right)\right|_{Q^{-}} ^{\forall} \nsubseteq \ell_{Q}^{-}\left(x_{0}\right)$, then we report a clash. However, this does not solve our problem yet. To see why, consider the extension of \mathcal{T} with $B \sqsubseteq \forall Q^{-} . C$ (rather than $B \sqsubseteq \forall Q^{-} . \neg A$). As C does not belong to $\ell\left(x_{0}\right)$, we would have to report a clash, though an addition of C to $\ell\left(x_{0}\right)$ would not lead to a contradiction. A solution we suggest for such situations is to make sure that, for every concept D in $\left\{C \mid \forall Q^{-} . C \in \operatorname{con}(\mathcal{K})\right\}$ and $\{\forall Q . C \mid \forall Q . C \in \operatorname{con}(\mathcal{K})\}$, either $D \in \ell\left(x_{0}\right)$ or $\neg D \in \ell\left(x_{0}\right)$.

To formalise the idea above as tableau rules, we require some new notation. We allow quasi-concepts of the form $\ell_{Q}(x)=\left(t^{r}, t^{\forall}, t^{-}\right)$, where $t^{r}=Q, t^{\forall}=\left.\ell(x)\right|_{Q} ^{\forall}$ and $t^{-}=$ $\left.\ell(x) \cap \operatorname{con}(\mathcal{K})\right|_{Q^{-}} ^{\forall}$; we also denote the first component of this triple by $\ell_{Q}^{r}(x)$, the second by $\ell_{Q}^{\forall}(x)$, and the third by $\ell_{Q}^{-}(x)$. The special memory associated with node x will be denoted by $\mathfrak{m}(x)$; we assume that originally it is empty. We require the following tableau rules, which supersede the former (r1):
(r1) if $(R \sqsubseteq Q P) \in \mathcal{R}$, rule (r3) is not applicable, and $\forall R . \exists P^{-} \cdot \ell_{Q}(x) \notin \ell(x)$, then set $\ell(x):=\ell(x) \cup\left\{\forall R . \exists P^{-} . \ell_{Q}(x)\right\} ;$
(r2) if $\exists P^{-} . t \in \ell(x)$, for $t=\left(t^{r}, t^{\forall}, t^{-}\right)$, and x has no P^{-}-neighbour ${ }^{1} y$ with $t^{\forall} \subseteq \ell(y)$ and $t \in \mathfrak{m}(y)$, then we create a new P^{-}-successor y of x and set $\ell(y)=t^{\forall}$ and $\mathfrak{m}(y)=\{t\} ;$
(r3) if $(R \sqsubseteq Q P) \in \mathcal{R}$ and there is $D \in\{\forall Q . C \mid \forall Q . C \in \operatorname{con}(\mathcal{K})\} \cup\left\{C \mid \forall Q^{-} . C \in \operatorname{con}(\mathcal{K})\right\}$ with $\{D, \neg D\} \cap \ell(x)=\emptyset$, then we set $\ell(x):=\ell(x) \cup\{E\}$, for some $E \in\{D, \neg D\}$;
(clash) if $\left(t^{r}, t^{\forall}, t^{-}\right) \in \mathfrak{m}(x)$ and $\left.\ell(x)\right|_{i n v\left(t^{r}\right)} ^{\forall} \nsubseteq t^{-}$, then report a clash.
Example 11 To illustrate, consider the $\operatorname{KB} \mathcal{K}=(\mathcal{T}, \mathcal{R}, \mathcal{A})$, where
$\mathcal{A}=\{a: A\}, \quad \mathcal{R}=\{R \sqsubseteq Q P\}, \quad \mathcal{T}=\left\{A \sqsubseteq \exists R . \top, A \sqsubseteq \forall Q . B, B \sqsubseteq \forall Q^{-} . C, C \sqsubseteq \forall Q . D\right\}$.
We obtain the following complete and clash-free tableau for \mathcal{K} :

$$
\begin{align*}
& \ell\left(x_{0}\right)=\{A, \exists R \cdot \top, \forall Q \cdot B\}, \\
& \ell\left(x_{0}\right):=\ell\left(x_{0}\right) \cup\{\forall Q \cdot D, C\}, \tag{byr3}\\
& \ell\left(x_{0}\right):=\ell\left(x_{0}\right) \cup\left\{\forall R \cdot \exists P^{-} \cdot \ell_{Q}\left(x_{0}\right)\right\}, \ell_{Q}^{\forall}\left(x_{0}\right)=\{B, D\}, \ell_{Q}^{-}\left(x_{0}\right)=\{C\}, \\
& \text { create } x_{1} \text { with } x_{0} R x_{1}, \ell\left(x_{1}\right)=\{\forall Q \cdot B, \forall Q \cdot D, \neg C\},
\end{align*}
$$

$$
\ell\left(x_{1}\right):=\ell\left(x_{1}\right) \cup\left\{\forall R \cdot \exists P^{-} \cdot \ell_{Q}\left(x_{1}\right), \exists P^{-} \cdot \ell_{Q}\left(x_{0}\right)\right\}, \ell_{Q}^{\forall}\left(x_{1}\right)=\{B, D\}, \ell_{Q}^{-}\left(x_{1}\right)=\emptyset
$$

create x_{2} with $x_{1} P^{-} x_{2}, \mathfrak{m}\left(x_{2}\right)=\left\{\ell_{Q}\left(x_{0}\right)\right\}$ and $\ell\left(x_{2}\right)=\ell_{Q}^{\forall}\left(x_{0}\right)=\{B, D\}$,

$$
\begin{equation*}
\left.\ell\left(x_{2}\right):=\ell\left(x_{2}\right) \cup\left\{\forall Q^{-} \cdot C, \forall Q \cdot B, \forall Q \cdot D, C, \forall R \cdot \exists P^{-} \cdot \ell_{Q}\left(x_{2}\right)\right)\right\} . \quad \quad(\text { by } \sqsubseteq, \mathrm{r} 3, \mathrm{r} 1) \tag{byr2}
\end{equation*}
$$

There is no clash because $\left.\ell\left(x_{2}\right)\right|_{i n v(Q)} ^{\forall} \subseteq \ell_{Q}^{-}\left(x_{0}\right)$.

4.2 RIs with Role Unions on the Right-Hand Side

Our next example illustrates tableaux for RIs with unions on the right-hand side.
Example 12 Consider the $\mathrm{KB} \mathcal{K}=(\mathcal{T}, \mathcal{R}, \mathcal{A})$ with

$$
\begin{aligned}
& \mathcal{A}=\{a: A\}, \quad \mathcal{R}=\{R \sqsubseteq Q \sqcup T\}, \\
& \mathcal{T}=\left\{A \sqsubseteq \exists R^{-} . C, A \sqsubseteq \exists R^{-} . D, C \sqsubseteq \forall Q . A, C \sqsubseteq \forall Q . B, C \sqsubseteq \forall T . \neg A,\right. \\
& D \sqsubseteq \forall T . A, D \sqsubseteq \forall T . B, D \sqsubseteq \forall Q . \neg B\} .
\end{aligned}
$$

By applying the standard rules, we obtain the tableau shown in the picture below:

1. Intuitively, a neighbour is a successor or a predecessor of a given node. A formal definition of this notion will be given in Section B.

Now, to satisfy \mathcal{R}, we have to draw either a Q - or a T-arrow from x_{1} to x_{0}, and also from x_{2} to x_{0}. As before, we do not do this explicitly. To ensure that such arrows can always be drawn, we add to each $\ell\left(x_{i}\right)$ a quasi-concept of the form $\forall R .\left(\left.\left.\ell\left(x_{i}\right)\right|_{Q} ^{\forall} \vee \ell\left(x_{i}\right)\right|_{T} ^{\forall}\right)$, where as before $\left.\ell\left(x_{i}\right)\right|_{P} ^{\forall}=\left\{C \mid \forall P . C \in \ell\left(x_{i}\right)\right\}$. The meaning of this quasi-concept should be self-evident. Thus, we extend the $\ell\left(x_{i}\right)$ to:

$$
\begin{aligned}
\ell\left(x_{0}\right) & :=\ell\left(x_{0}\right) \cup\{\forall R .(\emptyset \vee \emptyset)\}, \\
\ell\left(x_{1}\right) & :=\ell\left(x_{1}\right) \cup\{\forall R .(\{A, B\} \vee\{\neg A\})\}, \\
\ell\left(x_{2}\right) & :=\ell\left(x_{2}\right) \cup\{\forall R .(\{\neg B\} \vee\{A, B\})\} .
\end{aligned}
$$

But then we have to add either A, B or $\neg A$ to $\ell\left(x_{0}\right)$ in view of the quasi-concept in $\ell\left(x_{1}\right)$, and also either $\neg B$ or A, B in view of the quasi-concept in $\ell\left(x_{2}\right)$. The only clash-free way of doing this is to extend $\ell\left(x_{0}\right)$ with A, B. Clearly, we can draw a Q-arrow from x_{1} to x_{0} and a T-arrow from x_{2} to x_{0}.

We can now formulate tableau rules for handling role unions in RIs, taking into account quasi-concepts with triples considered above:
(r4) if $(R \sqsubseteq Q \sqcup T) \in \mathcal{R}$ and there is $D \in\{\forall P . C \mid \forall P . C \in \operatorname{con}(\mathcal{K})\} \cup\left\{C \mid \forall P^{-} . C \in \operatorname{con}(\mathcal{K})\right\}$, for $P \in\{Q, T\}$ with $\{D, \neg D\} \cap \ell(x)=\emptyset$, then we set $\ell(x):=\ell(x) \cup\{E\}$, for some $E \in\{D, \neg D\} ;$
(r5) if $(R \sqsubseteq Q \sqcup T) \in \mathcal{R}$, rule (r4) is not applicable, and $\forall R$. $\left(\ell_{Q}(x) \vee \ell_{T}(x)\right) \notin \ell(x)$, then we set $\ell(x):=\ell(x) \cup\left\{\forall R\right.$. $\left.\left(\ell_{Q}(x) \vee \ell_{T}(x)\right)\right\}$;
(r6) if $\left(t_{1} \vee t_{2}\right) \in \ell(x)$, for $t_{i}=\left(t_{i}^{r}, t_{i}^{\forall}, t_{i}^{-}\right), i=1,2$, and there is no $j \in\{1,2\}$ such that $t_{j}^{\forall} \subseteq \ell(x)$ and $t_{j} \in \mathfrak{m}(x)$, then take some $j \in\{1,2\}$ and set $\ell(x):=\ell(x) \cup t_{j}^{\forall}$ and $\mathfrak{m}(x):=\mathfrak{m}(x) \cup\left\{t_{j}\right\}$.

4.3 RIs with Role Chains on the Left-Hand Side

The technique illustrated in the examples above works perfectly well for RIs with a single role in the left-hand side. To cope with more complex RIs, we follow Horrocks and Sattler (2004) and Horrocks et al. (2006) and encode every $R \in \operatorname{role}(\mathcal{K})$ in a regular RBox \mathcal{R} by means of a nondeterministic finite automaton (NFA) $\mathfrak{A}_{R}=\left(S_{\mathfrak{A}_{R}}, \operatorname{role}(\mathcal{K}), s_{R}, \delta_{\mathfrak{A}_{R}}, a_{R}\right)$, where $S_{\mathfrak{A}_{R}}$ is a finite set of states, role (\mathcal{K}) is the input alphabet, $s_{R} \in S_{\mathfrak{A}_{R}}$ is the initial state of $\mathfrak{A}_{R}, \delta_{\mathfrak{A}_{R}}: S_{\mathfrak{A}_{R}} \times \operatorname{role}(\mathcal{K}) \rightarrow 2^{S_{\mathfrak{A}_{R}}}$ is the transition function and $a_{R} \in S_{\mathfrak{A}_{R}}$ is the accepting state. If there are no REs in \mathcal{R}, then \mathfrak{A}_{R} accepts precisely those role chains that belong to the language $L_{\mathcal{R}}(R)$; in other words $L\left(\mathfrak{A}_{R}\right)=L_{\mathcal{R}}(R)$.

In the tableau construction, whenever $\forall R . C \in \ell(x)$, we extend $\ell(x)$ with the quasiconcept $\forall \mathfrak{A}_{R}^{s}$. C, where s is the initial state of \mathfrak{A}_{R}. Next, if $\forall \mathfrak{A}_{R}^{p} . C \in \ell(x), y$ is a T-neighbour of x and $q \in \delta_{\mathfrak{A}_{R}}(p, T)$, then we extend $\ell(y)$ with $\forall \mathfrak{A}_{R}^{q}$. C. Finally, if $\forall \mathfrak{A}_{R}^{a}$. $C \in \ell(y)$, where a is an accepting state of \mathfrak{A}_{R}, we extend $\ell(y)$ with C. To define tableau rules more formally, we first confine attention to a single RI of the form $\boldsymbol{r}=(R \sqsubseteq Q P)$.

We start by defining sets of quasi-concepts that are allowed for RBoxes containing \boldsymbol{r}. Denote by $\boldsymbol{q} \boldsymbol{c}$ the set of all quasi-concepts of the form $\forall \mathfrak{A}_{R}^{p} . C$ such that $\forall R . C \in \operatorname{con}(\mathcal{K})$
and p is a state of \mathfrak{A}_{R}. For a set $\Sigma \subseteq \boldsymbol{q} \boldsymbol{c}$ and a basic role T, we now set:

$$
\begin{align*}
& \left.\Sigma\right|_{T} ^{\forall}=\left\{\forall \mathfrak{A}_{R}^{q} . C \mid \forall \mathfrak{A}_{R}^{p} . C \in \Sigma \text { and } q \in \delta_{\mathfrak{A}_{R}}(p, T)\right\}, \tag{10}\\
& \boldsymbol{q} \boldsymbol{c}^{*}(\boldsymbol{r})=\left.\left\{\forall \mathfrak{A}_{T}^{p} . C \mid \forall \mathfrak{A}_{T}^{p} . C \in \boldsymbol{q} \boldsymbol{c} \text { and there exists } q \in \delta_{\mathfrak{A}_{T}}(p, Q)\right\} \cup \boldsymbol{q} \boldsymbol{c}\right|_{Q^{-}} ^{\forall}, \tag{11}\\
& \boldsymbol{q} \boldsymbol{c}(\boldsymbol{r})=\left\{\forall \mathfrak{A}_{R}^{p} \cdot \exists P^{-} .\left(t^{r}, t^{\forall}, t^{-}\right) \mid p \text { a state of } \mathfrak{A}_{R}, t^{r}=Q,\left.t^{\forall} \subseteq \boldsymbol{q} \boldsymbol{c}\right|_{Q} ^{\forall},\left.t^{-} \subseteq \boldsymbol{q} \boldsymbol{c}\right|_{Q^{-}} ^{\forall}\right\} . \tag{12}
\end{align*}
$$

It will be convenient to think of the labels $\ell(x)$ in tableaux as consisting of two disjoint parts $\ell(x)=\mathfrak{c}(x) \cup \mathfrak{a}(x)$, with $\mathfrak{c}(x)$ containing standard concepts and $\mathfrak{a}(x)$ quasi-concepts; that is: $\mathfrak{c}(x) \subseteq \operatorname{con}(\mathcal{K})$ and

$$
\mathfrak{a}(x) \subseteq \boldsymbol{q} \boldsymbol{c} \cup \boldsymbol{q} \boldsymbol{c}(\boldsymbol{r}) \cup\left\{\exists P^{-} . t \mid \forall \mathfrak{A}_{R}^{p} \cdot \exists P^{-} . t \in \boldsymbol{q} \boldsymbol{c}(\boldsymbol{r})\right\} \cup\left\{\neg \mathfrak{C} \mid \mathfrak{C} \in \boldsymbol{q} \boldsymbol{c}^{*}(\boldsymbol{r})\right\}
$$

We now allow quasi-concepts of the form $\mathfrak{a}_{Q}(x)=\left(Q,\left.\mathfrak{a}(x)\right|_{Q} ^{\forall},\left.\mathfrak{a}(x) \cap \boldsymbol{q} \boldsymbol{c}\right|_{Q^{-}} ^{\forall}\right)$; we denote the first component of this triple by $\mathfrak{a}_{Q}^{r}(x)$, the second by $\mathfrak{a}_{Q}^{\forall}(x)$, and the third by $\mathfrak{a}_{Q}^{-}(x)$.

Using the new notation, we rewrite (r1)-(r3) as follows:
(r1) if $\boldsymbol{r} \in \mathcal{R}$ and there exists $\mathfrak{C} \in \boldsymbol{q} \boldsymbol{c}^{*}(\boldsymbol{r})$ with $\{\mathfrak{C}, \neg \mathfrak{C}\} \cap \mathfrak{a}(x)=\emptyset$, then we set $\mathfrak{a}(x):=$ $\mathfrak{a}(x) \cup\{\mathfrak{D}\}$, for some $\mathfrak{D} \in\{\mathfrak{C}, \neg \mathfrak{C}\} ;$
(r2) if $\forall R . C \in \mathfrak{c}(x)$ and $\forall \mathfrak{A}_{R}^{s} . C \notin \mathfrak{a}(x)$, where s is the initial state of \mathfrak{A}_{R}, then we set $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\left\{\forall \mathfrak{A}_{R}^{s} . C\right\} ;$
(r3) if $\boldsymbol{r} \in \mathcal{R}$, rule (r1) is not applicable for \boldsymbol{r} and $\forall \mathfrak{A}_{R}^{s} \cdot \exists P^{-} \cdot \mathfrak{a}_{Q}(x) \notin \mathfrak{a}(x)$, where s is the initial state of \mathfrak{A}_{R}, then we set $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\left\{\forall \mathfrak{A}_{R}^{s} \cdot \exists P^{-} \cdot \mathfrak{a}_{Q}(x)\right\} ;$
(r4) if $\forall \mathfrak{A}_{R}^{p} \cdot \mathfrak{C} \in \mathfrak{a}(x), q \in \delta_{\mathfrak{A}_{R}}(p, T), y$ is a T-neighbour of x and $\forall \mathfrak{A}_{R}^{q} . \mathfrak{C} \notin \mathfrak{a}(y)$, then we set $\mathfrak{a}(y):=\mathfrak{a}(y) \cup\left\{\forall \mathfrak{A}_{R}^{q} \cdot \mathfrak{C}\right\} ;$
(r5) if $\forall \mathfrak{A}_{R}^{a} . C \in \mathfrak{a}(x), a$ an accepting state, and $C \notin \mathfrak{c}(x)$, then we set $\mathfrak{c}(x):=\mathfrak{c}(x) \cup\{C\} ;$
(r6) if $\forall \mathfrak{A}_{R}^{a} \cdot \exists P^{-} . t \in \mathfrak{a}(x)$, where a is an accepting state, and $\exists P^{-} . t \notin \mathfrak{a}(x)$, then we set $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\left\{\exists P^{-} . t\right\} ;$
(r7) if $\exists P^{-} . t \in \mathfrak{a}(x)$, for $t=\left(t^{r}, t^{\forall}, t^{-}\right)$, and x has no P^{-}-neighbour y with $t^{\forall} \subseteq \mathfrak{a}(y)$ and $t \in \mathfrak{m}(y)$, then we create a new P^{-}-successor y of x and set $\mathfrak{a}(y)=t^{\forall}$ and $\mathfrak{m}(y)=\{t\}$.

The clash rule remains the same as before, with \mathfrak{a} in place of ℓ. Note that the rule (r7) can be replaced with two rules such that one creates a new node y and sets $\mathfrak{a}(y)=\{t\}$, while the other rule sets $\mathfrak{a}(y):=\mathfrak{a}(y) \cup t^{\forall}$. In this case we do not need $\mathfrak{m}(y)$. We illustrate the new terminology and tableau rules by revisiting Example 11.
Example 11 (cont.) Consider again the $\operatorname{KB} \mathcal{K}=(\mathcal{T}, \mathcal{R}, \mathcal{A})$ with
$\mathcal{A}=\{a: A\}, \quad \mathcal{R}=\{R \sqsubseteq Q P\}, \quad \mathcal{T}=\left\{A \sqsubseteq \exists R . \top, A \sqsubseteq \forall Q . B, B \sqsubseteq \forall Q^{-} . C, C \sqsubseteq \forall Q . D\right\}$.
In the tableau below, \mathfrak{A}_{Q} and \mathfrak{A}_{R} are NFAs with $L\left(\mathfrak{A}_{Q}\right)=\{Q\}, L\left(\mathfrak{A}_{R}\right)=\{R\}$, each having two states: initial s and accepting a.

$$
\mathfrak{c}\left(x_{0}\right)=\{A, \exists R \cdot \top, \forall Q \cdot B\}, \mathfrak{a}\left(x_{0}\right)=\left\{\forall \mathfrak{A}_{Q}^{s} \cdot B\right\}
$$

$$
\begin{align*}
\mathfrak{a}\left(x_{0}\right):= & \mathfrak{a}\left(x_{0}\right) \cup\left\{\forall \mathfrak{A}_{Q}^{s} \cdot D, \forall \mathfrak{A}_{Q^{-}}^{a} \cdot C\right\}, \mathfrak{c}\left(x_{0}\right):=\mathfrak{c}\left(x_{0}\right) \cup\{C\}, \tag{byr1,r5}\\
\mathfrak{a}\left(x_{0}\right):= & \mathfrak{a}\left(x_{0}\right) \cup\left\{\forall \mathfrak{A}_{R}^{s} \cdot \exists P^{-} \cdot \mathfrak{a}_{Q}\left(x_{0}\right)\right\}, \text { where } \\
& \mathfrak{a}_{Q}^{\forall}\left(x_{0}\right)=\left\{\forall \mathfrak{A}_{Q}^{a} . D, \forall \mathfrak{A}_{Q}^{a} \cdot B\right\}, \mathfrak{a}_{Q}^{-}\left(x_{0}\right)=\left\{\forall \mathfrak{A}_{Q^{-}}^{a} . C\right\}, \tag{byr3}
\end{align*}
$$

create x_{1} with $x_{0} R x_{1}, \mathfrak{c}\left(x_{1}\right)=\emptyset, \mathfrak{a}\left(x_{1}\right)=\left\{\forall \mathfrak{A}_{Q}^{s} \cdot D, \forall \mathfrak{A}_{Q}^{s} \cdot B, \forall \mathfrak{A}_{Q^{-}}^{a} . C\right\}, \quad$ (by $\exists R$, r1)
$\mathfrak{a}\left(x_{1}\right):=\mathfrak{a}\left(x_{1}\right) \cup\left\{\forall \mathfrak{A}_{R}^{s} \cdot \exists P^{-} \cdot \mathfrak{a}_{Q}\left(x_{1}\right)\right\}, \mathfrak{a}_{Q}\left(x_{1}\right)=\left(Q,\left\{\forall \mathfrak{A}_{Q}^{a} \cdot D, \forall \mathfrak{A}_{Q}^{a} \cdot B\right\},\left\{\forall \mathfrak{A}_{Q^{-}}^{a} \cdot C\right\}\right), \quad$ (by r3)
$\mathfrak{a}\left(x_{1}\right):=\mathfrak{a}\left(x_{1}\right) \cup\left\{\forall \mathfrak{A}_{R}^{a} \cdot \exists P^{-} \cdot \mathfrak{a}_{Q}\left(x_{0}\right), \exists P^{-} \cdot \mathfrak{a}_{Q}\left(x_{0}\right)\right\}$,
(by r4, r6)
create x_{2} with $\mathfrak{m}\left(x_{2}\right)=\left\{\mathfrak{a}_{Q}\left(x_{0}\right)\right\}, x_{1} P^{-} x_{2}, \mathfrak{c}\left(x_{2}\right)=\emptyset, \mathfrak{a}\left(x_{2}\right)=\left\{\forall \mathfrak{A}_{Q}^{a} . D, \forall \mathfrak{A}_{Q}^{a} . B\right\}, \quad$ (by r7)

$$
\begin{aligned}
& \mathfrak{c}\left(x_{2}\right):=\left\{B, D, \forall Q^{-} . C\right\}, \mathfrak{a}\left(x_{2}\right):=\mathfrak{a}\left(x_{2}\right) \cup\left\{\forall \mathfrak{A}_{Q^{-}}^{s} . C\right\}, \\
& \mathfrak{a}\left(x_{2}\right):=\mathfrak{a}\left(x_{2}\right) \cup\left\{\forall \mathfrak{A}_{Q}^{s} \cdot D, \forall \mathfrak{A}_{Q}^{s} \cdot B, \neg \forall \mathfrak{A}_{Q^{-}}^{a} . C, \forall \mathfrak{A}_{R^{s}}^{s} \cdot \exists P^{-} .\left(Q,\left\{\forall \mathfrak{A}_{Q}^{a} \cdot D, \forall \mathfrak{A}_{Q}^{a} \cdot B\right\}, \emptyset\right)\right\},
\end{aligned}
$$

(by r1, r3)
As $\left.\mathfrak{a}\left(x_{2}\right)\right|_{\text {inv }(Q)} ^{\forall}=\left\{\forall \mathfrak{A}_{Q^{-}}^{a} . C\right\} \subseteq \mathfrak{a}_{Q}^{-}\left(x_{0}\right)$, the resulting tableau is complete and clash-free.

4.4 Interaction of RIs with Role Chains on the Right-Hand Side

Example 13 Consider the $\mathrm{KB} \mathcal{K}=(\mathcal{T}, \mathcal{R}, \mathcal{A})$ with

$$
\begin{gathered}
\mathcal{A}=\{a: A\}, \quad \mathcal{R}=\left\{R \sqsubseteq Q P, Q \sqsubseteq Q_{1} P_{1}\right\}, \\
\mathcal{T}=\left\{A \sqsubseteq \exists R . \top, A \sqsubseteq \forall Q . B, B \sqsubseteq \forall Q^{-} . C, C \sqsubseteq \forall Q . D, C \sqsubseteq \forall Q_{1} \cdot B\right\} .
\end{gathered}
$$

Here we have two RIs of the form (C), with Q occurring on the right-hand side of $R \sqsubseteq Q P$ and in the left-hand side of $Q \sqsubseteq Q_{1} P_{1}$. We expect the tableau algorithm to construct a model of \mathcal{K} as shown in the picture below:
$A, \forall Q . B$,

However, if we apply the available rules, we can only produce the following tableau:

where $\mathfrak{a}_{Q}\left(x_{0}\right)=\left(Q,\left\{\forall \mathfrak{A}_{Q}^{a} . D, \forall \mathfrak{A}_{Q}^{a} \cdot B\right\},\left\{\forall \mathfrak{A}_{Q^{-}}^{a} . C\right\}\right)$ and $\mathfrak{a}_{Q_{1}}\left(x_{0}\right)=\left(Q_{1},\left\{\forall \mathfrak{A}_{Q_{1}}^{a} \cdot B\right\}, \emptyset\right)$. As there is no explicit Q-arrow between x_{0} and x_{2}, we cannot apply (r4) to obtain the quasiconcept $\forall \mathfrak{A}_{Q}^{a} \cdot \exists P_{1}^{-} \cdot \mathfrak{a}_{Q_{1}}\left(x_{0}\right)$, and so, by (r6), $\exists P_{1}^{-} \cdot \mathfrak{a}_{Q_{1}}\left(x_{0}\right)$ in x_{2}, which would trigger the construction of a P_{1}^{-}-arrow from x_{2} to x_{3}. To overcome this problem, we will use the quasiconcept encoding the RI $Q \sqsubseteq Q_{1} P_{1}$ in the construction of the quasi-concept for $R \sqsubseteq Q P$. More precisely, we add $\forall \mathfrak{A}_{Q}^{a} \cdot \exists P_{1}^{-} \cdot \mathfrak{a}_{Q_{1}}\left(x_{0}\right)$ to $\mathfrak{a}_{Q}^{\forall}\left(x_{0}\right)$, thus obtaining

$$
\mathfrak{a}_{Q}^{\forall}\left(x_{0}\right)=\left\{\forall \mathfrak{A}_{Q}^{a} \cdot D, \forall \mathfrak{A}_{Q}^{a} \cdot B, \forall \mathfrak{A}_{Q}^{a} \cdot \exists P_{1}^{-} \cdot \mathfrak{a}_{Q_{1}}\left(x_{0}\right)\right\} .
$$

As $\forall \mathfrak{A}_{R}^{\mathcal{s}} \cdot \exists P^{-} \cdot \mathfrak{a}_{Q}\left(x_{0}\right)$ is in $\mathfrak{a}\left(x_{0}\right)$, we apply (r4) and obtain $\forall \mathfrak{A}_{R}^{a} \cdot \exists P^{-} \cdot \mathfrak{a}_{Q}\left(x_{0}\right)$, and so, by (r6), also $\exists P^{-} . \mathfrak{a}_{Q}\left(x_{0}\right)$ in $\mathfrak{a}\left(x_{1}\right)$. We then construct x_{2} with $\mathfrak{a}\left(x_{2}\right)$ containing three quasiconcepts $\forall \mathfrak{A}_{Q}^{a} . D, \forall \mathfrak{A}_{Q}^{a} . B$ and $\forall \mathfrak{A}_{Q}^{a} \cdot \exists P_{1}^{-} \cdot \mathfrak{a}_{Q_{1}}\left(x_{0}\right)$, the last of which requires the existence of a P_{1}^{-}-successor x_{3}.

In order to formalise the previous idea, we introduce a dependency relation \triangleleft. Given RIs $R_{1} \sqsubseteq Q_{1} P_{1}$ and $R_{2} \sqsubseteq Q_{2} P_{2}$, we write $\left(R_{1} \sqsubseteq Q_{1} P_{1}\right) \triangleleft\left(R_{2} \sqsubseteq Q_{2} P_{2}\right)$ if there are states p, q of $\mathfrak{A}_{R_{1}}$ such that either $q \in \delta_{\mathfrak{A}_{R_{1}}}\left(p, Q_{2}\right)$ or $q \in \delta_{\mathfrak{A}_{R_{1}}}\left(p, Q_{2}^{-}\right)$. In particular, we have $\left(Q \sqsubseteq Q_{1} P_{1}\right) \triangleleft(R \sqsubseteq Q P)$. As \mathcal{R} is regular, it is not hard to see that the relation \triangleleft is acyclic. Indeed, it follows from the definition of \triangleleft, Lemma 1, Definition 3 and $\mathfrak{A}_{R_{1}}$ that $r n\left(Q_{2}\right) \prec_{\mathcal{R}} r n\left(Q_{1}\right)$ (since $r n\left(Q_{2}\right) \preceq_{\mathcal{R}} r n\left(R_{1}\right)$ and $r n\left(R_{1}\right) \prec_{\mathcal{R}} r n\left(Q_{1}\right)$).

Now, by induction on \triangleleft we define sets $\boldsymbol{q} \boldsymbol{c}(\boldsymbol{r})$ for RIs $\boldsymbol{r}=(R \sqsubseteq Q P)$. For the \triangleleft-minimal $\boldsymbol{r}, \boldsymbol{q c}(\boldsymbol{r})$ is defined by (12). Then, assuming that $\boldsymbol{q c}\left(\boldsymbol{r}^{\prime}\right)$ is defined for every $\boldsymbol{r}^{\prime} \triangleleft \boldsymbol{r}$ with $\boldsymbol{r}=(R \sqsubseteq Q P)$, we set

$$
\boldsymbol{q c}(\boldsymbol{r})=\left\{\forall \mathfrak{A}_{R}^{p} . \exists P^{-} . t \mid p \text { state in } \mathfrak{A}_{R}\right\}
$$

where $t=\left(t^{r}, t^{\forall}, t^{-}\right), t^{r}=Q,\left.\left.t^{\forall} \subseteq \boldsymbol{q} \boldsymbol{c}\right|_{Q} ^{\forall} \cup \bigcup_{\boldsymbol{r}^{\prime} \triangleleft \boldsymbol{r}} \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}^{\prime}\right)\right|_{Q} ^{\forall},\left.\left.t^{-} \subseteq \boldsymbol{q}\right|_{Q^{-}} ^{\forall} \cup \bigcup_{\boldsymbol{r}^{\prime} \triangleleft \boldsymbol{r}} \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}^{\prime}\right)\right|_{Q^{-}} ^{\forall}$ and, for $\boldsymbol{r}^{\prime}=\left(R^{\prime} \sqsubseteq Q^{\prime} P^{\prime}\right)$ and $\Sigma\left(\boldsymbol{r}^{\prime}\right) \subseteq \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}^{\prime}\right)$,

$$
\left.\Sigma\left(\boldsymbol{r}^{\prime}\right)\right|_{T} ^{\forall}=\left\{\forall \mathfrak{A}_{R^{\prime}}^{q} \cdot \mathfrak{C} \mid \forall \mathfrak{A}_{R^{\prime}}^{p} \cdot \mathfrak{C} \in \Sigma\left(\boldsymbol{r}^{\prime}\right) \text { and } q \in \delta_{\mathfrak{A}_{R^{\prime}}}(p, T)\right\} .
$$

We also set

$$
\begin{aligned}
\boldsymbol{q} \boldsymbol{c}^{*}(\boldsymbol{r})=\left\{\forall \mathfrak{A}_{T}^{p} \cdot \mathfrak{C} \mid \text { there exists } q\right. & \left.\in \delta_{\mathfrak{A}_{T}}(p, Q), \forall \mathfrak{A}_{T}^{p} \cdot \mathfrak{C} \in \boldsymbol{q} \boldsymbol{c} \cup \bigcup_{\boldsymbol{r}^{\prime} \triangleleft \boldsymbol{r}} \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}^{\prime}\right)\right\} \cup \\
& \left\{\forall \mathfrak{A}_{T}^{q} \cdot \mathfrak{C} \mid q \in \delta_{\mathfrak{A}_{T}}\left(p, Q^{-}\right), \forall \mathfrak{A}_{T}^{p} \cdot \mathfrak{C} \in \boldsymbol{q} \boldsymbol{c} \cup \bigcup_{\boldsymbol{r}^{\prime} \triangleleft \boldsymbol{r}} \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}^{\prime}\right)\right\} .
\end{aligned}
$$

Returning to our example, we see that $\boldsymbol{r}_{1} \triangleleft \boldsymbol{r}$, for $\boldsymbol{r}_{1}=\left(Q \sqsubseteq Q_{1} P_{1}\right)$, $\boldsymbol{r}=(R \sqsubseteq Q P)$, and so $\boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{1}\right)$ remains as it was before, while $\boldsymbol{q} \boldsymbol{c}(\boldsymbol{r})$ is becoming larger and, in particular, contains $\left\{\forall \mathfrak{A}_{R}^{p} \cdot \exists P^{-} .\left(t_{1}^{r}, t_{1}^{\forall}, t_{1}^{-}\right) \mid p \in\{s, a\}\right\}$, where

$$
t_{1}^{\forall} \subseteq\left\{\forall \mathfrak{A}_{Q}^{a} \cdot D, \forall \mathfrak{A}_{Q}^{a} \cdot B, \forall \mathfrak{A}_{Q}^{a} \cdot \exists P_{1}^{-} \cdot\left(Q_{1},\left\{\forall \mathfrak{A}_{Q_{1}}^{a} \cdot B\right\}, \emptyset\right), \forall \mathfrak{A}_{Q}^{a} \cdot \exists P_{1}^{-} \cdot\left(Q_{1}, \emptyset, \emptyset\right)\right\}, t_{1}^{-} \subseteq\left\{\forall \mathfrak{A}_{Q^{-}}^{a} . C\right\} .
$$

For example, $\boldsymbol{q c}(\boldsymbol{r})$ contains the quasi-concept

$$
\forall \mathfrak{A}_{R}^{s} \cdot \exists P^{-} \cdot\left(Q,\left\{\forall \mathfrak{A}_{Q}^{a} \cdot D, \forall \mathfrak{A}_{Q}^{a} \cdot B, \forall \mathfrak{A}_{Q}^{a} \cdot \exists P_{1}^{-} \cdot\left(Q_{1},\left\{\forall \mathfrak{A}_{Q_{1}}^{a} \cdot B\right\}, \emptyset\right)\right\},\left\{\forall \mathfrak{A}_{Q^{-}}^{a} . C\right\}\right) .
$$

The construction of a tableau for \mathcal{K} in Example 13, using the newly defined sets $\boldsymbol{q} \boldsymbol{c}(\boldsymbol{r})$, is routine and left to the reader.

The dependency relation \triangleleft between RIs in RBoxes will become more complex in the presence of unions of roles.

4.5 Role Equalities

Example 14 Consider the RBox \mathcal{R} with two RAs: $S T \sqsubseteq R$ of type (B) and $R=Q P$ of type (E). Clearly, $R=Q P$ can be replaced by the RIs $R \sqsubseteq Q P$ and $Q P \sqsubseteq R$, but the resulting RBox $\{S T \sqsubseteq R, R \sqsubseteq Q P, Q P \sqsubseteq R\}$ will not be regular. Let us observe now that both RBoxes

$$
\mathcal{R}^{\prime}=\{S T \sqsubseteq R, Q P \sqsubseteq R\} \quad \text { and } \quad \mathcal{R}^{\prime \prime}=\{S T \sqsubseteq R, R \sqsubseteq Q P\}
$$

are regular. Denote by \mathfrak{A}_{R} the NFA for R determined by \mathcal{R}^{\prime}, and by \mathfrak{A}_{1} the NFA for R given by $\mathcal{R}^{\prime \prime}$ (see the picture below).

Let us see now whether we can use any of these automata in the rules (r2) and (r3) on page 823 for the role R. Consider the $\operatorname{KB} \mathcal{K}=(\mathcal{T}, \mathcal{R}, \mathcal{A})$, where \mathcal{R} is as above and

$$
\mathcal{A}=\{a: A\}, \quad \mathcal{T}=\{A \sqsubseteq \exists R \cdot \top, A \sqsubseteq \forall Q . B, A \sqsubseteq \forall Q . C, A \sqsubseteq \forall R . D\} .
$$

First we try \mathfrak{A}_{R}. By applying the tableau rules we obtain the following:

$$
A, \exists R . \top, \forall R . D, \forall Q . B, \forall Q . C, \forall \mathfrak{A}_{R}^{s} \cdot D, \forall \mathfrak{A}_{Q}^{s} . B, \forall \mathfrak{A}_{Q}^{s} \cdot C \quad \underset{x_{0}}{\circ} \underset{\sim}{\bullet} \quad \forall \mathfrak{A}_{R}^{a} \cdot D, D
$$

Now we have to apply (r3) to the RI $R \sqsubseteq Q P$ and add the quasi-concept $\forall \mathfrak{A}_{R}^{s} \cdot \exists P^{-} \cdot \mathfrak{a}_{Q}\left(x_{0}\right)$ to $\mathfrak{a}\left(x_{0}\right)$, where $\mathfrak{a}_{Q}\left(x_{0}\right)=\left(Q,\left.\mathfrak{a}\left(x_{0}\right)\right|_{Q} ^{\forall},\left.\mathfrak{a}\left(x_{0}\right) \cap \boldsymbol{q}\right|_{Q^{-}} ^{\forall}\right)$. Because of the Q-transition in \mathfrak{A}_{R}, we must then have $\left.\forall \mathfrak{A}_{R}^{q} \cdot \exists P^{-} \cdot \mathfrak{a}_{Q}\left(x_{0}\right) \in \mathfrak{a}\left(x_{0}\right)\right|_{Q} ^{\forall}$, which is impossible because $\left.\mathfrak{a}\left(x_{0}\right)\right|_{Q} ^{\forall}$ cannot be an element of itself.

Alternatively, we can use \mathfrak{A}_{1} for R. This gives us

with $\mathfrak{a}_{Q}\left(x_{0}\right)=\left(Q,\left\{\forall \mathfrak{A}_{Q}^{a} . C, \forall \mathfrak{A}_{Q}^{a} . B\right\}, \emptyset\right)$, which defines a model of \mathcal{K} when we add the missing Q-arrow from x_{0} to x_{2}.

Now, we replace the CI $A \sqsubseteq \exists R . \top$ in \mathcal{K} with $A \sqsubseteq \exists Q . \exists P . \top$ and use \mathfrak{A}_{1} for R. In this case, we obtain the following tableau:

$$
\forall R . D, \forall \mathfrak{A}_{1}^{s} \cdot \exists P^{-\quad . \mathfrak{a}_{Q}\left(x_{0}\right), \forall \mathfrak{A}_{1}^{s} \cdot D} \begin{array}{rlrl}
x_{0} & Q & x_{1} & P
\end{array}
$$

To produce a satisfying interpretation \mathcal{I}, we have to add an R-arrow from x_{0} to x_{2}. However, this cannot be done 'for free' (as in Example 10) because $x_{2} \notin D^{\mathcal{I}}$. An alternative would be to use \mathfrak{A}_{R} and \mathcal{R}^{\prime} instead of \mathcal{R} (because we do not have to apply (r3) to $R \sqsubseteq Q P$). We then obtain the following tableau:

The addition of an R-arrow from x_{0} to x_{2} gives an interpretation \mathcal{I} such that $\mathcal{I} \models Q P \sqsubseteq R$ and $x_{2} \in D^{\mathcal{I}}$.

To sum up: the rule (r2) requires the NFA \mathfrak{A}_{R}, while (r3) requires \mathfrak{A}_{1}. So rule (r2) on page 823 remains the same and we rewrite rule (r1) and (r3) to include role equalities as follows:
(r1) if $\boldsymbol{r} \in \mathcal{R}$, for $\boldsymbol{r}=(R \sqsubseteq Q P)$ or $\boldsymbol{r}=(R=Q P)$, and there exists $\mathfrak{C} \in \boldsymbol{q} \boldsymbol{c}^{*}(\boldsymbol{r})$ with $\{\mathfrak{C}, \neg \mathfrak{C}\} \cap \mathfrak{a}(x)=\emptyset$, then we set $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\{\mathfrak{D}\}$, for some $\mathfrak{D} \in\{\mathfrak{C}, \neg \mathfrak{C}\} ;$
(r3) if $\boldsymbol{r} \in \mathcal{R}$, for $\boldsymbol{r}=(R \sqsubseteq Q P)$ or $\boldsymbol{r}=(R=Q P)$, rule (r1) is not applicable for \boldsymbol{r} and $\forall \mathfrak{A}_{1}^{s} \cdot \exists P^{-} \cdot \mathfrak{a}_{Q}(x) \notin \mathfrak{a}(x)$, where s is the initial state of \mathfrak{A}_{1}, then we set $\mathfrak{a}(x):=$ $\mathfrak{a}(x) \cup\left\{\forall \mathfrak{A}_{1}^{s} \cdot \exists P^{-} \cdot \mathfrak{a}_{Q}(x)\right\}$.

Note that in the case $\boldsymbol{r}=(R \sqsubseteq Q P)$ NFA \mathfrak{A}_{1} is same as \mathfrak{A}_{R} and in the case $\boldsymbol{r}=(R=Q P)$ NFA \mathfrak{A}_{1} is different from \mathfrak{A}_{R} as described above.

5. Main Result and Discussion

The examples of the previous section provide the basic ingredients that can be added to $\mathcal{S R O I Q}$ tableaux of Horrocks et al. (2006) and Horrocks and Sattler (2007) in order to obtain sound and complete tableaux for $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$. We present all the technical details and definitions in Appendix A. A corresponding sound, complete and terminating tableau algorithm is given in Appendix B. Thus, we obtain the following:

Theorem 15 Concept satisfiability with respect to $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ KBs is decidable.
It is to be noted that the decision algorithm in Appendix B is a (quite sophisticated) extension of the standard tableau procedure for $\mathcal{S R O} \mathcal{I} \mathcal{Q}$; if the input RBox does not contain RAs of the form (C)-(F) then our tableau algorithm behaves exactly as the $\mathcal{S R O I Q}$ procedure. To simplify presentation and avoid a number of technical details, we decided not to optimise our tableau algorithm in this paper. In fact, there is plenty of room for optimisations; for example, one can work on a more careful choice of quasi-concepts as well as utilise the approach of Motik, Shearer, and Horrocks (2009).

The exact complexity of concept satisfiability with respect to $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{K B s}$ is still unknown. If the RBox contains one RA \boldsymbol{r}_{1} of the form (C)-(F), our algorithm will have to construct the set $\boldsymbol{q c}\left(\boldsymbol{r}_{1}\right)$ of quasi-concepts, which contains subsets of the previously constructed sets of quasi-concepts $\boldsymbol{q c}\left(\boldsymbol{r}_{0}\right)$, and so may suffer an exponential blow-up. Furthermore, the algorithm may suffer one more exponential blow-up every time we add an extra RA of the form (C)-(F), and thereby extend the \triangleleft-chains of RAs, because again the
set of quasi-concepts may become exponentially larger. To investigate the complexity of full $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$, it may be useful to consider first its various sub-languages. For example, we conjecture that $\mathcal{A L C} \mathcal{I}$-concept satisfiability with respect to regular RBoxes that only contain axioms of type (C) and the roles $r n\left(R_{i}\right), i=1, \ldots, m$, do not appear in left-hand side of RIs, is PSpace-complete. $\mathcal{S I}$-concept satisfiability with respect to RBoxes which contain only one axiom of the form $R \sqsubseteq Q P$, where $r n(R), r n(Q), r n(P)$ are different role names that are not transitive, is also PSpace-complete.

The step from $\mathcal{S R O I Q}$ to $\mathcal{S R}{ }^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ is, to some extent, similar to the step from $\mathcal{S H O I Q}$ to $\mathcal{S R O I Q}$: as $\mathcal{S R O I Q}$ extends $\mathcal{S H O I Q}$ with role inclusion axioms containing role chains in the left-hand side, $\mathcal{S R}^{+} \mathcal{O I Q}$ extends $\mathcal{S R O I Q}$ with role inclusion axioms containing role chains or unions in the right-hand side. Attempts to extend various DLs with such role inclusions have been made since 1985 (Brachman \& Schmolze, 1985; Baader, 2003; Wessel, 2001, 2002); however, all of them resulted in undecidable formalisms. Similar problems were investigated in modal logic, where it was shown that regular grammar logics are decidable (Demri, 2001). Our regularity condition for RAs axioms generalises the restrictions of Horrocks et al. (2006) and Kazakov (2010). (However, a closer inspection of how our results are related to grammar modal logics is needed.) Simančík (2012) showed that complex RIs in $\mathcal{S R O I Q}$ can be encoded using $\mathcal{S H O I Q}$ axioms. It would be of interest to find out whether a similar reduction is possible in the case of $\mathcal{S R}^{+} \mathcal{O I Q}$.

One of the aims of introducing complex role inclusion axioms in DLs is to model complex structured objects. Suppose, for example, that we have to represent the cycle shown on the left-hand side of the picture below:

In $\mathcal{S R O I Q}$, we can only use the RI axiom $R_{1} R_{2} R_{3} R_{4} \sqsubseteq Q$, which produces the required cycle only if there is a chain of the form $R_{1} R_{2} R_{3} R_{4}$. Using description graphs from the work of Motik et al. (2009), we can express the existence of the cycle above as a whole. In $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$, we can model this situation by the following regular RBox, where Q_{1} and Q_{2} are fresh role names:

$$
\begin{array}{lll}
R_{1} \sqsubseteq Q R_{4}^{-} R_{3}^{-} R_{2}^{-}, & R_{2}^{-} \sqsubseteq Q_{1} R_{1}, & Q_{1}^{-} \sqsubseteq Q R_{4}^{-} R_{3}^{-}, \\
R_{3} \sqsubseteq Q_{2} R_{4}^{-}, & Q_{2}^{-} \sqsubseteq Q^{-} R_{1} R_{2}, & R_{4} \sqsubseteq Q^{-} R_{1} R_{2} R_{3}
\end{array}
$$

(see the picture above). The RBox produces the required cycle if there is at least one R_{i}, for $i=1,2,3,4$, in a model. In this connection, it would be of interest to consider the extension of $\mathcal{S H O I Q}$ with RI axioms of the form (A) and (C).

Appendix A. $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ Tableaux

As observed by Horrocks et al. (2006, Thm. 9), without loss of generality we can define tableaux for $\mathcal{S} \mathcal{R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ KBs with empty TBoxes and ABoxes. Let \mathcal{R} be a regular RBox and C_{0} a $\mathcal{S} \mathcal{R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ concept. We assume that $\mathcal{R}_{C, D, E, F}=\left\{\boldsymbol{r}_{i} \mid i=1, \ldots, l\right\}$, where, for some k_{1}, k, l_{1} such that $1 \leq k_{1} \leq k \leq l_{1} \leq l$,

$$
\begin{aligned}
& \boldsymbol{r}_{i}=\left(R_{i} \sqsubseteq Q_{i} P_{i 1} \ldots P_{i m_{i}}\right), \quad \text { for } i=1, \ldots, k_{1}, \\
& \boldsymbol{r}_{i}=\left(R_{i}=Q_{i} P_{i 1} \ldots P_{i m_{i}}\right), \quad \text { for } i=k_{1}+1, \ldots, k, \\
& \boldsymbol{r}_{i}=\left(R_{i}=T_{i 1} \sqcup \ldots \sqcup T_{i m_{i}}\right), \quad \text { for } i=k+1, \ldots, l_{1}, \\
& \boldsymbol{r}_{i}=\left(R_{i} \sqsubseteq T_{i 1} \sqcup \cdots \sqcup T_{i m_{i}}\right), \quad \text { for } i=l_{1}+1, \ldots, l .
\end{aligned}
$$

For every $R \in \operatorname{role}\left(C_{0}, \mathcal{R}\right)$, we construct, as a preprocessing step, an NFA \mathfrak{A}_{R} and special NFAs \mathfrak{A}_{i}, for $i=1, \ldots, l$, as described below. Recall that $L(\mathfrak{A})$ denotes the language recognised by \mathfrak{A}. If p is a state in \mathfrak{A}, then \mathfrak{A}^{p} is the NFA obtained from \mathfrak{A} by making p the (only) initial state of \mathfrak{A}.

Define an RBox

$$
\begin{aligned}
\mathcal{R}^{\prime}=\mathcal{R}_{A, B} \cup\left\{Q_{i} P_{i 1} \ldots P_{i m_{i}} \sqsubseteq R_{i} \mid i=k_{1}\right. & +1, \ldots, k\} \cup \\
& \left\{T_{i j} \sqsubseteq R_{i} \mid i=k+1, \ldots, l_{1}, j=1, \ldots, m_{i}\right\},
\end{aligned}
$$

which only contains axioms of types (A) and (B). Since \mathcal{R} is regular and in view of conditions (c1), (c4) and (c6) in Definition 3, the RBox \mathcal{R}^{\prime} is stratified. By Theorem 2, we use \mathcal{R}^{\prime} to construct, for any $R \in \operatorname{role}\left(C_{0}, \mathcal{R}\right)$, an NFA $\mathfrak{A}_{R}=\left(S_{\mathfrak{A}_{R}}, \operatorname{role}\left(C_{0}, \mathcal{R}\right), s_{R}, \delta_{\mathfrak{A}_{R}}, a_{R}\right)$ such that $L\left(\mathfrak{A}_{R}\right)=L_{\mathcal{R}^{\prime}}(R)$.

We also define RBoxes

$$
\begin{array}{ll}
\mathcal{R}^{i}=\mathcal{R}^{\prime} \backslash\left\{Q_{i} P_{i 1} \ldots P_{i m_{i}} \sqsubseteq R_{i}\right\}, & i=k_{1}+1, \ldots, k, \\
\mathcal{R}^{i}=\mathcal{R}^{\prime} \backslash\left\{T_{i j} \sqsubseteq R_{i} \mid j=1, \ldots, m_{i}\right\}, & i=k+1, \ldots, l_{1},
\end{array}
$$

and construct NFAs \mathfrak{A}_{i} such that $L\left(\mathfrak{A}_{i}\right)=L_{\mathcal{R}^{i}}\left(R_{i}\right), i=k_{1}+1, \ldots, l_{1}$. For $i=1, \ldots, k_{1}$ and $i=l_{1}+1, \ldots, l$, we simply set $\mathfrak{A}_{i}=\mathfrak{A}_{R_{i}}$.

Now, we are going to define formally the set $\boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)$. The elements of $\boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)$ are called quasi-concepts (for C_{0} w.r.t. \mathcal{R}); we use them to define labels for tableau nodes. In the definition of $\boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)$, we require a dependency relation \triangleleft on $\mathcal{R}_{C, D, E, F}$.

For each role name $Q \in\left\{r n\left(Q_{i}\right), r n\left(T_{i 1}\right), \ldots, r n\left(T_{i m_{i}}\right) \mid 1 \leq i \leq l\right\}$, let $\operatorname{AutIn}(Q)$ be the set of those $i \in\{1, \ldots, l\}$ for which there are states p and q of \mathfrak{A}_{i} such that $q \in \delta_{\mathfrak{A}_{i}}(p, Q)$ or $q \in \delta_{\mathfrak{A}_{i}}\left(p, Q^{-}\right)$. We define \triangleleft on $\mathcal{R}_{C, D, E, F}$ by taking $\boldsymbol{r}_{i} \triangleleft \boldsymbol{r}_{j}$ if
$-1 \leq j \leq k$ and $i \in \operatorname{AutIn}\left(r n\left(Q_{j}\right)\right)$, or
$-k<j \leq l$ and there is $h \in\left\{1, \ldots, m_{j}\right\}$ such that $i \in \operatorname{AutIn}\left(r n\left(T_{j h}\right)\right)$.
The following lemma shows that the transitive closure of \triangleleft is acyclic:
Lemma 16 (i) If $\boldsymbol{r}_{i} \triangleleft \boldsymbol{r}_{j}$ then $\boldsymbol{r}_{j} \triangleleft \boldsymbol{r}_{i}$ does not hold.
(ii) If $\boldsymbol{r}_{i_{1}} \triangleleft \boldsymbol{r}_{i_{2}}$ and $\boldsymbol{r}_{i_{2}} \triangleleft \boldsymbol{r}_{i_{3}}$, then $\boldsymbol{r}_{i_{3}} \triangleleft \boldsymbol{r}_{i_{1}}$ does not hold.

Proof. Observe first that if $i \in \operatorname{AutIn}(Q)$ then there is a Q - or Q^{-}-transition of \mathfrak{A}_{i}, and so we have $r n(Q) \preceq_{\mathcal{R}}^{1} r n\left(R_{i}\right)$. If $i \leq k$ then $r n\left(R_{i}\right) \prec_{\mathcal{R}}^{1} r n\left(Q_{i}\right)$, and so $r n(Q) \prec_{\mathcal{R}}^{1} r n\left(Q_{i}\right)$. If $i>k$ then $r n\left(R_{i}\right) \prec_{\mathcal{R}}^{1} r n\left(T_{i h}\right)$, and so $r n(Q) \prec_{\mathcal{R}}^{1} r n\left(T_{i h}\right)$, for all $h \in\left\{1, \ldots, m_{i}\right\}$.
(i) Let $\boldsymbol{r}_{i} \triangleleft \boldsymbol{r}_{j}$. Four cases are possible.

Case 1: $i, j \leq k$. Then $i \in \operatorname{AutIn}\left(r n\left(Q_{j}\right)\right)$, and so $r n\left(Q_{j}\right) \prec_{\mathcal{R}}^{1} r n\left(Q_{i}\right)$. Similarly, if we had $\boldsymbol{r}_{j} \triangleleft \boldsymbol{r}_{i}$, then $r n\left(Q_{i}\right) \prec_{\mathcal{R}}^{1} r n\left(Q_{j}\right)$, which is impossible.

Case 2: $j \leq k$ and $i>k$. Then $i \in \operatorname{AutIn}\left(r n\left(Q_{j}\right)\right)$, and so $r n\left(Q_{j}\right) \prec_{\mathcal{R}}^{1} r n\left(T_{i h}\right)$, for all $h \in\left\{1, \ldots, m_{i}\right\}$. If $\boldsymbol{r}_{j} \triangleleft \boldsymbol{r}_{i}$ then there is $T_{i h_{0}}, 1 \leq h_{0} \leq m_{i}$, such that $j \in \operatorname{AutIn}\left(r n\left(T_{i h_{0}}\right)\right)$. Hence, $r n\left(T_{i h_{0}}\right) \prec_{\mathcal{R}}^{1} r n\left(Q_{j}\right)$, which is a contradiction.

Case 3: $i \leq k$ and $j>k$. This is a mirror image of case 2 .
Case 4: $i, j>k$. Then there is $T_{j h_{0}}, 1 \leq h_{0} \leq m_{j}$, such that $i \in \operatorname{AutIn}\left(r n\left(T_{j h_{0}}\right)\right)$, and so $r n\left(T_{j h_{0}}\right) \prec_{\mathcal{R}}^{1} r n\left(T_{i e}\right)$, for all $e \in\left\{1, \ldots, m_{i}\right\}$. Similarly, if we had $\boldsymbol{r}_{j} \triangleleft \boldsymbol{r}_{i}$, then there is $T_{i e_{0}}$, $1 \leq e_{0} \leq m_{i}$, such that $r n\left(T_{i e_{0}}\right) \prec_{\mathcal{R}}^{1} r n\left(T_{j h}\right)$, for all $h \in\left\{1, \ldots, m_{j}\right\}$, which is impossible.

The proof of (ii) is similar and left to the reader.
We will require the following notation. Let

$$
\boldsymbol{q} \boldsymbol{c}=\left\{\forall \mathfrak{A}_{R}^{p} . C \mid \forall R . C \in \operatorname{con}\left(C_{0}\right) \text { and } p \text { a state of } \mathfrak{A}_{R}\right\} .
$$

For a set $\Sigma \subseteq \boldsymbol{q} \boldsymbol{c}$ and a basic role P, we set

$$
\left.\Sigma\right|_{P} ^{\forall}=\left\{\forall \mathfrak{A}_{R}^{q} . C \mid \forall \mathfrak{A}_{R}^{p} . C \in \Sigma \text { and } q \in \delta_{\mathfrak{A}_{R}}(p, P)\right\} .
$$

Sometimes it will be convenient for us to write $\boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{0}\right)$ in place of $\boldsymbol{q} \boldsymbol{c}$ and assume that $\boldsymbol{r}_{0} \triangleleft \boldsymbol{r}_{i}$, for all $i, 1 \leq i \leq l$. Now, assuming that $\boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{j}\right)$ is defined for every $\boldsymbol{r}_{j} \triangleleft \boldsymbol{r}_{i}$ where $0 \leq j \leq l$ and $1 \leq i \leq l$, we define $\boldsymbol{q c}\left(\boldsymbol{r}_{i}\right)$ to be the set of all $\forall \mathfrak{A}_{i}^{q} \cdot \mathfrak{C}$ such that
$-q$ is a state of \mathfrak{A}_{i};

- for $i \leq k, \mathfrak{C}=\exists P_{i m_{i}}^{-} \cdots \exists P_{i 1}^{-} \cdot\left(t_{0}^{r}, t_{0}^{\forall}, t_{0}^{-}\right)$and $t_{0}^{r}=Q_{i} ;$
- for $i>k, \mathfrak{C}=\bigvee_{h=1}^{m_{i}}\left(t_{h}^{r}, t_{h}^{\forall}, t_{h}^{-}\right)$and $t_{h}^{r}=T_{i h}$;
$-\left.t_{h}^{\forall} \subseteq \bigcup_{\boldsymbol{r}_{j} \triangleleft \boldsymbol{r}_{i}} \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{j}\right)\right|_{t_{h}} ^{\forall} ;$
$-\left.t_{h}^{-} \subseteq \bigcup_{\boldsymbol{r}_{j} \triangleleft \boldsymbol{r}_{i}} \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{j}\right)\right|_{i n v\left(t_{h}^{r}\right)} ^{\forall}$.
For $\Sigma\left(\boldsymbol{r}_{i}\right) \subseteq \boldsymbol{q c}\left(\boldsymbol{r}_{i}\right)$ and a basic role P, let

$$
\left.\Sigma\left(\boldsymbol{r}_{i}\right)\right|_{P} ^{\forall}=\left\{\forall \mathfrak{A}_{i}^{q} \cdot \mathfrak{C} \mid \forall \mathfrak{A}_{i}^{p} \cdot \mathfrak{C} \in \Sigma\left(\boldsymbol{r}_{i}\right) \text { and } q \in \delta_{\mathfrak{A}_{i}}(p, P)\right\} .
$$

Finally, we set

$$
\boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)=\bigcup_{i=0}^{l} \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{i}\right),
$$

and, for $\Sigma \subseteq \boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)$ and a basic role P,

$$
\left.\Sigma\right|_{P} ^{\forall}=\left.\bigcup_{j=0}^{l}\left(\Sigma \cap \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{j}\right)\right)\right|_{P} ^{\forall} \quad \text { and }\left.\quad \Sigma\right|_{\varepsilon} ^{\forall}=\left\{\forall \mathfrak{A}^{q} \cdot \mathfrak{C} \mid \forall \mathfrak{A}^{p} . \mathfrak{C} \in \Sigma \text { and } q \in \delta_{\mathfrak{A}}(p, \varepsilon)\right\},
$$

where ε is the empty role chain. For $\Sigma \subseteq \boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)$ and $1 \leq i \leq l$, let

$$
\Xi\left(\boldsymbol{r}_{i}, \Sigma\right)= \begin{cases}\exists P_{i m_{i}}^{-} \ldots \exists P_{i 1}^{-} \cdot\left(t_{0}^{r}, t_{0}^{\forall}, t_{0}^{-}\right), t_{0}^{r}=Q_{i}, & \text { if } i \leq k, \tag{13}\\ \bigvee_{h=1}^{m_{i}}\left(t_{h}^{r}, t_{h}^{\forall}, t_{h}^{-}\right), t_{h}^{r}=T_{i h}, & \text { if } i>k,\end{cases}
$$

where $t_{h}^{\forall}=\Sigma\left|\underset{t_{h}^{r}}{\forall}, t_{h}^{-}=\Sigma \cap \boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)\right|_{\text {inv }\left(t_{h}^{r}\right)}^{\forall}, 0 \leq h \leq m_{i}$. Clearly, $\forall \mathfrak{A}_{i}^{s} .\left(\Xi\left(\boldsymbol{r}_{i}, \Sigma\right)\right) \in \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{i}\right)$. Intuitively, if Σ is the label of a node u, that is, $\Sigma=\mathfrak{a}(u)$, then $\Xi\left(\boldsymbol{r}_{i}, \Sigma\right)$ is the quasi-concept encoding the RA \boldsymbol{r}_{i} in the node u.

Example 17 Let $\mathcal{R}=\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\}$, where $\boldsymbol{r}_{1}=\left(R_{1} \sqsubseteq Q_{1} P_{1} P_{2}\right)$ and $\boldsymbol{r}_{2}=\left(R_{2} \sqsubseteq T_{1} \sqcup T_{2}\right)$. The NFAs for the roles in \mathcal{R} have two states: initial s and accepting a. Suppose

$$
\Sigma=\left\{\forall \mathfrak{A}_{Q_{1}}^{s} \cdot C_{1}, \forall \mathfrak{A}_{Q_{1}^{-}}^{a} \cdot C_{2}, \forall \mathfrak{A}_{T_{1}}^{s} \cdot C_{3}, \forall \mathfrak{A}_{T_{2}}^{s} \cdot C_{4}, \forall \mathfrak{A}_{T_{2}}^{s} \cdot C_{5}, \forall \mathfrak{A}_{T_{1}}^{a} \cdot C_{6}\right\} .
$$

Then

$$
\begin{aligned}
& \Xi\left(\boldsymbol{r}_{1}, \Sigma\right)=\exists P_{2}^{-} \cdot \exists P_{1}^{-} .\left(Q_{1},\left\{\forall \mathfrak{A}_{Q_{1}}^{a} . C_{1}\right\},\left\{\forall \mathfrak{A}_{Q_{1}^{-}}^{a} . C_{2}\right\}\right), \\
& \Xi\left(\boldsymbol{r}_{2}, \Sigma\right)=\left(T_{1},\left\{\forall \mathfrak{A}_{T_{1}}^{a} \cdot C_{3}\right\},\left\{\forall \mathfrak{A}_{T_{1}^{-}}^{a} \cdot C_{6}\right\}\right) \vee\left(T_{2},\left\{\forall \mathfrak{A}_{T_{2}}^{a} . C_{4}, \forall \mathfrak{A}_{T_{2}}^{a} . C_{5}\right\}, \emptyset\right) .
\end{aligned}
$$

Remark 18 If P is a symmetric role (i.e., $\left(P^{-} \sqsubseteq P\right) \in \mathcal{R}$), then each occurrence of P and $\operatorname{inv}(P)$ is treated as $r n(P)$. For example, $\left.\left\{\forall P . D, \forall P^{-} . C\right\}\right|_{P^{-}} ^{\forall}=\{D, C\}$.

We are now in a position to define $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ tableaux. Note that the most essential difference compared with the tableaux for $\mathcal{S R O I Q}$ (Horrocks et al., 2006) are the rules (p19), (p21) and (p22).

A tableau for C_{0} w.r.t. \mathcal{R} is a structure of the form $\boldsymbol{T}=(\boldsymbol{S}, \mathfrak{c}, \mathfrak{a}, \mathcal{E})$, where \boldsymbol{S} is non-empty set, $\mathfrak{c}: \boldsymbol{S} \rightarrow 2^{\operatorname{con}\left(C_{0}\right)}$, a: $\boldsymbol{S} \rightarrow 2^{\boldsymbol{q c}\left(C_{0}, \mathcal{R}\right)}, \mathcal{E}: \operatorname{role}\left(C_{0}, \mathcal{R}\right) \rightarrow 2^{\boldsymbol{S} \times \boldsymbol{S}}$ such that the following conditions hold:
(p1) $C_{0} \in \mathfrak{c}\left(u_{0}\right)$ for some $u_{0} \in \boldsymbol{S}$,
(p2) if $C \in \mathfrak{c}(u)$ then $\neg C \notin \mathfrak{c}(u)$, where C is either a concept name or \exists R.Self,
(p3) $\top \in \mathfrak{c}(u)$ and $\perp \notin \mathfrak{c}(u)$ for any u,
(p4) if $\exists R$.Self $\in \mathfrak{c}(u)$ then $(u, u) \in \mathcal{E}(R)$,
(p5) if $\neg \exists$ R.Self $\in \mathfrak{c}(u)$ then $(u, u) \notin \mathcal{E}(R)$,
(p6) if $\left(C_{1} \sqcap C_{2}\right) \in \mathfrak{c}(u)$ then $C_{1} \in \mathfrak{c}(u)$ and $C_{2} \in \mathfrak{c}(u)$,
(p7) if $\left(C_{1} \sqcup C_{2}\right) \in \mathfrak{c}(u)$ then $C_{1} \in \mathfrak{c}(u)$ or $C_{2} \in \mathfrak{c}(u)$,
(p8) if $\exists R . C \in \mathfrak{c}(u)$ then there is some $v \in \boldsymbol{S}$ with $(u, v) \in \mathcal{E}(R)$ and $C \in \mathfrak{c}(v)$,
(p9) $(u, v) \in \mathcal{E}(R)$ iff $(v, u) \in \mathcal{E}(\operatorname{inv}(R))$,
(p10) if $(\leq n S . C) \in \mathfrak{c}(u)$ then $\sharp\{v \in \boldsymbol{S} \mid(u, v) \in \mathcal{E}(S)$ and $C \in \mathfrak{c}(v)\} \leq n$,
(p11) if $(\geq n S . C) \in \mathfrak{c}(u)$ then $\sharp\{v \in \boldsymbol{S} \mid(u, v) \in \mathcal{E}(S)$ and $C \in \mathfrak{c}(v)\} \geq n$,
(p12) if $(\leq n S . C) \in \mathfrak{c}(u)$ and $(u, v) \in \mathcal{E}(S)$, then $C \in \mathfrak{c}(v)$ or $\neg C \in \mathfrak{c}(v)$,
(p13) if $o \in \mathfrak{c}(u) \cap \mathfrak{c}(v)$, for some $o \in \operatorname{nom}\left(C_{0}\right)$, then $v=u$,
(p14) for each $o \in \operatorname{nom}\left(C_{0}\right)$, there is some $v_{o} \in \boldsymbol{S}$ with $o \in \mathfrak{c}\left(v_{o}\right)$,
(p15) if $\operatorname{Dis}(R, S) \in \mathcal{R}$ then $\mathcal{E}(R) \cap \mathcal{E}(S)=\emptyset$,
(p16) if $(u, v) \in \mathcal{E}(R)$ and $R \sqsubseteq^{*} S$, then $(u, v) \in \mathcal{E}(S),{ }^{2}$
(p17) if $\forall R . C \in \mathfrak{c}(u)$ then $\forall \mathfrak{A}_{R}^{s} . C \in \mathfrak{a}(u)$, where s is the initial state of \mathfrak{A}_{R},
(p18) if $\forall \mathfrak{A}{ }_{R}^{a} . C \in \mathfrak{a}(u)$, where a is an accepting state, then $C \in \mathfrak{c}(u)$,
(p19) $\forall \mathfrak{A}_{i}^{s} \cdot \mathfrak{C} \in \mathfrak{a}(u)$, where s is the initial state of \mathfrak{A}_{i} and $\mathfrak{C}=\Xi\left(\boldsymbol{r}_{i}, \mathfrak{a}(u)\right)$, for all $u \in \boldsymbol{S}$ and $1 \leq i \leq l$,
(p20) if $(u, v) \in \mathcal{E}(R)$ then $\left.\mathfrak{a}(u)\right|_{R} ^{\forall} \subseteq \mathfrak{a}(v)$,
(p21) if $\forall \mathfrak{A}_{i}^{a} \cdot \mathfrak{C} \in \mathfrak{a}(u)$, where $i \leq k, \mathfrak{C}=\exists \operatorname{inv}\left(P_{i m_{i}}\right) \cdot \cdots \exists \operatorname{inv}\left(P_{i 1}\right) .\left(t^{r}, t^{\forall}, t^{-}\right)$and a is an accepting state, then there are $v_{0}, v_{1}, \ldots, v_{m_{i}}=u$ such that $\left(v_{j}, v_{j-1}\right) \in \mathcal{E}\left(\operatorname{inv}\left(P_{i j}\right)\right)$, for $1 \leq j \leq m_{i}, t^{\forall} \subseteq \mathfrak{a}\left(v_{0}\right)$ and $\left.\mathfrak{a}\left(v_{0}\right)\right|_{\text {inv }\left(t^{r}\right)} ^{\forall} \subseteq t^{-}$,
(p22) if $\forall \mathfrak{A}_{i}^{a} \cdot \mathfrak{C} \in \mathfrak{a}(u)$, where a is an accepting state, $i>k$ and $\mathfrak{C}=\bigvee_{h=1}^{m_{i}}\left(t_{h}^{r}, t_{h}^{\forall}, t_{h}^{-}\right)$, then there is $j \in\left\{1, \ldots, m_{i}\right\}$ such that $t_{j}^{\forall} \subseteq \mathfrak{a}(u)$ and $\left.\mathfrak{a}(u)\right|_{\operatorname{inv}\left(t_{j}^{r}\right)} ^{\forall} \subseteq t_{j}^{-}$,
$\left(\left.\mathbf{p 2 3)} \mathfrak{a}(u)\right|_{\varepsilon} ^{\forall} \subseteq \mathfrak{a}(u)\right.$.
Let $\boldsymbol{T}=(\boldsymbol{S}, \mathfrak{c}, \mathfrak{a}, \mathcal{E})$ be a tableau, R a basic role and $u, v \in \boldsymbol{S}$. If $\left.\mathfrak{a}(u)\right|_{R} ^{\forall} \subseteq \mathfrak{a}(v)$ and $\left.\mathfrak{a}(v)\right|_{\text {inv }} ^{\forall} \underset{(R)}{ } \subseteq \mathfrak{a}(u)$, then we write $\operatorname{ar}(R, u, v)$. If there is an R-arrow from u to v then $\operatorname{ar}(R, u, v)$ holds; see Proposition 20 (i). On the other hand, the meaning of $\operatorname{ar}(R, u, v)$ is that we can always insert an R-arrow (for a non-simple role R) from u to v without violating any of the tableau conditions.

Lemma 19 A concept C_{0} is satisfiable w.r.t. a $\mathcal{S R}^{+} \mathcal{O I Q}$ RBox \mathcal{R} if and only if there exists a tableau for C_{0} w.r.t. \mathcal{R}.

Proof. (\Leftarrow) Let $\boldsymbol{T}=(\boldsymbol{S}, \mathfrak{c}, \mathfrak{a}, \mathcal{E})$ be a tableau for C_{0} w.r.t. \mathcal{R}. Define an interpretation $\mathcal{I}=\left(\Delta^{\mathcal{I}}, \mathcal{I}^{\mathcal{I}}\right)$ by taking $\Delta^{\mathcal{I}}=\boldsymbol{S}, C^{\mathcal{I}}=\{u \mid C \in \mathfrak{c}(u)\}$, for a concept name $C \in \operatorname{con}\left(C_{0}\right)$. For a role name R, we define $\overline{\mathcal{E}}(R)$ (by induction on $\prec_{\mathcal{R}}^{1}$) and $R^{\mathcal{I}}$ in the following way. For a role name R, we define $\overline{\mathcal{E}}(R)$ and $R^{\mathcal{I}}$ by induction on $\prec_{\mathcal{R}}^{1}$ in the following way. For $\prec_{\mathcal{R}^{-}}^{1}$ minimal R, we set $\overline{\mathcal{E}}(R)=\mathcal{E}(R)$. We extend $\overline{\mathcal{E}}(\cdot)$ with $\overline{\mathcal{E}}(\operatorname{inv}(R))=\{(u, v) \mid(v, u) \in \overline{\mathcal{E}}(R)\}$
2. Here \sqsubseteq^{*} is the transitive closure of \sqsubseteq.
and $\overline{\mathcal{E}}\left(S_{1} \ldots S_{n}\right)=\overline{\mathcal{E}}\left(S_{1}\right) \circ \cdots \circ \overline{\mathcal{E}}\left(S_{n}\right)$. Suppose now that $\overline{\mathcal{E}}(S)$ is defined for all $S \prec_{\mathcal{R}}^{1} R$. Then we set, where $w_{i}=P_{i 1} \ldots P_{i m_{i}}$ and $\mathcal{E}\left(w_{i}\right)=\mathcal{E}\left(P_{i 1}\right) \circ \cdots \circ \mathcal{E}\left(P_{i m_{i}}\right)$,

$$
\begin{aligned}
\overline{\mathcal{E}}(R)= & \mathcal{E}(R) \cup \\
& \bigcup_{\left\{i \mid R=Q_{i}\right\}}\left\{(u, v) \mid \operatorname{ar}(R, u, v) \& \exists \varrho \in L\left(\mathfrak{A}_{i}\right) \exists z\left((u, z) \in \overline{\mathcal{E}}(\varrho) \wedge(v, z) \in \mathcal{E}\left(w_{i}\right)\right)\right\} \cup \\
& \bigcup_{\left\{i \mid R=i n v\left(Q_{i}\right)\right\}}\left\{(u, v) \mid \operatorname{ar}(R, u, v) \& \exists \varrho \in L\left(\mathfrak{A}_{i}\right) \exists z\left((v, z) \in \overline{\mathcal{E}}(\varrho) \wedge(u, z) \in \mathcal{E}\left(w_{i}\right)\right)\right\} \cup \\
& \bigcup_{\{i \mid \exists j}\left\{(u, v) \mid \operatorname{ar}(R, u, v) \& \exists \varrho \in L\left(\mathfrak{A}_{i j}\right)(u, v) \in \overline{\mathcal{E}}(\varrho)\right\} \cup \\
& \bigcup_{\left\{i \mid \exists j=i n v\left(T_{i j}\right)\right\}}\left\{(u, v) \mid \operatorname{ar}(R, u, v) \& \exists \varrho \in L\left(\mathfrak{A}_{i}\right)(v, u) \in \overline{\mathcal{E}}(\varrho)\right\}, \\
R^{\mathcal{I}}= & \left\{\left(u_{0}, u_{n}\right) \mid \exists u_{1}, \ldots, u_{n-1}\left(\left(u_{i}, u_{i+1}\right) \in \overline{\mathcal{E}}\left(S_{i+1}\right) \wedge S_{1} S_{2} \ldots S_{n} \in L\left(\mathfrak{A}_{R}\right)\right)\right\} .
\end{aligned}
$$

We need $\overline{\mathcal{E}}(R)$ to adjust $\mathcal{E}(R)$ by taking account of the omitted R-arrows for RIs of the form (C)-(F) as we do not use these RIs in the construction of \mathfrak{A}_{R}. The picture below illustrates such a situation for a role Q and two RIs $Q Q \sqsubseteq Q$ and $R \sqsubseteq Q P\left(\mathcal{E}(Q) \subseteq \overline{\mathcal{E}}(Q) \subseteq Q^{\mathcal{I}}\right)$.

We have to show that \mathcal{I} is a model of C_{0} and \mathcal{R}. To this end, we require the following:
Proposition 20 (i) If $(u, v) \in \mathcal{E}(R)$ then $\operatorname{ar}(R, u, v)$.
(ii) If $(u, v) \in \overline{\mathcal{E}}(R)$ then $\operatorname{ar}(R, u, v)$.
(iii) If $\varrho \in L(\mathfrak{A}),(u, v) \in \overline{\mathcal{E}}(\varrho)$ and $\forall \mathfrak{A}^{s} . \mathfrak{C} \in \mathfrak{a}(u)$ then $\forall \mathfrak{A}^{a} . \mathfrak{C} \in \mathfrak{a}(v)$.
(iv) If $(u, v) \in R^{\mathcal{I}}$ and $\forall \mathfrak{A}_{R}^{s} \cdot \mathfrak{C} \in \mathfrak{a}(u)$ then $\forall \mathfrak{A}_{R}^{a} \cdot \mathfrak{C} \in \mathfrak{a}(v)$.

Proof. (i) Follows from (p20) and (p9). More precisely, if $(u, v) \in \mathcal{E}(R)$ then, by (p9), $(v, u) \in \mathcal{E}(\operatorname{inv}(R))$. By (p20), $(u, v) \in \mathcal{E}(R)$ implies $\left.\mathfrak{a}(u)\right|_{R} ^{\forall} \subseteq \mathfrak{a}(v)$, while $(v, u) \in \mathcal{E}(\operatorname{inv}(R))$ implies $\left.\mathfrak{a}(v)\right|_{\text {inv }(R)} ^{\forall} \subseteq \mathfrak{a}(u)$. Thus, we obtain $\operatorname{ar}(R, u, v)$.
(ii) Follows from (i) and the definition of $\overline{\mathcal{E}}(R)$.
(iii) Let $\varrho=S_{1} \ldots S_{n}$. Since $(u, v) \in \overline{\mathcal{E}}(\varrho)$, we have $u=u_{0}, \ldots, u_{n}=v$ with $\left(u_{i-1}, u_{i}\right) \in$ $\overline{\mathcal{E}}\left(S_{i}\right)$, for $i=1, \ldots, n$. On other hand, since $S_{1} \ldots S_{n} \in L(\mathfrak{A})$, there are $s=p_{0}, \ldots, p_{n}=a$ such that $p_{i} \in \delta_{\mathfrak{A}}\left(p_{i-1}, S_{i}\right)$. We have $\forall \mathfrak{A}^{p_{0}} \cdot \mathfrak{C} \in \mathfrak{a}\left(u_{0}\right)$. If $\forall \mathfrak{A}^{p_{i}} \cdot \mathfrak{C} \in \mathfrak{a}\left(u_{i}\right), i<n$, then (ii) and $p_{i+1} \in \delta_{\mathfrak{A}}\left(p_{i}, S_{i+1}\right),\left(u_{i}, u_{i+1}\right) \in \overline{\mathcal{E}}\left(S_{i+1}\right)$ give $\forall \mathfrak{A}^{p_{i+1}} \cdot \mathfrak{C} \in \mathfrak{a}\left(u_{i+1}\right)$. So $\forall \mathfrak{A}^{a} . \mathfrak{C} \in \mathfrak{a}(v)$.
(iv) Follows from (iii) and the definition of $R^{\mathcal{I}}$.

We show now that \mathcal{I} is a model of \mathcal{R} by considering all types of constraints.
$\operatorname{Dis}\left(S_{1}, S_{2}\right)$: Then the S_{i} are simple roles, $S_{i}^{\mathcal{I}}=\mathcal{E}\left(S_{i}\right)$, and so, by (p 15), $S_{1}^{\mathcal{I}} \cap S_{2}^{\mathcal{I}}=\emptyset$.
$S_{1} \sqsubseteq S_{2}$: The S_{i} are simple roles and $S_{i}^{\mathcal{I}}=\mathcal{E}\left(S_{i}\right)$. Thus, if $(u, v) \in S_{1}^{\mathcal{I}}$ then $(u, v) \in \mathcal{E}\left(S_{1}\right)$ and, by $(\mathrm{p} 16),(u, v) \in \mathcal{E}\left(S_{2}\right) ;$ hence $(u, v) \in S_{2}^{\mathcal{I}}$.
$S_{1} \ldots S_{n} \sqsubseteq R$: We have $S_{1} \ldots S_{n} \in L\left(\mathfrak{A}_{R}\right)$. If $(u, v) \in\left(S_{1} \ldots S_{n}\right)^{\mathcal{I}}$ then there are $u=$ $u_{0}, \ldots, u_{n}=v$ such that $\left(u_{i-1}, u_{i}\right) \in\left(S_{i}\right)^{\mathcal{I}}$, for $i=1, \ldots, n$. By the definition of $\left(S_{i}\right)^{\mathcal{I}}$, there are $u_{i-1}=u_{0}^{i}, \ldots, u_{n_{i}}^{i}=u_{i}$ with $\left(u_{j-1}^{i}, u_{j}^{i}\right) \in \overline{\mathcal{E}}\left(S_{j}^{i}\right)$, for $1 \leq j \leq n_{i}$, and $S_{1}^{i} S_{2}^{i} \ldots S_{n_{i}}^{i} \in L\left(\mathfrak{A}_{S_{i}}\right)$. Therefore, $S_{1}^{1} \ldots S_{n_{1}}^{1} S_{1}^{2} \ldots S_{n_{n}}^{n} \in L\left(\mathfrak{A}_{R}\right)$ and $(u, v) \in R^{\mathcal{I}}$.
$R R \sqsubseteq R, R S_{1} \ldots S_{n} \sqsubseteq R$ and $S_{1} \ldots S_{n} R \sqsubseteq R$ are considered analogously.
$R^{-} \sqsubseteq R$: As mentioned earlier, each occurrence of R^{-}is treated as R. It follows that $(u, v) \in \mathcal{E}(R)$ if and only if $(v, u) \in \mathcal{E}(R)$, and $(u, v) \in \overline{\mathcal{E}}(R)$ if and only if $(v, u) \in \overline{\mathcal{E}}(R)$. In addition, $(u, v) \in R^{\mathcal{I}}$ if and only if $(v, u) \in R^{\mathcal{I}}$. Indeed, let $(u, v) \in R^{\mathcal{I}}$. Then, by the definition of $R^{\mathcal{I}}$, there exist $u=u_{0}, u_{1}, \ldots, u_{n}=v$ with $\left(u_{i}, u_{i+1}\right) \in \overline{\mathcal{E}}\left(S_{i+1}\right)$ and $S_{1} S_{2} \ldots S_{n} \in L\left(\mathfrak{A}_{R}\right)$. Now we have $\left(u_{i+1}, u_{i}\right) \in \overline{\mathcal{E}}\left(i n v\left(S_{i+1}\right)\right)$ and, by the construction of $\mathfrak{A}_{R}, \operatorname{inv}\left(S_{n}\right) \ldots \operatorname{inv}\left(S_{1}\right) \in L\left(\mathfrak{A}_{R}\right)$, and so $(v, u) \in R^{\mathcal{I}}$.
$R_{i} \sqsubseteq Q_{i} P_{i 1} \ldots P_{i m_{i}}$: Let $(u, v) \in R_{i}^{\mathcal{I}}$. Then, by (p19), we have $\forall \mathfrak{A}_{i}^{s} \cdot \mathfrak{C} \in \mathfrak{a}(u)$, where s is the initial state of \mathfrak{A}_{i} and $\mathfrak{C}=\Xi\left(\boldsymbol{r}_{i}, \mathfrak{a}(u)\right)=\exists \operatorname{inv}\left(P_{i m_{i}}\right) . \cdots \exists \operatorname{inv}\left(P_{i 1}\right) \cdot\left(Q_{i},\left.\mathfrak{a}(u)\right|_{Q_{i}} ^{\forall}, \mathfrak{a}(u) \cap\right.$ $\left.\left.\boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)\right|_{i n v\left(Q_{i}\right)} ^{\forall}\right)$. By Proposition $20, \forall \mathfrak{A}_{i}^{a} \cdot \mathfrak{C} \in \mathfrak{a}(v)$, where a is an accepting state. Now, by $(\mathrm{p} 21)$, there are $v_{0}, v_{1}, \ldots, v_{m_{i}}=v$ such that $\left(v_{j}, v_{j-1}\right) \in \mathcal{E}\left(i n v\left(P_{i j}\right)\right)$, $\left.\mathfrak{a}(u)\right|_{Q_{i}} ^{\forall} \subseteq \mathfrak{a}\left(v_{0}\right)$ and $\left.\left.\mathfrak{a}\left(v_{0}\right)\right|_{i n v\left(Q_{i}\right)} ^{\forall} \subseteq \mathfrak{a}(u) \cap \boldsymbol{q c}\left(C_{0}, \mathcal{R}\right)\right|_{i n v\left(Q_{i}\right)} ^{\forall} \subseteq \mathfrak{a}(u)$, that is, $\left(v_{0}, v\right) \in$ $\left(P_{i 1} \ldots P_{i m_{i}}\right)^{\mathcal{I}}$ and $\operatorname{ar}\left(Q_{i}, u, v_{0}\right)$. Hence, $\left(u, v_{0}\right) \in Q_{i}^{\mathcal{I}}$ and $(u, v) \in\left(Q_{i} P_{i 1} \ldots P_{i m_{i}}\right)^{\mathcal{I}}$.
$R_{i} \sqsubseteq T_{i 1} \sqcup \cdots \sqcup T_{i m_{i}}$: Let $(u, v) \in R_{i}^{\mathcal{I}}$. Then, by (p19), we have $\forall \mathfrak{A}_{i}^{s} \cdot \mathfrak{C} \in \mathfrak{a}(u)$, where s is the initial state of \mathfrak{A}_{i} and $\mathfrak{C}=\Xi\left(\boldsymbol{r}_{i}, \mathfrak{a}(u)\right)=\bigvee_{h=1}^{m_{i}}\left(T_{i h},\left.\mathfrak{a}(u)\right|_{T_{i h}} ^{\forall},\left.\mathfrak{a}(u) \cap \boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)\right|_{i n v\left(T_{i h}\right)} ^{\forall}\right)$. By Proposition 20, $\forall \mathfrak{A}_{i}^{a} \cdot \mathfrak{C} \in \mathfrak{a}(v)$, where a is an accepting state. Now, by (p22), there is $j \in\left\{1, \ldots, m_{i}\right\}$ such that $\left.\mathfrak{a}(u)\right|_{T_{i j}} ^{\forall} \subseteq \mathfrak{a}(v)$ and $\left.\left.\mathfrak{a}(v)\right|_{i n v\left(T_{i j}\right)} ^{\forall} \subseteq \mathfrak{a}(u) \cap \boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)\right|_{i n v\left(T_{i j}\right)} ^{\forall} \subseteq$ $\mathfrak{a}(u)$, i.e., $\operatorname{ar}\left(T_{i j}, u, v\right)$. Hence, $(u, v) \in T_{i j}^{\mathcal{I}}$ and $(u, v) \in\left(T_{i 1} \sqcup \cdots \sqcup T_{i m_{i}}\right)^{\mathcal{I}}$.
$R_{i}=Q_{i} P_{i 1} \ldots P_{i m_{i}}$: Let $(u, v) \in R_{i}^{\mathcal{I}}$. Then there exists a role chain $\varrho \in L\left(\mathfrak{A}_{R_{i}}\right)$ such that $(u, v) \in \overline{\mathcal{E}}(\varrho)$. If $\varrho \in L\left(\mathfrak{A}_{i}\right)$ then $(u, v) \in\left(Q_{i} P_{i 1} \ldots P_{i m_{i}}\right)^{\mathcal{I}}$, and the proof is same as for $R_{i} \sqsubseteq Q_{i} P_{i 1} \ldots P_{i m_{i}}$. So suppose $\varrho \notin L\left(\mathfrak{A}_{i}\right)$ is shortest possible. Since $\varrho \sqsubseteq_{\mathcal{R}^{\prime}}^{*} R_{i}$, there is a sequence $\varrho \sqsubseteq \boldsymbol{r}_{1} \varrho_{1} \sqsubseteq \boldsymbol{r}_{2} \cdots \sqsubseteq \boldsymbol{r}_{n} \varrho_{n} \sqsubseteq \boldsymbol{r}_{n+1} R_{i}$, where $\boldsymbol{r}_{j} \in \mathcal{R}^{\prime}$, for $1 \leq j \leq n+1$, and at least one \boldsymbol{r}_{j} is not in \mathcal{R}^{i}. If $\boldsymbol{r}_{j} \notin \mathcal{R}^{i}$, for $j<n+1$, then we can find a shorter ϱ, and so $\boldsymbol{r}_{n+1}=\left(Q_{i} P_{i 1} \ldots P_{i m_{i}} \sqsubseteq R_{i}\right)$. Therefore, $\varrho=\varrho_{0}^{\prime} \varrho_{1}^{\prime} \ldots \varrho_{m_{i}}^{\prime}$ is such that $\varrho_{0}^{\prime} \sqsubseteq_{\mathcal{R}^{\prime}}^{*} Q_{i}$ and $\varrho_{j}^{\prime} \sqsubseteq_{\mathcal{R}^{\prime}}^{*} P_{i j}$, for $1 \leq j \leq m_{i}$. Thus, $(u, v) \in\left(Q_{i} P_{i 1} \ldots P_{i m_{i}}\right)^{\mathcal{I}}$.
Let now $(u, v) \in\left(Q_{i} P_{i 1} \ldots P_{i m_{i}}\right)^{\mathcal{I}}$. Then there exists v_{0} such that $\left(u, v_{0}\right) \in Q_{i}^{\mathcal{I}}$ and $\left(v_{0}, v\right) \in\left(P_{i 1} \ldots P_{i m_{i}}\right)^{\mathcal{I}}$. In the case $\left(u, v_{0}\right) \in \overline{\mathcal{E}}\left(Q_{i}\right) \backslash \mathcal{E}\left(Q_{i}\right)$ then by construction of $\overline{\mathcal{E}}\left(Q_{i}\right)$ we have $\left(\exists \varrho \in L\left(\mathfrak{A}_{i}\right)\right)(\exists z)(u, z) \in \overline{\mathcal{E}}(\varrho)$. If $v=z$ then we have $(u, v) \in R_{i}^{\mathcal{I}}$. Otherwise the proof is same as for $Q_{i} P_{i 1} \ldots P_{i m_{i}} \sqsubseteq R_{i}$.
$R_{i}=T_{i 1} \sqcup \cdots \sqcup T_{i m_{i}}$: Similar to the previous case.
To prove that \mathcal{I} satisfies C_{0}, we show that

$$
\begin{equation*}
C \in \mathfrak{c}(u) \text { implies } u \in C^{\mathcal{I}}, \text { for each } u \in \boldsymbol{S} \text { and each } C \in \operatorname{con}\left(C_{0}\right) \tag{14}
\end{equation*}
$$

Together with (p 1), this will imply $u_{0} \in\left(C_{0}\right)^{\mathcal{I}}$. We prove (14) by induction on the construction of concepts. If C is a concept name then (14) follows from the definition. For \perp and \top, it follows from (p3), and for $C_{1} \sqcap C_{2}, C_{1} \sqcup C_{2}, \exists R . C, \geq q S . C$, and $\exists S . S e l f$, from (p 6), (p 7), (p 8), (p 11) and (p 4). The case of $\neg C$ follows from (p 2) and (p 5) and case of $\leq q S . C$ follows from (p10) and (p12). Consider now the (only interesting) case $C \equiv \forall R . D$. Let $\forall R . D \in \mathfrak{c}(u)$ and $(u, v) \in R^{\mathcal{I}}$. By (p 17) we have $\forall \mathfrak{A}_{R}^{s} . D \in \mathfrak{a}(u)$, where s is the initial state. Therefore, by Proposition 20, we have $\forall \mathfrak{A}_{R}^{a} . D \in \mathfrak{a}(v)$ and a is an accepting state. Now, by (p18), $D \in \mathfrak{c}(v)$; by IH, $v \in D^{\mathcal{I}}$, and thus $u \in(\forall R . D)^{\mathcal{I}}$.

For $o \in \operatorname{nom}\left(C_{0}\right)$, by (p 14), there is v_{o} with $o \in \mathfrak{c}\left(v_{o}\right)$, and so $v_{o} \in o^{\mathcal{I}}$. If $u \in o^{\mathcal{I}}$ then $o \in \mathfrak{c}(u)$, and so, by (p13), $u=v_{o}$. Thus, $o^{\mathcal{I}}$ is a singleton set.
(\Rightarrow) Suppose $\mathcal{I}=\left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}\right)$ is a model of C_{0} and \mathcal{R}. We define $\boldsymbol{T}=(\boldsymbol{S}, \mathfrak{c}, \mathfrak{a}, \mathcal{E})$ by taking

$$
\boldsymbol{S}=\Delta^{\mathcal{I}}, \quad \mathcal{E}(R)=R^{\mathcal{I}}, \quad \mathfrak{c}(u)=\left\{C \in \operatorname{con}\left(C_{0}\right) \mid u \in C^{\mathcal{I}}\right\} \cup\{\top\}
$$

and define $\mathfrak{a}(u)$ as follows. First, we define by induction on \triangleleft auxiliary sets $\mathfrak{a}^{\prime}(u, \boldsymbol{r})$, where \boldsymbol{r} is an RI of the from (C)-(F). Recalling that $\boldsymbol{r}_{0} \triangleleft \boldsymbol{r}_{i}$ for all $i, 1 \leq i \leq l$, we set

$$
\begin{aligned}
\mathfrak{a}^{\prime}\left(u, \boldsymbol{r}_{0}\right)= & \left\{\forall \mathfrak{A}_{R}^{s} . C \mid s \text { is the initial state, } \forall R . C \in \operatorname{con}\left(C_{0}\right) \text { and } u \in(\forall R . C)^{\mathcal{I}}\right\} \cup \\
& \left\{\forall \mathfrak{A}_{R}^{q} . C \in \boldsymbol{q c} \mid \text { for all } S_{1} S_{2} \ldots S_{n} \in L\left(\mathfrak{A}_{R}^{q}\right), u \in\left(\forall S_{1} \cdot \forall S_{2} \cdots \forall S_{n} . C\right)^{\mathcal{I}}\right. \\
& \text { and if } \left.\varepsilon \in L\left(\mathfrak{A}_{R}^{q}\right) \text { then } u \in C^{\mathcal{I}}\right\} .
\end{aligned}
$$

Then, assuming that $\mathfrak{a}^{\prime}\left(u, \boldsymbol{r}^{\prime}\right)$ is defined for every $\boldsymbol{r}^{\prime} \triangleleft \boldsymbol{r}_{\boldsymbol{i}}$, we set

$$
\begin{aligned}
\mathfrak{a}^{\prime}\left(u, \boldsymbol{r}_{i}\right)=\left\{\forall \mathfrak{A}_{i}^{q} \cdot \mathfrak{C} \mid \exists v \in \Delta^{\mathcal{I}} \exists w \in\left(\operatorname{role}\left(C_{0}, \mathcal{R}\right)\right)^{*}(w, q)\right. & \in \operatorname{prefix} L\left(\mathfrak{A}_{i}\right) \\
& \left.(v, u) \in(w)^{\mathcal{I}}, \mathfrak{C}=\Xi\left(\boldsymbol{r}_{i}, \bigcup_{r^{\prime} \triangleleft \boldsymbol{r}_{i}} \mathfrak{a}^{\prime}\left(v, \boldsymbol{r}^{\prime}\right)\right)\right\},
\end{aligned}
$$

where $(w)^{\mathcal{I}}=S_{1}^{\mathcal{I}} \ldots S_{n}^{\mathcal{I}}$, for $w=S_{1} \ldots S_{n}$, and

$$
\operatorname{prefix} L\left(\mathfrak{A}_{i}\right)=\left\{(w, q) \mid q \text { a state in } \mathfrak{A}_{i}, \forall w^{\prime} \in L\left(\mathfrak{A}_{i}^{q}\right) w w^{\prime} \in L\left(\mathfrak{A}_{i}\right)\right\} .
$$

Note that $\left\{\forall \mathfrak{A}_{i}^{s} \cdot \mathfrak{C} \mid s\right.$ the initial state, $\mathfrak{C}=\Xi\left(\boldsymbol{r}_{i}, \bigcup_{r^{\prime} \triangleleft \boldsymbol{r}_{i}} \mathfrak{a}^{\prime}\left(u, \boldsymbol{r}^{\prime}\right)\right\} \subseteq \mathfrak{a}^{\prime}\left(u, \boldsymbol{r}_{i}\right)$.
Finally, we set

$$
\mathfrak{a}(u)=\bigcup_{j=0}^{l} \mathfrak{a}^{\prime}\left(u, \boldsymbol{r}_{j}\right)
$$

We now prove that \boldsymbol{T} is a tableau for C_{0} w.r.t. \mathcal{R}. Properties (p1)-(p16) follow immediately from the definitions of \mathfrak{c} and \mathcal{E}, while (p17)-(p19) follow from the definitions of $\mathfrak{c}(u)$ and $\mathfrak{a}(u)$. For $(\mathrm{p} 20)$, suppose $(u, v) \in \mathcal{E}(R), \forall \mathfrak{A}^{p} \cdot \mathfrak{C} \in \mathfrak{a}(u)$ and $q \in \delta_{\mathfrak{A}}(p, R)$. Then $\forall \mathfrak{A}^{p}$. $\mathfrak{C} \in \mathfrak{a}^{\prime}\left(u, \boldsymbol{r}_{i}\right)$, for some i. If $i>0$ then $\mathfrak{A}=\mathfrak{A}_{i}$ and, by the definition of $\mathfrak{a}^{\prime}\left(u, \boldsymbol{r}_{i}\right)$, there are $u^{\prime} \in \Delta^{\mathcal{I}}$ and $w \in\left(\operatorname{role}\left(C_{0}, \mathcal{R}\right)\right)^{*}$ with $\mathfrak{C}=\Xi\left(\boldsymbol{r}_{i}, \bigcup_{r^{\prime} \triangleleft \boldsymbol{r}_{i}} \mathfrak{a}^{\prime}\left(u^{\prime}, \boldsymbol{r}^{\prime}\right)\right)$, $(w, p) \in \operatorname{prefix} L(\mathfrak{A})$ and $\left(u^{\prime}, u\right) \in(w)^{\mathcal{I}}$. Let $w^{\prime}=w R$. Then $\left(w^{\prime}, q\right) \in \operatorname{prefix} L(\mathfrak{A})$ and $\left(u^{\prime}, v\right) \in\left(w^{\prime}\right)^{\mathcal{I}}$, so $\forall \mathfrak{A}^{q} . \mathfrak{C} \in \mathfrak{a}^{\prime}\left(v, \boldsymbol{r}_{i}\right) \subseteq \mathfrak{a}(v)$.

For $i=0$ (i.e., when \mathfrak{C} is a concept C and $\forall \mathfrak{A}^{p} . C \in \mathfrak{a}^{\prime}\left(u, \boldsymbol{r}_{0}\right)$), suppose $\forall \mathfrak{A}^{q} . C \notin \mathfrak{a}^{\prime}\left(v, \boldsymbol{r}_{0}\right)$. By the definition of $\mathfrak{a}^{\prime}\left(v, \boldsymbol{r}_{0}\right)$, this can be for two reasons (Horrocks et al., 2006):

- There is $S_{2} \ldots S_{n} \in L\left(\mathfrak{A}^{q}\right)$ and $v \notin\left(\forall S_{2} \ldots \forall S_{n} . C\right)^{\mathcal{I}}$. However, this implies that $R S_{2} \ldots S_{n} \in L\left(\mathfrak{A}^{p}\right)$ and $u \notin\left(\forall R . \forall S_{2} \ldots \forall S_{n} . C\right)^{\mathcal{I}}$, contrary to $\forall \mathfrak{A}^{p} . C \in \mathfrak{a}^{\prime}(u)$.
$-\varepsilon \in L\left(\mathfrak{A}^{q}\right)$ and $v \notin C^{\mathcal{I}}$. But then $R \in L\left(\mathfrak{A}^{p}\right)$ and $u \notin(\forall R . C)^{\mathcal{I}}$, which is again a contradiction.

Therefore, $\forall \mathfrak{A}^{q} . C \in \mathfrak{a}^{\prime}\left(v, \boldsymbol{r}_{0}\right)$, and so $\left.\mathfrak{a}(u)\right|_{R} ^{\forall} \subseteq \mathfrak{a}(v)$.
To show (p 21) and (p 22), suppose $\forall \mathfrak{A}_{i}^{a} \cdot \mathfrak{C} \in \mathfrak{a}(u)$, where a is an accepting state. By the definition of $\mathfrak{a}(u)$, there are $v \in \Delta^{\mathcal{I}}$ and $w \in\left(\operatorname{role}\left(C_{0}, \mathcal{R}\right)\right)^{*}$ such that $(w, a) \in \operatorname{prefix} L\left(\mathfrak{A}_{i}\right)$, $(v, u) \in(w)^{\mathcal{I}}$ and $\mathfrak{C}=\Xi\left(\boldsymbol{r}_{i}, \bigcup_{\boldsymbol{r}^{\prime} \triangleleft \boldsymbol{r}_{i}} \mathfrak{a}^{\prime}\left(v, \boldsymbol{r}^{\prime}\right)\right)=\Xi\left(\boldsymbol{r}_{i}, \mathfrak{a}(v)\right)$. Since a is an accepting state, we have $w \in L\left(\mathfrak{A}_{i}\right)$, and so $(v, u) \in\left(R_{i}\right)^{\mathcal{I}}$.

For $(\mathrm{p} 21)$-i.e., $i \leq k$-we have $\mathfrak{C}=\exists \operatorname{inv}\left(P_{i m_{i}}\right) \cdot \cdots \exists \operatorname{inv}\left(P_{i 1}\right) \cdot\left(t^{r}, t^{\forall}, t^{-}\right)$, where $t^{r}=Q_{i}$, $t^{\forall}=\left.\mathfrak{a}(v)\right|_{Q_{i}} ^{\forall}, t^{-}=\left.\mathfrak{a}(v) \cap \boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)\right|_{i n v\left(Q_{i}\right)} ^{\forall}$. We also have $(v, u) \in\left(Q_{i} P_{i 1} \ldots P_{i m_{i}}\right)^{\mathcal{I}}$, and there are $v_{0}, v_{1}, \ldots, v_{m_{i}}=u$ such that $\left(v_{j-1}, v_{j}\right) \in P_{i j}^{\mathcal{I}}$ and $\left(v, v_{0}\right) \in Q_{i}^{\mathcal{I}}$. Therefore, by $(\mathrm{p} 20), t^{\forall} \subseteq \mathfrak{a}\left(v_{0}\right)$ and $\left.\mathfrak{a}\left(v_{0}\right)\right|_{i n v\left(t^{r}\right)} ^{\forall} \subseteq t^{-}$.

For $(\mathrm{p} 22)$-i.e., $i>k$-we have $\mathfrak{C}=\bigvee_{h=1}^{m_{i}}\left(t_{h}^{r}, t_{h}^{\forall}, t_{h}^{-}\right)$, where $t_{h}^{r}=T_{i h}, t_{h}^{\forall}=\left.\mathfrak{a}(v)\right|_{T_{i h}} ^{\forall}$, $t_{h}^{-}=\left.\mathfrak{a}(v) \cap \boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)\right|_{i n v\left(T_{i h}\right)} ^{\forall}$ for $1 \leq h \leq m_{i}$. We also have $(v, u) \in\left(T_{i 1} \sqcup \cdots \sqcup T_{i m_{i}}\right)^{\mathcal{I}}$, and there is $j \in\left\{1, \ldots, m_{i}\right\}$ such that $(v, u) \in T_{i j}^{\mathcal{I}}$. Therefore, by $(\mathrm{p} 20), t_{j}^{\forall} \subseteq \mathfrak{a}(u)$ and $\left.\mathfrak{a}(u)\right|_{i n v\left(t_{j}^{r}\right)} ^{\forall} \subseteq t_{j}^{-}$.
(p23) is considered in the same way as (p20).

Appendix B. The Tableau Algorithm

The tableau algorithm, for $\mathcal{S} \mathcal{R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ concepts C_{0} and RBoxes \mathcal{R}, works on completion graphs similarly to the algorithms given by Horrocks et al. (2006) and Horrocks and Sattler (2007). To present it, we require some additional notation. We assume that the given \mathcal{R} is same as in Appendix A with $\mathcal{R}_{C, D, E, F}=\left\{\boldsymbol{r}_{i} \mid i=1, \ldots, l\right\}$. For $1 \leq i \leq l$ and a basic role P, where $P=Q_{i}$ for $i \leq k$, and $P \in\left\{T_{i 1}, \ldots, T_{i m_{i}}\right\}$ for $i>k$, let

$$
\begin{aligned}
\boldsymbol{q} \boldsymbol{c}^{*}\left(\boldsymbol{r}_{i}, P\right)=\left\{\forall \mathfrak{A}^{p} \cdot \mathfrak{C} \mid\right. \text { there exists } & \left.q \in \delta_{\mathfrak{A}}(p, P), \forall \mathfrak{A}^{p} \cdot \mathfrak{C} \in \bigcup_{\boldsymbol{r}_{j} \triangleleft \boldsymbol{r}_{i}} \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{j}\right)\right\} \\
& \cup\left\{\forall \mathfrak{A}^{q} \cdot \mathfrak{C} \mid q \in \delta_{\mathfrak{A}}(p, \operatorname{inv}(P)), \forall \mathfrak{A}^{p} \cdot \mathfrak{C} \in \bigcup_{\boldsymbol{r}_{j} \triangleleft \boldsymbol{r}_{i}} \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{j}\right)\right\} .
\end{aligned}
$$

We now set $\boldsymbol{q} \boldsymbol{c}^{*}\left(\boldsymbol{r}_{i}\right)=\boldsymbol{q} \boldsymbol{c}^{*}\left(\boldsymbol{r}_{i}, Q_{i}\right)$, for $i \leq k$, and $\boldsymbol{q} \boldsymbol{c}^{*}\left(\boldsymbol{r}_{i}\right)=\bigcup_{j=1}^{m_{i}} \boldsymbol{q} \boldsymbol{c}^{*}\left(\boldsymbol{r}_{i}, T_{i j}\right)$, for $i>k$. The set $\boldsymbol{q} \boldsymbol{c}^{*}\left(\boldsymbol{r}_{i}\right)$ of quasi-concepts is to be guessed by the algorithm. Let $\overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right)$ be the minimal set such that:
$-\boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right) \cup\left\{\neg \forall \mathfrak{A}^{p} . \mathfrak{C}^{\mathfrak{C}} \mid \forall \mathfrak{A}^{p} . \mathfrak{C} \in \bigcup_{i=1}^{l} \boldsymbol{q} \boldsymbol{c}^{*}\left(\boldsymbol{r}_{i}\right)\right\} \subseteq \overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right)$,

- if $\forall \mathfrak{A}^{p} . \mathfrak{C} \in \overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right)$ then $\mathfrak{C} \in \overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right)$,
- if $\exists P \cdot \mathfrak{C} \in \overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right)$ then $\mathfrak{C} \in \overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right)$,
- if $\left(\bigvee_{j=1}^{m} \mathfrak{C}_{j}\right) \in \overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right)$ then $\left\{\mathfrak{C}_{1}, \ldots, \mathfrak{C}_{m}\right\} \subseteq \overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right)$.

Unlike $\boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)$, the set $\overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right)$ contains sub-quasi-concepts. (Quasi-concepts of the form $\neg \forall \mathfrak{A}^{p}$. \mathfrak{C} will only be used to make sure that $\forall \mathfrak{A}^{p} . \mathfrak{C}^{\mathfrak{C}}$ does not belong to a label.)

Given an $\mathcal{S R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ concept C_{0} and an RBox \mathcal{R}, a completion graph for C_{0} and \mathcal{R} is a structure of the form $\boldsymbol{G}=\left(V_{1}, V_{2}, E_{1}, E_{2}, \mathfrak{c}, \mathfrak{a}, \mathfrak{l}, \not \equiv\right)$, where
$-V_{1} \cap V_{2}=\emptyset ;$ the elements of V_{1} are called root nodes, and the elements of V_{2} are called internal (or non-root) nodes;

- $\left(V, E_{1}\right)$ is a directed forest with nodes $V=V_{1} \cup V_{2}$ and arcs E_{1} (its roots have no incoming arcs);
- E_{2} is a set of arcs between nodes and root nodes, as well as arcs of the form (x, x), for $x \in V_{2}$;
- for each $(x, y) \in E$, where $E=E_{1} \cup E_{2}$, we have $\mathfrak{l}(x, y) \subseteq \operatorname{role}\left(C_{0}, \mathcal{R}\right)$; if $R^{\prime} \in \mathfrak{l}(x, y)$ and $R^{\prime} \sqsubseteq^{*} R$, then y is called an R-successor of $x ; y$ is called an R-neighbour of x if y is an R-successor of x or x is an $\operatorname{inv}(R)$-successor of y; also, x is called an ε-neighbour of x (cf. Horrocks et al., 2006);
- for each $x \in V, \mathfrak{c}(x) \subseteq \operatorname{con}\left(C_{0}\right) \cup\left\{\leq m S . C \mid \leq n S . C \in \operatorname{con}\left(C_{0}\right)\right.$, and $\left.m<n\right\}$ and $\mathfrak{a}(x) \subseteq \overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right) ;$
$-\nexists$ is a symmetric binary relation on V;
- for each $o \in \operatorname{nom}\left(C_{0}\right)$, there is $x \in V_{1}$ such that $o \in \mathfrak{c}(x)$.

Following Horrocks et al. (2006) and Horrocks and Sattler (2007), we distinguish between two sets of nodes: those in V_{1} can be arbitrarily interconnected (they are called root nodes), while those in V_{2} form a tree structure (they are called internal nodes). Intuitively, a completion graph is a collection of trees whose root nodes can be arbitrarily connected and there may also be arcs from internal nodes to root nodes (see Fig. 2 on page 841). We also distinguish between two sets of arcs: those in E_{1} connect nodes in the same tree, while those in E_{2} are the remaining arcs in the graph.

To illustrate the difference between R-successors and neighbours, suppose $\left(R^{\prime} \sqsubseteq R\right) \in \mathcal{R}$

and $\mathfrak{l}(x, y)=\left\{R^{\prime}\right\}$, as in the picture above. Then y is both an R^{\prime} - and R-successor of x, but x is neither an $\operatorname{inv}\left(R^{\prime}\right)$ - nor an $\operatorname{inv}(R)$-successor of $y ; y$ is both an R^{\prime} - and R-neighbour of x, and x is an $\operatorname{inv}\left(R^{\prime}\right)$ - and $\operatorname{inv}(R)$-neighbour of y.

To ensure that the tableau algorithm eventually comes to a stop, we use a blocking technique that is similar to the one of Horrocks et al. (2006). A node $x \in V_{2}$ is called blocked if it is either directly or indirectly blocked. A node $x \in V_{2}$ is directly blocked if none of its (not necessarily immediate) E_{1}-ancestors is blocked, and there are nodes x^{\prime}, y and y^{\prime} such that:
$-y^{\prime}$ is not a root,

- $\left(x^{\prime}, x\right) \in E_{1},\left(y^{\prime}, y\right) \in E_{1}$ and y is an E_{1}-ancestor of x^{\prime},
$-\mathfrak{c}(x)=\mathfrak{c}(y), \mathfrak{c}\left(x^{\prime}\right)=\mathfrak{c}\left(y^{\prime}\right), \mathfrak{a}(x)=\mathfrak{a}(y), \mathfrak{a}\left(x^{\prime}\right)=\mathfrak{a}\left(y^{\prime}\right)$ and $\mathfrak{l}\left(x^{\prime}, x\right)=\mathfrak{l}\left(y^{\prime}, y\right)$.
In this case we say that y blocks x.

A node y is indirectly blocked if one of its E_{1}-ancestors is blocked.
For a simple role $S, x \in V$ and $C \in \operatorname{con}\left(C_{0}\right)$, let

$$
\begin{aligned}
& S^{\boldsymbol{G}}(x, C)=\{y \mid y \text { is an } S \text {-neighbour of } x, C \in \mathfrak{c}(y) \text { and } \\
& \text { if } \left.x \in V_{1} \text { then } y \text { is not indirectly blocked }\right\} .
\end{aligned}
$$

We say that a completion graph \boldsymbol{G} contains a clash if there is $x \in V$ such that at least one of the following conditions holds:
$-\perp \in \mathfrak{c}(x)$,
$-\{A, \neg A\} \subseteq \mathfrak{c}(x)$, for a concept name A,
$-\left\{\forall \mathfrak{A}^{p} \cdot \mathfrak{C}, \neg \forall \mathfrak{A}^{p} \cdot \mathfrak{C}\right\} \subseteq \mathfrak{a}(x)$, for a quasi-concept $\forall \mathfrak{A} \mathfrak{A}^{p} \cdot \mathfrak{C} \in \bigcup_{i=1}^{l} \boldsymbol{q} \boldsymbol{c}^{*}\left(\boldsymbol{r}_{i}\right)$,
$-x$ is an S-neighbour of x and $\neg \exists$ S. Self $\in \mathfrak{c}(x)$,

- $\operatorname{Dis}(R, S) \in \mathcal{R}$, while y is both an R - and an S-neighbour of x, for some $y \in V$,
$-(\leq n S . C) \in \mathfrak{c}(x)$, while $\left\{y_{0}, \ldots, y_{n}\right\} \subseteq S^{\boldsymbol{G}}(x, C)$ with $y_{i} \not \nexists y_{j}$, for $0 \leq i<j \leq n$,
- for some $o \in \operatorname{nom}\left(C_{0}\right)$, there is node $y \nexists x$ with $o \in \mathfrak{c}(x) \cap \mathfrak{c}(y)$,
$-\mathfrak{C}=\left(t^{r}, t^{\forall}, t^{-}\right) \in \mathfrak{a}(x)$ and $\left.\mathfrak{a}(x)\right|_{i n v\left(t^{r}\right)} ^{\forall} \nsubseteq t^{-}$.
A completion graph that does not contain a clash is called clash-free.
To simplify the tableau rules, we require some terminology and notation originally used by Horrocks et al. (2006) and Horrocks and Sattler (2007). An R-neighbour y of x is said to be safe if either $x \in V_{2}$ or $x \in V_{1}$ and y is not blocked. The result (and the procedure) of pruning a node y in $\boldsymbol{G}=\left(V_{1}, V_{2}, E_{1}, E_{2}, \mathfrak{c}, \mathfrak{a}, \mathfrak{l}, \nexists\right)$, denoted Prune((y), is the graph obtained from \boldsymbol{G} in the following way: we remove every (y, z) from E and, if $z \in V_{2}$, Prune (z); we also remove y from V. The result (and the procedure) of merging nodes y and x in $\boldsymbol{G}=\left(V_{1}, V_{2}, E_{1}, E_{2}, \mathfrak{c}, \mathfrak{a}, \mathfrak{l}, \nsupseteq\right)$, denoted $\operatorname{Merge}(y, x)$, is the graph obtained from \boldsymbol{G} as follows:

1. for all z such that $(z, y) \in E$:

- if $\{(x, z),(z, x)\} \cap E=\emptyset$, then add (z, x) to E (to E_{1} if $x \in V_{2}$, otherwise to E_{2}) and set $\mathfrak{l}(z, x):=\mathfrak{l}(z, y)$,
- if $(z, x) \in E$, then set $\mathfrak{l}(z, x):=\mathfrak{l}(z, x) \cup \mathfrak{l}(z, y)$,
- if $(x, z) \in E$, then set $\mathfrak{l}(x, z):=\mathfrak{l}(x, z) \cup\{\operatorname{inv}(R) \mid R \in \mathfrak{l}(z, y)\}$, and
- remove (z, y) from E;

2. for all root nodes z such that $(y, z) \in E_{2}$:

- if $\{(x, z),(z, x)\} \cap E=\emptyset$, then add (x, z) to E_{2} and set $\mathfrak{l}(x, z):=\mathfrak{l}(y, z)$,
- if $(x, z) \in E$, then set $\mathfrak{l}(x, z):=\mathfrak{l}(x, z) \cup \mathfrak{l}(y, z)$,
- if $(z, x) \in E$, then set $\mathfrak{l}(z, x):=\mathfrak{l}(z, x) \cup\{\operatorname{inv}(R) \mid R \in \mathfrak{l}(y, z)\}$, and
- remove (y, z) from E_{2};

3. set $\mathfrak{c}(x):=\mathfrak{c}(x) \cup \mathfrak{c}(y)$ and $\mathfrak{a}(x):=\mathfrak{a}(x) \cup \mathfrak{a}(y)$;
4. add $x \not \approx z$, for all z with $y \not \approx z$;
5. Prune (y).

Let $\boldsymbol{G}=\left(V_{1}, V_{2}, E_{1}, E_{2}, \mathfrak{c}, \mathfrak{a}, \mathfrak{l}, \nexists\right)$ be a completion graph. The completion rules can extend \boldsymbol{G} in two ways: by adding a new leaf and by adding a new root. We say that a node $x \in V_{2}$, with $(y, x) \in E_{1}$, is of level i in the forest $\left(V, E_{1}\right)$ if either $i=1$ and $y \in V_{1}$, or $i>1$ and $y \in V_{2}$ is of level $i-1$ in $\left(V, E_{1}\right)$. A node $x \in V_{1}$ is of level i in the graph $\left(V_{1}, E_{2} \cap\left(V_{1} \times V_{1}\right)\right)$ if either $i=0$ and there exists $o \in \operatorname{nom}\left(C_{0}\right)$ such that $o \in \mathfrak{c}(x)$, or $i>0, x$ is not of level $\leq(i-1)$ in $\left(V_{1}, E_{2} \cap\left(V_{1} \times V_{1}\right)\right)$ and there is $y \in V_{1}$ of level $i-1$ in $\left(V_{1}, E_{2} \cap\left(V_{1} \times V_{1}\right)\right)$ with $(y, x) \in E_{2}$.

The tableau rules will be applied according to the following strategy: the (o)-rule is of highest priority; after that we apply the $\left(=_{r}\right)$ - and $\left(\leq_{r}\right)$-rules, starting with root nodes of lower levels; applications of all other rules follow.

Our tableau algorithm is non-deterministic. It takes a $\mathcal{S R}^{+} \mathcal{O I Q}$ concept C_{0} and an RBox \mathcal{R} as input and returns 'yes' or 'no' to indicate whether C_{0} is satisfiable w.r.t. \mathcal{R} or not. The algorithm starts by constructing the completion graph $\boldsymbol{G}=\left(V_{1}, V_{2}, E_{1}, E_{2}, \mathfrak{c}, \mathfrak{a}, \mathfrak{l}, \neq\right)$, where
$-V_{1}=\left\{x_{o} \mid o \in \operatorname{nom}\left(C_{0}\right)\right\} \cup\left\{x_{C_{0}}\right\}$,
$-V_{2}=\emptyset$,
$-E_{1}=\emptyset, E_{2}=\emptyset$,
$-\mathfrak{c}\left(x_{o}\right)=\{o\}, \mathfrak{c}\left(x_{C_{0}}\right)=\left\{C_{0}\right\}$,
$-\mathfrak{a}\left(x_{o}\right)=\emptyset, \mathfrak{a}\left(x_{C_{0}}\right)=\emptyset$,
$-\mathfrak{l}=\emptyset$,
$-\not \approx$ is empty.
Then the algorithm non-deterministically applies one of the completion rules given in Tables 1 and 2; it keeps doing so till either the current completion graph contains a clash, in which case the answer is 'no', or none of the rules is applicable, in which case the algorithm returns 'yes'.

To prove that this algorithm always comes to a stop and returns a correct answer, we require the following lemma:

Lemma 21 Let $\boldsymbol{G}=\left(V_{1}, V_{2}, E_{1}, E_{2}, \mathfrak{c}, \mathfrak{a}, \mathfrak{l}, \nsupseteq\right)$ be the structure constructed at some step of the algorithm. Then, for every $x \in V_{2}$, there exists exactly one $y \in V$ such that $(y, x) \in E_{1}$.

Proof. The proof is by induction on the number of steps. The basis of induction $\left(V_{2}=\emptyset\right)$ is trivial. So suppose that our claim holds for some step and consider what happens after an application of a completion rule. By applying the rules $(\exists),(\mathrm{r} 8)$ and (\geq) to a node x, we add one or more nodes to V_{2}, with x being the only predecessor of these nodes. Also, we have to consider the rules $(\leq),(o)$ and $\left(=_{r}\right)$, which merge nodes, because other rules do not change V_{2} and E_{1}. Merging nodes changes the graph by possibly adding new edges, deleting some edges and pruning some nodes. Observe that if we prune a node y then our claim still holds because we delete the successors of y which belong to V_{2}. Deleting an edge does not spoil the claim either. Thus, it is enough to examine the cases when a new edge is added to E_{1}. If $\operatorname{Merge}(y, x)$ and $x \in V_{1}$ then all newly added edges belong to E_{2}, and so after applying $\operatorname{Merge}(y, x)$ the claim still holds. The only interesting case is when we apply $\operatorname{Merge}(z, y)$ in the rule (\leq) with $(\leq n S . C) \in \mathfrak{c}(x), y, z \in S^{\boldsymbol{G}}(x, C)$ and $y, z \in V_{2}$. Because of $y, z \in V_{2}$, the nodes y and z have only one parent node, although z is not an ancestor of y; so the following fours cases are possible.

Case 1: $(y, x) \in E_{1}$ and $(x, z) \in E_{1}$. Then no new edge is added to E_{1}, and the claim holds.

Case 2: $(x, y) \in E_{1}$ and $(x, z) \in E_{1}$. Again, we do not add a new edge to E_{1}.
Case 3: $(y, x) \in E_{1}$ and $(z, x) \in E_{1}$. In this case $x \in V_{2}$ and x has two parent nodes y and z, which is impossible by IH.

Case 4: $(y, x) \in E_{2}$ or $(z, x) \in E_{2}$. This case is not possible either because $x \in V_{1}$, $(\leq n S . C) \in \mathfrak{c}(x), y($ or $z)$ is an S-neighbour of x, and so before applying (\leq) we have to apply $\left(\leq_{r}\right)$ or $\left(=_{r}\right)$ in view of their higher priority.

We can now show termination.
Lemma 22 The tableau algorithm always terminates.
Proof. The sets $\operatorname{con}\left(C_{0}\right), \overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right)$, role $\left(C_{0}, \mathcal{R}\right)$ we use in the labels of nodes and edges are finite. Let $l_{0}=\sharp$ nom $\left(C_{0}\right), l_{1}=\sharp \operatorname{con}\left(C_{0}\right), l_{2}=\sharp \overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right), l_{3}=\sharp \operatorname{role}\left(C_{0}, \mathcal{R}\right)$ and $n_{\max }=\max \left\{n \mid(\geq n R . C) \in \operatorname{con}\left(C_{0}\right)\right.$ or $\left.(\leq n R . C) \in \operatorname{con}\left(C_{0}\right)\right\}$. The completion graph and the completion rules have following properties. Each node x is labelled with two sets $\mathfrak{c}(x) \subseteq \operatorname{con}\left(C_{0}\right)$ and $\mathfrak{a}(x) \subseteq \overline{\boldsymbol{q} \boldsymbol{c}}\left(C_{0}, \mathcal{R}\right)$. The number of different pairs of such labels does not exceed $2^{l_{1}+l_{2}}$. Each edge (x, y) is labelled with a set $\mathfrak{l}(x, y) \subseteq \operatorname{role}\left(C_{0}, \mathcal{R}\right)$, so the number of different labels of edges is at most $2^{l_{3}}$. The number of different labels for a pair of nodes connected by an arc is at most $L=2^{l_{3}+2 l_{1}+2 l_{2}}$. Therefore, any path in the forest $\left(V, E_{1}\right)$, which starts from a root node and is of length $\geq L+2$, contains a blocked node. Every application of any rule is determined by some (quasi-) concept and node, with the same rule applicable to the same (quasi-) concept and node only once. The completion rules never remove labels from nodes in the graph, and the only rules that remove nodes are $(\leq),(o)$ and $\left(=_{r}\right)$. Only $(\exists),(\geq),\left(\leq_{r}\right)$ and (r8) generate new nodes, and each such generation is triggered by a (quasi-) concept of the form $\exists R . C, \geq n R . C, \leq n R . C$ or $\exists P \cdot C^{C}$ in the label of a node x. The number of the concepts is $\leq l_{1}+l_{2}$. The rules (\geq) and $\left(\leq_{r}\right)$ can generate at $\operatorname{most} n_{\max }$ successors of a given node, for each concept of the form $\geq n R . C$ or $\leq n R . C$. The
other two rules generate only one successor for each concept. It follows that the number of created outgoing arcs for a node does not exceed $l_{1} \cdot n_{\max }+l_{2}$. If a node y is removed from \boldsymbol{G} by $(\leq),(o)$ or $\left(=_{r}\right)$, its label migrates to the node z. So the rules $(\exists),(\geq),\left(\leq_{r}\right)$ and (r8), which generate y that is later merged by $(\leq),(o)$ or $\left(=_{r}\right)$, will not be applied again to the same node.

Now, we show that the number of nodes in the completion graph is limited. Together with the observations above, this will mean that we can apply the completion rules finitely many times, and so the algorithm will eventually come to a stop.

To this end, we require the following claim: if $x \in V_{1}$ is of level i in $\left(V_{1}, E_{2} \cap\left(V_{1} \times V_{1}\right)\right)$, $y \in V_{2}$ is not indirectly blocked and $(y, x) \in E_{2}$, then y is of level $\leq L+2-i$ in $\left(V, E_{1}\right)$. Indeed, for $i=0, y$ is of level $\leq L+2$ because y is not indirectly blocked and each node of $>L+2$ level is indirectly blocked. If x is of level $i>0$ then the only way to add an edge $(y, x) \in E_{2}$ is first to apply the rule (o), which will add an E_{2}-edge between some $y_{0} \in V_{2}$ and $x_{0} \in V_{1}$, and then repeatedly apply $\left(=_{r}\right)$. The node x_{0} is of level 0 in $\left(V_{1}, E_{2} \cap\left(V_{1} \times V_{1}\right)\right)$, while y_{0} is of level $\leq L+2$ in $\left(V, E_{1}\right)$. If we apply the rule $\left(=_{r}\right)$, then y_{0} will be merged with some successor $x_{1} \in V_{1}$ of x_{0} created by an application of $\left(\leq_{r}\right)$. The node x_{1} is of level ≤ 1, and we add the edge $\left(y_{1}, x_{1}\right) \in E_{2}$, where y_{1} is a parent of y_{0} and of level $\leq L+2-1$ in $\left(V, E_{1}\right)$; see Fig. 2. By repeating the same argument, we see that the node y is of level $\leq L+2-i$ in $\left(V, E_{1}\right)$.

Figure 2: Before and after an application of $\left(=_{r}\right)$; the bold arcs are in E_{2} and the nodes \bullet are in V_{1}.

The claim proved above means that if a node $x \in V_{1}$ is of level $L+2$ in $\left(V_{1}, E_{2} \cap\left(V_{1} \times V_{1}\right)\right)$, then there is no $y \in V_{2}$ with $(y, x) \in E_{2}$. Hence, the rule $\left(\leq_{r}\right)$ cannot be applied to a node x of level $L+2$, and so there is no root node of level $L+3$.

The only rule that can add new nodes to V_{1} is $\left(\leq_{r}\right)$. It can be applied at most l_{1} times to a given node and add at most $l_{1} \cdot n_{\max }$ successors. At the beginning $V_{1} \backslash\left\{x_{C_{0}}\right\}$ contains l_{0} nodes, so $\left(\leq_{r}\right)$ can create at most $l_{0} \cdot l_{1} \cdot n_{\max }$ successors of these nodes. By applying $\left(\leq_{r}\right)$ to them again, we obtain $\leq l_{0} \cdot\left(l_{1} \cdot n_{\max }\right)^{2}$ new nodes (of level ≤ 2). It follows that

$$
\sharp V_{1} \leq 1+\sum_{i=0}^{L+2} l_{0} \cdot\left(l_{1} \cdot n_{\max }\right)^{i}=O\left(l_{0} \cdot\left(l_{1} \cdot n_{\max }\right)^{L+3}\right) .
$$

The number of nodes in V_{2} is also limited. At the beginning $V_{2}=\emptyset$. For each node in V_{1}, the algorithm can create $\leq l_{1} \cdot n_{\max }+l_{2}$ arcs that lead to nodes in V_{2}. Thus, the number
of nodes of level 1 in V_{2} does not exceed $\sharp V_{1} \cdot\left(l_{1} \cdot n_{\max }+l_{2}\right)$; the number of their successors is at most $\sharp V_{1} \cdot\left(l_{1} \cdot n_{\max }+l_{2}\right)^{2}$; and finally,

$$
\sharp V_{2} \leq \sum_{i=1}^{L+2} \sharp V_{1} \cdot\left(l_{1} \cdot n_{\max }+l_{2}\right)^{i}=O\left(\sharp V_{1} \cdot\left(l_{1} \cdot n_{\max }+l_{2}\right)^{L+3}\right) .
$$

This completes the proof of the lemma.
The next lemma shows that the answers returned by the algorithm are correct.
Lemma 23 The tableau algorithm returns 'yes' if and only if there exists a tableau for C_{0} w.r.t. \mathcal{R}.

Proof. (\Rightarrow) Suppose the algorithm returns 'yes' by generating a clash-free completion graph $\boldsymbol{G}=\left(V_{1}, V_{2}, E_{1}, E_{2}, \mathfrak{c}, \mathfrak{a}, \mathfrak{l}, \nsubseteq\right)$ to which no completion rule is applicable. Let $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$. We write $\beta(x)=x$, if $x \in V_{1}$ or $x \in V_{2}$ is not blocked; and $\beta(x)=y$, if $x \in V_{2}$ and y blocks x.

Define a set $\operatorname{paths}(\boldsymbol{G})$ inductively by taking (cf. Horrocks et al., 2006):

- if $x_{0} \in V_{1}$ then $\left(x_{0}, x_{0}\right) \in \operatorname{paths}(\boldsymbol{G})$; in this case we write $\operatorname{Root}\left(x_{0}\right)=\left(x_{0}, x_{0}\right)$,
- if $\pi \in \operatorname{paths}(\boldsymbol{G})$, a node $z \in V_{2}$ is not indirectly blocked and $(\operatorname{tail}(\pi), z) \in E_{1}$, then the sequence $\pi,(\beta(z), z)$ is in paths (\boldsymbol{G}).
Here $\operatorname{tail}(\pi)=x_{n}$ and $\operatorname{tail}^{\prime}(\pi)=x_{n}^{\prime}$, for $\pi=\left(x_{0}, x_{0}^{\prime}\right), \ldots,\left(x_{n}, x_{n}^{\prime}\right)$. The members π of paths (\boldsymbol{G}) will be called paths in \boldsymbol{G}.

We now define a tableau $\boldsymbol{T}=\left(\boldsymbol{S}, \mathfrak{c}^{\prime}, \mathfrak{a}^{\prime}, \mathcal{E}\right)$ by taking $\boldsymbol{S}=\operatorname{paths}(\boldsymbol{G}), \mathfrak{c}^{\prime}(\pi)=\mathfrak{c}(\operatorname{tail}(\pi))$, $\mathfrak{a}^{\prime}(\pi)=\mathfrak{a}(\operatorname{tail}(\pi)) \cap \boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)$, for $\pi \in \operatorname{paths}(\boldsymbol{G})$, and
$\mathcal{E}(R)=\{(\operatorname{Root}(x), \operatorname{Root}(y)) \mid y$ is an R-neighbour of $x\} \cup$ $\{(u, \operatorname{Root}(y)) \mid y$ is an R-neighbour of $\operatorname{tail}(u)\} \cup$ $\{(\operatorname{Root}(x), u) \mid \operatorname{tail}(u)$ is an R-neighbour of $x\} \cup$ $\{(u, u) \mid \operatorname{tail}(u)$ is an R-neighbour of $\operatorname{tail}(u)\} \cup$ $\{(u, v) \in \boldsymbol{S} \times \boldsymbol{S} \mid v=u,(\beta(y), y)$ and y is an R-neighbour of $\operatorname{tail}(u)$, or $u=v,(\beta(y), y)$ and y is an $\operatorname{inv}(R)$-neighbour of $\operatorname{tail}(v)\}$.

We prove that \boldsymbol{T} is a tableau for C_{0} w.r.t. \mathcal{R}. Indeed, (p 1) and (p14) follow from the initial step of the tableau algorithm and the fact that the labels of the root nodes are never removed; (p 2) follows from the definition and the fact that the completion graph \boldsymbol{G} is clashfree; (p3) follows from the rules creating new nodes and that \boldsymbol{G} is clash-free; (p9) and (p16) follow from the definitions of $\mathcal{E}(R)$ and R-neighbour (and R-successor); (p6) and (p7) follow from the fact that the rules (\square) and (\sqcup) are not applicable; (p12) follows from the definitions of $\mathcal{E}(R)$ and R-neighbour and the fact that the rule (guess) is not applicable; (p15) and (p5) follow from the definitions of $\mathcal{E}(R)$ and R-neighbour and that the completion graph \boldsymbol{G} is clash-free; (p17) and (p18) follow from the fact that (r1) and (r3) are not applicable; (p19) from the fact that ($\mathrm{r} 5^{i}$) cannot be applied; and (p20) and (p23) follow from the definitions of $\mathcal{E}(R)$ and the fact that (r2) and (r6) are not applicable. The remaining cases are less straightforward. In some of them, we require the following:
($\square) \quad$ if $C_{1} \sqcap C_{2} \in \mathfrak{c}(x), x$ is not indirectly blocked and $\left\{C_{1}, C_{2}\right\} \nsubseteq \mathfrak{c}(x)$, then $\mathfrak{c}(x):=\mathfrak{c}(x) \cup\left\{C_{1}, C_{2}\right\}$
$(\sqcup) \quad$ if $C_{1} \sqcup C_{2} \in \mathfrak{c}(x), x$ is not indirectly blocked and $\left\{C_{1}, C_{2}\right\} \cap \mathfrak{c}(x)=\emptyset$, then $\mathfrak{c}(x):=\mathfrak{c}(x) \cup\{D\}$, for some $D \in\left\{C_{1}, C_{2}\right\}$
($\exists) \quad$ if $\exists S . C \in \mathfrak{c}(x), x$ is not blocked and has no safe S-neighbour y with $C \in \mathfrak{c}(y)$ then create a new node $y \in V_{2}$ with $\mathfrak{l}(x, y):=\{S\}, \mathfrak{c}(y):=\{C, \top\}, \mathfrak{a}(y):=\emptyset$
(self) if \exists S.Self $\in \mathfrak{c}(x), x$ is not blocked and x is not S-neighbour of x then add (x, x) to E_{2}, if it is not there yet, and set $\mathfrak{l}(x, x):=\mathfrak{l}(x, x) \cup\{S\}$
(guess) if $(\leq n S . C) \in \mathfrak{c}(x), x$ is not indirectly blocked and there is an S-neighbour y of x such that $\{C, \neg C\} \cap \mathfrak{c}(y)=\emptyset$, then set $\mathfrak{c}(y):=\mathfrak{c}(y) \cup\{D\}$, for some $D \in\{C, \neg C\}$
$(\geq) \quad$ if $(\geq n S . C) \in \mathfrak{c}(x), x$ is not blocked and there are no distinct and safe $y_{1}, \ldots, y_{n} \in S^{\boldsymbol{G}}(x, C)$, then create n new successors $y_{1}, \ldots, y_{n} \in V_{2}$ of x; set $\mathfrak{l}\left(x, y_{i}\right):=\{S\}, \mathfrak{c}\left(y_{i}\right):=\{C, \top\}, \mathfrak{a}\left(y_{i}\right):=\emptyset, y_{i} \not \equiv y_{j}$, for $1 \leq i<j \leq n$
$(\leq) \quad$ if $(\leq n S . C) \in \mathfrak{c}(x), x$ is not indirectly blocked, $\sharp S^{\boldsymbol{G}}(x, C)>n$ and there are $y, z \in S^{\boldsymbol{G}}(x, C)$ for which $y \nexists z$ does not hold
then (1) if z is a root node or an E_{1}-ancestor of y, then $\operatorname{Merge}(y, z)$,
(2) otherwise $\operatorname{Merge}(z, y)$
(o) if, for $o, o^{\prime} \in \operatorname{nom}\left(C_{0}\right)$, there is a node $y \neq x_{o}$ with $o^{\prime} \in \mathfrak{c}\left(x_{o}\right) \cap \mathfrak{c}(y)$ and such that $x_{o} \not \equiv y$ does not hold in the completion graph, then $\operatorname{Merge}\left(y, x_{o}\right)$
$\left(\leq_{r}\right) \quad$ if $(\leq n S . C) \in \mathfrak{c}(x), x \in V_{1}$, and there is an S-neighbour y of x such that $y \in V_{2},(y, x) \in E_{2}, C \in \mathfrak{c}(y)$ and y is not indirectly blocked; and if there is no $n^{\prime} \leq n$ with $\left(\leq n^{\prime} S . C\right) \in \mathfrak{c}(x)$ and there are S-neighbours $z_{1}, \ldots, z_{n^{\prime}} \in V_{1}$ of x with $C \in \mathfrak{c}\left(z_{i}\right)$ and $z_{i} \nexists z_{j}$, for $1 \leq i, j \leq n^{\prime}, i \neq j$, then (1) guess $m, 1 \leq m \leq n$, and set $\mathfrak{c}(x):=\mathfrak{c}(x) \cup\{(\leq m S . C)\}$,
(2) create m new nodes $y_{1}, \ldots, y_{m} \in V_{1}$ with $\mathfrak{l}\left(x, y_{i}\right):=\{S\}, \mathfrak{c}\left(y_{i}\right):=\{C, \top\}, \mathfrak{a}\left(y_{i}\right):=\emptyset$ and $y_{i} \not \equiv y_{j}, 1 \leq i<j \leq m$
$\left(={ }_{r}\right) \quad$ if $(\leq m S . C) \in \mathfrak{c}(x), x \in V_{1}$, and there is an S-neighbour $y \in V_{2}$ of x with $C \in \mathfrak{c}(y), y$ is not indirectly blocked and there are S-neighbours $z_{1}, \ldots, z_{m} \in V_{1}$ of x with $C \in \mathfrak{c}\left(z_{i}\right)$ and $z_{i} \nexists z_{j}$, for $1 \leq i, j \leq m, i \neq j$, and there is $j_{0}, 1 \leq j_{0} \leq m$ for which $y \nexists z_{j_{0}}$ does not hold, then $\operatorname{Merge}\left(y, z_{j_{0}}\right)$

Table 1: Completion rules for the $\mathcal{S} \mathcal{R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ tableau algorithm.
(r1) if $\forall R . C \in \mathfrak{c}(x), x$ is not indirectly blocked and $\forall \mathfrak{A}_{R}^{s} . C \notin \mathfrak{a}(x), s$ the initial state, then $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\left\{\forall \mathfrak{A}_{R}^{s} . C\right\}$
(r2) if $\forall \mathfrak{A}_{R}^{p} . C \in \mathfrak{a}(x), q \in \delta_{\mathfrak{A}_{R}}(p, T)$ (where T can be ε), x is not indirectly blocked, y is a T-neighbour of x and $\forall \mathfrak{A}_{R}^{q} . C \notin \mathfrak{a}(y)$,
then $\mathfrak{a}(y):=\mathfrak{a}(y) \cup\left\{\forall \mathfrak{A}_{R}^{q} . C\right\}$
(r3) if $\forall \mathfrak{A}_{R}^{a} . C \in \mathfrak{a}(x), a$ an accepting state, x is not indirectly blocked and $C \notin \mathfrak{c}(x)$, then $\mathfrak{c}(x):=\mathfrak{c}(x) \cup\{C\}$
$\left(\mathrm{r} 4^{i}\right) \quad$ if x is not indirectly blocked and there is $\mathfrak{C} \in \boldsymbol{q} \boldsymbol{c}^{*}\left(\boldsymbol{r}_{i}\right)$ with $\{\mathfrak{C}, \neg \mathfrak{C}\} \cap \mathfrak{a}(x)=\emptyset$, then $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\{\mathfrak{D}\}$, for some $\mathfrak{D} \in\{\mathfrak{C}, \neg \mathfrak{C}\}$
$\left(\mathrm{r} 5^{i}\right) \quad$ if x is not indirectly blocked, $\left(\mathrm{r} 4^{i}\right)$ is not applicable, $\forall \mathfrak{A}_{i}^{s} \cdot \mathfrak{C} \notin \mathfrak{a}(x)$, $\mathfrak{C}=\Xi\left(\boldsymbol{r}_{i}, \mathfrak{a}(x)\right)$, for the initial state s, then $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\left\{\forall \mathfrak{A}_{i}^{s} \cdot \mathfrak{C}\right\}$
(r6) if $\forall \mathfrak{A}^{p} . \mathfrak{C} \in \mathfrak{a}(x), x$ is not indirectly blocked, $q \in \delta_{\mathfrak{A}}(p, T)$ (where T can be ε), y is a T-neighbour of x and $\forall \mathfrak{A}^{q} . \mathfrak{C} \notin \mathfrak{a}(y)$, then $\mathfrak{a}(y):=\mathfrak{a}(y) \cup\left\{\forall \mathfrak{A}^{q} . \mathfrak{C}\right\}$
(r7) if $\forall \mathfrak{A}^{a} \cdot \mathfrak{C} \in \mathfrak{a}(x), a$ an accepting state, x is not indirectly blocked and $\mathfrak{C} \notin \mathfrak{a}(x)$, then $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\{\mathfrak{C}\}$
(r8) \quad if $\exists P \cdot \mathfrak{C} \in \mathfrak{a}(x), x$ is not blocked and x has no safe P-neighbour y with $\mathfrak{C} \in \mathfrak{a}(y)$, then create a new node $y \in V_{2}$ and set $\mathfrak{l}(x, y):=\{P\}, \mathfrak{c}(y):=\{T\}, \mathfrak{a}(y):=\{\mathfrak{C}\}$
(r9) if $\mathfrak{C} \in \mathfrak{a}(x), \mathfrak{C}=\bigvee_{j=1}^{m} \mathfrak{C}_{j}, x$ is not indirectly blocked, $\left\{\mathfrak{C}_{1}, \ldots, \mathfrak{C}_{m}\right\} \cap \mathfrak{a}(x)=\emptyset$, then $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\{\mathfrak{D}\}$, for some $\mathfrak{D} \in\left\{\mathfrak{C}_{1}, \ldots, \mathfrak{C}_{m}\right\}$
(r10) if $\mathfrak{C} \in \mathfrak{a}(x)$, for $\mathfrak{C}=\left(t^{r}, t^{\forall}, t^{-}\right), x$ is not indirectly blocked and $t^{\forall} \nsubseteq \mathfrak{a}(x)$, then set $\mathfrak{a}(x):=\mathfrak{a}(x) \cup t^{\forall}$

Table 2: Completion rules for the $\mathcal{S} \mathcal{R}^{+} \mathcal{O} \mathcal{I} \mathcal{Q}$ tableau algorithm (cont.)

Proposition 24 Suppose $u \in \operatorname{paths}(\boldsymbol{G}), x=\operatorname{tail}(u)$ and x has a safe R-neighbour $y \in V$. Then there is $v \in \operatorname{paths}(\boldsymbol{G})$ with $(u, v) \in \mathcal{E}(R), \mathfrak{c}^{\prime}(v)=\mathfrak{c}(y)$ and $\mathfrak{a}^{\prime}(v)=\mathfrak{a}(y) \cap \boldsymbol{q c}\left(C_{0}, \mathcal{R}\right)$.

Proof. As y is an R-neighbour of x, either $(x, y) \in E$ or $(y, x) \in E$. Four cases are possible:

- If $(x, y) \in E_{1}$, we set $v=u,(\beta(y), y)$.
- If $(x, y) \in E_{2}$, then $y \in V_{1}$ and we set $v=\operatorname{Root}(y)$.
- If $(y, x) \in E_{1}$ then y is the only predecessor of x. In the case $\operatorname{tail}^{\prime}(u)=x$, there exists a path v such that $\operatorname{tail}(v)=y$ and $u=v,(x, x)$; and in the case $\operatorname{tail}^{\prime}(u) \neq x$ (i.e., when x blocks tail' (u)), there exist a predecessor y^{\prime} of $\operatorname{tail}^{\prime}(u)\left(\mathfrak{c}\left(y^{\prime}\right)=\mathfrak{c}(y)\right.$, $\mathfrak{a}\left(y^{\prime}\right)=\mathfrak{a}(y)$ and y^{\prime} is an R-neighbour of $\left.\operatorname{tail}^{\prime}(u)\right)$ and a path v such that $\operatorname{tail}(v)=y^{\prime}$ and $u=v,\left(x\right.$, tail $\left.^{\prime}(u)\right)$.
- If $(y, x) \in E_{2}$ then $x \in V_{1}, u=\operatorname{Root}(x)$. We set $v=\operatorname{Root}(y)$ if $y \in V_{1}$. If $y \in V_{2}$ then y is not blocked (since y is safe), and so there exists a path v such that $\operatorname{tail}(v)=y$.

In all of these cases, v is as required.
(p4) If \exists S.Self $\in \mathfrak{c}^{\prime}(u)$ then \exists S.Self $\in \mathfrak{c}(\operatorname{tail}(u))$. Since (self) is not applicable, tail (u) is an S-neighbour of $\operatorname{tail}(u)$, and so $(u, u) \in \mathcal{E}(R)$.
(p8) If $\exists R . C \in \mathfrak{c}^{\prime}(u)$ then $\exists R . C \in \mathfrak{c}(x)$, where $x=\operatorname{tail}(u)$. Since (\exists) is not applicable, x has a safe R-neighbour y with $C \in \mathfrak{c}(y)$. By Proposition 24, there exists $v \in \operatorname{paths}(\boldsymbol{G})$ such that $(u, v) \in \mathcal{E}(R)$ and $C \in \mathfrak{c}^{\prime}(v)$.
(p10) If $\leq n S . C \in \mathfrak{c}^{\prime}(u)$ then $\leq n S . C \in \mathfrak{c}(x)$, where $x=\operatorname{tail}(u)$. Since the completion graph \boldsymbol{G} is clash-free and (\leq) and $\left(=_{r}\right)$ are not applicable, $\sharp S^{\boldsymbol{G}}(x, C) \leq n$. Suppose that $(u, v) \in \mathcal{E}(R)$ and $C \in \mathfrak{c}^{\prime}(v)$. By the definition of $\mathcal{E}(R)$, the following cases are possible:

- $u=\operatorname{Root}(x), v=\operatorname{Root}(y)$ and y is an R-neighbour of x. We have $y \in S^{\boldsymbol{G}}(x, C)$ and, since $y \in V_{1}$, there is no $v^{\prime} \in \operatorname{paths}(\boldsymbol{G})$ different from v and such that $y=\operatorname{tail}\left(v^{\prime}\right)$ or $y=\operatorname{tail}^{\prime}\left(v^{\prime}\right)$.
$-x \in V_{2}, v=\operatorname{Root}(y)$ and y is an R-neighbour of x. This case is considered analogously.
- $u=\operatorname{Root}(x), y=\operatorname{tail}(v) \in V_{2}, v \neq u,\left(y, \operatorname{tail}^{\prime}(v)\right)$ and y is an R-neighbour of x. This case is not possible since $\leq n S . C \in \mathfrak{c}(x), x \in V_{1},(y, x) \in E_{2}$ and the rules $\left(\leq_{r}\right)$ and $\left(=_{r}\right)$ are not applicable.
$-v=u$ and x is an R-neighbour of x. Then $x \in S^{\boldsymbol{G}}(x, C)$ and there is no $v^{\prime} \in \operatorname{paths}(\boldsymbol{G})$ different from u and such that $\left(u, v^{\prime}\right) \in \mathcal{E}(R)$ and $x=\operatorname{tail}\left(v^{\prime}\right)$ or $x=\operatorname{tail}^{\prime}\left(v^{\prime}\right)$.
$-v=u,(\beta(y), y)$ and y is an R-neighbour of x. Then $y \in S^{\boldsymbol{G}}(x, C), y \in V_{2}$ and x is the only predecessor of y. So there is no $v^{\prime} \in \operatorname{paths}(\boldsymbol{G})$ different from v and such that $\left(u, v^{\prime}\right) \in \mathcal{E}(R)$ and $y=\operatorname{tail}\left(v^{\prime}\right)$ or $y=\operatorname{tail}^{\prime}\left(v^{\prime}\right)$.
$-u=v,(x, y), x=\beta(y)$ and y is an $\operatorname{inv}(R)$-neighbour of $\operatorname{tail}(v)$. Then $\operatorname{tail}(v) \in$ $S^{\boldsymbol{G}}(x, C), y \in V_{2}$ and $\operatorname{tail}(v)$ is only one predecessor of y; so there is no $v^{\prime} \in \operatorname{paths}(\boldsymbol{G})$ different from v such that $\left(u, v^{\prime}\right) \in \mathcal{E}(R)$ and $\operatorname{tail}(v)=\operatorname{tail}\left(v^{\prime}\right)$ or $\operatorname{tail}(v)=\operatorname{tail}^{\prime}\left(v^{\prime}\right)$.

Therefore, $\sharp\{v \in \boldsymbol{S} \mid(u, v) \in \mathcal{E}(S)$ and $C \in \mathfrak{c}(v)\} \leq \sharp S^{\boldsymbol{G}}(x, C) \leq n$.
(p11) If $(\geq n S . C) \in \mathfrak{c}^{\prime}(u)$ then $(\geq n S . C) \in \mathfrak{c}(x)$, where $x=\operatorname{tail}(u)$. Since (\geq) is not applicable, x has safe S-neighbours y_{1}, \ldots, y_{n} with $C \in \mathfrak{c}\left(y_{i}\right)$ and $y_{i} \not \equiv y_{j}$, for $1 \leq i, j \leq n$ and $j \neq i$. By Proposition 24, there exists $v_{i} \in \operatorname{paths}(\boldsymbol{G})$ such that $\left(u, v_{i}\right) \in \mathcal{E}(S)$ and $C \in \mathfrak{c}^{\prime}\left(v_{i}\right)$, for $1 \leq i \leq n$. In addition, there can be at most one y with $(y, x) \in E_{1}$ and, by the proof of Proposition 24, if $\left(y_{i}, x\right) \notin E_{1}$ then $\operatorname{tail}\left(v_{i}\right)=y_{i}$ or $\operatorname{tail}^{\prime}\left(v_{i}\right)=y_{i}$. So, v_{i} and v_{j} are distinct for $i \neq j$, since $\operatorname{tail}\left(v_{i}\right) \neq \operatorname{tail}\left(v_{j}\right)$ or $\operatorname{tail}^{\prime}\left(v_{i}\right) \neq \operatorname{tail}^{\prime}\left(v_{j}\right)$ (in the case $\left(y_{i}, x\right) \in E_{1}$, $\left(x, y_{j}\right) \in E_{1}$ and y_{i} block y_{j}, i.e., $\operatorname{tail}\left(v_{i}\right)=\operatorname{tail}\left(v_{j}\right)=y_{i}$, we have $\left.\operatorname{tail}^{\prime}\left(v_{i}\right) \neq \operatorname{tail}^{\prime}\left(v_{j}\right)\right)$.
(p13) If $o \in \mathfrak{c}^{\prime}(u) \cap \mathfrak{c}^{\prime}(v)$ then $o \in \mathfrak{c}(\operatorname{tail}(u))$, and so there is $o^{\prime} \in \operatorname{nom}\left(C_{0}\right)$ such that $x_{o^{\prime}}=\operatorname{tail}(u)$ and $u=\operatorname{Root}\left(x_{o^{\prime}}\right)$. Similarly, there is $o^{\prime \prime} \in \operatorname{nom}\left(C_{0}\right)$ with $x_{o^{\prime \prime}}=\operatorname{tail}(v)$ and $v=\operatorname{Root}\left(x_{o^{\prime \prime}}\right)$. Since the rule (o) is not applicable, $x_{o^{\prime}}=x_{o^{\prime \prime}}$, and so $u=v$.
(p22) Let $\forall \mathfrak{A}_{i}^{a} \cdot \mathfrak{C} \in \mathfrak{a}^{\prime}(u)$, where a is an accepting state and $\mathfrak{C}=\bigvee_{h=1}^{m_{i}}\left(t_{h}^{r}, t_{h}^{\forall}, t_{h}^{-}\right)$. Then $\forall \mathfrak{A}_{i}^{a} \cdot \mathfrak{C} \in \mathfrak{a}(x)$, where $x=\operatorname{tail}(u)$. Since (r7) cannot be applied, $\mathfrak{C} \in \mathfrak{a}(x)$, and since (r9) is not applicable, there is j such that $\mathfrak{C}_{j}=\left(t_{j}^{r}, t_{j}^{\forall}, t_{j}^{-}\right) \in \mathfrak{a}(x)$. Now, as (r10) is not applicable, we have $t_{j}^{\forall} \subseteq \mathfrak{a}(x)$; and since \boldsymbol{G} is clash-free, $\left.\mathfrak{a}(x)\right|_{i n v\left(t_{j}^{r}\right)} ^{\forall} \subseteq t_{j}^{-}$. Thus, $t_{j}^{\forall} \subseteq \mathfrak{a}^{\prime}(u)$ and $\left.\mathfrak{a}^{\prime}(u)\right|_{i n v\left(t_{j}^{r}\right)} ^{\forall} \subseteq t_{j}^{-}$.
(p21) Let $\forall \mathfrak{A}_{i}^{a} \cdot \mathfrak{C} \in \mathfrak{a}^{\prime}(u)$, where $\mathfrak{C}=\exists \operatorname{inv}\left(P_{i m_{i}}\right) \cdot \cdots \exists \operatorname{inv}\left(P_{i 1}\right) \cdot\left(t^{r}, t^{\forall}, t^{-}\right)$and a is an accepting state. Then $\forall \mathfrak{A}_{P_{i}}^{a} \cdot \mathfrak{C} \in \mathfrak{a}(\operatorname{tail}(u))$. We prove by induction on j that there is v_{j} such that $\exists \operatorname{inv}\left(P_{i j}\right) \cdots \exists \operatorname{inv}\left(P_{i 1}\right) .\left(t^{r}, t^{\forall}, t^{-}\right) \in \mathfrak{a}\left(\operatorname{tail}\left(v_{j}\right)\right)$. For $j=m_{i}$, set $v_{m_{i}}=u$. As (r7) is not applicable to $\operatorname{tail}\left(v_{m_{i}}\right), \exists \operatorname{inv}\left(P_{i m_{i}}\right) \cdot \cdots \exists \operatorname{inv}\left(P_{i 1}\right) \cdot\left(t^{r}, t^{\forall}, t^{-}\right) \in \mathfrak{a}\left(\operatorname{tail}\left(v_{m_{i}}\right)\right)$, which establishes the induction basis. Assume now that our claim holds for j and prove it for $j-1$. As $\operatorname{tail}\left(v_{j}\right)$ is not blocked and (r8) is not applicable, there is a safe $\operatorname{inv}\left(P_{i j}\right)$-neighbour y_{j-1} of $\operatorname{tail}\left(v_{j}\right)$ such that $\exists \operatorname{inv}\left(P_{i(j-1)}\right) . \cdots \exists \operatorname{inv}\left(P_{i 1}\right) .\left(t^{r}, t^{\forall}, t^{-}\right) \in \mathfrak{a}\left(y_{j-1}\right)$. By Proposition 24, there is $v_{j-1} \in \operatorname{paths}(\boldsymbol{G})$ with $\left(v_{j}, v_{j-1}\right) \in \mathcal{E}\left(\operatorname{inv}\left(P_{i j}\right)\right)$ and $\exists \operatorname{inv}\left(P_{i(j-1)}\right) . \cdots \exists \operatorname{inv}\left(P_{i 1}\right) \cdot\left(t^{r}, t^{\forall}, t^{-}\right) \in$ $\mathfrak{a}\left(\operatorname{tail}\left(v_{j-1}\right)\right)$. For $j=0$, we have $\left(t^{r}, t^{\forall}, t^{-}\right) \in \mathfrak{a}\left(\operatorname{tail}\left(v_{0}\right)\right)$. Further, as (r10) cannot be applied, we have $t^{\forall} \subseteq \mathfrak{a}\left(\operatorname{tail}\left(v_{0}\right)\right)$; and since \boldsymbol{G} is clash-free, $\left.\mathfrak{a}\left(\operatorname{tail}\left(v_{0}\right)\right)\right|_{i n v\left(t^{r}\right)} ^{\forall} \subseteq t^{-}$. Thus, $t^{\forall} \subseteq \mathfrak{a}^{\prime}\left(v_{0}\right)$ and $\left.\mathfrak{a}^{\prime}\left(v_{0}\right)\right|_{i n v\left(t^{r}\right)} ^{\forall} \subseteq t^{-}$.
(\Rightarrow) Take a tableau $\boldsymbol{T}=\left(\boldsymbol{S}, \mathfrak{c}^{\prime}, \mathfrak{a}^{\prime}, \mathcal{E}\right)$ for C_{0} w.r.t. \mathcal{R} and extend it in the following way:
(e1) If $\forall \mathfrak{A}_{i}^{a} \cdot \mathfrak{C} \in \mathfrak{a}^{\prime}(u)$, where $\mathfrak{C}=\exists \operatorname{inv}\left(P_{i m_{i}}\right) . \cdots \exists \operatorname{inv}\left(P_{i 1}\right) .\left(t^{r}, t^{\forall}, t^{-}\right)$and a is an accepting state, then, by (p21), there are $v_{0}, v_{1}, \ldots, v_{m_{i}}=u$ such that $\left(v_{j}, v_{j-1}\right) \in \mathcal{E}\left(\operatorname{inv}\left(P_{i j}\right)\right)$, for $1 \leq j \leq m_{i}, t^{\forall} \subseteq \mathfrak{a}^{\prime}\left(v_{0}\right)$ and $\left.\mathfrak{a}^{\prime}\left(v_{0}\right)\right|_{\text {inv }\left(t^{r}\right)} ^{\forall} \subseteq t^{-}$. In this case, we extend $\mathfrak{a}^{\prime}\left(v_{j}\right)$ by taking $\mathfrak{a}^{\prime}\left(v_{j}\right):=\mathfrak{a}^{\prime}\left(v_{j}\right) \cup\left\{\exists \operatorname{inv}\left(P_{i j}\right) \cdots \exists \operatorname{inv}\left(P_{i 1}\right) .\left(t^{r}, t^{\forall}, t^{-}\right)\right\}$, for $0 \leq j \leq m_{i}$.
(e2) If $\forall \mathfrak{A}_{i}^{a} \cdot \mathfrak{C} \in \mathfrak{a}^{\prime}(u)$, where $\mathfrak{C}=\bigvee_{h=1}^{m_{i}}\left(t_{h}^{r}, t_{h}^{\forall}, t_{h}^{-}\right)$, then, by (p 22), there is $j \in\left\{1, \ldots, m_{i}\right\}$ such that $t_{j}^{\forall} \subseteq \mathfrak{a}^{\prime}(u)$ and $\left.\mathfrak{a}^{\prime}(u)\right|_{i n v\left(t_{j}^{r}\right)} ^{\forall} \subseteq t_{j}^{-}$. In this case, we extend $\mathfrak{a}^{\prime}(u)$ by taking $\mathfrak{a}^{\prime}(u):=\mathfrak{a}^{\prime}(u) \cup\left\{\mathfrak{C}, \mathfrak{C}_{j}\right\}$.
(e3) If there exists $\mathfrak{C} \in \bigcup_{i=0}^{l} \boldsymbol{q} \boldsymbol{c}^{*}\left(\boldsymbol{r}_{i}\right)$ such that $\mathfrak{C} \notin \mathfrak{a}^{\prime}(u)$, then $\mathfrak{a}^{\prime}(u):=\mathfrak{a}^{\prime}(u) \cup\{\neg \mathfrak{C}\}$.
(e4) If $(\leq n S . C) \in \mathfrak{c}^{\prime}(u)$ and $S^{\boldsymbol{T}}(u, C)=\{v \in \boldsymbol{S} \mid(u, v) \in \mathcal{E}(S), C \in \mathfrak{c}(v)\}=\left\{v_{1}, \ldots, v_{m}\right\}$ then, in view of (p10), we have $m \leq n$. In this case, we extend $\mathfrak{c}^{\prime}(u)$ by taking $\mathfrak{c}^{\prime}(u):=\mathfrak{c}^{\prime}(u) \cup\{\leq m S . C\}$.
We now apply the completion rules using the extended tableau \boldsymbol{T} so that in the end the algorithm obtains a clash-free completion graph $\boldsymbol{G}=\left(V_{1}, V_{2}, E_{1}, E_{2}, \mathfrak{c}, \mathfrak{a}, \mathfrak{l}, \nsubseteq\right)$ and returns
'yes'. For this purpose, we define a map $\mu: V \rightarrow \boldsymbol{S}$ and steer the applications of the nondeterministic completion rules in such a way that $\mathfrak{c}(x) \subseteq \mathfrak{c}^{\prime}(\mu(x))$ and $\mathfrak{a}(x) \subseteq \mathfrak{a}^{\prime}(\mu(x))$, for all nodes $x \in V$ (cf. Horrocks, Kutz, \& Sattler, 2005; Horrocks et al., 2006). Furthermore, we require that, for each pair of nodes x, y and each role R, if y is an R-successor of x, then $(\mu(x), \mu(y)) \in \mathcal{E}(R)$, and $x \not \equiv y$ implies $\mu(x) \neq \mu(y)$. This will ensure that \boldsymbol{G} is clash-free, since tableau \boldsymbol{T} is clash-free.

We define μ by induction as follows. To begin with, by (p14), for each o $\operatorname{nom}\left(C_{0}\right)$, there is some v_{o} with $o \in \mathfrak{c}^{\prime}\left(v_{o}\right)$, and by (p 1), there is some u_{0} with $C_{0} \in \mathfrak{c}^{\prime}\left(u_{0}\right)$. The algorithm starts by constructing nodes x_{o}, for each $o \in \operatorname{nom}\left(C_{0}\right)$, and $x_{C_{0}}$ with $\mathfrak{c}\left(x_{o}\right)=\{o\}$ and $\mathfrak{c}\left(x_{C_{0}}\right)=\left\{C_{0}\right\}$. We set $\mu\left(x_{o}\right)=v_{o}$ and $\mu\left(x_{C_{0}}\right)=u_{0}$.

Observe that $\mathfrak{c}\left(x_{o}\right) \subseteq \mathfrak{c}^{\prime}\left(\mu\left(x_{o}\right)\right)$ and $\mathfrak{c}\left(x_{C_{0}}\right) \subseteq \mathfrak{c}^{\prime}\left(\mu\left(x_{C_{0}}\right)\right)$; also $\mathfrak{a}\left(x_{o}\right)=\emptyset \subseteq \mathfrak{a}^{\prime}\left(\mu\left(x_{o}\right)\right)$ and $\mathfrak{a}\left(x_{C_{0}}\right)=\emptyset \subseteq \mathfrak{a}^{\prime}\left(\mu\left(x_{C_{0}}\right)\right)$. We now consider applications of the completion rules.

If (\sqcap) can be applied to $x \in V$ with $C_{1} \sqcap C_{2} \in \mathfrak{c}(x)$, then $C_{1} \sqcap C_{2} \in \mathfrak{c}^{\prime}(\mu(x))$, and so, by (p6), $C_{1}, C_{2} \in \mathfrak{c}^{\prime}(\mu(x))$. When we apply $(\sqcap), C_{1}, C_{2}$ are added to $\mathfrak{c}(x)$, so we again have $\mathfrak{c}(x) \subseteq \mathfrak{c}^{\prime}(\mu(x))$.

If ($\sqcup)$ can be applied to $x \in V$ with $C_{1} \sqcup C_{2} \in \mathfrak{c}(x)$, then $C_{1} \sqcup C_{2} \in \mathfrak{c}^{\prime}(\mu(x))$, and so, by $(\mathrm{p} 7),\left\{C_{1}, C_{2}\right\} \cap \mathfrak{c}^{\prime}(\mu(x)) \neq \emptyset$. We apply ($\left.\sqcup\right)$ so that $\mathfrak{c}(x):=\mathfrak{c}(x) \cup\{D\}$ for some $D \in\left\{C_{1}, C_{2}\right\} \cap \mathfrak{c}^{\prime}(\mu(x))$, and again $\mathfrak{c}(x) \subseteq \mathfrak{c}^{\prime}(\mu(x))$.

If (\exists) can be applied to $x \in V$ with $\exists S . C \in \mathfrak{c}(x)$, then $\exists S . C \in \mathfrak{c}^{\prime}(\mu(x))$, and so, by (p8), there is a v with $(\mu(x), v) \in \mathcal{E}(S)$ and $C \in \mathfrak{c}^{\prime}(v)$. By (p3), $\top \in \mathfrak{c}^{\prime}(v)$ and, by (p16) for $S \sqsubseteq^{*} S^{\prime}$, we have $(\mu(x), v) \in \mathcal{E}\left(S^{\prime}\right)$. We apply (\exists) so that a new node y is created with $\mathfrak{l}(x, y):=\{S\}, \mathfrak{c}(y):=\{C, \top\}, \mathfrak{a}(y):=\emptyset$ and $\mu(y)=v$. But then $\mathfrak{c}(y) \subseteq \mathfrak{c}^{\prime}(\mu(y))$, $\mathfrak{a}(y) \subseteq \mathfrak{a}^{\prime}(\mu(y))$ and $(\mu(x), \mu(y)) \in \mathcal{E}\left(S^{\prime}\right)$.

If (self) can be applied to $x \in V$ with \exists S.Self $\in \mathfrak{c}(x)$, then $\exists S . S e l f \in \mathfrak{c}^{\prime}(\mu(x))$, and so, by $(\mathrm{p} 4),(\mu(x), \mu(x)) \in \mathcal{E}(S)$. By $(\mathrm{p} 16)$ for $S \sqsubseteq^{*} S^{\prime}$, we have $(\mu(x), \mu(x)) \in \mathcal{E}\left(S^{\prime}\right)$. We apply (self) by adding the arc (x, x), if it is not there yet, and setting $\mathfrak{l}(x, x):=$ $\mathfrak{l}(x, x) \cup\{S\}$. Then we obtain $(\mu(x), \mu(x)) \in \mathcal{E}\left(S^{\prime}\right)$.

If (guess) can be applied to $x \in V$ with $(\leq n S . C) \in \mathfrak{c}(x)$ and an S-neighbour y of x, then $(\leq n S . C) \in \mathfrak{c}^{\prime}(\mu(x)),(\mu(x), \mu(y)) \in \mathcal{E}(S)$, and so, by $(\mathrm{p} 12),\{C, \neg C\} \cap \mathfrak{c}^{\prime}(\mu(y)) \neq \emptyset$. We apply (guess) so that $\mathfrak{c}(y):=\mathfrak{c}(y) \cup\{D\}$, for some $D \in\{C, \neg C\} \cap \mathfrak{c}^{\prime}(\mu(y)$. Hence $\mathfrak{c}(y) \subseteq \mathfrak{c}^{\prime}(\mu(y))$.

If (\geq) can be applied to $x \in V$ with $(\geq n S . C) \in \mathfrak{c}(x)$, then $(\geq n S . C) \in \mathfrak{c}^{\prime}(\mu(x))$. By (p11), there are $v_{1}, \ldots, v_{n} \in S^{\boldsymbol{T}}(\mu(x), C)$, where $S^{\boldsymbol{T}}(u, C)=\{v \in \boldsymbol{S} \mid(u, v) \in \mathcal{E}(S), C \in$ $\mathfrak{c}(v)\}$. We apply (\geq) by creating n new successors y_{1}, \ldots, y_{n} of x and setting $\mathfrak{l}\left(x, y_{i}\right):=$ $\{S\}, \mathfrak{c}\left(y_{i}\right):=\{C, \top\}, \mathfrak{a}\left(y_{i}\right):=\emptyset, y_{i} \not \not y_{j}$ and $\mu\left(y_{i}\right)=v_{i}$, for $1 \leq i, j \leq n, j \neq i$. Then, for $S \sqsubseteq^{*} S^{\prime}$, we have $\left(\mu(x), \mu\left(y_{i}\right)\right) \in \mathcal{E}\left(S^{\prime}\right)$ and also $\mathfrak{c}\left(y_{i}\right) \subseteq \mathfrak{c}^{\prime}\left(\mu\left(y_{i}\right)\right)$, for $1 \leq i \leq n$.

If (\leq) can be applied to $x \in V$ with $(\leq n S . C) \in \mathfrak{c}(x)$ and $\left\{y_{1}, \ldots, y_{n+1}\right\} \subseteq S^{\boldsymbol{G}}(x, C)$, then $(\leq n S . C) \in \mathfrak{c}^{\prime}(\mu(x))$ and $\left\{\mu\left(y_{1}\right), \ldots, \mu\left(y_{n+1}\right)\right\} \subseteq S^{\boldsymbol{T}}(\mu(x), C)$. By (p 10), we have $\sharp S^{\boldsymbol{T}}(\mu(x), C) \leq n$, so there are j_{1}, j_{2} such that $\mu\left(y_{j_{1}}\right)=\mu\left(y_{j_{2}}\right)=v$. Instead of $y_{j_{1}}$, $y_{j_{2}}$, we will write y, z; more precisely if $y_{j_{1}}$ is a root or an E_{1}-ancestor of $y_{j_{2}}$ then
we set $z=y_{j_{1}}$ and $y=y_{j_{2}}$, otherwise we set $z=y_{j_{2}}$ and $y=y_{j_{1}}$. We apply (\leq) by performing $\operatorname{Merge}(y, z)$. Since $\mu(z)=v$, the required conditions on μ hold.

For $\left(=_{r}\right)$, the proof is similar to the previous case.
If (o) can be applied to $y \in V$ with $o^{\prime} \in \mathfrak{c}\left(x_{o}\right) \cap \mathfrak{c}(y)$, for some $o, o^{\prime} \in \operatorname{nom}\left(C_{0}\right)$, then $o^{\prime} \in \mathfrak{c}^{\prime}\left(\mu\left(x_{o}\right)\right) \cap \mathfrak{c}^{\prime}(\mu(y))$. By (p13), we have $\mu\left(x_{o}\right)=\mu(y)$, and therefore $\mathfrak{c}\left(x_{o}\right) \cup \mathfrak{c}(y) \subseteq$ $\mathfrak{c}^{\prime}\left(\mu\left(x_{o}\right)\right) \cup \mathfrak{c}^{\prime}(\mu(y))=\mathfrak{c}^{\prime}\left(\mu\left(x_{o}\right)\right)$. Similarly, $\mathfrak{a}\left(x_{o}\right) \cup \mathfrak{a}(y) \subseteq \mathfrak{a}^{\prime}\left(\mu\left(x_{o}\right)\right)$. We apply (o) by performing $\operatorname{Merge}\left(y, x_{o}\right)$, so the required conditions for μ hold again.

If $\left(\leq_{r}\right)$ can be applied to $x \in V_{1}$ and an S-neighbour y of x with $(\leq n S . C) \in \mathfrak{c}(x)$, $y \in V_{2},(y, x) \in E_{2}$ and $C \in \mathfrak{c}(y)$, then $(\leq n S . C) \in \mathfrak{c}^{\prime}(\mu(x)),(\mu(x), \mu(y)) \in \mathcal{E}(S)$ and $C \in \mathfrak{c}^{\prime}(\mu(y))$. By (p10), we have $\sharp S^{\boldsymbol{T}}(\mu(x), C) \leq n$, so $S^{\boldsymbol{T}}(\mu(x), C)=\left\{v_{1}, \ldots, v_{m}\right\}$, $m \leq n$. We apply $\left(\leq_{r}\right)$ so that $\mathfrak{c}(x):=\mathfrak{c}(x) \cup\{(\leq m S . C)\}$, create m new nodes $y_{1}, \ldots, y_{m} \in V_{1}$ with $\mathfrak{l}\left(x, y_{i}\right):=\{S\}, \mathfrak{c}\left(y_{i}\right):=\{C, \top\}, \mathfrak{a}\left(y_{i}\right):=\emptyset, y_{i} \nsupseteq y_{j}$ and $\mu\left(y_{i}\right)=v_{i}$ for all $1 \leq i \leq m, 1 \leq j<i$. Then, for $S \sqsubseteq^{*} S^{\prime}$, we have $\left(\mu(x), \mu\left(y_{i}\right)\right) \in \mathcal{E}\left(S^{\prime}\right)$, $\mathfrak{c}\left(y_{i}\right) \subseteq \mathfrak{c}^{\prime}\left(\mu\left(y_{i}\right)\right)$, for $1 \leq i \leq m$, and also, by (e4), $\mathfrak{c}(x) \subseteq \mathfrak{c}^{\prime}(\mu(x))$.

If (r1) can be applied to $x \in V$ with $\forall R . C \in \mathfrak{c}(x)$, then $\forall R . C \in \mathfrak{c}^{\prime}(\mu(x))$, and so, by (p17), $\forall \mathfrak{A}_{R}^{s}$. $C \in \mathfrak{a}^{\prime}(\mu(x))$, where s is the initial state of \mathfrak{A}_{R}. We apply (r1) so that $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\left\{\forall \mathfrak{A}_{R}^{s} . C\right\}$. Clearly, we have $\mathfrak{a}(x) \subseteq \mathfrak{a}^{\prime}(\mu(x))$.

If (r2) can be applied to $x \in V$ with $\forall \mathfrak{A}_{R}^{p} . C \in \mathfrak{a}(x), q \in \delta_{\mathfrak{A}_{R}}(p, T)$, and y is a T-neighbour of x, then $\forall \mathfrak{A}_{R}^{p} . C \in \mathfrak{a}^{\prime}(\mu(x))$. If $T \neq \varepsilon$ then $(\mu(x), \mu(y)) \in \mathcal{E}(T)$ and, by (p20), $\forall \mathfrak{A}_{R}^{q} . C \in \mathfrak{a}^{\prime}(\mu(y))$. If $T=\varepsilon$ then $y=x$ and, by (p23), $\forall \mathfrak{A}_{R}^{q} . C \in \mathfrak{a}^{\prime}(\mu(y))$. In both cases we apply (r2) so that $\mathfrak{a}(y):=\mathfrak{a}(y) \cup\left\{\forall \mathfrak{A}_{R}^{q} . C\right\}$, and again $\mathfrak{a}(y) \subseteq \mathfrak{a}^{\prime}(\mu(y))$.
If (r3) can be applied to $x \in V$ with $\forall \mathfrak{A}_{R}^{a} . C \in \mathfrak{a}(x)$, where a is an accepting state, then $\forall \mathfrak{A}{ }_{R}^{a} . C \in \mathfrak{a}^{\prime}(\mu(x))$. By (p18), $C \in \mathfrak{c}^{\prime}(\mu(x))$. We apply (r3) so that $\mathfrak{c}(x):=\mathfrak{c}(x) \cup\{C\}$. Thus, $\mathfrak{c}(x) \subseteq \mathfrak{c}^{\prime}(\mu(x))$.

If (r4 ${ }^{i}$) can be applied to $x \in V$ with $\mathfrak{C} \in \boldsymbol{q} \boldsymbol{c}^{*}\left(\boldsymbol{r}_{i}\right)$, then, by $(\mathrm{e} 3),\{\mathfrak{C}, \neg \mathfrak{C}\} \cap \mathfrak{a}^{\prime}(\mu(x)) \neq \emptyset$. We apply $\left(\mathrm{r}^{i}{ }^{i}\right)$ so that $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\{\mathfrak{D}\}$, for some $\mathfrak{D} \in\{\mathfrak{C}, \neg \mathfrak{C}\} \cap \mathfrak{a}^{\prime}(\mu(x))$. Thus, $\mathfrak{a}(x) \subseteq \mathfrak{a}^{\prime}(\mu(x))$.

If ($\mathrm{r} 5^{i}$) can be applied to $x \in V$, then $\forall \mathfrak{A}_{i}^{s} \cdot \mathfrak{C} \notin \mathfrak{a}(x)$, where s is the initial state of \mathfrak{A}_{i} and $\mathfrak{C}=\Xi\left(\boldsymbol{r}_{i}, \mathfrak{a}(x)\right)$. By $(\mathrm{p} 19), \forall \mathfrak{A}_{i}^{s} \cdot \mathfrak{C}^{\prime \prime} \in \mathfrak{a}^{\prime}(\mu(x))$, where $\mathfrak{C}^{\prime}=\Xi\left(\boldsymbol{r}_{i}, \mathfrak{a}^{\prime}(\mu(x))\right)$. Suppose $\mathfrak{C} \neq \mathfrak{C}^{\prime}$. Since $\mathfrak{a}(x) \subseteq a^{\prime}(\mu(x))$, there exists $\mathfrak{C}_{1} \in \boldsymbol{q} \boldsymbol{c}^{*}\left(\boldsymbol{r}_{i}\right)$ such that $\mathfrak{C}_{1} \in \mathfrak{a}^{\prime}(\mu(x))$ and $\mathfrak{C}_{1} \notin \mathfrak{a}(x)$. As $\left(\mathrm{r}^{i}\right)$ is not applicable, we have $\neg \mathfrak{C}_{1} \in \mathfrak{a}(x)$, and so $\neg \mathfrak{C}_{1} \in \mathfrak{a}^{\prime}(\mu(x))$, which is a contradiction. Hence $\mathfrak{C}=\mathfrak{C}^{\prime}$. We apply $\left(\mathrm{r} 5^{i}\right)$ so that $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\left\{\forall \mathfrak{A}{ }_{i}^{\mathfrak{s}} \cdot \mathfrak{C}\right\}$. Thus, $\mathfrak{a}(x) \subseteq \mathfrak{a}^{\prime}(\mu(x))$.

If (r6) can be applied to $x \in V$ with $\forall \mathfrak{A}^{p} \cdot \mathfrak{C} \in \mathfrak{a}(x), q \in \delta_{\mathfrak{A}_{R}}(p, T)$, and y is a T-neighbour of x, then $\forall \mathfrak{A}^{p} . \mathfrak{C} \in \mathfrak{a}^{\prime}(\mu(x))$. If $T \neq \varepsilon$ then $(\mu(x), \mu(y)) \in \mathcal{E}(T)$ and, by (p 20), $\forall \mathfrak{A}^{q} . \mathfrak{C} \in \mathfrak{a}^{\prime}(\mu(y))$. If $T=\varepsilon$ then $y=x$ and, by (p23), $\forall \mathfrak{A}^{q} . \mathfrak{C} \in \mathfrak{a}^{\prime}(\mu(y))$. In either case, we apply (r6) so that $\mathfrak{a}(y):=\mathfrak{a}(y) \cup\left\{\forall \mathfrak{A}^{q} . \mathfrak{C}\right\}$. Thus, $\mathfrak{a}(y) \subseteq \mathfrak{a}^{\prime}(\mu(y))$.

If (r7) can be applied to $x \in V$ with $\forall \mathfrak{A}^{a} \cdot \mathfrak{C} \in \mathfrak{a}(x)$, where a is an accepting state, then $\forall \mathfrak{A}^{a} . \mathfrak{C} \in \mathfrak{a}^{\prime}(\mu(x))$. By (e1) and (e2), $\mathfrak{C} \in \mathfrak{a}^{\prime}(\mu(x))$. We apply (r7) in such a way that $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\{\mathfrak{C}\}$. Thus, $\mathfrak{a}(x) \subseteq \mathfrak{a}^{\prime}(\mu(x))$.

If (r8) can be applied to $x \in V$ with $\exists P \cdot \mathfrak{C} \in \mathfrak{a}(x)$, then $\exists P \cdot \mathfrak{C} \in \mathfrak{a}^{\prime}(\mu(x))$, and so, by (e1), there is some v with $(\mu(x), v) \in \mathcal{E}(P)$ and $\mathfrak{C} \in \mathfrak{a}^{\prime}(v)$. By (p16) for $P \sqsubseteq^{*} S^{\prime}$, we have $(\mu(x), v) \in \mathcal{E}\left(S^{\prime}\right)$. We apply (r8) by creating a new node y with $\mathfrak{l}(x, y):=\{P\}$, $\mathfrak{c}(y):=\{\top\}, \mathfrak{a}(y):=\{\mathfrak{C}\}$ and $\mu(y)=v$. Thus, $\mathfrak{c}(y) \subseteq \mathfrak{c}^{\prime}(\mu(y)), \mathfrak{a}(y) \subseteq \mathfrak{a}^{\prime}(\mu(y))$ and $(\mu(x), \mu(y)) \in \mathcal{E}\left(S^{\prime}\right)$.

If (r9) can be applied to $x \in V$ with $\mathfrak{C} \in \mathfrak{a}(x)$, for $\mathfrak{C}=\bigvee_{j=1}^{m} \mathfrak{C}_{j}$, then $\mathfrak{C} \in \mathfrak{a}^{\prime}(\mu(x))$. This means that \mathfrak{C} is added to $\mathfrak{a}^{\prime}(\mu(x))$ by (e2), and so, there is j such that $\mathfrak{C}_{j} \in \mathfrak{a}^{\prime}(\mu(x))$. We apply (r9) so that $\mathfrak{a}(x):=\mathfrak{a}(x) \cup\left\{\mathfrak{C}_{j}\right\}$. Thus, $\mathfrak{a}(x) \subseteq \mathfrak{a}^{\prime}(\mu(x))$.

If (r10) can be applied to $x \in V$ with $\mathfrak{C} \in \mathfrak{a}(x)$, for $\mathfrak{C}=\left(t^{r}, t^{\forall}, t^{-}\right)$, then $\mathfrak{C} \in \mathfrak{a}^{\prime}(\mu(x))$. This means that \mathfrak{C} is added to $\mathfrak{a}^{\prime}(\mu(x))$ by (e1) for $\mu(x)=v_{0}$, or by (e 2). In either case, $t^{\forall} \subseteq \mathfrak{a}^{\prime}(\mu(x))$. We apply (r10) so that $\mathfrak{a}(x):=\mathfrak{a}(x) \cup t^{\forall}$. Thus, $\mathfrak{a}(x) \subseteq \mathfrak{a}^{\prime}(\mu(x))$.

This completes the proof of the lemma.
As an immediate consequence of Lemmas 19, 22 and 23, we obtain our main Theorem 15 according to which concept satisfiability w.r.t. $\mathcal{S R}^{+} \mathcal{O I Q} \mathrm{KBs}$ is decidable. It is worth noting that if the given RBox \mathcal{R} does not contain RAs of the form (C)-(F) then our tableau algorithm behaves in the same way as the algorithm for $\mathcal{S R O I Q}$ (Horrocks et al., 2006). However, if \mathcal{R} contains one RA of the form (C)-(F) the algorithm will have to construct the set $\boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)$ of quasi-concepts, which contains subsets of the previously constructed sets of quasi-concepts $\boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{0}\right)$, and so may suffer an exponential blow-up. More precisely, the new quasi-concepts in $\boldsymbol{q} \boldsymbol{c}\left(C_{0}, \mathcal{R}\right)$ are built from triples of the form $\left(t^{r}, t^{\forall}, t^{-}\right)$, where $\left.t^{\forall} \subseteq \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{0}\right)\right|_{t^{r}} ^{\forall r}$ and $\left.t^{-} \subseteq \boldsymbol{q} \boldsymbol{c}\left(\boldsymbol{r}_{0}\right)\right|_{i n v\left(t^{r}\right)} ^{\forall}$. Furthermore, the algorithm may suffer one more exponential blow-up every time we add an extra RA of the form (C)-(F) and extend the sequence $\boldsymbol{r}_{i_{1}} \triangleleft \boldsymbol{r}_{i_{2}}, \boldsymbol{r}_{i_{2}} \triangleleft \boldsymbol{r}_{i_{3}}, \ldots, \boldsymbol{r}_{i_{h-1}} \triangleleft \boldsymbol{r}_{i_{h}}$ because again the set of quasi-concepts may become exponentially larger.

References

Baader, F. (2003). Restricted role-value-maps in a description logic with existential restrictions and terminological cycles. In Proccedings of the 2003 International Workshop on Description Logics (DL2003).

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., \& Patel-Schneider, P. F. (Eds.). (2003). The Description Logic Handbook: Theory, Implementation and Applications. CUP. (2nd edition, 2007).
Baldoni, M. (1998). Normal Multimodal Logics: Automatic Deduction and Logic Programming Extension. Ph.D. thesis, Universit'a degli Studi di Torino.

Bock, C., Zha, X., Suh, H., \& Lee, J. (2010). Ontological product modeling for collaborative design. Advanced Engineering Informatics, 24, 510-524.

Bock, C. (2004). UML 2 Composition Model. Journal of Object Technology, 3(10), 47-74.
Brachman, R. J., \& Schmolze, J. G. (1985). An overview of the KL-ONE knowledge representation system. Cognitive Science, 9(2), 171-216.

Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., \& Sattler, U. (2008). OWL 2: The next step for OWL. Journal of Web Semantics, 6(4), 309-322.
del Cerro, L. F., \& Penttonen, M. (1988). Grammar logics. Logique et Analyse, 121, 123-134.
Demri, S. (2001). The complexity of regularity in grammar logics and related modal logics. Journal of Logic and Computation, 11(6), 933-960.
Halpern, J., \& Moses, Y. (1992). A guide to completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence, 54(2), 319-379.
Horrocks, I., Kutz, O., \& Sattler, U. (2005). The irresistible $\mathcal{S R} \mathcal{I} \mathcal{Q}$. In Proc. of the First OWL Experiences and Directions Workshop.
Horrocks, I., Kutz, O., \& Sattler, U. (2006). The even more irresistible $\mathcal{S R} \mathcal{O} \mathcal{I} \mathcal{Q}$. In Proceedings of the Tenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57-67.
 Artificial Intelligence, 160(1-2), 79-104.
Horrocks, I., \& Sattler, U. (2007). A tableau decision procedure for $\mathcal{S H O} \mathcal{I} \mathcal{Q}$. Journal of Automated Reasoning, 39(3), 249-276.
Kazakov, Y. (2010). An extension of complex role inclusion axioms in the description logic $\mathcal{S R O I Q}$. In Proceedings of IJCAR, pp. 472-486.
Krdzavac, N., \& Bock, C. (2008). Reasoning in manufacturing part-part examples with OWL2. Tech. rep., U.S. National Institute of Standards and Technology, Gaithersburg, United States of America.

Motik, B., Cuenca Grau, B., Horrocks, I., \& Sattler, U. (2009). Representing ontologies using description logics, description graphs, and rules. Artificial Intelligence, 173 (14), 1275-1309.

Motik, B., Shearer, R., \& Horrocks, I. (2009). Hypertableau reasoning for description logics. Journal of Artificial Intelligence Research (JAIR), 36(1), 165-228.

Rector, A. (2002). Analysis of propagation along transitive roles: formalisation of the GALEN experience with medical ontologies. In Proceedings of the International Workshop on Description Logics 2002 (DL2002).

Schmidt-Schauß, M. (1989). Subsumption in KL-ONE is undecidable. In Proccedings of the 1st Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR'89), pp. 421-431.
Simančík, F. (2012). Elimination of complex RIAs without automata. In Proceedings of the International Workshop on Description Logics 2012 (DL2012).
Tseitin, G. (1956). Associative calculi with undecidable equivalence problems. Dokl. Akad. Nauk SSSR, 107(3), 370-371. (In Russian).
Wessel, M. (2001). Obstacles on the way to qualitative spatial reasoning with description logics: some undecidability results. In Proceedings of the International Workshop on Description Logics (DL2001).

Wessel, M. (2002). On spatial reasoning with description logics. In Proceedings of the International Workshop on Description Logics 2002 (DL2002).

