Journal of Artificial Intelligence Research 47 (2013) 649-695 Submitted 02/13; published 08/13

Protecting Privacy through Distributed Computation
in Multi-agent Decision Making

Online Appendix 3: Unique ID Generation Algorithm

Thomas Léauté THOMAS.LEAUTEQA3.EPFL.CH
Boi Faltings BOI.FALTINGS@QEPFL.CH

The assignment of unique IDs to n variables is an instance of the well-known renaming
problem, for which multiple algorithms have been proposed in the literature on distributed
algorithms. However, to our knowledge, all these algorithms focus on robustness to failures,
and ignore the issue of privacy. On the contrary, in this paper we do not consider agent
failures, and we rather need an algorithm that protects agent and topology privacy. To this
purpose, we propose Algorithm 1, which is a modification of the pseudo-tree generation
algorithm in Online Appendix 2, and is an improved version of the algorithm proposed
by Léauté and Faltings (2009). Each variable x is assigned a unique number id, that
corresponds to the order in which it is first visited during the distributed traversal of the
constraint graph (or, more precisely, an upper bound thereon). This is done by appending
to each CHILD message the number id of variables visited so far (lines 8, 29 and 31). Each
variable adds a random number to id so as not to leak any useful upper bound on its number
of neighbors (lines 5 and 15). At the end of this algorithm, the root variable discovers an
upper bound n™ on the total number of variables, and reveals it to everyone (lines 35 and
22 to 24).

Theorem 1. The unique variable ID assignment algorithm guarantees full agent privacy,
and partial topology privacy. The minor leaks of topology privacy lie in the fact that a
variable might be able to discover:

o upper and lower bounds on the total number of variables;
e that there exists another branch in the constraint graph that it is not involved in.

Proof. This is a modification of the depth-first traversal of the constraint graph in Online
Appendix 2, which was shown to guarantee full agent privacy and full topology privacy.
One difference is that the messages now also carry an integer id that is an upper bound on
the number of variables visited so far, which cannot be used to make inferences about the
identities of agents, but is a source of (minor) topology privacy leaks, as described below.

e When receiving a CHILD message from its parent, variable x discovers that there
exist at most ¢d other variables in the problem that have already been visited. These
variables are either ancestors of its parent, or descendants of its parent in another
branch of the pseudo-tree. To make sure this bound is loose and uninformative, each
variable adds a random number in [incryiy - . . 2incrmin] to its id, where incryiy, is a
free parameter of the algorithm. In particular, this prevents the case ¢{d = 1, which

(©2013 AI Access Foundation. All rights reserved.

LEAUTE & FALTINGS

Algorithm 1 Pseudo-tree and unique ID generation algorithm for variable x

Require: a root variable
1: if x has at least one neighbor then

10:

11:
12:
13:
14:
15:

16:
17:
18:
19:

20:
21:

22:
23:
24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

2
3
4
5:
6:
7
8
9

openg <+
if = has been elected as the root then

idy < 0

id} < idy + rand(incrmin - - - 200CTmin)

open, < all neighbors of x

Remove a random neighbor gy from open, and add it to children,
Send the message (CHILD, id} + 1) to yo

loop

Wait for an incoming message (type, id) from a neighbor y;

if open, = () then // first time z is visited
open, < all neighbors of = except y;
parenty < y;
idy < id
id} <+ idy + rand(incrmin - - - 2006 min)
else if type = CHILD and y; € open, then
Remove y; from open, and add it to pseudo_children,
Send message (PSEUDO, id) to y;
next

else if type = PSEUDO then
Remove y; from children, and add it to pseudo_parents,

else if type = NBRVARS then
nt < id // upper bound on the true number of variables n
break

// Forward the CHILD message to the next open neighbor:
Choose a random y; € open,
if there exists such a y; then
Remove y; from open, and add it to children,
Send the message (CHILD, max(id, id} + 1)) to y,
else if z is not the elected root then // backtrack
Send message (CHILD, max(id, id} + 1)) to parent,
else
nt < id // upper bound on the true number of variables n
break

Send message (NBRVARS, n™) to all children of

would allow z to infer that its parent is the root of the pseudo-tree, and that x is its
first child. Variable x also discovers that there exist at least |id/(2incrmn)] already-
visited variables. Notice that these two bounds are not informative about the topology

PROTECTING PRIVACY THRU DISTRIBUTED COMPUTATION IN MULTI-AGENT DECISION MAKING

of the constraint graph, since the P*2-DPOP(H) and P2-DPOP(H) algorithms leak the
total number of variables anyway.

e When receiving a CHILD message from a child y, variable x can compare the id it
contains with the id it previously sent to y. The difference Aid > incryi, is an upper
bound on the number of y’s descendants; the parameter incryin can be chosen as large
as necessary to make this bound as loose as desired. Variable x also discovers that
| Aid/(2incryin) | is a lower bound on the number of y’s descendants.

e The id contained in a PSEUDO message does not provide any information, as it is
equal to the i¢d in the CHILD message to which the PSEUDO message is a response. In
fact, id could be removed from the PSEUDO message; it has only be left in Algorithm 1
for the sake of conciseness of the pseudo-code.

Once all variables have been assigned unique IDs, the last such ID is revealed to all variables
(and is recorded as n™). This reveals an upper bound on the total number of variables,
which is useless since the exact total number of variables is later revealed anyway by the P*2-
DPOP™) and P2-DPOP™) algorithms. However, it also reveals to each variable whether it
is the last visited variable, i.e. the last leaf of the pseudo-tree. This is another, minor leak of
topology privacy, since the leaves of the pseudo-tree that are not the last leaf discover that
there exists at least one other branch in the pseudo-tree (and therefore in the constraint
graph) that they are not involved in. O

References

Léauté, T., & Faltings, B. (2009). Privacy-preserving multi-agent constraint satisfaction.
In Proceedings of the 2009 IEEE International Conference on PrivAcy, Security, riSk
And Trust (PASSAT’09), pp. 17-25.

