
Distributed Reasoning for Multiagent Simple Temporal Problems

Appendix A. Formal Proofs

Throughout this paper, we provided proof sketches to convey the gist of the proof when
presenting the full proof would break flow of the prose. In this Appendix, we provide the
formal proofs for all such Theorems.

A.1 Preliminaries

In this section, we provide present definitions and lemmas that will be useful in our proofs
of correctness for the D4DPC, and D4PPC algorithms. We begin by defining a key
relation about elimination orderings. Once we have defined this relationship, we will prove
some properties about this relationship that will be useful for proving that our algorithms
correctly establish PPC.

Definition 1. Given a graph G = 〈V,E〉 and a total ordering o over V—that is ∀vx, vy ∈ V
such that x 6= y implies (vx ≺o vy ∨ vy ≺o vx)—let G4o =

〈
V,E ∪ E4

o

〉
be the graph that

results from triangulating graph G by eliminating vertices in order o and adding fill edges
E4

o .

Definition 2. Given a graph G = 〈V,E〉 and (total) elimination order o, we define the

precedence relation ≺4
o , where vx ≺4

o vy if and only if, at the time of vx’s elimination,

vy shares an edge with vx and has not been eliminated. That is, vx ≺4
o vy ⇔ (vx ≺o

vy) ∧ (exy, eyx ∈ E ∪ E4
o ).

Next we label the two key algorithmic operations of the DPC and PPC algorithms,
eliminate and reinstate respectively.

Definition 3. We label lines 3-11 of the 4DPC algorithm as the eliminate procedure.
This procedure eliminates a timepoint vk after first using edges eik and ekj to tighten
(and when necessary, to add) each edge eij for every pair of non-eliminated, neighboring
timepoints, vi and vj.

Definition 4. We label lines 4-8 of the 4PPC algorithm as the reinstate procedure.
This procedure reinstates a timepoint vk by, for every pair of previously-reinstated,
neighboring timepoints vi and vj, tightening edge eki and edge ejk with respect to eij.

Lemma 1. Let o and o′ be two distinct total orderings of the vertices, V for some graph
G = 〈V,E〉. If o′ is consistent with the precedence relation ≺4

o , then G4o = G4o′ .

Proof. Assume G4o 6= G4o′ .

Since G4o =
〈
V,E ∪ E4

o

〉
and G4o′ =

〈
V,E ∪ E4

o′

〉
, if G4o 6= G4o′ then E4

o 6= E4
o′ .

E4
o 6= E4

o′ implies that there exists at least one edge exy such that, either exy ∈ E4
o and

exy /∈ E4
o′ , or exy /∈ E4

o and exy ∈ E4
o′ .

WLOG, let exy ∈ E4
o be the first edge that is added to E4

o under elimination order o

that is not added to E4
o′ under o′. In order for edge exy to be added under elimination order

o, there must be some vertex vz such that it is eliminated prior to vx and vy and shares
an edge with both vx and vy (exz and eyz respectively) at the time of its elimination. By

1



Boerkoel & Durfee

definition, this implies vz ≺4
o vx and vz ≺4

o vy. So, under the assumption that o′ respects

the precedence relation ≺4
o , o′ eliminates vz prior to vx and vy. Since vz is eliminated prior

to vx and vy but no fill edge exy is added, at least one of exz or exy is absent at the time
of vz’s elimination under o′. WLOG, assume exz is missing. If exz is missing at the time
of vz’s elimination it cannot be part of the original specification of G, which implies it is a
member of E4

o . However, once vz is eliminated, no new edge exz can ever be constructed,
since fill edges are only ever added between non-eliminated vertices. Thus, either exy is

not the first edge that is added to E4
o under elimination order o that is not added to E4

o′

under o′, or o′ does not respect the precedence relation ≺4
o , but both cases violate the

assumptions. Therefore, since every time elimination order o adds a fill edge e, it induces a
new ≺4

o relation, any other elimination order o′ that also satisfies the relation ≺4
o will also

add the fill edge, implying E4
o ⊆ E4

o′ .

Next we prove that E4
o′ ⊆ E4

o , which mirrors the proof that E4
o ⊆ E4

o′ . WLOG, let

exy ∈ E4
o′ be the first edge that is added to E4

o′ under elimination order o′ that is not added

to E4
o under o. In order for edge exy to be added under elimination order o′, there must be

some vertex vz such that it is eliminated prior to vx and vy and shares an edge with both vx
and vy (exz and eyz respectively) at the time of vz’s elimination. Since exy is the first edge

added to E4
o′ under elimination order o′ that is not added to E4

o under o, and also since
no edges can be added after the elimination of one of its endpoints, exz must already exist
at the time of both vx’s and vz’s elimination under o. However, since elimination order o
does not add exy, at least one of vx or vy is eliminated before vz under o. WLOG assume
vx is eliminated prior to vz. However, since at the time of vx elimination, vx and vz share
edge exz and so by definition vx ≺4

o vz. This contradicts the assumption that o′ respects
≺4

o . Therefore, since the order that vertices that share edges are specified as part of ≺4
o

by definition, if elimination order o′ respects ≺4
o , E4

o′ ⊆ E
4
o

Since E4
o ⊆ E4

o′ and E4
o′ ⊆ E

4
o , E4

o = E4
o′ which violates the assumption that G4o 6= G4o′

since they only can differ in fill edges. Therefore, if o′ is consistent with the precedence
relation ≺4

o , then G4o = G4o′ .

Lemma 2. Let o be a total elimination order used to triangulate STN G, resulting in graph
G4o and precedence relation ≺4

o . Any application of 4DPC that eliminates nodes with
respect to the precedence relation ≺4

o will have the same output as DPC(o,G4o ).

Proof. By contradiction: Let G4DPC be the output of 4DPC and GDPC be the output
of DPC. Assume G4DPC 6= GDPC . By Lemma 1, G4DPC and GDPC will contain the same
edges. This implies for at least one edge exy, w4DPC

xy 6= wDPC
xy .

Part 1: Suppose after applying both DPC and 4DPC, there was an edge exy, where

wDPC
xy < w4DPC

xy and, WLOG, this was the first edge that DPC tightened further than

4DPC. This implies that for at least one vertex vz, DPC performs the update wDPC
xy ←

min(wDPC
xy , wDPC

xz +wDPC
zy ) and either 4DPC does not, or if it does, min(wDPC

xy , wDPC
xz +

wDPC
zy ) < min(w4DPC

xy , w4DPC
xz +w4DPC

zy ). However, since DPC only performs the update

wDPC
xy ← min(wDPC

xy , wDPC
xz +wDPC

zy ) if and only if edges exists between vx, vy, and vz and

vz is eliminated before vx and vy, by definition, vz ≺4
o vx and vz ≺4

o vy.

2



Distributed Reasoning for Multiagent Simple Temporal Problems

Since 4DPC eliminates nodes with respect to the precedence relation ≺4
o , 4DPC must

eliminate vz before eliminating vx and vy, resulting in the update:

w4DPC
xy ← min(w4DPC

xy , w4DPC
xz +w4DPC

zy ), so unless the assumption that 4DPC respects

≺4
o is violated, 4DPC correctly applies the update.

Since 4DPC correctly applies the update w4DPC
xy ← min(w4DPC

xy , w4DPC
xz + w4DPC

zy ),

the only way that wDPC
xy < w4DPC

xy holds true after the update is if either w4DPC
xy <

wDPC
xy , or w4DPC

yz < wDPC
yz at the time the update is performed. But this violates the

assumption that wDPC
xy < w4DPC

xy is the first update performed by DPC that is never
correctly performed by 4DPC.

Thus DPC will never perform an update to the bound wDPC
xy of any edge exy that will

not also be applied by 4DPC, thus wDPC
xy ≥ w4DPC

xy .

Part 2: Suppose after applying both DPC and 4DPC, there exists an edge exy, where

w4DPC
xy < wDPC

xy , that was the first edge that ∆ DPC tightens further than DPC. This
implies there must be some vertex vz such that 4DPC eliminates it prior to vx and vy
and that shares edges with both vx and vy with tightened values w4DPC

xz and w4DPC
zy

respectively. Further, at the time of vz’s elimination, 4DPC tightens the bound w4DPC
xy

using the rule w4DPC
xy ← min(w4DPC

xy , B4DPC
xz + w4DPC

zy ).

Since w4DPC
xy is the first bound that4DPC tightens further than DPC using elimination

order o and also since DPC does not tighten the bounds of any edge after it eliminates one
of its endpoints, DPC will have already tightened wDPC

xz by the time it eliminates either
vx or vz and DPC will have already tightened wDPC

zy by the time it eliminates either vy
or vz. Thus, if vz appears before vx and vy, DPC would apply the update wDPC

xy ←
min(wDPC

xy , BDPC
xz + wDPC

zy ) with wDPC
xz = w4DPC

xz and wDPC
zy = w4DPC

zy , which is exactly

the same update as 4DPC. Thus, w4DPC
xy < wDPC

xy , DPC must never apply the update,
implying vz must appear after either vx or vy in o.

WLOG, assume vx appears before vz in o. However, as shown in Lemma 1, at the time
of the elimination of vx or vz, edge exz must already exist, since edges are never added
between eliminated vertices. Since vx and vz share an edge and vx appears before vz in o,
by definition vx ≺4

o vz. This contradicts the assumption that the order 4DPC eliminates
vertices respects ≺4

o . Therefore, w4DPC
xy ≥ wDPC

xy .

Conclusion: Since both wDPC
xy ≥ w4DPC

xy and w4DPC
xy ≥ wDPC

xy , then w4DPC
xy = wDPC

xy .

However this contradicts the assumption that G4DPC 6= GDPC . Therefore, the output,
G4DPC , of an application of 4DPC will be the same as the output, GDPC , of DPC(o,G4o )

if 4DPC eliminates nodes with respect to the precedence relation ≺4
o .

Lemma 3. Let o be a total elimination order used to triangulate STP G, resulting in graph
G4o and precedence relation ≺4

o . Also let G′ = 〈V,E′〉 be the output of DPC(o,G4o ). Then
the output, G4PPC , of any application of the second phase of the 4PPC algorithm that
reinstates vertices in reverse ≺4

o order will be the same as the output, GP 3C , of applying
P3C (o,∆(o,G′)).

Proof. Note: When a vertex vx is reinstated, both 4PPC and P3C apply the following
updates:

3



Boerkoel & Durfee

• wxi ←min(wxi, wxj + wji)

• wxj ←min(wxj , wxi + wij)

• wix ←min(wix, wij + wjx)

• wjx ←min(wjx, wji + wix)

∀i, j such that exi, exj ∈ E′, where vx appears before vi and vj in o. By Lemma 2,
the call to 4DPC in line 2 will produce the same output as the call to DPC by the P3C
algorithm.

By contradiction: Assume that applying P3C (o,∆(o,G′)) achieves a different output

than an application of 4PPC to G′ that reinstates vertices in reverse ≺4
o order does. Then

there exists at least one pair of vertices, vx and vi, where, WLOG, vx appears before vi in
o, such that wP 3C

xi 6= w4PPC
xi . So either wP 3C

xi < w4PPC
xi or wP 3C

xi > w4PPC
xi . WLOG, let

wP 3C
xi 6= w4PPC

xi be the first such difference between GP 3C and G4PPC .

Part 1: Assume that after both P3C and 4PPC are applied, wP 3C
xi < w4PPC

xi .

Thus P3C applies some update wP 3C
xi ←min(wP 3C

xi , wP 3C
xj + wP 3C

ji ) that 4PPC either

does not apply or applies when wP 3C
xj < w4PPC

xj or wP 3C
ij < w4PPC

ij .

Notice that the only time a bound wP 3C
ij is updated during P3C is when either vi or vj

is being considered. Thus, any updates to wP 3C
xi , wP 3C

xj , or wP 3C
ij must have occurred when

processing either vi or vj , both of which appear later than vx in o. If exj and eij exist in
G′, and vx appears before vi and vj in o, then by definition, vx will appear before vi and vj
in ≺4

o , thus 4PPC will also apply this update. Since we assumed this was the first time
P3C and 4PPC differed, neither wP 3C

xj < w4PPC
xj nor wP 3C

ij < w4PPC
ij can be true.

Thus, there is a contradiction, and so wP 3C
xi ≥ w4PPC

xi .

Part 2: Assume that after both P3C and 4PPC are applied, w4PPC
xi < wP 3C

xi .
Since wxi is the first place that P3C applies a different update than4PPC, the difference

cannot occur as a result of a tighter bound w4PPC
xj < wP 3C

xj or w4PPC
ij < wP 3C

ij at the time

of the update wxi ←min(wxi, wxj + wji). Thus, 4PPC must apply an update that P3C
does not apply, which can only occur in two cases.

Case 1: There exists some vk that appears later than vx in o such that vx and vk share
an edge during 4PPC’s execution but not P3C. However, this violates Lemma 2.

Case 2: 4PPC reinstates some vk that shares an edge with vx before reinstating vx,
but that appears earlier than vx in o. However, if vk shares an edge with vx and appears
before vx in o, then vx ≺4

o vk, which violates the assumption that 4PPC reinstates vertices
in reverse ≺4

o .
Therefore wP 3C

xi ≤ w4PPC
xi .

Conclusion: Since, for the outputs of P3C (o,G′) and 4PPC, wP 3C
xi ≥ w4PPC

xi and

wP 3C
xi ≤ w4PPC

xi , wP 3C
xi must equal w4PPC

xi for all x, i. Therefore the outputs of P3C (o,G′)
and 4PPC are identical.

So far, we have defined a key precedence relation of graph triangulations, ≺4
o . We have

shown that any elimination order o′ that respects this precedence relation will result in
the same triangulated graph. Further, we have shown that any application of the 4PPC

4



Distributed Reasoning for Multiagent Simple Temporal Problems

(4DPC) algorithm that respects the precedence relation ≺4
o as it eliminates and reinstates

vertices and tightens bounds will calculate exactly the same PPC (DPC) STN as applying
the P3C (DPC) algorithm using o. Notice that since we proved this for each phase of the

P3C algorithm independently, as long both phases of 4PPC respect ≺4
o , the total order in

which it reinstates vertices in the two phases can be different.

We must now prove that both our D4PPC and our D4PPC algorithms correctly apply
4DPC and 4PPC respectively to calculate a PPC STP instance.

A.2 The D4DPC Algorithm Proof of Correctness

This theorem proves the correctness of the D4DPC algorithm (Algorithm 7 on page 119).
Note, this proof builds on definitions and properties established in Section A.1.

Theorem 1. D4DPC correctly establishes DPC on the multiagent STP.

Proof. Notice that the semantics of D4DPC dictate that each agent i eliminates its private
timepoints V i

P in some order oiP before eliminating its shared timepoints V i
S , which are elim-

inated in a globally consistent order oS . Despite the fact that agents eliminate timepoints
concurrently, using a fine enough granularity of time, this implies that globally, all private
timepoints are eliminated in some order oD, which respects the partial order oiP∀i and oS .
WLOG, let oD = o1

P ∧ o2
P ∧ · · · ∧ onP ∧ oS , where ∧ appends two orderings together. This

proof proceeds to show that D4DPC establishes DPC on G by showing that it calculates
the same result as DPC(oD,G) by demonstrating that D4DPC correctly applies DPC with

respect to ≺4
oD .

We begin this proof by appealing to Lemma 2 which states that any application of
4DPC that respects precedence relation ≺4

oD achieves the same output as DPC(oD,G). We
show that, despite its concurrent execution, D4DPC eliminates vertices (and so applies

4DPC) in a way that respects precedence relation ≺4
oD and therefore achieves the same

output as the same out as DPC(oD,G). We do this by considering the elimination of some
timepoint vix, where vix belongs to agent i.

Assume that there exists some vy such that vy ≺4
oD vix but has not been eliminated by

the time agent i eliminates vix.

Case 1: vix and vy belong to the same agent i.

Notice vy ≺4
oD vix implies vy ≺oD vix. However, if both vy and vix belong to agent i, they

must both appear in oiP ∧ oS (constructed in lines 1 and 7) and therefore, by construction
of oD, vy ≺oi v

i
x. This presents a contradiction since vy ≺oi v

i
x is true if and only if agent

i executing D4DPC eliminates vy before eliminating vix, but we assumed agent i will have
not eliminated vy by the time it eliminates vix. Therefore, vy must belong to some agent j
where i 6= j.

Case 2: vix is private and vy belongs to some agent j where i 6= j.

Since vix is private, by definition there can be no edge exy ∈ E. Further, since vix is
private, all of its neighbors are local to agent i, and since, by definition of oD, the only
vertices that agent i eliminated at this point are also private, no fill edge between vix and
vy could have been added. Therefore vy must belong to agent i. However, we have already
shown that this can never be the case, thus establishing a contradiction. Therefore, if vix
is private, at the time that agent i executing D4PPC eliminates vix there can exist no vy

5



Boerkoel & Durfee

such that vy ≺4
oD vix but has not been eliminated. So for the assumption to hold, vix must

be shared, which brings us to the third and final case.

Case 3: vix is shared and vy belongs to some agent j where i 6= j.

At this point, vix and vy must be shared, vy must belong to some agent j, where j 6= i,

and we assume both that vy ≺4
oD vix and agent i eliminates vix before agent j eliminates

vy. Because of the assumption that agent i eliminates vix before agent j eliminates vy, the
following sequence of events can never occur – agent j eliminates vy – agent i synchronizes
its view of the MaSTP – agent i eliminates vix.

However before the elimination of vix, agent i first has to obtain a lock on the shared
elimination order (line 5). Thus, if vy appears before vix, the agent i would learn of this in
line 10. Line 11 would then ensure that agent i waits to receive all pertinent edge updates
(w.r.t. vy). Thus, agent i could never eliminate vix at the same time as, or prior to vy, if vy
appears before it in ≺4

oD .

Therefore, whether vix is private or shared and vy belongs to agent i or some other agent

j 6= i, D4DPC correctly eliminates timepoints with respect to ≺4
oD , and so by Lemma 2,

calculates the same output as DPC(oD,G).

A.3 D4PPC is Deadlock Free

Here we prove Theorem 5, originally stated on page 123, which establishes that the D4DPC
algorithm (Algorithm 5 on page 123) is deadlock free.

Theorem 5. D4PPC is deadlock free.

Proof. This is a continuation of the proof of Theorem 5 (page 123), which already established
that line 1 is deadlock free. Notice that each agent reinstates nodes in reverse oS order
(line 3). By contradiction, assume line 8, which represents the only blocking communication
in this algorithm, introduces a deadlock. This implies that there are two (or more) agents,
i and j, where i 6= j such that both agent i and agent j are simultaneously waiting for
communication from each other in line 8. Thus, there exists a timepoint vjx ∈ V i

X ∩ V
j
L

for which agent i is waiting to receive updated edges from agent j, while there is also a
viy ∈ V

j
X ∩V i

L for which agent j is waiting to receive updated edges from agent i. Notice that

vik (the timepoint that agent i is currently considering) must appear before vjy (hence the
need for blocking communication), but after vix in agent i’s copy of oS , because otherwise
agent i would have already sent agent j all edge updates pertaining to vix (line 14) in the
previous loop iteration in which vix was reinstated. However, for the same reason, vjk (the

timepoint that agent j is currently considering) must appear before vix but after vjy in oS .
But this is a contradiction, because oS is constructed in a way that consistently and totally
orders all shared timepoints. This argument extends inductively to three or more agents,
and so line 8 can also not be the cause of a deadlock. This is a contradiction.

Therefore the D4PPC algorithm is deadlock free.

6



Distributed Reasoning for Multiagent Simple Temporal Problems

A.4 The D4PPC Algorithm Proof of Correctness

Here we prove Theorem 6, originally stated on page 124, which establishes the correctness
of the D4DPC algorithm (Algorithm 7 on page 119). Note, this proof builds on definitions
and properties established in Section A.1 and Theorems 5 and 1.

Theorem 6. D4PPC correctly establishes PPC on the MaSTN.

Proof. Notice that the semantics of D4DPC dictate that each agent i eliminates its private
timepoints V i

P in some order oiP before eliminating its shared timepoints V i
S , which are elim-

inated in a globally consistent order oS . Despite the fact that agents eliminate timepoints
concurrently, using a fine enough granularity of time, this implies that globally, all private
timepoints are eliminated in some order oD, which respects the partial order oiP∀i and oS .
WLOG, let oD = o1

P ∧o2
P ∧· · ·∧onP ∧oS , where ∧ appends two orderings together. This proof

proceeds to show that D4PPC establishes PPC G by showing that it calculates the same
result as P3C (oD,G) by demonstrating that D4PPC reinstates vertices (and so correctly

applies 4PPC) with respect to ≺4
oD .

We start by acknowledging the proof of Theorem 1, which demonstrates that line 1
correctly establishes DPC.

By Lemma 3, if the reverse sweep of the4PPC algorithm reinstates vix after it reinstates
vy if vx ≺4

oD vy, it achieves the same out as P3C (o,G). We now show that, despite
its concurrent execution, the last time D4PPC reinstates vx is after it reinstates vy if

vx ≺4
oD vy.

By contradiction, assume agent i reinstates vix (i.e., applies line 3-14 of the D4PPC

Algorithm) before vy, despite the fact that vix ≺
4
oD vy.

Case 1: vix and vy belong to the same agent i.

Notice vix ≺
4
oD vy implies vix ≺oD vy. However, if both vy and vix belong to agent i, they

must both appear in oi (i.e., oiP ∧ oS ) and therefore, by construction of oD, vix ≺oi vy.
However, line 3 explicitly reinstates nodes in reverse oi order. Therefore, vy must belong to
some agent j where i 6= j.

Case 2: vy ∈ V j
P for some agent j 6= i.

vix ≺
4
oD vy implies there is an edge between vix and vy at the time vix is eliminated, which,

by definition, implies vy is not private. Further, if vy is private, Theorem 1 states agent j
can reason over it independently of agent i. Thus, either way we have a contradiction, thus
vy cannot be private to some other agent j.

Case 3: vy ∈ V i
X , that is vy ∈ V i

L for some agent j 6= i.

In this case, vix cannot be private, since vix ≺
4
oD vy implies that there exists an edge

connecting vix to a node belonging to another agent. Further, if vix were private, Theorem 1
states agent i can reason over it independently of agent j.

So, by definition, exy belongs to Ei
X . Thus, agent i would be explicitly forced to block

in line 8, until receiving edge updates wzy, wyz∀vzs.t.exz ∈ Ei, which can only occur after
vy has been reinstated, updates calculated by agent j in lines 9-12, and edge update sent
to agent i in line 14.

Hence, all three cases present contradictions, implying that it is impossible for agent i to
reinstate vix prior to vy when vix ≺

4
oD vy.,

7



Boerkoel & Durfee

Conclusion: Hence we have shown that D4PPC either achieves the same output as
applying 4DPC and 4PPC with respect to ≺4

o , and thus establishes PPC on G that is
equivalent to P3C (oD,G).

A.5 The MaTD Algorithm Proof of Completeness

Here we prove Theorem 10, originally stated on page 135, which establishes the completeness
of the MaTD algorithm (Algorithm 9 on page 134).

Theorem 10. The MaTD algorithm is complete.

Proof. The basic intuition for this proof is provided by the fact that the MaTD algorithm is
simply a more general, distributed version of the basic backtrack-free assignment procedure
that can be consistently applied to a DPC distance graph. We show that when we choose
bounds for new, unary decoupling constraints for vk (effectively in line 12), wzk, wkz are
path consistent with respect to all other variables. This is because not only is the distance
graph DPC, but also the updates in lines 10-11 guarantee that wzk, wkz are path consistent
with respect to vk for all j > k (since each such path from vj to vk will be represented as an
edge ejk in the distance graph). So the only proactive edge tightening that occurs, which
happens in line 12 and guarantees that wzk +wkz = 0, is done on path-consistent edges and
thus will never introduce a negative cycle (or empty domain).

Fact 1: After lines 1-2 of the MaTD algorithm (Algorithm 9; page 134), if no decoupling
exists, line 2 is guaranteed to terminate the algorithm by returning inconsistent, since,
by definition, any consistent MaSTP has at least one solution schedule, which is a de facto
temporal decoupling.

Fact 2: Lines 1-2 of the MaTD algorithm establish DPC, which implies that for every
(external) timepoint variable vk, the weights of all edges involving vk (including, in partic-
ular, the weights of ezk, wzk and wkz), are directionally path consistent with respect to all
variables vj such that vj appears before vk in oS .

Now we will show by induction for every external timepoint vk that the decoupling bounds
computed in line 12 and constructed in line 14 are path consistent with respect to every other
variable vj where j > k in oS (Part 1) and form a non-empty domain (that is bzk + bkz ≥ 0)
(Part 2).

Base case(k = n): The base case is trivial, since when k = n there exist no vj such that
j > k. Thus upon entering line 12, wzk and wkz are path consistent with respect to every
variable vj where j 6= k (Fact 2). Also, since line 2 returns inconsistent if the problem
instance is, this guarantees that wzk + wkz ≥ 0 (Fact 1). In line 12, the incoming weights
wzk and wkz are either left unchanged or tightened, but not beyond wzk + wkz ≥ 0. Thus
the bounds constructed in line 14 are path consistent.

Inductive case(k < n): Assume that the bounds of all decoupling constraints chosen for
all variables vj for j = k + 1, . . . , n are partially path consistent, that is wjz + wzj ≥ 0,
wjz ≤ wjx + wxz, and wzj ≤ wzx + wxj for all x 6= j.

8



Distributed Reasoning for Multiagent Simple Temporal Problems

Part 1: Here we show that the bounds of the decoupling constraints computed in line 12
and constructed in line 14 are as least as tight as the tightest existing path between vk and
z. By contradiction, assume there exists some timepoint vj where j > k in oS such that
WLOG wkz > wkj + wjz. Note that since DPC is established in lines 1-2, any path from
vj to vk will be represented as an edge ejk with path consistent weights wjk, wkj in the
distance graph (Fact 1). Notice also that if vj is local to the agent of vk, then the update in
line 12 ensures that wkz ≤ wkj +wjz, thus vj must be external to the agent of vk. However,
then the update in line 10 ensures that wzk ≤ wjk − wjz. Since we inductively assumed
that wjz and wzj were chosen to be path consistent, wzj ≥ −wjz. So the update in line 11
implies wkz ≤ wkj − wzj ≤ wkj + wjz. Thus there is a contradiction since we have shown
that lines 10,12 (and for wzk, lines 11,12) ensure that wkz and wzk represent the tightest
path between vk and z coming into line 12, which only further tightens wkz and wzk (if at
all). Thus the bounds chosen in line 14 are guaranteed to be at least as tight as any existing
path between vk and z.

Part 2. Here we show that the bounds of the decoupling constraints constructed in line 14
form a non-empty domain. By contradiction, assume that wkz + wzk < 0. Once DPC is
established in lines 1-2, (at which point inconsistent is returned for any input distance
graphs with negative cycles), wzk and wkz are tightened in lines 9,10-11, and 12. However,
notice that line 12 guarantees that wzk + wkz ≥ 0 and lines 10-11 simply recovers path
consistency with respect to any local variable vj where j > k in oS , which is guaranteed to
be path consistent based on the inductive assumption. This implies that line 9 introduces
the negative cycle. That is, there exists some vx and vy such that wzk = wxk − wxz and
wkz = wkx −wzx and where x, y > k in oS and vx,vy are external to the agent of vk, which
together implies wxk − wxz + wky − wzy < 0. Then, if x = y,

wxk − wxz + wky − wzy < 0 (1)

→ wzx + wxk + wkx + wxz < 0 (2)

→ wxk + wkx < 0 (3)

where (2) holds by simple replacement (x = y), and (3) holds inductively (since wxz +wzx =
0). However, (3) is a contradiction, since the only time exk will have been updated is during
the DPC, which for this case would have returned inconsistent.

So x 6= y. WLOG, let vx appear before vy in oS . Then,

wxk − wxz + wky − wzy < 0 (4)

→ wzx + wxk + wky + wyz < 0 (5)

→ wzx + wxy + wyz < 0 (6)

→ wzx + wxz < 0 (7)

where (5) holds inductively (since wxz + wzx = 0;wyz + wzy = 0), (6) holds since DPC is
established in lines 1-2 (since wxy ≤ wxk + wky), and (7) holds since x < y in oS , and thus
line 10 (depending on whether exy is external or not) ensures wxz ≤ wxy−wzy = wxy +wyz.
However, (7) is an obvious contradiction. Thus, the decoupling bounds chosen for vk are
guaranteed to form a non-empty domain.

9



Boerkoel & Durfee

Therefore we have shown inductively that the decoupling bounds chosen for vk are at least as
tight as the tightest possible path between vk and z and always form a non-empty domain.
Thus, Algorithm 9 always finds a temporal decoupling of a MaSTN, if one exists.

A.6 The MaTDR Proof of Minimal Decoupling

Here we prove Theorem 12, originally stated on page 138, which establishes that the con-
straints that the MaTDR algorithm (Algorithm 10 on page 137) generates form a minimal
temporal decoupling.

Theorem 12. The local constraints calculated by the MaTDR algorithm form a minimal
temporal decoupling of S.

Proof. Notice, that the MaTDR subroutine is only called if the input network is consistent
(and a valid decoupling has been found). We prove by contradiction that if any bound on
an edge in C ′

∆ is relaxed, C ′
∆ may no longer form a temporal decoupling of G. Assume there

exists a bound of an edge in C ′
∆ that can be relaxed such that C ′

∆ still forms a decoupling
of G. WLOG, let δxz be the bound on edge exz that can be relaxed by some positive value
εxz and still form a temporal decoupling of G.

Notice that during the execution of the MaTDR, δxz is updated exclusively in line 9, and
WLOG, let the loop where j = y be the last time that δxz is updated, that is, δxz < wxy−δzy.
Then after line 9 is executed, δxz = wxy − δzy.

If vy appears before vx in o, then δzy will have already been updated (prior to δxz due to
line 8). But this leads to a contradiction, since δxz +δzy = wxy implies that δxz +εxz +δzy >
wxy since εxz is positive, and thus a bound of δxz + εxz would no longer imply that exy will
be satisfied.

Thus, vy must appear after vx in o. Let δINzy and δOUT
zy be the input and output values

of δzy respectively. Then, as already shown δxz + δINzy = wxy and by our assumption

δxz + εxz + δOUT
zy ≤ wxy, which implies δOUT

zy ≤ δINzy − εxz. For this to be true, there must

exist some timepoint vw such that w 6= x, w appears before y in o, and δOUT
zy = wwy − δwz.

Then, wwy− δwz ≤ δINzy − εxz. However, line 9 would have guaranteed that δwz ≤ wwy− δINzy
and so δINzy ≤ wwy − δwz, which leads to the contradiction δINzy ≤ δINzy − εxz.

Therefore, if any bound on any edge in C ′
∆ is relaxed, C ′

∆ may no longer by a decoupling
of G. In other words, if we relaxed a bound of some edge in C ′

∆, the bound on some other
edge in C ′

∆ must be tightened to guarantee that C ′
∆ decouples G.

10


