Journal of Artificial Intelligence Research 47 (2013) 649-695 Submitted 02/13; published 08/13

Protecting Privacy through Distributed Computation

in Multi-agent Decision Making

Online Appendix 2: DFS Tree Generation Algorithm

Thomas Léauté THOMAS.LEAUTEQA3.EPFL.CH
Boi Faltings BOI.FALTINGS@QEPFL.CH

Algorithm 1 Pseudo-tree generation algorithm for variable x

Require: a root variable
1: if x has at least one neighbor then

153

10:

11:
12:
13:
14:

15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:

if z is the root then

open, < all neighbors of x
Remove a random neighbor gy from open, and add it to children,
Send a CHILD message to yo

loop

Wait for an incoming message of type type from a neighbor y;

if open, = () then // first time z is visited
open; < all neighbors of x except y;
parenty < y;

else if type = CHILD and y; € open, then
Remove y; from open, and add it to pseudo_children,
Send PSEUDO message to y;
next

else if type = PSEUDO then

Remove y; from children, and add it to pseudo_parents,

// Forward the CHILD message to the next open neighbor:
Choose a random y; € openg
if there exists such a y; then

Remove y; from open, and add it to children,

Send a CHILD message to y;
else

if x is not the elected root then // backtrack

Send a CHILD message to parent,
return

Given a root variable, a DFS-tree ordering of the decision variables rooted at that root

can be produced using Algorithm 1, originally proposed by Cheung (1983). This algorithm
performs a distributed, depth-first traversal of the constraint graph, during which each
variable x maintains the following fields:

(©2013 AI Access Foundation. All rights reserved.



LEAUTE & FALTINGS

e parent, is x’s parent in the pseudo-tree (if z is not the elected root);

children, is the list of x’s children;

pseudo_parents, is the list of z’s pseudo-parents;
e pseudo_children, is the list of x’s pseudo-children;
e open, is the list of x’s neighboring variables that remain to be visited.

Variable x heuristically chooses a neighbor yq as its first child (line 4) and sends it a CHILD
message (line 5). The choice of the child is guided by a heuristic, which, in the case of the
P-DPOP™ algorithm, selects a child at random so as not to leak out private information.

When variable z receives a message from a neighbor y; (line 7), if it is the first message
received, then the sender y; is identified as the parent of x (lines 8 to 10). Else, if it is
a CHILD message received from an open neighbor, then y; is identified as a pseudo-child,
which variable x reveals to y; by responding with a PSEUDO message (lines 11 to 16). The
CHILD message is then recursively passed from open neighbor to open neighbor, until no
open neighbor remains (lines 18 to 22).

When variable x has no more open neighbors, it initiates a traversal backtrack by
returning a CHILD message to its parent (lines 23 to 24). The algorithm terminates when
the root variable receives a CHILD message from a child and has no more open neighbors,
which happens after the exchange of exactly 2n. sequential messages, where n. is the number
of edges in the pseudo-tree: two CHILD messages down and up each tree-edge, plus one
CHILD message up and one PSEUDO message down each back-edge.

Theorem 1. Algorithm 1 guarantees full agent and topology privacy.

Proof. After running the algorithm, each variable’s knowledge of the chosen pseudo-tree is
limited to the following;:

e The variable knows its parent variable, which is necessarily a neighbor in the constraint
graph, therefore this does not violate topology privacy.

e The variable knows its pseudo-parents, which are also neighbors. For each such
pseudo-parent, the variable discovers the existence of a cycle in the constraint graph,
involving itself, its parent, and the given pseudo-parent. This is tolerated by the
definition of topology privacy, since the variable is involved in this cycle.

Since there exists a treepath in the pseudo-tree from the root, through all its pseudo-
parents, to itself, and there exists a back-edge between itself and the highest of its
pseudo-parents, the variable also discovers the existence of a long cycle involving all
these variables. This is also tolerated by our definition of topology privacy, since the
variable is also involved in this cycle. Furthermore, notice that the variable does not
know the order in which its pseudo-parents are arranged in the cycle.

Notice also that the variable does not discover the existence of possible ancestors in
the pseudo-tree other than its neighbors.



PROTECTING PRIVACY THRU DISTRIBUTED COMPUTATION IN MULTI-AGENT DECISION MAKING

e The variable knows its children, which are also neighbors. Because each child is in
a different branch, the variable can infer that there does not exist any constraint
between any of its children. This is tolerated by the definition of topology privacy.

e The variable knows its pseudo-children, which are also neighbors. Furthermore, it
knows below which of its children each pseudo-child is situated in the pseudo-tree.
Therefore, for each pseudo-child below any given child, the variable discovers the
existence of a cycle involving itself, the child and the pseudo-child. This is tolerated
since the variable is involved in this cycle.

Moreover, like for its parent and pseudo-parents, for each child, the variable discovers
the existence of a long cycle involving itself, the given child, and all pseudo-children
below that child. And, unlike for pseudo-parents, the variable can infer the order of
its pseudo-children in the cycle, based on the order in which the CHILD token has
been received from the pseudo-children. This is also tolerated by the definition of
topology privacy, since the variable is involved in that cycle.

Finally, like for children, the variable discovers the absence of constraints between any
two (pseudo-)children located below two different children, which is tolerated. The
variable does not discover the existence of other possible descendants.

O]

References

Cheung, T.-Y. (1983). Graph traversal techniques and the maximum flow problem in dis-
tributed computation. IEEE Transactions on Software Engineering, 9(4), 504-512.



