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Abstract

Learning by observation can be of key importance whenever agents sharing similar
features want to learn from each other. This paper presents an agent architecture that
enables software agents to learn by direct observation of the actions executed by expert
agents while they are performing a task. This is possible because the proposed architecture
displays information that is essential for observation, making it possible for software agents
to observe each other.

The agent architecture supports a learning process that covers all aspects of learning
by observation, such as discovering and observing experts, learning from the observed
data, applying the acquired knowledge and evaluating the agent’s progress. The evaluation
provides control over the decision to obtain new knowledge or apply the acquired knowledge
to new problems.

We combine two methods for learning from the observed information. The first one, the
recall method, uses the sequence on which the actions were observed to solve new problems.
The second one, the classification method, categorizes the information in the observed data
and determines to which set of categories the new problems belong.

Results show that agents are able to learn in conditions where common supervised
learning algorithms fail, such as when agents do not know the results of their actions a
priori or when not all the effects of the actions are visible. The results also show that
our approach provides better results than other learning methods since it requires shorter
learning periods.

1. Introduction

This paper describes the important aspects of our approach for enabling software agents
to learn control mechanisms by directly observing the actions of an expert agent while it
is performing a task. It shows the innovations of our proposal for an agent software image
(Costa & Botelho, 2011) and presents a complete learning by observation process, following
previous work on this subject (Costa & Botelho, 2012). The paper also presents the results
of our approach in two different scenarios (see section 5). The learning method used by our
approach is usually known in the artificial intelligence community as learning by observation,
imitation learning, learning from demonstration, programming by demonstration, learning
by watching or learning by showing. For consistency, learning by observation will be used
from here on.

Learning by observation is one of the least common and most complex forms of learn-
ing amongst animals because it is singular to humans and to a strict number of superior
mammals. It is also one of the most powerful socialisation mechanisms (Ramachandran,
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2003; Bandura, 1977; Meunier, Monfardini, & Boussaoud, 2007). Research in neurology
and psychology shows that learning by observation may well be one of the causes of the
exponential growth of human technologies in the last centuries. Unlike natural selection, ob-
servation allows these capabilities to spread amongst individuals within the same generation
(Ramachandran, 2000).

Section 2 shows that learning by observation is already being used in robotic agents,
which proves the applicability of this learning technique in artificial systems. However,
progress in learning by observation is limited to robotics because software agents cannot
observe one another in the same way tangible entities can be observed. Learning by observa-
tion is useful for software agents because it provides a more direct approach to the problem
to solve when compared with other techniques where agents learn from experience, such as
reinforcement learning. Instead of spending time testing several hypotheses, artificial agents
acquire the knowledge from an expert by directly observing its actions while it performs
a task. This allows the artificial agents to directly know which actions are necessary to
perform a specific task (Argall, Chernova, Veloso, & Browning, 2009; Chernova, 2009).

Being able to observe an expert agent performing its actions (as opposed to merely rely
on the observation of their effects) can be advantageous in situations where the effects of
those actions are not directly visible in the environment (for example, agent communication,
manipulation of software objects). Even when part of the effect of the actions is visible,
directly observing the actions is still advantageous when the same effects could be achieved
by different alternative actions but using one of them is clearly better than using others
(for example, using a set of sums instead of a simple multiplication). Observing the actions
performed by an expert is also advantageous when the representation of world states requires
too much memory making it impossible to build large enough training sets (for example,
web agents, manipulation of large databases) and especially when the agent does not know
the effects of its actions a priori (for example, executing or invoking a software program or
API).

The application of learning by observation in software agents is ideal for societies where
agents share common features but have their own internal representation methods (for
example, integration of legacy systems). Without common internal representation meth-
ods, directly transferring knowledge between agents is impossible or, at least very difficult.
Learning by observation makes it possible to learn without the need of common internal
representations because each agent makes its own interpretations of what it is observing.

The advantages described above provided the motivation for developing our approach to
learning by observation in software agents. The major contribution of our approach is the
definition of the whole learning process, which includes the discovery, observation, storage
and interpretation of the observed data, the application of the acquired knowledge and a
continuous internal evaluation (see section 4). Agents that learn by observation are capable
of solving tasks in the same conditions as they were performed by the observed experts.
They are also capable of performing a similar task when facing different conditions. The
scenarios described in section 5 show these possibilities.

As section 2 shows, to the best of our knowledge, the only approach to learning by ob-
servation in software agents is the one presented by Machado and Botelho (2006). However,
in Machado and Botelho’s proposal the agents were only capable of learning vocabulary
whereas in the work described in this paper the agents are capable of learning control
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mechanisms, which requires developing a different kind of learning algorithm. In addition,
our approach also introduces several improvements to the software image (see section 3)
initially proposed by Machado and Botelho (2006).

The software image provides software agents with an accessible representation of their
constituents and capabilities, the static image, and of the actions they perform, the dynamic
image. Our approach heavily relies on an agent architecture with software image. Agents
with software image can be ”seen” (consulted) by other agents and even by themselves. It is
the software image that allows software agents to learn by observation because, in software
environments, the information required for learning by observation is not automatically
visible in the agent’s body as it happens in the physical world (Quick, Dautenhahn, Nehaniv,
& Roberts, 2000). To avoid misconceptions with the observation of tangible entities in the
physical world, the act of observing a software agent will be defined as:

Reading meta-data about an agent’s constituents, its actions and the conditions holding
when the actions were executed, without a direct intervention of the observed agent.

This allows the observed agent (the expert) to have only a passive role in the observa-
tion process. As with learning by observation in humans and superior mammals, it is the
apprentice who takes action to obtain new knowledge, and does it without interfering with
the expert agent. In spite of the similarities with Machado and Botelho’s (2006) approach,
our approach introduced several improvements to the software image, in particular:

• The inclusion of the agent sensors in the static image, in addition to the visible
attributes, the actuators and the actions from Machado and Botelho’s approach. This
improvement provides a better description of the agent and allows other agents to
know the way that agent understands the world, as explained in section 3.1.

• The dynamic image, besides displaying the executed action as in Machado and Botelho’s
approach, also displays information on the conditions holding before the action was
executed, that is, the state of the environment, as perceived by the agent sensors,
and the instances of the visible attributes. This improvement enables our agents to
provide data for observation that is similar to the training sequences used for training
machine learning algorithms (condition-action pairs), as explained in section 3.1.

• Our software image displays historical information about the actions executed in the
past and about the conditions holding before each action was executed. This enables
our agents to acquire a great amount of knowledge at the beginning of the observation,
as section 3.2 shows.

• Our software image also uses ontologies to hold the knowledge on the designations of
the different kinds of sensors, visible attributes, actions and tasks. This improvement
allows agents that follow the same ontology to use the same designations for the same
kinds of sensors, visible attributes, actions and tasks, as section 3.2 shows.

The contributions of our approach are not restricted to the agent software image. The
other important contributions are the complete approach to learning by observation, in
particular:
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• The discovery of experts which provides the agent with the necessary tools to discover,
by itself, expert agents from which it is possible to learn (see section 4.1).

• The definition of two learning algorithms, which are used to convert the observed
information into mechanisms for choosing the actions to perform in each condition
- the recall algorithm and the classification algorithm. The recall algorithm was
totally developed for our approach and uses the sequence on which the expert actions
were observed to choose the actions to perform. The classification algorithm is an
adaptation of the existing KStar algorithm (Cleary & Trigg, 1995). It categorizes the
information in the observed data and determines which actions to perform according
to the categories of the new problems (see section 4.2).

• The definition of an internal evaluation which provides the agent with a measure of
the confidence on its knowledge. Depending on this confidence, the agent can be in
one of two states of the learning process: the learning state or the execution state (see
section 4). When agents are in the learning state, their only objective is to observe ex-
perts and acquire new knowledge from them. When agents are in the execution state,
their only objective is to perform their task using the acquired knowledge. Switching
between these two states depends on two configurable thresholds, the UpperConfi-
denceThreshold and the LowerConfidenceThreshold, as explained in section
4.3.

• The ability to mimic the mirror neurons, which allows the agent to use the same mech-
anisms to propose actions both when learning and when using the acquired knowledge.
This allows the agent to directly associate the observed actions with its own actions.
It also allows the agent to propose actions for the conditions faced by the observed
expert and determine if the agent is capable of proposing the same action as the
observed expert.

The motivation that drives an agent to observe an expert is only partially covered by
our approach. For simplification purposes, all apprentice agents have the observation of
experts as their top priority. The apprentice agents are equipped with a specialized sensor
that focuses their attention on observing an expert. The internal evaluation allows agents
to decide whether or not they need more knowledge, providing them with the necessary
motivation for observing experts, the only way they know how to obtain new knowledge.

Another simplification relates with determining if the experts to observe are performing
relevant actions for the task to learn, which is also usually disregarded by the approaches for
learning by observation. In normal circumstances, although an expert has the same features
as the apprentice, it does not necessarily mean that it is performing the actions that are
necessary for the apprentice to learn (by observation) how to perform a specific task. Like
in all the surveyed approaches, the experts developed for the application scenarios in section
5 are prepared to only execute the actions that are necessary for the task to be learnt.

In section 5 the capabilities of our learning approach are tested in two different scenarios.
The first scenario was especially conceived as a situation in which the majority of the effects
of agent actions are not visible in the environment. Therefore, it will not be possible for
a common machine learning solution to learn only from the effects of the actions. For a
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complete understanding of what is happening, it is necessary to observe the agent and its
actions. The second scenario presents the mountain car problem as described by Sutton and
Barto (1998). It is used to compare our learning approach with a reinforcement learning
(RL) algorithm in a situation in which this kind of learning algorithm has already shown
to be a good approach (Mitchell, 1997).

The results from the tests show that, with our approach, agents can correctly learn how
to perform a task when the majority of the effects of agent actions are not visible in the
environment (see section 5.1). In addition, when tested in situations where other learning
methods may provide good results (see section 5.2), such as in a reinforcement learning
scenario, results show that our approach is able to learn faster than the reinforcement
learning approach. Besides learning faster, the agents using our learning method also require
fewer actions to achieve the goal.

The following section presents a survey on research on the visual representation of
agents and on learning by observation. Section 3 presents the improvements we have made
on previous proposals regarding the software image. Section 4 describes the important
aspects of the learning by observation process. Section 5 describes the test scenarios and
experimental results. Finally section 6 presents conclusions and future work.

2. Literature Review

This section presents a survey of the approaches for learning by observation and for the
visual representation of agents. It describes the important aspects of approaches related to
learning by observation or that may contribute to solve the problems faced when applying
learning by observation in software agents.

2.1 The Visible Representation of Software Agents

The literature overview regarding learning by observation shows that, with the exception of
Machado and Botelho’s (2006) approach, software agents are disregarded from the advances
on learning by observation since they are usually related to robotics (Argall et al., 2009).
Software agents are not able to distinguish themselves or other software agents from the
remaining elements of a computer program because of the disembodied nature of software.
Because of this, software agents are not able to observe each other as tangible entities would
be observed (Etzioni, 1993; Quick et al., 2000).

Almost all software approaches for learning are constrained to observe the changes in the
environment (the effects of agent actions) and the knowledge obtained to perform a task is
limited to state change information (Quick et al., 2000; Argall et al., 2009). However, several
authors have emphasized that not every action produces visible changes in the environment
(Byrne, 1999; Dautenhahn & Nehaniv, 2002; Botelho & Figueiredo, 2004; Machado, 2006),
thus, using state change information alone is not always a good option. In such cases, it
is important to actually ”see” what the expert agent is doing by observing its actions in
addition to their effects. This allows the apprentice agents to know exactly what actions are
necessary to perform a task, thus overcoming the problems that arise when the effects of
those actions are not visible in the environment or when the agent does not know the effects
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of its actions a priori (Byrne, 1999; Dautenhahn & Nehaniv, 2002; Botelho & Figueiredo,
2004; Machado, 2006).

To be able to learn by observing the actions of other agents, the software agent needs
some kind of accessible representation of its body that displays the necessary visible fea-
tures (Mataric, 1997; Botelho & Figueiredo, 2004; Machado, 2006). Research in neurology
reveals that the human brain also uses a representation of the human body in its activities
(Ramachandran, 2003). This representation provides information on the body constituents
and their possible actions and comes into existence in the initial stages of infant devel-
opment. It is an important factor for learning by observation, since it allows children to
acknowledge their bodies and capabilities. It also provides the ability to identify entities
that are ”similar to them” and thus may be worthwhile observing (Rao, Shon, & Meltzoff,
2004).

Despite these neurological findings, the literature review on embodiment and embodied
cognition shows that, besides our approach (Costa & Botelho, 2011), only another one
addresses the problem of creating such kind of accessible representation for software agents
(Machado & Botelho, 2006). To the best of our knowledge, these are the only known
approaches with a concrete proposal deploying a visible image for software agents, which is
called the ”visible software image” or simply the ”software image”. The literature review on
learning by observation also provides no alternatives since all approaches, with the exception
of the referred ones, apply exclusively to robotics (Argall et al., 2009).

Although Machado and Botelho’s (2006) approach for the software image provides a
description of the agent constituents and actions, it does not describe the kind of input the
agent can collect from the software environment. Etzioni (1993) was one of the first authors
to realize that the lack of a physical body was not an obstacle for the application of the
principles of embodiment in software agents in the same way they are applied in robotics.
For Etzioni, a software agent can be situated in the software environment in the same way
as a robot is situated in the physical world, if it is characterized by what it can do (its
actions) and also by the kind of inputs it is able to collect from the software environment
(Etzioni, 1993).

For this reason, in our approach (Costa & Botelho, 2011), the software image provides
software agents with a visible representation of their constituents, which includes their
sensing and action capabilities, of the actions executed by the agent and the conditions
holding when the agent decided to execute those actions. Our proposal also keeps an
historical record of the actions performed by the agent and the conditions holding when the
agent decided to execute those actions, for a limited amount of time.

2.2 Learning by Observation

The survey on learning by observation shows that one of the most important aspects of an
approach to learning by observation is the learning algorithm. It defines how the knowledge,
obtained from observation, is stored and how it is used, that is, how the agent proposes
actions to execute when facing new problems (Argall et al., 2009). One possibility for the
learning algorithm is to follow the same sequence of actions as the expert, which requires the
agent to store the sequence on which it has observed the actions performed by the expert.

318



Learning by Observation of Agent Software Images

This possibility for the learning algorithm, named sequencing, is one of the most com-
monly used in learning by observation approaches (Argall et al., 2009). It is also closely
related to sequence learning in humans since it handles the same kind of problems, such as
predicting the elements of a sequence based on the preceding element, finding the natural
order of the elements in a sequence and selecting a sequence of actions to achieve a goal
(Clegg, DiGirolamo, & Keele, 1998; Sun, 2001). The best way to maintain the temporal
relations between the elements in the sequence consists of using the properties of the data
structure where the sequences are stored (Byrne, 1999; Heyes & Ray, 2000; Kulic, Ott, Lee,
Ishikawa, & Nakamura, 2011; Billing, Hellström, & Janlert, 2011).

Linear structures such as lists and vectors are the most commonly used (Byrne, 1999;
Heyes & Ray, 2000). However these linear structures lack the ability to represent alter-
natives, which is an important aspect of sequential learning that opens the possibility of
making choices inside the sequence (Sun, 2001). The representation of alternative paths is
essential for representing different approaches to perform the same task, that is, when the
same objective can be reached by different sequences of actions. To hold this information,
each different approach needs to be stored as an alternative sequence of actions. Tree struc-
tures are ideal for these situations. Each element of the sequence is represented as a node
in the tree and the following element is chosen from one of the branches of that node (Kulic
et al., 2011).

Sequencing is best suited for situations where agents face the same conditions (the same
sequence of states of the environment and internal states) as the observed experts, which
often means that the agent is following the expert or that it is possible to cover all the
possible combinations of the conditions in the time the agent is observing.

Other possibilities for the learning algorithm are to generalize the acquired knowledge
or to use analogies between the acquired knowledge and the new problems. This allows
the agent to face future conditions that have never been observed, because in a real world
situation it is almost always impossible to observe all possible conditions (Argall et al., 2009;
Sullivan, 2011). Unlike in sequencing, there is no specific sequence of actions to follow. The
agent determines what actions it should perform supported exclusively by the conditions.

One way of generalizing the acquired knowledge is using the observed conditions and
actions to train neural networks, as described by Billard and Hayes (1999). Other hypothesis
consist of using the observed conditions and actions to feed statistical approaches such as
Bayesian algorithms and Hidden Markov models (HMMs) (Rao et al., 2004; Hajimirsadeghi
& Ahmadabadi, 2010). The conditions and actions can also be used to train supervised
learning algorithms, such as the classification algorithms (Argall et al., 2009; Chernova,
2009; Sullivan, 2011).

Given the advantages of the sequencing and of the generalization or analogy possibili-
ties our approach to learning by observation presents a sequencing possibility, through the
recall method of learning, and classification possibility, trough the classification method of
learning. The two methods of learning are combined to increase the adaptability of the
apprentice agents. The classification method allows the agent to extend its knowledge to
conditions that have not been observed and recall method allows the agent to easily learn
sequences of actions with different alternatives.

The survey on learning by observation also reveals that a learning by observation ap-
proach cannot be limited to the learning algorithm. In addition to the algorithm, it must
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also include the agent’s motivation to learn, the discovery and observation of agents, the
storage and interpretation of the information acquired in observation and the application
of the newly acquired knowledge (Demiris & Hayes, 2002; Tan, 2012). One of the major
flaws detected on the surveyed approaches, besides their focus on robot agents, was the fact
that this global view is still missing (Tan, 2012). To the best of our knowledge, with the
exception of our approach (Costa & Botelho, 2012), all approaches are focused on solving
specific problems, and the solutions they provide are supported exclusively by the learning
algorithm.

Demiris and Hayes (2002) provide a good starting point for building an approach that
includes all aspects of learning by observation. Their approach presents a learning process
that, excluding motivation, is consistent with Bandura’s (1977) social learning theory, which
approximates their approach to learning by observation in humans and superior mammals.
The inclusion of an internal evaluation to Demiris and Hayes’s (2002) approach provides
the learning process with a simple motivation mechanism. The evaluation allows the agent
to measure how its performance is affected both when it is consolidating the knowledge
acquired from observation or when executing actions (Wood, 2008; Hajimirsadeghi & Ah-
madabadi, 2010).

The agent can be intrinsically motivated to learn because it knows when it has acquired
sufficient knowledge to perform a task on its own or because it detects that portions of
its knowledge need improvement and thus require the agent to go back learning (Wood,
2008; Billing, Hellström, & Janlert, 2010). The ability to enhance the agent’s knowledge
through new observations is an important factor for learning by observation. According to
Argall et al. (2009), one of the downsides of learning by observation is the fact that the
agent’s knowledge is limited to what it was able to observe. Using an evaluation stage,
that operates when the agent is learning and when it is executing actions, provides the
knowledge on when it is necessary to observe experts and when agents are ready to execute
actions.

Several authors use specialized experts, or teachers, who monitor and reinforce the
agent’s actions (Sullivan, 2011; Hajimirsadeghi & Ahmadabadi, 2010; Chernova, 2009).
They also measure the agent’s performance and provide the necessary evaluation. Besides
monitoring, the teachers can also take corrective measures like providing the appropriate
actions for the faced conditions when the agent chooses incorrect actions (Hajimirsadeghi
& Ahmadabadi, 2010). The teacher can also decide when the agent needs to acquire more
knowledge (Sullivan, 2011).

The relation between the teacher and the agent can be extended by allowing them to
communicate with each other. This allows the agent to request the teacher to perform
a specific task (Chernova, 2009). However, this requires an additional effort in designing
the expert agents since they need to communicate with the apprentice agents and teach
them how to perform a task. This also requires apprentice agents to wait for the teacher
to be available to communicate with them, which can extend the amount of time spent on
learning. This does not happen when the expert plays a passive role in observation and, in
addition, using teachers makes the approaches closer to learning by teaching, which goes
beyond learning by observation.

A different approach for evaluation is mimicking the properties of mirror neurons. The
mirror neurons are brain structures that exist in humans and superior mammals which are
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responsible for the emergence of learning by observation. They are involved in the tight
coupling of perception and motor control, providing similar responses both when observing
and when performing an activity. This allows the agents to ”feel” like they are performing
the actions they observe on an expert (Ramachandran, 2000), which greatly improves the
easiness of identifying the observed actions, grounding them in the agent own actions.

Through this ability, the agent is able to propose actions, using its own mechanisms,
for what it is observing, without effectively executing them. The proposed actions can be
compared with those observed to determine if the agent is able to propose the same actions
as the expert. The information provided by this comparison feeds the agent’s internal
confidence that it is able to propose the correct actions. In this case, the agent’s internal
confidence builds on the successes and failures of the actions that were previously proposed
instead of the metrics on the current actions, provided by the learning algorithm, as in the
work of Chernova (2009), and Billing et al. (2010).

Several approaches use specific structures, such as the forward models, to emulate the
behaviour of mirror neurons (Rizzolatti, Fadiga, & Gallese, 1996; Demiris & Hayes, 2002;
Maistros & Hayes, 2004; Rao et al., 2004; Lopes & Santos-Victor, 2007). However these
structures are specifically designed for robots and use hardware inhibitors to prevent the
robot actuators from executing the estimated actions. The main objective of these kind of
structures is to create a distinction between the description of the action and its execution,
that is, to create abstract representations of agent actions (Kulic et al., 2011). This solution
is simpler and provides the agent with control over the execution of actions.

One of the characteristics of the reviewed approaches is that they usually focus on specific
problems, which implies adaptations of some of their features whenever they are applied
in new domains. Despite this problem, as shown in this section, the reviewed approaches
provide important features that can be adapted to our approach to learning by observation.

3. The Software Image

This section presents a summary of the additional functionalities that our approach intro-
duced to previous work regarding the software image (Machado & Botelho, 2006). The
section describes these new functionalities, explains the reasons for their inclusion in the
software image and how they are advantageous for learning by observation.

Our approach to learning by observation proposes a software image that allows software
agents to learn by observing the actions of other agents. The act of observing a software
agent does not imply the use of computer vision; instead the agents use specialized sensors
that read meta-data about the observed agent. This meta-data is what we call the software
image, which is defined by software objects and the relationships among them, as displayed
in Figure 1. Despite the current version of the software image being primarily focused
on learning by observation, we believe that this image can be useful for other purposes
(for example, improve the agent’s interaction with the surrounding environment through
embodiment). Additional work will incrementally reveal the characteristics of a software
image that is independent of any particular use.

Our proposal for the software image (Costa & Botelho, 2011) provides an accessible and
domain independent description of the agent’s constituents, the actions it executes and the
conditions holding when it decided to execute those actions. This description is used by
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software agents that are interested in observing the represented agent for comparison with
their own description, to check if both agents share the same capabilities, as described in
section 4.1. Figure 1 shows a representation of the key elements of the software image. Like
in Machado and Botelho’s (2006) proposal, the elements of the agent software image are
arranged in two categories, the static image and the dynamic image. The static image is
immutable (does not change over time) and describes the constituents of the agent whereas
the dynamic image changes with time and describes the activities of the agent.

SoftwareImage

+AgentUUID: String

StaticImage DynamicImage

+historySize: int
AgentPart

Actuator

<<Interface>>

DataSource

Sensor

+descriptor: String

VisibleAttribute
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0..*

1

0..*

1

1
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1
1..*

1

1..*

1

0..*

1

1

1

0..*

1

1..*

1

1

SimpleAction

CompositeAction

1

1..*

1

0..*

Figure 1: The class diagram of the software image

The improvements on Machado and Botelho’s (2006) proposal for the software image
consist of including the agent sensors in the description of its components (the static im-
age), combining the information on the state of the software environment (provided by the
agent sensors) with information on important aspects of the agent’s internal state with the
observed actions and enabling the representation of composite actions, that is, actions com-
posed of sequences of simpler actions. Other important improvements include the ability to
store historic data on the agent actions and on the conditions holding for those actions, and
the use of an ontology to represent the knowledge on the agent sensors, actions and visible
attributes, on the tasks to be accomplished and on the concepts and relationships that exist
between those elements. Our proposal for the software image also defines a protocol for
observing the snapshots.

The following sections describe these improvements on the software image in greater
detail.

3.1 The Agent Sensors and the Snapshots of the Agent Activity

Machado and Botelho’s (2006) version of the software image described software agents as
a collection of parts with visible attributes and actuators. The actuators, on their turn,
described a collection of actions that the agent was able to perform. However, it is also
important to include the agent sensors in this description, especially when software agents
only have access to part of the state of the environment, which is acquired by their sensors.

The information collected by the agent sensors represents the way the agent understands
the world - the agent’s perspective of the world. If the sensors are not included in the static
image, the agents have no way of knowing if the experts they observe understand the world
in the same way as them. The ability to understand the world in the same way as the
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expert is important for a better understanding of the reasons behind the expert’s actions
(Bandura, 1977; Ramachandran, 2000).

Given the importance of the agent sensors, our proposal for the software image includes
them as constituents of the agent part (see Figure 1). This provides an accurate description
of the agent and allows the agents to compare with others not only by the actions they can
perform but also by the kind of information they can obtain from the environment.

On our proposal for the software image we also consider the conditions holding for an
agent action as the state of the environment, as it is acquired by the agent sensors, and the
instances of the agent’s visible attributes (the important aspects of the agent’s internal state)
at the moment the agent selects that action. The information contained in the conditions
depends exclusively on the information provided by the agent sensors and by the visible
attributes. The agent sensors and visible attributes, as well as the type of information they
provide, are defined when designing the agent. Section 5 shows an example of how the
sensors and visible attributes are set for an agent and how this affects the conditions.

The conditions holding for an action play an important role in the information provided
for observation in the dynamic image. Unlike Machado and Botelho’s (2006) proposal
where agents could only observe the action being currently performed, in our proposal,
agents acquire snapshots of the activity of the observed agent. Each snapshot contains
information on the executed action and on the conditions holding at the moment the agent
decided to select it. This way, the information provided for observation is similar to the
training sequences used for training machine learning algorithms (a sequence of condition-
action pairs), which is an important aspect of the learning methods described in section
4.2.

In addition to including the conditions in the information provided for observation, the
action provided in the snapshot can either be simple or composite (see Figure 1), that is, an
action composed of a sequence of actions. This allows agents to handle sequences of actions
in the same was as single actions, when observing.

3.2 Additional Innovations on the Software Image

This section describes additional innovations on our proposal for the software image. The
most important innovation is the ability to store historic data. The historic data provides
a limited amount of past snapshots. It allows observers to gather knowledge much faster,
when compared with observing only the current action, because it is not necessary to wait
for the agent to perform those actions. However, this innovation requires the conditions
to hold the perspective of the agent executing the actions, that is, both the state of the
environment and the instances of the visible attributes are provided as the agent perceives
them. Without the agent’s perspective it would be hard, if not even impossible, for the
observer to know the conditions holding in the past.

Using the agent’s perspective can be seen as a limitation when compared with using
the observer’s perspective when acquiring the conditions because it requires the observer
agents to have the same kind of sensors and visible attributes as the expert agents they
observe, so they can understand the information contained in the conditions (see section 4.1).
However, it is not always ensured that the observer has a direct access to the environment
of the observed agent, like for example, when the software environment of the observed
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agent is running on a distinct process. In these cases, it would be necessary to use complex
communication mechanisms for the observer to get access to the information on the different
process. This would not be necessary if the observer only used the information provided
by the software image because of an additional mechanism, the software image index
described in section 4.1, which provides a shared repository where all registered software
images can be easily accessed.

Another innovation of the software image is the use of an ontology to describe the knowl-
edge on the agent sensors, visible attributes and actions, on the tasks to be accomplished
and on the relationships between these elements. Using ontologies allows different agents
that follow the same ontology to use the same designations for the same kinds of sensors,
actions and visible attributes and for the same tasks. The ontology also enables specific
kinds of sensors, actions and visible attributes to be associated to specific tasks, which
allows the agents to know which elements are required to perform a task (see section 4.1).

Another important aspect of the ontology is the possibility of associating two differ-
ent elements, which opens the possibility of translations between different ontologies. A
meta-ontology, which we call the software image meta-ontology, was created to facilitate
this translation. The meta-ontology defines the basic elements of the ontology and the
possible relationships between those elements. Additional information on this subject will
be presented in future work.

In addition to these innovations, our proposal also defines a new protocol for observing
the snapshots in the software image. A functionality developed for the software image,
the dynamic image notification, allows the subscribed observers to receive notifications
each time a new snapshot is created on the dynamic image of the observed agent. This
allows the observers to know exactly when they have to observe, that is, when they can
collect a new snapshot from the dynamic image of the observed agent. The following section
explains the way agents learn by observing (acquiring information from the agent’s software
image) an expert.

4. Learning by Observation

This section summarizes the approach regarding the complete learning by observation pro-
cess, following previous work on this subject (Costa & Botelho, 2012). It shows a new
insight on the learning process and focuses on important aspects such as the process of dis-
covering and observing experts and the methods of learning from the information provided
by observation. The section also describes the agent’s internal evaluation and how it affects
the agent’s behaviour.

The approach to learning by observation requires both the expert and the apprentice
agent to have software image since it provides the means for comparing the agents and
also the data for observation (see section 3). It presents a global view of the learning
process which comprises six activities, presented in Figure 2, that not always happen in
strict sequence. The agent may also be in one of two states regarding the learning by
observation process: the learning state and the execution state. In each of these states, the
agent will have access to only a subset of the learning process activities. Figure 2 shows
which activities are available to each state.
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Figure 2: The activities of the learning process on each state

As Figure 2 shows, the possible activities of the learning state concern discovering and
observing the expert, retaining the information acquired in observation, learning control
knowledge to propose actions and evaluating the proposed actions. The possible activities of
the execution state concern acquiring the current state of the environment (from the agent
sensors), learning control knowledge to propose actions, executing the proposed actions
and evaluating the executed actions. Figure 2 also shows that, as result of mimicking the
properties of the mirror neurons, agents are capable of proposing actions both when learning
and when executing actions (see section 4.2).

The approach provides two distinct methods of learning from the information acquired
by observation, the recall and the classification methods, that where specifically developed
for the approach. They were inspired on the two most used algorithms for learning by
observation (see section 2.2). The two methods are combined to present a single solution for
apprentice agents (see section 4.2), which increases the agent’s ability to adapt to different
situations. The agents are able to perform the observed task when facing the same conditions
as the experts and also a similar task when facing different conditions.

The internal evaluation, described in section 4.3, is one of the most important activities
in the learning process because it monitors the agent’s ability to propose the correct actions
over time. The result of this monitoring is a measure of the agent confidence on the learnt
knowledge, the confidence value. The agent will be on the learning or on the execution
state depending on its confidence regarding the acquired knowledge.

The following sections describe important aspects of the approach to learning by obser-
vation and of the learning process such as how experts are discovered, how the agent learns
from the information acquired in observation and how the internal evaluation works.

4.1 Discovering and Observing Expert Agents

The software image, described in section 3, addresses the problem of providing information
that is necessary for observation in a way that is universally accessible to software agents.
With the software image, apprentice software agents can compare themselves with the
discovered experts and collect information about the actions executed by the expert and
about the conditions holding at the time the expert decided to execute those actions. A
discovery service, the software image index, was developed to facilitate the discovery
of expert agents. It allows software agents to register their software images in a shared
repository so that other agents are able to find them. The agents use this service to discover
the software images of the expert agents.
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Before starting to observe an expert, the agent must know if it is potentially possible
to learn by observing that particular expert. When it is not possible to determine what
agent structures are necessary for the task to learn (see section 3.2), the agents follow
Bandura’s (1977) social learning theory and learn by observing a similar expert, that is,
an expert whose static image has the same structure and the same instances of the atomic
elements as the agent’s static image. The agent uses the comparison functionalities of the
software image described by Costa and Botelho (2011) to compare its static image SIagent
with the static image of the expert SIexpert. If both images match, SIagent ≡ SIexpert, the
expert can be observed because the agent is able to immediately recognize the actions and
conditions on the snapshots (see section 3.1), solving most of the correspondence problems
(Alissandrakis, Nehaniv, & Dautenhahn, 2002; Argall et al., 2009).

When the agent knows the task to learn T and the structures and abilities that are
necessary for that task, siT (see section 3.2), the concept of an expert from which it is
potentially possible to learn is extended, allowing agents to observe an expert as long as
the intersection of their software images contains those structures and abilities, (SIagent ∩
SIexpert) 3 siT . This is enough to ensure that the apprentice agent is able to recognize
all the conditions and activities on the expert snapshots that are necessary for learning a
specific task. The agents determine which structures and abilities are necessary to perform
a task through an ontology, as explained in section 3.2.

After discovering the expert to observe, the agent subscribes the expert’s dynamic
image notification and acquires all the snapshots in its history record (see section 3.2).
The notifications facilitate the process of observing the expert since they determine the
ideal moment for the agent to observe, which is when a new snapshot is created in the
expert’s dynamic image. While the agent is acquiring the snapshots in the history record,
the new snapshots created in the expert’s dynamic image are also acquired and stored in a
temporary memory.

The temporary memory functions as a buffer for observation because it allows the agent
to handle snapshots at a different rate from which they are acquired. It also allows the agent
to keep record of the expert’s actions that might take place while it is reading the history.
The snapshots stored in the temporary memory are only handled after the history snapshots
are handled, which provides the agent with an uninterrupted sequence of snapshots from a
moment in the past until the current moment.

When compared with other solutions such as searching the history record on demand,
that is, to find relevant information for a particular problem, collecting all the information
on the history record is a more efficient solution because it allows the agent to obtain a
large set of experiences in a small amount of time. Acquiring all the history record not
only ensures that the solution for a particular problem is found (if it really exists in the
history) but also provides the agent with an increased amount of information that might
be important to solve other problems in the future.

An important aspect of the approach to learning by observation is the preference for
observing different experts. The process of discovering an expert and collecting snapshots
from its dynamic image is referred to as the observation period. This process is cyclical
meaning that the agent may go through several observation periods while learning. At the
beginning of each observation period the agent is free to choose a different expert to observe,

326



Learning by Observation of Agent Software Images

increasing the diversity of its knowledge because different experts might provide different
points of view on the task to learn.

The different perspectives provided by the experts may increase the agent’s knowledge
with conditions that were never observed on previous agents or with a different approach for
performing a task. The following section shows the way the agent increases its knowledge
and handles these different approaches.

4.2 Learning from the Observed Snapshots

This section describes how the agent learns from the observed snapshots and how it uses
the acquired knowledge to propose actions for a set of conditions. It describes how the
agent holds the information contained in the snapshot in its memory. It presents the two
methods for learning from the observed snapshots, the recall and classification methods,
and explains how they are combined to present a single solution for proposing actions. The
section also explains how the behaviour of mirror neurons is mimicked by the approach and
why this is useful for learning.

The snapshots acquired from observation describe a relation between an optimal set of
conditions (C1 ∧ · · · ∧Cn) and an action A, C1 ∧C2 ∧ · · · ∧Cn → A (see section 3.1). This
relation, which we call experience, is stored in the agent’s memory which is held by a
tree structure. Using a tree structure enables the sequence on which the snapshots were
observed to be intrinsically preserved by the structure, as shown in the literature review
in section 2. The tree structure also facilitates the consolidation of the agent’s knowledge
because it stores different approaches for the same task as alternative paths.

SET Newexp as the new experience to store in memory

SET Previous as the experience from the snapshot observed before

SET Stored to false

FOR each Exp <- experience in the agent’s memory

IF Exp has same conditions as Newexp

AND Exp has same action as Newexp THEN

PUT Exp in sub-tree of Previous

SET Stored to true

BREAK

ENDIF

ENDFOR

IF Stored is false THEN

ADD Newexp to the agent’s memory

PUT Newexp in sub-tree of Previous

ENDIF

Figure 3: The process storing experiences in the memory

Given that agents can observe different experts, the sequence on which the snapshots are
observed is broken each time the agent starts observing another expert. When this happens,
the snapshot observed before represents the activity of another expert and therefore cannot
be followed by the new snapshots. To prevent the fragmentation and duplication (multiple
instances of the same experience) of the agent’s memory, the process of storing new
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knowledge in the agent’s memory compares each new experience with the ones existing
in memory before storing it. Figure 3 describes how the process takes place.

The process described in Figure 3 allows the agent to create new knowledge using the
information that already exists in memory by merely creating new connections between
the existing experiences. A new experience is stored only when it does not exist in
the agent’s memory. The tree structure holding the agent’s memory allows the agent’s
knowledge to be expressed as a decision tree, as shown in Figure 4, where each node of the
tree is an experience. Depending on the number of branches starting from the node, each
experience can be followed by one or more experience, which adds the possibility of
choosing which sequence to follow and therefore provide different alternatives for executing
a task.

Previous

experiences

Following 

experiences

Experience

Experience Experience Experience

Experience Experience

Task

REFERENCE

EXPERIENCE

Figure 4: A representation of the tree structure in the agent’s memory

The recall and the classification methods of learning use the information contained in
the agent’s memory (the tree of experiences shown in Figure 4) to propose actions for
given conditions, which we call the currentConditions. The two methods distinguish
themselves by the way they use the information in the agent’s memory to propose the
actions. The recall method proposes actions by determining the way the experiences are
connected with each other in the tree, whereas the classification method proposes actions by
categorizing the individual experiences and comparing those categories with the category
of the current problem.

Both the recall and classification methods provide several possibilities of actions. To
determine which of these actions is the best suited for execution, a reliability is associated
to each proposed action. The reliability is calculated in each method and ranges from
zero to one, inclusive. It determines how reliable an action is (zero not reliable; one fully
reliable) for the method that proposed it.
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The recall method proposes actions by following the connections between the experi-
ences in the agent’s memory (see Figure 4). To propose actions, the method requires a
reference to an experience in the agent’s memory which indicates where to start following
the connections. This reference, which we call the referenceExperience, represents the
last action executed by the agent Act and the conditions holding for that action Cond.
Figures 5 and 6 show the way the referenceExperience is discovered in the agent’s
memory.

FUNCTION discoverReferenceExperience(Cond,Act)

SET Similarity to zero

SET RefExp

FOR each Exp <- experience in memory

IF action from Exp is the same as Act THEN

IF Exp has same conditions as Cond

RETURN Exp

ELSE

SET Val as similarityBetween(conditions from Exp,Cond)

IF Val is bigger than Similarity THEN

SET RefExp to Exp

SET Similarity to Val

ENDIF

ENDIF

ENDIF

ENDFOR

RETURN Exp

ENDFUNCTION

Figure 5: Obtaining the referenceExperience from the agent’s memory

As the process in Figure 5 shows, the referenceExperience is the experience in
memory whose action is the same as the last action executed by the agent and whose
conditions are the same as the conditions holding for the last executed action. Given that
the agent might not be facing the same conditions as the expert, it is possible that the
conditions holding for the last executed action are not found in the agent’s memory. In
these cases, the referenceExperience is the one with the same action who shares the
largest number of similar conditions as calculated by the process shown in Figure 6.

After discovering the referenceExperience in the agent’s memory, its tree subset
(the set of tree branches) is retrieved. The tree subset represents the choices of the expe-
riences that follow the referenceExperience (see Figure 4). The actions from those
experiences represent the several action possibilities to be proposed by the recall method.
The reliability of each action is obtained from the similarity between the conditions
holding for the action (in the experience) and the given currentConditions as calcu-
lated by the process shown in Figure 6. The highest reliability is given to the action
whose conditions most resemble the currentConditions.

Unlike the recall method, the classification method does not require a reference to an
experience in the agent’s memory to propose actions. The proposed actions are provided
by an adaptation of a classification algorithm that is trained with the experiences in the
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REQUIRE CondA to have the same size as CondB

FUNCTION similarityBetween(CondA,CondB)

SET Sum to zero

SET Size as length of set of CondA

FOR each C1 <- condition in Exp

Inner <- (FOR each C2 <- condition in Cond)

IF C1 equals C2 THEN

ADD one to Sum

BREAK Inner

ENDIF

ENDFOR

ENDFOR

RETURN (Sum / Size)

ENDFUNCTION

Figure 6: Obtaining the similarity between two sets of conditions

agent’s memory. Previous experiments (Costa & Botelho, 2012) revealed that the most
suited algorithms for the classification method are the KStar from Cleary and Trigg (1995)
and the NNGE (Nearest Neighbour like algorithm using non-nested Generalized Exemplars
from Martin, 1995). Since the latter consumes more resources the choice falls on the KStar
algorithm.

The KStar algorithm was adapted to be able to propose representations of agent actions.
The implementation of the KStar algorithm was modified to allow the experiences in the
agent’s memory to be regarded as positive examples from which the proposed actions are
deduced. The categorization capabilities were also enhanced to allow the conditions to
define the differences between the classes. To propose actions, the classification method
calculates the distances between the conditions to find the experiences whose conditions
are closer to the currentConditions. The KStar algorithm uses entropy to measure the
distances between two conditions (Cleary & Trigg, 1995).

The reliability of the actions proposed by the classification method is directly associ-
ated with how much the conditions holding for that action are close to the currentCondi-
tions. Once again, entropy is used to measure this distance. For example, if the conditions
holding for a proposed action are identical to the currentConditions the reliability of
that action is 1, that is, the action is fully reliable from the standpoint of the classification
method.

The recall and classification methods are combined in a single solution. Agents use
both methods to propose actions and choose the best one for the current situation. To
help deciding which action is best for the current situation, both the recall and the clas-
sification methods are associated to a weightFactor, whose initial and minimum value
is zero. The weightFactor determines which of the methods is capable of proposing the
most suitable action for the current situation. The reliability of the proposed action is
combined with the weightFactor of the method that proposed it, which results in the
finalReliability (finalReliability = reliability × weightFactor). The action with the
highest finalReliability is the best one for the current situation.
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The weightFactors change each time the agent’s capacity of proposing actions is
evaluated (see section 4.3). The weightFactor of a method increases if the action with
the highest reliability proposed by that method is proven to be an appropriate choice by
the internal evaluation (see section 4.3). If the evaluation determines that the action was
not appropriate, the weightFactor of the method decreases. As explained in section 4.3,
the amount on which the weightFactor increases or decreases depends on the value of
the reliability of the proposed action.

The recall and classification methods of learning propose actions when the agent is in the
learning state and in the execution state. This is possible because the actions proposed by
the methods are simply a representation of the agent actions, that is, the proposed actions
are not automatically executed. The agent has the control over which action is going to
be actually executed. This control allows the agent to behave in the same exact way both
when observing (in the learning state) and when preparing to execute its own actions (the
execution state), which in a sense is similar to what happens with the mirror neurons.

The ability to propose actions in the learning state allows the agent to experience the
actions it observes as if it was preparing to perform them, by proposing actions for the
conditions in the observed snapshots. This is advantageous since it allows the agent to
realize if it is capable (or not) of making the same decisions as the expert. It is also useful
for the agent’s internal evaluation to decide if the agent has acquired sufficient knowledge
to change to the execution state, as explained in the following section.

4.3 The Agent’s Internal Evaluation

This section describes the agent’s internal evaluation. It shows the way evaluation operates
and how it affects the transition between the two states of the learning process, the learning
and the execution state. It describes the way the agent’s confidence is updated and how it
is related to the agent’s ability to propose appropriate actions.

The evaluation is a transversal process that covers both the learning and the execution
state. The main purpose of evaluation is to ensure that the agent’s knowledge is appropriate
for mastering a task, which influences the agent’s internal confidence. The agent’s internal
confidence expresses the successes and failures in proposing the appropriate actions for the
faced conditions. Depending on the value of the internal confidence the agent may be in the
learning state or in the execution state of the learning process. Two configurable thresholds,
the UpperConfidenceThreshold and the LowerConfidenceThreshold determine
the values at which the agent changes to the learning or to the execution state. Section 5.1
shows how the values selected for these thresholds influence the agent’s capabilities. Figure
7 shows how the thresholds affect the transition between the two states of the learning
process.

As Figure 7 shows, when the agent’s confidence goes over the UpperConfidenceThresh-
old the agent is confident enough on its knowledge and switches to the execution state
where it executes the actions it proposes (see section 4.2) for the conditions provided by its
sensors and by the relevant aspects of its internal state (the visible attributes). When the
confidence goes under the LowerConfidenceThreshold the agent stops being confident
on its knowledge and switches to the learning state where it acquires more knowledge by
observing experts. The value of the internal confidence is affected by the agent’s capacity to
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Figure 7: The influence of the confidence thresholds in state transition

propose the appropriate actions whether it is observing (in the learning state) or preparing
to execute those actions (in the execution state).

The agent’s internal evaluation is constantly testing the agent’s capacity to propose the
correct actions, both when the agent is in the learning state and in the execution state. In
the learning state, the agent is tested for its ability to propose actions for the conditions in
the observed snapshots. The agent’s confidence increases when the best action it proposes
(the one with the highest finalReliability as explained in section 4.2) is the same as
the action observed in the snapshot, otherwise the confidence decreases. The amount on
which the confidence increases or decreases depends on the reliability of the best action
proposed. For example, if A is the action in the snapshot, B is the best action proposed
(with a reliability of 0.8) and A 6= B, the agent’s confidence decreases 0.8.

Using the reliability of the best proposed action as a factor for increasing or decreasing
the agent’s confidence is the simplest way of including the confidence that the methods of
learning have on the actions they propose (see section 4.2) in the calculation of the agent’s
internal confidence. The way the internal confidence is updated gives more importance to
the actions proposed with a high reliability, that is, when the learning methods have a
high confidence on the actions they propose. In these cases, if the actions are not correct
the penalization in the internal confidence should be larger than when the methods have
low confidence on the actions they propose because it means the agent learnt something
wrong.

In the execution state, the agent is tested for its ability to execute the correct action for
the faced conditions, which reflect the agent’s perception from its sensors and the important
aspects of its internal state (see section 3.1). As section 4.2 shows, when in the execution
state the agent selects the action with the highest finalReliability, from those proposed
by the recall and classification methods, to be executed. A simple monitoring detects if
there was any problem that prevented the correct execution of that action. Whenever a
problem is detected the agent’s confidence decreases. Once again the amount on which the
confidence decreases depends on the reliability of the executed action (see section 4.2).

The simple monitoring of the execution of the actions has some limitations because even
though there are no problems when executing the actions it is not possible to ensure that
the action was the most appropriate for the faced conditions. To overcome this problem, our
approach allows the evaluation to receive external feedback on the executed actions from
specialized experts, the teachers, or from other evaluators that are specific to the applica-
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tion domain. This possibility for evaluation approximates our approach to the paradigm
of learning by teaching which goes beyond the scope of this paper and therefore will be
presented in future work.

Another important feature of the agent’s internal evaluation is the ability to force the
agent to switch to the learning state independently of its confidence. This forced switching
happens when the agent is faced with a certain amount of unfamiliar conditions, that is,
conditions not found on the observed snapshots. The amount of unfamiliar conditions is
controlled by a configurable threshold whose value depends on the application domain. As
explained in section 3.1, the conditions consist of the information provided by the agent
sensors and visible attributes. The conditions are familiar when the agent has observed an
expert facing the same conditions and therefore knows exactly the correct action to propose.

If the conditions are not familiar, the agent has never observed an expert facing them
which probably means that it does not know what actions to propose. Under these cir-
cumstances, the amount of unfamiliar conditions rises only when the evaluation determines
that the executed action was inappropriate. To turn this forced switching in a measure of
last resort, the amount of unfamiliar conditions resets each time the agent faces a familiar
condition. Therefore, this amount represents the number of consecutive times the agent
faces unfamiliar conditions.

After being forced to switch to the learning state, the agent’s confidence decreases to
a configurable reference value, the UnfamilarConfidenceReference, which has to be
lower than the LowerConfidenceThreshold to allow the agent to remain in the learning
state for a while. The lower the value of UnfamilarConfidenceReference in relation
to the LowerConfidenceThreshold the longer the agent takes to change back to the
execution state. This is the simplest solution to keep the agent in the learning state for
some time.

Other solutions which take the unfamiliar conditions into account are more complex
because they require the agent to find an expert that is facing those conditions. Since it is
impossible to determine when the agent finds such experts, it would be necessary to develop
complex mechanisms to allow the agent to return to the execution state after some time,
thus preventing the agent from spending too much time learning. A similar behaviour can
be achieved by reducing the confidence and letting the internal evaluation decide when to
return to the execution state by testing the agent’s knowledge while it is observing.

The role played by evaluation, namely making the agent return to the learning state,
contributes to overcome one of the major problems faced by learning by observation, the
fact that the agents are limited to performing only the actions they have observed. Forcing
the agent to return to the learning state (and thus to observe other experts) gives the agent
an opportunity to increase its knowledge since other experts may have different experiences
that might provide the agent with new knowledge.

5. Experimental Results

This section describes two scenarios in which our approach was implemented. Since both
scenarios are software implementations, errors in the acquisition of the snapshots or of the
conditions make no sense and therefore are not considered in the experiments. The first
scenario was designed to be appropriate for learning by observation because the majority of
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expert activity does not affect the state of the environment. The second scenario compares
our approach with a reinforcement learning approach in a typical reinforcement learning
experiment, the mountain car experiment from Sutton and Barto (1998). Through this
scenario we present a direct comparison between the solutions provided by a reinforcement
learning algorithm and by our approach to learning by observation. The statistical relevance
of the data collected for the comparisons is guaranteed by the student’s t-test.

The scenarios are software implementations where all developed agents have a software
image. When apprentice software agents observe the experts they are effectively acquiring
snapshots from the expert’s software image. As a simplification, the software images of the
apprentice agents have the same constituents as the software images of the experts they
observe. In both scenarios the apprentice agents do not receive external feedback from
teachers or other evaluators (see section 4.3) so that the results reflect a pure learning by
observation approach.

Despite the process of discovering and identifying a similar expert being an important
step for the approach to learning by observation, the results presented in this section do not
disclose this process for the purpose of focusing the results on the benefits of learning by
observation. In both scenarios, the apprentice agents use the software image for discovering,
identifying and collecting the information that is necessary for observation from the experts.
Previous work on the software image (Costa & Botelho, 2011) presents some results on these
aspects.

The first scenario simulates an agent with a virtual hand that displays numbers in sign
language. The numbers are provided to the agent by a software number generator which
provides numbers between one and five. Each agent is associated with a single number
generator and has no knowledge on the other number generators associated to the agents
that participate in the simulation. Each time a new number is provided to the agent, the
virtual hand is changed to display that number by means of sign language. The virtual
hand is used only for communicating with users through a graphical display and it is not
accessible to other agents.

However, the agent’s virtual hand has an accessible representation of its current state
in the agent’s software image as a visible attribute (see section 3). The only way software
agents can obtain information on the state of the agent’s virtual hand is through the software
image. The visible attribute represents the state of the visible hand as an object with five
attributes each representing a finger on the hand. Each attribute can be in one of two
states, UP or DOWN.

The expert agent designed for this scenario has a specialized part which holds the
knowledge on the most efficient way of changing the virtual hand so that it represents
the number provided by the number generator. For example, when the agent perceives the
number one, if the virtual hand is showing the number two (the index and middle fingers
are UP) it is only necessary to move the middle finger DOWN, whereas if the hand was
showing the number four, it would be necessary to move the middle, ring and pinky fingers
DOWN. The part perceives the numbers from the number generator through a specialized
sensor. It has an actuator with five actions, one for each finger, that change the state of
that finger.

To increase the complexity of the scenario, the number generators need to be reset from
time to time or else they will stop generating new numbers. The number sources can either

334



Learning by Observation of Agent Software Images

be in the Active state or in the Inactive state. The source stops providing numbers when
it is Inactive. The reset changes the source back to the Active state. Because of this,
the expert agent has another specialized part which holds the knowledge on when and how
to refresh the random number generator. The state of the number generator is perceived
by this specialized part through a sensor which indicates the state of the generator. The
agent part has one actuator with a single action that resets the source.

The apprentice agent developed for this scenario has to learn how to master these
two tasks, manipulating the agent’s virtual hand to display the perceived numbers and
resetting the source, by observing experts with the same constituents and capabilities. Like
the experts, apprentice agents have two parts. One of them specializes in manipulating
the virtual hand and has one sensor that perceives the numbers provided by the number
generator, one visible attribute that displays the state of the virtual hand and one actuator
with five actions that change the state of each finger.

The other part of the apprentice agent specializes in managing the source that provides
the numbers and has one sensor that perceives the state of the number source and one
actuator with a single action that resets the source. Given the description of the agent
sensors and visible attributes, the conditions for this scenario (see section 3.1) consist of
the number provided by the agent source, the state of the virtual hand and the state of the
number source.

The second scenario is a software implementation of an agent that learns how to climb
a mountain simulated by a sinusoidal wave. The agent must abide by the laws of physics
to climb the mountain, and because it has no sufficient force, it will not be able to climb
the mountain by going forward only, it needs to accelerate backwards and forwards to gain
momentum. The goal of this scenario is to reach the top of the mountain, that is, the
peak of the sinusoidal wave, taking the least number of decisions and travelling the smallest
distance (up and down the mountain) as possible.

The experts, provided for this scenario, know the optimal way (the exact moment and
direction they need to accelerate) to climb the mountain and reach its top. The experts
perceive their current speed and direction and their location in the mountain through their
sensors and use this information to decide on the direction which they should accelerate next.
They can choose between accelerating forward, accelerating backward or not accelerating
(which maintains their current speed).

The apprentice agents have to learn to decide which direction to accelerate according
to their location, speed and direction. The scenario includes two kinds of apprentice agents
because we are comparing two different learning methods. The first kind of apprentice
uses a reinforcement learning algorithm (Q-Learning, implemented in the PIQLE tool from
Comité, 2005) to provide the agent with the knowledge that is required to climb the moun-
tain. The reinforcement learning agent is able to perform three actions, accelerate forward,
accelerate backwards or maintain speed.

The reinforcement learning agent is configured with a learning rate α = 0.2 and a
discount factor/rate γ = 0.9, which are the settings that present the best results. The
learning rate also decreases with time following a geometrical decay, which allows the agent
to eventually stop learning after a period of time. A simple reward scheme is used for the
reinforcement learning algorithm. The agent is only rewarded when it reaches the goal of
this scenario, the top of the mountain. Any other reward schemes would require the use
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of some kind of supervisor to determine the ideal situations to apply the reinforcements.
This would have changed the comparison we intended for this scenario, which is to compare
learning by observation with a situation where apprentice agents need no supervisors. This
is the case for the reinforcement learning agent with this simple reward scheme. The only
information provided is the goal, which is embedded in the agent.

The second kind of apprentice agent uses learning by observation to acquire the knowl-
edge of climbing the mountain. The agent shares the same constituents and capabilities
of the experts it observes, being made out of a single part with two sensors and one ac-
tuator. The sensors provide the agent with its location in the mountain and its current
speed (which can be positive if the agent is moving forwards or negative if the agent is mov-
ing backwards). The actuator provides the agent with three actions, accelerate forwards,
accelerate backwards and maintain speed.

The following sections present the results of the simulations of these two scenarios.
To provide the learning by observation agent with a broader set of experiences, all the
simulations use more than one expert and each expert experiences the scenario in different
ways, that is, they receive different information from the environment through their sensors.
On the other hand, only one apprentice agent is used on the simulations. This simplification
ensures that there is no risk for the tested apprentice agent to observe other apprentices,
which may mislead it with incorrect actions, instead of observing the experts.

The unit of time used for the simulation results is the simulation step. A simulation
step represents the time slot where the participant agents take a decision. For learning by
observation agents, a simulation step can either represent an observation (the acquisition
of a snapshot from the expert) and the subsequent learning (when the agent is in the
learning state), or updating the facing conditions (see section 3.1), proposing and executing
the action best suited for the faced conditions (when the agent is in the execution state)
(see section 4). For reinforcement learning agents a simulation step represents updating
the facing conditions, selecting an action for those conditions (from the action-state pairs
stored in their memories) executing the action and interpreting the rewards (updating the
action-state pairs). For expert agents, a simulation step represents updating the facing
conditions and selecting and executing the action best suited for those conditions.

5.1 Results of the Virtual Hand Scenario

This section shows the impact of changing the confidence thresholds (see section 4.3) on
the time spent on learning and on the total number actions that are appropriately executed
by the agent. It also shows the way the agents perform, in terms of the number of correct
actions, in two different settings.

The two settings depend on the sequence of numbers provided by the number genera-
tors. To control the results of the simulation, the numbers provided by the generators are
designated from a pre-determined sequence. The number generators provide the numbers
following that sequence and when the end of the sequence is reached the source needs to be
reset by the agent. The reset makes the number generator provide the numbers following
the same sequence.

For the first setting (exp1 ) the number generators of both apprentice and expert agents
provide the same sequence of numbers. In this setting the apprentice agent faces the same

336



Learning by Observation of Agent Software Images

conditions in the same sequence as the experts it observes which provides a good testing
ground for the recall method of learning (see section 4.2). The setting shows how the agent
is capable of performing the task as it was observed on the experts.

On the second setting (exp2 ), each number generator has a different sequence of numbers
with different sizes, that is, the number generators need to be reset at different times. The
apprentice agent faces conditions that are different from those faced by the observed experts
which provides a good testing ground for the classification method of learning (see section
4.2). The setting shows how the agent is capable of performing a task that is similar to
what has been observed when facing different conditions.

Figure 8: The impact of changing the confidence thresholds

Besides being a testing ground for the two learning methods, this scenario also de-
termines the impact of changing the values for the UpperConfidenceThreshold and
the LowerConfidenceThreshold (see section 4.3). For this reason, both settings were
initially tested on agents using different values for these thresholds. Figure 8 presents a
summary of the results obtained for the second setting in simulations with 4000 steps (each
variation of the thresholds is tested in a simulation lasting 4000 steps). The choice for the
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second setting in Figure 8 is because it is where changing the thresholds had more influence
and also because it is a more realistic approach for the scenario, since the chances for the
agent to find itself on the same situation as the experts it observes are very small.

As explained in section 4.3, the confidence thresholds affect the length of the learning pe-
riod and the number of subsequent learning periods which in turn affects the total number of
correct actions performed by the agent throughout the simulation. When the UpperCon-
fidenceThreshold is low, the agent may not have enough time to learn, which decreases
the agent’s performance in terms of being able to execute the correct actions. When the
UpperConfidenceThreshold is too high the agent spends a lot of time learning, which
reduces the time spent in the execution state and therefore the total number of actions
executed by the agent is lower.

When the LowerConfidenceThreshold is too close to the UpperConfidenceThresh-
old the agent switches between the learning and execution state more often (see section 4).
This may hinder the agent‘s ability to complete a task because the slightest error causes
the agent to return to the learning state. When the LowerConfidenceThreshold is
too far apart from the UpperConfidenceThreshold, the agent takes longer to switch
between learning and execution. This slows down the ability to recognize the mistakes and
switching to the learning state. It also slows down the recovery from the learning state to
the execution state.

The results presented in Figure 8 fall in the region where the LowerConfidenceThresh-
old changes between zero and fifty and the UpperConfidenceThreshold changes from
being equal to the LowerConfidenceThreshold and up to a difference of ten units more
than the LowerConfidenceThreshold. This is where the agent is able to perform the
maximum number of correct actions in the time provided by the simulation (4000 steps). If
the difference between the thresholds is larger than ten, the total number of correct actions
decreases since the agent takes longer to change between the learning and execution states.

Figure 8 also shows that the length of the initial learning period increases as the Low-
erConfidenceThreshold increases. The longer the agent spends learning the less time
it has to perform the actions. Therefore, as Figure 8 shows, the optimal values (for this
scenario) for the thresholds are ten for the LowerConfidenceThreshold and fifteen for
the UpperConfidenceThreshold. This provides the agent with a learning period that
is long enough for the agent to learn all the necessary skills (so that the majority of the ac-
tions it performs are correct) but short enough to allow the agent to perform the maximum
amount of actions (which is 3923 actions according to Figure 8).

After determining the best values for the confidence thresholds, the scenario was simu-
lated under the two settings (exp1 and exp2 ) in a 4000 step simulation which was repeated
100 times to encompass the time variations that might exist on the simulations. Since the
two settings were prepared with the two learning methods in mind, it is important to look
at the importance given by the agent to these methods on each setting. Table 1 shows the
average values of the weights of the recall and classification methods of learning (see section
4.2) on each setting.

Table 1 shows that, as expected, the recall method has more influence on the proposed
actions when the agent is faced with the same conditions as the expert (exp1 ) than when
it faces different conditions (exp2 ). In the first setting, the weight of the recall method
makes it more likely (more than 50 % chance) for the actions proposed by this method
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Setting Recall Weight Classification Weight

exp1 0.509 0.491

exp2 0.317 0.683

Table 1: The average weights of the recall and classification methods on each setting

to be executed, even though the actions proposed by the classification method can also
be executed. In the second setting, the classification method has more influence on the
proposed actions because it has the largest weight. The agent is not able to use the recall
method very often to follow the same sequence of actions as the expert because it is facing
conditions that are different from those observed on the expert (see section 4.2).

The overview of the results of simulating the scenario in the two settings is presented
in Table 2. The table compares the time spent on the learning state and on the execution
state, the number of actions the agent was able to execute, how many of those actions
were appropriate and also the time of a simulation step when learning and when executing
actions. The results in Table 2 present both the average values and the standard deviation
from running the simulation 100 times.

Apprentice Apprentice
Expert (exp1) (exp2)

Time spent average - 1.62 134.98
learning (s) stdev - 0.12 22.503

Time spent average 2.415 10.435 23.365
execution (s) stdev 0.606 0.957 6.017

Total actions average 4000 3905 3709.25
executed stdev 0 0 31.13

Amount of average 100 % 100 % 92.95 %
appropriate actions stdev 0 0 7.73 p.p.

Step time in average - 17.052 35.834
learning state stdev - 1.305 2.129

Step time in average 0.603 2.672 6.363
execution state stdev 0.151 0.245 1.815

Table 2: Overview of the results on the simulation of the virtual hand scenario

The results in Table 2 show that when the agent faces the same conditions as the experts
it observes (exp1 ) it spends less time in the learning state and is able to perform more actions
throughout the simulation than when it faces different conditions (exp2 ). When the agent
faces different conditions (exp2 ) it spends more time learning because it needs to acquire
more knowledge and requires this knowledge to come from different sources to improve the
generalization in the classification method (see section 4.2). This leads the agent to spend
more time discovering different experts to learn from and also causes the agent to return to
the learning state more often.

In addition, the high standard deviation values show that when the agent faces different
conditions (exp2 ) the number of actions executed throughout the simulation, the time spent
learning and the time spent executing actions differs considerably. This variation is directly
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associated with the randomness of the observed experts. Each time the simulation is run,
the apprentice observes different subsets of the available experts in a different sequence,
which changes the knowledge retained by the agent throughout the simulation and affects
the number of actions executed and the time spent on learning and on executing actions.

Table 2 also shows that when facing the same conditions (exp1 ) all the actions executed
by the agent were appropriate, whereas when facing different conditions (exp2 ) only ap-
proximately 92% of the totality of executed actions were appropriate. This is an important
indicator that the agent is more likely to return to the learning state, after starting to
execute actions, when it is facing different conditions (exp2 ).

As for the average time spent in the simulation steps, Table 2 shows that in both cases,
the simulation step is longer when agents are learning. This was expected since when the
agent is in the learning state it has to perform various tasks such as discovering expert
agents, comparing its software image with the software images of the discovered experts,
acquiring the snapshots and storing its information, proposing actions for the conditions
from the snapshots and evaluating those proposals (see section 4).

When executing actions, the simulation step of the apprentice agents is longer than
the simulation step of the experts, which is understandable given that apprentice agents
require more processing than the expert. Besides using two methods for proposing actions
it is also necessary to take into account the influence of the internal evaluation. The step
time while executing actions is also longer when the apprentice agent is facing different
conditions (exp2 ), which influences the time spent executing actions. Even though the
apprentice agent executes fewer actions (only 3709), when compared with when facing the
same conditions (3905), it spends more time executing those fewer actions. The same effect
is observed in the time spent by the simulation step when learning.

This happens because when facing different conditions the agent needs to acquire more
knowledge which increases the amount of information in the agent’s memory. Since the
recall and classification methods of learning need to process the information contained in
memory, the larger the amount of information the longer it takes to process it. This effect is
felt both when learning and when executing actions because the agent uses these methods
in both cases.

A closer look at the simulation results is presented in Figure 9, which shows the progress
of the apprentice agents, in terms of the number of correct actions they have executed,
throughout the simulation. The figure also shows the progress of the state of the learning
process (see section 4) throughout the simulation in the apprentice agent. To provide a
clearer presentation, the results are combined in groups of 100 simulation steps.

Figure 9 shows that, when apprentice agents face the same conditions as the expert
(exp1 ) after a short learning period (of about 200 steps) all the actions they execute are
correct. When the agent faces different conditions from the experts it observes (exp2 ), the
initial learning period lasts a little longer (about 300 steps) and only approximately 90% of
the executed actions are correct.

The agent also experiences additional learning periods (of short duration) throughout
the simulation. The additional learning periods are mainly caused by the evaluation activity
mechanism that forces apprentices to switch to the learning state when facing conditions
that were not observed (see section 4.3). Although the subsequent learning periods affect
the time spent on learning they are of short duration. As Figure 9 shows, the overall
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Figure 9: The behaviour of the apprentice agent in the two settings throughout the simu-
lation

permanence in these subsequent learning periods does not exceed more than 3% of the total
simulation steps.

5.2 Results of the Mountain Car Scenario

The mountain car scenario compares expert agents, which are specialized in climbing moun-
tains, with the learning by observation agents (LbO) that learn by observing experts per-
forming the task to learn and the reinforcement learning agents (RL) that learn through
reinforcements. All the participant agents face the same conditions, that is, they are placed
in the same mountain at the same starting points. The observed experts also face the same
conditions as the learning by observation agent.

The results present a comparison based on the number of actions, the distance travelled
and the time spent until reaching the top of the mountain (the goal of the simulation). The
results also determine the average time of a simulation step for each agent and how much
time it takes for an agent to learn, that is, how much time it takes for an agent to reach
the top of the mountain for the first time.
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Since this scenario provides a goal, the simulation time-frame is grouped by attempts
of achieving the goal. Each attempt lasts a variable number of simulation steps, with a
maximum duration of 500 simulation steps. If the agent achieves the goal before the 500
steps the attempt is completed and is regarded as successful. If after the 500 steps the goal
is not achieved, the attempt is regarded as failed. The simulation lasts for 50000 attempts,
to provide the reinforcement learning agents enough time for testing all the hypotheses and
provide their best results.

Table 3 presents a summary of the important aspects of the scenario such as the amount
of time, number of attempts, number of actions and distance travelled by each agent to reach
the top for the first time. The table also shows how many times the agent reached the top of
the mountain, the average time of a simulation step and the average amount of simulation
steps in an attempt to reach the goal. The data in Table 3 was obtained from running the
scenario 100 times to encompass time variations. The student’s t-test was used to ensure
the statistical relevance of the data collected from running the scenario.

Apprentice Apprentice T-TEST
Expert (LbO) (RL) (LbO - RL)

Time to reach top
first time (ns)

30 3300 14660 2.2× 10−7

Attempts for
reaching top first
time

1 1 105 3.4× 10−10

Actions executed
to reach top first
time

136 278 52471 3.2× 10−10

Distance travelled
to reach top first
time

2.73 2.73 610.37 2.5× 10−9

Number of times
reached top

50000 50000 49895 2.9× 10−10

Average simu-
lation step time
(ms)

0.28 4.94 0.31 2.7× 10−39

Average simula-
tion steps spent
in an attempt

136 136.01 229.92 4.9× 10−12

Table 3: Overview of the results on the simulation of the mountain car scenario

Table 3 shows that, as expected, the expert agent exhibits the best results in all aspects.
The table also shows that the learning by observation agent outperforms the reinforcement
learning agent in all aspects with the exception of the time of a simulation step. The
learning by observation agent also gets close to the same results as the expert in all aspects
with the exception of the time it takes to reach the top and the simulation step time.

When compared with the reinforcement learning agent, the simulation step of a learning
by observation agent lasts longer because of the amount of processing behind that decision.

342



Learning by Observation of Agent Software Images

Nevertheless, the learning by observation agent requires less simulation steps to complete
an attempt, that is, to reach the goal. The main reason for the longer simulation step is
because the learning by observation agent uses two methods for proposing the actions (the
recall and classification methods as explained in section 4.2) which requires an additional
effort of combining the results and choosing the best action from them. The agent also
has to perform a set of other tasks, like for example the internal evaluation (see section
4.3). The performance of the software used by the agent is likely to be improved in future
versions, which would lead to an improvement in the simulation step time.

Although the simulation step of a reinforcement agent takes less time, the agent requires
more steps and attempts to reach the top of the mountain for the first time and eventually
takes more time to learn how to reach the top of the mountain as the results in Table 3
show. This puts the reinforcement agent in last place when considering the time it takes
to reach the top for the first time. The results of the t-test in Table 3 show that the data
acquired in the simulations is statistically relevant.

Figure 10: General view of the results for the second scenario
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In addition to the information on achieving the goal for the first time, it is also important
to know how the agents performed throughout the simulation. Figure 10 shows the progress
of the expert and the two apprentice agents (learning by observation and reinforcement
learning) throughout the simulation in terms of the distance travelled, the number of times
reaching the top and the number of simulation steps required to reach the top. For a clearer
presentation, the results are combined in groups of 100 attempts to reach the goal. Each
attempt lasts a number of simulation steps that ranges from 136 to 500, depending on the
number of steps that are necessary to reach the top of the mountain (see Table 3).

The results presented in Figure 10 show that the learning by observation agent performs
better than the reinforcement learning agent in all considered dimensions. The figure shows
that the learning by observation agent requires less simulation steps (in comparison with the
reinforcement learning apprentice) to go from the starting point to the top of the mountain
after learning how to do it. The simulation steps spent in each attempt stabilizes at 136
(which is the same number steps spent by the expert) right after the agent has learnt the
task of climbing the mountain. The learning by observation agent also requires less attempts
to learn how to reach the top (1 attempt as shown in Table 3).

The distance travelled by the learning by observation agent is also smaller than the
distance travelled by the reinforcement learning agent. The value of the distance, in the
learning by observation agent, stabilizes at 2.73 (the same as the expert as Table 3 shows)
right after the agent learns the task of climbing the mountain, unlike what happens with
the reinforcement learning agent. As Figure 10 shows, even after a long learning period,
the reinforcement learning agent is not able to learn the most efficient way to climb the
mountain (the one that requires the least amount of actions and the smallest distance). Even
the lowest values of the fluctuations of the number of actions and the travelled distance are
still far away from those obtained by the learning by observation agent.

Besides these inabilities, the reinforcement learning agent’s capability of reaching the
goal fluctuates between 90% and 100% of the times, until almost the end of the simulation.
This means that even after learning how to reach the goal, the reinforcement learning agent
is not always able to do it, something that is also observed in the total number of times the
agent reaches the top of the mountain in Table 3. In contrast, the learning by observation
agent exhibits more stable results after learning the task of reaching the top of the mountain.

6. Conclusions and Future Work

The adoption of learning by observation solutions is relatively new in computer science and,
as the latest approaches show, it is still under development (Sullivan, 2011; Kulic et al., 2011;
Tan, 2012; Fonooni, Hellström, & Janlert, 2012). With the exception of our work (Costa
& Botelho, 2011, 2012) and Machado and Botelho’s (2006) work, all the contributions for
learning by observation are focused on robotic agents and their physical properties. Software
agents and even the software used in robots are neglected. Even Machado and Botelho’s
work has limitations since it only addressed the problem of learning vocabulary and it does
not allow generalizations of the acquired knowledge. This means that, unlike our approach,
her apprentice agent is not able to learn control mechanisms neither is capable of dealing
with conditions that are different from those observed on the expert.
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Therefore, our learning approach clearly contributes to advance the state of the art on
learning by observation, providing software agents with a learning solution that is different
from all other methods that are usually applied for software agents. Unlike the robotic
approaches for learning by observation, our software approach is not limited to software
agents. It can also be used by robotic agents with minor adaptations, since all their physical
actions are controlled by or reflected in software events. Even the data collected by robotic
sensors needs a software representation (however complex it can be), since in its core the
robot is effectively running a program and all high level decisions are made by that program.
Thus, a software approach provides a broader solution than approaches limited to the
physical properties of robotic environments.

The experimental results in section 5 show that software agents are capable of improving
their ability to perform a task using our approach. The first scenario also shows that the
classification method of learning is essential for situations where the agent is not facing
exactly the same sequence of events as the expert. Namely, situations in which the agent
is faced with conditions that are different from those faced by experts it has observed. The
most usual scenarios for learning by observation, reported in the literature, address cases
in which the apprentice and the expert agents face exactly the same conditions. This kind
of situation is ideal for sequence learning, which is the reason why this method is one of the
most used in learning by observation approaches. With the inclusion of the classification
method, the ability to learn by observation is extended to other problems and domains.

The combination of the classification method with the recall method, which is inspired
in sequence learning, ensures that the agent is able to adapt, by itself, to a larger number
of circumstances, including those that are most usual for learning by observation scenarios.
Besides the combination of these two methods, our approach also provides an internal
evaluation mechanism that constantly tests the agent’s knowledge. This allows the agent to
know when it needs to acquire more knowledge or when it has acquired sufficient knowledge
and therefore can execute actions. The approach also offers the possibility of using external
feedbacks to enhance the agent’s evaluation, which gives agents the ability of knowing if
the actions they execute are appropriate.

The agent’s internal evaluation enables learning by observation agents to enhance their
knowledge even after they stop observing experts and start using the acquired knowledge,
since after starting to use their knowledge they may go back to the learning state. This was
one of the major drawbacks of previous learning approaches. The usual way of handling
this is by manually feeding new examples whenever the agent requires them. In the case
of our approach the agent is able to decide by itself when it needs to return to a learning
state, to observe experts. The process does not require any intervention since the agent can
find the experts from which to collect the new training examples.

The application of our approach in two distinct scenarios shows that it can be adapted
to different domains. The scenarios also show that the amount of time taken by our learning
approach to decide the actions to execute can sometimes be high. However, as the second
scenario shows, our agents are able to achieve the goal in less time than a reinforcement
learning approach, even in situations that have already been shown by the literature to be
adequate for reinforcement learning. The learning by observation agents are also able to
achieve approximately the same results as the experts they observe.
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Although apprentice agents take more time to choose the actions to execute than the
experts, this difference is smaller on the first scenario. Considering that, in the first sce-
nario, the expert’s knowledge is expressed with more rules than in the second scenario, our
approach, unlike reinforcement learning, is able to cope with the increase of the complexity
in terms of the number of rules required to express the expert’s knowledge.

Besides providing a new insight for learning in software agents, through the software
image, our approach can also contribute to the software embodiment problem. Although its
main purpose is directed to learning by observation, the software image also allows visible
software agents to represent themselves on what can be called a body. As future work we
may continue developing the software image to better adapt it to the software embodiment
problem.

We also intend to continue testing our approach in different scenarios, especially in
situations where the actions have effects both in the agent and in the environment. In such
situations only a part of the effect of the actions is visible in the environment. We expect
the results to be similar to a situation where all the effects of the actions are visible in the
environment when the visible effects are enough to distinguish the actions. However, when
the visible effects are not enough to distinguish the actions, agents who learn only from the
effects of the actions might not be able to learn properly.

For example, the effect of action one is removing a number from the environment and
adding it to the agent’s internal memory and the effect action two is removing a number
from the environment and subtracting it to the agent’s internal memory. Both actions have
different effects in the agent, but the visible effects on the environment are exactly the same.
In this situation, an agent that only learns from the visible effects of the actions will not be
able to distinguish these two actions.

Finally, we also consider improving the approach to open the possibility of an agent
performing a task that is radically different from the tasks performed by the observed
experts. The agent should be able to use the acquired knowledge in a way that allows it to
perform new tasks that were never observed before.
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