
Journal of Artificial Intelligence Research 47 (2013) 157-203 Submitted 11/12; published 05/13

A Survey on Latent Tree Models and Applications

Raphaël Mourad raphael.mourad@aliceadsl.fr

LINA, UMR CNRS 6241,
Ecole Polytechnique de l’Université de Nantes
Nantes, Cedex 3, 44306 France

Christine Sinoquet christine.sinoquet@univ-nantes.fr

LINA, UMR CNRS 6241, Université de Nantes
Nantes, Cedex, 44322 France

Nevin L. Zhang lzhang@cse.ust.hk

Tengfei Liu liutf@cse.ust.hk

Department of Computer Science & Engineering, HKUST
Clear Water Bay Road, Kowloon, Hong Kong

Philippe Leray philippe.leray@univ-nantes.fr

LINA, UMR CNRS 6241,

Ecole Polytechnique de l’Université de Nantes

Nantes, Cedex 3, 44306 France

Abstract

In data analysis, latent variables play a central role because they help provide powerful
insights into a wide variety of phenomena, ranging from biological to human sciences. The
latent tree model, a particular type of probabilistic graphical models, deserves attention.
Its simple structure - a tree - allows simple and efficient inference, while its latent variables
capture complex relationships. In the past decade, the latent tree model has been subject
to significant theoretical and methodological developments. In this review, we propose a
comprehensive study of this model. First we summarize key ideas underlying the model.
Second we explain how it can be efficiently learned from data. Third we illustrate its use
within three types of applications: latent structure discovery, multidimensional clustering,
and probabilistic inference. Finally, we conclude and give promising directions for future
researches in this field.

1. Introduction

In statistics, latent variables (LVs), as opposed to observed variables (OVs), are random
variables which are not directly measured. A wide range of statistical models, called latent
variable models, relate a set of OVs to a set of LVs. In these models, LVs explain
dependences among OVs and hence offer compact and intelligible insights of data. Moreover
LVs allow to reduce data dimensionality and to generate conditionally independent variables,
which considerably simplifies downstream analysis. Applications are numerous and cover
many scientific fields. This is typically the case in domains such as psychology, sociology,
economics, but also biological sciences and artificial intelligence, to cite some examples.
Such fields may need complex constructs that cannot be observed directly. For instance,
human personality in psychology and social class in socio-economics refer to higher level
abstractions than observed reality.

c©2013 AI Access Foundation. All rights reserved.

Mourad, Sinoquet, Zhang, Liu, & Leray

1.1 Context

Latent tree model (LTM)1 is a class of latent variable models which has received consid-
erable attention. LTM is a probabilistic tree-structured graphical model where leaf nodes
are observed while internal nodes can be either observed or latent. This model is appealing
since its simple structure - a tree - allows simple and efficient inference, while its latent
variables capture complex relationships.

A subclass of LTMs was first developed in the phylogenetic community (Felsenstein,
2003). In this context, leaf nodes are observed taxa while internal nodes represent unob-
served taxum ancestors. For instance, in molecular genetic evolution, which is the process
of evolution at DNA scale, it is obviously hopeless to study DNA sequences in some dead
species from collecting their DNA. Nevertheless, evolutionary latent models can be used to
infer the most probable ancestral sequences knowing contemporary living species sequences.
Neighbor joining represents one of the first algorithms developed for LTM learning in the
phylogenetic context (Saitou & Nei, 1987; Gascuel & Steel, 2006). It is still very popular
as it is quick to compute and it allows to find the optimal model in polynomial time under
certain assumptions.

During the past decade, LTMs in their general form have been under extensive investi-
gation and have been applied to many fields. For instance they have been applied in human
interaction recognition. Human interaction recognition is a challenging task, because of
multiple body parts and concomitant inclusions (Aggarwal & Cai, 1999). For this purpose,
the use of LTM allows to segment the interaction in a multi-level fashion (Park & Aggarwal,
2003): body part positions are estimated through low-level LVs, while overall body position
is estimated by a high-level LV. LTMs have also been used in medical diagnosis (Zhang,
Yuan, Chen, & Wang, 2008). In this context, LTMs provide a way to identify, through the
LVs, the different syndrome factors which cannot be directly observed by the physician.

1.2 Contributions

In this paper, we present a comprehensive study of LTM and a broad-brush view of its recent
theoretical and methodological developments. LTM must be paid attention because (i) it
offers deep insights for latent structure discovery (Saitou & Nei, 1987), (ii) it can be applied
to multidimensional clustering (Chen, Zhang, Liu, Poon, & Wang, 2012) and (iii) it allows
efficient probabilistic inference (Wang, Zhang, & Chen, 2008). Somewhat surprisingly, no
extensive review on this research area has been published.

In addition to the reviewing of the LTM research area, we also contribute an analysis and
a perspective that advance our understanding of the subject. We establish a categorization
of learning methods. We present generic learning algorithms implementing fundamental
principles. These generic algorithms are partly different from those of the literature because
they have been adapted to a broader context. Besides, the performances of all the algorithms
of the literature are compared in the context of small, large and very large simulated and
real datasets. Finally, we discuss future directions, such as the adaptation of LTM for
continuous data.

1. LTM has been previously called “hierarchical latent class model” (Zhang, 2004), but this name has been
discarded because the model does not inherently reveal a hierarchy.

158

Latent Tree Models

Figure 1: Illustration of graph theory terminology.

1.3 Paper Organization

This paper is organized as follows. Section 2 presents the latent tree model and related
theoretical developments. In Section 3, we review methods developed to learn latent tree
models for the two main situations: learning when structure is known and learning when it
is not the case. Then, Section 4 presents and details three types of applications of latent tree
models: latent structure discovery, multidimensional clustering and probabilistic inference.
Other applications such as classification are also discussed. Finally, the last two sections 5
and 6 conclude and point out future directions.

2. Theory

In this section, we first introduce graph terminology and then present LTM. Latent classes
and probabilistic inference for clustering are next presented. Scoring LTMs is discussed. We
also present the concepts of marginal equivalence, equivalence and model parsimony, useful
for LTM learning. Then, we explain the necessity of a trade-off between latent variable
complexity and partial structure complexity.

Variables are denoted by capital letters, e.g. A, B and C, whereas lower-case letters
refer to values that variables can take, e.g. a, b and c. Bold-face letters represent sets
of objects, that is A, B and C are sets of variables while a, b and c are value sets. An
observed variable is denoted X whereas a latent variable is denoted H. A variable about
which we do not know if it is observed or latent is denoted V .

2.1 Graph Theory Terminology

Before presenting LTM, we first need to define graph-related terms, which are illustrated in
Figure 1. A graph G(V,E) is composed of a set of nodes V and a set of edges E ⊂ V×V.
An edge is a pair of nodes (Va, Vb) ∈ E. The edge is undirected (noted Va−Vb) if (Vb, Va) ∈ E
and directed (noted Va → Vb) if not.

159

Mourad, Sinoquet, Zhang, Liu, & Leray

Figure 2: (a) Directed tree. (b) Undirected tree. The light shade (blue) indicates the
observed variables whereas the dark shade (red) points out the latent variables.

A directed graph is a graph whose all edges are directed. In a directed graph, a node
Va is a parent of a node Vb if and only if there exists an edge from Va to Vb. The node Vb is
then called the child of node Va. Nodes are siblings if they share the same parent. A node
Vc is a root if it has no parent. A directed path from a node Vd to a node Va is a sequence
of nodes such that for each node except the last one, there is an edge to the next node in
the sequence. A node Va is a descendant of a node Vd if and only if there is a directed path
from Vd to Va. The node Vd is then called an ancestor of node Va.

An undirected graph only contains undirected edges. In an undirected graph, a node Va

is a neighbor of another node Vb if and only if there is an edge between them. A leaf is a
node having only one neighbor. An internal node is a node having at least two neighbors.
An undirected path is a path for which the edges are not all oriented in the same direction.

A clique is a set of pairwise connected nodes (in a tree, a clique is simply an edge).
A separator is a set of nodes whose removal disconnect two or more cliques (in a tree, a
separator is simply an internal node). A tree T is a graph for which any two nodes are
connected by exactly one path.

2.2 Latent Tree Model

LTM is a tree-structured graphical model with latent variables. It is composed of a tree -
the structure - T (V,E), and a set of parameters, θ. The tree can be either directed (i.e.
a Bayesian network; Zhang, 2004) or undirected (i.e. a Markov random field; Choi, Tan,
Anandkumar, andWillsky, 2011). Both representations are described in Figure 2. The set of
nodes V = {V1, ..., Vn+m} represents n+m observed and latent variables. X = {X1, ...,Xn}
is the set of observed variables and H = {H1, ...,Hm} is the set of latent variables. Leaf
nodes are OVs while internal nodes can be either observed or latent. Variables can be either
discrete or continuous. The set of k edges E = {E1, ..., Ek} captures the direct dependences
between these variables.

In the directed setting (Figure 2a), the set of parameters θ consists of probability dis-
tributions, one for each variable. Given a variable Vi with parents PaVi

, a conditional
distribution P (Vi|PaVi

) is defined. For a variable Vi that has no parent, a marginal distri-
bution P (Vi) is defined instead. The joint probability distribution (JPD) of this model is

160

Latent Tree Models

formulated as:

P (V) = Πn+m
i=1 P (Vi|PaVi

). (1)

To illustrate the model, let us take the example in Figure 2a. It is composed of a set of
OVs {X1, ...,X7} and a set of LVs {H1,H2}. Its JPD writes as:

P (X1, ...,X7,H1,H2) = P (X1|H1) P (X2|H1) P (X3|H1) P (H1|X7) P (X7)

× P (X4|X7) P (H2|X7) P (X5|H2) P (X6|H2).
(2)

In the undirected setting (Figure 2b), the set of parameters θ consists of probability
distributions, one for each clique and separator. In LTM, cliques are edges while separators
are internal nodes. Let {I1, ..., Ij} be the separators. The JPD of this model is formulated
as:

P (V) =
Π(Va,Vb)∈E P (Va, Vb)

Πm
j=1 P (Ij)(d(Ij)−1)

, (3)

where d(Ij) is the degree of internal node Ij. The JPD of the undirected model in Figure
2b writes as:

P (X1, ...,X7,H1,H2) =
P (X1,H1) P (X2,H1) P (X3,H1) P (H1,X7) P (X4,X7)

P (H1) P (H1) P (H1) P (X7)

× P (X7,H2) P (X5,H2) P (X6,H2)

P (X7) P (H2) P (H2)
.

(4)

In the following, for the seek of simplicity, we restrain the study to categorical variables,
i.e. random variables which have a finite number of states. We also mainly focus on LTM
whose internal nodes are all LVs. Most works on LTM have been developed for these two
model settings.

2.3 Latent Classes and Clustering

An LV has a number of states, each of them representing a latent class. All latent classes
together represent a soft partition of the data and define a finite mixture model (FMM).
LTM can be seen as multiple FMMs connected to form a tree. Given a data point, the
probability of belonging to a particular class can be computed using the Bayes formula.
This computation is called class assignment.

In an LTM, each LV Hj represents a partition of the data. For an observation ` and the
vector of its values x` = {x`1, ..., x`n} on the set of OVs X, the probability of its membership
to a class c of an LV Hj can be computed as follows:

P (Hj = c|x`) =
P (x`|Hj = c) P (Hj = c)

P (x`)

=

∑

H
′ P (x`,H′|Hj = c) P (Hj = c)

∑k
c=1

∑

H
′ P (x`,H′|Hj = c) P (Hj = c)

(5)

with H′ = H\{Hj} and k the cardinality of Hj. From the last formula, the reader might get
the impression that the complexity of class assignment is exponential. However, in trees,

161

Mourad, Sinoquet, Zhang, Liu, & Leray

linear2 - thus efficient - probabilistic inference, using message passing (Kim & Pearl, 1983),
can be used to compute P (Hj = c|x`).

Probabilistic inference of LV values has two applications: clustering and latent data
imputation. Clustering using LTMs will be illustrated and seen in detail in Section 4.2.
Latent data imputation is the process of inferring, for each observation `, the values of
LVs. These variables are called imputed LVs. In Section 3.2.2, we will see that latent data
imputation is at the basis of fast variable clustering-based LTM learning methods.

2.4 Scoring Latent Tree Models

In theory, every score, such as Akaike information criterion (AIC) (Akaike, 1970) and
Bayesian information criterion (BIC) (Schwartz, 1978), could be used for scoring
LTMs. In practice, the BIC score is often used for LTMs. Let consider a set of n OVs
X = {X1, ...,Xn} and a collection of N identical and independently distributed (i.i.d.)
observations Dx = {x1, ...,xN}. BIC is composed of two terms:

BIC(T,Dx) = log P (Dx|θML, T)− 1

2
dim(T) log N, (6)

with θML the maximum likelihood parameters, dim(T) the model dimension and N the
number of observations. The first term evaluates the fit of the model to the data. It is
computed through probabilistic inference of P (x`) for each observation `. The second term
of the score penalizes the model according to its dimension, to prevent overfitting.

In models without latent variables, the dimension is simply calculated as the number
of free parameters. This is sometimes called standard dimension. When LVs are present,
standard dimension is no longer an appropriate measure of model complexity, and effective
dimension should be used instead (Geiger, Heckerman, & Meek, 1996). Effective dimension
is computed as the rank of the Jacobian matrix of the mapping from the model parameters
to the OV joint distribution.

2.5 Model Parsimony

Let us consider two LTMs, M = (T, θ) and M′ = (T ′, θ′), built on the same set of n
OVs, X = {X1, ...,Xn}. We say thatM andM′ are marginally equivalent if their joint
distributions on OVs are equal:

P (X1, ...,Xn|T, θ) = P (X1, ...,Xn|T ′, θ′). (7)

If two marginally equivalent models have the same dimension, they are equivalent models.

A model M is parsimonious3 if there does not exist another model M′ that is
marginally equivalent and has a smaller dimension. A parsimonious model has the best
possible score. It does not contain any redundant LVs or any redundant latent classes. It
represents the model to infer from data. Two conditions ensure that an LTM does not
include any redundant LVs (Pearl, 1988):

2. Actually, in trees, inference is linear with the number of edges |E|, and is thus also linear with the number
n+m of observed and latent variables, because |E| ≤ n+m− 1.

3. The notion of parsimony is also called minimality by Pearl (1988).

162

Latent Tree Models

Figure 3: Illustration of the trade-off between latent variable complexity and partial struc-
ture complexity in latent tree models. Superscript represents LV cardinality. See
Figure 2 for node color code.

− An LV must have at least three (observed or latent) neighbors. If it has only two
neighbors, it can simply be replaced by a direct link between the two.

− Any two variables connected by an edge in the LTM are neither perfectly dependent
nor independent.

There is also a condition ensuring that an LTM does not include any redundant latent
classes. Let H be an LV in an LTM. The set of k variables Z = {Z1, ..., Zk} are the
neighbors of H. An LTM is regular (Zhang, 2004) if for any LV H:

|H| ≤ Πk
i=1|Zi|

maxki=1 |Zi|
. (8)

Zhang (2004) showed that all parsimonious models are necessarily regular. Thus the
model search can be restricted to the space of regular models. Zhang also demonstrated
that the space of regular models is upper bounded by 23n

2

, where n is the number of OVs.

2.6 Trade-off between Latent Variable Complexity and Partial Structure
Complexity

Zhang and Kocka (2004b) distinguished two kinds of model complexity in LTM: latent
variable complexity refers to LV cardinalities while partial structure complexity4 is

4. In their paper, Zhang and Kocka (2004b) called it structure complexity. For a better understanding, we
prefer to make the distinction between (complete) structure which includes LV cardinalities and partial
structure which does not.

163

Mourad, Sinoquet, Zhang, Liu, & Leray

the edges and number of LVs in the graph. The trade-off between these two complexities has
an important role to play when one wants to choose a model. This trade-off is illustrated
in Figure 3. For instance, let us consider a latent class model (i.e. a model with only one
LV, abbreviated LCM) versus an LTM having the same marginal likelihood (marginally
equivalent models). The LCM is the model showing the highest LV complexity and the
lowest partial structure complexity. It might have a low score if local dependences are
present between OVs. At the opposite, the model with a low LV complexity and a high
partial structure complexity, a binary tree with binary LVs, would also have a low score,
because some LVs would be unnecessary. Depending on the application, a model showing a
good trade-off between the two complexities should be preferred, because it would present
a better score and might be easier to interpret.

3. Statistical Learning

In this section, we present generic algorithms implementing fundamental principles for learn-
ing LTMs. These algorithms are partly different from those proposed in the literature,
because they have been adapted to a broader context. Moreover we provide a unified pre-
sentation of algorithms, in the context of this survey. When learning a model from data,
two main situations have to be distinguished: when structure is known and only parameters
have to be learned, and the more complicated situation where both are unknown.

3.1 Known Structure

In the simplest situation, structure is known, i.e. not only the dependences between vari-
ables but also the number of LVs and their respective cardinalities (i.e. the numbers of
latent classes). The problem is to estimate probability parameters. To solve the problem,
one can use expectation-maximization (EM), the most popular algorithm for learning pa-
rameters in the face of LVs (Dempster, Laird, & Rubin, 1977; Lauritzen, 1995). Because
EM leads to computational burden for large LTMs, a more efficient procedure, that we
call LCM-based EM, can be used. Other methods different from EM, such as spectral
techniques, have also been developed.

3.1.1 Expectation-maximization

Ideally, when learning parameters, we would like to maximize the log-likelihood for a set of
N i.i.d. observed data Dx = {x1, ...,xN}:

L(θ;Dx) = log P (Dx|θ) = log
∑

H

P (Dx,H|θ). (9)

However, directly maximizing L(θ;Dx) in Equation (9) is often intractable because it in-
volves the logarithm of a (large) sum. To overcome the difficulty, EM implements an itera-
tive approach. At each iteration, it optimizes instead the following expected log-likelihood
conditional on current parameters θt:

Q(θ; θt) = EDh|Dx,θt [log P (Dx,Dh|θ)] (10)

where Dx is completed by the missing data Dh = {h1, ...,hN} inferred using θt. Note that
by completing the missing data, EM can easily deal with partially observed variables. An

164

Latent Tree Models

Algorithm 1 LCM-based EM parameter learning (LCMB-EM, adapted from Harmeling
and Williams, 2011)

INPUT:
T , the tree structure of the LTM.

OUTPUT:
θ, the parameters of the LTM.

1: T ′ ← graph rooting(T) /* choose an LV as a root of T */
2: Ho ← ∅ /* initialization of the set of imputed latent variables */
3: θ′ ← ∅
4: loop
5: TLCM = {TLCM1

, ..., TLCMk
} ← identify LCMs of graph(T ′,Ho)

6: ΘLCM = {θLCM1
, ..., θLCMk

} ← EM(TLCM)
7: if |TLCM| > 1 then
8: θ′ ← θ′ ∪ children parameters(ΘLCM)
9: else

10: θ′ ← θ′ ∪ children and parent parameters(ΘLCM)
11: break
12: end if
13: Ho ← Ho ∪ impute LV data(ΘLCM) /* now parents are observed */
14: end loop
15: θ ← EM(θ′) /* global EM using θ′ as a starting point */

important drawback of EM is that it does not guarantee to reach the global optimum. To
reduce the probability of getting trapped into a local maximum, random restarts (multiple
starts with different random initial parameters) or simulated annealing represent well-used
solutions. Wang and Zhang (2006) showed that a few random restarts suffice when the LTM
is small and variables are strongly dependent with each other. In Supplemental material
B.1, we also present our experiments on random restarts for EM. It appears that it is not
possible to give a simple answer to how many restarts should be used because it depends on
the model. Besides, convergence is sometimes not reached even after a very large number
of restarts.

3.1.2 LCM-based EM

Although inference is linear in LTMs, running EM might be prohibitive. One solution
to speed up EM computations consists in chaining two steps: a first step of divide-and-
conquer strategy through local - LCM - learning, followed by a final step carrying out global
learning. This LCM-based EM (LCMB-EM) parameter learning method5 is presented in
Algorithm 1 and illustrated in Figure 4. In the first step, parameters are locally learned
through a bottom-up LCM-based learning procedure explained as follows. An LV is first

5. This learning procedure is very similar to the one proposed for binary trees by Harmeling and Williams
(2011).

165

Mourad, Sinoquet, Zhang, Liu, & Leray

Figure 4: Illustration of LCM-based EM parameter learning algorithm (adapted from
Harmeling and Williams, 2011). See Figure 2 for node color code.

chosen as a root of the LTM (line 1; note that this point will be discussed in detail in
Section 3.2.5). In the rooted LTM, every LCM {X,H} is identified (line 5), i.e. every LV
H whose all children are OVs X. Then, LCM parameters can be quickly learned through
EM (line 6) and used to update current LTM parameters (lines 7 to 12). Once parameters
have been learned for such an LCM, the distributions of unknown values of LV H can be
probabilistically inferred for each observation6 (line 13; for more details, see Section 2.3,
paragraph 2). These distributions can then be used as weighted observations. In their turn,
these weighted observations will seed the learning processes for the LCMs on the (now
observed) LVs Ho and remaining OVs which have not been used for LCM learning yet.
Iterating the two operations (LCM learning and latent data imputation) leads to a bottom-
up LCM-based EM procedure enabling local and fast parameter learning of LTMs. Finally,
LTM parameters are refined through global EM using as starting point the locally learned
parameters (line 15). As with EM, we also provide the results of experiments evaluating
the efficiency of random restarts (see Supplemental material B.1). Our results show that
LCMB-EM converges better than EM. However convergence is not achieved for the largest
dataset studied.

3.1.3 Spectral Methods

Recently, Parikh et al. (2011) applied spectral techniques to LTM parameter learning. The
method directly estimates the joint distribution of OVs without explicitly recovering the

6. We recall that this process is named latent data imputation.

166

Latent Tree Models

LTM parameters. Their algorithm is useful when LTM parameters are not required, for
instance, for probabilistic inference over OVs only. The work of Parikh et al. alleviates the
restriction of the approach of Mossel et al. (2006) requiring that all conditional probability
tables should be invertible, and generalizes the method of Hsu et al. (2009) specific to
hidden Markov models.

Parikh et al. (2011) reformulated the message passing algorithm using an algebraic
formulation:

P (x) =
∑

H

Πn+m
i=1 P (vi|Pavi)

= r>(Mj1Mj2 ... MjJ1r), (11)

where x = {x1, ..., xn} is an observation, Xr is a root, r is the marginal probability vector of
the root and Mj1 ,Mj2 , ...,MjJ are the incoming message matrices from the root’s children.
Children message matrices are calculated in a similar manner:

Mi = Ti×̄1(Mj1Mj2 ... MjJ1i), (12)

where Xi is a root child, Mi is the outgoing message matrix from Xi, Ti is a third or-
der tensor related to the conditional probability matrix between Xi and PaXi

(i.e. Xr),
Mj1 ,Mj2 , ...,MjJ are the Xi’s children incoming messages and ×̄1 is the mode-1 vector
product. Such as in the original message passing algorithm, all messages are recursively
calculated starting from the leaves and going up to the root.

The drawback of the previous representation is that message passing still needs model
parameters. To tackle this issue, the key is to recover P (x) using invertible transformations.
Message matrices are then calculated by transforming each message Mj by two invertible
matrices Lj and Rj (LjR

−1
j = I):

Mi = Ti×̄1(Lj1L
−1
j1

Mj1Rj1L
−1
j2

Mj2Rj2 ... L
−1
jJ

MjJRjJR
−1
jJ

1i). (13)

The matrices Lj, Mj and Rj can be recovered from singular vectors Uj of the empirical
probability matrices P (Xλj

,Xj) of OVs Xj and their left neighbor OV Xλj
. This leads to

a very efficient computation of message passing only involving a sequence of singular value
decompositions of empirical pairwise joint probability matrices. We refer to the work of
Parikh et al. (2011) for more details about the singular value decomposition and spectral
algorithm. Compared to EM, this spectral method does not entail the problem of getting
trapped in local maxima. Moreover, it performs comparable to or better than EM while
being orders of magnitude faster.

3.1.4 Other Methods

Other methods exist for parameter learning. Gradient descent (Kwoh & Gillies, 1996;
Binder, Koller, Russel, & Kanazawa, 1997) and variations of the Gauss-Newton method
(Xu & Jordan, 1996) help accelerate the sometimes slow convergence of EM. However, they
require the evaluation of first and/or second derivatives of the likelihood function. For a
Bayesian learning, variational Bayes (Attias, 1999) offers a counterpart of EM.

167

Mourad, Sinoquet, Zhang, Liu, & Leray

3.2 Unknown Structure

Regrettably, most of the time, there is no a priori information on the LTM structure. This
compels to learn every part of the model, i.e. the number of LVs, their cardinalities, the
dependences and the parameters. This learning task represents a challenging issue, for
which various methods have been conceived. In this section, we provide a survey of those
algorithms. The determination of LV cardinalities, as well as the time complexity and
scalability of algorithms are also discussed. We end by establishing a summary relative to
these learning methods.

Structure learning approaches fall into three categories. The first one is comprised of
search-based methods, inspired from standard Bayesian network learning. The second one
is based on variable clustering and is related to hierarchical procedures. The last category
relies on the notion of distances and comes from phylogenetics.

3.2.1 Search-based Methods

Search-based methods aim at finding the model that is optimal according to some scoring
metric. For BNs without LVs, the BIC score is often used. In the context of LTM, BIC
suffers from a theoretical shortcoming as pointed out in Section 2.4. However, empirical
results indicate that the shortcoming does not seem to compromise model quality in prac-
tice (Zhang & Kocka, 2004a). So, researchers still use BIC when it comes to learning LTM.
Many search procedures have been proposed. They all explore the space of regular LTMs.
Here we focus on: (i) the most naive one which is conceptually simple but very compu-
tationally expensive and (ii) the most advanced one which reduces the search space and
implements fast parameter learning through local EM.

Naive Greedy Search

Naive greedy search (NGS) consists in starting from an LCM and then visiting the space
of regular LTM partial structures. The neighborhood of the current model is explored by
greedy search through operations such as addition or removal of a latent node, and node
relocation7. For each partial structure neighbor, the cardinalities of all LVs are optimized
through addition or dismissal of a state relative to an LV. During the model search (partial
structure and LV cardinality), candidate models are learned with EM and evaluated through
a score. If the best candidate model shows a score superior to the current model score, then
the former is used as a seed for the next step. Otherwise, NGS stops and the current model
is considered as the best model. Therefore, at each step of the search, the learning approach
necessitates to evaluate the score of a very large number of candidate models. This leads to
a huge computational burden because, for each candidate model evaluation, the likelihood
has to be computed through EM.

7. Node relocation picks a child of an LV and then grafts it as a child of another LV which is connected to
the former LV.

168

Latent Tree Models

Advanced Greedy Search

Advanced greedy search (AGS) relies on three strategies to reduce the complexity.
Advanced greedy search is presented in Algorithm 2. First, AGS focuses on a smaller
space of models to explore than NGS (Zhang & Kocka, 2004b). The algorithm performs
partial structure search and LV cardinality exploration simultaneously. For this purpose,
two additional operators are used: addition and removal of a latent state for an LV.

Second, AGS follows a grow-restructure-thin strategy to reduce again the complexity of
the search space (Chen, Zhang, & Wang, 2008; Chen et al., 2012). The strategy consists
in dividing the five operators into three groups. Each group is applied at a given step of
the model search. First, latent node and latent state introduction (NI and SI, respectively)
are used to make the current model more complex8 (grow, line 3). Then, node relocation
(NR) rearranges connections between variables (restructure, line 4). Finally, latent node
and latent state deletion (ND and SD, respectively) make the current model simpler (thin,
line 5).

Third, one needs to assess the BIC score of candidate models. Learning parameters of
the new models is thus required. To achieve fast learning, Chen et al. (2008, 2012) do
not compute likelihood but instead the so-called restricted likelihood through the local EM
procedure (line 12). The principle relies only on optimizing parameters of variables whose
connection or cardinality was changed in the candidate model. Parameters of remaining
variables are kept identical as in the current model.

Operation Granularity

When starting from the simplest solution (an LCM), Zhang and Kocka (2004b) observed
that the comparison of the BIC scores between the candidate model T ′ and the current one
T might not be a relevant criterion. The problem is that this strategy always leads to
increase the cardinality of the LCM, without introducing LVs in the model (see trade-off
between LV complexity and partial structure complexity in Section 2.6). To tackle this
issue, they propose instead to assess the so-called improvement ratio during the grow step:

IRBIC(T ′, T |DX) =
BIC(T ′,DX)−BIC(T,DX)

dim(T ′)− dim(T)
, (14)

that is the difference of the BIC scores between candidate model T ′ and current model T
divided by the difference of their respective dimensions.

3.2.2 Methods Based on Variable Clustering

The major drawback of search-based methods is that the evaluation of maximum likelihood
in presence of LVs, as well as the large space to explore through local search, still entails
computational burden. Approaches relying on variable clustering represent efficient and
much faster alternatives. All of them rely on two key points: grouping variables to identify
LVs and constructing model through a bottom-up strategy. Three main categories have
been developed, depending on the structures learned: binary trees, non-binary trees and

8. Note that node relocation is used locally after each NI to increase the number of its children.

169

Mourad, Sinoquet, Zhang, Liu, & Leray

Algorithm 2 Advanced greedy search for LTM learning (AGS, adapted from EAST, Chen
et al., 2012)

INPUT:
X, a set of n observed variables {X1, ...,Xn}.

OUTPUT:
T and θ, respectively the tree structure and the parameters of the LTM constructed.

1: (T 0, θ0)← latent class model(X) /* LCM learning using EM */
2: loop for i = 0, 1,... until convergence
3: (T i′ , θi

′

)← local search(NI ∪ SI, T i, θi) /* grow */
4: (T i′′ , θi

′′

)← local search(NR,T i′ , θi
′

) /* restructure */
5: (T i+1, θi+1)← local search(ND ∪ SD, T i′′ , θi

′′

) /* thin */
6: end loop
7:

8: /* description of the function local search(operators, T, θ) */
9: (T 0, θ0)← (T, θ)

10: loop for j = 0, 1,... until convergence
11: T = {T1, ..., T`} ← neighborhood(operators, T j)

⋃

T j

12: Θ = {θ1, ..., θ`} ← local EM(T, θj) /* except for T j */

13: T j+1 ← argmaxT

{

BIC(T,Θ)/dim(T,Θ) if operators = NI ∪ SI
BIC(T,Θ) otherwise

14: θj+1 ← EM(T j+1)
15: if T j+1 ∈ neighborhood(NI, T j)
16: (T j+1, θj+1)← local search(NR,T j+1, θj+1)
17: end if
18: end loop

forests.

Binary Trees

Binary tree learning represents the most simple situation. For instance, one can sim-
ply compute an agglomerative hierarchical clustering (Xu & Wunsch, 2005) to learn the
LTM structure. This algorithm is called agglomerative hierarchical cluster-based learn-
ing (AHCB). For the purpose of clustering, pairwise mutual information (MI) represents
a well-suited similarity measure between variables (Cover & Thomas, 1991; Kraskov &
Grassberger, 2009). The MI between two variables Vi and Vj can be defined as follows:

I(Vi;Vj) =
∑

vi∈Vi

∑

vj∈Vj

p(vi, vj) log
p(vi, vj)

p(vi) p(vj)
. (15)

Single, complete or average linkage is used, depending on the cluster compactness required.
The inferred hierarchy provides a binary tree (the partial structure) where leaf nodes are

170

Latent Tree Models

Figure 5: Illustration of the LCM-based LTM learning procedure for a set of 4 variables
{X1,X2,X3,X4}.

OVs and internal nodes are LVs (Wang et al., 2008; Harmeling & Williams, 2011). Then,
LV cardinalities and parameters are learned (for details, see Section 3.2.4 and Section 3.1,
respectively).

In AHCB, each cluster of the hierarchy represents an LV. The MI between an LV and
the other variables (observed or latent) is approximated through a linkage criterion. Instead
of this approximation, another solution consists in directly computing the MI between vari-
ables, whatever their status, i.e. observed or latent (Hwang, Kim, & Zhang, 2006; Harmel-
ing & Williams, 2011). To compute MI, values of LVs are imputed through LCM-based
learning. Algorithm 3 presents the LCM-based LTM learning (LCMB-LTM) algorithm9

implementing this solution. First, the working node set W is initialized with the set of OVs
X = {X1, ...,Xn} (line 1). An empty graph is created on W (line 2). Then the pair of
variables showing the highest MI, {Wi,Wj}, is selected (line 5). An LCM ({Wi,Wj},H) is
learned (line 6), allowing to locally estimate the LV cardinality (through greedy search) and
parameters, and then to impute values for H (line 7). Once values of H are known, it can
be used as an observed variable (line 8). A new step of clustering, followed by LCM learning
and LV value imputation, can then be performed. Iterating this step into a loop allows to
construct an LTM through a bottom-up recursive procedure. At each step of the procedure,
the parameters θlcm of the current LCM are used to update the current parameters θ′ of
the LTM (line 10). If only two nodes are remaining, the two nodes are connected10 (line
12), the corresponding parameters are learned using maximum likelihood (line 13) and the
loop is broken. After constructing the LTM, a final step globally learns LTM parameters
using θ′ as a starting point (line 17). LCMB-LTM yields slightly better BIC results than
AHCB for large datasets (Harmeling & Williams, 2011). LCMB-LTM is illustrated for a
set of 4 variables {X1,X2,X3,X4} in Figure 5.

Harmeling and Williams (2011) justified selecting the pair of variables showing the
highest MI at each step of LCMB-LTM. Let us consider a working node set of (observed or
imputed latent) variables W = {W1, ...,W`}. At each step of LCMB-LTM, the unknown

9. This algorithm is called LCMB-LTM to distinguish it from LCMB-EM for parameter learning (Algorithm
1). Both algorithms are similar and rely on LCM-based learning.

10. It prevents the introduction of a redundant LV, see Section 2.5, second paragraph.

171

Mourad, Sinoquet, Zhang, Liu, & Leray

Algorithm 3 LCM-based LTM learning (LCMB-LTM, adapted from BIN-T, Harmeling
and Williams, 2011)

INPUT:
X, a set of n observed variables {X1, ...,Xn}.

OUTPUT:
T (V,E) and θ, respectively the tree structure and the parameters of the LTM constructed.

1: W← X /* Initialization of the working set of variables */
2: T (V,E)← empty tree(W) /* tree on W with no edges */
3: θ′ ← ∅
4: loop
5: {Wi,Wj} ← pair with highest MI(W)
6: lcm← latent class model({Wi,Wj})
7: H ← impute LV data(lcm)
8: W←W\{Wi,Wj} ∪H /* remove children and add imputed parent */
9: E← E ∪ edges(lcm);V ← V ∪H

10: θ′ ← θ′ ∪ children parameters(θlcm)
11: if |W| = 2 then
12: E← E ∪ edge between the two remaining nodes(W)
13: θ′ ← θ′ ∪ learn remaining parameters(W) /* max likelihood estimation */
14: break
15: end if
16: end loop
17: θ ← EM(θ′) /* global EM using θ′ as a starting point */

JPD P (W) is approximated by a JPD Q(W):

Q(W) = P (Wi,Wj) ΠWk∈W\{Wi,Wj} P (Wk)

=
P (Wi,Wj)

P (Wi) P (Wj)
ΠWk∈W P (Wk), (16)

where only Wi and Wj are dependent. A proper measure to assess the divergence between
P (W) and Q(W) is the Kullback-Leibler (KL) divergence, which is easy to calculate in this
situation:

KL(P ||Q) =
∑

W

P (W) log P (W)−
∑

W

P (W) log Q(W)

= −I(Wi;Wj) +
∑

W

P (W) log
P (W)

ΠWk∈WP (Wk)
, (17)

where I(Wi;Wj) is the mutual information between Wi and Wj. As the last term is con-
stant, the maximization of the KL between P and Q simply consists in selecting the pair
of variables with the highest MI before introducing an LV into the model under construction.

172

Latent Tree Models

Non-binary Trees

Although modeling with binary trees performs well in practice (Harmeling & Williams,
2011), it would be worth alleviating the binarity restriction. Indeed it might provide a better
model faithfulness and interpretation because less LVs would be required. There are several
ways to learn non-binary trees without necessitating too much additional computational
cost. For instance, Wang et al. (2008) first learn a binary tree. Then, they check each pair
of neighbor LVs in the tree. If the information is redundant between the two LVs (i.e. the
model is not parsimonious), then the LV node which is the child of the other LV node is
removed and the remaining node is connected to every child of the removed node. Although
the approach of Wang et al. is rigorous, it can lead in practice to find trees which are very
close to binary trees.

Another solution consists in identifying cliques of pairwise dependent variables to detect
the presence of LVs (Martin & Vanlehn, 1995; Mourad, Sinoquet, & Leray, 2011). For this
purpose, Mourad et al. propose to alternate two main steps: (i) at each agglomerative step,
a clique partitioning method is used to identify disjoint cliques of variables; (ii) each such
clique, containing at least two nodes, is connected to an LV through an LCM. For each
LCM, parameters are learned using EM and LV data are imputed through probabilistic in-
ference. In Algorithm 3 (line 5), it is possible to replace the selection of the pair of variables
having the highest MI by a clique partitioning step where each clique leads to construct an
LCM and to impute corresponding LV values.

Flat Trees

All the algorithms discussed so far in this section are based on the idea of hierarchical
variable clustering. The Bridged Island (BI) algorithm by Liu et al. (2012) takes a slightly
different approach. It first partitions the set of all observed variables into subsets that are
called sibling clusters. Then it creates an LCM for each sibling cluster by introducing a
latent variable and optimizing its cardinality as well as the model parameters. After that,
it imputes the values of the latent variables and links the latent variables up to form a
tree structure using Chow-Liu’s algorithm. The EM algorithm is run once at the end to
optimize the parameters of the whole model. To highlight the difference between BI and
the other variable clustering algorithms, we call the models it produces flat LTMs. Sibling
cluster determination is the key step in BI. BI determines the sibling clusters one by one.
To determine the first sibling cluster, it starts with the pair of variables with the maximum
empirical MI. The cluster is expanded by adding other variables one after another. At each
step, the variable that is the most dependent with the variables already in the cluster is
added to the cluster. After that, a unidimensionality test (UD test) determines whether the
dependences among all the variables in the cluster can be properly modeled with one latent
variable. If the test fails, the expansion process is terminated and the first sibling cluster
is determined. Thereafter, the same process repeats on the remaining observed variables
until they are all grouped into sibling clusters.

173

Mourad, Sinoquet, Zhang, Liu, & Leray

Figure 6: Latent forest models. See Figure 2 for node color code.

Forests

When the number of variables to analyze is very large (e.g. 1000 variables), it might
be more reasonable to learn a forest instead of a tree because many variables might not
be significantly dependent of each other (see Figure 6). We call this model “latent forest
model” (LFM). It has many advantages over LTM, such as reducing the complexity of
probabilistic inference (which depends on the number of edges). To learn LFM, there exists
multiple approaches. For instance, in AHCB, one can use a cluster validation criterion to
decide where to cut the hierarchy. Regarding LCMB-LTM (Algorithm 3), there are two
options. On the one hand, Harmeling and Williams (2011) check the optimal cardinality
of the current LV H (additional step after line 6). If its optimal cardinality equals 1, this
means that the LV is not useful to the model under construction and the algorithm stops.
On the other hand, after partitioning variables in cliques (which replaces the step in line
5), the algorithm of Mourad et al. (2011) terminates when only single-node cliques are
discovered.

To build an LFM, one can also first construct an LTM and then use the independence
testing method of Tan et al. (2011) for pruning non-significant edges. This method provides
guarantees to satisfy structural and risk consistencies. Similar works for non-parametric
analysis have also been developed by Liu et al. (2011). It is worth mentioning that, to
ensure model parsimony, the pruning of non-significant edges in an LTM should be followed
by the removal of latent nodes which are no longer connected to a minimum of three nodes.

3.2.3 Distance-based Methods

This class of methods has been originally developed for phylogenetics (Felsenstein, 2003). A
phylogenetic tree is a binary LTM showing the evolutionary relations among a set of taxa.
Compared to the other LTM learning methods, distance-based ones provide strong guaran-
tees for the inference of the optimal model. In this section, we first define distances and then
present learning algorithms: neighbor joining (phylogenetic tree inference), distance-based

174

Latent Tree Models

Figure 7: Illustration for ascertaining child-parent (a and b) and sibling relations (c). A
dotted edge between two nodes means that the two nodes are linked by a path of
unknown length. In this figure, some nodes are colored in white as they can be
either observed or latent.

method dedicated to general LTM learning and recent spectral methods.

Distances between Variables

Distances are restricted to LTMs whose all variables share the same state space X ,
e.g. binary variables (Lake, 1994). Distances are functions of pairwise distributions. For a
discrete tree model G(V,E) (e.g. an LTM), the distance between two variables Vi and Vj

is:

dij = − log
|det(Jij)|

√

det(Mi) det(Mj)
, (18)

with Jij the joint probability matrix between Vi and Vj (i.e. J ij
ab = p(Vi = a, Vj = b), a, b ∈

X), and Mi the diagonal marginal probability matrix of Vi (i.e. M i
aa = p(Vi = a)).

For a special case of discrete tree models, called symmetric discrete tree models (Choi
et al., 2011), distance has a simpler form. Symmetric discrete tree models are characterized
by the fact that every variable has a uniform marginal distribution and that any pair of
variables Vi and Vj connected by an edge in E verifies the following property:

p(vi|vj) =
{

1− (K − 1) θij if vi = vj
θij otherwise,

with K the cardinality common to Vi and Vj , and θij ∈ (0, 1/K), known as the crossover
probability. For symmetric discrete tree models, the distance between two variables Vi and
Vj is then:

dij = −(K − 1) log (1−Kθij). (19)

Note that there is a one-to-one correspondence between distances and model parameters
for symmetric discrete tree models (for more details, see Choi et al., 2011).

175

Mourad, Sinoquet, Zhang, Liu, & Leray

The aforementioned distances are additive tree metrics (Erdos, Szekely, Steel, &Warnow,
1999):

dk` =
∑

(Vi,Vj)∈Path((k,`);E)

dij , ∀k, ` ∈ V. (20)

Choi et al. (2011) showed that additive tree distances allow to ascertain child-parent
and sibling relationships between variables in a parsimonious LTM. Let us consider any
three variables Vi, Vj, Vk ∈ V. Choi et al. define Φijk as the difference between distances
dik and djk (Φijk = dik − djk). For any distance dij between Vi and Vj , the following two
properties on Φijk hold:

− Φijk = dij ,∀Vk ∈ V\{Vi, Vj}, if and only if Vi is a leaf node and Vj is its parent node;

− Φijk = −dij,∀Vk ∈ V\{Vi, Vj}, if and only if Vj is a leaf node and Vi is its parent
node;

− −dij < Φijk = Φijk′ < dij ,∀Vk, Vk′ ∈ V\{Vi, Vj}, if and only if Vi and Vj are leaf nodes
and they share the same parent node, i.e. they belong to the same sibling group.

Neighbor Joining

The principle of neighbor joining (NJ) is quite simple (Saitou & Nei, 1987; Gascuel &
Steel, 2006). NJ starts with a star-shaped tree. Then it iteratively selects two taxa i and
j, and it creates a new taxum u to connect them. The selection of a pair seeks to optimize
the following Q criterion:

Q(i, j) = (n− 2) dij −
n
∑

k=1

dik −
n
∑

k=1

djk, (21)

where n is the number of taxa and dij is the additive tree distance between i and j. The
distance between i and the new taxum u is estimated as follows:

diu =
1

2
dij +

1

2(n − 2)

(

n
∑

k=1

dik −
n
∑

k=1

djk

)

, (22)

and dju is calculated by symmetry. The distances between the new taxum u and the other
taxa in the tree are computed as:

duk =
1

2
(dik − diu) +

1

2
(djk − dju) . (23)

The success of distance methods such as NJ comes from the fact that they have been
proved very efficient in terms of sample complexity. Under the Cavender-Farris model
of evolution (Cavender, 1978; Farris, 1973), Atteson (1999) showed that it is possible to
guarantee that maxi,j |dij − d̂ij| < ε with a probability at least δ if:

N ≥ 2 ln
(

2n
δ

)

(1− exp(−ε))2
(

exp

(

max
i,j

dij

))2

, (24)

176

Latent Tree Models

with N the number of mutation sites (i.e. the number of observations) and n the number
of taxa (i.e. the number of OVs). Erdös et al. (1999) then demonstrated that under any
evolutionary model and for any reconstruction method, N grows at least as fast as log n,
and for any model assuming i.i.d. observations, it grows at least as n log n. Erdös et al.
also proposed a new algorithm, called Dyadic Closure Method, with a sample complexity
of a power of log n, when the mutation probabilities lie in a fixed interval. Daskalakis et
al. (2009) proved the Steel’s conjecture (Steel, 2001) which states that if the mutation
probabilities on all edges of the tree are less than p∗ = (

√
2 − 1)/23/2 and are discretized,

then the tree can be recovered in log n. Recently, Mossel et al. (2011) proved that log2 n
suffices when discretization is not assumed.

In phylogenetics, the scientist is often faced with a set of different trees11 and the
construction of a consensus tree is thus required. The computational complexity of this
construction has been studied and a polynomial algorithm has been proposed by Steel et
al. (1992).

Learning Dedicated to General LTM

In this subsection, we present the latest developments of Choi et al. (2011) for general
LTM learning, i.e. learning not restricted to phylogenetic trees. It is restricted to the
analysis of data whose all variables share the same state space, for instance binary data.
Assuming data generated by a parsimonious LTM, the additive tree metric property allows
to exactly recover child-parent and sibling relations from distances (see Subsection Distances
between Variables, last paragraph). Another advantage is that OVs are not necessarily
constrained to be leaf nodes (this will be seen in the next paragraph).

The distance-based general LTM learning (DBG) is implemented in Algorithm 4, de-
tailed as follows. First, the working node set W is initialized with the set of observed
variables X = {X1, ...,Xn} (line 1). Distances are computed for any three variables in W
(line 2). An empty tree is created on W (line 3). Then the following steps are successively
iterated (lines 4 to 16):

− A procedure (based on properties described in Subsection Distances between Vari-
ables, last paragraph) allows to identify nodes that have a parent-child relation and
nodes that are siblings (line 5). This procedure generates three different sets of node
groups: a set of parent-child groups, PC = {PC1, ..., PCp}, a set of sibling groups,
S = {S1, ..., Sq} and a set of remaining single nodes, R = {R1, ..., Rr};

− The content of the working node set W is replaced with parent nodes belonging to
parents(PC) and remaining single nodes belonging to R (line 6);

− For each group of sibling nodes ∈ S, a new parent LV H is created and added to W
(lines 7 and 8);

− To update the distances of the working node set (line 9), the distances between the
new LVs and the remaining variables in W are calculated (the calculation is easily
derived from previously computed distances; for more details, see Choi et al., 2011);

11. For instance when different genes are used to infer trees.

177

Mourad, Sinoquet, Zhang, Liu, & Leray

Algorithm 4 Distance-based general LTM learning (DBG, adapted from RG, Choi et al.,
2011)

INPUT:
X, a set of n observed variables {X1, ...,Xn}.

OUTPUT:
T and θ, respectively the tree structure and the parameters of the LTM constructed.

1: W← X /* Initialization of the working set of variables */
2: D← info dist computation(W) /* for any three variables in W */
3: T (V,E)← empty tree(W) /* tree on W with no edges */
4: loop
5: (PC,S,R)← test relations(D,W) /* see paragraph 3 of the section */
6: W← (parents(PC),R) /* parents and singles */
7: LCMT← LCM trees(S) /* an LCM tree for each sibling group */
8: W←W ∪ latent variables(LCMT)
9: D← D ∪ info dist computation(W) /* only for LVs ∈W */

10: E← E ∪ edges(PC) ∪ edges(LCMT)
11: V← V ∪ latent variables(LCMT)
12: if |W| = 2 then
13: E← E ∪ edge between the two remaining nodes(W)
14: break
15: else if |W| = 1 then break end if
16: end loop
17: θ ← EM(T) /* See Section 3.1 */

− If the working node set W contains strictly more than two nodes, then a new step
is started. Otherwise, there are two possible situations: if the working node set W
contains two nodes, then these nodes are connected12 and the procedure is completed
(lines 12 to 14); if the working node set W only contains one node, then the iteration
stops (line 15).

After learning the partial structure, model parameters (line 17) are learned (see Section
3.1).

In practice, Choi et al. (2011) restricted the learning to symmetric discrete distribu-
tions13 (see definition in Subsection Distances between Variables). This restriction presents
a major advantage: it allows to derive model parameters through the use of distances pre-
viously learned by structure recovery. In other words, after learning the structure, there is
no need to recover parameters through EM. This is due to the one-to-one correspondence
between distance and model parameters (for more details, see Choi et al., 2011).

12. It prevents the introduction of a redundant LV, see Section 2.5, second paragraph.
13. Nevertheless, the algorithm can be applied to non-symmetric discrete distributions. The only requirement

is that all variables share the same state space.

178

Latent Tree Models

To diminish the computational complexity of DBG, Choi et al. (2011) propose to first
learn a minimum spanning tree (MST) based on distances between OVs. Then, in the tree,
they identify the set of internal nodes. For each internal node Vi and its neighbor nodes
nbd(Vi), they apply DBG which outputs a latent tree. In the global model, each subtree
{Vi, nbd(Vi)} is then replaced by the corresponding latent tree. This strategy allows to
reduce the computational complexity of latent tree construction because MST is fast to
compute and DBG is only applied to a restricted number of variables. In term of sample
complexity, DBG and its derived algorithms only require log n observations for recovering
the model with high probability. This sample complexity is equal to the one of the Chow-Liu
algorithm (Tan et al., 2011).

Another version of the DBG algorithm was developed when it is not assumed that obser-
vations have been generated by a genuine LTM. To prevent the incorporation of irrelevant
LVs, after applying DBG on subtrees {Vi, nbd(Vi)}, only are integrated in the model those
latent trees that increase the BIC score.

Spectral Methods

Recent works extended previous distance methods following a spectral approach. On
the one hand, Anandkumar et al. (2011) addressed the multivariate setting where observed
and latent nodes are random vectors rather than scalars. Their approach can deal with
general linear models containing both categorical and continuous variables. Another im-
portant improvement of their method is that sample complexity bound is given in terms
of natural correlation conditions that generalize the more restrictive effective depth con-
ditions of previous works (Erdos et al., 1999; Choi et al., 2011). The proposed extension
consists in replacing the step in line 5 of Algorithm 4 by a quartet test14 relying on spec-
tral techniques (more specifically, canonical correlation analysis; Hair, Black, Babin, and
Anderson, 2009). Given four observed variables {X1,X2,X3,X4}, the spectral quartet test
distinguishes between the four possible tree topologies (see Figure 8). The correct topology
is {{Xi,Xj}, {Xi′ ,Xj′}} if and only if:

|E[XiX
>
j]|∗ |E[Xi′X

>
j′]|∗ > |E[Xi′X

>
j]|∗ |E[XiX

>
j′]|∗, (25)

where |M |∗ := Πk
`=1σ`(M) is the product of the k largest singular values of matrix M and

E[M] is the expectation of M (estimated using the covariance matrix).
On the other hand, Song et al. (2011) proposed a non-parametric learning based on

kernel density estimation (KDE) (Rosenblatt, 1956; Parzen, 1962). KDE is particularly
relevant for model learning, in the case of non-Gaussian continuous variables showing mul-
timodality and skewness. Given a set of N i.i.d. observed data Dx = {x1, ...,xN}, the joint
distribution is modeled as :

P (x) =
1

N

N
∑

i=1

n
∏

j=1

k(xj , x
i
j), (26)

with x = {x1, ..., xn} an observation, k(x, x′) the Gaussian radial basis function and N the
number of observations. Kernels k(x, x′) are represented as inner products 〈φ(x), φ(x′)〉F
14. Quartet tests are widely used for phylogenetic tree inference. The first authors to adapt them to LTM

learning were Chen and Zhang (2006).

179

Mourad, Sinoquet, Zhang, Liu, & Leray

Figure 8: The four possible tree topologies for the quartet test. See Figure 2 for node color
code.

through a feature map φ : R → F . As products of kernels are also kernels, the product
Πn

j=1k(xj , x
′
j) is written as a single inner product 〈⊗n

j=1φ(xj),⊗n
j=1φ(x

′
j)〉Fn , where ⊗ is

the tensor product. Let CX := EX[⊗n
j=1φ(Xj)] be the Hilbert space embedding of the KDE

distribution P (X). The expectation of P (X) can be formulated as 〈CX,⊗n
j=1φ(xj)〉Fn . By

exploiting a given latent tree structure, the key is that Hilbert space embedding allows to
decompose CX into simpler tensors. Similarly to the work of Parikh et al. (2011), message
passing and parameter estimation are reformulated through tensor notation (see the work
of Song et al., 2011, for more details). To learn the structure, a non-parametric additive
tree metric is used. For two variables Vi and Vj, the distance is:

dij = −
1

2
log |CijC>ij |? +

1

4
log |CiiC>ii |? +

1

4
log |CjjC>jj|?. (27)

Then, given the distances between variables, NJ or DBG can be used to learn the structure.

3.2.4 Determination of Latent Variable Cardinalities

During LCM learning, LV cardinality can be determined through the examination of all pos-
sible values (up to a maximum) and then by choosing the one which maximizes a criterion,
such as BIC (Raftery, 1986). For each cardinality value, parameters are required to calculate
the likelihood appearing in the optimization criterion. For this purpose, random restarts
of EM are generally used to learn parameters with a low probability of getting trapped in
local maxima. The drawback is that this method cannot be applied to LTM learning, be-
cause EM becomes time-consuming when there are several LVs. A better solution consists
in using a greedy search approach, starting with a preset value of LV cardinality (generally
equal to 2) and incrementing it to meet the optimal criterion. However, this solution still
remains computationally demanding (Zhang, 2004).

To tackle the issue of computational burden, several strategies have been proposed. For
instance, one can simply set a small value for the LV cardinalities. Following this idea,
Hwang and collaborators (2006) constrain LVs to binary variables. Because they worked on
binary trees whose OVs are also binary, this restriction is not severe in practice. Neverthe-
less, in the case of non-binary OVs and/or non-binary trees, this very fast method presents
several drawbacks: on the one hand, a too small cardinality can lead to an important loss

180

Latent Tree Models

of information; on the other hand, a too large cardinality can entail model overfitting and
unnecessary computational burden.

More rigorous, Wang et al.’s approach (2008) relies on regularity (see Section 2.5). Kno-
wing the cardinality of its neighbor variables Zi, the cardinality of an LV H is determined
as follows:

|H| = Πk
i=1|Zi|

maxki=1 |Zi|
. (28)

This very fast approach is efficient for LVs owning a few number of neighbors. Thus this
is only practicable for binary trees or trees whose LV degrees are small (close to 3). In the
context of large scale data analysis (several thousands of variables), Mourad et al. (2011)
proposed to estimate the cardinality of an LV given the number of its children. The rationale
underlying this approach is the following: the more child nodes an LV has, the larger the
number of combinations is for the values of the child variables. Therefore, the cardinality
of a latent variable should depend on the number of its child nodes. Nonetheless, to keep
the model complexity within reasonable limits, a maximum cardinality is fixed.

Two additional methods have been proposed to offer a better trade-off between accuracy
and computational cost. The first one uses a search-based agglomerative state-clustering
procedure (Elidan & Friedman, 2001). The idea relies on the Markov blanket of an LV.
In LTMs, the Markov blanket of an LV H, noted MBH , is composed of its parent and its
children. The Markov blanket represents the set of variables that directly interact with H.
Elidan and Friedman’s method sets the initial cardinality of H based on the empirical joint
distribution ofMBH , noted P̂ (MBH). H is initialized to have a state for each configuration
found in P̂ (MBH). Then the cardinality is repeatedly decreased through successive merging
operations: states hi and hj, whose merging entails the best optimization of a given score,
are merged. After repeating these operations till H has only one state, the cardinality value
leading to the best score is selected. The second method relies on local and fast parameter
estimation through LCM learning (Harmeling & Williams, 2011). As presented in the first
paragraph of this section, a greedy search approach can be used. It starts with a preset
value and increments it to meet an optimal criterion. This greedy search becomes efficient
because, for each cardinality value to test, parameters are quickly learned in constant time.

3.2.5 Choosing a Root

The LTM root cannot be learned from data. However there is sometimes a need to determine
the root. For instance, LCM-based parameter learning (see Algorithm 1) can easily be
performed when a root is chosen.

The root can be determined from a priori knowledge on data. For instance, we can
consider that the latent structure of LTM represents a hierarchy of concepts (i.e. a taxonomy
in ontology). Thus, the LV root corresponds to the highest abstract level, whereas an LV
node only having OVs as children is interpreted as the lowest abstract level. Actually,
variable clustering-based algorithms implicitly implement this a priori knowledge.

3.2.6 Time Complexity and Scalability

The time complexity of generic LTM learning algorithms is summarized in Table 1. In
the table, we compare algorithms, approaches, models and time complexities. We also

181

Mourad, Sinoquet, Zhang, Liu, & Leray

Algorithm Approach Model Complexity Instantiation

CL - Tree O(n2N) − (Chow & Liu, 1968)

NGS Score Tree O(sn5N) DHC (Zhang, 2004)

AGS, Alg. 2 Score Tree O(sn2N)
HSHC (Zhang & Kocka, 2004b)

EAST (Chen et al., 2012)

AHCB
Variable

Forest O(n2N)
LTAB (Wang et al., 2008)

clustering BIN-A (Harmeling & Williams, 2011)

LCMB-LTM, Alg. 3
Variable

Forest O(n2N)
BIN-G (Harmeling & Williams, 2011)

clustering
CFHLC (Mourad et al., 2011)

BI (Liu et al., 2012)

NJ
Information

Tree O(n3N) NINJA (Saitou & Nei, 1987; Wheeler, 2009)
distance

DBG, Alg. 4
Information

Tree
O(n3N + n4) RG (Choi et al., 2011)

distance O(n2N + n4)
CLRG (Choi et al., 2011)

regCLRG (Choi et al., 2011)

Table 1: Computational time complexities of generic algorithms dedicated to latent tree
model (LTM) learning. The number of observed variables, the number of obser-
vations and the number of steps (in search-based algorithms) are denoted n, N
and s, respectively. CL: Chow-Liu’s algorithm; NGS: naive greedy search (Section
3.2.1); AGS: advanced greedy search (Section 3.2.1); LCMB-LTM: latent class
model-based LTM learning (Section 3.2.2); NJ: neighbor joining (Section 3.2.3);
DBG: distance-based general LTM learning (Section 3.2.3).

give examples of instantiations for generic algorithms. Online resources are summarized in
Appendix A. In order to simplify the comparison of time complexities, we only consider
the number n of variables (input data), the number N of observations and the number s
of steps (for search-based algorithms). The LTM learning algorithms are compared with
the Chow-Liu algorithm for learning a tree without LVs. Details about the complexity
calculation of LTM learning algorithms are provided in Supplemental material B.2.

When the tree does not contain any LV, learning the model can be done efficiently
in O(n2N) using the Prim’s algorithm (1957). The situation is more complicated when
the tree contains LVs. The complexity of finding the regular LTM with the lowest score
is O(23n

2

). Search-based methods implement heuristics to reduce this large complexity.
Their overall complexity can be decomposed into a product of three main terms: number of
steps, structure learning complexity and parameter learning complexity. At the opposite, in
variable clustering- and distance-based methods, the overall complexity can be decomposed
into a sum. Nevertheless, the development of new operators for greedy search and the
application of local EM have led to significant improvements (from O(sn5N) to O(sn2N)).
Variable clustering-based methods are computationally more efficient for multiple reasons.
They rely on pairwise dependence computation to identify LVs and their connections, and
on LCM-based learning to determine LV cardinality. Regarding distance-based methods,
NJ provides a reasonable complexity of O(n3N), whereas DBG presents a high complexity
of O(n3N+n4). However, this last complexity corresponds to the worst case, when the tree
to learn is a hidden Markov model. Besides, Choi et al. provide a modified DBG which
reduces the complexity to O(n2N + n4).

182

Latent Tree Models

Algorithm BinTree BinForest Asia Hannover Car Tree

Number of variables 4 5 8 5 7 19

Number of observations 500 500 100 3589 869 500

Type of data simu simu simu real real simu

0.01 0.01 0.01 0.00 0.01 0.04

LCM 1.43 5.83 1.02 58.58 2.54 1.61

DHC 18.79 123.83 16.23 9.86 1609.72 time

SHC 27.07 43.86 4.55 5.39 150.23 4258.06

HSHC 13.85 15.14 1.5 1.9 18.79 87.04

EAST 12.56 20.17 3.79 5.02 63.55 309.47

LTAB 2.8 5.97 0.97 1 35.36 86.52

BIN-A 3.00 2.68 0.22 16.70 3.72 0.63

BIN-G 3.06 2.61 0.23 17.87 3.72 0.29

CFHLC 1 1.3 0.6 18.6 2.7 6.6

BI 19.38 37.66 7.87 7.65 69.26 183.34

NJ non-bin non-bin 0.15 4.75 non-bin non-bin

non-bin non-bin 0.16 3.49 non-bin non-bin

non-bin non-bin 0.06 3.63 non-bin non-bin

non-bin non-bin 0.04 6.54 non-bin non-bin

Algorithm Forest Alarm Coil-42 NewsGroup HapGen HapMap

Number of variables 20 37 42 100 1000 10000

Number of observations 500 1000 4000 8121 1000 116

Type of data simu simu real real simu real

0.04 0.15 0.45 2.17 121.36 memory

LCM 0.97 34.32 678.19 1467.10 bug memory

DHC time time time time time time

SHC 3729.78 time time time time time

HSHC 158.64 4366.93 time time time time

EAST 277.01 6388.69 time time time

LTAB 83.31 574.57 2197.69 time time time

BIN-A 2.03 86.12 387.21 1152.70 3573.20 memory

BIN-G 1.28 99.93 436.41 1302.10 7671.20 memory

CFHLC 5.4 21 560.9 1291.4 787.2 2852.6

BI 223.19 319.62 1193.25 6311.99 18977.02 time

NJ non-bin non-bin non-bin 1325.38 non-bin memory

non-bin non-bin non-bin 274.37 non-bin memory

non-bin non-bin non-bin 927.22 non-bin memory

non-bin non-bin non-bin 345.09 non-bin memory

CL1

RG2

CLRG2

regCLRG2

CL1

751683

RG2

CLRG2

regCLRG2

Short running time Long running time

Table 2: Comparison of running times between algorithms from the literature on small,
large and very large simulated and real datasets. 1: CL learns a tree without LVs;
2: RG, CLRG and regCLRG learn a tree whose internal nodes can be observed
or latent. time: very long running time; memory: out-of-memory; non-binary:
impossible to process non-binary data. 3: results from the work of Chen (2008).

183

Mourad, Sinoquet, Zhang, Liu, & Leray

Algorithm BinTree BinForest Asia Hannover Car Tree

Number of variables 4 5 8 5 7 19

Number of observations 500 500 100 3589 869 500

Type of data simu simu simu real real simu

LCM

DHC time

SHC

HSHC

EAST

LTAB

BIN-A

BIN-G

CFHLC

BI

NJ non-bin non-bin non-bin non-bin

non-bin non-bin non-bin non-bin

non-bin non-bin non-bin non-bin

non-bin non-bin non-bin non-bin

Algorithm Forest Alarm Coil-42 NewsGroup HapGen HapMap

Number of variables 20 37 42 100 1000 10000

Number of observations 500 1000 4000 8121 1000 116

Type of data simu simu real real simu real

memory

LCM bug memory

DHC time time time time time time

SHC time time time time time

HSHC time time time time

EAST time time time

LTAB time bug time

BIN-A memory

BIN-G memory

CFHLC

BI time

NJ non-bin non-bin non-bin non-bin memory

non-bin non-bin non-bin non-bin memory

non-bin non-bin non-bin non-bin memory

non-bin non-bin non-bin non-bin memory

CL1 -3222.8±0 -3350.2±0 -281.43±0 -7859.6±0 -7161.2±0 -10628±0

-3361.8±30 -3646.9±8 -346.23±10 -7754.6±3 -7127.8±18 -10010±0

-2825.11±0 -3038.66±0 -269.32±6 -7710.96±1 -7049.98±22

-2825.11±0 -3056.77±0 -268.04±4 -7709.71±0 -7056.18±4 -10095.92±17

-2825.1±0 -3056.77±0 -270.59±0 -7709.71±0 -7057.49±3 -10087.54±8

-2825.11±0 -3056.76±0 -283.82±6 -7709.69±0 -7051.97±7 -10092.45±5

-3332.94±8 -3791±47 -727.3±23 -7876.48±0 -8084.88±57 -13410.27±390

-2991±0 -3146±0 -296.01±0 -7756±0 -7137.7±41 -10010±0

-2991±0 -3146±0 -296.01±0 -7756±0 -7133.8±43 -10010±0

-3682.86±0 -3302.56±0 -280.86±2 -8032.39±0 -7200.76±26 -10070.43±10

-2850±0 -3074±0 -283±0 -7711±1 -7063±17 -10073±2

-288.39±1 -7714±3

RG2 -287.13±2 -7711.4±4

CLRG2 -271.81±0 -7710.1±2

regCLRG2 -266.14±0 -7742.4±23

CL1 -11330±0 -11281±0 -36444±0 -121400±0 -191250±0

-10709±0 -21859±3489 -49581±491 -124390±768

-10777.81±1

-10775.25±0 -11322.83±84

-10777.08±5 -12315.66±589 -35982.43

-14207.87±392 -17733.87±239 -43655.37±46

-10708±0 -17640±551 -37380±104 -119060±33 -301010±3962

-10708±0 -17600±589 -37404±78 -120230±231 -301790±3006

-10762.3±8 -17856.04±18 -51878.73±151 -129101.4±488 -367875.3±1706 -373523±876

-10761±6 -12296±125 -36682±152 -117278±134 -267881±1347

-117610±39

RG2
-120274±380

CLRG2
-117580±46

regCLRG2
-118938±161

Low BICHigh BIC

Table 3: Comparison of BIC scores between algorithms from the literature on small, large
and very large simulated and real datasets. 1: CL learns a tree without LVs;
2: RG, CLRG and regCLRG learn a tree whose internal nodes can be observed
or latent. time: very long running time; memory: out-of-memory; non-binary:
impossible to process non-binary data. 3: results from the work of Chen (2008).

184

Latent Tree Models

Some of the algorithms proposed in the literature differ from the generic algorithms
presented. In Tables 2 and 3, we compare the algorithms from the literature on small, large
and very large simulated and real datasets15. Moreover we provide results for standard
algorithms: CL model-based and LCM-based approaches. For each dataset, we learned
the model from training data and evaluated the BIC score on test data. We repeated the
experiments 10 times. The programs were allowed to run in maximum 6 hours. Datasets
are described in Supplemental material B.316. We report the BIC score with its standard
deviation and the running time.

On small datasets (n ≤ 10 variables), search-based methods lead to the best BIC values,
except for the Asia dataset for which a distance-based method, regCLRG, is the best one.
This is not surprising since search-based methods evaluate a large number of models to find
the optimal one. Nevertheless, on large datasets (10 ≤ n ≤ 100), search-based methods
require long running times and thus cannot be used for some datasets such as the Coil-42
and NewsGroup ones. In this context, variable clustering-based and distance-based methods
are much more efficient while yielding accurate results. Regarding the very large dataset
context (n > 100), only variable clustering-based and distance-based methods can learn
LTMs17. CFHLC18 is the only approach able to process the HapMap data containing 117
observations for 10k variables. For all datasets, we observe that using CL model and LCM
predominantly leads to lower BIC scores than when using LTM, except for large and very
large datasets.

3.2.7 Summary

LTM learning has been subject to many methodological developments. When structure
is known, EM is often preferred. Nevertheless, for large LTMs, EM leads to considerable
running times and to local maxima. To address this problem, LCM-based EM allows
to quickly learn parameters, while spectral methods help find the optimal solution when
LTM parameters are not required. When structure is unknown, search-based approaches
represent standard methods from Bayesian network learning. However they are only suitable
for learning small LTMs. To tackle this issue, variable clustering-based methods represent
efficient alternatives. These methods are based on the idea of grouping variables to identify
LVs in a bottom-up manner. Recently, phylogenetic algorithms have been adapted to
general LTM learning. Compared to the other methods, they guarantee to exactly recover
the generative LTM structure under some conditions.

15. For a fair comparison, we used the implementation of NJ provided by Choi et al. (2011).
16. Although algorithms NJ, RG, CLRG and regCLRG can process any kind of data with shared state space

(binary data, ternary data, ...), the implementation provided by Choi et al. (2011) can only process
binary data. Hence the algorithms have not been applied to some datasets. We recall that RG, CLRG
and regCLRG do not exactly learn an LTM but instead a tree whose all internal nodes are not compelled
to be latent.

17. Although it is not shown in Tables 2 and 3, NJ, RG, CLRG and regCLRG were able to process 1000
binary variables in our experiments.

18. In the work of Mourad et al. (2011), CFHLC implements a window-based approach to scale very large
datasets (n ≥ 100k variables). Here for a fair comparison, the window-based approach has not been
used.

185

Mourad, Sinoquet, Zhang, Liu, & Leray

Figure 9: Illustration of phylogenetic tree reconstruction.

4. Applications

In this section, we discuss and illustrate three types of applications of LTMs: latent structure
discovery, multidimensional clustering and probabilistic inference. At the end of the section,
we also briefly present other applications such as classification.

4.1 Latent Structure Discovery

Latent structure discovery aims at revealing: (i) latent information underlying data, i.e.
unobservable variables or abstract concepts which have a role to play in data analysis, and
(ii) latent relationships, i.e. relationships existing between observed and latent information,
and also between pieces of latent information themselves. For this purpose, LTM analysis
represents a powerful tool where latent information and latent relationships are modeled
by LVs and graph edges, respectively. Thanks to LTMs, latent structure discovery has
been applied to several fields: marketing (Zhang, Wang, & Chen, 2008), medicine (Zhang,
Nielsen, & Jensen, 2004; Zhang et al., 2008), genetics (Hwang et al., 2006; Mourad et al.,
2011) and phylogenetics (Felsenstein, 2003; Friedman, Ninio, Pe’er, & Pupko, 2002). Let
us take the example of phylogenetics which is the major application of LTMs in structure
discovery.

In phylogenetics, the purpose is to infer the tree representing the evolutionary con-
nections between observed species. Let us consider human and its closest living relatives:
orangutan, gorilla, bonobo and chimpanzee. From their DNA sequences, it is possible to
reconstruct the phylogenetic tree. DNA sequences are sequences of letters A, T , G and C.
During the evolution of species, DNA sequences are modified by mutational processes. Each

186

Latent Tree Models

Figure 10: Latent tree model learned from the dataset on Danish beer consumption. Edge
widths are proportional to mutual information between nodes. For each latent
variable, the number of latent classes is indicated in brackets. See Figure 2 for
node color code. Lantern software.

species can then be characterized by its DNA sequence. One of the most popular algorithms
for phylogenetic tree reconstruction is NJ (described in Section 3.2.3, Neighbor Joining). It
starts by considering the tree as a star linking all species (see illustration in Figure 9). Then
the distances between all species are calculated based on the DNA sequences. Chimpanzee
and bonobo present the shortest distance and are thus regrouped under a new latent node.
Then distances are updated and the last previous step is reiterated until the construction
of the final phylogenetic tree. The tree first links chimpanzee and bonobo, then human,
gorilla and orangutan. The success of NJ comes from the fact that, compared to previous
hierarchical clustering methods such as UPGMA (Unweighted Pair Group Method with
Arithmetic Mean), it does not assume all species evolve at the same rate. The length of an
edge represents the time separating two species. Moreover, assuming that the distances are
correct, NJ outputs the correct tree.

4.2 Multidimensional Clustering

Cluster analysis, also called clustering, aims at assigning a set of observations to several
groups (called clusters) so that observations belonging to the same cluster are similar in
some sense (Xu & Wunsch, 2008). LTMs are particular tools which can produce multiple
clusterings: each LV represents a partition of data, which is most related to a specific subset
of variables. This application is called “multidimensional clustering” and has been mainly
explored by Chen et al. (2012).

Let us illustrate LTM-based multidimensional clustering using dataset from a survey
on Danish beer market consumption. For this purpose, we use the user-friendly software
Lantern. The dataset consists of 11 variables and 463 consumers. Each variable represents a
beer brand which is evaluated through the four possible answers to a survey questionnaire:
never seen the brand before (s0); seen before, but never tasted (s1); tasted, but do not
drink regularly (s2) and drink regularly (s3).

187

Mourad, Sinoquet, Zhang, Liu, & Leray

Figure 11: Information curves for latent variable H1. Lantern software.

The learned model is presented in Figure 10. It has a BIC score of −4851.99. The model
contains 3 LVs: H0, H1 and H2. These LVs have 2, 3 and 2 latent classes, respectively. Let
us start withH1 which is the simplest interpretable LV. Let X1,X2, ...,Xn be the OVs sorted
by decreasing values of pairwise MI between H1 and each OV Xi. Two different information
curves are analyzed in Figure 11: (i) the curve of pairwise mutual information I(H1;Xi)
between H1 and each OV Xi, and (ii) the curve of cumulative information I(H1;X1, ...,Xi)
representing MI between H1 and the first i OVs X1, ...,Xi. The curve of pairwise mutual
information shows that TuborgClas, followed by CarlSpec and Heineken, are the beers most
related to H1. The curve of cumulative information presents complementary information.
The cumulative information curve increases monotonically with i and reaches the maximum
for n. The ratio I(H1;X1, ...,Xi)/I(H1;X1, ...,Xn) is the information coverage of the first i
OVs. If this ratio is equal to 1, it means that H1 is conditionally independent of Xi+1, ...,Xn

given the first i OVs. In practice only the first OVs whose information coverage is less than
95% are considered relevant. Using the cumulative information curve, we observe that H1

is only related to TuborgClas, CarlSpec and Heineken, which represent a group of beers
different from the others. TuborgClas and CarlSpec are frequent beers, being a bit darker
in color and more different in taste than the two main mass-market beers, GronTuborg
and Carlsberg. Although not Danish, Heineken is one of the largest brand in the world
that most Danes would have tasted sometimes during travels abroad. Results for other
LVs are discussed but not shown (interpretation remains the same as for H1). H0 is more
related to CeresTop, CeresRoyal, Pokal, Fuglsang, CarlsSpec and FaxeFad (i.e. minor local
beers), whereas H2 is more connected to GronTuborg and Carlsberg (i.e., the two main
mass-market beers).

188

Latent Tree Models

Class1, prior = 0.36 Class2, prior = 0.27 Class3, prior = 0.37

Tub Carl Hein Tub Carl Hein Tub Carl Hein

s0 0.03 0 0.08 0.06 0.15 0.36 0 0 0.02
s1 0.07 0.12 0.3 0.56 0.74 0.4 0 0.01 0.17
s2 0.89 0.81 0.57 0.32 0.11 0.23 0.14 0.39 0.66
s3 0.02 0.07 0.05 0.06 0 0.01 0.86 0.61 0.16

Table 4: Class conditional probability tables for latent variable H1. Tub: TuborgClas;
Carl: CarlsSpec; Hein: Heineken.

H1

Class1 Class2 Class3

H2
Class1 0.55 0.71 0.11
Class2 0.45 0.29 0.89

Table 5: Conditional probability distributions of latent variable H2 given H1.

Class conditional probability distributions (CCPDs) of H1 are presented in Table 4.
Using this table, it is easy to interpret latent classes. For instance, the first class (Class1)
represents 36% of the consumers (prior = 0.36). For this class, all conditional probabilities
of s2 are higher than 0.5. This means that these consumers tasted the beers, but do
not drink them regularly. The second class (Class2) contains 27% of the consumers and
represents people who saw the beers before or only tasted them. The last class (Class3)
includes 37% of the consumers and represents people who just tasted the beers or drink
them regularly. Results for other LVs are discussed but not shown. The CCPDs relative to
H0 show a division into a group of consumers who just tasted the beers (Class1) and a more
complicated group of consumers who never saw the brands, just saw them or just tasted
them (Class2). Regarding H2, the CCPDs report consumers who just tasted the beers
(Class1) and consumers who drink them regularly (Class2). Using the LTM, we can also
analyze relations between the different partitions. The conditional probability distribution
P (H2|H1) is given in Table 5. We observe that consumer behaviors are similar for the two
groups of beers. For instance, consumers who just tasted or regularly drink the H1 group of
beers (Class3 of H1) generally also drink regularly the H2 group of beers (Class2 of H2).

In this example, we were able to find consumer profiles specific to beer brands. Mul-
tidimensional clustering thanks to LTMs helps discover multiple facets of data (i.e. LVs)
and partition data along each facet (i.e. latent class). Moreover, general relations between
multiple facets are highlighted through connections between LVs.

4.3 Probabilistic Inference

Probabilistic inference is the process of answering probabilistic queries of the form p(x|y),
for an event x given some knowledge y (Koller & Friedman, 2009), using the Bayes formula:

p(x|y) = p(y|x)p(x)
p(y)

. (29)

189

Mourad, Sinoquet, Zhang, Liu, & Leray

1 2 4 8
10

−3

10
−2

10
−1

10
0

10
1

10
2

N=1k

N=10k

N=100k

1 4 16 64
10

−4

10
−2

10
0

10
2

C

T
im

e
(h

o
u

r)

1 2 4 8
10

−2

10
−1

10
0

LTM (1k)

LTM (10k)

LTM (100k)

LBP

CL (100k)

LCM (100k)

1 4 16 64
10

−2

10
−1

10
0

1 2 4 8

10
−1

10
0

10
1

LTM (1k)

LTM (10k)

LTM (100k)

CTP

LBP

CL (100k)

LCM (100k)

1 4 16 64
10

−2

10
0

10
2

10
4

10
6

Figure 12: Experiments on ALARM and BARLEY networks: a) running times for LTM
learning using the LTAB algorithm (Wang et al., 2008), b) approximation accu-
racy of probabilistic inference and c) running time for inference. Approximation
accuracy is measured by the Kullback-Leibler divergence between approximate
inferred distributions and exact inferred distributions obtained from clique tree
propagation on the original BN. N and C designate the sample size and the
maximal cardinality of latent variables, respectively. These results come from
the work of Wang et al. (2008).

Probabilistic inference is used in many circumstances, such as in credit card fraud detection
(Ezawa & Norton, 1996) or disease diagnostic (McKendrick, Gettinbya, Gua, Reidb, &
Revie, 2000).

190

Latent Tree Models

Probabilistic inference in a general BN is known to be an NP-hard task (Cooper, 1990).
To tackle this issue, one can approximate the original BN using a maximum weight spanning
tree learned relying on Chow and Liu’s algorithm (1968). The drawback is the risk of
inaccuracy in inference results. In this context, LTM provides an efficient and simple
solution, because: (i) thanks to its tree structure, the model allows linear computations with
respect to the number of OVs, and at the same time, (ii) it can represent complex relations
between OVs through multiple LVs. Because learning LTM before performing inference can
be time-consuming Wang et al. (2008) propose the following strategy: first, offline model
learning is performed, then answers to probabilistic queries are quickly computed online.
However, recent spectral methods (Parikh et al., 2011) considerably reduced model learning
phase, because they do not require to learn the model structure. This makes inference
through large LTMs possible (around several hundred OVs) and thus renders them even
more attractive.

Inferential complexity does not only depend on the number of OVs, but also on LV
cardinalities: the higher the cardinality, the higher the complexity. Hence Wang et al.
(2008) propose a tradeoff between inferential complexity and model approximation accuracy
by fixing a maximal cardinality C for LVs.

Wang et al. (2008) empirically demonstrated the high performance of LTM-based in-
ference on 8 well-known Bayesian networks from the literature. The principle consists in
learning the LTM which will provide the best approximation of the original BN. For this
purpose, data are sampled from the original BN and then an LTM is learned from the data.
To illustrate inference, let us only consider two examples, the ALARM and the BARLEY
networks which show the lowest and highest inferential complexities among the aforemen-
tioned networks, respectively. The ALARM network contains 37 nodes, and is characterized
by an average indegree of 1.24 (max: 4) and an average cardinality of 2.84 (max: 4). The
BARLEY network contains 48 nodes; its average indegree is 1.75 (max: 4) and its average
cardinality is 8.77 (max: 67). Two parameters are central for the user: (i) N , the sample
size which entails long model learning running times but leads to better model accuracies,
and (ii) C, the maximal cardinality of LVs which entails long model learning and inference
running times but leads to higher model accuracies.

In Figure 12, the LTM-based method is compared to other standard inference ap-
proaches: the LCM-based approach, the Chow-Liu (CL) model-based approach and loopy
belief propagation (LBP) (Pearl, 1988). Exact inference through clique tree propagation
(CTP) (Lauritzen & Spiegelhalter, 1988) on the original BN is considered as the reference.
Figure 12a reports running times for LTM learning using the LTAB algorithm (Wang et al.,
2008). Running times almost linearly increase with N and C. Regarding inference accu-
racy (Figure 12b), the LTM-based method outperforms other methods when N and C are
high, e.g. N = 100k and C = 8 for the ALARM network. As regards inference running
times (Figure 12c), the benefits of using the LTM-based method are high for the ALARM
network, a high inferential complexity network. In these experiments, we note that CL is
also very interesting, and the choice between the latter and the LTM will depend on the
online inference time allowed. If time is very limited, CL would be preferred. In the other
case, the LTM would be chosen.

191

Mourad, Sinoquet, Zhang, Liu, & Leray

4.4 Other Applications

Beside latent structure discovery, multidimensional clustering and probabilistic inference,
there are other interesting applications of LTMs.

A simple but efficient classifier is naive Bayes. This model assumes that OVs are inde-
pendent conditional on the class variable. This assumption is often violated by data and
hence numerous adaptations have been developed to improve the classifier performance.
Naive Bayes has been generalized by introducing latent nodes as internal discrete nodes
(Zhang et al., 2004) or continuous nodes (Langseth & Nielsen, 2009), mediating the rela-
tion between leaves and the class variable. The model is identical to an LTM except that
the root is observed. Recently, Wang et al. (2011) proposed a classifier based on LTM.
For each class, a specific LTM is learned and a latent tree classifier is built by aggregating
all LTMs. This classifier outperforms naive Bayes and many other successful classifiers
such as tree augmented naive Bayes (Friedman, Geiger, & Goldszmidt, 1997) and averaged
one-dependence estimator (Webb, Boughton, & Wang, 2005).

More specifically to some research fields, LTM has been used for human interaction
recognition, haplotype inference in genetics and diagnosis in traditional medicine. Human
interaction recognition is a challenging task, because of multiple body parts and concomitant
inclusions (Aggarwal & Cai, 1999). For this purpose, the use of LTM allows to segment
the interaction in a multi-level fashion (Park & Aggarwal, 2003): body part positions
are estimated through low-level LVs, while overall body position is estimated by a high-
level LV. In genetics, there is a need for inferring haplotypic data (i.e. latent genetic
DNA sequences) from genotypic data (observed data). Kimmel and Shamir (2005) perform
efficient haplotypic inference using a two-layer LFM. Finally, Zhang et al. (2008) applied
LTMs to traditional Chinese medicine (TCM). They discovered that the latent structure
obtained matches TCM theories. The model provides an objective justification for the
ancient theories.

5. Discussion

In data analysis, LTM represents an emerging popular topic as it offers several advantages:

− The model allows to discover interpretable latent structure.

− Each latent variable is intended to represent a way to cluster categorical data, and con-
nections between latent variables are meant to express relations between the multiple
clustering ways.

− Multiple latent variables organized into a tree greatly improve the flexibility of prob-
abilistic modeling while, at the same time, ensuring linear - thus fast - probabilistic
inference.

Applications of LTMs are summarized in Table 6, which recapitulates three types of appli-
cations with details, examples, references to generic algorithms, scalability to large datasets,
software and bibliographical references.

In the past decade, extensive research efforts have been done in LTM learning. When
structure is known, standard EM and LCM-based EM or spectral methods can be used.

192

Latent Tree Models

Table 6: Summary for main applications of the latent tree model.

When structure is unknown, three classes of methods have been proposed: search-based,
variable clustering-based and distance-based methods. The first one is slow but leads to
accurate models. The second one drastically decreases running times. Finally, the last class
guarantees to exactly recover the generative LTM structure under the assumption that all
LVs have the number of states and this number is known.

In spite of the aforementioned advances, the use of LTM presents some drawbacks. For
example, when the data dimension is large or very large, model learning still remains pro-
hibitive. Regarding probabilistic inference, LTM provides better results than the standard
Chow-Liu’s approach, but leads to more computational burden.

6. Future Directions

Progress on LTM has been made, but there is still much to be done. There are multiple
promising directions. For instance, a recent work developed LTM for continuous data ana-
lysis (Poon, Zhang, Chen, & Wang, 2010; Choi et al., 2011). Other authors investigated the
relationships between LTM and ontology (Hwang et al., 2006), and LTM-based dependence
visualization (Mourad, Sinoquet, Dina, & Leray, 2011). Although no research has been
carried out on the application to causal discovery and latent trait analysis, we argue that
LTM might represent interesting avenues of research.

LTM for Continuous Data: Recently, LTM modeling has been applied to continuous
data analysis (Poon et al., 2010; Choi et al., 2011; Song et al., 2011; Kirshner, 2012).
For instance, Poon et al. (2010) proposed a new model, called pouch latent tree model
(PLTM). PLTM is identical to LTM, except that each observed node in an LTM is replaced
with a “pouch” node representing an aggregation of multiple continuous OVs. PLTM
represents a generalization of the Gaussian mixture model (GMM) when more than one LV
is allowed. The proposal of Poon et al. originates from the fact that model-based clustering
of continuous data is sensitive to the selected variables. Similarly to categorical clustering
(Section 4.2), in high-dimensional continuous data, there are multiple ways to partition
the data, and the multiple LVs of PLTM are able to take this into account. Poon et al.

193

Mourad, Sinoquet, Zhang, Liu, & Leray

developed a search-based algorithm for PLTM learning. The latter algorithm is closely
related to the EAST algorithm (Zhang & Kocka, 2004b) dedicated to LTM learning and
is thus quite slow. Hence, the development of new methods dedicated to efficient PLTM
learning certainly represents interesting perspectives of research. Besides, a next step would
also be the development of LTM dedicated to mixed data analysis, i.e. combining categorical
and continuous data.

LTM Structure and Ontology: It is possible to relate LTM to ontology, in particular
taxonomy (tree-structured ontology). For instance, when applying LTM to a microarray
dataset of yeast cell-cycle, Hwang et al. (2006) showed that some LVs are significantly re-
lated to specific gene ontology terms, such as organelle organization or cellular physiological
process. Thus taxonomy could help interpret LVs. Moreover the taxonomy structure could
be used as a priori structure.

Dependence Visualization: LTM provide a compact and interpretable view of depen-
dences between variables, thanks to its graphical nature and its latent variables (Mourad
et al., 2011). Compared to heat map (Barrett, Fry, Maller, & Daly, 2005) which can only
display pairwise dependences between variables, LTM helps visualize both pairwise and
higher-order dependences. Pairwise dependence can be represented by the chain length
linking two leaf variables, whereas higher-order dependences are simply represented by a
set of leaf variables connected to a common LV.

Causal Discovery: We argue that LTM represents simple but efficient model for causal
discovery, for the following reasons:

− If the LTM root is known, then the model can be interpreted as a hierarchy. Into
this hierarchy, LVs are distributed into multiple layers. This multiple LV layers rep-
resent different degrees of information compactness (i.e. data dimension reduction),
since each LV captures the patterns of its child variables. The connexion of variables
through parent-child relationships allows easy and natural moves from general (top
layers) to specific (bottom layers) causes, and vice-versa. Thus, causal discovery can
be guided by the hierarchical model feature.

− After constructing the model on variables X = {X1, ...,Xn}, if one wants to test the
direct dependence between Xi and another variable Y not present in the network, it
can be easily computed through a test for independence between Xi and Y conditional
on the parent of Xi. A practical advantage of this conditional test meant to assess
direct dependence is that the number of degrees of freedom required is low (because
only the parent of Xi is used to condition the test), which ensures a good power.

Latent Trait Analysis: Similarly to the generalization of LCM by LTM, it would be
worth developing an extension of the latent trait model by a tree-structured model where
internal nodes are continuous LVs. For instance, this would alleviate the drawbacks of local
independence in the latent trait model and would provide multiple facets thanks to LVs
when dealing with high-dimensional data.

194

Latent Tree Models

Acknowledgments

The authors are deeply indebted to four anonymous reviewers for their invaluable com-
ments and for helping to improve the manuscript. This work was supported by the BIL
Bioinformatics Research Project of Pays de la Loire Region, France. The authors are also
grateful to Carsten Poulsen (Aalborg University, Denmark) for providing the Danish beer
data, Yi Wang (National University of Singapore) for the LTAB algorithm, Tao Chen (EMC
Corporation, Beijing, China) for the EAST algorithm, Stefan Harmeling (Max Planck In-
stitute, Germany) for the BIN-A and BIN-G algorithms, and Myung Jin Choi (Two Sigma
Investments, USA) and Vincent Tan (University of Wisconsin-Madison, USA) for the RG,
CLRG and regCLRG algorithms.

Appendix A. Online Resources Mentioned

Software:

− BIN-A, BIN-G, CL and LCM:
http://people.kyb.tuebingen.mpg.de/harmeling/code/ltt-1.4.tar

− CFHLC:
https://sites.google.com/site/raphaelmouradeng/home/programs

− DHC, SHC and HSHC:
http://www.cse.ust.hk/faculty/lzhang/ltm/index.htm (hlcm-distribute.zip)
http://www.cse.ust.hk/faculty/lzhang/ltm/index.htm (toolBox.zip)

− EAST:
http://www.cse.ust.hk/faculty/lzhang/ltm/index.htm (EAST.zip)

− Lantern:
http://www.cse.ust.hk/faculty/lzhang/ltm/index.htm (Lantern2.0-beta.exe)

− NJ, RG, CLRG and regCLRG:
http://people.csail.mit.edu/myungjin/latentTree.html

− NJ (fast implementation):
http://nimbletwist.com/software/ninja

All datasets used for the algorithm comparison are available at :
https://sites.google.com/site/raphaelmouradeng/home/programs

Appendix B. Supplemental Material

B.1 Experiments on Parameter Learning with EM

We studied the number of random restarts required, in practice, to obtain the convergence
of EM (Section 3.1.1) and LCMB-EM (Section 3.1.2) to the optimal solution. BIC scores
are presented in Figure 13. For EM, we used the method of Chickering and Heckerman
(1997) which is implemented in the software LTAB (Wang et al., 2008). We analyzed three

195

Mourad, Sinoquet, Zhang, Liu, & Leray

Figure 13: The impact of the number of random restarts on the convergence of expectation-
maximization (EM). a) EM. b) LCMB-EM. The number of restarts is reported
on the x-axis while the y-axis indicates BIC scores.

datasets: two small ones (BinTree and Asia) and a large one (Tree). For the first two,
convergence was achieved after 20 and 2000 restarts, respectively. For the large dataset,
convergence is never achieved, even after 5000 restarts. For LCMB-EM, we used the software
BIN-A (Harmeling & Williams, 2011). We analyzed three datasets: one small one (Asia)
and two large ones (Tree, Alarm). Convergence is achieved for the first two datasets with
only one parameter initialization, whereas for the later which is the largest, convergence
is never achieved (we were not able to assess with more than 1000 restarts because of a
prohibitive running time).

B.2 Time Complexity

We recall the reader that n is the number of variables (input data), N the number of
observations and s the number of steps (for search-based algorithms). The time complexities
of generic algorithms for LTM learning are detailed as follows:

− Naive greedy search (NGS). There are O(s) steps needed for the convergence of
search-based methods. For each step, there are O(n2) new models generated through
the use of 3 operators: addition/removal of an LV and node relocation (Zhang, 2004).
For each model, the cardinality is optimized for each LV, so that O(n2) new models are
generated (Zhang, 2004). For each model, parameters are learned using EM, which is

196

Latent Tree Models

achieved in O(nN). Thus, the overall complexity is : O(s) ∗O(n2) ∗O(n2) ∗O(nN) =
O(sn5N).

− Advanced greedy search (AGS), Algorithm 2. There are O(s) steps needed for
the convergence of search-based methods. For each step, there are O(n2) new models
generated through the use of 5 operators: addition/removal of an LV, node relocation
and addition/dismissal of a state relative to an LV (Zhang & Kocka, 2004b). For
each model, model evaluation is realized through local EM in O(N). After choosing
the best model at each step, parameters are learned using EM, which is achieved in
O(nN). Thus, the overall complexity is : O(s)∗(O(n2)∗O(N)+O(nN)) = O(sn2N).

− Agglomerative hierarchical clustering-based learning (AHCB). The agglom-
erative hierarchical clustering is achieved in O(n2N)19. LV cardinality and parameters
can be learned in O(N) thanks to LCM parameter learning. There are O(n) LVs, thus
the complexity is (O(N) ∗ O(n)). A final global EM parameter learning is done in
O(nN). Thus, the overall complexity is : O(n2N)+(O(N)∗O(n))+O(nN) = O(n2N).

− Latent class model-based LTM learning (LCMB-LTM), Algorithm 3. Pair-
wise mutual information values are computed in O(n2N). LCM is learned in O(N).
LCM learning is called O(n) times, i.e. for each new LV added to the model. LV
cardinality and parameters are learned during LCM learning. A final global EM pa-
rameter learning is done in O(nN). Thus, the overall complexity is : O(n2N) +
(O(N) ∗O(n)) +O(nN) = O(n2N).

− Neighbor joining (NJ). To learn the structure, there are O(n) steps. At each step,
pairwise distances are computed in O(n2N). Structure learning thus requires O(n3N)
computations. After learning the structure, parameters can be learned with EM or
LCMB-EM in O(nN). Thus, the overall complexity is : O(n3N)+O(nN) = O(n3N).

− Distance-based general LTM learning (DBG), Algorithm 4. First the dis-
tances are computed in O(n3N). If the minimum spanning tree is learned before, the
complexity is reduced to O(n2N). Then, to learn the structure, testing child-parent
and sibling relations necessitates O(n4) operations in the worst case, i.e. when the
tree is a hidden Markov model. Parameters can be learned with EM or LCMB-EM in
O(nN). Thus, the overall complexity is : O(n3N) +O(n4) +O(nN) = O(n3N + n4)
or O(n2N) +O(n4) +O(nN) = O(n2N + n4).

B.3 Description of Datasets Used for Literature Algorithm Comparison

Small datasets (n ≤ 10 variables):

− BinTree. Datasets generated using a binary tree on 7 variables (4 leaves and 3
internal nodes), each having eight states. Only leaf data are used. The train and
test datasets both consist of 500 observations. The model comes from the work of
Harmeling and Williams (2011).

19. The complexity of agglomerative hierarchical clustering is O(n2
N) using the single linkage criterion. The

complexity is higher for other criteria.

197

Mourad, Sinoquet, Zhang, Liu, & Leray

− BinForest. Datasets generated from a binary forest composed of two trees. One
tree has 3 variables (2 leaves and 1 internal node), the other one has 5 variables (3
leaves and 2 internal nodes). Only leaf data are used. The train and test datasets
both consist of 500 observations. The model comes from the work of Harmeling and
Williams (2011).

− Asia. Datasets generated using the well-known Asia network containing 8 binary
OVs. The train and test datasets both consist of 100 observations.

− Hannover. Real dataset containing 5 binary variables. The dataset has been split
into a train dataset and a test dataset. They consist of 3573 and 3589 observations,
respectively. The dataset comes from the work of Zhang (2004).

− Car. Real dataset containing 7 variables. The dataset has been split into a train
dataset and a test dataset. They consist of 859 and 869 observations, respectively.
The dataset is available at :
http://archive.ics.uci.edu/ml/.

Large datasets (10 ≤ n ≤ 100 variables):

− Tree. Datasets generated using a tree on 50 variables (19 leaves and 31 internal
nodes). Only leaf data are used. The train and test datasets both consist of 500
observations.

− Forest. Datasets generated using a tree on 50 variables (20 leaves and 30 internal
nodes). Only leaf data are used. The train and test datasets both consist of 500
observations.

− Alarm. Datasets generated using the well-known Alarm network containing 37 OVs.
The train and test datasets both consist of 1000 observations.

− Coil-42. Real dataset containing 42 variables. The dataset has been split into a train
dataset and a test dataset. They consist of 5822 and 4000 observations, respectively.
The dataset comes from the work of Zhang and Kocka (2004b).

− NewsGroup. Real dataset containing 100 binary variables. The dataset has been
split into a train dataset and a test dataset. They both consist of 8121 observations.
The dataset is available at :
http://cs.nyu.edu/roweis/data/20news w100.mat.

Very large datasets (n > 100 variables):

− HapGen. Datasets generated over 1000 genetic variables using the HAPGEN soft-
ware (Spencer, Su, Donnelly, & Marchini, 2009). The train and test datasets both
consist of 1000 observations.

− HapMap. Real dataset containing 10000 binary variables. The dataset has been
split into a train dataset and a test dataset. They consist of 118 and 116 observations,
respectively. The dataset comes from HapMap phase III (The International HapMap
Consortium, 2007) and concerns Utah residents with Northern and Western European
ancestry (CEU).

198

Latent Tree Models

References

Aggarwal, J., & Cai, Q. (1999). Human motion analysis: A review. Computer Vision and
Image Understanding, 73 (3), 428–440.

Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical
Mathematics, 22 (1), 203–217.

Anandkumar, A., Chaudhuri, K., Hsu, D., Kakade, S. M., Song, L., & Zhang, T. (2011).
Spectral methods for learning multivariate latent tree structure. In Twenty-Fifth
Conference in Neural Information Processing Systems (NIPS-11).

Atteson, K. (1999). The performance of neighbor-joining methods of phylogenetic recon-
struction. Algorithmica, 25 (2), 251–278.

Attias, H. (1999). Inferring parameters and structure of latent variable models by variational
Bayes. In Proceedings of the 15th Conference on Uncertainty and Artificial Intelligence
(UAI-99), pp. 21–30.

Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization
of LD and haplotype maps. Bioinformatics, 21 (2), 263–265.

Binder, J., Koller, D., Russel, S., & Kanazawa, K. (1997). Adaptive probabilistic networks
with hidden variables. Machine Learning, 29 (2-3), 213–244.

Cavender, J. A. (1978). Taxonomy with confidence. Mathematical Biosciences, 40 (3-4),
271–280.

Chen, T., & Zhang, N. L. (2006). Quartet-based learning of hierarchical latent class models:
Discovery of shallow latent variables. In Proceedings of 9th International Symposium
on Artificial Intelligence and Mathematics.

Chen, T. (2008). Search-based learning of latent tree models. Ph.D. thesis, The Hong Kong
University of Science and Technology.

Chen, T., Zhang, N. L., Liu, T., Poon, K. M., & Wang, Y. (2012). Model-based multidi-
mensional clustering of categorical data. Artificial Intelligence, 176 (1), 2246–2269.

Chen, T., Zhang, N. L., & Wang, Y. (2008). Efficient model evaluation in the search-
based approach to latent structure discovery. In Proceedings of the Fourth European
Workshop on Probabilistic Graphical Models (PGM-08), pp. 57–64.

Chickering, D. M., & Heckerman, D. (1997). Efficient approximations for the marginal
likelihood of Bayesian networks with hidden variables. Machine Learning, 29 (2-3),
181–212.

Choi, M. J., Tan, V. Y., Anandkumar, A., & Willsky, A. S. (2011). Learning latent tree
graphical models. Journal of Machine Learning Research, 12, 1771–1812.

Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14 (3), 462–467.

Cooper, G. F. (1990). The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence, 42 (2-3), 393–405.

Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. Wiley-Interscience.

199

Mourad, Sinoquet, Zhang, Liu, & Leray

Daskalakis, C., Mossel, E., & Roch, S. (2009). Evolutionary trees and the Ising model on
the Bethe lattice: A proof of Steel’s conjecture. Probability Theory and Related Fields,
149 (1-2), 149–189.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39, 1–38.

Elidan, G., & Friedman, N. (2001). Learning the dimensionality of hidden variables. In
Proceedings of the 17th Conference on Uncertainty and Artificial Intelligence (UAI-
01), pp. 144–151.

Erdos, P. L., Szekely, L. A., Steel, M. A., & Warnow, T. J. (1999). A few logs suffice to
build (almost) all trees: Part II. Theoretical Computer Science, 221 (1-2), 77–118.

Ezawa, K. J., & Norton, S. W. (1996). Constructing Bayesian networks to predict uncol-
lectible telecommunications accounts. IEEE Expert, 11 (5), 45–51.

Farris, J. S. (1973). A probability model for inferring evolutionary trees. Systematic Zoology,
22 (3), 250–256.

Felsenstein, J. (2003). Inferring phylogenies (2 edition). Sinauer Associates.

Friedman, N., Ninio, M., Pe’er, I., & Pupko, T. (2002). A structural EM algorithm for
phylogenetic inference.. Journal of Computational Biology, 9 (2), 331–353.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine
Learning, 29 (2-3), 131–163.

Gascuel, O., & Steel, M. (2006). Neighbor-joining revealed. Molecular Biology and Evolu-
tion, 23 (11), 1997–2000.

Geiger, D., Heckerman, D., & Meek, C. (1996). Asymptotic model selection for directed
networks with hidden variables. In Proceedings of Twelfth Conference on Uncertainty
in Artificial Intelligence (UAI-96), pp. 283–290. Morgan Kaufmann.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate data analysis
(7 edition). Prentice Hall.

Harmeling, S., & Williams, C. K. I. (2011). Greedy learning of binary latent trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33 (6), 1087–1097.

Hsu, D., Kakade, S., & Zhang, T. (2009). A spectral algorithm for learning hidden Markov
models. In The 22nd Annual Conference on Learning Theory (COLT 2009).

Hwang, K.-B., Kim, B.-H., & Zhang, B.-T. (2006). Learning hierarchical Bayesian networks
for large-scale data analysis. In International Conference on Neural Information Pro-
cessing (ICONIP-06), pp. 670–679.

Kim, J. H., & Pearl, J. (1983). A computation model for causal and diagnostic reasoning
in inference systems. In Proceedings of the 8th International Joint Conference on
Artificial Intelligence.

Kimmel, G., & Shamir, R. (2005). GERBIL: Genotype resolution and block identification
using likelihood. Proceedings of the National Academy of Sciences of the United States
of America, 102 (1), 158–162.

200

Latent Tree Models

Kirshner, S. (2012). Latent tree copulas. In Proceedings of the Sixth European Workshop
on Probabilistic Graphical Models (PGM-12).

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques
(adaptive computation and machine learning). The MIT Press.

Kraskov, A., & Grassberger, P. (2009). Information theory and statistical learning, chap.
MIC: Mutual information based hierarchical clustering, pp. 101–123. Springer.

Kwoh, C.-K., & Gillies, D. F. (1996). Using hidden nodes in Bayesian networks. Artificial
Intelligence, 88 (1-2), 1–38.

Lake, J. A. (1994). Reconstructing evolutionary trees from DNA and protein sequences:
Paralinear distances. Proceedings of the National Academy of Sciences of the United
States of America, 91 (4), 1455–1459.

Langseth, H., & Nielsen, T. D. (2009). Latent classification models for binary data. Pattern
Recognition, 42 (11), 2724–2736.

Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing
data. Computational Statistics & Data Analysis, 19 (2), 191–201.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society. Series B (Methodological), 50 (2), 157–224.

Liu, H., Xu, M., Gu, H., Gupta, A., Lafferty, J., & Wasserman, L. (2011). Forest density
estimation. Journal of Machine Learning Research, 12, 907–951.

Liu, T. F., Zhang, N. L., Liu, A. H., & Poon, L. K. M. (2012). A novel LTM-based method
for multidimensional clustering. In Proceedings of the Sixth European Workshop on
Probabilistic Graphical Models (PGM-12).

Martin, J., & Vanlehn, K. (1995). Discrete factor analysis: Learning hidden variables in
Bayesian network. Tech. rep., Department of Computer Science, University of Pitts-
burgh.

McKendrick, I. J., Gettinbya, G., Gua, Y., Reidb, S. W. J., & Revie, C. W. (2000). Using
a Bayesian belief network to aid differential diagnosis of tropical bovine diseases.
Preventive Veterinary Medicine, 47 (3), 141–156.

Mossel, E., & Roch, S. (2006). Learning nonsingular phylogenies and hidden Markov models.
The Annals of Applied Probability, 16 (2), 583–614.

Mossel, E., Roch, S., & Sly, A. (2011). Robust estimation of latent tree graphical models:
Inferring hidden states with inexact parameters. Submitted.

Mourad, R., Sinoquet, C., Dina, C., & Leray, P. (2011). Visualization of pairwise and
multilocus linkage disequilibrium structure using latent forests. PLoS ONE, 6 (12),
e27320.

Mourad, R., Sinoquet, C., & Leray, P. (2011). A hierarchical Bayesian network approach for
linkage disequilibrium modeling and data-dimensionality reduction prior to genome-
wide association studies. BMC Bioinformatics, 12, 16.

201

Mourad, Sinoquet, Zhang, Liu, & Leray

Parikh, A. P., Song, L., & Xing, E. P. (2011). A spectral algorithm for latent tree graphical
models. In Proceedings of the 28th International Conference on Machine Learning
(ICML-2011).

Park, S., & Aggarwal, J. K. (2003). Recognition of two-person interactions using a hie-
rarchical Bayesian network. In The first ACM International Workshop on Video
Surveillance (IWVS’03), pp. 65–75.

Parzen, E. (1962). On estimation of a probability density function and mode. Annals of
Mathematical Statistics, 33, 1065–1076.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible infer-
ence. Morgan Kaufmann, Santa Mateo, CA, USA.

Poon, L. K. M., Zhang, N. L., Chen, T., & Wang, Y. (2010). Variable selection in model-
based clustering: To do or to facilitate. In Proceedings of the 27th International Con-
ference on Machine Learning (ICML-2010).

Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System
Technical Journal, 36, 1389–1401.

Raftery, A. E. (1986). Choosing models for cross-classifications. American Sociological
Review, 51 (1), 145–146.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function.
Annals of Mathematical Statistics, 27, 832–837.

Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstruct-
ing phylogenetic trees.. Molecular Biology and Evolution, 4 (4), 406–425.

Schwartz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6 (2),
461–464.

Song, L., Parikh, A., & Xing, E. (2011). Kernel embeddings of latent tree graphical models.
In Twenty-Fifth Conference in Neural Information Processing Systems (NIPS-11).

Spencer, C. C., Su, Z., Donnelly, P., & Marchini, J. (2009). Designing genome-wide asso-
ciation studies: sample size, power, imputation, and the choice of genotyping chip..
PLoS Genetics, 5 (5), e1000477.

Steel, M. (2001). My favourite conjecture. http://www.math.canterbury.ac.nz/-
m.steel/files/misc/conjecture.pdf.

Steel, M. (1992). The complexity of reconstructing trees from qualitative characters and
subtrees. Journal of Classification, 9 (1), 91–116.

Tan, V. Y. F., Anandkumar, A., & Willsky, A. (2011). Learning high-dimensional Markov
forest distributions: Analysis of error rates. Journal of Machine Learning Research,
12, 1617–1653.

The International HapMap Consortium (2007). A second generation human haplotype map
of over 3.1 million SNPs. Nature, 449 (7164), 851–861.

Wang, Y., Zhang, N. L., Chen, T., & Poon, L. K. M. (2011). Latent tree classifier. In
European Conferences on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU’2011), pp. 410–421.

202

Latent Tree Models

Wang, Y., & Zhang, N. L. (2006). Severity of local maxima for the EM algorithm: Expe-
riences with hierarchical latent class models. In Proceedings of the Third European
Workshop on Probabilistic Graphical Models (PGM-06).

Wang, Y., Zhang, N. L., & Chen, T. (2008). Latent tree models and approximate inference
in Bayesian networks. Journal of Articial Intelligence Research, 32, 879–900.

Webb, G. I., Boughton, J. R., & Wang, Z. (2005). Not so naive Bayes: Aggregating one-
dependence estimators. Machine Learning, 58 (1), 5 –24.

Wheeler, T. J. (2009). Large-scale neighbor-joining with NINJA. In Proceedings of the 9th
Workshop on Algorithms in Bioinformatics.

Xu, L., & Jordan, M. I. (1996). On convergence properties of the EM algorithm for Gaussian
mixtures. Neural Computation, 8 (1), 129–151.

Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on
Neural Networks, 16 (3), 645–678.

Xu, R., & Wunsch, D. C. (2008). Clustering (illustrated edition). Wiley-IEEE Press.

Zhang, N. L. (2004). Hierarchical latent class models for cluster analysis. The Journal of
Machine Learning Research, 5, 697–723.

Zhang, N. L., & Kocka, T. (2004a). Effective dimensions of hierarchical latent class models.
Journal of Articial Intelligence Research, 21, 1–17.

Zhang, N. L., & Kocka, T. (2004b). Efficient learning of hierarchical latent class models.
In Proceedings of the 16th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 585–593.

Zhang, N. L., Nielsen, T. D., & Jensen, F. V. (2004). Latent variable discovery in classifi-
cation models. Artificial Intelligence in Medicine, 30 (3), 283–299.

Zhang, N. L., Wang, Y., & Chen, T. (2008). Discovery of latent structures: Experience
with the CoIL Challenge 2000 data set*. Journal of Systems Science and Complexity,
21 (2), 172–183.

Zhang, N. L., Yuan, S., Chen, T., & Wang, Y. (2008). Latent tree models and diagnosis in
traditional Chinese medicine. Artificial Intelligence in Medicine, 42 (3), 229–245.

203

