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Abstract

In experimental tests of human behavior in unstructured bargaining games, typically
many joint utility outcomes are found to occur, not just one. This suggests we predict
the outcome of such a game as a probability distribution. This is in contrast to what
is conventionally done (e.g, in the Nash bargaining solution), which is predict a single
outcome. We show how to translate Nash’s bargaining axioms to provide a distribution over
outcomes rather than a single outcome. We then prove that a subset of those axioms forces
the distribution over utility outcomes to be a power-law distribution. Unlike Nash’s original
result, our result holds even if the feasible set is finite. When the feasible set is convex
and comprehensive, the mode of the power law distribution is the Harsanyi bargaining
solution, and if we require symmetry it is the Nash bargaining solution. However, in
general these modes of the joint utility distribution are not the experimentalist’s Bayes-
optimal predictions for the joint utility. Nor are the bargains corresponding to the modes of
those joint utility distributions the modes of the distribution over bargains in general, since
more than one bargain may result in the same joint utility. After introducing distributional
bargaining solution concepts, we show how an external regulator can use them to optimally
design an unstructured bargaining scenario. Throughout we demonstrate our analysis in
computational experiments involving flight rerouting negotiations in the National Airspace
System. We emphasize that while our results are formulated for unstructured bargaining,
they can also be used to make predictions for noncooperative games where the modeler
knows the utility functions of the players over possible outcomes of the game, but does not
know the move spaces the players use to determine those outcomes.

1. Introduction

In game theory, bargaining refers to scenarios where two or more people must come to
a joint agreement on an outcome. In structured bargaining, the scenario is modeled as a
noncooperative game, with the players making explicitly delineated alternating moves, e.g.,
proposals and counter-proposals (Osborne & Rubinstein, 1994; Aumann & Hart, 1992). In
contrast, in unstructured bargaining, the scenario is modeled without any explicit delineation
of the alternating moves. Instead all that is known to the modeler is the feasible set of all
the joint-utilities that would arise for all the possible bargains the humans might reach.
Arguably, in most real-world bargaining scenarios, the interaction between the bargainers
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is “free form”, and so requires an unstructured bargaining analysis. Therefore, to be able
to predict and potentially emulate the behavior of interacting humans, we need to have an
accurate model of human unstructured bargaining.

In unstructured bargaining there are two spaces; the space of bargains and the space of
joint expected utility vectors that the players assign to each such bargain. Note that it may
be that more than one bargain results in the same outcome. As shorthand, it is conventional
to leave the term “expected” implicit and just refer to “utility”. Similar shorthand is to
refer to a joint (expected) utility vector as an “outcome”.

Most game theoretic modeling to date on unstructured bargaining starts with specifi-
cation of a “feasible set” of all of the possible outcomes. This is the only knowledge the
modeler has concerning the unstructured bargaining scenario. In particular, the modeler is
ignorant of the spaces of possible “moves” the players may make to reach a bargain — and
is even ignorant of the space of possible bargains.

Traditional unstructured bargaining is concerned with specifying a map that takes any
such feasible set S to a single outcome x € S, i.e., a “point-valued solution concept” (Nash,
1950; Harsanyi & Selten, 1972; Kalai & Smorodinsky, 1975; Kalai, 1977). For example,
this was the case with Nash’s original work, where he showed how for any specified .9, his
axioms force a unique prediction of an outcome x € S. Some of this work regards the map
normatively, as providing fair or reasonable bargaining outcomes. Other work regards it
positively, as a prediction for what agreement will be reached by humans bargaining in an
unstructured manner (Nydegger & Owen, 1974; Roth & Malouf, 1979; Camerer, 2003). In
this paper we are concerned with this positive viewpoint. For an extensive discussion on the
interpretation of Nash’s solution, see the work of Rubinstein, Safra, and Thomson (1982).

In contradiction to this theoretical positive work, the experimental literature makes clear
that in the real world more than one bargain has non-zero probability of being the outcome
of any given unstructured bargaining problem (Camerer, 2003; Roth & Malouf, 1979).! To
accommodate this, in this paper we consider maps that take any unstructured bargaining
problem’s feasible set S to a probability distribution over S, rather than to a single element
of S.2 Doing this, we derive a parameterized set of possible maps from bargaining problems
to distributions over those problems. (Intuitively, the parameters reflect the “bargaining
power” of the players.) We call such maps “distributional bargaining concepts”, and call
their images “utility distributions”.

There are many advantages to using distributional bargaining concepts, in addition to
their according with experimental data better than point-valued solution concepts. A major
one arises if there is an external regulator who can modify some aspects of the bargaining
game and has their own utility function over bargaining outcomes. By modifying the game,
the regulator changes the associated distribution, and therefore modifies the value of their
own expected utility. Accordingly, they can calculate the Bayes-optimal modification to the
game.

1. In fact, given the noisy nature of human behavior, it would be stunning if certain physically possible
outcomes actually occurred with exactly 0 probability, rather than some small, non-zero probability.

2. Our approach allows S to be either finite or infinite; for succinctness we will generically refer to a
“probability distribution” even if S is infinite and we properly should refer to a probability density
function.
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Our approach to deriving a distributional bargaining concept is to “translate” Nash’s
axioms of unstructured bargaining — conventionally applied to maps that produce a single
utility outcome rather than a utility distribution — to apply to distribution-valued maps.
To be precise, we use probabilistic versions of Nash’s axioms of Scale Invariance (SI) and
Independence of Irrelevant Alternatives (ITA). We also use a probabilistic version of the
axiom of Translation-Invariance of utilities (TI).

Adopting a Bayesian perspective, we view these axioms as formalizations of the igno-
rance of the modeler in many scenarios, rather than as assumptions about human behavior:
For us, SI means that the modeler does not know anything about how the relative proba-
bilities of outcomes chosen by the players is likely to change if one simply scales the utilities
of all possible outcomes. Similarly, for us IIA means the modeler does not know anything
about how the relative probabilities of outcomes chosen by the players is likely to change
if a subset of of the possible outcomes is removed. And for us, TI means that the modeler
does not know anything about how the relative probabilities of outcomes chosen by the
players is likely to change if the utilities of all possible bargains are simply translated by
the same constant.

To these axioms we add the extra one that all outcomes in which all players do strictly
better than the default outcome have Non-Zero probability (NZ). (NZ is imposed because
it holds in all experiments, due to subject inattention if nothing else.)

There is other work, which, like ours, is also concerned with distributions over S (Peters
& Tijs, 1984). However, the work of Peters and Tijs (1984) differs from ours in two important
ways. First, while they also use probabilistic versions of SI and ITA, unlike us, they also
use the axiom of Pareto optimality (PAR). (As discussed in the conclusion, we need not
impose the assumption of binding contracts, and therefore need not assume the joint utility
is Pareto-optimal.) In addition, unlike us, they do not use NZ, nor do they (explicitly) use
TT. Second, Peters and Tijs translate IIA and SI into different probabilistic versions than
ours.

As aresult of these difference, we arrive at a very different distributional solution concept
from that of Peters and Tijs. In particular, our axioms force the distribution to be a power
law over the set of joint utility outcomes Pareto superior to the default outcome. In contrast,
the axioms used by Peters and Tijs do not result in a tightly characterized solution, power
law or otherwise. Accordingly, the approach of Peters and Tijs has not been used to derive
the Bayes-optimal modification to a game that might be applied by an external regulator
of the game.

Perhaps most importantly, our version of IIA means our solution concept applies to
any bargaining game, even finite ones that are non-convex and not comprehensive. This
is quite important for a positive bargaining solution concept. In real-world unstructured
bargaining, it is common for the bargainers to only consider a finite number of possible
outcomes. (Typically, real human bargainers in the field do not consider the option of
tossing a weighted coin to choose among the possible bargains.) In such scenarios the
feasible set is finite.

More generally, since we dispense with PAR, there is nothing that restricts our analysis
to scenarios that are traditionally viewed as “bargaining”. As we discuss in the conclusion,
our results can also be used to predict the outcomes of noncooperative games whenever
the modeler only knows the feasible set of that game’s joint-utility outcomes, and cannot
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tractably elaborate the move spaces of the players. In such situations, the best the modeler
can do is provide a distribution over the final joint utility outcome. Our distributional
bargaining concept provides a way to do this.

The current paper and the work of Peters and Tijs are not the only papers to extend
game theory by replacing solution concepts that are point-valued (or set-valued) with so-
lution concepts that are probability distributions. In particular, the work of Wolpert and
Bono (2011) introduces a distribution-valued solution concept for noncooperative games
when the modeler does know the move spaces. That work introduces a map that has an
input the specification of an arbitrary non-cooperative game. The output of the map is
a distribution over all possible mixed strategy profiles (i.e., all player joint choices) in the
input noncooperative game. In contrast, the present paper introduces a map taking the
specification of an unstructured bargaining game as its input, and producing a distribution
over all player joint utilities as its output.

There are also recent papers in the artificial intelligence literature that, like ours, focus on
“non-equilibrium solution concepts” (Brafman & Tennenholtz, 2003; Rezek, Leslie, Reece,
Roberts, Rogers, Dash, & Jennings, 2008; Aydogan & Yolum, 2012; Duan, Dogru, Ozen, &
Beck, 2012). Rather than merely invoking equilibrium, Brafman and Tennenholtz (2003)
employ a reinforcement learning algorithm to efficiently achieve coordination in common
interest stochastic games. Rezek et al. (2008) look at game theoretic solution concepts
from a machine learning perspective, i.e. they assume players make inferences about their
opponents in a Bayesian framework and derive a novel fictitious play algorithm. Recent
work in AI that focuses on bargaining, such as that of Aydogan and Yolum (2012) and
Duan et al. (2012), is particularly closely related to the current paper. The main difference
is that our paper focuses on an unstructured game, whereas the focus in previous work has
been on structured games.

1.1 Contribution of this Paper

Our first contribution in this paper is to derive our distributional bargaining concept, as
outlined above. After this we focus on two major advantages of a distributional bargaining
concept over point-valued or set-valued bargaining concepts: 1) the ability of a modeler to
apply decision theory to predict outcomes, and 2) the ability of an external regulator to
employ control theory to optimally regulate the system.

To elaborate on the first advantage, consider that the modeler of the outcome of the
bargaining will often have a loss function, measuring the quality to them of predicting the
joint expected utility outcome is z when the actual outcome is z’.> Given such a loss
function, and given a distribution over outcomes, there is a well-defined Bayes-optimal
prediction for a single joint utility outcome. This Bayes-optimal prediction will vary with
the loss function. Accordingly, whatever distributional bargaining concept is used, in general
the associated Bayes-optimal prediction is neither the most likely joint expected joint utility
outcome (the Harsanyi solution) nor the most likely bargain.

Let s be the vector-valued function taking bargains to the associated joint utility out-
comes. In general, s need not be invertible. (E.g., if the feasible set is a set of K possible

3. As shorthand, we will often abbreviate “joint expected utility outcome” to “joint utility outcome”, or
even “outcome”.
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joint choices among the N players, where K > N + 1.) In such cases we cannot go from a
prediction for the joint utility (whether made with a conventional bargaining concept or a
distributional one) to a prediction for a joint bargain. One would need a likelihood function
P(b | z) giving the relative probabilities of all bargains b given the joint utility  to invert
a prediction for joint utility into a prediction for the bargain reached.

On the other hand, if s is invertible, then the distribution over joint utilities does fix the
distribution over bargains. However, even in this case, if the Jacobian of s is non-uniform,
then the most likely joint utility is not the most likely joint bargain. Intuitively, s may
“concentrate” probability density on some regions of possible joint utility outcomes (those
corresponding to relatively many possible bargains), and diminish it in others.

Note though, that when the feasible set is countable and s is invertible, the issue of a non-
uniform Jacobian of s disappears. This provides yet another benefit to using a distribution
bargaining concept — like ours — that is applicable to countable (and even finite) feasible
sets, not just convex and comprehensive ones.

As an illustration of the foregoing, we consider a scenario naturally modeled as unstruc-
tured bargaining. Often the path of an aircraft through the National Airspace System is
renegotiated inflight, e.g., due to unforeseen weather. Such negotiations do not follow any
particular protocol — they are unstructured. Accordingly, we use them to illustrate the
Nash distributional bargaining model. We emphasize the fact that even in this simple sce-
nario, the map s from bargains to joint utility outcomes is non-invertible. As a result, while
it is straightforward to evaluate the probability density function over possible joint utility
outcomes, the same cannot be said for evaluating relative probabilities of various bargains.

To address the second major advantage of our distribution-valued solution concept,
i.e. the ability of an external regulator to employ control theory to optimally regulate the
system, we consider an external regulator who has a real-valued welfare function defined
over the bargains of the players, and who can modify some parameters of the bargaining
game. We show how a distributional solution concept allows such an external regulator to
perform Bayes-optimal configuration of the bargaining game, i.e., how the regulator can
set the parameters of the game under their control to optimize the expected welfare of the
resultant bargaining outcome. In the context of the Nash distributional bargaining concept,
we call this approach to setting parameters “Nash distributional bargaining management”.

As an example, suppose that the regulator can modify the set of allowed bargains
within some range. In this case, the Nash distributional bargaining concept can be used
to determine the regulator’s optimal modification. Similar external interventions would be
changing the default bargain, or even modifying the relative bargaining power of the players.

A more complicated type of external intervention is where the regulator presents a
non-binding suggested bargain to the players. We view such a suggested bargain as a
Schelling-like focal point for the negotiations, and introduce a model mapping any such
suggested bargain to an associated distortion over the distribution over bargaining outcomes.
This model provides the regulator with a well-defined algorithm for choosing the suggested
bargain that optimizes the expected welfare of the outcome of the negotiations. We use the
application of flight rerouting negotiations to demonstrate Nash distributional bargaining
management using such suggested bargains.

The type of optimal control of strategic agents captured by the Nash distributional
bargaining management concept is a recent theme in the artificial intelligence literature. For
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example, there is a growing literature focused on optimally managing negotiations between
strategic, self-interested agents (Brafman & Tennenholtz, 1996; Chalamish & Kraus, 2012;
Lopez-Carmona, Marsa-Maestre, Klein, & Ito, 2012). The primary difference between our
paper and the current literature is that our bargaining game is unstructured, while the others
use a structured game. The management of unstructured flight rerouting negotiations can
also be considered a type of constrained automated mechanism design, like the framework
studied by Vorobeychik, Reeves, and Wellman (2012). That is, the mechanism in our
paper is the bargaining scenario as modified by the (automated) external regulator for each
unique flight rerouting game. Similarly, in the domain of air traffic management, the work
of Agogino and Tumer (2012) studies a multi-agent approach to managing air traffic flows
in which agents are reinforcement learners. Once again, the main difference between our
paper and these others is the difference between controlling structured and unstructured
games.

Despite the recent interest in optimal control of strategic agents, the foundation for these
ideas can be found in more conventional concepts such as correlated equilibrium. As Ashlagi,
Monderer, and Tennenholtz (2008) point out, correlated equilibrium is often conceptualized
as arising from some external party that provides recommended actions to game participants
but cannot enforce its recommendations. Ashlagi et al. look at the value of correlation,
i.e. the welfare improvement arising from an external parties recommendations, which is
directly analogous to the welfare improvement arising from Nash distributional bargaining
management.

1.2 Roadmap of this Paper

In section 1.3 we start with an overview of our notation. Then in section 2, we provide a
general definition of distributional bargaining concepts. After this we focus on the “Nash
distributional bargaining concept”, which is defined by NZ and probabilistic versions of T1,
SI and ITA. We next prove that Nash distributional bargaining concepts take the form of
a power law distribution. This result holds for any bargaining games, even non-convex,
non-comprehensive ones, and even ones with a finite set of possible bargains.

In section 3, we discuss the Nash distributional bargaining concept. We focus on its
mathematical structure, its physical meaning, and its normative implications for an external
regulator who can change the feasible set. We show that the mode of the Nash distributional
bargaining concept is the Harsanyi bargaining solution. We then point out that if we also
impose Nash’s symmetry axiom, we instead get the Nash bargaining solution as the mode
of the distribution over outcomes.

In section 4 we introduce our model of flight rerouting negotiations. We show that this
setting yields a feasible set that is not convex, comprehensive, or even connected. Here we
also demonstrate the NDB model and its use in prediction. Here we also explore the issues
of invertibility of the bargaining set mentioned above.

In section 5 we develop the concept of Nash distributional bargaining management,
where an external regulator can make a recommendation to the bargainers or modify some
aspect of the unstructured bargaining game. We demonstrate these concepts using the flight
rerouting scenario and show that the external regulator can make welfare improvements.

We conclude with a discussion of the results and directions for future research.
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1.3 Notation

We consider conventional N-dimensional unstructured bargaining problems. Any such prob-
lem is the pair of a bounded feasible set, S C RY, and a special disagreement point, d € S.
We assume S contains at least two elements, and that there exists an x € S such that
x > d (i.e, such that the generalized strict inequality {x; > d; Vi} holds). We refer to such
a problem as simple if d = 0 and no point € S (i.e., no set of N utility values for that
bargaining problem) has a component less than 0. Given a bargaining problem (S, d), we
use the term “outcome” to refer to any element of S. We will refer to (S5,d) as standard
if S contains an open set and is convex and comprehensive?.

We define A 4+ B for two sets A, B C RY to mean the set of all z that can be written
as a+ b for some a € A,b € B, and similarly for A — B. (So in particular, A — B is not the
same as A\ B.) We will also assume the usual topology over RV, etc. Given any A C RV
and k € RV where k = 0, we define kA to be the subset of of RY given by replacing each
r € A by the Hadamard (i.e., component by component) product kx = (kiz1, koxa,...).
We define AB for any two sets A, B C RV similarly.

As shorthand, throughout we use “[” with the measure implicit. In particular, when
feasible sets are finite, expressions like “ [ dz...” implicitly use the point mass measure, i.e.,
are equivalent to sums.

2. Nash Distributional Bargaining Concepts

From a Bayesian perspective, we are interested in the posterior probability density function,
P(xz | S,d). Here we do not proceed by decomposing that distribution into a prior and a
likelihood. Instead, in analogy to Nash’s approach, we model P(x | S, d) directly, by using
Nash’s axioms to restrict its form.

In doing this it will be convenient to simplify notation, so that (again following Nash) we
talk in terms of maps from (5, d) to distributions over x rather than in terms of P(x | S, d):

Definition 1. An N-dimensional (distributional) bargaining concept is a map from
any N-dimensional bargaining problem (S,d) to a probability density function with support
restricted to S. (When S is countable, the image is a probability distribution rather than a
probability density function, and we will generically refer to a “distribution” with the im-
plicit cardinality of S making clear whether we mean a probability distribution or probability
density function.)

We will generically indicate a distributional bargaining concept with the symbol u, and
indicate its value for a problem (S,d) as pgq4. So psq(z) is the non-negative real number
produced by applying u to (S, d) and then evaluating the resultant density function at z.

To use any unstructured bargaining approach to make a prediction about human bar-
gaining behavior in a particular physical setting (laboratory or field), in addition to ex-
plicitly specifying the bargaining problem (S, d), there must also be a specification of the
physical setting. Often this specification is only implicit, but here we make ours explicitly.
We restrict attention to bargaining problems (S, d) and associated physical settings such
that every = € S is physically possible. We then go further and also restrict attention to

4. Recall that S is comprehensive if Vx € S,z =y > d, y € S.
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physical settings such that all those physically possible z € S where x > d occur with some
non-zero probability. We justify this by noting that in most laboratory and field settings,
even if the bargaining were structured with a Pareto efficient outcome that is a dominant
Nash equilibrium of the underlying game, there would still be a non-zero probability that
other outcomes arise, due to bounded rationality of the players. (A stronger version of this
reasoning — which we do not invoke here — would require that even outcomes where some
player does worse than at the disagreement point occur with non-zero probability.)

Given the foregoing, it is straightforward to translate Nash’s unstructured bargaining
axioms into the context of distributional bargaining concepts. In particular, SI, TT and ITA
get translated as follows:

Definition 2. An N-dimensional distributional bargaining concept i is a Nash distribu-
tional bargaining (NDB) concept if for any S C RY,

pSI Vx,y.d € S such that x,y = d, Vk = 1,

psa(x)  AkSka) (k)

s,d(y) 18,k (ky)

pTI Vz,d € S such that x = d, Ya € RN, pgq(z) = HS—{a},d—a(T — @),
pIIA VI'C S, Vzx,y,d € T such that x,y > d,

psda(z)  pra()

Ms,d(y) ,UT,d(y)

NZ Vz,d € S such that x > d, psq(x) # 0

pSI means that if we rescale all coordinates of a problem to get a new problem, the
relative probability of any two points x and y in the original problem is the same as the
relative probability of the rescaled versions of those points in the new (rescaled) problem.
This is the “translation” of Nash’s scaling invariance axiom, SI, into the context of distri-
butional bargaining concepts. For the results in this paper, we could have weakened pSI to
the following:

pSI* For any simple, standard, closed problem (S,0), Vz,y € S such that z,y > 0, Vk = 1,

pso(z)  Bso) (k) 0
1s,0(y) k5,0 (ky)

For expository simplicity though, we use the stronger version given in Def. 2.

pTI implements the assumption of translation-invariance of utility functions. (Recall
that in our notation, the subtraction operator on sets is not the same as set subtraction.)
pIIA means that if we remove potential solutions other than z and y from a bargaining
problem, the relative probabilities of x and y don’t change. This is the “translation”
of Nash’s ITA axiom into the context of distributional bargaining concepts. Finally, as
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mentioned earlier, the NZ axiom says that all outcomes in which all players do strictly better
than they do under the default outcome receive some positive probability of occurring. This
axiom requires the solution concept to conform to the physical reality of human behavior.

We emphasize that pIIA and pSI are not assumptions about human behavior. Rather
they are reflections of ignorance by the modeler, just as prior probabilities in Bayesian
modeling are reflections of such ignorance. If the modeler does not know of a preferred
scale with which to predict player behavior, then they want to use a distribution that
is invariant under rescalings (Jaynes & Bretthorst, 2003). That is what pITA formalizes.
Similarly, if the modeler does not know how removing a set of alternatives would affect the
relative probabilities of the remaining ones, then they want to use a distribution that does
not affect those relative probabilities. That is what pSI formalizes.?

In the remainder of this section we work through a derivation of our main mathematical
result, presented in Thm. 1. Loosely speaking, this result says that a bargaining concept p
must be a product (over the players) of power law distributions, if it is to obey the axioms
presented above.

Given any two N-dimensional problems (S, d) and (T, d), define W = SUT. So S C W.
Therefore by plIIA, for any N-dimensional Nash bargaining concept u, Vz,y € S such that
x,y = d, psa(r)/psd(y) = pwd(x)/pw.d(y). Similarly, T C W, and therefore Va,y € T
such that z,y > d, pra(x)/prd(y) = pwa(z)/pw.q(y). This establishes the following:

Lemma 1. Fiz any two N-dimensional problems (S,d) and (T,d). Vx,y € SNT such that
xz,y = d, for any N-dimensional NDB concept p,

psda(r)  pra(T)
psay)  pra) ®

The kinds of geometric distortions underlying existence proofs of the Nash, Kalai-
Smorodinsky and egalitarian solutions cannot be applied when (S, d) is non-standard, and
especially when S contains a finite number of elements. This inability to handle finite S has
been one of the major obstacles of the Nash bargaining theory. In real-world unstructured
bargaining, it is quite common for people to bargain over a finite number of possible out-
comes, without ever considering the possibility of using a randomization device to decide
the final bargain.b

In contrast, Lemma 1 means that if we can establish the form of u7 g for a particular
class of problems (7, d) with infinite 7', then we have established its form for any pair
(S C T,d). This is true even if S is neither convex nor comprehensive. Indeed, S can
even be finite.” The following result provides such a form of pr,q for a particular class of
problems (T, d).

5. Of course, if the modeler does have knowledge about preferred scales and / or about how the human
players would change their distribution if some alternatives were removed, then that knowledge should
replace pSI and /or pIIA, respectively.

6. Indeed, one could argue that real bargaining scenarios cannot involve an uncountably infinite number of
bargaining outcomes. After all, real human beings cannot specify all digits of any real number in a given
interval. When communicating with one another, real human beings are only able to specify numbers
having a finite precision, together with a finite set of infinite-precision real numbers, like 7, v/2, etc.

7. Other authors have examined bargaining solutions on non-standard domains. For example, many papers
extend the Nash solution to non-convex S (Kaneko, 1980; Herrero, 1989; Conley & Wilkie, 1996; Zhou,
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Theorem 1. Let p be an N-dimensional NDB concept such that for any closed, simple,
standard problem (T,0), pro(x) is differentiable throughout the interior of T. Then there
are constants a;,i = 1,...n, independent of S and d, such that for all problems (S,d) and
all x € S such that © = d, psq(x) o< [[;(z; — d;)®*.

Proof. Define §” = S — {d} and 2/ = © — d. Then use pTI to write pgq(z) = psro(x’). So
it suffices to prove the theorem for all 2/ = 0 for the bargaining problem (S”,0).

Let 8" = {8\ {«” € 8" : 3i where 2/ <0} U{0}}. So S" is S” without any z” for
which at least one player is not doing better than the disagreement point, unioned with the
disagreement point. (S’,0) is a simple bargaining problem. In addition, by pIIA, for all
'y =0

psro(a’) _ psro(a)

psro(y') s o(y')

Therefore it suffices to prove the theorem for problem (S’,0).

Let T be the convex, comprehensive closure of S’. So (T,0) is a simple, standard
bargaining problem whose interior contains (S’,0). Therefore by plIIA, it suffices to prove
the proposition for (7',0).

Let Q7 be the interior of T'. Note that by hypothesis, 7 o(.) is a differentiable function
over Q.

For any N-dimensional z = 0, define the N-dimensional vector In[z] = (In(z1), In(z2), .. .).
Make similar definitions for e* and for the sets In[A] and e? where A is any subset of RY.
Note that with the exception of points with zero-valued components, any point in 7" can be
written as the vector e* for some z € RV, since (T}, 0) is a simple bargaining problem. So
in particular, every point in Q7 can be written e* for some z € RY.

Say that z is a point such that pro(e®) is non-zero (so that e” is in 7). Define the
associated scalar P(z) £ In[ur(e?)]. Note that ur(.) is non-zero over Qr by Def. 2(i). In
addition, it has a continuous derivative throughout Qp by our hypothesis. Therefore P(.)
has continuous derivative throughout N' = In[Q7].

Choose a vector k all of whose components equal 1 except for component i, which is
in the interval (0, 1]. Define the set of all such k as K;. Note that since T is simple and
standard, K;Qr C Qp. Therefore In[k] + N' C N.

Combining pSI and pIIA, Va',y € Qrp

pro(kz’)  pro(a)

pr,0(ky) wr,o(y)

Taking logarithms we get
P(In[k] + In[2']) — P(In[k] + Inly]) = P(n[z']) — P(Inly])

Vl’l,y eQpr, keK,.

1997; Mariotti, 1998a). They generally do so by replacing certain of Nash’s axioms. More recent
work furthers the analysis of non-standard problems to include finite domains (Mariotti, 1998b; Xu &
Yoshihara, 2006; Kibris & Sertel, 2007; Peters & Vermeulen, 2010). However, a general conclusion of
this work is that its goal is out of reach; this work typically fails to find a convincing solution concept
that closely resemble Nash’s solution and is single-valued for all finite problems.
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Given that P must be differentiable across N, we can take the partial derivative of
both sides of this equation with respect to In[k;]. Evaluate those derivatives in the limit as

k; — 1. Doing this for all allowed ',y establishes that 876315?) - 875775:’) =0Vu,v €N, ie., it

establishes that 83;5?)

Since this is true for all coordinates i, P(z') = In[ug/ o(e”)] is a hyperplane across N.
Accordingly, psr o(x") must be a product of monomials across Qr, i.e., pro(z’) oc [[,(2})%
across Qp. (The coefficients of the hyperplane give the powers {a;} of the monomials.)

Converting from 2’ back to z gives the claimed result. O

is constant across A. Therefore P is linear in coordinate i across N.

We refer to a distributional bargaining concept that meets the conditions in Thm. 1 as a
power law distributional bargaining concept.

The axioms giving a power law distribution do not always hold in the real world. As
a simple example, the default bargain d may serve as a focal point, in which case one
might presume that pgq(d) > 0. In such cases, either the differentiability assumption
of Theorem 1 must be relaxed, or one of the axioms defining NDB’s must be. More
generally, even when differentiability is assumed and we do not model d as a focal point,
it may be possible to motivate other distributional bargaining concepts besides the power
law bargaining concept. In particular, there are several axiomatic arguments that motivate
predicting the behavior of a single decision maker according to a logit distribution in their
utilities (Train, 2003). Logit distributions over utilities can also be motivated for modeling
behavior of multiple interacting players in a noncooperative game, e.g., with the arguments
originally used to motivate the logit Quantal Response Equilibrium (McKelvey & Palfrey,
1995), or with arguments based on maximum entropy inference (Wolpert, Harre, Olbrich,
Bertschinger, & Jost, 2012). These arguments suggest (but do not formally derive) the idea
of predicting behavior as a product of logit distributions, pgq(x) o< [[; exp(x;), rather than
with a product of monomials. (One advantage of such a distributional bargaining concept
is that it does not require specification of d, since replacing x; with x; — d; in the exponents
does not change the value of the probability distribution.)

For the rest of this paper, unless specified otherwise, we will restrict attention to power
law distributional bargaining concepts. Note that the computational complexity of evalu-
ating such a power law distributional concept is not an issue: one simply needs to evaluate
the product of monomials to get the relative probabilities. If the normalization constant is
also desired, at worst, it can be gleaned via standard Monte Carlo methods.

For (a power law bargaining concept) psq to be normalized when S is a standard
problem, each a; must exceed —1. More generally though, S could be countably infinite,
with the utilities of player i given by x; € {1/k+d; : k =1,2,...}. For g4 to be normalized
in this case, a; must exceed 0. Therefore by Lemma 1, a; must always exceed 0.

3. Discussion of Power Law Distributional Bargaining Concepts

In this section we discuss assorted mathematical characteristics of power law distributional
bargaining concepts, together with some of their physical implications.
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3.1 The Relation between Power Law Distributional Bargaining Concepts and
Point-Valued Bargaining Concepts

It should be emphasized that to derive the functional form of Thm. 1 there was no need for
analogs of the last two of Nash’s unstructured bargaining axioms, PAR and SYM. However
it is straightforward to incorporate them if desired. One natural way to translate PAR into
the context of distributional unstructured bargaining would be to require that improving
every player’s utility (i.e., changing any = > d in a way that shrinks no component z;)
cannot decrease probability density. Imposing this on an NDB concept would rule out
having any a; less than 0.

Similarly SYM can be translated to mean that all the a; must have the same value.
We will call a power law bargaining concept that meets this additional requirement a fully
Nash distributional bargaining concept. For any fully NDB concept p and any (S, d), ps,p
over its support is the distribution [ [,(x; —d;)® for some scalar . Now for fixed d, the level
curves in x of [[,(x; — d;)® are independent of o (assuming a # 0). So in particular the
maximum of [[,(x; — d;)® is independent of . Accordingly, to find that maximum, we can
take o = 1. Accordingly, the mode of pg4(x) is the maximum over x € S of [[,(z; — d;).
In other words, the Nash bargaining solution of a bargaining problem (S, d) is the mode of
any fully NDB concept applied to (S, d).

In addition, for any fixed 6 > 0, as we send a — oo, the probability of the event {z
lies more than § away from the Nash bargaining solution} — 0. In this sense, all solutions
other than the Nash solution become impossible in that limit.

However, in general if the feasible set of possible bargains is uncountable, the function
taking joint bargains to joint utility outcomes will have a non-uniform Jacobian. In such
cases, the most likely bargain is not the bargain corresponding to the Nash solution.

Furthermore, for finite «, in general the Bayes-optimal guess for x is not the Nash
bargaining solution. For example, for quadratic loss functions, the Bayes-optimal guess
for z is [ dx psgq(x)z. This differs from the Nash solution, argmax, g ¢(x). Furthermore,
consider expanding the ¢’th coordinate of the border of S, while leaving its border along
axis j unchanged. Then for quadratic loss, this change to S will in general change the
Bayes-optimal guess of x;, even if it does not change the Nash bargaining solution point.

As a final comment, recall that is we do not impose the SYM requirement on our power
law bagaining concept, the «; of the players may differ, i.e., the players are allowed to be
heterogenous. In this case the mode of the solution concept is not the Nash bargaining
solution but the “weighted Nash solution” of (Harsanyi & Selten, 1972), evaluated for the
very constants «; that are the power law exponents of the NDB concept.

3.2 The Mathematical Structure of Power Law Bargaining Concepts

Nowhere does the definition of power law bargaining concept explicitly refer to differences
x; — d;. So why do those differences arise in Thm. 17 Ultimately, the reason is that the
definition of a bargaining problem requires specifying both the feasible set and a special

8. A more extreme way to impose PAR would be to make predictions using ppar(s),a, where PAR(S) is
the Pareto frontier of S. By Lemma 1, this is equivalent to “masking” us 4 to the Pareto frontier of S,
i.e., to replacing it with a new distribution Hls,d whose support is restricted to the Pareto frontier of S,
where for all z,z" on that frontier, us 4(x)/ps a(z") = ps,a(z)/ps,a(x’).
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disagreement point d within the feasible set. Due to this, the translation invariance condition
translates the point d along with the point « where p gets evaluated. This causes the
difference between those two points to be an invariant of u, as reflected in Thm. 1.

Note also that g 4 is a product distribution over its support. In this sense, independence
of the players is automatic. Such independence is not an explicit part of the definition of a
power law bargaining concept. Ultimately, this independence arises from the fact that the
SI axiom of Def. 2 involves scaling each player’s utility independently.’

One must be careful in interpreting this player independence. It does mot mean that
under a distribution g4, the utility values of the players are statistically independent.
Unless S is a box, in general the border of S will serve to couple the players. For example,
when d = 0, we have

1;[”5@(»%’) = E[[[gdl‘_iug,d(xi,x_i)]
S| (R ) (C
A 1]

i

= Ms,d(ﬂc)a (3)

i.e., the product of the marginal distributions of the player utilities does not equal the joint
distribution of the player utilities.

As an example of the implications of this, say the border of S is changed by having
the range of possible utility values for player ¢ grow for some particular range of utilities
of the other players, but stay the same elsewhere.!? Then the statistical coupling between
the players will generally change. Intuitively, after this modification to .S, what I can infer
about the likely value of x;; given a particular value of x; will have changed. (This is
despite the independence of irrelevant alternatives axiom.)

3.3 Physical Meaning of Power Law Distributional Bargaining Concepts

Thm. 1 does not specify the values of pug 4(x) if % d. However, it is often the case that for
any x € S where x * d, there is an 2’ such that @’ > z,d where [[;(«] — d;)* is arbitrarily
close to zero.!'' Moreover, given that 2’ > x, it would be quite peculiar if in experiments it
were the case that pgq(z) > pgq(2"). This strongly suggests that if 1 meets the conditions
in Thm. 1, then we should stipulate that pg4(z) = 0 for any =  d. (Formally though, we
do not need to make that requirement in the analysis of this paper.)

9. For example, if we modified that axiom by first rotating the space RY, then applying the scaling operators,
and then rotating back, we would no longer have a product distribution in the individual x;, but rather
in linear combinations of the z;.

10. Formally, we specify some box over the values x_;: M = {x; € [b;,t;] : j # i,¢; > b;Vj # i}. Then
over M alone, we extend the associated border of S along coordinate i, i.e., Vx_; € M, we modify S by
expanding the set of z; such that (z;,z—;) € S.

11. As an example, let S be a sphere centered on d, and consider any x such that x1 < 0 while at the same
time @2, xs,... > 0. Then the distribution of the point (¢, x2,x3,...) can be arbitrarily close to zero by
taking € small enough.
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How the components a; in Thm. 1 are physically interpreted is determined by how
the distribution pg g is physically interpreted. Ultimately, that has to do with what we
physically mean by an “unstructured bargaining scenario”.

One possible physical meaning is that ug g is a population average over all humans and
over all unstructured games that have feasible set S and disagreement point d. In this
interpretation, if one adopts a power law bargaining concept, it makes sense to have the
constants a; be identical. Another possibility is that the distribution is not interpreted as a
population average, but rather to refer to a set of N particular individuals involved in the
bargaining problem at hand. In this case, if one adopts a power law bargaining concept, the
constants a; will differ in general. This is for several reasons. One is that different people
have different bargaining styles, and different powers of persuasion. More generally, in some
bargaining scenarios certain players will only have weak power to affect the outcome, or at
least not be able to affect all aspects of the outcome.

In general these two interpretations are not mutually consistent. That’s because averag-
ing (a population of) different distributions all proportional to a product of monomials will
not give a product of monomials, in general. Which interpretation one adopts ultimately
depends on which interpretation one feels best characterizes the bargaining scenario under
consideration.

There is also a third possible interpretation, in which one averages not only over the
bargainers, but also over a set of structured bargaining scenarios. In this interpretation,
the distribution of “unstructured bargaining” is interpreted as an average over distributions
of structured bargaining scenarios. Nash’s bargaining axioms would then be interpreted as
reflecting the ignorance of the external modeler concerning the structure of the game the
players are engaged in.

3.4 Knitting Together 2-Player Distributions to Get Multi-Player
Distributions

There are problematic aspects to requiring that IIA applies to the full joint distribution
of all N players’ utilities when n > 2. However it seems less objectionable to stipulate
that IIA applies to the distribution of any two players’ utilities, conditioned on the utilities
of the other player(s). For example, we can require that P(z1,x2 | x3,...xnN,S,d) obeys
ITA.'2 We can also impose the other conditions defining power law bargaining concepts to
any such conditional distribution. The result is that any such conditional distribution is a
product of monomials, i.e., for all 4, j # 1,

P(aj,aj |2y j,Sd) oo (w;—dy)" i) (@; — dj)%F=imd) (4)

where for full generality the exponents can vary with the value of x_; _;.

This is a set of n(n — 1) equations involving the full joint distribution pgq = P(z |
S,d), parameterized by the matrices {a;(x_; _;)}. There are an infinite number of joint
distributions P(z | S,d) that obey all of these equations simultaneously for some set of
matrices {a;(x_;—;)}: by inspection, any distribution which is a power law bargaining

12. Note that this condition does not concern a of scenario where players 3 through N somehow fix their
utilities to the values z3,...xn, and after that the players 1 and 2 bargain. Rather it concerns the full
N-player bargaining scenario where all N players bargain together.
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concept (i.e., of the form pg 4(z) o< [[,(z; — d;)*) obeys those equations for the degenerate
case where the matrices are all constants.

More generally, requiring that all Eq.’s (4) simultaneously hold for some given set of
matrices {a;(x—; —;)} provides constraints on how the conditioned two-player bargaining
concepts P(zj, xj | x—; —j,5,d) “knit together” to give a full N-player bargaining concept.
To be precise, given matrices {a;(x—; —;)}, the full joint distribution pugq(xz) = P(z | S,d)
must obey the following equations:

Jacrator = 1.

Vi,j#i, psalz) o (w;—d) @00 (z; — dj)% @) / da’; _; psa(ws,zj,a’; ;)
(5)

Future work involves investigating the properties of such “knitting together” conditional
bargaining concepts.

4. NDB Flight Path Rerouting

In this section, we demonstrate NDB using the example of flight rerouting negotiations in
the National Airspace System. Flight rerouting negotiations take place between the humans
in an aircraft’s cockpit and those manning air traffic control (ATC) when severe weather
or air traffic result in the need for changes to the scheduled flight path while the aircraft
is already airborne. Such en route rerouting is often referred to as “tactical rerouting”, to
distinguish it from “strategic rerouting”, which takes place between the airlines operation
center and ATC when a flight must be rerouted before it is airborne.

Tactical rerouting negotiations can be initiated by either the cockpit or ATC. Though
they generally have a back-and-forth, offer /counter type of feel, these negotiations do not
follow any set protocol. Therefore, an unstructured bargaining approach is appropriate for
studying tactical rerouting negotiations. (Strategic rerouting negotiations might also be
well suited to an unstructured bargaining approach.) In addition, it is worth emphasizing
that although there is a natural tendency for a pilot to defer to ATC, in light of the greater
knowledge of the latter, legally all responsibility ultimately lies with the pilot.

Tactical rerouting negotiations generally result in a distance/heading pair that deter-
mines a way-point through which the pilot agrees to fly. For example, a negotiation might
look like this:

Cockpit: Denver Center, United 1492. Request 20 degrees right for weather.
Controller: United 1492, how long will you need that heading?
Cockpit: Looks like about 40 miles or so.

At this point the controller might grant permission, or he might make a counter proposal,
such as “can you accept 20 [degrees| left?”. In the latter case, negotiations often continue
in the manner above. The distance/heading pair can be summarized by (I,6), where 6 €
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[—90,90] is an angle in degrees, and [ € [0, N] is a distance in miles.!3 This constitutes the
set of bargains B, i.e., B = [0, E] x [-90, 90].

The cockpit and ATC have preferences over the bargains they can make, which are
summarized by utility functions over the set of available bargains, B. For example, the
cockpit doesn’t want to fly too far off course, but it also doesn’t want to fly too close to a
storm center. In many cases, ATC might want what is best for the cockpit. Yet in other
cases, ATC might be concerned about air traffic or other things (e.g., the impact of the
rerouting on other traffic) that the cockpit does not know or care about.

To evaluate the utilities of a bargain (I, 8) for the cockpit and ATC, we need to evaluate
certain features of the flight path that results from it. To determine the flight path that
results from (I, #) we first translate that bargain into a way-point in a Cartesian coordinate
system. In this Cartesian coordinate system, we say that the flight’s current position is
w1 = (0,0), and that the flight is pointing in the direction of the positive horizontal axis.
Let 6, be the radians equivalent of . This means that the agreed way-point (I, 6), is located
at wg = (I cosf,,lsinf,) in Cartesian coordinates.

After meeting its way-point, ws, the flight will return to a “fix” further along its original
flight path. In some rerouting negotiations, this fix is also part of the negotiated bargain.
However, such bargains are relatively uncommon. To simplify our model, we assume that,
whatever the bargain, the flight will return to the fix located along the horizontal axis at
point wg = (F,0) in Cartesian coordinates. Using linear interpolation to connect wy, wy and
w3, we create a constant-speed, constant-altitude 3D flight path, A;g(t) = (e 9(t), ni0(t)).
In order to simplify notation, we will refer to the components of A;y(t) as e(t) and n(t)
with the dependence on (I,6) implicit.

We now use Ajy(t) = (e(t),n(t)) to calculate utility-relevant features of the bargain
(1,0). These features include the total length of A; (%), given by

B de(t)®  on(t)?
El"g—/dt\/at o

and whether or not A; »(¢) maintains a safe distance from weather with center C' and radius
R,

1 if min; HAl,O(t) — CH >R
Dy = .
0 otherwise.

We assume the cockpit’s utility is a linear combination of total length and maintenance of
safe distance, given by:
sc(1,0) = agLlig + apDyg

for real numbers oy < 0 and ap > 0.

We assume ATC’s utility is a linear combination of maintenance of safe distance and the
new flight path’s impact on existing air traffic. We express this through the traffic penalty
function H(e,n), defined over Cartesian coordinates. The total traffic penalty for flight
path Ajg(t) is

Mo = / dt H(e(t),n(t)).

13. We limit the angle to [—90, 90] because heading changes of more than 90 degrees are extremely uncom-
mon.
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Feasible Set of Utility Outcomes
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Figure 1: Feasible set of joint utility outcomes for the rerouting unstructured bargaining
problem. Not only is the feasible set non-convex and not comprehensive, it is not
even connected. Parameters are a. = age = 1, ap = —4, ap = 300, By = —0.01
and fp = 300. The weather is a large circle with center C' = (150, 20) and radius
R = 40. The traffic penalty is given by H(e,n) = n.

We express ATC’s utility as sqic(l,6) = BpD + ByHip for some real numbers fp > 0 and
Bu < 0.

The only thing left to specify is the outcome when negotiations break down, i.e., the
default bargain, dp. It might be that, in the event negotiations break down, the cockpit will
choose the path that maximizes its own objectives without getting clearance from ATC. In
this scenario, the punishment the cockpit receives as a result of changing its course without
ATC approval should also enter the cockpit’s objective. However, there are likely many
complicated and variable factors to consider when modeling the effect of punishment, such
as pilot attitude, idiosyncratic airline rules, etc. Hence, for simplicity, we simply take the
default bargain to be the original flight path, i.e., the straight line between (0,0) and (F,0).
Therefore, the bargaining game is given by

S = {(x¢, Tate) € R? : 2. = 5.(1,0) and Tase = Sac(l,0) for some (1,0) € B}
and d = (s.(FE,0), satc(E,0)).
Figure 1 shows the feasible set of utility outcomes associated with the flight rerouting
model. Note that this set is neither convex nor comprehensive. Furthermore, there are

breaks, so that the feasible set consists of disconnected subsets. Despite these irregularities
of the feasible set, the NDB distribution can be applied trivially, giving

:U’S,d(x) X (xc - dc)ac (xatc - datc)aatC
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Indifference Curves with Multiple Intersections
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Figure 2: Indifference curves of s. and sq. plotted in the space of bargains for the flight
path rerouting problem. s(.,.) is not invertible because the indifference curves
have multiple crossings. Parameters are a. = age = 1, ar = —4, ap = 300,
By = —0.01 and Sp = 300. The weather is a large circle with center C' = (150, 20)
and radius R = 40. The traffic penalty is given by H(e,n) = n.

for all z € S such that « > d, and pg4(z) = 0 otherwise.

As discussed in the introduction, if we want to use the NDB distribution over joint
utilities to make predictions about the bargains in b € B, but don’t have a likelihood
function P(b | x), then we must be able to invert the mapping s = (S, Sazc). Unfortunately,
s is not invertible, as can be seen by noting from figure 2 that the indifference curves of s
and sq. have multiple crossings.

Recall that if the map s were invertible, then to translate from the distribution over
joint utilities to the distribution over bargains we would have to use the Jacobian of s. To
be precise, if ([,0) is a point in B, then the NDB distribution over bargains, ug 40 evaluated
at (1,0) is given by 7

:ug,d (lv 0) = H1Sd (SC(lv 9)7 Satc(lv 0)) |J(l7 9)’7

where J(I,0) is the determinant of the Jacobian of s,

Osc Osc

ol 00

Satc O3atc
ol

Note though that even if s were invertible, the Jacobian might not be well-defined. Indeed,
our flight-rerouting s contains discontinuities where flight paths cross from outside to inside
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NDB Concept Translated to the Space of Bargains
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Figure 3: NDB concept mapped back into the space of bargains B’ = [0,1,...,N] x
[—90, -89, ...,89,90], for a. = age = 1, ar = —4, ap = 300, fy = —0.01
and Sp = 300. The weather is a large circle with center C' = (150, 20) and radius
R = 40. The traffic penalty is given by H(e,n) = n.

the weather radius, and the variable D; g jumps from 1 to zero. Partial derivatives of s. and
Sate do not exist at such points in B.

Say that the set of bargains were countable, e.g., a grid imposed by the technological
constraints of aircraft or the cognitive constraints of pilots and air traffic controllers. In this
case there would be no need to worry about discontinuities or how to calculate the Jacobian.
s might still be non-invertible however, so that we cannot transform the distribution over
joint utilities to a distribution over bargains. In fact this happens with the flight-rerouting
s when the set of bargains is modified to be a grid of integer distances and degrees, i.e.,
B' =10,1,...,N] x [-90, -89, ...,89,90].

Regardless of the cardinality of B, one can translate a distribution over joint utilities to a
distribution over bargains even when s is non-invertible, so long as one knows the likelihood
of bargains given joint utility outcomes. As an example, say that B is countable, and all
bargains that give rise to any particular joint utility x are equally likely. In this case, if
there are | B,| bargains that give rise to x, then the probability of any such bargain is simply
ps,d(x)/|Be|. Using this assumption and the grid B’ = [0,1, ..., N] x [-90, -89, ...,89,90],
figure 3 shows the NDB distribution for the flight-rerouting problem in the space of bargains.
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5. NDB Management

Suppose a regulator, external to an unstructured bargaining game, has preferences over
the joint utility of the bargain reached, formalized as a real-valued social welfare function
U(z € S). Suppose further that they can change some characteristics p of (S,d). For
example, they might be able to change the joint utility d of the default bargain in certain
ways, or replace S with one of several S’ C S. In such cases, assuming they model the game
with an NDB pg 4, the regulator should choose

p = argmax,E,(U(x))

= argmaxp/d:n U(z)us,,d, () (6)

More generally, p may affect s(.),dp, and/or B, not just their image (S, d). In this more
general setting the regulator should choose

p = argmax,E,(U)
— argmax, [ do Ul 0,005 (0) (7)

More generally still, the social welfare function U might be replaced with a function W
defined over the space of bargains B. So long as s, is invertible for all p, Eq. 7 still holds
for this variant. (Just define U(x € s,(B,)) = W(s;l(ac))) However if s, is non-invertible
for certain p, this equation must be modifed. In this situation, assuming they have the

associated likelihood function, the regulator should choose the action
p = argmax,E,(W (b))
= argmaxp/d:vdb P(b | :U)W(b)usp(Bp)75p(d%)(:U) (8)

In addition to these types of actions by the regulator, there are others that are not
considered in typical axiomatic analyses of unstructured bargaining — including the analysis
of this paper up to this point. An example is where the regulator’s intervention is simply to
suggest a bargain to the players before they start to bargain, i.e., to provide them a “focal
bargain” for their bargaining. To advise the regulator in such cases, we need to model the
effects of these types of action by the regulator, and use that model in Eq. 7 .

We refer to any of these types of optimal choice by the external regulator as “NDB
management”. We do not mean to claim that it is always possible to implement NDB
management. In some situations an external regulator may not be able to do anything that
will have a substantial effect on the distribution over possible bargains by the players. In the
rest of this section we present some preliminary analysis of NDB management, concentrating
on an example where the regulator’s possible action is to provide a focal bargain.

5.1 NDB Management in Rerouting Negotiations

Here we demonstrate a simple form of NDB management using the example of rerouting ne-
gotiations from Section 4, related to the focal point concept introduced by Schelling (1960).
Specifically, we assume that the regulator can make a suggestion for a flight rerouting to
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both the cockpit and ATC before they begin rerouting negotiations. The idea is that this
suggestion will serve as a focal bargain for negotiations, having the effect of raising the rel-
ative probability of bargains similar to the suggested one. This suggestion by an “external
regulator” could be implemented by some automated software that operates both in the
cockpit and in ATC.14

Use ug 4(1,0) to indicate the distribution over (/,0) € B induced by the NBD for game
(S,d). (So if needed, ,ug’ 4(1,0) implicitly depends on the Jacobian of s and a likelihood
function P(b | ) = P(l,0 | x).) Then we assume the regulator models the effects of a
suggested focal bargain (lg, 6p) on the distribution over B as

1,o)\” _
Ploﬁo(lv‘g) X <%> /j’g,d(l?e)l 7

where 1 is a bivariate Gaussian distribution with mean (ly,6y) and covariance matrix X,
v € [0, 1] measures the strength of the impact of the manager’s suggestion on the players’
behavior, and Z(B) is the normalization constant for 1. We call this the “NDB management
distribution”. It is clearly an ad hoc model of focal bargains; we use it here only as a simple
way to demonstrate NDB management.

We assume that to minimize her computational requirements, the regulator requires
that the space of bargains be a grid of integer distances and degrees, i.e., B’ =[0,1,..., E] x
[—90, —89, ..., 89,90].1% As mentioned in Section 4, even in this finite set of possible bargains
there are instances where multiple bargains map to the same joint utility outcomes. As
usual, to address this we must specify P(b | x); here we make the simple assumption that
this likelihood is uniform over all b that map to x, and zero for all others. Accordingly,

B :u’Sd(S(l?g))
W (Le) = : )
S | Be|

where | B;| is the number of bargains in B that give rise to outcome x.

As usual, the regulator will choose her action — which here means suggest a heading and
distance — to maximize the resultant expected social welfare. Writing the social welfare
function as W(l, ), this optimal action is

argmax;, g.)e gEio,00,5.d (W) = /Bdl dd W(l,0)Py, ,(1,0).

In general, W might depend on the impact of the rerouting on traffic flow over the entire
National Airspace System, in addition to depending on the utility of the cockpit and of ATC.
For simplicity though, here we take W (l,0) = 7s.(1,0) + (1 — 7)5qac(l,0) where 7 € [0, 1].
Figure 4 depicts the effect of a regulator’s recommendation on the predicted flight path.
The left panel is the NDB distribution over bargains, ug 4- It represents the prediction
before a regulator makes a suggestion. The NDB modal bargain produces the detoured
flight path denoted in the center panel by the sequence of two lines joined by an open

14. Experimental studies find empirical support for a theory of focal points and bargaining (Binmore,
Swierzbinski, Hsu, & Proulx, 1993).

15. In practice, this may not need to be an explicit requirement, since it is unlikely that non-integer values
would be considered by the players.
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NDB Distribution over Bargains Flight Paths NDB Management Distribution
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Figure 4: Left Panel: NDB distribution over B’ = [0, 1, ..., E] x [—90, —89, ..., 89, 90] with
ae = 1, agte = 3, ay = —4, ap = 300, Sy = 0.01 and Bp = 300. Center Panel:
Weather is the large circle with center C' = (150, 20) and radius R = 40, NDB
modal flight path (circle line), NDB management modal flight path (square line),
NDB management recommended waypoint (triangle line). Right Panel: NDB
management distribution with 7 = .5, v = .5, g9 = 360 and o; = 1,200. The
traffic penalty is given by H(e,n) = n.

circle; the flight begins its detour at the point (0,0) and returns to its original flight path
at (300,0). The reason the modal flight path does not pass closer to the weather is that the
traffic penalty is given by H(e,n) = n, i.e., traffic is denser in the north. This means ATC is
rewarded for flight paths that pass further to the south. And since agte =3 > 1 = a., ATC
is relatively successful at convincing the cockpit to accept bargains that result in longer,
more southerly flight paths.

The NDB management distribution is shown in the right panel. It represents the predic-
tion after the regulator has made an optimal suggestion. In this case, the optimal suggestion
is (130, —10). The path associated with the optimal suggestion is denoted in the center panel
by the pair of lines joined by a triangle. The modal bargain of the NDB management distri-
bution induced by that suggestion is denoted by the pair of lines joined by a square. Note
that the regulator’s suggestion has the effect of skewing the distribution toward bargains
with shorter distances [ and smaller heading changes. This is because the regulator assigns
equal weight to ATC and cockpit utility, whereas the NDB distribution is skewed toward
outcomes that are better for ATC. As a result, the modal bargain shifts significantly to the
north.
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6. Conclusion and Future Work

In both laboratory and field unstructured bargaining experiments, it is typically found
that more than one bargain can arise. To accommodate this, in this paper we consider
maps that take any unstructured bargaining problem S to a probability distribution over
S, rather than to a single element of S. Our approach is to “translate” Nash’s axioms of
unstructured bargaining to apply to this distribution-valued map. Doing this, we derive
the “Nash distributional bargaining concept”, which maps any feasible set of joint utility
outcomes to a power law over that set. This power law nature is intriguing due to the
ubiquity of empirical power laws in the real economy, e.g., in wage distributions, city sizes,
etc.

Future work involves trying to translate variants of Nash’s axioms into a distributional
bargaining concept. For example, it may prove possible to translate the weak monotonicity
axiom of the Kalai-Smorodinsky solution concept (Kalai & Smorodinsky, 1975) into prob-
abilistic terms. If so, then by combining it with our probabilistic versions of the remaining
Kalai-Smorodinsky axioms (which are shared with the axioms of the Nash bargaining con-
cept), we may be able to produce a “Kalai-Smorodinsky distributional bargaining concept”.

There are many advantages to using distributional bargaining concepts, in addition to
their according with the experimental fact that multiple bargains can arise for any given
game. One advantage is that such concepts seamlessly accommodate feasible sets that are
not convex and comprehensive, and even finite feasible sets. Another advantage arises if
there is an external regulator who can modify some aspects of the bargaining game and has
their own utility function over bargaining outcomes. By modifying the game, the regulator
changes the associated distribution, and therefore modifies the value of their own expected
utility. Accordingly, they can calculate the Bayes-optimal modification to the game.

We emphasize that there is nothing in the formal definition of a bargaining game or in
our translation of Nash’s axioms that restricts our analysis to scenarios that are traditionally
viewed as “bargaining”. In particular, we do not assume binding contracts. Therefore there
is no reason to assume that the outcome of the game has to be Pareto optimal. (Without
a binding contract on a player’s behavior, that player will typically have both an incentive
and the ability to change her behavior in a way that helps her but hurts her opponent, and
thereby moves the final outcome off of the Pareto frontier.) For this reason, distributional
bargaining concepts can be applied to model any noncooperative game where the modeler
only knows the feasible set of the game’s joint utility outcomes, and does not know (or
cannot tractably elaborate) the full underlying extensive form of the game. In modeling
noncooperative game behavior with such limited information, the best the modeler can do
is provide a distribution over the final joint utility outcome. Intuitively speaking, such a
distribution amounts to an “average” over all extensive form games that have the associated
feasible set of possible joint utilities. The Nash distributional bargaining concept provides a
way to form such a distribution over outcomes, using axioms that seem applicable in many
scenarios not traditionally viewed as unstructured bargaining.'®

16. The only subtlety with using the Nash distributional bargaining concept this way is that there needs to
be an outcome of the noncooperative game that can reasonably be expected to behave as the “default
point” d. However even this restriction can be dispensed with using some distributional bargaining
concepts, e.g., using the logit one mentioned at the end of Sec. 2.
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As an illustration, in the work of Smith, Suchanek, and Williams (1988) an artificial
speculative market was run for T rounds. This created a bubble which burst, leaving some
test subjects poorer and some richer. Predicting the moves in the full extensive form game
the subjects engaged in over the T rounds is laborious, at best. As an alternative, one could
imagine predicting the experiment’s outcome based only on knowing its feasible set, i.e.,
knowing all ways the money could end up divided among the subjects at the end of the
experiment. Future work involves analyzing the Nash distributional bargaining concept for
such situations.

Such market experiments could prove to be a useful source of data for testing alternative
distributional bargaining theories, in addition to experiments explicitly viewed in terms of
unstructured bargaining. In particular, if it is possible to produce a Kalai-Smorodinsky
distributional bargaining concept, as discussed above, it may be possible to compare the
predictions of such an alternative theory against the NDB concept using data from market
experiments. Such a comparative study would be analogous to the types of meta-studies
conducted to compare non-cooperative solution concepts using experimental data (Wright
& Leyton-Brown, 2010).

As discussed above, the function s plays a prominent role in making predictions about
bargains rather than about joint utilities. Arguably, knowledge of s should even affect the
predictions we make over joint utility outcomes. As an example, say the set of possible
bargains is so large that the players cannot be expected to examine it completely, and that
s concentrates the vast majority of bargains onto a single joint utility x, e.g., one on the
Pareto frontier. In this case, it would seem reasonable to ascribe higher probability to that
x than we would if only a single bargain mapped to it. However traditional approaches to
unstructured bargaining ignore s when predicting joint utilities, relying on axioms solely
concerned with the space of joint utilities. For the most part, that is the approach we
adopted here. (The section on optimal recommendations diverged from this in modeling
the effect of the recommendation.) Future work involves incorporating knowledge of s
directly into the predictions of joint utility outcomes.

Acknowledgments

We would like to thank Sylvia Thoron for helpful discussion.

References

Agogino, A., & Tumer, K. (2012). A multiagent approach to managing air traffic flow.
Autonomous Agents and Multi-Agent Systems, 24, 1-25. 10.1007/s10458-010-9142-5.

Ashlagi, I., Monderer, D., & Tennenholtz, M. (2008). On the value of correlation. Journal
of Artificial Intelligence Research, 33, 575—613.

Aumann, R., & Hart, S. (1992). Handbook of Game Theory with Economic Applications.
North-Holland Press.

602



PREDICTIVE UNSTRUCTURED BARGAINING

Aydogan, R., & Yolum, P. (2012). Learning opponent’s preferences for effective negotiation:
an approach based on concept learning. Autonomous Agents and Multi-Agent Systems,
24, 104-140. 10.1007/s10458-010-9147-0.

Binmore, K., Swierzbinski, J., Hsu, S., & Proulx, C. (1993). Focal points and bargaining.
International Journal of Game Theory, 22, 381-409. 10.1007/BF01240133.

Brafman, R. I., & Tennenholtz, M. (1996). On partially controlled multi-agent systems.
Journal of Artificial Intelligence Research, 4, 477-507.

Brafman, R. I., & Tennenholtz, M. (2003). Learning to coordinate efficiently: A model-
based approach. Journal of Artificial Intelligence Research, 19, 11-23.

Camerer, C. (2003). Behavioral Game Theory: Ezperiments in Strategic Interaction. Prince-
ton University Press.

Chalamish, M., & Kraus, S. (2012). Automed: an automated mediator for multi-issue
bilateral negotiations. Autonomous Agents and Multi-Agent Systems, 24, 536-564.
10.1007/s10458-010-9165-y.

Conley, J. P., & Wilkie, S. (1996). An extension of the nash bargaining solution to nonconvex
problems. Games and Economic Behavior, 13, 26-38.

Duan, L., Dogru, M., Ozen, U., & Beck, J. (2012). A negotiation framework for linked
combinatorial optimization problems. Autonomous Agents and Multi-Agent Systems,
25, 158-182. 10.1007/s10458-011-9172-7.

Harsanyi, J., & Selten, R. (1972). A generalized nash solution for two-person bargaining
games with incomplete information. Management Science, 18, 80-106.

Herrero, M. J. (1989). The nash program: Non-convex bargaining problems. Journal of
Economic Theory, 49(2), 266 — 277.

Jaynes, E. T., & Bretthorst, G. L. (2003). Probability Theory : The Logic of Science.
Cambridge University Press.

Kalai, E. (1977). Proportional solutions to bargaining situations: Interpersonal utility
comparisons. FEconometrica, 45(7), 1623-1630.

Kalai, E., & Smorodinsky, M. (1975). Other solutions to nashs bargaining problem. Econo-
metrica, 43(3), 513518.

Kaneko, M. (1980). An extension of the nash bargaining problem and the nash social welfare
function. Theory and Decision, 12, 135-148. 10.1007/BF00154358.

Kibris, O., & Sertel, M. (2007). Bargaining over a finite set of alternatives. Social Choice
and Welfare, 28, 421-437. 10.1007/s00355-006-0178-z.

Lopez-Carmona, M., Marsa-Maestre, 1., Klein, M., & Ito, T. (2012). Addressing sta-
bility issues in mediated complex contract negotiations for constraint-based, non-

monotonic utility spaces. Autonomous Agents and Multi-Agent Systems, 24, 485-535.
10.1007/s10458-010-9159-9.

603



WOLPERT & BONO

Mariotti, M. (1998a). Extending nash’s axioms to nonconvex problems. Games and Eco-
nomic Behavior, 22(2), 377 — 383.

Mariotti, M. (1998b). Nash bargaining theory when the number of alternatives can be finite.
Social Choice and Welfare, 15, 413-421. 10.1007/s003550050114.

McKelvey, R. D., & Palfrey, T. R. (1995). Quantal response equilibria for normal form
games. Games and Economic Behavior, 10, 6-38.

Nash, J. (1950). The bargaining problem. Econometrica, 18(2), 155162.

Nydegger, R. V., & Owen, G. (1974). Two-person bargaining: An experimental
test of the nash axioms. International Journal of Game Theory, 3, 239-249.
10.1007/BF01766877.

Osborne, M., & Rubinstein, A. (1994). A Course in Game Theory. MIT Press, Cambridge,
MA.

Peters, H., & Tijs, S. (1984). Probabilistic bargaining solutions. In Operations Research
Proceedings. Springer-Verlag.

Peters, H., & Vermeulen, D. (2010). WPO, COR, and ITA bargaining solutions. accepted
by International Journal of Game Theory.

Rezek, 1., Leslie, D. S., Reece, S., Roberts, S. J., Rogers, A., Dash, R. K., & Jennings,
N. R. (2008). On similarities between inference in game theory and machine learning.
Journal of Artificial Intelligence Research, 33, 259—283.

Roth, A. E., & Malouf, M. W. K. (1979). Game-theoretic models and the role of information
in bargaining. Psychological Review, 86(6), 574-594.

Rubinstein, A., Safra, Z., & Thomson, W. (1992). On the interpretation of the nash bar-
gaining solution and its extension to non-expected utility preferences. Econometrica,
60(5), 1171-1186.

Schelling, T. (1960). The strategy of conflict. Harvard university press.

Smith, V. L., Suchanek, G. L., & Williams, A. W. (1988). Bubbles, crashes, and endogenous
expectations in experimental spot asset markets. Econometrica, 56(5), pp. 1119-1151.

Train, K. E. (2003). Discrete Choice Methods with Simulation. Cambridge University Press.

Vorobeychik, Y., Reeves, D. M., & Wellman, M. P. (2012). Constrained automated mech-
anism design for infinite games of incomplete information. accepted by Journal of
Autonomous Agents and Multiagent Systems.

Wolpert, D. H., Harre, M., Olbrich, E., Bertschinger, N., & Jost, J. (2012). Hysteresis effects
of changing parameters in noncooperative games. Physical Review E, 85, 036102. DOLI:
10.1103/PhysRevE.85.036102.

604



PREDICTIVE UNSTRUCTURED BARGAINING

Wolpert, D. H., & Bono, J. W. (2011). Distribution-valued solution concepts. working
paper.

Wright, J. R., & Leyton-Brown, K. (2010). Beyond equilibrium: Predicting human behavior
in normal form games. In Twenty-Fourth Conference on Artificial Intelligence (AAAI-
10). forthcoming.

Xu, Y., & Yoshihara, N. (2006). Alternative characterizations of three bargaining solutions
for nonconvex problems. Games and Economic Behavior, 57(1), 86 — 92.

Zhou, L. (1997). The nash bargaining theory with non-convex problems. FEconometrica,
65(3), 681-685.

605



