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Abstract

The Shapley value—probably the most important normative payoff division scheme in coali-
tional games—has recently been advocated as a useful measure of centrality in networks.
However, although this approach has a variety of real-world applications (including social
and organisational networks, biological networks and communication networks), its compu-
tational properties have not been widely studied. To date, the only practicable approach
to compute Shapley value-based centrality has been via Monte Carlo simulations which
are computationally expensive and not guaranteed to give an exact answer. Against this
background, this paper presents the first study of the computational aspects of the Shapley
value for network centralities. Specifically, we develop exact analytical formulae for Shap-
ley value-based centrality in both weighted and unweighted networks and develop efficient
(polynomial time) and exact algorithms based on them. We empirically evaluate these al-
gorithms on two real-life examples (an infrastructure network representing the topology of
the Western States Power Grid and a collaboration network from the field of astrophysics)
and demonstrate that they deliver significant speedups over the Monte Carlo approach. For
instance, in the case of unweighted networks our algorithms are able to return the exact
solution about 1600 times faster than the Monte Carlo approximation, even if we allow for
a generous 10% error margin for the latter method.

c©2013 AI Access Foundation. All rights reserved.
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1. Introduction

In many network applications, it is important to determine which nodes and edges are more
critical than others. Classic examples include identifying the most important hubs in a road
network (Schultes & Sanders, 2007), the most critical functional entities in a protein network
(Jeong, Mason, Barabasi, & Oltvai, 2001), or the most influential people in a social network
(Kempe, Kleinberg, & Tardos, 2003). Consequently, the concept of centrality, which aims
to quantify the importance of individual nodes/edges, has been extensively studied in
the literature (Koschützki, Lehmann, Peeters, Richter, Tenfelde-Podehl, & Zlotowski, 2005;
Brandes & Erlebach, 2005).
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Figure 1: Sample network of 13 nodes

Generally speaking, centrality analysis aims to create a consistent ranking of nodes within a
network. To this end, centrality measures assign a score to each node that in some way cor-
responds to the importance of that node given a particular application. Since “importance”
depends on the context of the problem at hand, many different centrality measures have
been developed. Three of the most well-known and widely applied are: degree centrality,
closeness centrality and betweenness centrality.1 In this paper, we refer to these measures
as conventional/standard centrality. Degree centrality, in brief, quantifies the power of a
node by its degree, i.e., by the number of its adjacent edges. For instance, in the sample
network in Figure 1, nodes v1 and v2 have degree 5 and, if judged by degree centrality, these
are the most important nodes within the entire network. Conversely, closeness centrality
focuses on distances among nodes and gives high value to the nodes that are close to all
other nodes. With this measure, node v8 in Figure 1 is ranked top. The last measure—
betweenness centrality—considers shortest paths (i.e., paths that use the minimal number of
links) between any two nodes in the network. The more shortest paths the node belongs to,
the more important it is. With this measure, v2 in Figure 1 is more important than all the
other nodes (including v1 and v8, which are chosen by other measures as the most important
node). Clearly, all these measures expose different characteristics of a node. Consider, for
instance, an epidemiology application, where the aim is to identify those people (i.e., nodes)
in the social network who have the biggest influence on the spread of the disease and should
become a focal point of any prevention or emergency measures. Here, degree centrality

1. Koschützki et al. (2005) and Brandes and Erlebach (2005) give a good overview of these and other
centrality measures.
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ranks top nodes with the biggest immediate sphere of influence—their infection would lead
to the highest number of adjacent nodes being exposed to the disease. On the other hand,
closeness centrality identifies those nodes whose infection would lead to the fastest spread
of the disease throughout the society. Finally, betweenness centrality reveals the nodes that
play a crucial role in passing the disease from one person in a network to another.2

The common feature of all the aforementioned standard measures is that they assess the
importance of a node by focusing only on the role that a node plays by itself. However,
in many applications such an approach is inadequate because of synergies that may occur
if the functioning of nodes is considered in groups. Referring again to Figure 1 and our
epidemiology example, a vaccination of individual node v6 (or v7 or v8) would not prevent
the spread of the disease from the left to the right part of the network (or vice versa).
However, the simultaneous vaccination of v6, v7 and v8 would achieve this goal. Thus, in
this particular context, nodes v6, v7 and v8 do not play any significant role individually,
but together they do. To quantify the importance of such groups of nodes, the notion of
group centrality was introduced by Everett and Borgatti (1999). Intuitively, group centrality
works broadly the same way as standard centrality, but now the focus is on the functioning
of a given group of nodes, rather than individual nodes. For instance, in Figure 1, the group
degree centrality of {v1, v2} is 7 as they both have 7 distinct adjacent nodes.

Although the concept of group centrality addresses the issue of synergy between the functions
is played by various nodes, it suffers from a fundamental deficiency. It focuses on particular,
a priori determined, groups of nodes and it is not clear how to construct a consistent ranking
of individual nodes using such group results. Specifically, should the nodes from the most
valuable group be ranked top? Or should the most important nodes be those which belong
to the group with the highest average value per node? Or should we focus on the nodes
which contribute most to every coalition they join? In fact, there are very many possibilities
to choose from.

A framework that does address this issue is the game theoretic network centrality measure. In
more detail, it allows the consistent ranking of individual nodes to be computed in a way that
accounts for various possible synergies occurring within possible groups of nodes (Grofman
& Owen, 1982; Gómez, González-Arangüena, Manuel, Owen, Del Pozo, & Tejada, 2003;
Suri & Narahari, 2008). Specifically, the concept builds upon cooperative game theory—a
part of game theory in which agents (or players) are allowed to form coalitions in order to
increase their payoffs in the game. Now, one of the fundamental questions in cooperative
game theory is how to distribute the surplus achieved by cooperation among the agents.
To this end, Shapley (1953) proposed to remunerate agents with payoffs that correspond to
their individual marginal contributions to the game. In more detail, for a given agent, such
an individual marginal contribution is measured as the weighted average marginal increase
in the payoff of any coalition that this agent could potentially join. Shapley famously proved
that his concept—known since then as the Shapley value—is the only division scheme that
meets certain desirable normative properties.3 Given this, the key idea of the game theoretic
network centrality is to define a cooperative game over a network in which agents are the
nodes, coalitions are the groups of nodes, and payoffs of coalitions are defined so as to meet

2. For the differences in interpretation of standard centralities see the work of Borgatti and Everett (2006).
3. See Section 3 for more details.
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requirements of a given application. This means that the Shapley value of each agent in such
a game can then be interpreted as a centrality measure because it represents the average
marginal contribution made by each node to every coalition of the other nodes.4 In other
words, the Shapley value answers the question of how to construct a consistent ranking of
individual nodes once groups of nodes have been evaluated.

In more detail, the Shapley value-based approach to centrality is, on one hand, much more
sophisticated than the conventional measures, as it accounts for any group of nodes from
which the Shapley value derives a consistent ranking of individual nodes. On the other
hand, it confers a high degree of flexibility as the cooperative game over a network can be
defined in a variety of ways. This means that many different versions of Shapley value-based
centrality can be developed depending on the particular application under consideration, as
well as on the features of the network to be analyzed. As a prominent example, in which a
specific Shapley value-based centrality measure is developed that is crafted to a particular
application, consider the work of Suri and Narahari (2008) who study the problem of selecting
the top-k nodes in a social network. This problem is relevant in all those applications where
the key issue is to choose a group of nodes that together have the biggest influence on the
entire network. These include, for example, the analysis of co-authorship networks, the
diffusion of information, and viral marketing. As a new approach to this problem, Suri
and Narahari define a cooperative game in which the value of any group of nodes is equal
to the number of nodes within, and adjacent to, the group. In other words, it is assumed
that the agents’ sphere of influence reaches the immediate neighbors of the group. Whereas
the definition of the game is a natural extension of the (group) degree centrality discussed
above, the Shapley value of nodes in this game constitutes a new centrality metric that is,
arguably, qualitatively better than standard degree centrality as far as the node’s influence is
concerned. The intuition behind it is visible even in our small network in Figure 1. In terms
of influence, node v1 is more important than v2, because it is the only node that is connected
to v4 and v5. Without v1 it is impossible to influence v4 and v5, while each neighbor of v2 is
accessible from some other node. Thus, unlike standard degree centrality, which evaluates
v1 and v2 equally, the centrality based on the Shapley value of the game defined by Suri and
Narahari recognizes this difference in influence and assigns a higher value to v1 than to v2.

Unfortunately, despite the advantages of Shapley value-based centrality over conventional
approaches, efficient algorithms to compute it have not yet been developed. Indeed, given
a network G(V,E), where V is the set of nodes and E the set of edges, using the original
Shapley value formula involves computing the marginal contribution of every node to every
coalition which is O(2|V |). Such an exponential computation is clearly prohibitive for bigger
networks (of, e.g, 100 or 1000 nodes). For such networks, the only feasible approach currently
outlined in the literature is Monte-Carlo sampling (e.g., Suri & Narahari, 2008; Castro,
Gomez, & Tejada, 2009). However, this method is not only inexact, but can be also very
time-consuming. For instance, as shown in our simulations, for a weighted network of about
16,000 nodes and about 120,000 edges, the Monte Carlo approach has to iterate 300, 000

4. We note that other division schemes or power indices from cooperative game theory, such as Banzhaf
power index (Banzhaf, 1965), could also be used as centrality measures (see, for instance, the discussion
in the work by Grofman & Owen, 1982). However, like most of the literature, we focus on the Shapley
value due to its desirable properties.
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Figure 2: Sample unweighted and weighted networks of 6 and 7 nodes, respectively.

times through the entire network to produce the approximation of the Shapley value with
a 40% error margin.5 Moreover, exponentially more iterations are needed to further reduce
this error margin.

Against this background, we develop polynomial-time algorithms to compute Shapley value-
based centrality. Specifically, we focus on five underlying games defined over a network; those
games extend, in various directions, standard notions of degree and closeness centrality. As
our starting point, we consider the game defined by Suri and Narahari and propose an
exact, linear-time algorithm to compute the corresponding Shapley value-based centrality.
We denote this game by g1. We then analyse the computational properties of four other
games defined over networks. We denote them g2, g3, g4, and g5, respectively. While each
of these games captures a different flavor of centrality, they all, similarly to the game of
Suri and Narahari, embrace one fundamental centrality idea: given a group of nodes C,
the function that defines the value of C in the game must somehow quantify the sphere of
influence of C over other nodes in the network. In particular:

g2 In this game the value of coalition C is a function of its own size and of the number
of nodes that are immediately reachable in at least k different ways from C. This
game is inspired by Bikhchandani, Hirshleifer, and Welch (1992) and is an instance of
the general threshold model introduced by Kempe, Kleinberg, and Tardos (2005). It
has a natural interpretation: an agent “becomes influenced” (with ideas, information,
marketing message, etc.) only if at least k of his neighbors have already become
influenced. For instance, given k = 2, the value of coalition {v1, v2} in Figure 2a is
4 as the coalition is of size 2 and there are two neighbors with no less than 2 edges
adjacent to this coalition.

g3 This game concerns weighted graphs (unlike g1 and g2). Here, the value of coalition C
depends on its size and on the set of all nodes within a cutoff distance of C, as measured
by the shortest path lengths on the weighted graph. For example, in Figure 2b, if the
cutoff is set to 8 then coalition {v2} has value 4 as it is able to influence 3 nodes v3,
v6, and v7 that are not further than 8 away from {v2}. The cutoff distance should be
interpreted here as a “radius” of the sphere of influence of any coalition.

5. See Section 5 for the exact definition of the error margin.
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Game Graph Value of a coalition C, i.e., ν(C) Complexity Accuracy
g1 UW ν(C) is the number of nodes in C and O(|V |+ |E|) exact

those immediately reachable from C

g2 UW ν(C) is the number of nodes in C and O(|V |+ |E|) exact
those immediately reachable from C,
but via at least k different edges

g3 W ν(C) is the number of nodes in C and O(|V ||E|+ |V |2log|V |) exact
those not further than dcutoff away

g4 W ν(C) is the sum of f(.)’s — the non- O(|V ||E|+ |V |2log|V |) exact
-increasing functions of the distance
between C and other nodes

g5 W ν(C) is the number of nodes in C and O(|V ||E|) approx.
those directly connected to C via edges ∼ 5-10%
which sum of weights exceeds Wcutoff

Table 1: Games considered in this paper and our results (UW denotes unweighted graphs
and W weighted).

g4 This game generalizes g3 by allowing the value of C to be specified by its size and an
arbitrary non-increasing function f(.) of the distance between C and the other nodes
in the network. For instance, the value of {v1, v3} in Figure 2b when our function is
f(d) = 1

1+d is 2 × 1 + 3 × 1
2 + 1 × 1

3 + 1 × 1
4 = 4 1

12 . The intuition here is that the
coalition has more influence on closer nodes than on those further away—a property
that cannot be expressed with the standard closeness centrality. Thus, g4 can be seen
as an extension of closeness centrality.

g5 The last game is an extension of g2 to the case of weighted networks. Here, the value
of C depends on the adjacent nodes that are connected to the coalition with weighted
edges whose sum exceeds a given threshold wcutoff (recall that in g2 this threshold is
defined simply by the integer k). Whereas in g3 and g4 weights on edges are interpreted
as distance, in g5 they should be interpreted as a power of influence. For example, in
Figure 2b, when the threshold for each vertex is 5, the value of coalition {v1, v3} is 3
because this coalition of size two has only enough power to influence one additional
node v2.

The computation of the Shapley value for each of the above five games (see Table 1 for an
overview) will be the main focus of the paper. These Shapley values are extensions of either
degree or closeness centrality metrics and their applications are all those settings in which
the influence of nodes on other nodes in the network has to be evaluated. Our results can
be summarized as follows:

• We demonstrate that it is possible to exactly and efficiently compute a number of
Shapley value-based network centrality measures. Our methods take advantage of both
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the network structure, as well as the specifics of the underlying game defined over a
network.

• For the first four games, we derive closed-form expressions for the Shapley values.
Based on these, we provide exact linear and polynomial-time algorithms that efficiently
compute the Shapley values, i.e., without the need to enumerate all possible coalitions.
Specifically, our algorithms run in O(|V | + |E|) for g1 and g2 and in O(|V ||E| +
|V |2log|V |) for g3 and g4. Furthermore, for the fifth measure of centrality, we develop a
closed-form polynomial time computable Shapley value approximation. This algorithm
has running time O(|V ||E|) and our experiments show that its approximation error
is about 5% for large networks. The summary of our algorithms’ performance can be
found in Table 1.

• We evaluate our algorithms on two real-life examples: an infrastructure network rep-
resenting the topology of the Western States Power Grid and a collaboration network
from the field of astrophysics. The results show that our algorithms deliver significant
speedups over Monte Carlo simulations. For instance, given the unweighted network of
Western States Power Grid, our algorithms return the exact Shapley value for g1 and
g2 about 1600 times faster than the Monte Carlo method returns an approximation
with the 10% error margin.

The remainder of the paper is organized as follows. In Section 2 we discuss related work.
Notation and preliminary definitions are presented in Section 3. In Section 4 we analyse the
five types of centrality-related coalitional games and propose polynomial time Shapley value
algorithms for all of them. The results of numerical simulations are presented in Section 5
(with some details on the simulation setup presented in Appendix A). Conclusions and future
work follow. Finally, Appendix B provides a summary of the key notational conventions.

2. Related Literature

The issue of centrality is one of the fundamental research directions in the network analysis
literature. In particular, Freeman (1979) was the first to formalise the notion of centrality by
presenting the conventional centrality measures: degree, closeness and betweenness. Many
authors have subsequently worked on developing new centrality measures, or refining existing
ones (e.g., Bonacich, 1972; Noh & Rieger, 2004; Stephenson & Zelen, 1989), and developing
algorithms for efficient centrality computation (e.g., Brandes, 2001; Eppstein &Wang, 2001).
In this context, Grofman and Owen (1982) were the first to apply game theory to the topic
of centrality, where they focused on the Banzhaf power index (Banzhaf, 1965). In a follow-
up work, Gómez et al. (2003) combined Myerson’s (1977) idea of graph-restricted games
(in which each feasible coalition is induced by a subgraph of a graph) with the concept of
centrality and proposed new Shapley value-based network centrality measures. In contrast
to Gómez et al., Suri and Narahari (2008, 2010) assumed all coalitions to be feasible, which
is the approach we also adopt in this paper.

The fundamental problem with the conventional models of coalitional games, i.e., their ex-
ponential complexity in the number of agents, that we tackle in this paper, has been also
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Figure 3: The Induced-subgraph representation of a sample coalitional game of 3 players. In
this game, values of coalitions {v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, and {v1, v2, v3}
are 1, 1, 1, 1+1+2, 1+1+3, 1+1+4, and 1+1+1+2+3+4, respectively.

studied in the literature on algorithmic aspects of coalitional games. Indeed, since the sem-
inal work of Deng and Papadimitriou (1994), this issue has received considerable attention
from computer scientists. Specifically, as an alternative to the straightforward (but expo-
nential) listing of all possible coalitions, a number of authors have proposed more efficient
representations for coalitional games. Such representations fall into two main categories
(Wooldridge & Dunne, 2006):

• Those that give the characteristic function a specific interpretation in terms of com-
binatorial structures such as graphs. This is the approach adopted by, for instance,
Deng and Papadimitriou (1994), Greco, Malizia, Palopoli, and Scarcello (2009), and
Wooldridge and Dunne (2006) and its advantage is that the ensuing representation is
always guaranteed to be succinct. However, the disadvantage is that it is not always
fully expressive, i.e., it cannot represent all coalitional games.

• Those that try to find a succinct, but still fully expressive, representation. This is, for
instance, the approach adopted by Conitzer and Sandholm (2004), Ieong and Shoham
(2005), and Elkind, Goldberg, Goldberg, and Wooldridge (2009). These representa-
tions are more general in that they completely capture all coalitional games of interest,
although they are not always guaranteed to be succinct.

Unfortunately, even for some succinctly representable games, computing the Shapley value
has been shown to be NP-Hard (or even worse, #P-Complete) for many domains, includ-
ing weighted voting games (Deng & Papadimitriou, 1994), threshold network flow games
(Bachrach & Rosenschein, 2009) and minimum spanning tree games (Nagamochi, Zeng,
Kabutoya, & Ibaraki, 1997). Similarly, Aziz, Lachish, Paterson, and Savani (2009a) ob-
tained negative results for a related problem of computing the Shapley-Shubik power index
for the spanning connectivity games that are based on undirected, unweighted multigraphs.
Also, Bachrach, Rosenschein, and Porat (2008b) showed that the computation of the Banzhaf
index for connectivity games, in which agents own vertices and control adjacent edges and
aim to become connected to the certain set of primary edges, is #P-Complete.

Fortunately, some positive results have also been discovered. Probably the most known
among these are due to Deng and Papadimitriou (1994) and Ieong and Shoham (2005). In
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more detail, Deng and Papadimitriou proposed a representation based on weighted graphs,
where a node is interpreted as an agent, and the weight of an edge is interpreted as the value
of cooperation between the two agents that are connected by this edge.6 The value of any
coalition is then defined as the sum of weights of all its internal edges, or, in other words,
the weights of edges belonging to a subgraph induced by members of the coalition. A three-
player example of this formalism, called the induced-subgraph representation, can be found
in Figure 3. The downside of this representation is that it is not fully expressive. However,
the upside is that, for games that can be formalised as weighted graphs, this representation
is always concise. Furthermore, it allows the Shapley value to be computed in time linear
in the number of players. Specifically, in this case, the Shapley value is given by the the
following formula:

Shapley Value(vi) = vi’s self-loop weight +
∑

vj∈neighbours of vi

weight of edge from vi to vj
2

. (1)

Ieong and Shoham (2005) developed a representation consisting of a finite set of logical rules
of the following form: Boolean Expression → Real Number, with agents being the atomic
boolean variables. In this representation, the value of a coalition is equal to the sum of
the right sides of those rules whose left sides are satisfied by the coalition. This represen-
tation, called marginal contribution networks (or MC-Nets for short) is (i) fully expressive
(i.e., it can be used to model any game), (ii) exponentially more concise for some games,
and most importantly, (iii) allows the Shapley value to be computed in time linear in the
size of the representation, provided the boolean expressions in all rules are conjunctions
of (either positive or negative) atomic literals. In MC-Nets, the rules have an interesting
game-theoretic interpretation, as each rule directly specifies an incremental marginal con-
tribution made by the agents featured in that rule. Now, using the additivity axiom met
by the Shapley value, it is possible to consider every rule as a separate “simple” game, then
using other axioms straightforwardly compute the Shapley value for this “simple” game,
and, finally, sum up the results for all “simple” games to obtained the Shapley value. Build-
ing on this, Elkind et al. (2009) developed extensions of MC-Nets to more sophisticated
(read-once) boolean expressions, while Michalak, Marciniak, Samotulski, Rahwan, McBur-
ney, Wooldridge, and Jennings (2010a), Michalak, Rahwan, Marciniak, Szamotulski, and
Jennings (2010b) developed generalizations to coalitional games with externalities. Another
recently proposed representation formalism for coalitional games that allows for polynomial
calculations of the Shapley value are decision diagrams (Bolus, 2011; Aadithya, Michalak, &
Jennings, 2011; Sakurai, Ueda, Iwasaki, Minato, & Yokoo, 2011). Now, while MC-Nets offer
a fully-expressive representation that works for arbitrary coalitional games, it is possible to
speed up the Shapley value computation by focusing on specific (not necessarily fully expres-
sive) classes of games. One particular class of games that has been investigated in detail is
weighted voting, for which both approximate (but strictly polynomial) (Fatima, Wooldridge,
& Jennings, 2007) and exact (but pseudo-polynomial) algorithms (Mann & Shapley, 1962;
Matsui & Matsui, 2000) have been proposed. Chalkiadakis, Elkind, and Wooldridge (2011)
provided a comprehensive discussion of this literature.

6. Also self-loops are allowed.
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Whereas the choice of representation has been the foremost consideration for efficient Shap-
ley value computation in the context of conventional coalitional games, in this paper, we
face a rather different set of challenges:

• Unlike conventional coalitional games, conciseness is usually not an issue in the net-
works context. This is because the games that aim to capture network centrality
notions are completely specified by (a) the underlying network compactly represented
as a graph, and (b) a concise closed-form characteristic function expression for eval-
uating coalition values (see the next section for an example). Rather, the issue here
is that the exact specification for the characteristic function is dictated not by com-
putational considerations, but by the real-world application of game theoretic network
centrality. In other words, the choice of representation for Shapley value computation
is already fixed by the centrality under consideration.

• Because the games in this paper are designed to reflect network centrality, the charac-
teristic function definition often depends in a highly non-trivial way on the underlying
graph structure. Specifically, the value assigned by the characteristic function to each
subset of nodes depends not just on the subgraph induced by those nodes, but also on
the relationship between that subgraph and the rest of the network. For example, the
value assigned to a coalition of nodes may be based on the shortest path lengths to
nodes outside the coalition, or it may depend on the relationship between the coalition
and its neighbors.

Therefore, the specific challenge we tackle is to efficiently compute the Shapley value, given
a network and a game defined over it, where coalition values for this game are given by a
closed-form expression that depends non-trivially on the network. The key question here
is how to take advantage of (a) the network structure, and (b) the functional form for
the coalition values, so as to compute Shapley values efficiently, i.e., without the need to
enumerate all possible coalitions.

Finally, we conclude this section by mentioning that the Shapley value or other solution con-
cepts from game theory have been applied to other network-related problems. For instance,
the application of the Shapley value (and the Nucleolus) to the problem of cost allocation
in the electric market transmission system was considered by Zolezzi and Rudnick (2002),
though the computational aspects were not discussed. The problem of maximizing the prob-
ability of hitting a strategically chosen hidden virtual network by placing a wiretap on a
single link of a communication network was analysed by Aziz, Lachish, Paterson, and Savani
(2009b). This problem can be viewed as a two-player win-lose (zero-sum) game, a wiretap
game. The authors not only provide polynomial-time computational results for this game,
but also show that one of the (key) strategies is the nucleolus of the simple cooperative
spanning connectivity game (Aziz et al., 2009a) mentioned above.

3. Preliminaries and Notation

In this section we formally introduce the basic concepts from graph theory and cooperative
game theory used throughout the paper. We then look more closely into a sample coalitional
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game defined over a network and into how the Shapley value of this game can be used as a
centrality measure.

A graph (or network) G consists of vertices (or nodes) and edges, sets of which will be
denoted V (G) and E(G), respectively. Every edge from set E(G) connects two vertices in
set V (G).7 By (u, v) we will denote the edge connecting vertices u, v ∈ V (G). The number
of edges incident to a vertex is called a vertex degree. The neighboring vertices of v ∈ V
are all vertices connected to v in the graph. For a weighted network a weight (label) is
associated with every edge in E(G). A path is, informally, a sequence of connected edges.
The shortest path problem is to find a path between two given vertices in which the sum of
edge weights is minimized.

We now formalize the notions of coalitional games and the Shapley value. Specifically, let
us denote by A = {a1, . . . , a|A|} the set of players that participate in a coalitional game. A
characteristic function ν :→ R assigns to every coalition C ⊆ A a real number representing
the quality of its performance, where it is assumed that ν(∅) = 0. A characteristic function
game is then a tuple (A, ν). Assuming that the grand coalition, i.e., the coalition of all
the agents in the game, has the highest value and is formed, one of the key questions in
coalitional game theory is how to distribute the gain from cooperation among the agents
so as to meet certain normative/positive criteria. To this end, Shapley (1953) proposed to
evaluate the role of each agent in the game by computing a weighted average of marginal
contributions of that agent to all possible coalitions he can belong to. The importance of
the Shapley value stems from the fact that it is the unique division scheme that meets four
desirable criteria:

(i) efficiency — all the wealth available to the agents in the grand coalition is distributed
among them;

(ii) symmetry — the payoffs to agents do not depend on their identity;

(iii) null player — agents with zero marginal contributions to all coalitions receive zero
payoff; and

(iv) additivity — values of two games sum up to the value computed for the sum of both
games.

In order to formalize this concept, let π ∈ Π(A) denote a permutation of agents in A, and
let Cπ(i) denote the coalition made of all predecessors of agent ai in π. More formally, if we
denote by π(j) the location of aj in π, then: Cπ(i) = {aj ∈ π : π(j) < π(i)}. The Shapley
value of ai, denoted SVi(ν), is then defined as the average marginal contribution of ai to
coalition Cπ(i) over all π ∈ Π (Shapley, 1953):

SVi(ν) =
1

|A|!
∑
π∈Π

[ν(Cπ(i) ∪ {ai})− ν(Cπ(i))]. (2)

7. Whereas our main focus in this paper is undirected graphs, we will also show how our results can be
readily extended to the case of directed graphs.
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Shapley provides the following intuition behind this formula: imagine that the players are
to arrive at a meeting point in a random order, and that every player ai who arrives receives
the marginal contribution that his arrival would bring to those already at the meeting point.
Now if we average these contributions over all the possible orders of arrival, we obtain SVi(ν),
ai’s payoff in the game.

The formula in (2) can also be stated in the equivalent, but computationally less involved,
form:

SVi(ν) =
∑

C⊆A\{ai}

|C|!(|A| − |C| − 1)!

|A|!
[ν(C ∪ {ai})− ν(C)]. (3)

In our network context, we will use G to define a coalitional game (V (G), ν) with set of
agents A = V (G) and characteristic function ν. Here the agents of the coalitional game are
the vertices of the graph G. Thus, a coalition of agents C is simply any subset of V (G).
Furthermore, the characteristic function ν : 2V (G) → R can be any function that depends
on the graph G as long as it satisfies the condition ν(∅) = 0. We use the phrase “value of
coalition C” to informally refer to ν(C).

We will first consider a sample characteristic function game defined over a network, as well
as its Shapley value that becomes a centrality measure. We will then discuss the advantages
of the game theoretic network centrality over conventional measures.

In more detail, consider the notion of “closeness centrality” of a node in a graph G(V,E),
which is traditionally defined as the reciprocal of the average distance of that node from
other (reachable) nodes in the graph (Koschützki et al., 2005). This definition captures the
intuitive idea that a node “in close proximity to many other nodes” is more valuable by
virtue of its central location, and hence should be assigned a higher centrality score.

The above measure, however, fails to recognize the importance of combinations of nodes. For
example, consider a typical application of closeness centrality: that of disseminating a piece
of information to all nodes in the network. At any time point t in the dissemination process,
define the random variable Ct to be the subset of nodes actively involved in propagating the
information. In this situation, a new node added to Ct would make maximum contribution
to the diffusion of information only if it is “in close proximity to nodes that are not currently
in close proximity to any node in Ct”. Thus, while conventional closeness centrality only
takes into account average proximity to all other nodes, the actual importance of a node in
actual applications is based on a very different measure: proximity to nodes that are not in
close proximity to the random variable Ct.

We now show how coalitional game theory can be used to construct a centrality measure
that more faithfully models the above situation. Let C be an arbitrary subset of nodes from
the given network G(V,E). Then, for every such C, assign a value ν(C) given by

ν(C) =
∑

v∈V (G)

1

1 + min{d(u, v)|u ∈ C}
,

where d(u, v) is the distance between nodes u and v (measured as the shortest path length
between u and v in graph G).
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The map ν defined above captures a fundamental centrality notion: that the intrinsic value
of a subset of nodes C in the context of such an application as information dissemination is
proportional to the overall proximity of the nodes in C to the other nodes in the network.
In effect, the map ν carries the original definition of closeness centrality to a global level,
where a measure of importance is assigned to every possible combination of nodes.

The map ν above is therefore a characteristic function for a coalitional game, where each
vertex of the network is viewed as an agent playing the game. It follows that if a node v has
a high Shapley value in this game, it is likely that v would “contribute more” to an arbitrary
randomly chosen coalition of nodes C in terms of increasing the proximity of C to other
nodes on the network. Thus, computing the Shapley values of this game yields a centrality
score for each vertex that is a much-improved characterization of closeness centrality.

The only difficulty in adopting such a game-theoretically inspired centrality measure is the
previously mentioned problem of exponential complexity in the number of agents. In the
next section, we show how to overcome this difficulty and compute the Shapley value for
many centrality applications (including the above formulation) in time polynomial in the
size of the network.

4. Algorithms for Shapley Value-Based Network Centrality

In this section, we present five characteristic function formulations ν(C), each designed to
convey a specific centrality notion. As already mentioned in the introduction, a common
element of all these formulations is that they aim to quantify, albeit in a different way, the
sphere of influence of the coalition C over the other nodes in the network. Specifically, in our
first game formulation, we start with the simplest possible idea that the sphere of influence
of a coalition of nodes C is the set of all nodes immediately reachable (within one hop) from
C. Subsequent games further generalize this notion. In particular, the second formulation
specifies a more sophisticated sphere of influence: one that includes only those nodes which
are immediately reachable in at least k different ways from C. The other three formulations
extend the notion of sphere of influence to weighted graphs. The third game defines sphere
of influence as the set of all nodes within a cutoff distance of C (as measured by shortest
path lengths on the weighted graph). The fourth formulation is an extreme generalization:
it allows the sphere of influence of C to be specified by an arbitrary function f(.) of the
distance between C and the other nodes. The final formulation is a straightforward extension
of the second game, to the case of weighted networks.

The relationships among all five games are graphically presented in Figure 4.

4.1 Game 1: ν1(C) = #agents at most 1 degree away

Let G(V,E) be an unweighted, undirected network. We first define the “fringe” of a subset
C ⊆ V (G) as the set {v ∈ V (G) : v ∈ C (or) ∃u ∈ C such that (u, v) ∈ E(G)}, i.e., the
fringe of a coalition includes all nodes reachable from the coalition in at most one hop.

Based on the fringe, we define the coalitional game g1(V (G), ν1) with respect to the network
G(V,E) by the characteristic function ν1 : 2V (G) → R given by
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Figure 4: Euler diagram showing the relationships among all five games considered in this
paper. Specifically, game g2 generalizes g1; g3 generalizes g1 and is further generalized by
g4; g5 generalizes g2. Finally, we note that there are certain instances of games that can be
represented as g3, g4 and g5.

ν1(C) =

{
0 if C = ∅
size(fringe(C)) otherwise.

.

The above game was applied by Suri and Narahari (2008) to find out influential nodes in
social networks and it was shown to deliver very promising results concerning the target
set selection problem (see Kempe, Kleinberg, & Tardos, 2003). It is therefore desired to
compute the Shapley values of all nodes for this game. We shall now present an exact
formula for this computation rather than obtaining it through Monte Carlo simulation as
was done by Suri and Narahari.

In more detail, to evaluate the Shapley value of node vi, consider all possible permutations
of the nodes in which vi would make a positive marginal contribution to the coalition of
nodes occurring before itself. Let the set of nodes occurring before node vi in a random
permutation of nodes be denoted Ci. Let the neighbours of node vi in the graph G(V,E)
be denoted NG(vi) and the degree of node vi be denoted degG(vi).

The key question to ask is: what is the necessary and sufficient condition for node vi to
“marginally contribute node vj ∈ NG(vi) ∪ {vi} to fringe(Ci)”? Clearly, this happens if and
only if neither vj nor any of its neighbours are present in Ci. Formally, (NG(vj)∪{vj})∩Ci =
∅.

Now we are going to show that the above condition holds with probability 1
1+degG(vj) .

Proposition 1. The probability that in a random permutation none of the vertices from
NG(vj) ∪ {vj} occurs before vi, where vi and vj are neighbours, is 1

1+degG(vj) .
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Algorithm 1: Computing the Shapley value for Game 1

Input: Unweighted graph G(V,E)
Output: Shapley values of all nodes in V (G) for game g1

foreach v ∈ V (G) do
SV[v] = 1

1+degG(v) ;
foreach u ∈ NG(v) do

SV[v] += 1
1+degG(u) ;

end
end
return SV;

Proof. We need to count the number of permutations that satisfy:

∀v∈(NG(vj)∪{vj})π(vi) < π(v). (4)

To this end:

• Let us choose |(NG(vj) ∪ {vj}| positions in the sequence of all elements from V . We
can do this in

( |V |
1+degG(vj)

)
ways.

• Then, in the last degG(vj) chosen positions, place all elements from (NG(vj)∪ {vj}) \
{vi}. Directly before these, place the element vi. The number of such line-ups is
(degG(vj))!.

• The remaining elements can be arrange in (|V | − (1 + degG(vj))! different ways.

All in all, the number of permutations satisfying condition (4) is:( |V |
1+degG(vj)

)
(degG(vj))!(|V | − (1 + degG(vj))! = |V |!

1+degG(vj) ;

thus, the probability that one of such permutations is randomly chosen is 1
1+degG(vj) .

Now, denote by Bvi,vj the Bernoulli random variable that vi marginally contributes vj to
fringe(Ci). From the above, we have:

E[Bvi,vj ] = Pr[(NG(vj) ∪ {vj}) ∩ Ci = ∅] =
1

1 + degG(vj)
.

Therefore, SVg1(vi), which is the expected marginal contribution of vi, is given by:

SVg1(vi) =
∑

vj∈{vi}∪NG(vi)

E[Bvi,vj ] =
∑

vj∈{vi}∪NG(vi)

1

1 + degG(vj)
, (5)
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which is an exact closed-form expression for computing the Shapley value of each node on
the network.

It is possible to derive some intuition from the above formula. If a node has a high degree,
the number of terms in its Shapley value summation above is also high. But the terms
themselves will be inversely related to the degree of neighboring nodes. This gives the
intuition that a node will have high centrality not only when its degree is high, but also
whenever its degree tends to be higher in comparison to the degree of its neighboring nodes.
In other words, power comes from being connected to those who are powerless, a fact that
is well-recognized by the centrality literature (e.g., Bonacich, 1987). Following the same
reasoning, we can also easily predict how dynamic changes to the network, such as adding
or removing an edge, would influence the Shapley value.8 Adding an edge between a powerful
and a powerless node will add even more power to the former and will decrease the power
of the latter. Naturally, removing an edge would have the reverse effect.

Interestingly, although game g1 is quite different from the induced-subgraph representation
of Deng and Papadimitriou (1994), the formula for SVg1(vi) is, to some extent, similar to
formula (1). In particular, in both cases, the Shapley value of a node depends solely on the set
of its immediate neighbours. Moreover, in both cases, it is a linear combination of fractions
involving in the numerator the weight of edges between the node and its neighbours.9 The
difference is in the denominators, where in our case it depends on the degree of the involved
nodes. We will see that the next two games considered in this paper yield comparable to g1

closed-form expressions for the Shapley value.

Algorithm 1 directly implements expression (5) to compute the exact Shapley values of all
nodes in the network. It cycles through all nodes and their neighbours, so its running time
is O(|V |+ |E|).

Finally, we note that Algorithm 1 can be adopted to directed graphs with a couple of simple
modifications. Specifically, in order to capture how many nodes we can access a given
node from, the degree of a node should be replaced with indegree. Furthermore, a set of
neighbours of a given node v should consist of those nodes to which an edge is directed from
v.

4.2 Game 2: ν2(C) = #agents with at least k neighbors in C

We now consider a more general game formulation for an unweighted graph G(V,E), where
the value of a coalition includes the number of agents that are either in the coalition or
are adjacent to at least k agents who are in the coalition. Formally, we consider game g2

characterised by ν2 : 2V (G) → R, where

ν2(C) =

{
0 if C = ∅
|{v : v ∈ C (or) |NG(v) ∩ C| ≥ k}| otherwise.

8. Many real-life networks are in fact dynamic and the challenge of developing fast streaming algorithms
has recently attracted considerable attention in the literature (Lee, Lee, Park, Choi, & Chung, 2012).

9. Note that in case of g1 the weight of any edge is 1.
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The second game is an instance of the General Threshold Model that has been widely studied
in the literature (e.g., Kempe et al., 2005; Granovetter, 1978). Intuitively, in this model
each node can become active if a monotone activation function reaches some threshold. The
instance of this problem has been proposed by Goyal, Bonchi, and Lakshmanan (2010), where
the authors introduced a method of learning influence probabilities in social networks (from
users’ action logs). However, in many realistic situations much less information is available
about a network so it is not possible to assess specific probabilities with which individual
nodes become active. Consequently, much simpler models are studied. Bikhchandani et al.
(1992), for instance, “consider a teenager deciding whether or not to try drugs. A strong
motivation for trying out drugs is the fact that friends are doing so. Conversely, seeing friends
reject drugs could help persuade the teenager to stay clean”. This situation is modelled by
the second game; the threshold for each node is k and the activation function is f(S) =
|S|. Another example is viral marketing or innovation diffusion analysis. Again, in this
application, it is often assumed that an agent will “be influenced” only if at least k of his
neighbors have already been convinced (Valente, 1996). Note that this game reduces to
game g1 for k = 1.

Adopting notation from the previous subsection, we again ask: what is the necessary and
sufficient condition for node vi to marginally contribute node vj ∈ NG(vi)∪{vi} to the value
of the coalition Ci?

Clearly, if degG(vj) < k, we haveE[Bvi,vj ] = 1 for vi = vj and 0 otherwise. For degG(nj) ≥ k,
we split the argument into two cases. If vj 6= vi, the condition for marginal contribution
is that exactly (k − 1) neighbors of vj already belong to Ci and vj /∈ Ci. On the other
hand, if vj = vi, the marginal contribution occurs if and only if Ci originally consisted of at
most (k − 1) neighbors of vj . So for degG(vj) ≥ k and vj 6= vi, we need to determine the
appropriate probability.

Proposition 2. The probability that in a random permutation exactly k−1 neighbours of vj
occur before vi, and vj occurs after vi, is:

1+degG(vj)−k
degG(vj)(1+degG(vj)) , where vj and vi are neighbors

and degG(vj) ≥ k.

Proof. We need to count the number of permutations that satisfy:

∃!K⊆NG(vj)

{
|K| = k − 1 ∧ ∀v∈K

{
π(v) < π(vi)

}
∧

∀v∈NG(vj)\K
{
π(vi) ≤ π(v)

}
∧ π(vi) < π(vj)

}
. (6)

To this end:

• Let us choose |(NG(vj) ∪ {vj}| positions in the sequence of all elements from V . We
can do this in

( |V |
1+degG(vj)

)
ways.

• Then, choose k− 1 elements from the set (NG(vj) \ {vi}. The number of such choices
is
(degG(vj)−1

k−1

)
.
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Algorithm 2: Computing the Shapley value for Game 2

Input: Unweighted graph G(V,E), positive integer k
Output: Shapley value of all nodes in V (G) for game g2

foreach v ∈ V (G) do
SV[v] = min(1, k

1+degG(v));
foreach u ∈ NG(v) do

SV[v] += max(0, degG(u)−k+1
degG(u)(1+degG(u)));

end
end
return SV;

• Then, in the first k − 1 chosen positions, place all elements chosen in previous step.
Directly after those, place the element vi, and then the remaining vertices chosen in
the first step. The number of such line-ups is (k − 1)!(1 + degG(vj)− k)!.

• The remaining elements can be arrange in (|V | − degG(vj)− 1)! different ways.

Taking all the above together, the number of permutations satisfying condition (6) is:( |V |
1+degG(vj)

)(
degG−1
k−1

)
(k − 1)!(1 + degG(vj)− k)!(|V | − degG(vj)− 1)! =

|V |!(1+degG(vj)−k)
degG(vj)(1+degG(vj)) ;

thus, the probability that one of such permutations is randomly chosen is 1+degG(vj)−k
degG(vj)(1+degG(vj)) .

Using Proposition 2 we obtain:

E[Bvi,vj ] =
1 + degG(vj)− k

degG(vj)(1 + degG(vj))
.

And for degG(vi) ≥ k and vj = vi, we have:

E[Bvi,vi ] =

k−1∑
n=0

1

1 + degG(vi)
=

k

1 + degG(vi)
.

As before, the Shapley values are given by substituting the above formulae into:

SVg2(vi) =
∑

vj∈NG(vi)∪{vi}

E[Bvi,vj ].

Although this game is a generalization of game g1, it can still be solved to obtain the Shapley
values of all nodes in O(|V |+ |E|) time, as formalised by Algorithm 2.
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An even more general formulation of the game is possible by allowing k to be a function
of the agent, i.e., each node vi ∈ V (G) is assigned its own unique attribute k(vi). This
translates to an application of the form: agent i is convinced if and only if at least ki of his
neighbors are convinced, which is a frequently used model in the literature (Valente, 1996).

The above argument does not use the fact that k is constant across all nodes. So this
generalized formulation can be solved by a simple modification to the original Shapley value
expression:

SV (vi) =
k(vi)

1 + degG(vi)
+

∑
vj∈NG(vi)

1 + degG(vj)− k(vj)

degG(vj)(1 + degG(vj))
.

The above equation (which is also implementable in O(|V |+ |E|) time) assumes that k(vi) ≤
1+degG(vi) for all nodes vi. This condition can be assumed without loss of generality because
all cases can still be modelled (we set k(vi) = 1 + degG(vi) for the extreme case where node
vi is never convinced no matter how many of its neighbors are already convinced).

Finally, we note that Algorithm 2 can be adapted to a case of directed graphs along the
same lines as Algorithm 1.

4.3 Game 3: ν3(C) = #agents at most dcutoff away

Hitherto, our games have been confined to unweighted networks. But in many applications,
it is necessary to model real-world networks as weighted graphs. For example, in the co-
authorship network mentioned in the introduction, each edge is often assigned a weight
proportional to the number of joint publications the corresponding authors have produced
(Newman, 2001).

This subsection extends game g1 to the case of weighted networks. Whereas game g1 equates
ν(C) to the number of nodes located within one hop of some node in C, our formulation
in this subsection equates ν(C) to the number of nodes located within a distance dcutoff of
some node in C. Here, distance between two nodes is measured as the length of the shortest
path between the nodes in the given weighted graph G(V,E,W ), where W : E → R+ is the
weight function.

Formally, we define game g3, where for each coalition C ⊆ V (G),

ν3(C) =

{
0 if C = ∅
size({vi : ∃vj ∈ C | distance(vi, vj) ≤ dcutoff }) otherwise.

Clearly, g3 can be used in all the settings where g1 is applicable; for instance, in the diffusion
of information in social networks or to analyse research collaboration networks (e.g., Suri &
Narahari, 2010, 2008). Moreover, as a more general game, g3 provides additional modelling
opportunities. For instance, Suri and Narahari (2010) suggest that a “more intelligent” way
for sieving nodes in the neighbourhood would improve their algorithm for solving the target
selection problem (top-k problem). Now, g3 allows us to define a different cutoff distance
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Algorithm 3: Computing the Shapley value for Game 3

Input: Weighted graph G(V,E,W ), dcutoff > 0
Output: Shapley value of all nodes in G for game g3

foreach v ∈ V (G) do
DistanceVector D = Dijkstra(v,G);
extNeighbors(v) = ∅; extDegree(v) = 0;
foreach u ∈ V (G) such that u 6= v do

if D(u) ≤ dcutoff then
extNeighbors(v).push(u);
extDegree(v)++;

end
end

end
foreach v ∈ V (G) do

SV[v] = 1
1+extDegree(v) ;

foreach u ∈ extNeighbors(v) do
SV[v] += 1

1+extDegree(u) ;
end

end
return SV;

for each node in Suri and Narahari’s setting. Furthermore, g3 is a specific case of the more
general model g4 which will be discussed in next subsection.

We shall now show that even this highly general centrality game g3 is amenable to analysis
which yields an exact formula for the Shapley value. However, in this case the algorithm
for implementing the formula is not linear in the size of the network, but has O(|V ||E| +
|V |2log|V |) complexity.

Before deriving the exact Shapley value formula, we introduce some extra notation. Define
the extended neighborhood NG(vj , dcutoff ) = {vk 6= vj : distance(vk, vj) ≤ dcutoff }, i.e., the
set of all nodes whose distance from vj is at most dcutoff . Denote the size of NG(vj , dcutoff )
by degG(vj , dcutoff ). With this notation, the necessary and sufficient condition for node vi
to marginally contribute node vj to the value of coalition Ci is: distance(vi, vj) ≤ dcutoff

and distance(vj , vk) > dcutoff ∀vk ∈ Ci. That is, neither vj nor any node in its extended
neighborhood should be present in Ci. From the discussion in previous subsections and
Proposition 1, we know that the probability of this event is exactly 1

1+degG(vj ,dcutoff ) . There-
fore, the exact formula for the Shapley value of node vi in game g3 is:

SVg3(vi) =
∑

vj∈{vi}∪NG(vi,dcutoff )

1

1 + degG(vj , dcutoff )
.

Algorithm 3 works as follows: for each node v in the networkG(V,E), the extended neighbor-
hood NG(v, dcutoff ) and its size degG(v, dcutoff ) are first computed using Dijkstra’s algorithm
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in O(|E|+ |V |log|V |) time (Cormen, 2001). The results are then used to directly implement
the above equation, which takes maximum time O(|V |2). In practice this step runs much
faster because the worst case situation only occurs when every node is reachable from every
other node within dcutoff . Overall the complexity is O(|V ||E|+ |V |2log|V |).

Furthermore, to deal with directed graphs we need to redefine the notion of extDegree and
extNeighbors for a given node u in Algorithm 3. The former will be the number of vertices
from which the distance to u is smaller than, or equal to, dcutoff . The latter will be the set
of nodes whose distance from u is at most dcutoff .

Finally, we make the observation that the above proof does not depend on dcutoff being
constant across all nodes. Indeed, each node vi ∈ V (G) may be assigned its own unique
value dcutoff (vi), where ν(C) would be the number of agents vi who are within a distance
dcutoff (vi) from C. For this case, the above proof gives:

SV (vi) =
∑

vj :distance(vi,vj)
≤dcutoff (vj)

1

1 + degG(vj , dcutoff (vj))
.

4.4 Game 4: ν4(C) =
∑

vi∈V (G) f(distance(vi, C))

This subsection further generalizes game g3, again taking motivation from real-life network
problems. In game g3, all agents at distances dagent ≤ dcutoff contributed equally to the
value of a coalition. However, this assumption may not always hold true because in some
applications we intuitively expect agents closer to a coalition to contribute more to its value.
For instance, we expect a Facebook user to exert more influence over his immediate circle
of friends than over “friends of friends”, even though both may satisfy the dcutoff criterion.
Similarly, we expect a virus-affected computer to infect a neighboring computer more quickly
than a computer two hops away.

In general, we expect that an agent at distance d from a coalition would contribute f(d) to
its value, where f(.) is a positive valued decreasing function of its argument. More formally,
we define game g4, where the value of a coalition C is given by:

ν4(C) =

{
0 if C = ∅∑

vi∈V (G) f(d(vi, C)) otherwise,

where d(vi, C) is the minimum distance: min{distance(vi, vj)|vj ∈ C}.

We note that it is possible to solve for the Shapley value in the above formulation by
constructing an MC-Nets representation (see Section 2 for more details on this formalism).
Indeed, the combinatorial structure of networks is to a certain extent similar to the structure
of MC-Nets. Consequently, the existence of a polynomial algorithm to compute the Shapley
value for MC-Nets strongly suggests that polynomial algorithms could be developed for
games defined over networks. Our results in this paper demonstrate that this is indeed
the case. However, it should be underlined that our approach to compute the Shapley
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value is different from that applied in MC-Nets. This is because in our solutions we focus
on computing the expected contribution of every node in a random permutation of nodes
and not on disaggregating the game into a collection of “simple”, easily solvable, games
as it is done in MC-Nets. The difference in both approaches is clearly visible in the case
of g3. Here, the MC-Nets would have O(|V |3) rules, whereas in the discussion below, we
propose a more efficient algorithm for g3 that runs in O(|V ||E| + |V |2log|V |). This is a
considerable improvement because most real-world networks are sparse, i.e., E ∼ O(|V |)
(Reka & Barabási, 2002).

In the case of g3, the key question to ask is: what is the expected value of the marginal
contribution of vi through node vj 6= vi to the value of coalition Ci? Let this marginal
contribution be denoted MC(vi, vj). Clearly:

MC(vi, vj) =

{
0 if distance(vi, vj) ≥ d(vj , Ci)

f(distance(vi, vj))− f(d(vj , Ci)) otherwise.

Let Dvj = {d1, d2...d|V |−1} be the distances of node vj from all other nodes in the network,
sorted in increasing order. Let the nodes corresponding to these distances be {w1, w2...w|V |−1},
respectively. Let kij + 1 be the number of nodes (out of these |V | − 1) whose distances to
vj are ≤ distance(vi, vj). Let wkij+1 = vi (i.e., among all nodes that have the same distance
from vj as vi, vi is placed last in the increasing order).

We use literal wi to mean wi ∈ Ci and the literal wi to mean wi /∈ Ci. Define a sequence
of boolean variables pk = vj ∧ w1 ∧ w2 ∧ ... ∧ wk for each 0 ≤ k ≤ |V | − 1. Finally denote
expressions of the form MC(vi, vj |F ) to mean the marginal contribution of vi to Ci through
vj given that the coalition Ci satisfies the boolean expression F .

MC(vi, vj |pkij+1 ∧ wkij+2) = f(dkij+1)− f(dkij+2),

MC(vi, vj |pkij+2 ∧ wkij+3) = f(dkij+1)− f(dkij+3),

...
...

...
MC(vi, vj |p|V |−2 ∧ w|V |−1) = f(dkij+1)− f(d|V |−1),

MC(vi, vj |p|V |−1) = f(dkij+1).

With this notation, we obtain expressions forMC(vi, vj) by splitting over the abovemutually
exclusive and exhaustive (i.e., covering all possible non-zero marginal contributions) cases.

Now, we need to determine the probability of Pr(pk ∧ wk+1).

Proposition 3. The probability that in a random permutation none of the nodes from
{vj , w1, . . . , wk} occur before vi and the node wk+1 occurs before vi is 1

(k+1)(k+2) .

Proof. Let us count the number of permutations that satisfy:

∀v∈{vj ,w1,...,wk}π(vi) < π(v) ∧ π(vi < π(wk+1). (7)

To this end:
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• Let us choose |{vj , w1, . . . , wk}∪{vj}∪{wk+1}| positions in the sequence of all elements
from V . We can do this in

( |V |
k+3

)
ways.

• Then, in the last k + 1 chosen positions, we place all elements from {vj , w1, . . . , wk}.
Directly before these, we place the element vi, and then vertex wk+1 . The number of
such line-ups is (k + 1)!.

• The remaining elements can be arrange in (|V | − (k + 3)! different ways.

Thus, the number of permutations satisfying (7) is:( |V |
k+3

)
(k + 1)!(|V | − (k + 3))! = |V |!

(k+1)(k+2) ,

and the probability that one of such permutations is randomly chosen is 1
(k+1)(k+2) .

With the above proposition we find that:

Pr(pk ∧ wk+1)
1

(k + 1)(k + 2)
∀ 1 + kij ≤ k ≤ |V | − 2.

Using the MC(vi, vj) equations and the probabilities Pr(pk ∧ wk+1):

E[MC(vi, vj)] =

 |V |−2∑
k=1+kij

f(distance(vi, vj))− f(dk+1)

(k + 1)(k + 2)

+
f(distance(vi, vj))

|V |

=
f(distance(vi, vj))

kij + 2
−
|V |−2∑
k=kij+1

f(dk+1)

(k + 1)(k + 2)
.

For vi = vj , a similar analysis produces:

E[MC(vi, vi)] = f(0)−
|V |−2∑
k=0

f(dk+1)

(k + 1)(k + 2)
.

Finally the exact Shapley value is given by:

SVg4(vi) =
∑

vj∈V (G)

E[MC(vi, vj)].

Algorithm 4 implements the above formulae. For each vertex v, a vector of distances to
every other vertex is first computed using Dijkstra’s algorithm (Cormen, 2001). This yields
a vector Dv that is already sorted in increasing order. This vector is then traversed in
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Algorithm 4: Computing the Shapley value for Game 4

Input: Weighted graph G(V,E,W ), function f : R+ → R+

Output: Shapley value of all nodes in G for game g4

Initialise: ∀v ∈ V (G) set SV[v] = 0;
foreach v ∈ V (G) do

[Distances D, Nodes w] = Dijkstra(v,G);
sum = 0; index = |V|-1; prevDistance = -1, prevSV = -1;
while index > 0 do

if D(index) == prevDistance then
currSV = prevSV;

else
currSV = f(D(index))

1+index − sum;
end
SV[w(index)] += currSV;
sum += f(D(index))

index(1+index) ;
prevDistance = D(index), prevSV = currSV;
index--;

end
SV[v] += f(0) − sum;

end
return SV;

reverse, to compute the backwards cumulative sum
∑ f(dk+1)

(k+1)(k+2) . At each step of the back-
ward traversal, the Shapley value of the appropriate node w is updated according to the
E[MC(w, v)] equation. After the traversal, the Shapley value of v itself is updated according
to the E[MC(v, v)] equation. This process is repeated for all nodes v so that at the end of
the algorithm, the Shapley value is computed exactly in O(|V ||E|+ |V |2log|V |) time.

Our final observation is that Algorithm 4 works also for directed graphs as long as we use
the appropriate version of Dijkstra’s algorithm (see, e.g., Cormen, 2001).

4.5 Game 5: ν5(C) = #agents with
∑

(weights inside C) ≥Wcutoff (agent)

In this subsection, we generalize game g2 for the case of weighted networks. Given a positive
weighted network G(V,E,W ) and a value Wcutoff (vi) for every node vi ∈ V (G), we first
define W (vj , C) =

∑
vi∈CW (vj , vi) for every coalition C, where W (vi, vj) is the weight of

the edge between nodes vi and vj (or 0 if there is no such edge). With this notation, we
define game g5 by the characteristic function:

ν5(C) =

{
0 if C = ∅
size({vi : vi ∈ C (or) W (vi, C) ≥Wcutoff (vi)}) otherwise.

630



Computation of the Shapley Value for Game-Theoretic Network Centrality

Algorithm 5: Computing the Shapley value for Game 5

Input: Weighted network G(V,E,W ), cutoffs Wcutoff (vi) for each vi ∈ V (G)
Output: Shapley value of all nodes in G for game g5

foreach vi ∈ V (G) do
compute and store αi and βi;

end
foreach vi ∈ V (G) do

SV[vi] = 0;
foreach m in 0 to degG(vi) do

compute µ = µ(Xii
m), σ = σ(Xii

m), p = Pr{N (µ, σ2) < Wcutoff (vi)};
SV[vi] += p

1+degG(vi)
;

end
foreach vj ∈ NG(vi) do

p = 0;
foreach m in 0 to degG(vj)− 1 do

compute µ = µ(Xij
m), σ = σ(Xij

m) and z = Zijm;
p += z

degG(vj)−m
degG(vj)(degG(vj)+1) ;

end
SV[vi] += p;

end
end
return SV;

The formulation above has applications in, for instance, the analysis of information diffu-
sion, adoption of innovations, and viral marketing. Indeed, many cascade models of such
phenomena on weighted graphs have been proposed (e.g., Granovetter, 1978; Kempe et al.,
2003; Young, 2006) which work by assuming that an agent will change state from “inactive”
to “active” if and only if the sum of the weights to all active neighbors is at least equal to
an agent-specific cutoff.

Although we have not been able to come up with an exact formula for the Shapley value in
this game10, our analysis yields an approximate formula which was found to be accurate in
practice.

In more detail, we observe that node vi marginally contributes node vj ∈ NG(vi) to the value
of coalition Ci if and only if vj /∈ Ci and Wcutoff (vj)−W (vi, vj) ≤W (vj , Ci) < Wcutoff (vj).
Let us denote by Bvi,vj the Bernoulli random variable corresponding to this event. We will
need the following additional notation:

• let NG(vj) = {vi, w1, w2...wdegG(vj)−1};

10. Computing the Shapley value for this game involves determining whether the sum of weights on specific
edges, adjacent to a random coalition, exceeds the threshold. This problem seems to be at least as hard
as computing the Shapley value in weighted voting games, which is #P-Complete (Elkind et al., 2009).
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• let the weights of edges between vj and each of the nodes in NG(vj) be Wj =
{W (vi, vj),W1,W2...WdegG(vj)−1} in that order;

• let αj be the sum of all the weights in Wj and βj be the sum of the squares of all the
weights in Wj ;

• let kij be the number of nodes of NG(vj) that occur before vi in Ci;

• let Xij
t be the sum of a t-subset of Wj \ {W (vi, vj)} drawn uniformly at random from

the set of all such possible t-subsets; and finally

• let Y ij
m be the event {kij = m ∧ vj /∈ Ci}.

Then:

E[Bvi,vj ] =

degG(vj)−1∑
m=0

Pr(Y ij
m ) Pr{Xij

m ∈ [Wcutoff (vj)−W (vi, vj),Wcutoff (vj))},

where Pr(Y ij
m ) is obtained from Proposition 2:

Pr(Y ij
m ) =

(
degG(vj)− 1

m

)
m! (degG(vj)−m)!

(degG(vj) + 1)!
=

degG(vj)−m
degG(vj)(degG(vj) + 1)

.

Evaluating Pr{Xij
m ∈ [Wcutoff (vj) −W (vi, vj),Wcutoff (vj))} is much more difficult because

the distribution of Xij
m is a complicated function of the degG(vj) − 1 numbers in Wj \

{W (vi, vj)}. However, we can obtain analytical expressions for the mean µ(Xij
m) and variance

σ2(Xij
m). These are given by:

µ(Xij
m) =

m

degG(vj)− 1
(αj −W (vi, vj))

σ2(Xij
m) =

m(degG(vj)− 1−m)

(degG(vj)− 1)(degG(vj)− 2)
(βj −W (vi, vj)

2 − (αj −W (vi, vj))
2

degG(vj)− 1
).

Knowing only the mean and variance (not the exact distribution) of Xij
m, we propose the

approximation:

Xij
m ∼ N (µ(Xij

m), σ2(Xij
m)),

where N (µ, σ2) denotes the Gaussian random variable with mean µ and variance σ2. This
approximation is similar to the randomised approach that has been proposed and tested by
Fatima et al. (2007).

With this approximation, we have:
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Zijm = Pr{Xij
m ∈ [Wcutoff (vj)−W (vi, vj),Wcutoff (vj))}

given by

Zijm ≈
1

2

[
erf

(
Wcutoff (vj)− µ(Xij

m)
√

2σ(Xij
m)

)
− erf

(
Wcutoff (vj)−W (vi, vj)− µ(Xij

m)
√

2σ(Xij
m)

)]
.

This allows us to write:

E[Bvi,vj ] =

degG(vj)−1∑
m=0

degG(vj)−m
degG(vj)(degG(vj) + 1)

Zijm.

The above equations are true only for vj 6= vi. For vj = vi we have:

E[Bvi,vi ] ≈
1

1 + degG(vi)

degG(vi)∑
m=0

Pr{N (µ(Xii
m), σ2(Xii

m)) < Wcutoff (vi)},

where
µ(Xii

m) =
m

degG(vi)
αi

and

σ2(Xii
m) =

m (degG(vi)−m)

degG(vi) (degG(vi)− 1)
(βi −

α2
i

degG(vi)
).

Finally the Shapley value of node vi is given by
∑

vj∈{vi}∪NG(vi)
E[Bvi,vj ].

While in each graph it holds that
∑

vi∈V (G) degG(vi) ≤ 2|E|, Algorithm 5 implements an
O(|V |+

∑
vi∈V (G)

∑
vj∈NG(vi)

degG(vj)) ≤ O(|V |+ |V ||E|) = O(|V ||E|) solution to compute
the Shapley value for all agents in game g5 using the above approximation.

Furthermore, we make the following observation: the approximation of the discrete random
variable Xij

m as a continuous Gaussian random variable is good only when degG(vj) is large.
For small degG(vj), one might as well use the brute force computation to determine E[Bvi,vj ]

in O(2degG(vj)−1) time.

As far as directed graphs are concerned, in all calculations in Algorithm 5 we have to consider
the indegree of a node instead of degree. Furthermore, the set of neighbours of a node u
should be defined as the set of nodes vi connected with directed edge (u, vi).
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5. Simulations

In this section we evaluate the time performance of our exact algorithms for games g1 to
g4 and our approximation algorithm for game g5. In more detail, we compare our exact
algorithms to the method of approximating the Shapley value via Monte Carlo sampling
which has been the only feasible approach to compute game-theoretic network centrality
available to date in the literature. First, we provide a detailed description of the simulation
setup; then, we present data sets and the simulation results.

5.1 Simulation Setup

There are a few approximation methods for the Shapley value that have been recently
proposed in literature. They can be divided into three groups—each referring to a specific
subclass of coalitional games under consideration:

1. First, let us consider the method proposed by Fatima et al. (2007) and elaborated
further by Fatima, Wooldridge, and Jennings (2008). This approach concerns weighted
voting games. In these games, each player has a certain number of votes (or in other
words, a weight). A coalition is “winning” if the number of votes in this coalition
exceeds some specific threshold, or “losing” otherwise. Fatima et al. propose the
following method to approximate the Shapley value in weighted voting games. Instead
of finding marginal contributions of players to all 2n coalitions, the authors consider
only n randomly-selected coalitions, one of each size (i.e., from 1 to n). Only for
these n coalitions are the player’s expected marginal contributions calculated and the
average of these contributions yields an approximation of the Shapley value. Whereas
Fatima et al. method is certainly attractive, it is only applicable to games in which the
value of a coalition depends on the sum of associated weights being in some bounds.
This is not the case for our games g1 to g4.11

2. Another method was proposed by Bachrach, Markakis, Procaccia, Rosenschein, and
Saberi (2008a) in the context of simple coalitional games 12 in which the character-
istic function is binary—i.e., each coalition has a value of either zero or one. For
these games, Bachrach et al. extend the approach suggested by Mann and Shapley
(1960) and provide more rigorous statistical analysis. In particular, Mann and Shapley
described the Monte Carlo simulations to estimate the Shapley value from a random
sample of coalitions. Bachrach at al. use this technique to compute the Banzhaf power
index and then they suggested using a random sample of permutations of all players
in order to compute the Shapley-Shubik index for simple coalitional games.13 The
computation of the confidence interval, which is crucial in such an approach, hinges
upon the binary form of the characteristic function for simple coalitional games. This

11. Recall that our approximation algorithm for g5 builds upon Fatima et al. method. This is because in
this game the marginal contribution of each node depends on the weights assigned to its incident edges.

12. Note that weighted voting games are simple coalitional games.
13. The Shapley-Shubik index is a very well-known application of the Shapley value that evaluates the power

of individuals in voting (Shapley & Shubik, 1954).
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Algorithm 6: Monte Carlo method to approximate the Shapley value

Input:

� Characteristic function v, maximum iteration maxIter

Output: Aproximation of Shapley value for game v

for vi ∈ V (G) do
SV[vi] = 0 ;

end
for i = 1 to maxIter do

shuffle(V (G));
Marginal Contribution block

P = ∅ ;
for vi ∈ V (G) do

SV[vi] += v(P ∪ {vi}) - v(P) ;
P = P ∪ {vi} ;

end

end
for vi ∈ V (G) do

SV[vi] =
SV[vi]
maxIter ;

end
return SV ;

method is more general than the one proposed by Fatima et al. (2007)—as weighted
voting games are a subset of simple coalitional games—but still it cannot be effectively
used for our games g1 to g4, where the characteristic functions are not binary.

3. Unlike the first two methods, the last method described by Castro et al. (2009) can
be efficiently applied to all coalitional games in characteristic function game form,
assuming that the worth of every coalition can be computed in polynomial time. Here,
approximating the Shapley value involves generating permutations of all players and
computing the marginal contribution of each player to the set of players occurring
before it. The solution precision increases (statistically) with every new permutation
analysed. Furthermore, the authors show how to estimate the appropriate size of a
permutation sample in order to guarantee a low error. Given its broad applicability,
this method is used in our simulations as a comparison benchmark.

In more detail, in a preliminary step, we test what is the maximum number of Monte
Carlo iterations that can be performed in a reasonable time for any given game. This
maximum number of iterations, denoted maxIter, becomes an input to Algorithm 6 for
Monte Carlo sampling. In this algorithm, in each one of the maxIter iterations, a random
permutation of all nodes is generated. Then, using a characteristic function from the set
ν ∈ {ν1, ν2, ν3, ν4, ν5}, it calculates the marginal contribution of each node to the set P
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of nodes occurring before a given node in a random permutation.14 Finally, the algorithm
divides the aggregated sum of all contributions for each node by the number of iterations
performed. The time complexity of this algorithm is O(maxIter ∗ con), where con denotes
the number of operations necessary for computing the Marginal Contribution block. This
block is specifically tailored to the particular form of the characteristic function of each of
the games g1 to g5. In particular, for game g1 (see Algorithm 6), it is constructed as follows.
Recall that, in this game, node vi makes a positive contribution to coalition P through itself
and through some adjacent node u under two conditions. Firstly, neither vi nor u are in P .
Secondly, there is no edge from P to vi or u. To check for these conditions in Algorithm 6
we store those nodes that have already contributed to the value of coalition P in an array
called: Counted. For each node vi, the algorithm iterates through the set of its neighbours
and for each adjacent node it checks whether this adjacent node is counted in the array
Counted. If not, the marginal contribution of the node vi is increased by one. In Appendix
A we describe the Marginal Contribution block for games g2, . . . , g5, respectively.15

Some details of how Algorithm 6 is applied to generate the Shapley value approximations for
games g1 to g4, for which we propose exact polynomial solutions, differ from g5, for which
we developed an approximate solution. Specifically, for games g1 to g4:

1. We use the exact algorithm proposed in this paper to compute the Shapley value.

2. Then, we run Monte Carlo simulations 30 times.16 In every run:

• We perform maxIter Monte Carlo iterations.
• After every five iterations, we compare the approximation of the Shapley value

obtained via Monte Carlo simulation with the exact Shapley value obtained with
our algorithm.
• We record the algorithm’s runtime and the error, where the error is defined as the

maximum discrepancy between the actual Shapley value and the Monte Carlo-
based approximation of the Shapley value.

3. Finally, we compute the confidence interval using all iterations (0.95% confidence
level).17

In the case of game g5 we cannot determine the exact Shapley value for larger networks.
Therefore, we performed two levels of simulation: one level on small networks and one level
on large networks. Specifically:

1. For small networks, we generate 30 random instances of weighted complete graphs
with 6 nodes (denoted K6) and the same number of graphs with 12 nodes (denoted

14. Recall that the characteristic functions v1, v2, . . . , v5 correspond to games g1, g2, . . . , g5, respectively.
15. The software package in C++ containing all our exact/approximation algorithms, as well as the Monte

Carlo approximation algorithms are available at www.tomaszmichalak.net.
16. For the purpose of comparison to our method, it suffices to use 30 iterations, as the standard errors

converge significantly to indicate the magnitude of the cost of using the Monte Carlo method.
17. Since for g4 each Monte Carlo iteration is relatively time consuming, we run it only once; thus, no

confidence interval is generated, i.e., the third step is omitted.
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K12) with weights drawn from a uniform distribution U(0, 1). Then, for each graph
and each of the two parameters Wcutoff (vi) = 1

4α(vi) and Wcutoff (vi) = 3
4α(vi):18

• We compute the exact Shapley value using formula (3).

• Then, we run our approximation algorithm and determine the error in our ap-
proximation.

• Finally, we run 2000 and 6000 Monte Carlo iterations for K6 and K12, respec-
tively.

2. For large networks, we again generate 30 random instances of weighted complete
graphs, but now with 1000 nodes (we denote them K1000). Then, for each graph
and each of the three parameters Wcutoff (vi) = 1

4α(vi), Wcutoff (vi) = 2
4α(vi), and

Wcutoff (vi) = 3
4α(vi)):

• We run our approximation algorithm for the Shapley value.

• Then, we run the fixed number (200000) of Monte Carlo iterations.

• Finally, we compute how the Monte Carlo solution converges to the results of our
approximation algorithm.

Having described the simulation setup, we will now discuss the data sets and, finally, the
simulation results.

5.2 Data Used in Simulations

We consider two networks that have already been well-studied in the literature. Specifically,
for games g1−g3 we present simulations on an undirected, unweighted network representing
the topology of the Western States Power Grid (WSPG).19 This network (which has 4940
nodes and 6594 edges) has been studied in many contexts before (see, for instance, Watts &
Strogatz, 1998) and is freely available online (see, e.g., http://networkdata.ics.uci.edu/
data.php?id=107). For games g3 − g5 (played on weighted networks), we used the network
of astrophysics collaborations (abbreviated henceforth APhC) between Jan 1, 1995 and
December 31, 1999. This network (which has 16705 nodes and 121251 edges) is also freely
available online (see, e.g., http://networkdata.ics.uci.edu/ data.php?id=13) and has
been used in previous studies like Newman (2001).

5.3 Simulation Results

The results presented in this section show that our exact algorithms are, in general, much
faster then the Monte Carlo sampling, and this is the case even if we allow for generous
error tolerance. Furthermore, requiring smaller Monte Carlo errors makes the Monte Carlo
runtime exponentially slower than our exact solution.

18. Recall that αj is the sum of all the weights in Wj as defined in Section 4.5.
19. Note that with the distance threshold dcutoff replaced with a hop threshold kcutoff , game g3 can be played

on an unweighted network.
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Figure 5: g1, WSPG (UW)
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Figure 6: g2, k = 2, WSPG (UW)
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Figure 7: g2, ki = degi
2 , WSPG (UW)
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Figure 8: g2, ki = 3
4 degi, WSPG (UW)

In more detail, the simulation results for game g1 are shown in Figure 5. The dotted line
shows the performance of our exact algorithm which needs 0.43ms to compute the Shapley
value. In contrast, generating any reasonable Monte Carlo result takes a substantially longer
time (the solid line shows the average and the shaded area depicts the confidence interval
for Monte Carlo simulations). In particular, it takes on average more than 200ms to achieve
a 20% error and more than 2000ms are required to guarantee a 5% error (which is more
than 4600 times slower than our exact algorithm).

Figures 6 - 8 concern game g2 for different values of k (k = 2, ki = degi
2 , and ki = 3

4 degi,
respectively, where degi is the degree of node vi).20 The advantage of our exact algorithm
over Monte Carlo simulation is again exponential.

Replacing the distance threshold dcutoff with a hop threshold kcutoff enables game g3 to be
played on an unweighted network. Thus, similarly to games g1 and g2, we test it on the
Western States Power Grid. The results are shown on Figures 9 and 10 for kcutoff being
equal to 2 and 3, respectively. The third game is clearly more computationally challenging
than g1 and g2 (note that the vertical axis is in seconds instead of milliseconds). Now,

20. Recall that in g2 the meaning of parameter k is as follows: the value of coalition C depends on the
number of nodes in the network with at least k neighbours in C.
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Figure 9: g3, kcutoff = 2, WSPG (UW)
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Figure 10: g3, kcutoff = 3, WSPG (UW)

our exact algorithm takes about 13s to complete. The much lower speedups of the exact
methods with respect to Monte Carlo approach stem from the fact that both algorithms
have to start with Dijkstra’s algorithm. Although this algorithm has to be run only once in
both cases it takes more than 12.5s for the considered network. This means that the exact
solution is slower by orders of magnitude (compared to games g1 and g2). The Monte Carlo
approach is also slower, but this slowdown is much less significant in relative terms.

Figures 11 and 12 show the performance of the algorithms for game g3 on the astrophysics
collaboration network that, unlike the Western States Power Grid, is a weighted network.
We observe that increasing the value of dcutoff (here from dcutoff =

davg
8 to dcutoff =

davg
4 )

significantly worsens the performance of the Monte Carlo-based algorithm. This is because
the increasing number of nodes that have to be taken into account while computing marginal
contributions (see the inner loop in Algorithm 8) is not only more time consuming, but also
increases the Monte Carlo error.

For game g4 the performance of algorithms is shown in Figures 13 - 15 (for f(d) = 1
1+d ,

f(d) = 1
1+d2

and f(d) = e−d, respectively). Whereas the Monte Carlo methods for the
first three games are able to achieve a reasonable error bound in seconds or minutes, for
the fourth game it takes more than 40 hours to approach 50% error. This is because the
inner loop of the Marginal Contribution block (see Algorithm 9) iterates over all nodes in
the network. Due to the time consuming performance we run the simulations only once.
Interestingly, we observe that the error of the Monte Carlo method sometimes increases
slightly when more iterations are performed. This confirms that the error of the Monte
Carlo method to approximate the Shapley value proposed in Castro et al. (2009) is only
statistically decreasing in time. Certain new randomly chosen permutations can actually
increase the error.

Figures 16, 17, 18 and 19 present comparisons of our approximation algorithm for game g5

against Monte Carlo sampling for small networks (for which the exact Shapley value can
be computed from the definition in formula (3)). In these figures, the horizontal dotted
line shows the running time of our solution, while the vertical dotted line shows its average
approximation error with the shaded area being the confidence interval. As previously, the
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Figure 11: g3, dcutoff =
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8 , APhC (W)
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Figure 12: g3, dcutoff =
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4 , APhC (W)
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Figure 13: g4, f(d) = 1
1+d , APhC (W)
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Figure 14: g4, f(d) = 1
1+d2

, APhC (W)
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Figure 15: g4, f(d) = e−d, APhC (W)

solid line shows the average, and the shaded area depicts the confidence interval for the
Monte Carlo simulations. We see in Figures 16, 17 and 18 that the approximation error
in our proposed algorithm is well-contained for small networks. Specifically, for K6 it is
about 10%; whereas for the bigger network K12 it is about 5%. However, we notice that, for
higher values of Wcutoff , the Monte Carlo method may slightly outperform our solution. See
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Figure 16: g5, Wcutoff = 1
4αi, K6 (W)
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Figure 17: g5, Wcutoff = 3
4αi, K6 (W),
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Figure 18: g5, Wcutoff = 1
4αi, K12 (W)
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Figure 19: g5, Wcutoff = 3
4αi, K12 (W)

in Figure 17 how the average approximation error of the Monte Carlo sampling achieved in
0.38ms is lower than the average error achieved by our method. Already for K12 this effect
does not occur (see Figure 19).

For large networks, where the exact Shapley value cannot be obtained, we are naturally
unable to compute exact approximation error. We believe that this error may be higher
than the values obtained for K6 and K12. However, the mixed strategy, that we discussed
in Section 4 and that uses our approximation only for large degree vertices, should work
towards containing the error within practical tolerance bounds. As far as we believe that
Monte Carlo gives good results, from Figure 20, we can infer that our approximation solution
for large networks gives good results (within 5%) and is at least two times faster than the
Monte Carlo algorithm.

To summarise, our exact solutions outperform Monte Carlo simulations even if relatively
wide error margins are allowed. However, this is not always the case for our approximation
algorithm for game g5. Furthermore, it should be underlined that if the centrality metrics
under consideration cannot be described with any of the games g1 to g4 for which exact
algorithms are now available, then Monte Carlo simulations are still a viable option.
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6. Conclusions and Future Work

The key finding of this paper is that the Shapley value for many centrality-related cooperative
games of interest played on networks can be solved analytically. The resulting algorithms
are not only error-free, but also run in polynomial time and, in practice, are much faster
than Monte Carlo methods. Approximate closed-form expressions and algorithms can also
be constructed for some classes of games played on weighted networks. Simulation results
show that these approximations are acceptable for a range of situations.

There are a number of directions for future work. On one hand, the Shapley value-based
extensions of other centrality notions, that suit particular applications, can be developed. As
a step in this direction, the first study of the Shapley value-based betweenness centrality has
been recently presented by Szczepański, Michalak, and Rahwan (2012). On the other hand,
it would be interesting to analyze what other coalitional games defined over a network would
better reflect centrality of nodes in certain real-life applications. In this spirit, recent works of
del Pozo, Manuel, González-Arangüena, and Owen (2011) and Amer, Giménez, and Magana
(2012) focus on generalized coalitional games in which the order of agents forming coalitions
matter. Nevertheless, there are still other classes of coalitional games, such as games with
either positive or negative externalities (Yi, 1997), that have been extensively studied in
game theory and that may yield interesting results when applied to network centrality.
Another interesting application for which a new class of coalitional games defined over a
network could be developed is the problem of influence maximization, already mentioned in
the introduction.

It is also interesting to analyse the properties of game-theoretic network centralities con-
structed on solution concepts from cooperative game theory other than the Shapley value.
In particular, if the game defined over a network belongs to the class of simple coalitional
games (i.e., with a binary characteristic function) then the Banzhaf power index (Banzhaf,
1965) could be also used as a centrality metric. Otherwise, more general solution concepts
such as the core (Osborne & Rubinstein, 1994) or the nucleolus (Schmeidler, 1969) could be
applied.
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Ultimately, it would be interesting to develop a more formal and general approach that
would allow us to construct coalitional games defined over networks that correspond to
other known centrality metrics or even entire families of them.21 Such an approach would
involve developing a group centrality first and then building a characteristic function of
a coalitional game upon it. Of course, while developing new centrality metrics based on
coalitional games, one should keep in mind computational the properties of the proposed
solutions. Although we were able to obtain satisfactory computational results for the games
considered in this paper, the computation of the game-theoretic network centrality may
become much more challenging for more complex definitions of the characteristic function.
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Appendix A. Marginal Contribution Blocks for Algorithm 6 for g2-g5

Algorithm 7: Marginal Contribution block of Algorithm 6 for g2

Counted ← false ;
Edges ← 0 ;
foreach vi ∈ V (G) do

foreach u ∈ NG(vi) ∪ {vi} do
Edges[u]++ ;
if !Counted[u] and ( Edges[u] ≥ k[u] or u = vi ) then

SV[vi]++ ;
Counted[u] = true ;

end
end

end

For each of the games considered in our paper the Marginal Contribution block of Al-
gorithm 6 takes a slightly different form. In the main text we explained the functioning of
this block for g1. In this appendix, we discuss this block for the remaining four games. In
particular:

g2: Here, node vi makes a positive contribution to a coalition P both through itself and
through some adjacent node u also under two conditions. Firstly, neither vi nor u are

21. We thank an anonymous reviewer for this suggestion.
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Algorithm 8: Marginal Contribution block of Algorithm 6 for g3

Counted ← false ;
foreach vi ∈ V (G) do

foreach u ∈ extNeighbors(vi) ∪ {vi} do
if !Counted[u] then

SV[vi]++ ;
Counted[u] = true ;

end
end

end

Algorithm 9: Marginal Contribution block of Algorithm 6 for g4

dist ← infinity ;
foreach vi ∈ V (G) do

foreach u ∈ V (G) do
if D[u] < dist[u] then

SV[vi] += f(D[u]) - f(dist[u]) ;
dist[u] = D[u] ;

end
end
SV[vi] += f(dist[u]) - f(0) ;
dist[vi] = 0 ;

end

in P . Secondly, there is less than k edges from P to vi and there is exactly k−1 edges
from P to u. In order to check the first condition in Algorithm 7 we use the array
Counted, and to check the second one, we use the array Edges. For each node vi,
the algorithm iterates through the set of its neighbours and for each adjacent node it
checks whether this adjacent node meets these two conditions. If so, then the marginal
contribution of the node vi is increased by one.

g3/4: In Marginal Contribution blocks for games g3 and g4 (Algorithms 8 and 9), all the
values that are dependent on the distance (extNeighbours and D) are calculated
using Dijkstra’s algorithm and stored in memory. These pre-computations allow us
to significantly speed up Monte Carlo methods. Now, in g3 node vi makes a positive
contribution to coalition P through itself and through some adjacent node u under
two conditions. Firstly, neither vi nor u are in P . Secondly, there is no edge length of
dcutoff from P to vi or u. To check for these conditions in Algorithm 8 we again use the
array Counted. For each node vi, the algorithm iterates through the set of its extended
neighbours and for each of them it checks whether this neighbour meets the conditions.
If so, the marginal contribution of the node vi is increased by one. In game g4, node
vi makes a positive contribution to coalition P through each node (including itself)
that is closer to vi than to P . In Algorithm 9 we use array Dist to store distances

644



Computation of the Shapley Value for Game-Theoretic Network Centrality

Algorithm 10: Marginal Contribution block of Algorithm 6 for g5

Counted ← false ;
Weights ← 0 ;
foreach vi ∈ V (G) do

foreach u ∈ NG(vi) ∪ {vi} do
weights[u]+= W (vi, u);
if !Counted[u] and ( weights[u] ≥ Wcutoff (u) or u = vi ) then

SV[vi]++ ;
Counted[u] = true ;

end
end

end

from coalition P to all nodes in the graph and array D to store all distances from vi
to all other nodes. For each node vi, the algorithm iterates through all nodes in the
graph, and for each node u, if the distance from vi to u is smaller than from P to u,
the algorithm computes the marginal contribution as f(D[u])− f(Dist[u]). The value
Dist[u] is then updated to D[u]—this is a new distance from P to u.

g5: In game g5, which is an extension of g2 to weighted graphs, node vi makes a positive
contribution to coalition P (both through itself and through some adjacent node u)
under two conditions. Firstly, neither vi nor u are in P . Secondly, the sum of weights on
edges from P to vi is less thanWcutoff (vi) and the sum of weights on edges from P to u is
greater than, or equal to,Wcutoff (u)−W (vi, u) and smaller thanWcutoff (vi)+W (vi, u).
In order to check the first condition in Algorithm 10 we use the array Counted, and
to check the second one, we use the array Weights. For each node vi, the algorithm
iterates through the set of its neighbours and for each adjacent node it checks whether
this adjacent node meets these two conditions. If so, then the marginal contribution
of the node vi is increased by one.

Appendix B: Main Notation Used in the Paper

A The set of players.
ai A player in A.
C A coalition.

ν(C) A value of the coalition, where ν is characteristic function.
(A, ν)/gi A coalitional game.
SVgj (vi) The Shapley value od the vertex vi in game gj .
G = (V,E) Unweighted graph/network consisting of the set of vertices V and edges E.

G = (V,E,W ) Weighted graph/network.
W (v, u) Weight on the edge from v to u.
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V (G)/V,E(G)/E the set of vertices and edges in graph G.
vi ∈ V The vertex from the set V .
deg(vi) Degree of the vertex vi.
NG(vi) Set of neighbours of vertex vi ∈ G.

distance(v, u)/d(v, u) The distance between vertices v and u.

NG(vi, dcutoff )
Extended neighbourhood: NG(vj , dcutoff ) = {vk 6= vj : distance(vk, vj) ≤
dcutoff }.

MC(u, v) Marginal contribution that vertex u makes through vertex v.
Π(A) The set of all orders of players in A.

π ∈ Π(A) The single ordering of agents in A.
π(i) The position of i− th element in ordering π.
Cπ(i) {aj ∈ π : π(j) < π(i)}.

fringe(C) {v ∈ V (G) : v ∈ C (or) ∃u ∈ C such that (u, v) ∈ E(G)}.

k(vi)/ki
The number assigned to vertex v used in Game 2. The minimum number of
adjacent nodes necessary to influence node vi.

Wcutoff (vi)
The number assigned to vertex v used in Game 5. Minimum sum of weights
on adjacent edges necessary to influence node vi.

E[·] The expectation operator.
P[·] The probability operator.
O(·) The big O complexity notation.

B,X, Y Random variables.
N (µ, σ2) Normal distribution with mean µ and variance σ2.
erf(·) The error function.
αj The sum of all the weights of incident edges to vertex vj .
βj The sum of the squares of all the weights of incident edges to vertex vj .
f(.) A positive valued decreasing function.
Ki The complete graph (clique) with i nodes.
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