
Journal of Artificial Intelligence Research 46 (2013) 511-577 Submitted 12/12; published 03/13

Probabilistic Planning for Continuous Dynamic Systems
under Bounded Risk

Masahiro Ono ONO@APPI.KEIO.AC.JP

Keio University
3-14-1 Hiyoshi, Kohoku-ku
Yokohama, Kanagawa, 223-8522 Japan

Brian C. Williams WILLIAMS@MIT.EDU

Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139 USA

Lars Blackmore LARS.BLACKMORE@SPACEX.COM

SpaceX
1 Rocket Road
Hawthorne, CA 90250 USA

Abstract

This paper presents a model-based planner called the Probabilistic Sulu Planner or the p-Sulu
Planner, which controls stochastic systems in a goal directed manner within user-specified risk
bounds. The objective of the p-Sulu Planner is to allow users to command continuous, stochastic
systems, such as unmanned aerial and space vehicles, in a manner that is both intuitive and safe. To
this end, we first develop a new plan representation called a chance-constrained qualitative state
plan (CCQSP), through which users can specify the desired evolution of the plant state as well as
the acceptable level of risk. An example of a CCQSP statement is “go to A through B within 30
minutes, with less than 0.001% probability of failure.” We then develop the p-Sulu Planner, which
can tractably solve a CCQSP planning problem. In order to enable CCQSP planning, we develop
the following two capabilities in this paper: 1) risk-sensitive planning with risk bounds, and 2)
goal-directed planning in a continuous domain with temporal constraints. The first capability is to
ensures that the probability of failure is bounded. The second capability is essential for the planner
to solve problems with a continuous state space such as vehicle path planning. We demonstrate the
capabilities of the p-Sulu Planner by simulations on two real-world scenarios: the path planning
and scheduling of a personal aerial vehicle as well as the space rendezvous of an autonomous cargo
spacecraft.

1. Introduction

There is an increasing need for risk-sensitive optimal planning in uncertain environments, while
guaranteeing an acceptable probability of success. A motivating example for this article is the
Boeing concept of a future aerial personal transportation system (PTS), as shown in Figure 1. The
PTS consists of a fleet of small personal aerial vehicles (PAV) that enable the flexible point-to-point
transportation of individuals and families.

c⃝2013 AI Access Foundation. All rights reserved.

ONO, WILLIAMS, & BLACKMORE

In order to provide safety, PTS should be highly automated. In 2004, in the US, pilot error was
listed as the primary cause of 75.5% of fatal general aviation accidents, according to the 2005 Joseph
T. Nall Report (Aircraft Owners and Pilots Association Air Safety Foundation, 2005). Automated
path planning, scheduling, collision avoidance, and traffic management will significantly improve
the safety of PTS, as well as its efficiency. The challenges to operating such a system include
adapting to uncertainties in the environment, such as storms and turbulence, while satisfying the
complicated needs of users.

There is a substantial body of work on planning under uncertainty that is relevant. However,
our approach is distinctive in three key respects. First, our planner, the p-Sulu Planner, allows
users to explicitly limit the probability of constraint violation. This capability is particularly im-
portant for risk-sensitive missions where the impact of failure is significant. Second, the planner
is goal-directed, by which we mean that it achieves time-evolved goals within user-specified tem-
poral constraints. Third, the planner works in a continuous state space. A continuous state space
representation fits naturally to many real-world applications, such as planning for aerial, space, and
underwater vehicles. It is also important for problems with resources.

Figure 1: Personal Transportation System (PTS). (Courtesy of the Boeing Company)

Figure 2 shows a sample PTS scenario. A passenger of a PAV starts in Provincetown, MA
and wants to go to Bedford within 30 minutes. The passenger also wants to go through a scenic
area and remain there between 5 and 10 minutes during the flight. There is a no-fly zone (NFZ)
and a storm that must be avoided. However, the storm’s future location is uncertain; the vehicle’s
location is uncertain as well, due to control error and exogenous disturbances. Thus there is a risk
of penetrating the NFZ or the storm. The passengers want to limit such risk to at most 0.001%.

In order to handle such a planning problem, we introduce a novel planner called the Probabilistic
Sulu Planner (p-Sulu Planner), building upon prior work on the model-based plan executive called
Sulu (Léauté & Williams, 2005). The p-Sulu Planner provides the following three capabilities, in
order to meet the needs described in the above scenario: 1) goal-directed planning in a continuous
domain, 2) near-optimal planning, and 3) risk-sensitive planning with risk bounds.

• Goal-directed planning in a continuous domain The p-Sulu Planner must plan actions with
continuous effects that achieve time evolved goals specified by users. In the case of the PTS
scenario in Figure 2, the PAV must sequentially achieve two temporally extended goals, called

512

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Figure 2: A sample plan for personal aerial vehicle (PAV)

episodes: going through the scenic area and then arriving at Bedford. There are additional
temporal constraints on the goals that are inherent to the scenario; some temporal constraints
come from physical limitations, such as fuel capacity, and others come from passenger re-
quirements.

• Near-optimal stochastic planning Cost reduction and performance improvement are impor-
tant issues for any system. In the PTS scenario, passengers may want to minimize the trip
time or fuel usage. The p-Sulu Planner finds a near-optimal control sequence according to the
user-defined objective function, while satisfying given constraints.

• Risk-sensitive planning with risk bounds Real-world systems are subject to various un-
certainties, such as state estimation error, modeling uncertainty, and exogenous disturbance.
In the case of PAVs, the position and velocity of the vehicle estimated by the Kalman filter
typically involve Gaussian-distributed uncertainties; the system model used for planning and
control is not perfect; and the vehicles are subject to unpredictable disturbances such as tur-
bulence. Under such uncertainty, the executed result of a plan inevitably deviates from the
original plan and hence involves risk of constraint violation. Deterministic plan execution is
particularly susceptible to risk when it is optimized in order to minimize a given cost function,
since the optimal plan typically pushes against one or more constraint boundaries, and hence
leaves no margin for error. For example, the shortest path in the PTS scenario shown in Figure
2 cuts in close to the NFZs and the storm, or more generally, constraint boundaries. Then,
a tiny perturbation to the planned path may result in a penetration into the obstacles. Such
risk can be reduced by setting a safety margin between the path and the obstacles, at a cost of
longer path length. However, it is often impossible to guarantee zero risk, since there is typ-
ically a non-zero probability of having a disturbance that is large enough to push the vehicle
out of the feasible region. Therefore, passengers of the vehicle must accept some risk, but at
the same time they need to limit it to a certain level. More generally, users of an autonomous
system under uncertainty should be able to specify their bounds on risk. The planner must
guarantee that the system is able to operate within these bounds. Such constraints are called
chance constraints.

513

ONO, WILLIAMS, & BLACKMORE

1.1 Overview of the Planner

This section describes the inputs and outputs of the p-Sulu Planner informally. They are rigorously
defined in Section 2.

1.1.1 INPUTS

Initial Condition The p-Sulu Planner plans a control sequence starting from the current state,
which is typically estimated from noisy sensor measurements. Therefore, the p-Sulu Planner takes
the probability distribution, instead of the point estimate, of the current state as the initial condition.

Stochastic Plant Model In the control community the planning problem is to generate a sequence
of control inputs that actuate a physical system, called the plant. The action model for a plant is
typically a system of real-valued equations over control, state and observable variables. The p-
Sulu Planner takes as an input a linear stochastic plant model, which specifies probabilistic state
transitions in a continuous domain. This is a stochastic extension of the continuous plant model used
by Léauté and Williams (2005). In this paper we limit our focus to Gaussian-distributed uncertainty.

Chance-constrained qualitative state plan (CCQSP) In order to provide users with an intu-
itive way to command stochastic systems, we develop a new plan representation called a chance-
constrained qualitative state plan (CCQSP). It is an extension of qualitative state plan (QSP), de-
veloped and used by Léauté and Williams (2005), Hofmann and Williams (2006), and Blackmore,
Li, and Williams (2006). CCQSP specifies a desired evolution of the plant state over time, and is
defined by a set of discrete events, a set of episodes, which impose constraints on the plant state
evolution, a set of temporal constraints between events, and a set of chance constraints that specify
reliability constraints on the success of sets of episodes in the plan.

A CCQSP may be depicted as a directed acyclic graph, as shown in Figure 3. The circles
represent events and squares represent episodes. Flexible temporal constraints are represented as a
simple temporal network (STN) (Dechter, Meiri, & Pearl, 1991), which specifies upper and lower
bounds on the duration between two events (shown as the pairs of numbers in parentheses). The
plan in Figure 3 describes the PTS scenario depicted in Figure 2, which can be stated informally as:

“Start from Provincetown, reach the scenic region within 30 time units, and remain
there for between 5 and 10 time units. Then end the flight in Bedford. The probability
of failure of these episodes must be less than 1%. At all times, remain in the safe region
by avoiding the no-fly zones and the storm. Limit the probability of penetrating such
obstacles to 0.0001%. The entire flight must take at most 60 time units.”

A formal definition of CCQSP is given in Section 2.4.3.

Objective function The user of the p-Sulu Planner can specify an objective function (e.g., a cost
function). We assume that it is a convex function.

1.1.2 OUTPUT

Executable control sequence The p-Sulu Planner plans over a finite horizon. One of the two
outputs of the p-Sulu Planner is an executable control sequence over the horizon that satisfies all
constraints specified by the input CCQSP. In the case of the PTS scenario, the outputs are the vehi-
cle’s actuation inputs, such as acceleration and ladder angle, that result in the nominal paths shown

514

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Figure 3: An example of a chance-constrained qualitative state plan (CCQSP), a new plan repre-
sentation to specify the desired evolution of the plant state and the acceptable levels of
risk. In the PTS scenario in Figure 2, the passengers of a PAV would like to go from
Provincetown to Bedford, and fly over the scenic region on the way. The “safe region”
means the entire state space except the obstacles. Risk of the episodes must be within the
risk bounds specified by chance constraints.

in Figure 2. In order for the control sequence to be executable, it must be dynamically feasible. For
example, the curvature of the PAV’s path must not exceed the vehicles’ maneuverability.

Optimal schedule The other output of the p-Sulu Planner is the optimal schedule, a set of execu-
tion time steps for events in the input CCQSP that minimizes a given cost function. In the case of
the PTS scenario shown in Figure 3, a schedule specifies when to leave the scenic region and when
to arrive at Bedford, for example. The p-Sulu Planner finds a schedule that satisfies all the simple
temporal constraints specified by the CCQSP, and minimizes the cost function.

The two outputs – the control sequence and the schedule – must be consistent with each other:
the time-evolved goals are achieved on the optimal schedule by applying the control sequence to the
given initial conditions.

1.2 Approach

The p-Sulu Planner must solve a very difficult problem of generating an executable control sequence
for a CCQSP, which involves both combinatorial optimization of a discrete schedule and non-convex
optimization of a continuous control sequence. Our approach in this article is to develop the p-Sulu
Planner in three technical steps, which we call “spirals”.

In the first spiral, described in Section 4, we solve a special case of the CCQSP planning prob-
lem, where the feasible state space is convex (e.g., path planning problem without obstacles) and
the schedule is fixed, as shown in Figure 4-(a). This problem can be transformed into a convex op-
timization problem by the risk allocation approach, which is presented in our previous work (Ono
& Williams, 2008a). We obtain a feasible, near-optimal solution to the CCQSP planning problem
by optimally solving the convex optimization using an interior point method (Blackmore & Ono,
2009).

In the second spiral, which is presented in Section 5, we consider a CCQSP problem with a
non-convex state space in order to include obstacles, as in Figure 4-(b). We develop a branch and
bound-based algorithm, called non-convex iterative risk allocation (NIRA). Subproblems of the
branch-and-bound search of NIRA are convex chance-constrained optimal control problems, which
are solved in the first spiral. The NIRA algorithm cannot handle a problem with a flexible schedule.

515

ONO, WILLIAMS, & BLACKMORE

In the third spiral, which is described in Section 6, we develop another branch and bound-
based algorithm, namely the p-Sulu Planner, which can solve a general CCQSP planning problem
with a flexible schedule and obstacles. Subproblems of the branch-and-bound search of the p-
Sulu Planner are non-convex chance-constrained optimal control problems, which are solved by the
NIRA algorithm.

C

Waypoint

Goal

Start

Obstacle

t = 1

t = 5

Waypoint

Goal

Start

t = 1

t = 5

(Ono & Williams 2008b) (Section 4)

(a) Convex, fixed schedule (b) Non-convex, fixed schedule

NIRA (Section 5)

C

Waypoint

Goal

Start

Obstacle

[1 3]

[2 4]

[0 5]

Simple temporal

constraints

(c) Non-convex, flexible schedule

p-Sulu (Section 6)

Fixed scheduleFixed schedule

Figure 4: Three-spiral approach to the CCQSP planning problem

1.3 Related Work

Recall that the CCQSP planning problem is distinguished by its use of time-evolved goals, contin-
uous states and actions, stochastic optimal solutions and chance constraints. While the planning
and control disciplines have explored aspects of this problem, its solution in total is novel, and our
approach to solving this problem efficiently through risk allocation is novel.

More specifically, there is an extensive literature on planning with discrete actions to achieve
temporally extended goals (TEGs), such as TLPlan (Bacchus & Kabanza, 1998) and TALPlan
(Kvarnstrom & Doherty, 2000), which treat TEGs as temporal domain control knowledge and prune
the search space by progressing the temporal formula. However, since these TEG planners assume
discrete state spaces, they cannot handle problems with continuous states and effects without dis-
cretization. Ignoring chance constraints, the representation of time evolved goals used by TLPlan
and the p-Sulu Planner is similar. TLPlan uses a version of metric interval temporal logic (MITL)
(Alur, Feder, & Henzinger, 1996) applied to discrete states, while the p-Sulu Planner uses quali-
tative state plans (QSPs) (Léauté & Williams, 2005; Hofmann & Williams, 2006; Li, 2010) over
continuous states. Li (2010) shows that, for a given state space, any QSP can be expressed in MITL.
The key difference that defines the p-Sulu Planner is the addition of chance constraints, together
with its use of continuous variables.

Several planners, particularly those that are employed as components of model-based execu-
tives, command actions in continuous state space. For example, Sulu (Léauté & Williams, 2005)
takes as input a deterministic linear model and QSP, which specifies a desired evolution of the plant
state as well as flexible temporal constraints, and outputs a continuous control sequence. Chekhov
(Hofmann & Williams, 2006) also takes as input a QSP and a nonlinear deterministic system model,
and outputs a continuous control sequence. In order to enable fast real-time plan execution, Chekhov
precomputes flow tubes, the sets of continuous state trajectories that end in the goal regions spec-
ified by the given plan. Kongming (Li, 2010) provides a generative planning capability for hybrid

516

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

systems, involving both continuous and discrete actions. It employs a compact representation of
hybrid plans, called a Hybrid Flow Graph, which combines the strengths of a Planning Graph for
discrete actions and flow tubes for continuous actions. These planners adapt to the effects of uncer-
tainty, but do not explicitly reason about the effects of uncertainty during planning. For example,
Sulu employs a receding horizon approach, which continuously replans the control sequence using
the latest measurements. Chekhov’s flow tube representation of feasible policies allows the execu-
tive to generate new control sequences in response to disturbances on-line. The p-Sulu Planner is
distinct from these continuous planners in that it plans with a model of uncertainty in dynamics, in-
stead of just reacting to it. Its plan guarantees the user-specified probability of success by explicitly
reasoning about the effects of uncertainty.

In AI planning literatures, a planning domain description language, PDDL+, supports mixed
discrete-continuous planning domains (Fox & Long, 2006). Probabilistic PDDL (Younes & Littman,
2004) and the Relational Dynamic influence Diagram Language (RDDL) (Sanner, 2011) can han-
dle stochastic systems. Recently, Coles, Coles, Fox, and Long (2012) developed a forward-chaining
heuristic search planner named COLIN, which can deal with continuous linear change and duration-
dependent effects. However, these planners do not handle chance constraints. We note that the
outputs of the p-Sulu Planner is continuous in space but discrete in time. The time-dependent MDP
developed by Boyan and Littman (2000) can handle continuous time by encoding time in the state.
Extension of the p-Sulu Planner to continuous-time planning would be an interesting future direc-
tion.

Most work within the AI community on probabilistic planning has focused on planning in dis-
crete domains and builds upon the Markov decision process (MDP) framework. A growing sub-
community has focused on extensions of MDPs to the continuous domain. However, tractability
is an issue, since they typically require partitioning or approximation of continuous state space.
A straightforward partitioning of continuous state and action spaces into discrete states and ac-
tions often leads to an exponential blow-up in running time. Furthermore, when the feasible state
space is unbounded, it is impossible to partition the space into a finite number of compact sub-
spaces. An alternative approach is the function approximation (Boyan & Moore, 1995), but its
convergence is guaranteed only when the approximation error is bounded (Bertsekas & Tsitsiklis,
1996; Lagoudakis & Parr, 2003). Time-dependent MDPs (Boyan & Littman, 2000; Feng, Dearden,
Meuleau, & Washington, 2004) can do efficient partitioning of continuous state space, but make an
assumption that the set of available states and actions are finite (i.e., discrete). Hence, planning by
these MDPs in a continuous state space, such as Rn, requires to approximate the state space by a
finite number of discrete states. Our approach is essentially different from the MDP approaches in
that the continuous variables are directly optimized through convex optimization without discretiza-
tion of continuous state space. Hence, the continuity of the state space does not harm the tractability
of the p-Sulu Planner.

A second point of comparison is the treatment of risk. Like the p-Sulu Planner, the MDP
framework offers an approach to marrying utility and risk. However, most MDP algorithms balance
the utility and risk by assigning a large negative utility to the event of constraint violation. Such an
approach cannot guarantee bounds on the probability of constraint violation. The constrained MDP
approach (Altman, 1999) can explicitly impose constraints. Dolgov and Durfee (2005) showed
that stationary deterministic policies for constrained MDPs can be obtained by solving a mixed
integer linear program (MILP). However, the constrained MDP framework can only impose bounds
on the expected value of costs, and again, cannot guarantee strict upper bounds on the probability

517

ONO, WILLIAMS, & BLACKMORE

of constraint violation. In contrast, the p-Sulu Planner allows users to impose chance constraints,
which explicitly restrict the probability of constraint violation. As far as the authors know, the
risk-sensitive reinforcement learning approach proposed by Geibel and Wysotzki (2005) is the only
work that considers chance constraints in the MDP framework. They developed a reinforcement
learning algorithm for MDPs with a constraint on the probability of entering error states. Our work
is distinct from theirs in that the p-Sulu Planner is goal-directed, by which we mean that it achieves
time-evolved goals within user-specified temporal constraints. To summarize, no prior MDP work
supports continuous state and actions in combination with general continuous noise on transitions
while ensuring that the probability of failure is bounded.

Risk-sensitive control methods in a continuous domain have been extensively studied in the dis-
cipline of control theory. For example, the celebrated H∞ control method minimizes the effect of
disturbances on the output of a system while guaranteeing the stability of the system (Stoorvogel,
1992). Risk-sensitive control approaches allow users to choose the level of risk averseness through
the minimization of an expected exponentiated cost function (Jacobson, 1973; Fleming & McE-
neaney, 1995). However, these approaches do not address chance constraints and optimal schedul-
ing. Several methods have been proposed for solving stochastic optimal control problems over
continuous variables with chance constraints. The method proposed by van Hessem (2004) turns
a stochastic problem into a deterministic problem using a very conservative ellipsoidal relaxation.
Blackmore (2006) proposes a sampling-based method called Particle Control, which evaluates joint
chance constraints by a Monte-Carlo simulation, instead of using a conservative bound. As a result,
the stochastic planning problem is reduced to a MILP problem. Although it has a theoretical guar-
antee that it can obtain the exactly optimal solution when an infinite number of samples are used,
computation time is an issue. Blackmore et al. (2006) and Nemirovski and Shapiro (2006) employed
Boole’s inequality to decompose a joint chance constraint into individual chance constraints. Al-
though Boole’s inequality is less conservative than the ellipsoidal relaxation, their approach still
has non-negligible conservatism since it fixes each individual risk bound to a uniform value. Our
approach builds upon this approach, with modifications to allow flexible individual risk bounds.

To the best of the authors’ knowledge, the p-Sulu Planner is the first goal-directed planner that
is able to plan in a continuous state space with chance constraints.

1.4 Innovations

The p-Sulu Planner is enabled by six innovations presented in this article.
First, in order to allow users to command stochastic systems intuitively, we develop a new plan

representation, CCQSP (Section 2.4.3).
Second, in order to decompose a chance constraint over a disjunctive clause into a disjunction

of individual chance constraints, we introduce the risk selection approach (Section 5.1.2).
Third, in order to obtain lower bounds for the branch-and-bound search in NIRA, we develop

the fixed risk relaxation (FRR), a linear program relaxation of the subproblems (Section 5.4.2).
Fourth, we minimize the search space for the optimal schedule by introducing a new forward

checking method that efficiently prunes infeasible assignment of execution time steps (Section 6.2).
Fifth, in order to enhance the computation time of schedule optimization, we introduce a method

to obtain a lower bound for the branch-and-bound by solving fixed-schedule planning problems with
an partial assignment of a schedule. (Section 6.3)

518

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Sixth, in order to minimize the number of non-convex subproblems solved in the branch-and-
bound search, we introduce a variable ordering heuristic, namely the convex-episode-first (CEF)
heuristic, which explores the episodes with a convex feasible state region before the ones with a
non-convex state region (Section 6.2.2).

The rest of this article is organized as follows. Section 2 formally defines the CCQSP and
states the CCQSP planning problem. Section 3 derives the encoding of the problem as a chance-
constrained optimization problem, as well as the encodings of two limited versions of the CCQSP
planning problem: one with a fixed schedule and a convex state space, and another with a fixed
schedule and a non-convex state space. Section 4 reviews the solution to a fixed-schedule CCQSP
planning problem with a convex state space. Section 5 develops the NIRA algorithm, which solves
a fixed-schedule CCQSP planning problem with a non-convex state space, and Section 6 introduces
the p-Sulu Planner, which solves a CCQSP planning problem with a flexible schedule and a non-
convex state space. Finally, Section 7 shows simulation results on various scenarios, including the
personal transportation system (PTS).

2. Problem Statement

Recall that the p-Sulu Planner takes as input a linear stochastic plant model, which specifies the
effects of actions; an initial state description, describing a distribution over initial states; a CCQSP,
which specifies desired evolutions of the state variables, as well as acceptable levels of risk; and an
objective function. Its output is an executable control sequence and an optimal schedule. Planning
is performed over a finite horizon, since the p-Sulu Planner is incorporated with the finite-horizon
optimal control. We first define the variables used in the problem formulations. Then we define
elements of the inputs and outputs.

2.1 Definition of Time Step

We consider a series of discretized finite time steps t = 0, 1, 2, · · ·N with a fixed time interval
∆T , where integer N is the size of the planning horizon. Since the time interval ∆T can take any
positive real value, it suffices to consider time steps with only integer indices to approximate the
system’s dynamics. We use the term “time step” to mean an integer index of the discretized time
steps, while using the term “time” to mean a real-valued time. We define sets T and T− as follows:

T := {0, 1, 2, · · ·N}. (1)

T− := {0, 1, 2, · · ·N − 1}. (2)

We limit the scope of this article to a discrete-time stochastic system. This is because optimizing
a control sequence for a continuous-time stochastic system requires solving a stochastic differential
equation (SDE) repeatedly. Performing such a computation is not tractable except for very simple
problems.

2.2 Definitions of Events

An event denotes the start or end of an episode of behavior in our plan representation.

Definition 1. An event e ∈ E is a instance that is executed at a certain time step in T.

519

ONO, WILLIAMS, & BLACKMORE

We define two special events, the start event e0 and the end event eE . Without loss of generality,
we assume that e0 is executed at t = 0. The end event eE represents the termination of the entire
plan.

2.3 Definitions of Variables

Variables used in our problem formulation involve a discrete schedule, a continuous state vector,
and a continuous control vector.

We formally define an event as well as a schedule as follows:

Definition 2. An execution time step s(e) ∈ T is an integer-valued scalar that represents the
time step at which an event e ∈ E is executed. A schedule s := [s(e0), s(e1), · · · s(eE)] is
a sequence of execution time steps of all the events e ∈ E . Finally, a partial schedule σ :=
[σ(e) ∈ s | e ∈ Eσ ⊆ E] is an ordered set of execution time steps of a subset of events Eσ.

By definition, the start event is executed at t = 0 i.e, s(e0) = 0. Following the notation of a
schedule, we denote by σ(e) the execution time of an event e ∈ Eσ. See also the definition of a
schedule (Definition 2).

We consider a continuous state space, where a state vector and a state sequence are defined as
follows:

Definition 3. A state vector xt ∈ Rnx is a real-valued vector that represents the state of the plant
at time step t. A state sequence x0:N := [x0 · · ·xN] is a vector of state variables from time step 0
to N .

Our actions are assignments to continuous decision variables, which are referred to as a control
vector:

Definition 4. A control vector ut ∈ Rnu is a real-valued vector that represents the control input to
the system at time step t. A control sequence u0:N−1 := [u0 · · ·uN−1] is a vector of control inputs
from time 0 to N − 1.

2.4 Definitions of Inputs

This subsection defines the four inputs of the p-Sulu Planner: an initial condition, a stochastic plant
model, a CCQSP, and an objective function.

2.4.1 INITIAL CONDITION

The belief state at the beginning of the plan is represented by an initial state, which is assumed to
have a Gaussian distribution with a known mean x̄0 and a covariance matrix Σx0 :

x0 ∼ N (x̄0,Σx0). (3)

The parameters in (3) are specified by an initial condition, which is defined as follows:

Definition 5. An initial condition I is a pair I = ⟨x̄0,Σx0⟩, where x̄0 is the mean initial state and
Σx0 is the covariance matrix of the initial state.

520

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

2.4.2 STOCHASTIC PLANT MODEL

The p-Sulu Planner controls dynamical systems in which actions correspond to the settings of con-
tinuous control variables, and whose effects are on continuous state variables. The p-Sulu Planner
specifies these actions and their effects through a plant model. A plant model is considered as a state
transition model in a continuous space. We employ a variant of a linear plant model with additive
Gaussian uncertainty that is commonly used in the context of chance-constrained stochastic opti-
mal control (Charnes & Cooper, 1959; Nemirovski & Shapiro, 2006; Oldewurtel, Jones, & Morari,
2008; van Hessem, 2004), with a modification to consider controller saturation. Specifically, we
assume the following plant model:

xt+1 = Atxt +BtµU(ut) +wt (4)

where wt ∈ Rnx is a state-independent disturbance at t-th time step that has a zero-mean Gaussian
distribution with a given covariance matrix denoted by Σwt :

wt ∼ N (0,Σwt). (5)

Although this model prohibits state-dependent disturbance, most types of noise involved in our
target applications are state independent. For example, in the PTS scenario introduced in Section
1, the primary source of uncertainty is a wind turbulence, which is typically not dependent on the
state of a vehicle. In the space rendezvous scenario discussed in Section 7.5, the main sources of
perturbations for a space craft are the tidal force and unmodeled gravitational effects of Sun, Moon,
and other planets (Wertz & Wiley J. Larson, 1999). Such noises can be modeled as a state-dependent
noise in practice when the scale of the planned actions is significantly smaller than that of the Solar
System.

not dependent on the state of the space craft. We note that our problem formulation can encode
time-varying noise by specifying different covariance matrices Σwt for each time step.

The set U ⊂ Rnu is a compact convex set that represents the continuous domain of the feasible
control inputs. If an infeasible control input ut /∈ U is given to the plant, its actuators saturate. The
function µU(·) : Rnu 7→ U in (4) represents the effect of actuator saturation as follows:

µU(u) :=

{
u (if u ∈ U)
PU(u) (otherwise)

,

where PU(u) is a projection of u on U. For example, when u is one-dimensional and U = [l, u],
PU(u) = max(min(u, u), l). Note that µU introduces nonlinearity in the plant.

The parameters in (4) and (5) are specified by a stochastic plant model, which is defined as
follows:

Definition 6. A stochastic plant model M is a four-tuple M = ⟨A0:N−1,B0:N−1,Σw0:N−1 ,U⟩,
where A0:N−1 and B0:N−1 are sets of N matrices A0:N−1 := {A0,A1, · · ·AN−1}, B0:N−1 :=
{B0,B1, · · ·BN−1}, Σw0:N−1 is a set of N covariance matrices Σw0:N−1 = {Σw0 ,Σw1 , · · · ,ΣwN−1},
and U ⊂ Rnu is a compact convex set that represents the domain of the feasible control inputs.

Note that xt, as well as wt, is a random variable, while ut is a deterministic variable. Figure
5 illustrates our plant model. In a typical plant model, the probability circles grow over time since
disturbance wt is added at every time step, as drawn in the figure. This effect represents a commonly
observed tendency that the distant future involves more uncertainty than the near future.

521

ONO, WILLIAMS, & BLACKMORE

99.9%

99%

90%

99.9%

99%

90%99.9%

99%

90%

x
1

x
2

x
3

x
0

Nominal

path

1
x

2
x

3
x

Figure 5: Illustration of the stochastic plant model used by the p-Sulu Planner.

In order to mitigate the accumulation of uncertainty, we employ a close-loop control approach,
which generates the control input ut by incorporating a nominal control input ūt ∈ Rnu with an
error feedback, as follows:

ut = ūt +Kt(xt − x̄t), (6)

where Kt is a matrix representing a constant stabilizing feedback gain at time t and x̄t is the
nominal state vector. The nominal state x̄t is obtained by the following recursion:

x̄0 := x0 (7)

x̄t+1 = Atx̄t +Btūt. (8)

A closed-loop control approach has been employed by Geibel and Wysotzki (2005) and Oldewurtel
et al. (2008) in the context of chance-constrained optimal control and shown that it significantly
improves performance.

In this closed-loop planning method, the nominal control input ūt is planned before the exe-
cution. The actual control input ut is computed in real time by using (6). The feedback term in
(6) linearly responds to the error xt − x̄t. By choosing the feedback gain Kt appropriately, the
growth of the probability circles in Figure 5 can be slowed down. Neglecting the effect of controller
saturation (i.e., assuming U = Rnx), it follows from (4) and (6) that xt has a Gaussian distribution
with a covariance matrix Σxt , which evolves as follows:

Σxt+1 = (At +BtKt)Σxt(At +BtKt)
T +Σwt . (9)

In a typical plant, some of the eigenvalues of A are one. Therefore, when there is no error feedback
(i.e., Kt = 0), the “size” of Σxt grows by Σwt at each iteration. By choosing Kt so that the
norm of the largest eigenvalue of (At +BtKt) is less than one, the covariance Σxt does not grow
continuously. Such a feedback gain can be found by using standard control techniques, such as a
linear quadratic regulator (LQR) (Bertsekas, 2005). Since we consider a finite-horizon, discrete-
time planning problem, the optimal time-varying LQR gain Kt is obtained by solving the finite-
horizon, discrete-time Riccati equation. In practice, it often suffices to use the steady-state (i.e.,
time-invariant) LQR gain, which is obtained by solving the infinite-horizon, discrete-time Riccati
equation for simplicity. We note that the feedback gain Kt can also be optimized in real time. This
approach is often used for robust and stochastic model predictive controls (Goulart, Kerrigan, &
Maciejowski, 2006; Oldewurtel et al., 2008; Ono, 2012). However, such an extension is beyond the
scope of this paper.

522

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

An issue is that, if the error xt − x̄t happens to be very large, the control input ut may exceed
its feasible domain U, resulting in actuator saturation. Therefore, (9) does not hold due to the
nonlinearity of the function µU(·). We address this issue through the risk allocation approach. More
specifically, we impose chance constraints on control saturation, and allocate risk to both state and
control constraints. This approach is discussed more in detail in Section 4.1.5.

2.4.3 CHANCE-CONSTRAINED QUALITATIVE STATE PLAN (CCQSP)

A qualitative state plan (QSP) (Léauté & Williams, 2005) is a temporally flexible plan that specifies
the desired evolution of the plant state. The activities of a QSP are called episodes and specify
constraints on the plant state. CCQSP is an extension of QSPs to stochastic plans that involve
chance constraints, defined as follows:

Definition 7. A chance-constrained qualitative state plan (CCQSP) is a four-tuple P = ⟨E ,A, T , C⟩,
where E is a set of discrete events, A is a set of episodes, T is a set of simple temporal constraints,
and C is a set of chance constraints.

The four elements of a CCQSP are defined precisely in a moment. Like a QSP, a CCQSP can
be illustrated diagrammatically by a directed acyclic graph in which the discrete events in E are
represented by vertices, drawn as circles, and the episodes as arcs with ovals. A CCQSP has a start
event e0 and an end eE , which corresponds to the beginning and the end of the mission, respectively.

For example, Figure 3 shows the CCQSP of the PTS scenario. The state regions and obstacles in
the CCQSP are illustrated in Figure 2. It involves four events: E = {e0, e1, e2, eE}. Their meanings
are described as follows.

1. The start event e0 corresponds to the take off of the PAV from Provincetown.

2. The second event e1 corresponds to the time step when PAV reaches the scenic region.

3. Event e2 is associated with the time instant when the PAV has just left the scenic region.

4. The end event eE corresponds to the arrival of the PAV in Bedford.

The CCQSP has four episodes A = {a1, a2, a3, a4} and two chance constraints C = {c1, c2}.
A natural language expression of the CCQSP is:

“ Start from Provincetown, reach the scenic region within 30 time units, and remain
there for between 5 and 10 time units. Then end the flight in Bedford. The probability
of failure of these activities must be less than 1%. At all times, remain in the safe region
by avoiding the no-fly zones and the storm. Limit the probability of penetrating such
obstacles to 0.0001%. The entire flight must take at most 60 time units.”

Below we formally define the three types of constraints - episodes, temporal constraints, and
chance constraint.

Episodes Each episode a ∈ A specifies the desired state of the system under control over a time
interval.

Definition 8. An episode a = ⟨eSa , eEa ,Πa(tS , tE), Ra⟩ has an associated start event eSa and an end
event eEa . Ra ∈ RN is a region in a state space. Πa ⊆ T is a set of time steps at which the state xt
must be in the region Ra.

523

ONO, WILLIAMS, & BLACKMORE

The feasible region Ra can be any subset of RN . We will approximate Ra with a set of linear
constraints later in Section 3.1.1.

Πa(tS , tE) is a subset of T given as a function of the episode’s start time step tS = s(eSa) and
its end time step tE = s(eEa). Different forms of Πa(tS , tE) result in various types of episodes. The
following three types of episodes are particularly of interest to us:

1. Start-in episode: Πa(tS , tE) = {tS}

2. End-in episode: Πa(tS , tE) = {tE}

3. Remain-in episode: Πa(tS , tE) = {tS , tS + 1, · · · , tE}

For a given episode a, the set of time steps at which the plant state must be in the region Ra is
obtained by substituting s(eSa) and s(eEa), the execution time steps of the start event and the end
event of the episode, into tS and tE . In other words, an episode a requires that the plant state
is in Ra for all time steps in Πa

(
s(eSa), s(e

E
a)
)
. For the rest of the article, we use the following

abbreviated notation:
Πa(s) := Πa

(
s(eSa), s(e

E
a)
)
.

Using this notation, an episode is equivalent to the following state constraint:∧
t∈Πa(s)

xt ∈ Ra. (10)

For example, in the CCQSP shown in Figure 3, there are four episodes: a1 (“Start in [Province-
town]”), a2 (“Remain in [Scenic region]”), a3 (“End in Bedford”), and a4 (“Remain in [safe re-
gion]”).

In Section 6, we solve a relaxed optimization problem with a partial schedule (Definition 2)
in order to obtain a lower bound on the optimal objective value. In such relaxed problems, only
a subset of the episodes that are relevant to the given partial schedule are imposed. We formally
define a partial episode set of a partial schedule σ as follows:

Definition 9. Given a partial schedule σ, A(σ) ⊆ A is its partial episode set, which is a subset of
A that involves the episodes whose start event and end event are assigned execution time steps.

A(σ) =
{
a ∈ A | eSa ∈ Eσ ∧ eEa ∈ Eσ

}
,

where the definition of Eσ is given in Definition 2.

Chance constraint Recall that a chance constraint is a probabilistic constraint that requires the
constraints defining each episode to be satisfied within a user-specified probability. A CCQSP can
have multiple chance constraints. A chance constraint is associated with at least one episode.

A chance constraint is formally defined as follows:

Definition 10. A chance constraint c = ⟨Ψc,∆c⟩ is a constraint requiring that:

Pr

 ∧
a∈Ψc

∧
t∈Πa(s)

xt ∈ Ra

 ≥ 1−∆c, (11)

where ∆c is a user-specified risk bound and Ψc ⊆ A is a set of episodes associated with the chance
constraint c.

524

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Note that every episode in a CCQSP must be associated with exactly one chance constraint.
Any episode inAmust not be involved in more than one chance constraint or unassociated with any
chance constraint.

For example, the CCQSP shown in Figure 3 has two chance constraints, c1 and c2. Their asso-
ciated episodes are Ψc1 = {a1, a2, a3} and Ψc2 = {a4}. Therefore, c1 requires that the probability
of satisfying the three episodes a1, a2, and a3 (colored in green) is more than than 99%, while c2
requires that the probability of satisfying the episode a4 is more than 99.99999%.

We make the following assumption, which is necessary in order to guarantee the convexity of
constraints in Section 4.2.

Assumption 1.
∆c ≤ 0.5

This assumption requires that the risk bounds are less than 50%. We claim that this assumption
does not constrain practical applications, since typically the user of an autonomous system would
not accept more than 50% risk.

Temporal constraint A CCQSP includes simple temporal constraints (STCs) (Dechter et al.,
1991), which impose upper and lower bounds on the duration of episodes and on the temporal
distances between two events in E .

Definition 11. A simple temporal constraint τ = ⟨eSτ , eEτ , bmin
τ , bmax

τ ⟩ is a constraint, specify-
ing that the duration from a start event eSτ to an end event eEτ be in the real-valued interval
[bmin
τ , bmax

τ] ⊆ [0,+∞].

Temporal constraints are represented diagrammatically by arcs between nodes, labeled with the
time bounds [bmin

τ , bmax
τ], or by labels over episodes. For example, the CCQSP shown in Figure 3

has four simple temporal constraints. One requires the time between e0 and e1 to be at most 30
time units. One requires the time between e1 and e2 to be at least 5 units and at most 10 units. One
requires the time between e2 and eE to be at most 40 time units. One requires the time between e0
and eE to be at most 60 time units.

A schedule s is feasible if it satisfies all temporal constraints in the CCQSP. The number of
feasible schedules is finite, since T is discrete and finite. We denote by SF the domain of feasible
schedules, which is formally defined as follows:

SF = {s ∈ T|E| | ∀τ∈T bmin
τ ≤ ∆T{s(eEτ)− s(eSτ)} ≤ bmax

τ }, (12)

where |E| is the number of events in the CCQSP. The temporal duration is multiplied by the time
interval ∆T because bmin

τ and bmin
τ are real-valued time, while s is a set of discrete time steps in T.

2.4.4 OBJECTIVE FUNCTION

In this section, we formally define the objective function.

Definition 12. An objective function J : UN × XN × SF 7→ R is a real-valued function over the
nominal control sequence ū0:N−1, the nominal state sequence x̄1:N , and the schedule s. We assume
that J is a convex function over x̄1:N and ū0:N−1.

525

ONO, WILLIAMS, & BLACKMORE

A typical example of an objective function is the quadratic sum of control inputs, which requires
the total control efforts to be minimized:

J(ū0:N−1, x̄1:N , s) =
N−1∑
t=0

||ūt||2.

Another example is:
J(ū0:N−1, x̄1:N , s) = s(eE), (13)

which minimizes the total plan execution time, by requiring that the end event eE of the qualitative
state plan be scheduled as soon as possible.

There is often a need to minimize the expectation of a cost function. Note that, in our case, the
expectation of a function over x1:N and u0:N−1 can be reduced to a function over ū0:N−1 because it
follows from (4)-(6) that the probability distributions of x1:N and u0:N−1 are uniquely determined
by ū0:N−1 and Kt. In practice, it is often more convenient to express the objective function as
a function of ū0:N−1 and x̄1:N , rather than as a function of ū0:N−1. Since x̄1:N are specified by
ū0:N−1 using (8), the two expressions are equivalent. The conversion from the expectation of a cost
function to a function over nominal values can be conducted a priori.

If there is no controller saturation, such a conversion can often be obtained in a closed form.
The conversion is particularly straight forward when the cost function is polynomial, since the
expectation is equivalent to a combination of raw moments, which can be readily derived from the
cumulants. Note that the third and higher cumulants of the Gaussian distribution are zero. Below we
show examples of the conversion regarding three commonly-used cost functions: linear, quadratic,
and the Manhattan norm.

E[xt] = x̄t (14)

E[xT
t Qxt] = x̄T

t Qx̄t + tr(QΣxt) (15)

E[||xt||1] =
nx∑
i=1

σxt,i

√
2

π
1F1

(
−1

2
,
1

2
,−

x̄2
t,i

2σ2
xt,i

)
, (16)

where Q is a positive definite matrix, σxt,i is the ith diagonal element of Σxt , and 1F1(·) is a
confluent hypergeometric function. All functions above are convex. The expectation of a function
of ut can also be transformed to a function of ūt in the same manner. Note that the second term
on the right hand side of (15) is a constant. Hence, minimizing x̄T

t Qx̄t yields the same solution as
minimizing E[xT

t Qxt].
When there is controller saturation, it is difficult to obtain the conversion in a closed-form due

to the nonlinearity of µU(·) in (4). In practice, we use an approximation that assumes no saturation.
Since our closed-loop control approach explicitly limits the probability of controller saturation to a
small probability (see Section 4.1.5 for the detail), the approximation error is trivial. This claim is
empirically validated in Section 7.2.4.

2.5 Definitions of Outputs

The output of the p-Sulu Planner is an optimal solution, which consists of an optimal control se-
quence u⋆

0:N−1 ∈ UN and an optimal schedule s⋆ ∈ SF .

526

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Definition 13. The optimal solution is a pair ⟨u⋆
0:N−1, s

⋆⟩. The solution satisfies all constraints
in the given CCQSP (Definition 7), the initial condition I , and the stochastic plant model M . The
solution minimizes the given objective function J(u0:N−1, x̄1:N , s) (Definition 12).

2.6 Problem Statement

We now formally define the CCQSP planning problem.

Problem 1: CCQSP Planning Problem
Given a stochastic plant model M = ⟨A0:N−1,B0:N−1,Σw0:N−1⟩⟩, an initial condition I =
⟨x̄0,Σx0⟩, a CCQSP P = ⟨E ,A, T , C⟩, and an objective function J(u0:N−1, x̄1:N , s), a CCQSP
planning problem is to find an optimal solution ⟨u⋆

0:N−1, s
⋆⟩ forM, I, P , and J .

We note that the p-Sulu Planner gives a near-optimal solution to Problem 1. The p-Sulu Planner
employs two approximations, namely risk allocation (Section 4.1.1) and risk selection (Section
5.1.1), for the sake of computational tractability. As a result, its solution is not strictly optimal in
general. However, we empirically show in Section 7 that the suboptimality due to risk allocation
and risk selection is significantly smaller than existing approximation methods.

3. Problem Encoding

This section encodes the CCQSP planning problem stated in the previous section into a mathemat-
ical programming problem. Sections 4 - 6 then address how to solve this form of mathematical
problem. Recall that we build our CCQSP planner, the p-Sulu Planner, in three spirals. We first
present the problem encoding of a general CCQSP planning problem with a non-convex state space
and a flexible schedule (Figure 4-(c)) in Subsection 3.1. Then we present the encodings of the two
special cases of the CCQSP planning problem in Subsections 3.2 and 3.3: one with a non-convex
state space and a fixed schedule (Figure 4-(b)), and one with a convex state space and a fixed sched-
ule (Figure 4-(a)).

3.1 Encoding of a CCQSP Planning Problem with a Non-convex State Space and Flexible
Schedule

3.1.1 ENCODING OF FEASIBLE REGIONS

In order to encode Problem 1 into a mathematical programming problem, the geometric constraint
in (11), xt ∈ Ra, must be represented by algebraic constraints. For that purpose, we approximate
the feasible state regions Ra by a set of half-spaces, each of which is represented by a linear state
constraint.

Figure 6 shows two simple examples. The feasible region of (a) is outside of the obstacle, which
is approximated by a triangle. The feasible region of (b) is inside of the pickup region, which is
again approximated by a triangle. Each feasible region is approximated by a set of linear constraints
as follows:

(a)

3∨
i=1

hT
i x ≤ gi, (b)

3∧
i=1

hT
i x ≥ gi.

We approximate the feasible regions so that the set of linear constraints is a sufficient condition of
the original state constraint xt ∈ Ra.

527

ONO, WILLIAMS, & BLACKMORE

Figure 6: Approximate representation of feasible regions by a set of linear constraints

We assume that the set of linear state constraints that approximates a feasible region has been
reduced to conjunctive normal form (CNF) as follows:

∧
k∈Ka

∨
j∈Ja,k

hT
a,k,jxt − ga,k,j ≤ 0, (17)

where Ka = {1, 2, · · · |Ka|} and Jc,i = {1, 2, · · · |Jc,i|} are sets of indices. By replacing xt ∈ Ra

in (11) by (17), a chance constraint c is encoded as follows:

Pr

 ∧
a∈Ψc

∧
t∈Πa(s)

∧
k∈Ka

∨
j∈Ja,k

hT
c,a,k,jxt − gc,a,k,j ≤ 0

 ≥ 1−∆c. (18)

In order to simplify the notation, we merge indices a ∈ Ψc, t ∈ Πa(s), and k ∈ Ka into a new
index i ∈ Ic(s), where Ic(s) = {1, 2, · · · |Ic(s)|} and |Ic(s)| = |Ka| ·

∑
a∈Ψc

|Πa(s)|. We let ai,
ki, and ti the indices that correspond to to the combined index i, and let hc,i,j = hc,ai,ki,j . Using
these notations, the three conjunctions of (18) are combined into one, and we obtain the following
encoding of a chance constraint:

Pr

 ∧
i∈Ic(s)

∨
j∈Jc,i

hT
c,i,jxti − gc,i,j ≤ 0

 ≥ 1−∆c. (19)

The specification of chance constraints given in (19) requires that all |Ic(s)| disjunctive clauses of
state constraints must be satisfied with a probability 1−∆c. The i’th disjunctive clause of the c’th
chance constraint is composed of |Jc,i| linear state constraints.

3.1.2 CCQSP PLANNING PROBLEM ENCODING

Using (3), (4), (5), (6), and (19), a CCQSP planning problem (Problem 1), which is solved in the
third spiral, is encoded as follows:

528

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Problem 2: General CCQSP Planning Problem

min
ū0:N−1,s

J(u0:N−1, x̄1:N , s) (20)

s.t. s ∈ SF (21)

xt+1 = Atxt +BtµU(ut) +wt, ∀t ∈ T− (22)

ut = ūt +Kt(xt − x̄t), ∀t ∈ T− (23)∧
c∈C

Pr

 ∧
i∈Ic(s)

∨
j∈Jc,i

hT
c,i,jxti − gc,i,j ≤ 0

 ≥ 1−∆c. (24)

x0 ∼ N (x̄0,Σx0), wt ∼ N (0,Σwt), ∀t ∈ T− (25)

Recall that SF , formally defined in (12), is the set of schedules that satisfy all temporal con-
straints in the given CCQSP. This CCQSP execution problem is a hybrid optimization problem over
both discrete variables s (schedule) and continuous variables u0:N−1 (control sequence). Note that
the temporal constraints within Problem 2 are solved in Section 6. A similar problem encoding is
also employed in the chance-constraint MDP proposed by Geibel and Wysotzki (2005). However,
our encoding differs from Geibel and Wysotzki in two respects: 1) we optimize not only the con-
tinuous control sequence u0:N−1 but also the discrete schedule s with temporal constraints; 2) we
allow joint chance constraints, which require the satisfaction of multiple state constraints for a given
probability. Problem 2 is solved in Section 6.

3.2 Encoding of a CCQSP Planning Problem with a Non-convex State Space and Fixed
Schedule

A restricted version of a CCQSP planning problem with a fixed schedule, which is solved in the
second spiral, is obtained by fixing s in Problem 2 as follows:

Problem 3: CCQSP Planning Problem with a Fixed Schedule

J⋆(s) = min
ū0:N−1

J ′(u0:N−1, x̄1:N) (26)

s.t. xt+1 = Atxt +BtµU(ut) +wt, ∀t ∈ T− (27)

ut = ūt +Kt(xt − x̄t), ∀t ∈ T− (28)∧
c∈C

Pr

 ∧
i∈Ic(s)

∨
j∈Jc,i

hT
c,i,jxti − gc,i,j ≤ 0

 ≥ 1−∆c, (29)

x0 ∼ N (x̄0,Σx0), wt ∼ N (0,Σwt), ∀t ∈ T− (30)

where J⋆(s) is the optimal objective value of the CCQSP Planning problem with the schedule fixed
to s. Note that the schedule s, which is a decision variable in Problem 2, is treated as a constant in
Problem 3. Therefore, the objective function J ′ is now a function of only control sequence and mean

529

ONO, WILLIAMS, & BLACKMORE

state, since we have fixed the schedule. Since we assumed that J is a convex function regarding to
u0:N−1 and x̄1:N , J ′ is also a convex function. Section 5 solves Problem 3.

3.3 Encoding of a CCQSP Planning Problem with a Convex State Space and Fixed Schedule

A more restrictive version of a CCQSP planning problem with a fixed schedule and a convex state
space, which is solved in the first spiral, is obtained by removing the disjunctions in the chance
constraints in Problem 3 as follows:

Problem 4: CCQSP Planning Problem with a Fixed Schedule and a Convex State Space

min
ū0:N−1

J ′(u0:N−1, x̄1:N) (31)

xt+1 = Atxt +BtµU(ut) +wt, ∀t ∈ T− (32)

ut = ūt +Kt(xt − x̄t), ∀t ∈ T− (33)∧
c∈C

Pr

 ∧
i∈Ic(s)

hT
c,ixti − gc,i ≤ 0

 ≥ 1−∆c. (34)

x0 ∼ N (x̄0,Σx0), wt ∼ N (0,Σwt), ∀t ∈ T− (35)

Section 4 solves Problem 4.

4. CCQSP Planning with a Convex State Space and a Fixed Schedule

This section presents the solution methods to Problem 4, which is the CCQSP planning problem
with a convex state space and a fixed schedule, as shown in Figure 4-(a). When there are no obstacles
in the environment and the execution time steps to achieve time-evolved goals are fixed, the CCQSP
planning problem is reduced to a convex chance-constrained finite-horizon optimal control problem.

In our past work we presented the risk allocation approach, which conservatively approximates
the chance-constrained finite-horizon optimal control problem by a tractable convex optimization
problem (Ono & Williams, 2008a, 2008b; Blackmore & Ono, 2009). Although an optimal solution
to the approximated convex optimization problem is not an exactly optimal solution to the origi-
nal convex chance-constrained finite-horizon optimal control problem, its suboptimality is signifi-
cantly smaller than previous approaches. This section gives a brief overview of the risk allocation
approach, as well as the solution to the convex chance-constrained finite-horizon optimal control
problem.

4.1 Deterministic Approximation of Problem 4

Evaluating whether a joint chance constraint (34) is satisfied requires computing an integral of a
multivariate probability distribution over an arbitrary region, since the probability in (34) involves
multiple constraints. Such an integral cannot be obtained in a closed form. We address this issue by
decomposing the intractable joint chance constraint (34) into a set of individual chance constraints,
each of which involves only a univariate probability distribution. The key feature of an individual

530

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Start Start

Goal

Safety margin

Nominal path

(a) Uniform risk allocation (b) Optimal risk allocation

Walls

Goal

Walls

Figure 7: Risk allocation strategies on the racing car example

chance constraint is that it can be transformed into an equivalent deterministic constraint that can
be evaluated analytically.

4.1.1 RISK ALLOCATION APPROACH

The decomposition can be considered as an allocation of risk. Through the decomposition, the risk
bound of the joint chance constraint is distributed to the individual chance constraints. There are
many feasible risk allocations. The problem is to find a risk allocation that results in the minimum
cost. We offer readers an intuitive understanding of the risk allocation approach using the example
below.

Racing Car Example Consider a racing car example, shown in Figure 7. The dynamics of the
vehicle have Gaussian-distributed uncertainty. The task is to plan a path that minimizes the time to
reach the goal, with the guarantee that the probability of crashing into a wall during the race is less
than 0.1% (chance constraint). Planning the control sequence is equivalent to planning the nominal
path, which is shown as the solid lines in Figure 7. To limit the probability of crashing into the wall,
a good driver would set a safety margin, which is colored in dark gray in Figure 7, and then plan the
nominal path outside of the safety margin.

The driver wants to set the safety margin as small as possible in order to make the nominal path
shorter. However, since the probability of crashing during the race is bounded, there is a certain
lower bound on the size of the safety margin. Given this constraint, there are different ways of
setting a safety margin; in Figure 7(a) the width of the margin is uniform; in Figure 7(b) the safety
margin is narrow around the corner, and wide at the other places.

An intelligent driver would take the strategy of (b), since he knows that going closer to the wall
at the corner makes the path shorter, while doing so at the straight line does not. A key observation
here is that taking a risk (i.e., setting a narrow safety margin) at the corner results in a greater reward
(i.e. time saving) than taking the same risk at the straight line. This gives rise to the notion of risk
allocation. The good risk allocation strategy is to save risk when the reward is small, while taking
it when the reward is great. As is illustrated in this example, the risk allocation must be optimized
in order to minimize the objective function of a joint chance-constrained stochastic optimization
problem.

531

ONO, WILLIAMS, & BLACKMORE

4.1.2 DECOMPOSITION OF CONJUNCTIVE JOINT CHANCE CONSTRAINTS THROUGH RISK

ALLOCATION

We derive the mathematical representation of risk allocation by reformulating each chance con-
straint over a conjunction of constraints into a conjunction of chance constraints. The reformulation
was initially presented by Prékopa (1999) and introduced to chance-constrained optimal control by
Ono and Williams (2008b). The concept of risk allocation was originally developed by Ono and
Williams (2008a). Let Ci be a proposition that is either true or false. Then the following lemma
holds:

Lemma 1.

Pr

[
N∧
i=1

Ci

]
≥ 1−∆ ⇐ ∃δi ≥ 0,

N∧
i=1

Pr [Ci] ≥ 1− δi ∧
N∑
i=1

δi ≤ ∆

Proof.

Pr

[
N∧
i=1

Ci

]
≥ 1−∆ ⇔ Pr

[
N∨
i=1

Ci

]
≤ ∆ (36)

⇐
∧
c∈C

N∑
i=1

Pr
[
Ci

]
≤ ∆ (37)

⇔ ∃δi ≥ 0

N∧
i=1

Pr
[
Ci

]
≤ δi ∧

N∑
i=1

δi ≤ ∆

⇔ ∃δi ≥ 0
N∧
i=1

Pr [Ci] ≥ 1− δi ∧
N∑
i=1

δi ≤ ∆. (38)

The overline C is the negation of a literal C. We use the following Boole’s inequality to obtain (37)
from (36):

Pr

[
N∨
i=1

Cc,i

]
≤

N∑
i=1

Pr[Cc,i].

The following result immediately follows from Lemma 1 by substituting a linear constraint
hT
c,ixti − gc,i ≤ 0 for Ci for each chance constraint c.

Corollary 1. The following set of constraints is a sufficient condition of the joint chance constraint
(34) in Problem 4:

∃δc,i ≥ 0
∧
c∈C

 ∧
i∈Ic(s)

Pr
[
hT
c,ixti − gc,i ≤ 0

]
≥ 1− δc,i ∧

∑
i∈Ic(s)

δc,i ≤ ∆c

 (39)

The newly introduced variables δc,i represent the upper bounds on the probability of violating
each linear state constraint. We refer to them as individual risk bounds. Each individual risk bound,

532

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

δc,i, can be viewed as the amount of risk allocated to the i’th clause. The fact that δc,i is a bound on
probability implies that 0 ≤ δc,i ≤ 1. The second term of (39) requires that the total amount of risk
is upper-bounded to the original risk bound ∆c. Here we find an analogue to the resource allocation
problem, where the allocation of a resource is optimized with an upper bound on the total amount
of available resource. Likewise, the allocation of risk δc,i must be optimized in order to minimize
the cost. Therefore, we call this decomposition method a risk allocation.

4.1.3 CONSERVATISM OF RISK ALLOCATION APPROACH

As mentioned previously, the risk allocation approach gives a conservative approximation of the
original chance constraint. This subsection evaluates the level of conservatism of the risk allocation
approach.

Let Pfail be the true probability of failure, defined as the probability that a solution violates the
constraints (i.e., the left hand side of (34)). Since (39) is a sufficient but not necessary condition
for (34), Pfail is smaller than or equal to the risk bound ∆ in general: ∆ ≥ Pfail. Hence, the
conservatism introduced by risk allocation is represented as

∆− Pfail.

The best-case scenario for the risk allocation approach is when the violations of all constraints
are mutually exclusive, meaning that a solution that violates one constraint always satisfies all the
other constraints. In that case, (39) becomes a necessary and sufficient condition for (34) and hence,
risk allocation does not involve any conservatism. Therefore,

∆− Pfail = 0.

On the other hand, the worst-case scenario is when all constraints are equivalent, meaning that
a solution that violates one constraint always violates all the other constraints. In such a case,

∆− Pfail =
N − 1

N
∆,

where N is the number of constraints.
Most practical problems lie somewhere between the best-case scenario and the worst-case sce-

nario, but typically closer to the best-case than to the worst-case scenario. For example, if there are
two separate obstacles in a path planning problem, collisions with the two obstacles are mutually
exclusive events. Collision with an obstacle at one time step does not usually imply collisions at
other time steps. A rough approximation of such a real-world situation is to assume that the satisfac-
tion of constraints are probabilistically independent. With such an assumption, the true probability
of failure is:

Pfail =
∏
i∈Ic

Pr [qc,i(u) ≤ 0] ≤ 1−
∏
i∈Ic

(1− δi),

where Ic is the set of the index of all state constraints. Note that δi ≤ ∆. Therefore, the conser-
vatism introduced by risk allocation is at the second order of ∆:

∆− Pfail ∼ O(∆2).

For example, if ∆ = 1%, the true probability of failure is approximately Pfail ∼ 0.99%. In most
practical cases, the users prefer to set very small risk bounds, typically less than 1%. In such cases,
the conservatism introduced by risk allocation becomes very small.

533

ONO, WILLIAMS, & BLACKMORE

4.1.4 CONVERSION TO DETERMINISTIC CONSTRAINTS

Each individual chance constraint in (39) only involves a single linear constraint. Furthermore,
assuming that there is no actuator saturation, xti has a Gaussian distribution with the covariance
matrix given by (9). Hence, hT

c,ixti has a univariate Gaussian distribution. The following lemma
transforms an individual chance constraint into an equivalent deterministic constraint that involves
the mean of state variables, instead of the random state variables:

Lemma 2. The following two conditions are equivalent.

Pr
[
hT
c,ixti − gc,i ≤ 0

]
≥ 1− δc,i ⇔ hT

c,ix̄ti − gc,i ≤ −mc,i(δc,i)

where

mc,i(δc,i) = −
√

2hT
c,iΣx,tihc,i erf

−1(2δc,i − 1). (40)

Note that erf−1 is the inverse of the Gauss error function and Σx,ti is the covariance matrix
of xti . This lemma holds because −mc,i(·) is the inverse of cumulative distribution function of
univariate, zero-mean Gaussian distribution with variance hT

c,iΣx,tihc,i.

4.1.5 RISK ALLOCATION APPROACH FOR THE CLOSED-LOOP CONTROL POLICY

When a close-loop control policy is employed (i.e., Kt ̸= 0 in (6)), there is a risk of actuator
saturation. Since the nonlinearity of the function µU(·) in (5) makes the probability distribution
of xti non-Gaussian, mc,i(·) cannot be obtained by (40). Although it is theoretically possible to
derive mc,i(·) for non-Gaussian distributions, it is very difficult in our case since the inverse of the
cumulative distribution function of xti cannot be obtained in a closed-form.

Our solution to this issue is summarized in Lemma 3 below, which allows us to assume that xti

is Gaussian-distributed and hence to use (40), even if there is a possibility of actuator saturation.
This approach is enabled by imposing additional chance constraints that bound the risk of actuator
saturation as follows:

Pr [ut ∈ U] ≥ 1− ϵt, ∀t ∈ T−, (41)

where ϵt is the bound on the risk of actuator saturation at time step t. Using the method presented
in Section 3.1.2, we approximate U by a polytope as follows:

ut ∈ U⇐⇒
∧
i∈IU

hU,iut − gU,i ≤ 0

Assuming that xti is Gaussian-distributed, we use Lemma 2 to transform (41) into deterministic
constraints on nominal control inputs as follows:∧

i∈IU

hU,iūt − gU,i ≤ −mU,t,i(ϵt,i) ∧
∑
i∈IU

ϵt,i ≤ ϵt, ∀t ∈ T−, (42)

where

mU,t,i(ϵc,i) = −
√

2hT
U,iΣx,thU,i erf

−1(2ϵc,i − 1). (43)

The following lemma holds:

534

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Lemma 3. The following set of constraints is a sufficient condition of the joint chance constraint
(34) in Problem 4:

∃δc,i ≥ 0, ϵt ≥ 0
∧
c∈C

 ∧
i∈Ic(s)

hT
c,ix̄ti − gc,i ≤ −mc,i(δc,i)

∧
∑

i∈Ic(s)

δc,i +

Tmax
c∑
t=0

∑
i∈IU

ϵt,i ≤ ∆c


∧
∧

t∈T−

∧
i∈IU

hU,iūt − gU,i ≤ −mU,t,i(ϵt,i), (44)

(45)

where mc,i(·) and mU,t,i are given by (40) and (43). Tmax
c is the last time step that the episodes

associated with the chance constraint c are executed, given the schedule s:

Tmax
c = max

a∈Ψc

s(eEa).

Intuitively, the constraint (44) requires that, with probability 1 − ∆c, the episode constraints are
satisfied and the actuators do not saturate until all episodes associated with c are executed.

Proof. We consider two plants: M = ⟨A0:N−1,B0:N−1,Σw0:N−1 ,U⟩ and
M ′ = ⟨A0:N−1,B0:N−1,Σw0:N−1 ,Rnu⟩, where U ⊂ Rnu is a compact convex set (see Definition
6). The difference between the two plants is that M has a possibility of actuator saturation, while M ′

does not. As a result, while the probability distribution of the state variables of M is non-Gaussian,
that of M ′ is Gaussian. Note that M and M ′ result in different probability distributions of xti and
ut. In order to explicitly show which plant model is considered, we use notations such as xM

ti and
uM ′
t in this proof.

We first consider M ′. It follows from Lemmas 1 and 2 that:

(44) =⇒
∧
c∈C

Pr

 ∧
i∈Ic(s)

hT
c,ix

M ′
ti − gc,i ≤ 0

 ∧
Tmax

c∧
t=0

uM ′
t ∈ U

 ≥ 1−∆c

 .

Let w0:N−1 := [w0 · · ·wN−1]. We define a feasible disturbance set, Wc(v0:N−1, s) ⊂ RNnx , as
follows:

Wc(v0:N−1, s) :=

w0:N−1 ∈ RNnx

∣∣∣∣∣
 ∧

i∈Ic(s)

hT
c,ix

M ′
ti − gc,i ≤ 0

 ∧
Tmax

c∧
t=0

uM ′
t ∈ U

 .

(46)
Then, by definition,

Pr

 ∧
i∈Ic(s)

hT
c,ix

M ′
ti − gc,i ≤ 0

 ∧
Tmax

c∧
t=0

uM ′
t ∈ U

 = Pr [w0:N−1 ∈Wc(v0:N−1, s)] .

535

ONO, WILLIAMS, & BLACKMORE

Next we consider M . Note that M and M ′ are identical as long as there is no actuator saturations
(i.e., uM

t ∈ U). Therefore, for a given w0:N−1 ∈ Wc(v0:N−1, s), it follows from (46) that xM
t =

xM ′
t and uM

t = uM ′
t . Hence,

w0:N−1 ∈Wc(v0:N−1, s) =⇒

 ∧
i∈Ic(s)

hT
c,ix

M
ti − gc,i ≤ 0

 ∧
Tmax

c∧
t=0

uM
t ∈ U

 .

Accordingly, for a given c ∈ C,

Pr

 ∧
i∈Ic(s)

hT
c,ix

M
ti − gc,i ≤ 0


≥ Pr

 ∧
i∈Ic(s)

hT
c,ix

M
ti − gc,i ≤ 0

 ∧
Tmax

c∧
t=0

uM
t ∈ U


≥ Pr [w0:N−1 ∈Wc(v0:N−1, s)]

= Pr

 ∧
i∈Ic(s)

hT
c,ix

M ′
ti − gc,i ≤ 0

 ∧
Tmax

c∧
t=0

uM ′
t ∈ U


≥ 1−∆c.

This completes the proof of Lemma 3

We note that Lemma 3 is a probabilistic extension of the closed-loop robust model predictive
control (RMPC) methods proposed by Acikmese, Carson III, and Bayard (2011) and Richards and
How (2006). These methods avoid the risk of actuator saturation by imposing tightened control
constraints on ūt. Since we consider stochastic uncertainty, we replace the constraint tightening by
chance constraints.

4.2 Convex Programming Solution to Problem 4

Using Lemma 3, we replace the stochastic optimization problem, Problem 4, with the deterministic
convex optimization problem:

Problem 5: Deterministic Approximation of Problem 4

min
ū1:N ,δc,i≥0,ϵt,i≥0

J ′(u1:N , x̄1:N) (47)

s.t. ∀t ∈ T−, x̄t+1 = Atx̄t +Btut (48)∧
c∈C

∧
i∈Ic(s)

hT
c,ix̄ti − gc,i ≤ −mc,i(δc,i) (49)

∧
t∈T−

∧
i∈IU

hU,iūt − gU,i ≤ −mU,t,i(ϵt,i) (50)

∧
c∈C

∑
i∈Ic(s)

δc,i +

Tmax
c∑
t=0

∑
i∈IU

ϵt,i ≤ ∆c. (51)

536

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

It follows immediately from Corollaries 1 and 2 that a feasible solution to Problem 5 is always
a feasible solution to Problem 4. Furthermore, Blackmore and Ono (2009) showed that an optimal
solution to Problem 5 is a near-optimal solution to Problem 4. The following lemma guarantees the
tractability of Problem 5.

Lemma 4. Problem 5 is a convex optimization problem.

Proof. The inverse error function erf−1(x) is concave for x. Since we assume in Section 2.4.3 that
∆c ≤ 0.5, the feasible ranges of δ and ϵ are upperbounded by 0.5. Since the safety margin function
mc,i(δc,i) and mU,t,i(ϵt,i) are convex for 0 < δc,i ≤ 0.5 and 0 < ϵt,i ≤ 0.5, the constraints (49)
and (50) are convex within the feasible region. All other constraints are also convex since they are
linear. Finally, the objective function is convex by assumption (Section 2.4.4). Therefore, Problem
5 is a convex optimization problem.

Since Problem 5 is a convex optimization problem, it can be solved by an interior point method
optimally and efficiently. This completes our first spiral, planning for CCQSPs with a fixed schedule
and convex constraints. In the next section we present a solution method for a non-convex problem
through a branch-and-bound algorithm, whose subproblems are convex problems.

5. CCQSP Planning with a Non-convex State Space

Next, we consider the second spiral, comprised of Problem 3 in Section 3.2, a variant of the CCQSP
planning problem that involves a fixed schedule and non-convex constraints, such as obstacles, as
shown in Figure 4-(b). Once again, this is encoded as a chance-constrained optimization problem,
but the addition of the obstacle avoidance constraints requires disjunctive state constraints. Hence,
the problem results in a non-convex, chance-constrained optimization. This section introduces a
novel algorithm, called Non-convex Iterative Risk Allocation (NIRA), that optimally solves a deter-
ministic approximation of Problem 3.

The solution to a CCQSP planning problem with a non-convex state space is two-fold. In the
first step, described in Section 5.1, we obtain a deterministic approximation of Problem 3. In order
to handle disjunctive chance constraints, we develop an additional decomposition approach called
risk selection, which reformulates each chance constraint over a disjunction of constraints into a dis-
junction of individual chance constraints. Once the chance constraints in (29) are decomposed into
a set of individual chance constraints through risk allocation and risk selection, the same technique
as in Section 4.1.4 is used to obtain equivalent deterministic constraints. As a result, we obtain a
disjunctive convex programming problem (Problem 6 in Section 5.1.3).

The deterministic disjunctive convex programming problem is solved in the second step, de-
scribed in Sections 5.2-5.4. We introduce the NIRA algorithm (Algorithm 1) that significantly re-
duces the computation time without making any compromise in the optimality of the solution. The
reduction in computation time is enabled by our new bounding approach, Fixed Risk Relaxation
(FRR). FRR relaxes nonlinear constraints in the subproblems of the branch-and-bound algorithm
with linear constraints. In many cases, FRR of the nonlinear subproblems is formulated as a linear
programming (LP) or approximated by an LP. NIRA obtains a strictly optimal solution of Problem
6 by solving the subproblems exactly without FRR at unpruned leaf nodes of the search tree, while
other subproblems are solved approximately with FRR in order to reduce the computation time.

537

ONO, WILLIAMS, & BLACKMORE

5.1 Deterministic Approximation

As in Section 4, we first obtain a deterministic approximation of Problem 3.

5.1.1 RISK SELECTION APPROACH

The deterministic approximation is obtained by decomposing the non-convex joint chance constraint
(29) into a set of individual chance constraints, through risk allocation and risk selection. We revisit
the race car example to explain the concept of risk selection intuitively.

Figure 8: In the racing car example, the risk selection approach guarantees the 0.1% risk bound for
both paths, and lets the vehicle choose the better one.

Racing Car Example We consider the example shown in Figure 8, where a vehicle with uncertain
dynamics plans a path that minimizes the time to reach the goal. The vehicle is allowed to choose
one of the two routes shown in Figure 8. We impose a chance constraint that limits the probability
of crashing into a wall during the mission to 0.1%.

The satisfaction of the chance constraint can be guaranteed by the following process. First, for
each of the routes, we find a safety margin that limits the probability of crash throughout the route
to 0.1% from the start to the goal. Then, we let the vehicle plan a nominal path that operates within
the safety margins. Since both routes have a 0.1% safety margin, the chance constraint is satisfied
no matter which route the vehicle chooses. Therefore, the vehicle can optimize the path by choosing
the route that results in a smaller cost. The optimization process can be considered as a selection of
risk; the vehicle is given two options as in Figure 8, routes (a) and (b), both of which involve the
same level of risk; then the vehicle selects the one that results in less cost. Hence, we name this
decomposition approach as the risk selection.

5.1.2 DECOMPOSITION OF CONJUNCTIVE JOINT CHANCE CONSTRAINT THROUGH RISK

SELECTION

In this subsection, we derive the mathematical representation of risk selection. Let Ci be a proposi-
tion that is either true or false. Then the following lemma holds:

538

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Lemma 5.

Pr

[
N∨
i=1

Ci

]
≥ 1−∆ ⇐

N∨
i=1

Pr [Ci] ≥ 1−∆

Proof. The following inequality always holds:

∀i Pr

[
N∨
i=1

Ci

]
≥ Pr [Ci] . (52)

Hence,

Pr

[
N∨
i=1

Ci

]
≥ 1−∆ ⇐ ∃i Pr [Ci] ≥ 1−∆ ⇔

N∨
i=1

Pr [Ci] ≥ 1−∆. (53)

The following corollary follows immediately from Lemmas 3 and 5.

Corollary 2. The following set of constraints is a sufficient condition of the disjunctive joint chance
constraint (29) in Problem 3:

∃δc,i ≥ 0, ϵt ≥ 0
∧
c∈C

 ∧
i∈Ic(s)

∨
j∈Jc,i

hT
c,i,jxti − gc,i,j ≤ mc,i(δc,i)

∧
∑

i∈Ic(s)

δc,i +

Tmax
c∑
t=0

∑
i∈IU

ϵt,i ≤ ∆c

 5

∧
∧

t∈T−

∧
i∈IU

hU,iūt − gU,i ≤ −mU,t,i(ϵt,i). (54)

Note that the resulting set of constraints (54) is a sufficient condition for the original chance
constraint (29). Therefore, any solution that satisfies (54) is guaranteed to satisfy (29). Furthermore,
although (54) is a conservative approximation of (29), the conservatism introduced by risk selection
is generally small in many practical applications. This claim is empirically validated in Section
7.2.3.

5.1.3 DETERMINISTIC APPROXIMATION OF PROBLEM 3

Using Corollary 2, the non-convex fixed-schedule CCQSP planning problem (Problem 3) is ap-
proximated by the following deterministic convex optimization problem. For later convenience, we
label each part of the optimization problem as O (objective function), M (plant model), C (chance
constraints on states), D (chance constraints on control inputs), and R (risk allocation constraint).

539

ONO, WILLIAMS, & BLACKMORE

Problem 6: Deterministic Approximation of Problem 3

min
ū1:N ,δc,i≥0,ϵt,i≥0

(O :) J ′(u1:N , x̄1:N) (55)

s.t. (M :) ∀t ∈ T−, x̄t+1 = Atx̄t +Btut (56)

(C :)
∧
c∈C

∧
i∈Ic(s)

∨
j∈Jc,i

hT
c,i,jx̄ti − gc,i,j ≤ −mc,i,j(δc,i) (57)

(D :)
∧

t∈T−

∧
i∈IU

hU,iūt − gU,i ≤ −mU,t,i(ϵt,i) (58)

(R :)
∧
c∈C

∑
i∈Ic(s)

δc,i +

Tmax
c∑
t=0

∑
i∈IU

ϵt,i ≤ ∆c. (59)

It follows immediately from Corollary 2 that an optimal solution to Problem 6 is guaranteed
to be a feasible solution to the original problem with regard to satisfying the chance constraints
(Problem 3). Furthermore, we empirically demonstrate in Section 7.2.3 that it is a near-optimal
solution to Problem 3 in our applications.

5.2 NIRA: Branch and Bound-Based Solution to Problem 6

We next present the Non-convex Iterative Risk Allocation (NIRA) algorithm. Recall that NIRA
optimally solves Problem 6 by a branch-and-bound algorithm. The standard branch-and-bound
solution to problems involving disjunctive nonlinear constraints, such as those in Problem 6, is
to use a bounding approach in which the nonlinear convex relaxed subproblems are constructed
by removing all non-convex constraints below the corresponding disjunction. This approach was
used by Balas (1979) and Li and Williams (2005) for a different problem known as disjunctive linear
programming, whose subproblems are LPs instead of convex programmings. However, although the
standard branch-and-bound algorithm is guaranteed to find a globally optimal solution to Problem 6,
its computation time is slow because the algorithm needs to solve numerous nonlinear subproblems
in order to compute relaxed bounds.

Our new bounding approach, Fixed Risk Relaxation (FRR), addresses this issue by computing
lower bounds more efficiently. We observe that the relaxed subproblems are nonlinear convex opti-
mization problems. FRR relaxes the nonlinear constraints to linear constraints. Particularly, when
the objective function is linear, an FRR of a subproblem (Problem 8) is an LP, which can be very
efficiently solved. The optimal objective value of an FRR of a subproblem is a lower bound of the
optimal objective value of the original subproblem.

NIRA solves the FRRs of the subproblems in order to efficiently obtain the lower bounds, while
solving the original subproblems exactly without relaxation at unpruned leaf nodes in order to obtain
an exact optimal solution. As a result, NIRA achieves significant reduction in computation time,
without any loss in optimality.

5.2.1 THE NIRA ALGORITHM OVERVIEW

Algorithm 1 shows the pseudocode of the NIRA algorithm. Its input is the deterministic approxima-
tion of a non-convex chance-constrained optimal control problem (Problem 6), which is a five-tuple

540

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Algorithm 1 Non-convex Iterative Risk Allocation (NIRA) algorithm
function NIRA(problem) returns optimal solution to Problem 6

1: Set up queue as a FILO queue
2: Incumbent←∞
3: rootSubproblem← obtainRootSubproblem(problem)
4: queue← rootSubproblem
5: while queue is not empty do
6: subproblem← the last entry in queue
7: Remove subproblem from queue
8: lb← obtainLowerBound(subproblem)
9: if lb ≤ Incumbent then

10: if c = |C| ∧ i = |Ic(s)| then
11: (J, Ū)← Solve(subproblem)
12: if J⋆ < Incumbent then
13: Incumbent← J , Ū

⋆ ← Ū //Update the optimal solution
14: end if
15: else
16: i← i+ 1
17: if i > |Ic(s)| then
18: c← c+ 1, i← 1
19: end if
20: for j ∈ Jc,i do
21: newSubproblems← Expand(subproblem,problem,c,i,j)
22: Add newSubproblems to queue
23: end for
24: end if
25: end if
26: end while
27: return Ū

⋆

⟨O,M,C,D,R⟩, as well as a fixed schedule s. Its output is an optimal nominal control sequence
Ū

⋆
:= [ū⋆

0 · · · ū⋆
N−1].

Each node of the branch-and-bound search tree corresponds to a subproblem that is a convex
chance-constrained optimization problem (Problem 5). We use a FILO queue to store subproblems
so that the search is conducted in a depth-first manner (Line 1). At each node, the corresponding
subproblem is solved to obtain a lower bound of the objective value of all subsequent subproblems
(Line 8). The details of the bounding approaches are explained in Subsection 5.4. If the lower bound
is larger than the incumbent, the algorithm prunes the branch. Otherwise, the branch is expanded
(Line 21). If a branch is expanded to the leaf without being pruned, subproblems are solved exactly
(Line 11). Subsection 5.3 explains our expansion procedure in detail. The NIRA algorithm always
results in a globally optimal solution to Problem 6, since the solution Ū

⋆ is obtained by solving the
subproblems at leaf nodes exactly. The next two subsections introduces the branching and bounding
methods.

541

ONO, WILLIAMS, & BLACKMORE

5.3 Branching

This subsection explains how NIRA constructs the root subproblem (Line 3 of Algorithm 1), as
well as how it expands the nodes (Line 21 of Algorithm 1). The root subproblem is a convex
optimal CCQSP planning problem without any chance constraints. When a node is expanded, the
subproblems of its children nodes are constructed by adding one constraint in a disjunction to the
subproblem of the parent node. In order to simplify notations, we let Cc,i,j represent each individual
chance constraint (57) in Problem 6:

Cc,i,j :=

{
True (if hT

c,i,j − gc,i,jx̄ti ≤ −mc,i,j(δc,i))

False (otherwise).

5.3.1 WALK-THROUGH EXAMPLE

We first present a walk-through example to intuitively explain the branching procedure. The exam-
ple is an instance of Problem 6, which involves four individual chance constraints:∧

i∈{1,2}

∨
j∈{1,2}

hT
1,i,jx̄ti − g1,i,j ≤ −m1,i,j(δ1,i) (60)

Using this notation defined above, the set of individual chance constraints (57) is represented as
follows:

(C1,1,1 ∨ C1,1,2) ∧ (C1,2,1 ∨ C1,2,2) (61)

Figure 9-(a) shows a tree obtained by dividing the original problem into subproblems sequentially.
The subproblems corresponding to the tree’s four leaf nodes (Nodes 4-7 in Figure 9-(a)) exhaust all
conjunctive (i.e., convex) combinations among the chance constraints (61). On the other hand, the
subproblems corresponding to the three branch nodes (Nodes 1-3 in Figure 9-(a)) involve disjunctive
(i.e., nonconvex) clauses of chance constraints. We relax such non-convex subproblems to convex
subproblems by removing all clauses that contain disjunctions in order to obtain the search tree
shown in Figure 9-(b).

Figure 9: Branch-and-bound search tree for a sample disjunctive convex programming problem
(Problem 6) with constraints (60). (a) Tree of non-convex subproblems, (b) Tree of re-
laxed convex subproblems.

542

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

The non-convex problem (Problem 6) can be optimally solved by repeatedly solving the relaxed
convex subproblems using the algorithms presented in Section 4. The following subsections intro-
duce the algorithms that construct a search tree with relaxed convex subproblems, such as the one
in Figure 9-(b).

5.3.2 RELAXED CONVEX SUBPROBLEM

The formulation of the relaxed convex subproblems is given in Problem 7. We represent the index
j as j(c, i) since the convex relaxation chooses only one disjunct for each disjunction specified by
(c, i). Let Ic be a set of indices for i. We denote by J⋆

SP the optimal objective value of the relaxed
subproblem.

Problem 7: Convex Relaxed Subproblem of NIRA

J⋆
SP = min

ū1:N ,δc,i≥0,ϵt,i≥0
(O :) J ′(u1:N , x̄1:N)

s.t. (M :) ∀t ∈ T−, x̄t+1 = Atx̄t +Btut

(C :)
∧
c∈C

∧
i∈Ic

hT
c,i,j(c,i)x̄ti − gc,i,j(c,i) ≤ −mc,i,j(c,i)(δc,i) (62)

(D :)
∧

t∈T−

∧
i∈IU

hU,iūt − gU,i ≤ −mU,t,i(ϵt,i) (63)

(R :)
∧
c∈C

∑
i∈Ic

δc,i +

Tmax
c∑
t=0

∑
i∈IU

ϵt,i ≤ ∆c. (64)

Note that Problem 7 is identical to Problem 5. Hence, the algorithms introduced in Section 4
can be used to solve the relaxed subproblems.

5.3.3 CONSTRUCTION OF ROOT SUBPROBLEM

The root subproblem is a special case of Problem 7 above with Ic being an empty set for all c ∈ C.
The function presented in Algorithm 2 is used in Line 3 of the NIRA algorithm (Algorithm 1)
to construct the root subproblem of the branch-and-bound tree. Note that, in Algorithm 2, we
use an object-oriented notation, such as subproblem.O, to represent the objective function O of
subproblem. The resulting root subproblem is as follows:

5.3.4 EXPANSION OF SUBPROBLEMS

In order to create a child subproblem of a subproblem, the function described in Algorithm 3 is
used in Line 21 of the NIRA algorithm (Algorithm 1). It adds the individual chance constraint
specified by the indices (c, i, j) as a conjunct. Note that the resulting child subproblem is still a
convex optimization, because the individual chance constraint is added conjunctively. The NIRA
algorithm (Algorithm 1) enumerates children nodes for all disjuncts in Jc,i (Lines 20-23).

543

ONO, WILLIAMS, & BLACKMORE

Algorithm 2 Construction of the root subproblem of NIRA
function obtainRootSubproblem(problem) returns root subproblem

1: rootSubproblem.O ← problem.O
2: rootSubproblem.M ← problem.M
3: rootSubproblem.D ← problem.D
4: for c ∈ C do
5: rootSubproblem.Ic ← ϕ
6: rootSubproblem.Rc.lhs←

∑Tmax
c

t=0

∑
i∈IU ϵt,i

7: rootSubproblem.Rc.rhs← problem.Rc.rhs
8: end for
9: return rootSubproblem

Algorithm 3 Expansion of a subproblem of NIRA
function Expand(subproblem, problem, c, i, j) returns a child subprob-
lem

1: subproblem.Ic ← subproblem.Ic ∪ i
2: subproblem.Rc.lhs← subproblem.Rc.lhs+ δc,i
3: return subproblem

5.4 Bounding

In this subsection, we present two implementations of the obtainLowerBound function in Line 8
of Algorithm 1. The first one uses the optimal solution of the convex subproblems (Problem 7) as
lower bounds. This approach typically results in extensive computation time. The second one solves
an LP relaxation of the convex subproblems, called fixed risk relaxation (FRR). FRR dramatically
reduces the computation time compared to the first implementation. The NIRA algorithm employs
the second implementation.

5.4.1 SIMPLE BOUNDING

Algorithm 4 shows the most straightforward way to obtain lower bounds. It simply solves the
convex relaxed subproblems (Problem 7) using the methods presented in Section 4.2. The optimal
objective value of a relaxed subproblem gives a lower bound of the optimal objective value of all the
subproblems below it. For example, the optimal solution of the relaxed subproblem at Node 2′ in
Figure 9-(b) gives a lower bound of the objective value of the subproblems at Nodes 4 and 5. This
is because the constraints of the relaxed subproblems are always a subset of the constraints of the
subproblems below. Note that optimization problems are formulated as minimizations.

However, despite the simplicity of this approach, its computation time is slow because the algo-
rithm needs to solve a myriad of subproblems. For example, a simple path planning problem with

Algorithm 4 A simple implementation of the obtainLowerBound function in Line 8 of Algorithm 1
function obtainLowerBound-Naive(subproblem) returns a lower bound

1: Solve subproblem using algorithms presented in Section 4.2
2: return the optimal objective value

544

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

ten time steps and one rectangular obstacle requires the solution of 410 = 1, 048, 576 in the worst
case, although the branch-and-bound process often significantly reduces the number of subproblems
to be solved. Moreover, the subproblems (Problem 7) are nonlinear convex optimization problems
due to the nonlinearity of mc,i,j and mU,t,i in (62) and (63). A general nonlinear optimization prob-
lem requires significantly more solution time than more specific classes of optimization problems,
such as linear programmings (LPs) and quadratic programmings (QPs).

5.4.2 FIXED RISK RELAXATION

Our new relaxation approach, fixed risk relaxation (FRR), addresses this issue. FRR linearizes
the nonlinear constraints (62) and (63) in Problem 7 by fixing all the individual risk allocations,
δc,i and ϵt,i, to their upper bound ∆. When the objective function is linear, an FRR is an LP.
An FRR with a convex piecewise linear objective function can also be reformulated as an LP by
introducing slack variables (See Section 7.1.1 for an example.). A general convex objective function
can be approximated by a convex piecewise linear function. Hence, in many cases, the FRRs of
subproblems result in LPs, which can be solved very efficiently. The fixed risk relaxation of Problem
7 is as follows:

Problem 8: Fixed Risk Relaxation of Problem 7

J⋆
FRR = min

ū1:N

J ′(u1:N , x̄1:N)

s.t. ∀t ∈ T−, x̄t+1 = Atx̄t +Btut∧
c∈C

∧
i∈Ic(s)

hTc,ix̄ti − gc,i ≤ −mc,i,j(c,i)(∆c) (65)

∧
t∈T−

∧
i∈IU

hU,iūt − gU,i ≤ −mU,t,i(∆c) (66)

Note that the nonlinear terms in (62) and (63), mc,i,j and mU,t,i, become constant by fixing δc,i
and ϵt,i to ∆c, which is a constant. The optimal objective value of the FRR provides a tightest lower
bound among the linear relaxations of constraints (62) and (63). The following lemmas hold:

Lemma 6. Problem 8 gives a lower bound to the optimal objective value of Problem 7:

J⋆
FRR ≤ J⋆

SP

Proof. mc,i,j(·) and mU,t,i(·) are monotonically decreasing functions. Since δc,i ≤ ∆c and ϵt,i ≤
∆c, all individual chance constraints (65) and (66) of the Fixed Risk Relaxation are less stricter
than the first conjunct of (62) and (63). Therefore, the cost of the optimal solution of the Fixed Risk
Relaxation is less than or equal to the original subproblem.

Lemma 7. FRR gives the tightest lower bound among the linear relaxations of constraints (62) and
(63).

Proof. The linear relaxation of (62) and (63) becomes tighter by fixing δc,i and ϵt,i to a lesser value.
However, setting δc,i and ϵt,i to values less than ∆c may exclude feasible solutions, such as the one

545

ONO, WILLIAMS, & BLACKMORE

Algorithm 5 An FRR implementation of the obtainLowerBound function in Line 8 of Algorithm 1
function obtainLowreBound-FRR(subproblem) returns lower bound

1: for ∀(c, i, j) in subproblem.C do
2: subproblem.Cc,i,j .rhs← −mc,i,j(∆c) //Apply fixed risk relaxation
3: end for
4: for ∀(t, i) do
5: subproblem.Dt,i.rhs← −mU,t,i //Apply fixed risk relaxation
6: end for
7: Remove subproblem.R
8: Solve subproblem using an LP solver
9: return the optimal objective value

that sets δc,i = ∆c for some (c, i). Hence, FRR is the tightest linear relaxation of (62) and (63),
resulting in the tightest lower bound.

Note that the optimal solution of Fixed Risk Relaxation (Problem 8) is typically an infeasible
solution to Problem 7, since setting δc,i = ϵt,i = ∆c violates the constraint (64).

Algorithm 5 implements the fixed risk relaxation. The LP relaxation is solved by an LP solver,
and its optimal objective value is returned.

This completes our second spiral, planning for CCQSPs with a fixed schedule and nonconvex
constraints. In the next section, we turn to our final spiral, which involves flexible temporal con-
straints.

6. CCQSP Planning with a Flexible Schedule

This section presents the complete p-Sulu Planner, which efficiently solves the general CCQSP
planning problem with a flexible schedule and a non-convex state space (Problem 2 in Section
3.1.2). The problem is to find a schedule of events s that satisfies simple temporal constraints, as
well as a nominal control sequence ū0:N−1 that satisfies the chance constraints and minimizes cost.
Our approach is to first generate a feasible schedule and then to extend it to a control sequence for
that schedule, while iteratively improving the candidate schedules using branch-and-bound.

We build the p-Sulu Planner upon the NIRA algorithm presented in the previous section. Recall
that NIRA optimizes the nominal control sequence ū0:N−1 given a fixed schedule s. The p-Sulu
Planner uses NIRA as a subroutine that takes a schedule s as an input, and outputs the optimal
objective value as well as an executable control sequence. We denote the optimal objective value
for a given schedule s as J⋆(s). Using this notation, the CCQSP planning problem with a flexible
schedule (Problem 2) can be rewritten as a schedule optimization problem as follows:

min
s∈SF

J⋆(s). (67)

Recall that the domain of feasible schedules SF (Definition 11) is a finite set, since we consider a
discretized, finite set of time steps T (see Section 2.1). Hence, the schedule optimization problem
(67) is a combinatorial constraint optimization problem, where the constraints are given in the form
of simple temporal constraints.

546

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Algorithm 6 The the p-Sulu Planner
function pSulu(ccqsp) returns optimal schedule and control sequence

1: Incumbent =∞
2: Set up queue as a FILO queue
3: Eσ0 = {e0}, σ0(e0) = 0 //initialize the partial schedule
4: queue← ⟨Eσ0 , σ0⟩
5: while queue is not empty do
6: ⟨Eσ, σ⟩ ← the last entry in queue
7: Remove ⟨Eσ, σ⟩ from queue
8: [J⋆,u0:N−1]← obtainLowerBound(ccqsp, Eσ, σ)
9: if J⋆ < Incumbent then

10: if Eσ = E then
11: Incumbent← J⋆, OptCtlSequence← u0:N−1, OptSchedule← σ
12: else
13: expand(ccqsp, queue, e, Eσ, σ)
14: end if
15: end if
16: end while
17: return OptCtlSequence,OptSchedule

6.1 Algorithm Overview

Our solution approach is again to use a branch-and-bound algorithm. In the branch-and-bound
search, the p-Sulu Planner incrementally assigns an execution time step to each event in order to
find the schedule that minimizes J⋆(s) in (67). The objective function is evaluated by solving the
fixed schedule CCQSP planning problem using the NIRA algorithm. Although the combination of
the two branch-and-bound searches in the p-Sulu Planner and NIRA are equivalent to one unified
branch-and-bound search in practice, we treat them separately for ease of explanation.

As shown in Figure 12, the branch-and-bound algorithm searches for an optimal schedule by
incrementally assigning execution time steps to each event in a depth-first manner. Each node of the
search tree corresponds to a partial schedule (Definition 2), which assigns execution time steps to a
subset of the events included in the CCQSP. The partial schedule at the root node only involves an
assignment to the start node e0. The tree is expanded by assigning an execution time step to one new
event at a time. For example, the node σ(e1) = 2 in Figure 12-(a) represents a partial schedule that
assigns the execution time step t = 0 to the event e0 and t = 2 to e1, while leaving eE unassigned.

The the p-Sulu Planner obtains the lower bound of the objective function value J⋆(s) by solving
a CCQSP planning problem with a partial schedule that can be extended to s. The the p-Sulu
Planner minimizes the search space by dynamically pruning the domain through forward checking.
More specifically, after an execution time is assigned to an event at each iteration of the branch-and-
bound search, the the p-Sulu Planner runs a shortest-path algorithm to tighten the real-valued upper
and lower bounds of the execution time step of unassigned events according to the newly assigned
execution time step.

Algorithm 6 shows the pseudocode of the algorithm. At each node of the search tree, a fixed-
schedule CCQSP planning problem is solved with the given partial schedule. If the node is at the

547

ONO, WILLIAMS, & BLACKMORE

leaf of the tree and the optimal objective value is less than the incumbent, the optimal solution is
updated (Line 11). If the node is not at the leaf, the optimal objective value of the corresponding
subproblem is a lower bound for the optimal objective value of subsequent nodes. If the lower
bound is less than the incumbent, the node is expanded by enumerating the feasible execution time
assignments to an unassigned event (Line 13). Otherwise, the node is not expanded, and hence
pruned. Details of this branch-and-bound process are described in later subsections.

Figure 10: (a) An example of CCQSP; (b) a plan that satisfies the CCQSP in (a)

Figure 11: (a) The directed distance graph representation of the CCQSP in Figure 10-(a); (b) the d-
graph of (a), which shows the shortest distances between nodes; (c) the updated d-graph
after the execution time t = 2 is assigned to the event e1.

(e0) = 0 0

1 2 3(e1)

(eE)

(e0) = 0 0

2(e1) = 2

(eE)

31

4 5

(a) (b)

Figure 12: Branch-and-bound search over a schedule s. We assume that the time interval is ∆T =
1.0. (a) The node σ(e0) = 0 is expanded; De1(σ) = {1, 2, 3} given σ(e0) = 0,
since

[
dmax
e (σ), dmin

e (σ)
]
= [0.8, 3.9] from Figure 11-(b); (b) the node σ(e1) = 2 is

expanded; DeE (σ) = 4, 5 given σ(e0) = 0 and σ(e1) = 2, since
[
dmax
e (σ), dmin

e (σ)
]
=

[3.6, 5.5] from Figure 11-(c).

548

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Walk-through example We present a walk-through example to give readers insight into the so-
lution process. We consider a CCQSP shown in Figure 10-(a). The CCQSP specifies a mission to
go through a waypoint A and get to the goal region B while avoiding the obstacle C, as shown in
Figure 10-(b). We assume that the time interval is ∆T = 1.0.

Figures 11 and 12 illustrate the solution process. The the p-Sulu Planner algorithm is initialized
by assigning the execution time 0 to the start event e0. Figure 11-(a) is the distance graph represen-
tation of the simple temporal constraints (Dechter, 2003) of the CCQSP. Note that a simple chance
constraint is equivalently represented as a pair of inequality constraints as follows:

s(e)− s(e′) ∈ [l, u] ⇐⇒ s(e)− s(e′) ≤ u ∧ s(e′)− s(e) ≤ −l.

The two inequality constraints are represented by two directional edges between each two nodes in
the distance graph. The the p-Sulu Planner runs an all-pair shortest-path algorithm on the distance
graph to obtain the d-graph shown in Figure 11-(b). A d-graph is a completed distance graph
where each edge is labeled by the shortest-path length. The d-graph represents the tightest temporal
constraints. Then the algorithm enumerates the feasible execution-time assignments for the event
e1 using the d-graph. According to the d-graph, the execution time for the event e1 must be between
0.8 and 3.9. Since we consider discrete time steps with the time interval ∆T = 1.0, the feasible
execution time steps for e1 are {1, 2, 3}. The idea behind enumerating all feasible execution time
steps is to assign an event, and thus to tighten the bounds of all unassigned events in order to ensure
feasibility.

At the node σ(e1) = 1, the the p-Sulu Planner solves the FRR of the fixed-schedule CCQSP
planning problem only with the “End in A” episode and the execution schedule σ(e1) = 1. In other
words, it tries to find the optimal path that goes through A at t = 1, but neglects the goal B and
obstacle C. If a solution exists, its optimal cost gives a lower bound on the objective value of all
feasible paths that go through A at t = 1. Assume here that such a solution does not exist. Then,
the the p-Sulu Planner prunes the node σ(e1) = 1, and goes to the next node σ(e1) = 2. It solves
the FRR of the corresponding fixed-schedule subproblem to find the best path that goes through A
at t = 2. Assume that the the p-Sulu Planner finds a solution. Then, the the p-Sulu Planner expands
the node in the following process. First, it fixes the execution time σ(e1) = 2 in the d-graph, and
runs a shortest-path algorithm in order to tighten the temporal constraints (11-(c)). Then the the p-
Sulu Planner uses the updated d-graph to enumerate the feasible execution-time assignments for the
event eE , which are {4, 5}. It visits both nodes and solves the fixed-schedule subproblems exactly
with all episodes and a fully assigned schedule. For example, at the node σ(eE) = 5, it computes
the best path that goes through A at t = 2 and reaches B at t = 5 while avoiding the obstacle C, as
shown in Figure 10-(b). Assume that the optimal objective values of the subproblems are 10.0 for
σ(eE) = 4 and 8.0 for σ(eE) = 5. The algorithm records the solution with σ(eE) = 5 and its cost
8.0 as the incumbent.

The algorithm then backs up and visits the node σ(e1) = 3, where a relaxed subproblem with
only the “End in A” episode is solved to obtain the lower bound of the objective value of subsequent
nodes. The lower bound turns out to be 9.0, which exceeds the incumbent. Therefore, the branch is
pruned. Since there are no more nodes to expand, the algorithm is terminated, and the incumbent
solution is returned.

549

ONO, WILLIAMS, & BLACKMORE

Algorithm 7 Implementation of expand function in Line 13 of Algorithm 6
function expand(ccqsp, queue, e, Eσ, σ)

1: Fix the distance between e0 and e to σ(e)∆T on the d-graph of ccqsp
2: Update the d-graph by running a shortest-path algorithm
3: Choose e′ from E\Eσ //choose an unassigned event
4: Eσ′ := Eσ ∪ e′

5: De′(σ) := { t ∈ T | dmin
e′ (σ) ≤ t∆T ≤ dmax

e′ (σ)}
6: for t in De′(σ) do

7: σ′(e) :=

{
σ(e) (e ∈ Eσ)
t (e = e′)

//update the partial schedule

8: queue← ⟨Eσ′ , σ′⟩
9: end for

6.2 Branching

Algorithm 7 outlines the implementation of the expand() function in Algorithm 6. It takes a partial
schedule σ as an input, and adds to the queue a set of schedules that assign an execution time step to
an additional event e′. In other words, the domain of the newly added schedules Eσ′ has one more
assigned event than the domain of the input partial schedule Eσ. The details of Algorithm 7 are
explained in the following parts of this subsection.

6.2.1 ENUMERATION OF FEASIBLE TIME STEP ASSIGNMENTS USING D-GRAPH

When enumerating all feasible time steps, the simple temporal constraints must be respected. To
accomplish this, we use a d-graph to translate the bounds on the durations between two events into
the bounds on the execution time step of each event. It is shown by Dechter et al. (1991) that the
set of feasible execution times for an event e is bounded by the distance between e and e0 on the d-
graph. A d-graph is a directed graph, where the weights of the edges represent the shortest distances
between nodes, as in Figure 11-(b). In order to obtain the d-graph representation, we first translate
the simple temporal constraints into a directed distance graph, as in Figure 11-(a). The weight of an
edge between two nodes (events) corresponds to the maximum duration of time from the origin node
to the destination node, as specified by the corresponding simple temporal constraint. The distance
takes a negative value to represent lower bounds. The d-graph (Figure 11-(b)) is obtained from the
distance graph (Figure 11-(a)) by running an all-pair shortest-path algorithm (Dechter et al., 1991).

Forward checking over a d-graph The the p-Sulu Planner algorithm incrementally assigns an
execution time step to each event, as explained in the walk-through example. The p-Sulu Planner
minimizes the search space through forward checking using the d-graph. As in forward checking
methods of Constraint Programming, our method prunes all values of unassigned variables (i.e.,
execution times of an unassigned event) that violate simple temporal constraints. What is different
here from normal forward checking is that no back tracking is performed, due to decomposability of
d-graph. The forward checking is conducted in the following process. Once an execution time step
t is assigned to an event e (i.e., σ(e) = t), the distance from e0 to e is fixed to t∆T , and the distance
from e to e0 is fixed to −t∆T on the distance graph (Line 1 of Algorithm 7). Recall that t is an
index of discretized time steps with a fixed interval ∆T , while the temporal bounds are given as
real-valued times (Section 2.1). We then run a shortest-path algorithm to update the d-graph (Line

550

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

2). Given a partial schedule σ, we denote the updated shortest distance from the start event e0 to e′

on the d-graph by dmax
e′ (σ), and the distance from e′ to e0 by dmin

e′ (σ).
For example, the execution time 2 is assigned to the event e1 in Figure 11-(c) (i.e., σ(e1) = 2),

so the distance between e0 and e1 is fixed to 2 and the distance in the opposite direction is fixed
to −2. Then we run a shortest-path algorithm again to update the d-graph. As a result, we obtain
updated distances dmax

eE
(σ) = 5.5 and dmin

eE
(σ) = −3.6.

Dechter et al. (1991) showed that dmax
e′ (σ) corresponds to the upper bound of the feasible execu-

tion time for an unassigned event e′, while dmin
eE

(σ) corresponds to the negative of the lower bound.
Hence, after a partial schedule σ is assigned to events e ∈ Eσ, the updated domain for an unassigned
event e′ /∈ Eσ is bounded by dmin

e′ (σ) and dmax
e′ (σ). Note that the domain of the execution time steps

e′ is included in, but not equal to [dmin
e′ (σ), dmax

e′ (σ)], because we only consider discrete execution
time steps in a finite set T. During the forward checking, the p-Sulu Planner only computes the
real-valued bounds [dmin

e′ (σ), dmax
e′ (σ)]. The feasible values of an unassigned variable e′ are not

enumerated until the search tree is expanded to e′.

Enumerating the domain of execution time steps for an unassigned event We can readily
extract the feasible execution time steps for any unassigned event e′ /∈ Eσ from the updated d-graph
with a partial schedule σ. Let De′(σ) be the domain of execution time steps for an unassigned event
e′ /∈ Eσ, given a partial schedule σ. The finite domain De′(σ) is obtained as follows:

De′(σ) := { t ∈ T | dmin
e′ (σ) ≤ t∆T ≤ dmax

e′ (σ)}.

Note that De(σ) may be empty when the temporal constraints are tight, even though they are feasi-
ble. The user of the p-Sulu Planner must make ∆T small enough so that De is not empty.

For example, Figure 11-(b) is the d-graph given the partial schedule {σ(e0) = 0}. According to
the d-graph, e1 must be executed between 0.8 and 3.9. Assuming that ∆T = 1, the set of feasible
execution time steps for e1 is De1(σ) = {1, 2, 3}, as shown in Figure 12-(a). Likewise, Figure 11-(c)
is the d-graph given the partial schedule {σ(e0) = 0, σ(e1) = 2}; the feasible execution time of eE
is between 3.6 and 5.5. Hence, the set of feasible execution time steps for eE is DeE (σ) = {4, 5},
as shown in Figure 12-(b).

The enumeration is conducted in Line 6 in Algorithm 7. Then the algorithm creates extensions
of the input partial schedule by assigning each of the time steps to e′ (Line 7), and puts the extended
partial schedules in the queue (Line 8).

6.2.2 EFFICIENT VARIABLE ORDERING OF BRANCH-AND-BOUND SEARCH

When choosing the next event to assign a time step in Line 3 of Algorithm 7, two variable ordering
heuristics are found to be effective in order to reduce computation time.

The first heuristic is our new convex-episode-first (CEF) heuristic, which prioritizes events that
are not associated with non-convex constraints. The idea of the CEF heuristic is based on the
observation that subproblems of the branch-and-bound algorithm are particularly difficult to solve
when the episodes in A(Eσ) involve non-convex state constraints. The “Remain in R2\C” (2D
plane minus the obstacle C) episode in the walk-through example in Figures 10 is an example of
such non-convex episodes. Therefore, an effective approach to reduce the computation time of the
p-Sulu Planner is to minimize the number of non-convex subproblems solved in the branch-and-
bound process. This idea can be realized by sorting the events so that the episodes with a convex
feasible region are always examined in the branch-and-bound process before the episodes with a

551

ONO, WILLIAMS, & BLACKMORE

non-convex feasible region. In the walk-through example, note that we visited the event e1 before
the event eE in this example. This is because the “End in A” episode only involves a convex state
constraint while “Remain in R2\C” (2D plane minus the obstacle C) is non-convex.

The second one is the well-known most constrained variable heuristic. When the p-Sulu Planner
expands a node, it counts the number of feasible time steps of all unassigned events, and chooses
the one with the least number of feasible time steps. The second heuristic used to break ties in the
first heuristic.

6.3 Bounding

We next present the implementation of the obtainLowerBound() function in Line 8 of Algorithm 6.
The algorithm obtains the lower bound by solving a relaxed CCQSP planning problem with a fixed
partial schedule.

Algorithm 8 outlines the implementation of the obtainLowerBound() function. It takes a partial
schedule σ as an input, and outputs the lower bound of the objective function, as well as the optimal
control sequence, given the partial schedule σ. It constructs a relaxed optimization problem, which
only involves episodes whose start and end events are both assigned execution time steps (Line 1). If
the optimization problem involves non-convex constraints, the NIRA algorithm is used to obtain the
solution to the problem (Line 3). Otherwise we solve the FRR of the convex optimization problem
to obtain the lower bound efficiently (Line 5). If the input is a fully assigned schedule (Eσ = E),
the corresponding node is a leaf node. In such case we obtain an exact solution to the CCQSP
planning problem with the fixed schedule σ by running the NIRA algorithm (Line 3). The details of
Algorithm 8 are explained in the subsequent part of this subsection.

Algorithm 8 Implementation of obtainLowerBound function in Line 8 of Algorithm 6
function obtainLowerBound(ccqsp, Eσ, σ) returns optimal objective value and control se-
quence

1: subprblem← Problem 9 with σ given ccqsp
2: if Eσ = E or A(σ) has episodes with non-convex state regions, then
3: [J⋆,u0:N−1]← NIRA(subprblem) //Algorithm 1
4: else
5: J⋆ ←obtainLowreBound-FRR(subprblem) //Algorithm 5
6: u0:N−1 ← Φ
7: end if
8: return [J⋆,u0:N−1]

6.3.1 RELAXED OPTIMIZATION PROBLEM WITH PARTIAL SCHEDULE

We consider a relaxed optimization problem as follows:

552

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Problem 9: Relaxed Optimization Problem for a Partial Schedule σ

J⋆(σ) = min
u0:N−1∈UN

J(u0:N−1, x̄1:N , σ) (68)

s.t. ∀t ∈ T−, xt+1 = Atx̄t +Btut (69)∧
c∈C

∧
a∈(Ψc∩A(σ))

∧
t∈Πa(σ)

∧
k∈Ka

∨
j∈Ja,k

hT
c,a,k,jxt − gc,a,k,j ≤ −mc,a,k,j(δc,a,k)

(70)∑
k∈Ka,a∈(Ψc∩A(σ))

δc,a,k ≥ 1−∆c, (71)

where J⋆(σ) is the optimal objective value of the relaxed subproblem with a partial schedule σ.
Recall that A(σ) is the partial episode set of σ, which only involves the episodes whose start and
end nodes are both assigned execution time steps by the partial schedule σ (Definition 9). For
notational simplicity, we merge the three conjunctions of (70) and obtain the following:∧

c∈C

∧
i∈Ic(σ)

∨
j∈Jc,i

hT
c,i,jx̄ti − gc,i,j ≤ −mc,i,j(δc,i).

Note that this chance constraint is exactly the same as (57), except that a partial schedule σ is
specified instead of a fully assigned schedule s. Hence, Problem 9 is an instance of a non-convex
CCQSP planning problem with a fixed schedule (Problem 6), and can be optimally solved by the
NIRA algorithm. Also note that σ is a fully assigned schedule at the leaf node of the branch-and-
bound search tree.

The optimal objective value of Problem 9 gives a lower bound of the optimal objective value
of all the subsequent subproblems in the branch-and-bound tree. This property is formally stated
in Lemma 8 below. In order to prove this feature, we first define the concept of an extension of a
partial schedule as follows:

Definition 14. A schedule s : E 7→ T is an extension of a partial schedule σ : Eσ 7→ T if and only
if both assign the same time steps to all the events in the domain of σ:

σ(e) = s(e) ∀e ∈ Eσ.

For example, in Figure 12-(b), a fully assigned schedule {s(e0) = 0, s(e1) = 2, s(eE) = 4} and
{s(e0) = 0, s(e1) = 2, s(eE) = 5} is an extension of a partial schedule {σ(e0) = 0, σ(e1) = 2}.

The following lemma always holds:

Lemma 8. If a schedule s is an extension of a partial schedule σ, then the optimal objective value
of Problem 9 with σ is a lower bound of the optimal objective value with s:

J⋆(σ) ≤ J⋆(s).

Proof. Since σ is a partial schedule, Eσ ⊂ E , and hence A(σ) ⊆ A. Also, since σ(e) = s(e) for all
e ∈ Eσ, all the state constraints in the chance constraint (70) of Problem 9 with a partial schedule
σ are included in the problem with a full schedule s. This means that the feasible state space of the

553

ONO, WILLIAMS, & BLACKMORE

problem with s is a subset of the one with σ. Hence, if the chance constraint (24) of the problem
with s is satisfied, the chance constraint (70) of the problem with σ is also satisfied. Therefore, the
problem with σ always results in a better (less) or equal cost than the problem with σ′, because the
former has looser constraints.

For example, in Figure 12-(b), e1 has been assigned an execution time step but eE has not.
Therefore, at node σ(e1) = 2, the chance-constrained optimization problem with only the “End in
A” episode is solved with the partial schedule {σ(e0) = 0, σ(e1) = 2} (see Figure 10-(a)). It gives
a lower bound of the cost of the problems with the fully assigned schedules {s(e0) = 0, s(e1) =
2, s(eE) = 4} and {s(e0) = 0, s(e1) = 2, s(eE) = 5}.

Algorithm 8 obtains a lower bound by solving Problem 9 exactly using the NIRA algorithm, if
it involves episodes with non-convex state regions (Line 3). If the function is called on a leaf node,
Problem 9 is also solved exactly by NIRA. This is because the solutions of leaf subproblems are
candidate solutions of an optimal solution of the overall problem. Hence, by solving them exactly,
we can ensure the optimality of the branch-and-bound search.

6.3.2 FURTHER BOUNDING WITH FRR

If the relaxed subproblem (Problem 9) is convex, then the p-Sulu Planner solves the FRR of the sub-
problem, instead of solving it exactly with NIRA, in order to obtain a lower bound more efficiently
(Line 5 of Algorithm 8). Many practical CCQSP execution problems have only one episode that
has a non-convex feasible region. For example, in the CCQSP planning problem shown in Figures
2 and 3, only the “safe region” (R2 minus the obstacles) is non-convex, while “Provincetown” (start
region), “Scenic region,” and “Bedford” (goal region) are convex. In such a case subproblems are
solved exactly only at the leaf nodes, and their lower bounds are always evaluated by approximate
solutions of FRRs of the subproblems at the non-leaf nodes.

7. Results

In this section we empirically demonstrate that the p-Sulu Planner can efficiently operate various
systems within the given risk bound. We first present the simulation settings in Section 7.1. Sec-
tion 7.2 presents the simulation results of the NIRA algorithm, and validates our claim that it can
efficiently compute a feasible and near-optimal solution. Section 7.3 demonstrates the p-Sulu Plan-
ner on two different benchmark problems. The simulation results highlight the p-Sulu Planner’s
capability to operate within the user-specified risk bound. Section 7.4 deploys the p-Sulu Planner
on the PTS scenarios, while Section 7.5 applies the p-Sulu Planner to the space rendezvous of an
autonomous cargo spacecraft to the International Space Station.

7.1 Simulation Settings

Recall that, as we stated in Section 2.4, the p-Sulu Planner takes four inputs: a stochastic plant model
M, an an initial condition I, a CCQSP P , and an objective function J . This section specifiesM
and J , which are commonly used by all the problems in Sections 7.2-7.4. We specify P and I for
each problem in the corresponding section.

554

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

7.1.1 STOCHASTIC PLANT MODEL

This section explains the plant model used in Sections 7.2 - 7.4. Section 7.5 uses a different plant
model that is described in detail in Section 7.5.2. We consider a point-mass double-integrator plant,
as shown in (72)-(73). Parameters, such as umax, vmax, σ2, and ∆T are set individually for each
problem. This plant model is commonly assumed in literatures on unmanned aerial vehicle (UAV)
path planning (Kuwata & How, 2011; Léauté, 2005; Wang, Yadav, & Balakrishnan, 2007).

Our state vector xt consists of positions and velocities in x and y directions, while the control
vector consists of the accelerations:

xt := [x y vx vy]
T , ut := [ax ay]

T .

The plant model is specified by the following matrices:

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1
0 0 0 1

 , B =


∆t2/2 0

0 ∆t2/2
∆t 0
0 ∆t

 , Σw =


σ2 0 0 0
0 σ2 0 0
0 0 0 0
0 0 0 0

 (72)

∀t ∈ T, ||ut|| ≤ umax, ||Cxt|| ≤ vmax, (73)

where

C =

(
0 0 1 0
0 0 0 1

)
.

The first constraint in (73) is imposed in order to limit the acceleration. This nonlinear constraint is
approximated by the following set of linear constraints:

∀t ∈ T, rn · ut ≤ umax (n = 1, 2, · · · , Nr)

rn =

[
cos

2πn

Nr
, sin

2πn

Nr

]
We choose Nr = 16. The second constraint in (73) is imposed in order to limit the velocity. We use
the same linear approximation as above.

7.1.2 OBJECTIVE FUNCTION

In Sections 7.2.3, 7.3, and 7.4, the cost function is the Manhattan norm of the control input over the
planning horizon, as follows:

J(x̄ti ,U , s) =

T∑
t=1

(|ux,t|+ |uy,t|) .

This cost function represents the total change in momentum, which is roughly proportional to the
fuel consumption of an aerial vehicle. Note that a minimization problem with the piece-wise linear
cost function above can be equivalently replaced by the following minimization problem with a
linear cost function and additional linear constraints by introducing slack variables µx,t and µy,t:

min

T∑
t=1

(µx,t + µy,t)

s.t. ∀t ∈ T, µx,t ≥ ux,t ∧ µx,t ≥ −ux,t ∧ µy,t ≥ uy,t ∧ µy,t ≥ −uy,t

555

ONO, WILLIAMS, & BLACKMORE

In Section 7.2.4, we minimize expected quadratic cost as follows:

J(x̄ti ,U , s) =
T∑
t=1

E
[
u2x,t + u2y,t

]
. (74)

7.1.3 COMPUTING ENVIRONMENT

All simulations except for the ones in Section 7.2 are conducted on a machine with a dual-core
Intel Xeon CPU clocked at 2.40 GHz, and with 16 GB of RAM. The algorithms are implemented
in C/C++, and run on Debian 5.0.8 OS. The simulations in Section 7.2 are conducted on a machine
with a quad-core Intel Core i7 CPU clocked at 2.67 GHz, and with 8 GB of RAM. The algorithms
are implemented in Matlab, and run on Windows 7 OS. We used IBM ILOG CPLEX Optimization
Solver Academic Edition version 12.2 as the linear program solver, and SNOPT version 7.2-9 as
the convex optimization solver.

7.2 NIRA Simulation Results

We first statistically compare the performance of NIRA with the prior art. Recall that NIRA is
a solver for CCQSP planning problems with non-convex state constraints and a fixed schedule
(Problem 3), and used as a subroutine in the p-Sulu Planner.

7.2.1 COMPARED ALGORITHMS

There are two existing algorithms that can solve the same problem:

1. Fixed risk allocation (Blackmore et al., 2006) - This approach fixes the risk allocation to a
uniform value. As a result, with an assumption that the cost function is linear, Problem 6
can be reformulated to a mixed-integer linear programming (MILP) problem, which can be
solved efficiently by a MILP solver, such as CPLEX.

2. Particle Control (Blackmore, 2006) - Particle Control is a sampling-based method, which
uses a finite number of samples to approximate the joint chance constraints. The control
sequence is optimized so that the number of samples that violate constraints is less than ∆cNp,
where Np is the total number of samples. The optimization problem is again reformulated into
MILP, with an assumption that the cost function is linear.

We also compare NIRA with an MDP in Section 7.2.5. Although an MDP does not solve
exactly the same problem as NIRA, it can also avoid risk by considering a penalty cost of constraint
violations. The purpose of the comparison is to highlight the capabilities of chance-constrained
planning to provide a guarantee on the probability of failure.

7.2.2 PROBLEM SETTINGS

We compare closed-loop and open-loop NIRAs with the two algorithms on a 2-D path planning
problem with a randomized location of an obstacle, as shown in Figure 13. A vehicle starts from
[0, 0] and heads to the goal at [1.0, 1.0], while avoiding a rectangular obstacle. The obstacle with
edge length 0.6 is placed at a random location within the square region with its corners at [0, 0],
[1, 0], [1, 1], and [0, 1]. We consider ten time steps with the time interval ∆t = 1.0. We require that

556

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

the mean state at t = 10 is at [1.0, 1.0]. The risk bound is set to ∆ = 0.01. We set the standard
deviation of the disturbance as σ = 0.01. We use the expected quadratic cost function given in (74).
The steady-state LQR gain is used for the closed-loop NIRA with Q = I4 and R = 10000I2, where
In is the n × n identity matrix and Q and R are cost matrices for the state and control variables,
respectively.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NIRA (closed-loop)
NIRA (open-loop)
Fixed Risk Allocation
Particle Control

(a) Nominal trajectories

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

NIRA (closed-loop)
NIRA (open-loop)

(b) Nominal trajectories and 3σ ellipses

Figure 13: (a) An instance of the 2-D path planning problem used in 7.2.3. The obstacle with a
fixed size is randomly placed within the unit square for each run. (b) The mean and the
standard deviation of the closed-loop and open-loop NIRAs.

7.2.3 PERFORMANCE COMPARISON

Recall that the solution of the NIRA algorithm, which is used by the p-Sulu Planner to solve sub-
problems, is not an exactly optimal solution to Problem 3, since risk allocation (Section 4.1.1) and
risk selection (Section 5.1.1) replace the chance constraint (29) with its sufficient condition (57)
∧ (59). Since the chance constraint (29) is very difficult to evaluate, all the previously proposed
methods solve optimization with its approximation. We provide empirical evidence that our risk
allocation/selection approach results in a solution that is significantly closer to the optimal solution
than the prior art, while satisfaction of the original constraint (29) is guaranteed.

We evaluate the suboptimality of the solutions by the difference between the risk bound, ∆ =
0.001, and the resulting probability of constraint violation, Pfail, estimated by a Monte-Carlo sim-
ulation. 1 − Pfail is equal to the left-hand-side value of (29) in Problem 3. Hence, the chance
constraint (29) is equivalent to:

Pfail ≤ ∆.

The strictly optimal solution to this problem should achieve Pfail = ∆, although such an exact
solution is unavailable, since there is no algorithm to solve Problem 3 exactly. A solution is sub-
optimal if Pfail < ∆, and their ratio ∆/Pfail represents the degree of suboptimality. A solution
violates the chance constraint if Pfail > ∆.

557

ONO, WILLIAMS, & BLACKMORE

Algorithm
Computation time

[sec] Probability of failure Cost

NIRA (Closed-loop) 54.8± 36.9 0.0096± 0.0008 0.666± 0.061

NIRA (Open-loop) 25.0± 13.1 0.0095± 0.0008 0.672± 0.068

Fixed Risk Allocation 0.42± 0.04 (2.19± 0.40)× 10−4 0.726± 0.113
Particle Control
(100 particles) 41.7± 12.8 0.124± 0.036 0.635± 0.048

Table 1: The averages and the standard deviations of the computation time, the probability of con-
straint violation, and the cost of the four algorithms. Each algorithms are run 100 times
with random location of an obstacle. The risk bound is set to ∆ = 0.01. Note that Particle
Control results in less cost than the other two methods because its solutions violate the
chance constraint.

Table 1 compares the performance of the four algorithms. The values in the table are the aver-
ages and the standard deviations of 100 runs with random locations for the obstacle. The probability
of constraint violation, Pfail, is evaluated by Monte-Carlo simulations with 106 samples.

Comparison of closed-loop and open-loop NIRAs Before comparing NIRA with existing algo-
rithms, we first compare the two variants of NIRA: the closed-loop and open loop NIRAs. Table
1 shows that the closed-loop NIRA results in less cost than the open-loop NIRA. Importantly, the
former outperforms the latter in all the 100 test cases. This reduction in cost by the closed-loop
approach is explained by Figure 13-(b), which shows the 3σ ellipses of the probability distribution
of the state. Since the closed-loop NIRA assumes a feedback control, the future position is less un-
certain. As a result, the plan generated by the closed-loop NIRA is less conservative. In fact, Table
1 shows that Pfail of the closed-loop NIRA is closer to the risk bound than that of the open-loop
NIRA. However, the closed-loop planning problem requires about twice as much solution time as
the open-loop one since it is more complicated due to additional chance constraints on control input.

Comparison with the fixed risk allocation approach Table 1 shows that closed and open NIRAs
result in the average probabilities of failure 0.0096 and 0.0095 respectively, which is within the user-
specified risk bound ∆ = 0.01. On the other hand, the fixed risk allocation approach results in a
very conservative probability of failure, Pfail = 0.000219, which is 98% smaller than ∆. This
result indicates that the solution by NIRA is significantly closer to the exactly optimal solution than
the fixed risk allocation approach. In fact, the NIRA algorithm results in less cost than the fixed risk
allocation approach in all the 100 runs. This is because it optimizes the risk allocation while the
fixed risk allocation approach uses the predetermined risk allocation.

Figure 14 shows the suboptimality measure ∆/Pfail of the open-loop NIRA with different set-
tings of the risk bound ∆. For all values of ∆, the suboptimality of NIRA is significantly smaller
than the fixed risk allocation approach. The graph shows a tendency that the suboptimality of NIRA
gets smaller for less ∆, while the suboptimality of the fixed risk allocation approach is approxi-
mately constant.

NIRA achieves the improvement in solution optimality with a cost of computation time; Table
1 shows that NIRA takes longer computation time than the risk allocation approach by the factor

558

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

 /failP

Figure 14: Suboptimality of NIRA and the fixed risk allocation approach. Strictly optimal solution
has ∆/Pfail = 1. A smaller value of ∆/Pfail indicates that the solution is suboptimal.

of two. Hence, NIRA and the fixed risk allocation approach provide users with a trade-off between
suboptimality and computation time.

Comparison with the Particle Control Table 1 shows that the average probability of failure of
the Particle Control approach is higher than the risk bound ∆ = 0.01, meaning that the approach
tends to generate infeasible solutions. On the other hand, NIRA guarantees the satisfaction of the
chance constraint since it employs a conservative approximation of the joint chance constraint.

Particle Control has a guarantee that its solution converges to an optimal solution when increas-
ing the number of samples to infinity. However, using a large number of samples is impractical,
since computation time and memory usage grow exponentially as the number of samples increases.
For example, we used only 100 samples in the analysis in Table 1. When using 300 samples, it took
4596 seconds (about 1.5 hours) to solve the same problem with the obstacle’s centered at [0.5, 0.5].
Computation with 1000 samples could not be conducted, because of the shortage of memory. On
the other hand, the computation time of NIRA is significantly shorter than PC, while guaranteeing
the feasibility of the solution.

7.2.4 OPTIMAL PLANNING WITH EXPECTED COST

Next we demonstrate the capability of the p-Sulu Planner to handle expected cost, instead of the cost
of the expected trajectory, for the same path planning problem presented above. Specifically, we
consider the expected quadratic cost function shown in (74). When conducting open-loop planning,
this cost function can be transformed to a function of nominal control inputs with a constant term
by using the equality (15). However, when performing closed-loop planning, this equality is not
exact, due to controller saturation. Nevertheless, we use (15) as an approximation of the expected
cost, as explained in Section 2.4.4. In this subsection we empirically evaluate the error of this
approximation.

559

ONO, WILLIAMS, & BLACKMORE

Approximate expected cost Actual expected cost
0.048434950± 0.010130589 0.048434956± 0.010130588

Table 2: Comparison of the approximate expected cost obtained by the closed-loop NIRA with the
actual expected cost. The table shows the mean and variance of 100 runs with random
location of the obstacle.

Table 2 compares the approximate expected cost function value obtained by the closed-loop
NIRA with the actual expected cost estimated by Monte-Carlo simulation with one million samples.
The path planning problem is solved 100 times with a randomized location of the obstacle. The risk
bound is set to ∆ = 0.01. As shown in the table, the approximate cost almost exactly agrees with
the actual cost. This is because our closed-loop planning approach explicitly bounds the risk of
controller saturation.

7.2.5 COMPARISON WITH MDP

Next we compare NIRA with an MDP formulation. For the sake of tractability of the MDP, we
consider a single integrator dynamics with a two-dimensional state space and a two-dimensional
control input, which specifies the velocity of a vehicle. The rest of the problem setting is the same,
except that the state space is discretized into a 100-by-100 grid. We implement a finite-horizon
MDP-based path planner, which imposes a penalty c on an event of failure and minimizes the
expected cost based on explicit state dynamic programming. The MDP-based path planner imposes
a cost as follows:

E

[
T∑
t=1

(
u2x,t + u2y,t + cI(xt)

)]
,

where I(xt) is an indicator function that is one if xt is in a obstacle and zero otherwise. The
resulting optimization problem is solved via dynamic programming.

We ran the MDP-based path planner with three values of penalty c: 1, 10, and 100. For each
choice of c, we conducted 100 simulations with a randomized obstacle position. Figure 14 shows
a typical output of the MDP-based path planner. Note that, with a small penalty (c = 1), the path
planner chooses to take a 100% risk of failure by ignoring the obstacle. This is simply because
the penalty of failure is smaller than the expected reduction of cost by going through an obstacle.
An issue of utilitarian approaches such as MDPs is that minimization of unconstrained cost can
sometimes lead to such impractical solution.

Table 3 shows the mean and the standard deviation of path lengths, as well as the maximum,
minimum, and the mean of the resulting probability of failure among the 100 runs. As expected,
by imposing a larger penalty, the MDP-path planner chooses a more risk-averse path, which has a
longer nominal path length. In this sense, an MDP can also conduct a trade-off between cost and
risk. MDP is particularly useful when the primary concern of the user is the cost of failure instead of
the probability of failure. On the other hand, when a user would like to impose a hard bound on the
probability of failure, our chance constrained planning approach has an advantage. Observe that,
even with the same penalty value, the MDP-based path planner results in a wide range of failure
probabilities depending on the location of the obstacle. Most notably, with c = 10, some of the

560

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

paths move directly across the obstacle, and in so doing, accept a 100% probability of failure, while
others go around the obstacle. Undesirable behaviors, such as crossing an obstacle, are likely to
be suppressed by imposing a greater penalty, but without a guarantee. Moreover, imposing a heavy
penalty on failure often results in an overly conservative, risk averse solution. On the other hand,
the behavior of NIRA with regarding to risk is predictable, in a sense that the path is guaranteed
to go around the obstacle, regardless of its location. This is because the chance constraint requires
that there exists a margin between the path and the boundary of the obstacle. The p-Sulu Planner
inherits this property from NIRA.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

c=1
c=10
c=100

Figure 15: Optimal paths generated by an MDP-based planner with different penalty levels , c. The
red rectangle represents an obstacle. Note that the path with c = 1 cuts through the
obstacle.

Penalty c path length
Probability of failure
Max Mean Min

1 1.41± 0.00 1.000 1.000 1.000
10 1.54± 0.05 1.000 0.375 0.096

100 1.57± 0.06 0.1215 0.031 0.009

Table 3: 100 runs with a randomized obstacle location

7.3 The p-Sulu Planner Simulation Results

Next we present the simulation results of the p-Sulu Planner on two problems, in order to illustrate
its capability of planning with schedule constraints. We also empirically evaluate the scalability of
p-Sulu.

561

ONO, WILLIAMS, & BLACKMORE

Figure 16: A sample CCQSP for a personal aerial vehicle’s path planning and scheduling problem.

Figure 17: Output of the p-Sulu Planner for the CCQSP in Figure 16 with three different settings
of the risk bound ∆obs, compared to the path planned by a deterministic planner, Sulu,
which does not consider chance constraints.

7.3.1 PATH PLANNING WITH OBSTACLES

In this simulation we test the p-Sulu Planner on a path planning problem in the environment shown
in Figure 17. The input CCQSP is shown in Figure 16. The CCQSP requires a vehicle to arrive at
the goal region within 15 minutes, by going through Waypoint 1 and Waypoint 2 with the temporal
constraints specified in Figure 16. It also imposes two chance constraints: one that requires the
vehicle to achieve the time-evolved goals with 90% certainty, and another that requires the vehicle
to limit the probability of violating the obstacles to ∆obs. We set ∆t = 1 and σ2 = 0.0025.

Figure 17 shows the plans generated by the p-Sulu Planner with three different risk bounds:
∆obs = 10%, 0.1%, and 0.001%. The computation times were 79.9 seconds, 86.4 seconds, and
88.1 seconds, respectively. Figure 17 also shows the plan generated by Sulu, a deterministic planner
that does not explicitly consider uncertainty (Léauté & Williams, 2005). Observe that Sulu leaves no
margin between the path and obstacles. As a result, the Sulu path results in a 94.1% probability of
hitting obstacles, as estimated by a Monte-Carlo simulation with 107 samples. On the other hand, the
p-Sulu Planner leaves margins between the path and the obstacles in order to satisfy the risk bound,

562

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

specified in the chance constraint. The margins are larger for the plans with smaller risk bounds. The
probabilities of failure of the three plans generated by the p-Sulu Planner, estimated by Monte-Carlo
simulations with 107 samples, are 9.53%, 0.0964%, and 0.00095%, respectively. Hence the chance
constraints are satisfied. The schedule optimized by the p-Sulu Planner is {s(e0) = 0, s(e1) =
5, s(e2) = 10, s(eE) = 15}, which satisfies all the temporal constraints in the CCQSP.

In Figure 16, it appears that the path cuts across the obstacle. This is due to the discretization
of time; the optimization problem only requires that the vehicle locations at each discrete time step
satisfy the constraints, and does not consider the state in between. This issue can be addressed by a
constraint-tightening method (Kuwata, 2003).

7.3.2 PATH PLANNING IN AN INDOOR ENVIRONMENT

Figure 18: A sample CCQSP for a path planning problem in an indoor environment.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Start

Goal

∆ = 10%

∆ = 1%

∆ = 0.1%

Figure 19: Output of the p-Sulu Planner for the CCQSP in Figure 16 with three different settings
of the risk bound ∆obs.

We next give the p-Sulu Planner the CCQSP shown in Figure 18, which simulates a path plan-
ning problem in an indoor environment. A vehicle must get to the goal region at the other side of
the room in three to five seconds. The “Remain in safe region” episode requires the vehicle to stay

563

ONO, WILLIAMS, & BLACKMORE

within the room and outside of the obstacle during the five-second planning horizon. The CCQSP
imposes two chance constraints shown in Figure 18. We set ∆t = 0.5 and σ2 = 5.0× 10−5.

Given this CCQSP, the planner faces a choice: heading straight to the goal by going through
the narrow passage between the left wall and the obstacle minimizes the path length, but involves
higher risk of constraint violation; making a detour around the right side of the obstacle involves
less risk, but results in a longer path.

Figure 19 shows the p-Sulu Planner’s outputs with ∆obs = 10%, 1%, and 0.1%. The computa-
tion times were 35.1 seconds, 84.5 seconds, and 13.3 seconds, respectively. The result is consistent
with our intuition. When the p-Sulu Planner is allowed a 10% risk, the planner chooses to go straight
to the goal, resulting in the cost function value of 1.21; when the user gives a 1% or 0.1% risk bound,
it chooses the risk-averse path, resulting in the cost function values of 3.64 and 3.84, respectively.
This example demonstrates the p-Sulu Planner’s capability to make an intelligent choice in order to
minimize the cost, while limiting the risks to user-specified levels.

7.3.3 SCALABILITY ANALYSIS

In this subsection we conduct an empirical analysis of the scalability of the p-Sulu Planner, as the
environment becomes increasingly constrained.. As shown in Figure 20, we measured the compu-
tation time to solve a path planning problem with different numbers of obstacles and waypoints. In
all simulations, the path starts at [0, 12] and ends in a square region centered at [24, 12]. Figure 20
shows twenty simulation results, with zero to three obstacles and zero to four waypoints. Obstacles
and waypoints are represented by blue and red squares in the figure, respectively. The positions of
the center of the obstacles are [6, 12], [12, 12], and [18, 12], while the positions of the center of the
waypoints are [9, 9], [9, 15], [15, 15], and [15, 9]. The computation time is shown in the caption of
each subfigure in Figure 20.

By comparing the results in Figure 20 horizontally, we observe exponential growth in compu-
tation time with the number of obstacles. This result is expected since the number of disjunctive
clauses in the state constraint of the p-Sulu Planner increases exponentially with the number of
obstacles. Building a tractable extension of the p-Sulu Planner for a large number of obstacles is
future work. On the other hand, by comparing the results vertically, we find that the computation
time with the same number of obstacles and different number of waypoints stays in the same order
of magnitude. This is because adding an extra waypoint only increases the number of conjunctive
clauses in the state constraints.

In the remaining sections we describe the application of psulu to two real world problems, air
vehicle and space vehicle control. A third application, building energy management, using a variant
of the p-Sulu Planner, is reported by Ono, Graybill, and Williams (2012).

7.4 PTS Scenarios

Next, we deploy the p-Sulu Planner on PTS scenarios, the robotic air taxi system introduced in
Section 1.

7.4.1 SCENARIOS

We consider three scenarios, specified by the CCQSPs shown in Figure 21. Scenarios 1 and 2 are
similar to the scenic flight scenario introduced at the beginning of this paper (see Figure 1). In

564

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

9

12

15

0.003 sec 0.173 sec 51.47 sec 677.2 sec

9

12

15

0.016 sec 0.518 sec 48.25 sec 648.4 sec

9

12

15

0.034 sec 1.047 sec 118.3 sec 4327 sec

9

12

15

0.076 sec 2.613 sec 159.1 sec 5686 sec

0 9 15 24

9

12

15

0.036 sec

0 9 15 24

3.873 sec

0 9 15 24

165.9 sec

0 9 15 24

6845 sec

Figure 20: Computation time of the p-Sulu Planner for a path planning problem with different num-
bers of obstacles and waypoints.

Scenario 1, a personal aerial vehicle (PAV) takes off from Runway 71 of Provincetown Municipal
Airport (KPVC) in Provincetown, Massachusetts, fly over a scenic region, and lands on Runway 23
of Hanscom Field (KBED) in Bedford, Massachusetts. The vehicle is required to stay within the
scenic region at least for 2 minutes and at most for 10 minutes. The entire flight must take more than
13 minutes and less than 15 minutes. Scenario 2 is the same as Scenario 1, except for the runways
used for take-off and landing.

Scenario 3 simulates a leisure flight off the coast of Massachusetts. A PAV takes off Runway 7
of Provincetown Municipal Airport, and flies over two regions where whales are often seen. Then
the vehicle lands on Runway 11 of Hanscom Field.

We place three no-fly zones, as shown in Figure 22. The entire flight must take more than 13
minutes and less than 15 minutes. Each scenario has three chance constraints, {c1, c2, c3}, as shown
in Figure 21. The first one, c1, is concerned with the vehicle’s operation; it requires the vehicle to
take off from and land on the right runways at the right airports with less than 10 % probability
of failure. The second chance constraint, c2, is concerned with the leisure activities; it requires
the vehicle to fly over the scenic regions with less than 10 % probability of failure. Finally, c3 is
concerned with the passenger’s safety; it requires the vehicle to limit the risk of penetrating the
no-fly zones to 0.01 %.

1. A runway of an airport is specified by a number, which represents the clockwise angle from the north. For example,
Runway 7 points 70 degrees away from the north.

565

ONO, WILLIAMS, & BLACKMORE

7.4.2 PLANT PARAMETERS

We set umax = 250 m/s, which approximates the maximum cruise speed of private jet airplanes,
such as Gulfstream V. The maximum acceleration is determined from the maximum bank angle.
Assuming that an aircraft is flying at a constant speed, the lateral acceleration a is given as a function
of the bank angle ϕ as follows:

a = g · tanϕ,

where g is the acceleration of gravity. Typically passenger aircraft limits the bank angle to 25
degrees for passenger comfort, even though the aircraft is capable of turning with a larger bank
angle. Hence, we use:

umax = 9.8 m/s2 · tan(25◦) = 4.6 m/s2.

We set σ = 100 m and ∆T = 60 seconds.

7.4.3 SIMULATION RESULTS

Figure 22 shows the paths planned by the p-Sulu Planner for the three scenarios. In all the scenarios,
all the episode requirements in the CCQSPs in Figure 21 are met within the specified temporal and
chance constraints.

Table 4 compares the performance of Sulu and the p-Sulu Planner. As expected, Sulu’s plans
result in excessive probabilities of failure in all scenarios. This is because Sulu does not consider
uncertainty in the planning process, although the PAV is subject to disturbance in reality. On the
other hand, the p-Sulu Planner successfully limits the probability of failure within the user-specified
risk bounds for all three scenarios. Furthermore, although the p-Sulu Planner significantly reduces
the risk of failure, its cost is higher than that of Sulu only by 9.5 - 12.8 %. Such a capability of
limiting the risk and maximizing the efficiency at the same time is a desirable feature for PTS,
which transports passengers.

Scenario number 1 2 3
Planner Sulu p-Sulu Sulu p-Sulu Sulu p-Sulu

Computation time [sec] 2.58 60.2 2.00 390 5.17 198
Pfail,1 0.999 9.12× 10−2 0.996 9.14× 10−2 0.999 9.23× 10−2

Pfail,2 0.807 8.46× 10−2 0.813 8.59× 10−2 0.603 7.65× 10−2

Pfail,3 0.373 2.74× 10−5 0.227 2.62× 10−5 0.372 2.81× 10−5

Cost function value J⋆ 24.2 27.5 21.0 23.7 20.0 22.3

Table 4: Performance Comparison of the prior art, Sulu, and the p-Sulu Planner. Pfail,1, Pfail,2,
and Pfail,3 represent the probabilities of failure regarding the chance constraints c1, c2,
and c3 in Figure 21, respectively.

566

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Figure 21: The CCQSPs for the PTS scenarios.

Figure 22: The paths planned by the p-Sulu Planner.

567

ONO, WILLIAMS, & BLACKMORE

As shown in Table 4, the p-Sulu Planner typically takes several minutes to compute the plan.
This length of computation time would be allowed for PTS applications, since we assume that the p-
Sulu Planner is used for preplanning; before take-off, the passengers of a PAV specify requirements,
and the p-Sulu Planner creates a risk-sensitive flight plan. We assume that a real-time plan executive
executes the plan after take-off.

We note that it is more desirable to have a real-time risk-sensitive plan executive, since risk fac-
tors, such as the location of storms, change over time. Our future work is to reduce the computation
time of the p-Sulu Planner so that it can be used for real-time execution.

7.5 Space Rendezvous Scenario

The p-Sulu Planner is a general planner whose application is not limited to a specific plant model.
In order to show the generality of the planner, we deployed the p-Sulu Planner on a system whose
plant model is significantly different from PTS.

Specifically, we chose an autonomous space rendezvous scenario of the H-II Transfer Vehicle
(HTV), shown in Figure 23, as our subject. HTV is an unmanned cargo spacecraft developed by the
Japanese Aerospace Exploration Agency (JAXA), which is used to resupply the International Space
Station (ISS). Collision of the vehicle with the ISS may result in a fatal disaster, even if the collision
speed is low. For example, in August 1994, the Russian unmanned resupply vehicle Progress M-
34 collided with the Mir space station in a failed attempt to automatic rendezvous and docking.
As a result, one of the modules of Mir was permanently depressurized. In order to avoid such an
accident, HTV is required to follow a specified safety sequence during the automated rendezvous,
as described in the following subsection.

Figure 23: H-II Transfer Vehicle (HTV), a Japanese unmanned cargo vehicle, conducts autonomous
rendezvous with the International Space Station. Image courtesy of NASA.

7.5.1 HTV RENDEZVOUS SEQUENCE

In HTV’s autonomous rendezvous mission, the final approach phase starts from the Approach Ini-
tiation (AI) point, which is located 5 km behind the ISS, as shown in Figure 24. First, HTV moves
to the R-bar Initiation (RI) point, which is located 500 m below the ISS, guided by the relative GPS

568

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

navigation. At the RI point, HTV switches the navigation mode to Rendezvous Sensor (RVS) Navi-
gation. In RVS Navigation, HTV measures the distance to ISS precisely by beaming the laser to the
reflector placed on the nadir (earth-facing) side of the ISS. Then, HTV proceeds to the Hold Point
(HP), located 300 m below the ISS. It is required to hold at HP in order to perform a 180-degree
yaw-around maneuver. The new orientation of HTV allows the vehicle to abort the rendezvous
quickly in case of emergency. After the yaw-around maneuver, HTV resumes the approach, and
holds again at the Parking Point (PP), which is 30 m below the ISS. Finally, HTV approaches at
a distance of 10 meters from the ISS, and stops within the Capture Box (CB) of the ISS’s robotic
arm. The robotic arm then grabs HTV and docks it to the ISS. Please refer to the report by Japan
Aerospace Exploration Agency (2009) for the details of the rendezvous sequence.

IS
S

 O
rb

it

AI Point

x

yRI HP PP CB

-300m-500 m -30m -10m

-5000 m

Earth

AI: Approach Initiation

RI: R-bar Initiation

HP: Hold Point

PP: Parking Point

CB: Capture Box

ISS

Figure 24: HTV’s final approach sequence (Japan Aerospace Exploration Agency, 2009).

The rendezvous sequence described above is represented by the CCQSP shown in Figure 25. In
addition to the time-evolved goals specified in the actual rendezvous sequence, we specify temporal
constraints and chance constraints in the simulation, as shown in the figure. We require HTV to hold
at each intermediate goal for at least 240 seconds. The transition between the goals must take at
least 600 seconds, in order to make sure that the vehicle moves slowly enough. The entire mission
must be completed within 4800 seconds (1 hour 20 minutes). We require HTV to stay within the
Safe Zone, a conic area below the ISS, during the RVS navigation phase with 99.5% probability,
since otherwise the laser may not be reflected back to HTV properly. We assume that the goals are
square regions, with 10 m sides for RI and HP, 2 m sides for PP, and 1 m sides for CB. Finally, we
require that HTV achieves all the time-evolved goals with 99.5% success probability.

7.5.2 ORBITAL DYNAMICS

The rendezvous can be considered as a two-body problem, where a chaser spacecraft (e.g., HTV)
moves in relation to a target spacecraft (e.g., ISS), which is in a circular orbit. In such a problem,
it is convenient to describe the motion of the chaser spacecraft using a rotating frame that is fixed
to the target space craft, known as a Hill coordinate frame (Schaub & Junkins, 2003). As shown
in Figure 24, we set the x-axis pointing away from the center of the earth and the y-axis along the

569

ONO, WILLIAMS, & BLACKMORE

Figure 25: A CCQSP representation of the HTV’s final approach sequence. We assume the same
time-evolved goals as the ones used for actual flight missions. The temporal constraints
and the chance constraints are added by the authors.

orbital velocity of the target spacecraft. Since HTV’s path is within the x-y plane, we don’t consider
the z-axis.

It is known that the relative motion of the chase spacecraft in the Hill coordinate frame is de-
scribed by the following Clohessy-Wiltshire (CW) equation (Vallado, 2001):

ẍ = 2ωẏ + 3ω2x+ Fx

ÿ = 2ωẋ+ Fy

where ω is the angular speed of the target spacecraft’s orbit, and Fx and Fy are the force per unit
mass, or the acceleration in x and y directions. The first terms on the right-hand sides represent the
Coriolis force.

An object that follows the CW equation moves in an unintuitive manner. Its unforced motion is
not in a straight line due to the Coriolis effect; in general, an object cannot stay at the same position
without external force. For example, Figure 26 shows the fuel-optimal path to visit two waypoints,
A and B, and come back to the start. As can be seen in the figure, the optimal path is not typically a
straight line. The virtue of the p-Sulu Planner is that it can handle such irregular dynamic systems
in the same way as regular systems, just by setting the A and B matrices of our plant model (4)
appropriately.

The state vector consists of positions and velocity in the x− y plane:

x = [x y vx vy]
T

We obtain the discrete-time CW equation using the impulse-invariant discretization:

xk+1 = Axk +Buk,

570

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Start

A

B

Figure 26: A typical motion of spacecraft in the Hill coordinate frame. The solid line is the fuel
optimal path to visits A and B and returns to the Start in 30 minutes. Note that the
optimal path is not a straight line in the Hill coordinate frame.

where

A =


4− 3 cos(ω∆T) 0 sin(ω∆T)

ω
2{1−cos(ω∆T)}

ω

−6{ω∆T − sin(ω∆T)} 1 −2{1−cos(ω∆T)}
ω

4 sin(ω∆T)
ω − 3∆T

3ω sin(ω∆T) 0 cos(ω∆T) 2 sin(ω∆T)
−6ω{1− cos(ω∆T)} 0 −2 sin(ω∆T) 4 cos(ω∆T)− 3



B =


sin(ω∆T)

ω
2{1−cos(ω∆T)}

ω
−2{1−cos(ω∆T)}

ω
4 sin(ω∆T)

ω − 3∆T
cos(ω∆T) 2 sin(ω∆T)
−2 sin(ω∆T) 4 cos(ω∆T)− 3


We use the ISS’s orbital angular speed, ω = 0.001164 rad/sec, at which the station goes around the
Earth in 90 minutes. We choose the interval ∆T = 120 seconds. The number of time steps N is
set to 40. Hence, the entire plan is 4800 seconds (1 hour and 20 minutes). In the discretization, we
assumed impulse inputs as follows:[

Fx

Fy

]
=

N−1∑
k=0

δ(t−∆T · k)uk,

where δ(·) is the Dirac delta function. Such an assumption is justified because the thrusters of the
Reaction Control System (RCS) of the spacecraft, which are used for the final approach maneuver,
operate for a very short duration (0.01−5.0 seconds) at each burn (Wertz & Wiley J. Larson, 1999).

We consider stochastic uncertainty w, added to the discrete-time dynamic equation:

xk+1 = Axk +Buk + w.

Such an assumption of additive uncertainty is commonly used in past research on autonomous
rendezvous and formation flight in space (Shields, Sirlin, & Wette, 2002; Smith & Hadaegh, 2007;

571

ONO, WILLIAMS, & BLACKMORE

Campbell & Udrea, 2002). We assume that w has a zero-mean Gaussian distribution, with the
following covariance matrix:

Σw =


10−6 0 0 0
0 10−6 0 0
0 0 0 0
0 0 0 0

 .

7.5.3 OBJECTIVE FUNCTION

We employ an objective function J that requires for the p-Sulu Planner to minimize the fuel con-
sumption. It follows from the Tsiolkovsky rocket equation that the fuel consumption of spacecraft is
proportional to the total change in velocity, called Delta-V or ∆V (Wertz & Wiley J. Larson, 1999).
The total fuel consumption is the summation of the fuel consumption of reaction jets in x and y
directions for all time steps. Hence our objective function is described as follows:

J(u0:N) = ∆Vx +∆Vy

=

∫ (N−1)∆T

0
|Fx|+ |Fy|dt

=

k=N−1∑
k=0

∣∣∣∣∣
∫ (N−1)∆T

0
δ(t−∆T · k)ux,kdt

∣∣∣∣∣+
∣∣∣∣∣
∫ (N−1)∆T

0
δ(t−∆T · k)uy,kdt

∣∣∣∣∣
=

k=N−1∑
k=0

|ux,k|+ |uy,k|.

7.5.4 SIMULATION RESULT

Figure 27 shows the planning result of the p-Sulu Planner. We compare the result with Sulu, as
well as a nominal planning approach, in which we assume that HTV moves from AI to RI using a
two-impulse transition (called “CW guidance law”) (Matsumoto, Dubowsky, Jacobsen, & Ohkami,
2003; Vallado, 2001). From RI to CB, it follows a predetermined path that goes through the center
of the Safe Zone, as shown in Figure 27-(b), with a constant speed.

As shown in Figure 27, the optimal paths generated by the p-Sulu Planner and Sulu are not
straight. Such curved paths exploit the Coriolis effect to minimize fuel consumption.

Table 5 compares the performance of the three planning approaches. The two rows regarding
the probabilities of failure correspond to the two chance constraints specified in the CCQSP, shown
in Figure 25. The probabilities are evaluated by Monte Carlo simulation with one million samples.

As expected, the probabilities of failure of the path generated by the p-Sulu Planner are less
than the risk bounds specified by the CCQSP, shown in Figure 25. On the other hand, once again,
Sulu’s path results in almost 100% probability of failure. This is because Sulu minimizes the fuel
consumption without considering uncertainty. The resulting path pushes against the boundaries
of feasible regions, as is evident in Figure 27-(c). Also note that, although the p-Sulu Planner
significantly reduces the probability of constraint violation compared with Sulu, its cost (Delta V)
is higher than Sulu only by 0.2%. The p-Sulu Planner results in a significantly smaller cost (Delta
V) than the nominal planning approach. The 1.42 m/sec reduction in Delta V is equivalent to an
11.9 kg saving of fuel, assuming the 16, 500 kg mass of the vehicle and the 200 sec specific impulse

572

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Figure 27: Planning results of Sulu, the p-Sulu Planner, and a nominal planning approach. The
input CCQSP is shown in Figure 25.

(ISP) of the thrusters. Although the p-Sulu Planner takes longer to compute the plan than the other
two approaches, the 11.4 second computation time is negligible compared with the 1 hour and 20
minute plan duration.

Sulu the p-Sulu Planner Nominal
Computation time [sec] 3.9 11.4 0.09

Probability of failure Pfail (Navigation) 0.92 0.0024 < 10−6

Probability of failure Pfail (Goals) 1.0 0.0029 < 10−6

Cost function value (Delta V) J⋆ [m/sec] 7.30 7.32 8.73

Table 5: Performance comparison of Sulu, the p-Sulu Planner, and the nominal approach on the
HTV rendezvous scenario.

573

ONO, WILLIAMS, & BLACKMORE

8. Conclusions

This article introduced a model-based planner, the p-Sulu Planner, which operates within user-
specified risk bounds. The p-Sulu Planner optimizes a continuous control sequence and a discrete
schedule, given as input a continuous stochastic plant model, an objective function, and a newly
developed plan representation, a chance-constrained qualitative state plan (CCQSP). A CCQSP
involves time-evolved goals, simple temporal constraints, and chance constraints, which specify the
user’s acceptable levels of risk on subsets of the plan.

Our approach to developing the p-Sulu Planner was two-fold. In the first step, we developed
an efficient algorithm, called non-convex iterative risk allocation (NIRA), that can plan in a non-
convex state space but for a fixed schedule. We solved the problem based on the key concept of
risk allocation and risk selection, which achieves tractability by allocating the specified risk to in-
dividual constraints and by mapping the result into an equivalent disjunctive convex program. The
NIRA algorithm employs a branch-and-bound algorithm to solve the disjunctive convex program.
Its subproblems are fixed-schedule CCQSP problems with a convex state space, which can be solved
by our previously developed algorithms (Blackmore & Ono, 2009). We developed a novel relax-
ation method called fixed risk relaxation (FRR), which provides the tightest linear relaxation of the
nonlinear constraints in the convex subproblems.

In the second step, we developed the p-Sulu Planner, which can solve a CCQSP planning prob-
lem with a flexible schedule. The scheduling problem was formulated as a combinatorial constrained
optimization problem (COP), which is again solved by a branch-and-bound algorithm. Each sub-
problem of the branch-and-bound search is a CCQSP planning problem with a fixed schedule, which
is solved by NIRA. The domain of the feasible schedule is pruned by running a shortest-path algo-
rithm on the d-graph representation of the given temporal constraints. The lower bounds of the op-
timal objective value of the subproblems are obtained by solving fixed-schedule CCQSP planning
problems where a subset of the state constraints are imposed. We proposed an efficient variable
ordering that prioritizes convex subproblems over non-convex ones. We demonstrated the p-Sulu
Planner on various examples, from a personal aerial transportation system to autonomous space
rendezvous, and showed that it can efficiently solve CCQSP planning problems with small subopti-
mality, compared to past algorithms.

Acknowledgments

This paper is based upon work supported in part by the Boeing Company under Grant No. MIT-
BA-GTA-1 and by the National Science Foundation under Grant No. IIS-1017992. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the view of the sponsoring agencies. We would like to thank Michael
Kerstetter, Scott Smith, Ronald Provine, and Hui Li at Boeing Company for their support. Thanks
also to Robert Irwin for advice on the draft.

References

Acikmese, B., Carson III, J. M., & Bayard, D. S. (2011). A robust model predictive control algorithm
for incrementally conic uncertain/nonlinear systems. International Journal of Robust and
Nonlinear Control, 21(5), 563–590.

574

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Aircraft Owners and Pilots Association Air Safety Foundation (2005). 2005 Joseph T. Nall Report
- accident trands and factors for 2004..

Altman, E. (1999). Constrained Markov decision processes. Stochastic modeling. Chapman &
Hall/CRC.

Alur, R., Feder, T., & Henzinger, T. A. (1996). The benefits of relaxing punctuality. Journal of the
ACM, 43.

Bacchus, F., & Kabanza, F. (1998). Planning for temporally extended goals. Annals of Mathematics
and Artificial Intelligence, pp. 5–27.

Balas, E. (1979). Disjunctive programming. Annals of Discrete Mathematics.

Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control Volume I (Third Edition).
Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming (1st edition). Athena
Scientific.

Blackmore, L. (2006). A probabilistic particle control approach to optimal, robust predictive control.
In Proceedings of the AIAA Guidance, Navigation and Control Conference.

Blackmore, L., Li, H., & Williams, B. C. (2006). A probabilistic approach to optimal robust path
planning with obstacles. In Proceedings of American Control Conference.

Blackmore, L., & Ono, M. (2009). Convex chance constrained predictive control without sampling.
In Proceedings of the AIAA Guidance, Navigation and Control Conference.

Boyan, J. A., & Littman, M. L. (2000). Exact solutions to time-dependent MDPs. In in Advances
in Neural Information Processing Systems, pp. 1026–1032. MIT Press.

Boyan, J. A., & Moore, A. W. (1995). Generalization in reinforcement learning: Safely approxi-
mating the value function. Advances in Neural Information Processing Systems 7.

Campbell, M. E., & Udrea, B. (2002). Collision avoidance in satellite clusters. In Proceedings of
the American Control Conference.

Charnes, A., & Cooper, W. W. (1959). Chance-constrained programming. Management Science, 6,
73–79.

Coles, A. J., Coles, A., Fox, M., & Long, D. (2012). Colin: Planning with continuous linear numeric
change. J. Artif. Intell. Res. (JAIR), 44, 1–96.

Dechter, R. (2003). Constraint Processing. Elsevier.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial Intelligence, 49,
61–95.

Dolgov, D., & Durfee, E. (2005). Stationary deterministic policies for constrained MDPs with mul-
tiple rewards, costs, and discount factors. In In Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI-05, pp. 1326–1331.

Feng, Z., Dearden, R., Meuleau, N., & Washington, R. (2004). Dynamic programming for structured
continuous markov decision problems. In Proceedings of the Proceedings of the Twentieth
Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-04), pp. 154–
161, Arlington, Virginia. AUAI Press.

575

ONO, WILLIAMS, & BLACKMORE

Fleming, W., & McEneaney, W. (1995). Risk-sensitive control on an infinite time horizon. SIAM
Journal on Control and Optimization, 33(6), 1881–1915.

Fox, M., & Long, D. (2006). Modelling mixed discrete-continuous domains for planning. Journal
of Artificial Intelligence Research, 27, 235–297.

Geibel, P., & Wysotzki, F. (2005). Risk-sensitive reinforcement learning applied to control under
constraints. Journal of Artificial Intelligence Research, 24, 81–108.

Goulart, P. J., Kerrigan, E. C., & Maciejowski, J. M. (2006). Optimization over state feedback
policies for robust control with constraints. Automatica, 42(4), 523 – 533.

Hofmann, A. G., & Williams, B. C. (2006). Robust execution of temporally flexible plans for bipedal
walking devices. In Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS-06).

Jacobson, D. (1973). Optimal stochastic linear systems with exponential performance criteria and
their relation to deterministic differential games. Automatic Control, IEEE Transactions on,
18(2), 124 – 131.

Japan Aerospace Exploration Agency (2009). HTV-1 mission press kit. Available on-line at http:
//www.jaxa.jp/countdown/h2bf1/pdf/presskit_htv_e.pdf.

Kuwata, Y., & How, J. P. (2011). Cooperative distributed robust trajectory optimization using re-
ceding horizon MILP. IEEE Transactions on Control Systems Technology, 19(2), 423–431.

Kuwata, Y. (2003). Real-time trajectory design for unmanned aerial vehicles using receding horizon
control. Master’s thesis, Massachusetts Institute of Technology.

Kvarnstrom, J., & Doherty, P. (2000). Talplanner: A temporal logic based forward chaining planner.
Annals of Mathematics and Artificial Intelligence.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. Journal of Machine Learning
Research, 4, 2003.

Léauté, T. (2005). Coordinating agile systems through the model-based execution of temporal plans.
Master’s thesis, Massachusetts Institute of Technology.

Léauté, T., & Williams, B. C. (2005). Coordinating agile systems through the model-based exe-
cution of temporal plans. In Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI).

Li, H., & Williams, B. C. (2005). Generalized conflict learning for hybrid discrete linear optimiza-
tion. In Proc. 11th International Conf. on Principles and Practice of Constraint Program-
ming.

Li, H. X. (2010). Kongming: A Generative Planner for Hybrid Systems with Temporally Extended
Goals. Ph.D. thesis, Massachusetts Institute of Technology.

Matsumoto, S., Dubowsky, S., Jacobsen, S., & Ohkami, Y. (2003). Fly-by approach and guidance
for uncontrolled rotating satellite capture. In Proceedings of AIAA Guidance, Navigation, and
Control Conference and Exhibit.

Nemirovski, A., & Shapiro, A. (2006). Convex approximations of chance constrained programs.
SIAM Journal on Optimization, 17, 969–996.

576

PROBABILISTIC PLANNING FOR CONTINUOUS DYNAMIC SYSTEMS UNDER BOUNDED RISK

Oldewurtel, F., Jones, C. N., & Morari, M. (2008). A tractable approximation of chance constrained
stochastic MPC based on affine disturbance feedback. In Proceedings of Conference on De-
cision and Control.

Ono, M. (2012). Closed-loop chance-constrained MPC with probabilistic resolvability. In Proceed-
ings of the IEEE Conference on Decision and Control.

Ono, M., Graybill, W., & Williams, B. C. (2012). Risk-sensitive plan execution for connected sus-
tainable home:. In Proceedings of the 4th ACM Workshop On Embedded Systems (BuildSys).

Ono, M., & Williams, B. C. (2008a). An efficient motion planning algorithm for stochastic dynamic
systems with constraints on probability of failure. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI-08).

Ono, M., & Williams, B. C. (2008b). Iterative risk allocation: A new approach to robust model
predictive control with a joint chance constraint. In Proceedings of 47th IEEE Conference on
Decision and Control.

Prékopa, A. (1999). The use of discrete moment bounds in probabilistic constrained stochastic
programming models. Annals of Operations Research, 85, 21–38.

Richards, A., & How, J. (2006). Robust stable model predictive control with constraint tightening.
In American Control Conference, 2006, p. 6 pp.

Sanner, S. (2011). Relational dynamic influence diagram language (RDDL): Language description.
Available at http://users.cecs.anu.edu.au/˜ssanner/IPPC_2011/RDDL.
pdf.

Schaub, H., & Junkins, J. L. (2003). Analytical mechanics of space systems. American Institute of
Aeronautics and Astronautics, Inc.

Shields, J., Sirlin, S., & Wette, M. (2002). Metrology sensor characterization and pointing control
for the formation interferometer testbed (fit). In Proceedings of IEEE Aerospace Conference.

Smith, R., & Hadaegh, F. (2007). Distributed estimation, communication and control for deep space
formations. IET Control Theory and Applications.

Stoorvogel, A. (1992). The H∞ Control Problem: A State Space Approach. Prentice Hall.

Vallado, D. A. (2001). Fundamentals of Astrodynamics and Applications, Second Edition. Micro-
cosm Press.

van Hessem, D. H. (2004). Stochastic inequality constrained closed-loop model predictive control
with application to chemical process operation. Ph.D. thesis, Delft University of Technology.

Wang, X., Yadav, V., & Balakrishnan, S. N. (2007). Cooperative uav formation flying with obsta-
cle/collision avoidance. IEEE Transactions on Control Systems Technology, 15(4).

Wertz, J. R., & Wiley J. Larson, e. (1999). Space Mission Analysis and Design (Third Edition).
Microcosm/Springer.

Younes, H. L. S., & Littman, M. L. (2004). PPDDL1.0: An extension to pddl for expressing planning
domains with probabilistic effects. Tech. rep., Carnegie Mellon University.

577

