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Abstract

Relational data representations have become an increasingly important topic due to
the recent proliferation of network datasets (e.g., social, biological, information networks)
and a corresponding increase in the application of Statistical Relational Learning (SRL)
algorithms to these domains. In this article, we examine and categorize techniques for
transforming graph-based relational data to improve SRL algorithms. In particular, ap-
propriate transformations of the nodes, links, and/or features of the data can dramatically
affect the capabilities and results of SRL algorithms. We introduce an intuitive taxonomy
for data representation transformations in relational domains that incorporates link trans-
formation and node transformation as symmetric representation tasks. More specifically,
the transformation tasks for both nodes and links include (i) predicting their existence, (ii)
predicting their label or type, (iii) estimating their weight or importance, and (iv) system-
atically constructing their relevant features. We motivate our taxonomy through detailed
examples and use it to survey competing approaches for each of these tasks. We also dis-
cuss general conditions for transforming links, nodes, and features. Finally, we highlight
challenges that remain to be addressed.

1. Introduction

In this article, we examine and categorize techniques for transforming relational data to im-
prove Statistical Relational Learning (SRL) algorithms. Below, Section 1.1 first introduces
relational data and SRL. We summarize the primary types of representations for relational
data, and explain that we focus on data represented as graphs. Section 1.1 also describes
how transforming the content (rather than the type) of this representation can improve SRL
analysis. For instance, predicting new links in a graph can increase accuracy for relational
node classification. Section 1.2 then identifies the scope of this article. Finally, Section 1.3
summarizes the organization and approach of this article, and includes a description of our
taxonomy for relational representation transformation.

c©2012 AI Access Foundation. All rights reserved.
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1.1 Relational Data, SRL, and Representation Choices

The majority of research in machine learning assumes independently and identically dis-
tributed data. This independence assumption is often violated in relational data, which en-
code dependencies among data instances. For instance, people are often linked by business
associations, and information about one person can be highly informative for a prediction
task involving an associate of that person. More generally, relational data can be described
as a set of nodes, which can be connected by one or more types of relations (or “links”).
Relational information is seemingly ubiquitous; it is present in domains such as the Internet
and the world-wide web (Faloutsos, Faloutsos, & Faloutsos, 1999; Broder et al., 2000; Al-
bert, Jeong, & Barabási, 1999), scientific citation and collaboration (McGovern et al., 2003;
Newman, 2001b), epidemiology (Pastor-Satorras & Vespignani, 2001; Moore & Newman,
2000; May & Lloyd, 2001; Kleczkowski & Grenfell, 1999) communication analysis (Rossi
& Neville, 2010), metabolism (Jeong, Tombor, Albert, Oltvai, & Barabási, 2000; Wagner
& Fell, 2001), ecosystems (Dunne, Williams, & Martinez, 2002; Camacho, Guimerà, &
Nunes Amaral, 2002), bioinformatics (Maslov & Sneppen, 2002; Jeong, Mason, Barabási,
& Oltvai, 2001), fraud and terrorist analysis (Neville et al., 2005; Krebs, 2002), and many
others. The links in these data may represent citations, friendships, associations, metabolic
functions, communications, co-locations, shared mechanisms, or many other explicit or im-
plicit relationships.

Statistical relational learning (SRL) methods have been developed to address the prob-
lems of reasoning and learning in domains with complex relations and probabilistic structure
(Getoor & Taskar, 2007). In particular, SRL algorithms leverage relational information in
an attempt to learn models with higher predictive accuracy. A key characteristic of many
relational datasets is a correlation or statistical dependence between the values of the same
attribute across linked instances (e.g., two friends are more likely to share political views
than two randomly selected people). This relational autocorrelation provides a unique op-
portunity to increase the accuracy of statistical inferences (Jensen, Neville, & Gallagher,
2004). Similarly, relational information can be exploited for many other reasoning tasks
such as identifying useful patterns or optimizing systems (Easley & Kleinberg, 2010).

Representation issues—including knowledge, model, and data representation—have been
at the heart of the artificial intelligence community for decades (Amarel, 1968; Minsky, 1974;
Russell & Norvig, 2009). All of these are important, but here we focus on data representa-
tion issues, simple examples of which include the choices of whether to discretize continuous
features or to add higher-order polynomial features. Such decisions can have a significant
effect on the accuracy and efficiency of AI algorithms. They are especially critical for the
performance of SRL algorithms because, in relational domains, there is an even larger space
of potential data representations to consider. The complex structure of relational data can
often be represented in a variety of ways and the choice of specific data representation
can impact both the applicability of particular models/algorithms and their performance.
Specifically, there are two categories of decisions that need to be considered in the context
of relational data representation.

First, we have to consider the type of data representation to use (cf., the hierarchy
of De Raedt, 2008, ch. 4). For instance, relational data can be propositionalized for the
application of standard, non-relational learning algorithms. More often, in order to fully
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exploit the relational information, SRL researchers have chosen to represent the data either
using an attributed graph in a relational database (see e.g., Friedman, Getoor, Koller, &
Pfeffer, 1999), or via logic programs (see e.g., Kersting & De Raedt, 2002).1 Each choice
has different strengths. In this article, we focus on the graph-based representation, which
has been a common choice for addressing the growing interest in network data and applica-
tions for analyzing electronic communication and online social networks such as Facebook,
Twitter, Flickr, and LinkedIn (Mislove, Marcon, Gummadi, Druschel, & Bhattacharjee,
2007; Ahmed, Berchmans, Neville, & Kompella, 2010). Specifically, we assume a graph-
based data representation G = 〈V,E,XV ,XE〉 where the nodes V are entities (e.g., people,
places, events) and the links E represent relationships among those entities (e.g., friend-
ships, citations). XV is a set of features about the entities in V . Likewise, the set of features
XE provides information about the relation links in E.

Next, given the type of representation, we must consider the specific content of the data
representation, for which there is a large space of choices. For instance, features for the nodes
and links of a graph can be constructed using a wide range of aggregation functions, based on
multiple kinds of links and paths. SRL researchers have already recognized the importance
of such data representation choices (e.g., Getoor & Diehl, 2005), and many separate studies
have examined techniques for feature construction (Neville, Jensen, Friedland, & Hay, 2003),
node weighting (Tang, Musolesi, Mascolo, & Latora, 2009), link prediction (Taskar, Wong,
Abbeel, & Koller, 2003), etc. However, this article is the first to comprehensively survey
approaches to relational representation transformation for graph-based data.

Given a set of (graph-based) relational data, we define relational representation trans-
formation as any change to the space of links, nodes, and/or features used to represent
the data. Typically, the goal of this transformation is to improve the performance of some
subsequent SRL application. For instance, in Figure 1 the original graph representation G
is transformed into a new representation G̃ where links, nodes, and features (such as link
weights) have been added, and some links have been removed. Some SRL algorithm or
analysis is then applied to the new representation, for instance to classify the nodes or to
identify anomalous links. The particular transformations that are used to produce G̃ will
vary depending upon the intended application, but can sometimes substantially improve
the accuracy, speed, or complexity of the final application. For instance, Gallagher, Tong,
Eliassi-Rad, and Faloutsos (2008) found that adding links between similar nodes could in-
crease node classification accuracy by up to 15% on some tasks. Similarly, Neville and
Jensen (2005) demonstrated that adding nodes which represent underlying groups enabled
both simpler inference and increased accuracy.

1.2 Scope of this Article

This article focuses on examining and categorizing various techniques for changing the
representation of graph-based relational data. As shown in Figure 1, we typically view
these changes as a pre-processing step that enables increased accuracy or speed for some
other task, such as object classification. However, an output of these techniques can itself
be valuable. For instance, the administrators of a social network may be interested in

1. In the latter case, the applicable SRL algorithms are often referred to as probabilistic inductive logic
programming (ILP) (De Raedt & Kersting, 2008).
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Figure 1: Example Transformation and Subsequent Analysis: The original rela-
tional representation G is transformed into G̃ where dotted lines represent pre-
dicted links, squares represent predicted nodes, and bold links represent link
weighting. Changes may be based on link structure, link features, and node fea-
tures (here, similar node shadings indicate similar feature values). Some SRL
analysis is then applied to the new representation. In this example, the SRL
analysis produces a label (C or L) for each node, as with the example task dis-
cussed in Section 2.1. This article focuses on the representation transformation
(left side of the figure), not the subsequent analysis.

link prediction so that predicted links can be presented to their users as potential new
“friendship” links. Alternatively, these techniques may also be applied to improve the
comprehensibility of a model. For example, the prediction of protein-protein interactions
provides insights into protein function (Ben-Hur & Noble, 2005). Thus, the techniques
we survey may be used for multiple purposes, and relevant publications may have used
them in different contexts. Regardless of the original context, we will examine the general
applicability and benefits of each technique. After such techniques have been applied, the
transformed data can be used as is (e.g., for friendship suggestions), examined for greater
understanding, used for some other task (e.g., for object classification), or used recursively
as the input for another representation change (e.g., as in object/node prediction followed
by link prediction).

We do not attempt to survey the many methods that could be used for SRL analysis
(e.g., the right side of Figure 1), although the relevant set of methods for such analysis
overlaps with the set of methods that facilitate the transformations we consider. For in-
stance, collective classification (Neville & Jensen, 2000; Taskar, Abbeel, & Koller, 2002) is
an important SRL application that we define in Section 2 and use as a running example
of an SRL analysis task. The output of such classification could also be used to create
new attributes for the nodes (a data representation change). We discuss this possibility in
Section 6.2, but focus on a few cases where such node labeling is particularly useful as a
pre-processing step (e.g., before applying certain “stacked” algorithms), rather than survey-
ing the wide range of possible classification algorithms, whether collective or not. Likewise,
we do not survey issues in model and knowledge representation, such as whether the sta-
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tistical dependencies between nodes, links, and features should be modeled with Structural
Logistic Regression (Popescul, Popescul, & Ungar, 2003b) or with a Markov Logic Network
(Domingos & Richardson, 2004). We consider such issues only briefly, in Section 8.4.

Furthermore, we focus on transformations that change the content of the graph data
representation. In particular, we examine transformations to graph data that modify the
set of links or nodes, or modify their features. We do not consider changing the graph data
to a different type of representation, e.g., by propositionalizing the data or by changing to
a logic program. However, some of the transformations we discuss, such as node or link
feature aggregation, are a form of propositionalization. In addition, Section 6.3.3 describes
a number of techniques for structure learning of logic programs, because these techniques
are closely related to the analogous problem of feature construction for graph-based rep-
resentations. Finally, many of the other techniques that we discuss are also applicable to
logical representations. For instance, link weighting could be applied to weight the known
relations before using a logic program to detect anomalous objects. We focus, however, on
the methods most useful for transforming graph-based representations.

1.3 Approach and Organization of this Article

There are many dimensions of relational data transformation, which complicate the task of
understanding and selecting the most appropriate techniques. To assist in this process, we
introduce a simple and intuitive taxonomy for representation transformation that identi-
fies link transformation and node transformation as symmetric representation tasks. More
specifically, the transformation tasks for both nodes and links include (i) predicting their
existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and
(iv) constructing their relevant features. In addition, we propose a taxonomy for construct-
ing both link and node features that consists of non-relational features, topology features,
relational node-value features, and relational link-value features. For each relational trans-
formation task, we survey the applicable techniques, examine necessary conditions, and
provide detailed examples and comparisons.

This article is organized as follows. The next section presents our taxonomy for relational
representation transformation and discusses a motivating example. In Section 3, we review
the algorithms for link prediction, while Section 4 examines the task of link interpretation
(i.e., constructing link labels, link weights, and link features). Sections 5 and 6 consider
the corresponding prediction and interpretation tasks for nodes instead of links. In Section
7, we summarize algorithms that jointly transform nodes and links. Section 8 discusses
methods for evaluating representation transformations and challenges for future work, and
Section 9 concludes.

2. Overview and Motivating Example

In this section we first introduce a running example based on the classification of data
from Facebook, then describe how relational algorithms could be used to perform this task.
Next, we introduce a taxonomy for relational representation transformation and explain
how each type of transformation could aid the Facebook classification task. Finally, we
formally define each type of relational representation transformation.
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2.1 Motivating SRL Analysis Example: A Classification Task

As an example, we consider hypothetical data inspired by Facebook (www.facebook.com),
one of the most popular online social networks. We assume that we are given a graph
G = 〈V,E,XV ,XE〉 where the nodes V are users 2 and the links E represent friendships in
Facebook. XV is a set of features about the users in V such as their gender, relationship
status, school, favorite movies, or musical preference (though information may be missing
for some users). Likewise, the set of features XE provides information about the friendship
links in E such as the time of formation or possibly the contents of the message that was
sent when the link formation was requested by one of the users.

The example SRL analysis task (see Figure 1) is to predict the political affiliation (liberal,
moderate, or conservative) of every node (person) in G. We assume that this affiliation,
which we call the class label of a node, is known for some but not all of the people in G.3

Moreover, we assume that a user’s political affiliation is likely to be correlated with the
characteristics of that user and (to a lesser degree) that user’s friends. The next section
summarizes how these correlations can be used for classification.

For this example, we assume that links are simple, binary friendship connections. How-
ever, other link types could be used to represent other kinds of relationships. For instance,
a link might indicate that two people have communicated via a “wall-post” message, or that
two people have chosen to join the same Facebook group. In addition, the notion of friend-
ship in Facebook is very weak and thus a significant portion of a person’s “friends” are often
only casual acquaintances. Thus, representation changes such as link deletion or weighting
may have a significant impact on classification accuracy. For notational purposes, we add a
tilde to the top of each graph component’s symbol to indicate that it has undergone some
transformation (e.g., the modified link set E is denoted by Ẽ).

2.2 Background: Features and Methods for Classification

To predict the political affiliation of Facebook users, conventional classification approaches
would ignore the links and classify each user using only information known about that user,
such as their gender or location. We assume that such information is represented in the
form of non-relational features, which are those features that can be computed directly
from XV without considering the links E. We refer to classification based only on these
features as non-relational classification. Alternatively, in relational classification, the links
are explicitly used to construct additional relational features to capture information about
each user’s friends. For instance, a relational feature could compute, for each user, the
proportion of friends that are male or that live in a particular region. Using such relational
information can potentially increase classification accuracy, though may sometimes decrease
accuracy as well (Chakrabarti, Dom, & Indyk, 1998). Finally, even greater (and usually
more reliable) increases can occur when the class labels (e.g., political affiliations) of the
linked users are used instead to derive relevant features (Jensen et al., 2004). For instance,

2. In general, there may be more than one type of node. For instance, nodes in a citation network may
represent papers or authors.

3. Later, we discuss the representation change of node labeling, which also constructs an estimated label
for every node. As discussed in Section 1.2, representation changes can sometimes resemble the output
of SRL analysis, but we focus on changes that are particularly useful as pre-processing before some
subsequent SRL analysis.
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a “class-label” relational feature could compute, for each user, the proportion of friends
that have liberal views. However, using such features is challenging since some or all of
the labels are initially unknown, and thus typically must be estimated and then iteratively
refined in some way. This process of jointly inferring the labels of interrelated nodes is
known as collective classification (CC).

CC requires both models and inference procedures that use inferences about one user to
affect inferences about related users. Many such algorithms have been considered for CC,
including Gibbs Sampling (Jensen et al., 2004), relaxation labeling (Chakrabarti, Dom, &
Indyk, 1998), belief propagation (Taskar et al., 2002), ICA (Neville & Jensen, 2000; Lu &
Getoor, 2003), and weighted neighbor techniques (Macskassy & Provost, 2007). See the
work of Sen et al. (2008) for a survey.

As a concrete example of SRL analysis, we explain many of the techniques in this survey
in terms of the Facebook classification task, with a special emphasis on CC. However, the
features and the transformation techniques apply to many other SRL tasks and data sets
such as relationship classification, anomalous link detection, entity resolution, or group
discovery (Getoor & Diehl, 2005).

2.3 Representation Transformation Tasks for Improving SRL

Figure 2 shows our proposed taxonomy for relational representation transformation. The
two main tasks in this taxonomy are link transformation and node transformation. We
find that there is a powerful and elegant symmetry between these two tasks. In particular,
the link and node representation transformation tasks can be decomposed into prediction
and interpretation tasks. The former task involves predicting the existence of new nodes
and links. The latter task of interpretation involves three parts: constructing the weights,
labels, or features of nodes or links. Together, this yields eight distinct transformation tasks
as shown in the leaves of the taxonomy in Figure 2. Underneath these eight tasks in the
figure, we list the primary graph component that is modified by each task (i.e., Ṽ , Ẽ, X̃V ,
or X̃E), followed by an illustration of a possible representation change for that task. In
the text below, we summarize Figure 2, organized around the four larger categories of link
prediction, link interpretation, node prediction, and node interpretation.

First, link prediction adds new links to the graph. The sample graph for this task
(Figure 2A) shows a link being predicted where the similarity between two nodes has been
used to predict a new link between them. Intuitively, Facebook users that share the values
of many non-relational features may also share the same political affiliation. Thus, adding
links between such people should increase autocorrelation and improve the accuracy of col-
lective classification. There are many simple link prediction algorithms based on similarity,
neighbor properties, shortest path distances, infinite sums over paths (i.e. random walks),
and other strategies. Section 3 provides more detail on these techniques.

Second, there are several types of link interpretation, which involves constructing
weights, labels, or features for the existing links. For instance, in many graphs (including
our Facebook data), not all links (or friendships) are of equal importance. Thus, Figure 2B
shows the result of performing link weighting. In this case, weights are based on the sim-
ilarity between the feature values of each pair of linked nodes, under the assumption that
high similarity may indicate stronger relationships. (Link prediction techniques may also
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Figure 2: Relational Representation Transformation Taxonomy: Link and node
transformation are formulated as symmetric tasks leading to four main trans-
formation tasks: predicting links, interpreting links, predicting nodes, and in-
terpreting nodes. Each task yields a modified graph component: Ẽ, X̃E , Ṽ , or
X̃V , respectively. Interpretation is further divided into weighting, labeling, or
constructing features. Examples of each of the tasks in relational representation
transformation are shown under the leaves of the taxonomy. In these example
graphs, nodes with similar shadings have similar feature values.
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use such similarity measures, but for identifying probable new links, rather than weighting
existing links.) Alternatively, link labeling may be used to assign some kind of discrete label
to each link. For instance, Figure 2C shows how links might be labeled as either “personal”
(p) or “work” (w) related, e.g., based on known feature values or an analysis of communi-
cation events between the linked users. On the other hand, links might instead be labeled
as having positive or negative influence (i.e., labeled as +/−). Finally, Figure 2D shows
how link feature construction can be used to add more general kinds of feature values to
each link. For instance, a link feature might count the number of communication events
that occurred between two people or the number of friends in common. Link weighting
and labeling could perhaps be viewed as special cases of link feature construction, but we
separate them because later sections will show how the most useful techniques for each task
differ. All three of these link interpretation tasks could help with our example classification
problem. In particular, a model learned to predict political affiliation might choose to place
special emphasis on links that are highly weighted or that are labeled as personal. Other
link features might be used to represent more complex dependencies, for instance model-
ing influence from a user’s “work” friendships, but only for friendship links between nodes
where there are a large number of friends in common. More details on these techniques are
provided in Section 4.

Third, node prediction adds additional nodes (and associated links) to the graph.
For instance, Figure 2E shows the result after relational clustering has been applied to
discover two latent groups in the graph, where each user is now connected to one latent
group node. A discovered node in Facebook might represent types of social processes,
influences, or a tightly knit group of friends. The clustering or other techniques used to
identify the new nodes could be designed to identify people that are particularly similar
with respect to a relevant characteristic, such as their political affiliation. The new nodes
and associated links could then be used in several ways. For instance, though not present
in the small example of Figure 2E, some nodes that were far away (in terms of shortest
path length) in the original graph may be much closer in the new graph. Thus, links to a
latent node may allow influence to propagate more effectively when an algorithm such as
CC is applied. Alternatively, identification of distinct latent groups may even enable more
efficient or accurate algorithms to be applied separately to each group (Neville & Jensen,
2005). Node prediction is discussed further in Section 5.

Finally, there are several types of node interpretation, which involves constructing
weights, labels, or feature values for existing nodes. For instance, as with links, some
nodes may be more influential than others and thus should have more weight. Figure 2F
demonstrates node weighting, where the weights might be assigned based on the numbers
of friends or via the PageRank/eigenvector techniques. See Section 6.1 for more details.
Alternatively, Figure 2G shows an example of node labeling. Here the graph represents
a training graph, and each node has been given an estimated label of conservative (C),
liberal (L), or moderate (M). Such labels might be estimated using only the non-relational
features or via textual analysis. While most classification algorithms learn a model based
on true labels in the training graph, some approaches instead first compute such estimated
labels, then learn a model from this new representation (Kou & Cohen, 2007). Section 6.2
discusses how this can simplify inference. Finally, Figure 2H shows the result of node feature
construction, where arbitrary feature values are added to each node. For instance, suppose
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we find that users with relatively few Facebook friends are often moderate while those with
many friends are often liberal. In this case, a feature counting the number of friends for each
node would be useful. To more directly exploit autocorrelation, a different feature might
count the proportion of a user’s friends that are conservative, or the most common political
affiliation of a user’s friends. Any feature that is correlated with political affiliation could
be used to improve the performance of a classification algorithm for our example problem.
Identifying and/or computing such features is essential to the performance of most SRL
algorithms but can be very challenging; Section 6.3 considers this process.

In Table 2.3, we summarize some of the most prominent techniques for performing
these tasks of link prediction, link interpretation, node prediction, and node interpretation.
Sections 3-6 provide more detail about each category in turn.

2.4 Relational Representation Transformation: Definitions and Terminology

We assume that the initial relational data is represented as a graph G = 〈V,E,XV ,XE〉
such that each vi ∈ V corresponds to node i and each edge eij ∈ E corresponds to a
(directed) link between nodes i and j. XV is a set of features about the nodes in V , and
XV
k ∈ XV is the kth such feature. Likewise, XE is a set of features about the links in

E, and XE
k ∈ VE is the kth such feature. The features XE could refer to link weights,

distances, or types, among other possibilities. The preceding notation lets us identify, for
instance, the values of a particular feature XV

k for all nodes. Alternatively, xv
i refers to a

vector containing all of the feature values for a particular node vi, and xe
ij contains all of

the feature values for a particular edge eij . Table 2.3 summarizes this notation.

Relational representation transformation is the process of transforming the original
graph G into some new graph G̃ = 〈Ṽ , Ẽ, X̃V , X̃E〉 by an arbitrary set of transforma-
tion techniques. During this process, nodes, links, weights, labels, and general features may
be added, and nodes and links may be removed. In theory, the transformation seeks to
optimize some objective function (for instance, to maximize the autocorrelation), although
in practice the objective function may not be completely specified or guaranteed to be im-
proved by the transformation. We now define more specifically the four primary parts of
relational representation transformation:

Definition 2.1 (Link Prediction) Given the nodes V , observed links E and/or the feature
set X = (XE ,XV ), the link prediction task is defined as the creation of a modified link set
Ẽ such that E 6= Ẽ. Usually, this involves adding new links that were not present in E,
but links may also be deleted.

Definition 2.2 (Link Interpretation) Given the nodes V , observed links E and/or the
feature set X = (XE ,XV ), the link interpretation task is defined as the creation of a new
link feature X̃E

k where X̃E
k /∈ XE . This task may estimate a feature value for every link.

Alternatively, the values of X̃E
k may be only partially estimated, for example, if the original

features have missing values or if additional links are also introduced during link prediction.

Definition 2.3 (Node Prediction) Given the nodes V , links E and/or the feature set
X = (XE ,XV ), node transformation is defined as the creation of a modified node set Ṽ
such that V ⊂ Ṽ . In addition, many node prediction tasks simultaneously create new links,
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Relational Representation Transformation

Links Nodes

Prediction

? Adamic/Adar (Adamic &
Adar, 2001), Katz (Katz, 1953),
and others (Liben-Nowell &
Kleinberg, 2007)

? Spectral Clustering (Neville
& Jensen, 2005), Mixed-
Membership Relational
Clustering (Long et al., 2007)

? Text or Feature Similarity
(Macskassy, 2007)

? LDA (Blei, Ng, & Jordan, 2003),
PLSA (Hofmann, 1999),

? Classification via RMN
(Taskar et al., 2003) or SVM
(Hasan, Chaoji, Salem, & Zaki,
2006)

? Hierarchical Clustering via
Edge-betweenness (Newman &
Girvan, 2004)

Weighting

? Latent Variable Estima-
tion (Xiang, Neville, & Rogati,
2010)

? Betweenness (Freeman, 1977),
Closeness (Sabidussi, 1966)

? Linear Combination of Fea-
tures (Gilbert & Karahalios,
2009)

? HITs (Kleinberg, 1999), Prob.
HITs (Cohn & Chang, 2000),
SimRank (Jeh & Widom, 2002)

? Aggregating Intrinsic In-
formation (Onnela, Saramaki,
Hyvonen, Szabo, Lazer, Kaski,
Kertesz, & Barabasi, 2007)

? PageRank (Page, Brin, Mot-
wani, & Winograd, 1999), Topi-
cal PageRank (Haveliwala, 2003;
Richardson & Domingos, 2002)

Labeling

? LDA (Blei et al., 2003), PLSA
(Hofmann, 1999),

? LDA (Blei et al., 2003), PLSA
(Hofmann, 1999),

? Link Classification via Logis-
tic Regression (Leskovec, Hut-
tenlocher, & Kleinberg, 2010),
Bagged Decision Trees (Ka-
handa & Neville, 2009),

? Node Classification via
Stacked Model (Kou & Co-
hen, 2007) or RN (Macskassy &
Provost, 2003)

Feature

? Link Feature Similarity
(Rossi & Neville, 2010)

? MLN Structure Learning (Kok
& Domingos, 2009, 2010)

Construction

? Link Aggregations (Kahanda
& Neville, 2009)

? Database Query Search
(Popescul et al., 2003b), RPT
(Neville, Jensen, Friedland, et al.,
2003)

? Graph Features (Lichtenwal-
ter, Lussier, & Chawla, 2010)

? FOIL, nFOIL (Landwehr, Kerst-
ing, & De Raedt, 2005), kFOIL
(Landwehr, Passerini, De Raedt,
& Frasconi, 2010), Aleph (Srini-
vasan, 1999),

Table 1: Summary of Techniques: A summary of prominent graph transformation tech-
niques for the tasks of predicting the existence of nodes and links and interpreting
them by weighting, labeling, and constructing general features.
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Symbol Description

G Initial graph

G̃ Transformed graph

E Initial link set

V Initial node set

XE Initial set of link features

XV Initial set of node features

XE
k Initial link feature k (XE

k ∈XE) (for one feature, values for all links)

XV
k Initial node feature k (XV

k ∈XV ) (for one feature, values for all nodes)

xe
ij Initial feature vector for eij (for one link, values for all link features)

xv
i Initial feature vector for vi (for one node, values for all node features)

Other symbols Description

A Adjacency matrix of the graph

Γ(vi) Neighbors of vi

δ Cut-off value

Table 2: Summary of Notation used in this Survey: The top half of the table shows
symbols that are sometimes written with a tilde on top of the symbol, indicating
the result of some transformation. For conciseness, the table demonstrates this
notation only for G and G̃.

e.g., between an initial node vi ∈ V and a predicted node ṽj ∈ Ṽ . Thus, this task may also
produce a modified link set Ẽ.

Definition 2.4 (Node Interpretation) Given the nodes V , observed links E and/or the
feature set X = (XE ,XV ), the node interpretation task is defined as the creation of a new
node feature X̃V

k where X̃V
k /∈ XV . As with link interpretation, the values of X̃V

k may be
estimated for only some of the nodes. The node feature X̃V

k could represent node weights,
labels, or other general features.

Section 2.2 introduced the notion of a non-relational feature, which is a node feature
X̃V
k that can be constructed without making use of the links (i.e., without using E or XE).

Such features are sometimes referred to in other articles as attributes or intrinsic features.
Other important terms can also be referred to in multiple different ways. To aid the reader,
Table 2.4 summarizes the key synonyms for the terms that are found most often in the
literature.

3. Link Prediction

This section focuses on predicting the existence of links while Section 4 considers link
interpretation. Given the initial graph G = 〈V,E,XV ,XE〉, we are interested in creating
a modified link set Ẽ, usually through the prediction of new links that were not present
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Term Potential synonyms

Nodes Vertices, points, objects, entities, individuals, users, constants, ...

Links Edges, relationships, ties, arcs, events, interactions, predicates

Topology Link/network/graph structure, relational information

Features Attributes, variables, co-variates, queries, predicates, ...

Graph Measures Topology-based metrics (such as proximity, centrality, betweenness, ...)

Similarity Distance (the inverse of similarity), likeness

Clusters Classes, communities, groups, roles, topics

Non-relational Features Intrinsic attributes/features, local attributes/features, ...

Relational Features Features, link-based features, graph features, aggregates, queries, ...

Structure Learning Feature generation/construction, hypothesis learning

Parameter Learning Model selection, function learning

Table 3: Synonyms in the Literature: A summary of possible synonyms found in the
literature for important terms related to relational data.

in E. This task can be motivated in several ways. For instance, there may be a need
to predict missing links that are not present in E because of incomplete data collection
or other problems. Similarly, we may be interested in predicting hidden links, where we
assume that there exists some unobservable interactions and the goal is to discover and
model these interactions. For example, in a network representing criminals or terrorist
activity, we may seek to predict a link between two people (nodes) that are not directly
connected but whose actions share some common motivation or cause. For both missing
and hidden links, predicting such links may improve the accuracy of a subsequent learned
model. Alternatively, we may seek to predict future links in an evolving network, such as
new friendships or connections that will be formed next year. We might also be interested in
predicting links between objects that are spatially related. Finally, we may wish to predict
beneficial links, for instance, predicting pairs of individuals that are likely to be successful
working together.

Figure 3 summarizes one general approach that is often used for these link prediction
tasks. In summary, scores or weights are computed for every pair of nodes in the graph, as
shown in Figure 3(b). Predicted links with a weight greater than some threshold δ, along
with the original links, are used to create the new link set Ẽ+ (shown in Figure 3(e)). (At
this step, original links with very low weight could also be deleted if appropriate.) As a
final step, the weights of the predicted links are often discarded, yielding a new graph with
uniform link weights as shown in Figure 3(f).

The key challenge in this approach is how to compute a weight or score for each possible
link. The information used for this computation provides a natural way to categorize
the link prediction techniques. Below, Section 3.1 describes techniques that use only the
non-relational features of the nodes (ignoring the initial links), while Section 3.2 describes
“topology-based” techniques that use only the graph structure (i.e., the links or relations).
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(a) Initial Graph G = 〈E, V 〉 (b) Weighted Links wij ∈ Ẽ (c) Predicted Links (Ẽ − E)

(d) Pruning Predicted Links
(Ẽ>δ)

(e) Ẽ+ := Ẽ>δ + E (f) Ẽ+ with Uniform Link
Weights

Figure 3: Example Demonstrating a General Approach to Link Prediction:
The initial graph (a) is used as input to a link predictor, yielding a complete
graph (b) where the weights wij are estimated between all pairs of nodes. The
next step shows the removal of the initial (observed) links from consideration (c),
followed by a pruning of all predicted links with a weight below some cut-off value
δ (d). The remaining predicted links are then combined with the initial links (e).
Often, the estimated weights on the initial and predicted links are then discarded,
leaving a uniform weight graph (f).

Finally, Section 3.3 describes hybrid techniques that exploit both the node features and the
graph structure.

3.1 Non-relational (Feature-Based) Link Prediction

In this section, we consider link predictors that do not exploit the graph structure or rela-
tional features derived using the graph structure. We are given an arbitrary pair of nodes
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vi and vj from the graph such that each node is represented by a feature vector xv
i and

xv
j , respectively. Feature-based link prediction is defined as using an arbitrary similarity

measure S(xvi , x
v
j ) as a means to estimate the likelihood that a link should exist between vi

and vj . Typically, a link is created if the similarity exceeds some fixed cut-off value; another
strategy is to predict links among the n% of all such node pairs with highest similarity.

A traditional approach is to simply define a measure of similarity between two objects,
possibly based on knowledge of the application and/or problem-domain. There are many
similarity metrics that have been proposed such as mutual information, cosine similarity,
and many others (Lin, 1998). For instance, Macskassy (2007) represents the textual content
of each node as a feature vector and uses cosine similarity to create new links between nodes
in a graph. Macskassy showed that the combination of the initial links with the predicted
text-based links increased classification accuracy compared to using only the initial links
or the text-based links. In addition to leveraging textual information to predict links, we
might use any arbitrary set of features combined with a proper measure of similarity for
link prediction. For instance, many recommender systems implicitly predict a link between
two users based on the similarity between their ratings of items such as movies or books
(Adomavicius & Tuzhilin, 2005; Resnick & Varian, 1997). In this case, cosine similarity or
correlation are commonly used as similarity metrics.

Alternatively, a similarity measure can be learned for predicting link existence. The link
prediction problem can be transformed into a standard supervised classification problem
where a binary classifier is trained to determine the similarity between two nodes based on
their feature vectors. One such approach from the work of Hasan et al. (2006), who have used
Support Vector Machines (SVMs) for link prediction and found that a non-relational feature
(keyword match count) was most useful for predicting links in a bibliographic network.
There are many link prediction approaches (Taskar et al., 2003; Getoor, Friedman, Koller,
& Taskar, 2003) that apply traditional machine learning algorithms. However, most of them
use features based on the graph structure as well as the non-relational features that are the
focus of this section. Thus, we discuss such techniques further in Section 3.3.

Finally, variants of topic models can be used for link prediction. These types of models
traditionally use only the text from documents (non-relational information) to infer a mix-
ture of latent topics for each document. Inter-document topic similarity can then be used as
a similarity metric for link prediction (Chang & Blei, 2009). However, because many topic
models are capable of performing joint transformation of the nodes and links, we defer full
discussion of such techniques to Section 7.

3.2 Topology-Based Link Prediction

Topology-based link prediction uses the local relational neighborhood and/or the global
graph structure to predict the existence of unobserved links. Table 3.2 summarizes some
of the most common metrics that have been used for this task. Below, we discuss many of
these approaches, starting from the simplest local metrics and moving to the more complex
techniques based on global measures and/or supervised learning. For a systematic study of
many of these approaches applied to social network data, see the work of Liben-Nowell and
Kleinberg (2007).
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Local Node Metrics Description

Common Neighbors Number of common neighbors between x and y, w(x, y) = |Γ(x)∩Γ(y)| (Newman,
2001a)

Jaccard’s Coefficient Probability that x and y share common neighbors (normalized), w(x, y) =
|Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)| (Jaccard, 1901; Salton & McGill, 1983)

Adamic/Adar Similar to common neighbors, but assigns more weight to rare neighbors,
w(x, y) =

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| (Adamic & Adar, 2001)

RA Essentially equivalent to Adamic/Adar if |Γ(z)| is small,

w(x, y) =
∑
z∈Γ(x)∩Γ(y)

1
|Γ(z)| (Zhou, Lü, & Zhang, 2009)

Preferential Attachment Probability of a link between x and y is the product of the degree of x and y,
w(x, y) = |Γ(x)| · |Γ(y)| (Barabási & Albert, 1999)

Cosine Similarity w(x, y) =
|Γ(x)∩Γ(y)|√
|Γ(x)|·|Γ(y)|

(Salton & McGill, 1983)

Sorensen Index w(x, y) =
2×|Γ(x)∩Γ(y)|
|Γ(x)|+|Γ(y)| (Green, 1972; Zhou et al., 2009)

Hub Index Nodes with large degree are likely to be assigned a higher score,

w(x, y) =
|Γ(x)∩Γ(y)|

min{|Γ(x)|,|Γ(y)|} (Ravasz, Somera, Mongru, Oltvai, & Barabási, 2002)

Hub Depressed Index Analogous to Hub Index, w(x, y) =
|Γ(x)∩Γ(y)|

max{|Γ(x)|,|Γ(y)|} (Ravasz et al., 2002)

Leicht-Holme-Newman Assigns large weight to pairs that have many common neighbors, normalized

by the expected number of common neighbors, w(x, y) =
|Γ(x)∩Γ(y)|
|Γ(x)|·|Γ(y)| (Leicht,

Holme, & Newman, 2006)

Global Graph Metrics Description

Graph Distance Length of the shortest path between x and y

Katz Number of all paths between x and y, exponentially damped by length thereby
assigning more weight to shorter paths, w(x, y) = [(I− αA)−1]xy (Katz, 1953)

Hitting time Number of steps required for a random walk starting at x to reach y (Brightwell
& Winkler, 1990)

Commute Time Expected number of steps to reach node y when starting from x and then returning
back to x, defined as w(x, y) = L+

xx+L+
yy−2L+

xy where L is the Laplacian matrix
(Göbel & Jagers, 1974)

Rooted PageRank Similar to Hitting time, but at each step there is some probability that the random
walk will reset to the starting node x, w(x, y) = [(I−αP)−1]xy where P = D−1A
(Page et al., 1999)

SimRank x and y are similar to the extent that they are joined with similar neighbors,

w(x, y) =

∑
u∈Γ(x)

∑
v∈Γ(y) sim(u,v)

|Γ(x)|·|Γ(y)| (Jeh & Widom, 2002)

K-walks Number of walks of length k from x to y, defined as w(x, y) = [Ak]xy

Meta-Approaches Description

Low-rank Approximation Compute the rank-k matrix Ak that best approximates A (hopefully reducing
“noise”), then compute similarity over Ak using some local or global metric
(Eckart & Young, 1936; Golub & Reinsch, 1970)

Unseen Bigrams Compute initial scores using some local or global metric, then augment the scores
w(x, y) using values from w(z, y) for nodes z that are similar to x (Essen &
Steinbiss, 1992; Lee, 1999)

Clustering Compute initial scores using some local or global metric, discard links with the
lowest scores, and then re-compute the scores on the modified graph (Johnson,
1967; Hartigan & Wong, 1979)

Table 4: Topology Metrics: Summary of the most common metrics for link prediction.
Notation: Let Γ(x) be the neighbors of x and A be the adjacency matrix of G.
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3.2.1 Metrics Based on the Local Neighborhood of Nodes

The simplest approaches use only the local neighborhood of nodes in a graph to devise a
measure of topology similarity, then use pairwise similarities between nodes to predict the
most likely links. As shown in Table 3.2, there are numerous such metrics, often based
on the number of neighbors that two nodes share in common, with varying strategies for
normalization.

Zhou et al. (2009) compares nine such local similarity measures on six datasets and finds
that the simplest link predictor, common neighbors, performs the best overall. They also
propose a new metric, RA, that outperforms the initial nine metrics on two of the datasets.
This new metric is very similar to the Adamic/Adar metric, but uses a different normal-
ization factor that yields better performance in networks with higher average degree. They
also propose a method that uses additional two-hop information to avoid degenerate cases
where links are assigned the same similarity score. Their results highlight the importance
of selecting the appropriate metrics for specific problems and datasets. In another related
investigation, Clauset, Moore, and Newman (2008) evaluate a hierarchical random graph
predictor against local topology metrics such as common neighbors, Jaccard’s coefficient and
the degree product on three types of networks: a metabolic, ecology and a social network.
They find that a baseline measure based on shortest paths performs best for the metabolic
network, where the relationships are more homogeneous, but that their hierarchical metric
performs best when the links create more complex relationships, as in the predator-prey
relationships found in the ecology network.

Liu and Lü (2010) proposed a local random-walk algorithm as an efficient alternative to
the global random-walk predictors for large networks. This method is evaluated alongside
other metrics (i.e., common neighbors, local paths, RA, and a few random-walk variants)
and shown to perform better on most of the networks and more efficiently than the global
random-walk models.

3.2.2 Metrics Based on the Global Graph Structure

More sophisticated similarity metrics are based on global graph properties, often involving
some weighted computation based on the number of paths between a pair of nodes. For
instance, the Katz measure (1953) counts the number of paths between a pair of nodes,
where shorter paths count more in the computation. Rattigan and Jensen (2005) demon-
strated that even this fairly simple metric could be effective for the task of “anomalous link
prediction”, which is the identification of statistically unlikely links from among the links
in the initial graph.

A related measure is the “hitting time” metric, which is the average number of steps
required for a random walk starting at node x to reach node y. Gallagher et al. (2008)
use such random walks with restart to estimate the similarity between every pair of nodes.
They focus on sparsely labeled networks where unlabeled nodes may have only a few labeled
nodes to support learning and/or inference in relational classification. The prediction of
new links improves the flow of information from labeled to unlabeled nodes, leading to an
increase in classification accuracy of up to 15%. Note that adding teleportation probabilities
to this random walk approach roughly yields the PageRank algorithm which is said to be
at the heart of the Google search engine (Page et al., 1999).
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The SimRank metric (Jeh & Widom, 2002) proposes that two nodes x and y are similar
if they are linked to neighbors that are similar. Interestingly, they show that this approach
is equivalent to a metric based on the time required for two backwards, random walks
starting from x and y to arrive at the same node. As with the other approaches based
on random walks, this metric could be computed via repeated simulations, but is more
efficiently computed via a recursive set-point approach.

3.2.3 Meta-approaches and Supervised Learning Approaches

The metrics above can be modified or combined in multiple ways. Liben-Nowell and Klein-
berg (2007) consider several such “meta-approaches” that use some local or global similarity
metric as a subroutine. For instance, the metrics discussed above can each be defined in
terms of an arbitrary adjacency matrix A. Given this formulation, we can imagine first
computing a low-rank approximation Ak of this matrix using a technique such as singular
value decomposition (SVD), and then computing a local or global graph metric using the
modified Ak. The idea is that Ak retains the key structure of the original matrix, but noise
has been reduced. Liben-Nowell and Kleinberg also propose two other meta-approaches
based on removing spurious links suggested by a first round of similarity computation (the
“clustering” approach) or based on augmenting similarity scores for a node x based on the
scores for other nodes that are similar to x (the “unseen bigrams” approach). They com-
pare the performance of these three meta-approaches vs. multiple local and global metrics
on the task of predicting future links in a social network. The Katz measure and meta-
approaches based on clustering and low-rank approximation perform the best on three of the
five arXiv datasets, but simple local measures such as common neighbors and Adamic/Adar
also perform surprisingly well.

Supervised learning methods can also be used to combine or augment the similarity
metrics that we have discussed. For instance, Lichtenwalter et al. (2010) investigate several
supervised methods for link prediction in sparsely labeled networks, using many of the met-
rics from Table 3.2. These metrics are used as features in simple classifiers such as C4.5,
J48, and naive Bayes. They find the supervised approach leads to a 30% improvement in
AUC over the simple unsupervised link prediction metrics. Similarly, Kashima and Abe
(2006) propose a supervised probabilistic model that assumes that a biological network
has evolved over time, and uses only topological features to estimate the model parame-
ters. They evaluate the proposed method on protein-protein and metabolic networks and
report increased precision compared to simpler metrics such as Adamic/Adar, Preferential
Attachment, and Katz.

3.2.4 Discussion

In general, the local topology metrics sacrifice an amount of accuracy for computational
gains while the global graph metrics may perform better but are costly to estimate and
infeasible on huge networks. Where appropriate, supervised methods that combine multiple
local metrics may offer a promising alternative. The next subsection discusses additional
work on link prediction that has used supervised methods.

Link prediction using these metrics is especially sensitive to the characteristics of the
domain and application. For instance, many networks in biology, where the identification of
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links is costly, contain missing or incomplete links, while the removal of insignificant links is
a more significant issue for social networks. For that reason, researchers have analyzed and
proposed many different metrics when working in the domains of web analysis (Kleinberg,
1999; Broder et al., 2000), social network analysis (Zheleva, Getoor, Golbeck, & Kuter,
2010; Xiang et al., 2010; Koren, North, & Volinsky, 2007), citation analysis (Borgman &
Furner, 2002), ecology communities (Zhou et al., 2009), biological networks (Jeong et al.,
2000), and many others (Barabási & Crandall, 2003; Newman, 2003).

3.3 Hybrid Link Prediction

In this subsection, we examine approaches that perform link prediction using both the
attributes and the graph topology. For such approaches, there are two key questions. First,
what kinds of features should be used? Second, how is the information from multiple
features combined into a single measure or probability to be used for prediction?

We first consider the mix of non-relational and relational features that should be used.
As expected, the best features vary based on the domain and specific network. For instance,
Taskar et al. (2003) studied link prediction for a network of web pages and found that simple
local topology metrics (which they called transitivity and similarity) were more important
than non-relational features based on the words presents in the pages. Similarly, Hasan
et al. (2006) found that another topology metric (shortest distance) was the most useful for
predicting co-authorship links in a bibliographic network based on DBLP.

If only a single metric/feature, such as “hitting time,” will be used for link prediction,
then we must ensure that the metric works well for all nodes and yields a consistent ranking.
However, if multiple feature values will be combined in some way, then it may be more
acceptable to use a wider range of features, especially if a supervised learner will later select
or weight the most important features based on the training data. Thus, hybrid systems
for link prediction tend to have a more diverse feature set. For instance, Zheleva et al.
(2010) propose new features based on combining two different kinds of networks (social
and affiliation networks). Features based on the groups and topology are constructed from
the combined network and are used along with descriptive non-relational features, yielding
an improvement of 15-30% compared to a system without the combined-network features.
A second example of more complex features is provided by Ben-Hur and Noble (2005),
who design a new pairwise kernel for predicting links between proteins (protein-protein
interactions). The pairwise kernel is a tensor-product of two linear kernels on the original
feature space, and is especially useful in domains where two nodes might have only a few
common features. This approach has also been applied for user preference prediction and
recommender systems (Basilico & Hofmann, 2004). Vert and Yamanishi (2005) propose
a related approach, where supervised learning is used to create a mapping of the original
nodes into a new euclidean space where simple distance metrics can then be used for link
prediction.

Given the great diversity of possible features for link prediction, an interesting approach
is a system that automatically searches for relevant features to use. For example, Popescul,
Popescul, and Ungar (2003a) propose a unique link prediction approach that systematically
generates and searches over a space of relational features to learn potential link predic-
tors. They use logistic regression for link prediction and consider the search space covering
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equi-joins, equality selections, and aggregation operations. In their approach, the model se-
lection algorithm continues to add one feature at a time to the model as long the Bayesian
Information Criterion (BIC) score over the training set can be improved. They find that the
search algorithm discovers a number of useful topology-based features, such as co-citation
and bibliographic coupling, as well as more complex features. However, the complexity of
searching a large feature space and avoiding overfitting present challenges.

We next consider the second key question: how should the information from multiple
features be combined into a single measure to be used for link prediction? Most prior
work has taken a supervised learning approach, where both non-relational and topology-
based metrics are used as features that describe each possible link. As with the supervised
techniques discussed in Section 3.2, a model is learned from training data which can then
be used to predict unseen links.

Most of these supervised approaches apply the classifier separately to each possible link,
using a classifier such as a support vector machine, decision tree, or logistic regression
(Popescul et al., 2003a; Ben-Hur & Noble, 2005; Hasan et al., 2006). In these approaches,
a “flat” feature representation for each link is created, and the prediction made for each
possible link is independent of the other predictions.

In contrast, early work on Relational Bayesian Networks (RBNs) (Getoor et al., 2003)
and Relational Markov Networks (RMNs) (Taskar et al., 2003) involved a joint inference
computation for link prediction, where each prediction could be influenced by nearby link
predictions (and sometimes also by newly predicted node labels). Using a webpage network
and a social network, Taskar et al. demonstrated that joint inference using belief propaga-
tion could improve accuracy compared to the independent inference approach. However, this
approach is computationally intensive, and they noted that getting the belief propagation
algorithm to converge was a significant problem. A possible solution to this computational
challenge is the simpler approach presented by Bilgic, Namata, and Getoor (2007). Their
method involved repeatedly predicting labels for each node, predicting links between the
nodes using all available features (including predicted labels), then re-predicting the labels
with the new links, and so forth. The link prediction was based on an independent inference
step using logistic regression, as with the simpler approaches discussed above. However, the
repeated application of this step allows the possibility of link feature values changing in
between iterations based on the intermediate predictions, thus allowing link predictions to
influence each other.

Recently, Backstrom and Leskovec (2011) proposed a novel approach that is supervised,
but where the final predictions are based on a random walk rather than directly on the
output of some learned classifier. Given a particular target node v in a social network,
along with nodes that are known to link to v, they study how to predict which other
links from v are likely to arise in the future (or should be recommended). They define
a few simple link features based on node profile similarity and messaging behavior, then
use these features to estimate initial link weights. They show how to learn these weights
(or transition probabilities) in a manner that optimizes the likelihood that a subsequent
random walk, starting at v, will arrive at nodes already known to link to v. Because the
random walk is thus guided by the links that are already known to exist, they call this
process a “supervised random walk.” They argue that this learning process greatly reduces
the need to manually specify complex graph-based features, and show that it outperforms
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other supervised approaches as well as unsupervised approaches such as the Adamic/Adar
measure.

A final approach for link prediction is to use some kind of unsupervised dimensionality
reduction that yields a new matrix that in some way reveals possible new links. For instance,
Hoff, Raftery, and Handcock (2002) propose a latent space approach where the initial link
information is projected into a low-dimensional space. Link existence can then be predicted
based on the spatial representation of the nodes in the new latent space. These models
perform a kind of factorization of the link adjacency matrix and thus are often referred to
as matrix factorization techniques. An advantage of such models is that the spatial repre-
sentation enables simpler visualization and human interpretation. Related approaches have
also been proposed for temporal networks (Sarkar & Moore, 2005), for mixed-membership
models (Nowicki & Snijders, 2001; Airoldi, Blei, Fienberg, & Xing, 2008), and for situations
where the latent vector representing each node is usefully constrained to be binary (Miller,
Griffiths, & Jordan, 2009). Typically, these models have the capability of including the
attributes as covariates that affect the link prediction but are not directly part of the latent
space representation. However, Zhu, Yu, Chi, and Gong (2007) demonstrated how such at-
tributes can also be represented in a related but distinct latent space. More recently, Menon
and Elkan (2011) showed how a matrix factorization technique for link prediction can scale
to much larger graphs by training with stochastic gradient descent instead of MCMC.

3.4 Discussion

Link prediction remains a challenge, in part because of the very large number of possible
links (i.e., N2 possible links given N observed nodes), and because of widely varying data
characteristics. Depending on the domain, the best approach may use only a single non-
relational metric or topology metric, or it may use a richer set of features that are evaluated
by some learned model. Future work may also wish to consider using an ensemble of link
predictors to yield even better accuracy.

Our discussion of link prediction has focused on predicting new links based on existing
links and properties of the nodes. In the context of the web, however, “link prediction”
has sometimes taken other forms. For instance, Sarukkai (2000) used web server traces to
predict the next page that a user will visit, given their recent browsing history. In particular,
they use Markov chains, which are related to the random walks discussed in Section 3.2,
for this task that they also call “link prediction.” More recently, DuBois and Smyth (2010)
model relational events (i.e., links) using latent classes where each event/link arises from
a latent class and the properties of the event (i.e. sender, receiver, and type) are chosen
from distributions over the nodes conditioned on the assigned class. In this work, the local
community of a node influences the distribution computed for each node, in a way related
to the computations of stochastic block modeling (Airoldi et al., 2008). DuBois & Smyth’s
task is also a form of link prediction, but where the goal is not to predict the presence or
absence of a static link, but the frequency of occurrence for each possible event/link.

One might also be interested in deleting or pruning away noisy, less informative links.
For instance, friendship links in Facebook are usually extremely noisy since the cost of
adding friendship links is insignificant. Most of the techniques used in this section could
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also be used to remove existing links wherever the link prediction algorithm yields a very
low score (or weight) for an observed link in the original graph.

Indeed, since most link prediction algorithms effectively assign a score to every possible
link, they could also be used to assign a weight to just the set of initial links in G. This
“link weighting” is one of the three subtasks of link interpretation shown in the taxonomy
of Figure 2. However, in practice if weights are needed only for the initial links, different
features and algorithms will often be possible and/or more effective. The next section
discusses such link weighting algorithms, as well as link interpretation in general. Also,
in Section 7 we discuss some additional methods for link prediction that seek to jointly
transform both nodes and links.

4. Link Interpretation

Link interpretation is the process of constructing weights, labels, or general features for the
links. These three tasks of link interpretation are related and somewhat overlapping. First,
link weighting is the task of assigning some weight to each link. These weights may represent
the relevance or importance of each link, and are typically expressed as continuous values.
Thus the weights provide an explicit order over the links. Second, link labeling is similar,
except that it usually assigns discrete values to each link. This could represent a positive
or negative relationship, or could be used, for instance, to assign one of five topics to email
communication flows. Finally, link feature construction is the process of generating a set of
discrete or continuous features for the links. For instance, these features might count the
frequency of particular words that appeared in messages between the two nodes connected
by some link, or simply count the number of such messages.

In a sense, link feature construction subsumes link weighting and labeling, since the
weights and labels can be viewed simply as possible link features to be discovered. How-
ever, for many tasks it makes sense to compute one particular feature that summarizes the
relevance of each link (the weight) and/or one particular feature that summarizes the type
of each link (the label). Such weights and labels may be especially useful to later process-
ing, for example with collective classification. Moreover, the techniques used for general
feature construction tend toward simpler approaches such as aggregation and discretiza-
tion, whereas the best techniques for computing weights and labels may involve much more
complexity, including global path computations or supervised learning. For this reason, we
treat link weighting (Section 4.1) and link labeling (Section 4.2) separately from general
link feature construction (Section 4.3).

4.1 Link Weighting

Given the initial graph G = 〈V,E,XV ,XE〉, the task is to assign a continuous value (the
weight) to each existing link in G, representing the importance or influence of that link. As
previously discussed, link weighting could potentially be accomplished by applying some link
prediction technique and simply retaining the computed scores as link weights. For instance,
Lassez, Rossi, and Jeev (2008) perform link prediction and weighting by applying singular
value decomposition to the adjacency matrix, then retaining only the k most significant
singular-vectors (similar to the low-rank approximation techniques discussed in Section 3.2).
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They show that querying (e.g., with PageRank) on the resultant weighted graph can yield
more relevant results compared to an unweighted graph.

Unlike with link prediction, however, most link weighting techniques are designed to
work only with links that already exist in the graph. These techniques don’t work for
predicting unseen links because they weight links based on known properties/features of
the existing links, or because they compute some additional link features that only yield
sensible results for links that already exist.

In the simplest case, link weighting can be just aggregating an intrinsic property of links.
For example, Onnela et al. (2007) defines link weights based on the aggregated duration of
phone calls between individuals in a mobile communication network. In other cases, simply
counting the number of interactions between two nodes may be appropriate.

Thus, when link features like duration, direction, or frequency are known, they can be
aggregated in some way to generate link weights. If actual link weights are already known
for some of the links, then supervised methods can be used for weight prediction, using
the known weights as training data. For instance, Kahanda and Neville (2009) predict link
strength within a Facebook dataset, where stronger relationships are identified based on
a user’s explicit identification of their “top friends” via a popular Facebook application.
Gilbert and Karahalios (2009) also predict link strength for Facebook, but form their train-
ing data from survey data collected from 35 participants (yielding strength ratings for about
2000 links). Both of these algorithms generate a large number (50-70) of features about
each link in the network, then learn a predictive model via regression or some other tech-
nique such as bagged decision trees, which Kahanda and Neville finds performs best among
several alternatives. Gilbert and Karahalios generate features based on profile similarity
(e.g., do two users have similar education levels?) and based on user interactions (e.g.,
how frequently and about what topics do two users communicate?). They find the inter-
action features to be most helpful, especially a feature based on the number of days since
the last communication event. Kahanda and Neville use similar kinds of features, which
they term attribute-based and transactional features, and also add topological features (such
as the Adamic/Adar discussed in Section 3.2) and network-transactional (NTR) features.
NTR features are those that are based on communications between users (e.g., the number
of email messages exchanged) but moderated in some way by the larger network context.
This moderation often takes the form of normalization, for instance to dampen the influence
of a node that has sent a large number of messages to many different friends. They find
that these NTR features are by far the most helpful for prediction, but that many other
features also contribute to the overall predictive accuracy.

When training data with sample link weights is not available, approaches based on a
parameterized probabilistic model are still possible. However, since candidate link features
can no longer be evaluated against the training data, these approaches must (manually)
choose the features that they use much more carefully. For instance, Xiang et al. (2010)
examine link weight prediction on two social network datasets (Facebook and LinkedIn), but
use only 5-11 features for each link. They hypothesize that relationship strength is a hidden
cause of user interactions, and propose a link-based latent variable model to capture this
dependence. For inference, they use a coordinate ascent optimization procedure to predict
the strength of each link. Since the actual strength of each link is not known, prediction
tasks in this domain cannot directly evaluate accuracy. However, Xiang et al. demonstrate
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that using the link strengths produced by their method leads to higher autocorrelation and
higher collective classification accuracy when predicting user attributes such as gender or
relationship status.

A number of researchers have considered the importance of recency in evaluating link
weight, under the assumption that events or interactions that occurred more recently should
have more weight. For instance, Roth et al. (2010) propose the “Interactions Rank” metric
for weighting a link based on the messages between two nodes. The formula separately
weights incoming and outgoing messages for each link, and imposes an exponential decay
on the importance of each message based on how old it is. Roth et al. use this metric to
weight the links in what they call the “implicit social network,” where each node represents
a group of users. They demonstrate that this metric can be used to accurately predict users
that are missing from an email distribution list. However, the basic metric is simple to
compute and could be applied to many other tasks.

The Interactions Rank metric weights a link more heavily if it connects two nodes that
have frequently and/or recently communicated. Alternatively, Sharan and Neville (2008)
have considered how to weight links in a graph where the links (such as hyperlinks or
friendships) may themselves appear or disappear over time. In particular, they construct a
summarized graph where all nodes and links that have ever existed in the past are present.
Each link in this new graph is weighted based on a kernel function that can provide more
weight to links that have been present more often or more recently in the past. They explain
how to modify standard relational classifiers to use these weighted links, and demonstrate
that a variety of kernels (including exponential and linear decay kernels) produce weighted
links that yield higher classification accuracy compared to a non-weighted graph. More
recently, Rossi and Neville (2012) have extended this work to handle time-varying attribute
values, which may serve as a basis for incorporating temporal dynamics into additional
tasks.

4.2 Link Labeling

Given the initial graph G = 〈V,E,XV ,XE〉, the task is to construct some discrete label for
one or more links in G. These labels can be used to describe the type of relationship that
each link represents. For instance, in the Facebook example, a link labeling algorithm may
create labels representing “work” or “personal” relationships. Such labels would enable
subsequent classification models to separately account for the influence of these different
kinds of relationships.

Most prior work on link labeling has assumed that some text (such as a message) de-
scribes each link, and has been based on unsupervised textual analysis techniques such
as Latent Dirichlet Allocation (LDA) (Blei et al., 2003), Latent Semantic Analysis (LSA)
(Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990), or Probabilistic Latent Se-
mantic Analysis (PLSA) (Hofmann, 1999). Traditionally, these techniques have been used
to assign one or more “latent topics” to each document in a collection of documents. The
“topics” that are formed are defined implicitly by a probability distribution over how likely
each word is to appear, given that the topic is associated with a document. These topics
will not always be semantically meaningful, but often manual inspection reveals that most
prominent topics do represent sensible concepts such as “advertising” or “government re-
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lations.” However, even when such semantic associations are not obvious, inferring such
topics for a set of links can still aid further analysis, since the topics identify which links
represent similar kinds of relationships.

These textual analysis techniques were developed with independent documents in mind,
not inter-linked nodes, but they can be adapted to label links in several ways. For instance,
Rossi and Neville (2010) examined messages between developers contributing to an open-
source software project. They treat each message as a separate document, and use LDA to
infer the single most likely latent topic for each message (i.e., a link label). This technique
could be used for any graph with textual content associated with the links. Rossi and Neville
also go further, to consider the impact of time-varying topics and time-varying topic/word
associations, by running multiple iterations of LDA, one per time epoch. Using this model,
they study the problem of predicting the effectiveness of different developers (nodes) in the
network. They demonstrate that the accuracy of predictions is significantly improved by
modeling the temporal evolution of the communication topics.

McCallum, Wang, and Corrada-Emmanuel (2007) describe an alternative way of ex-
tending LDA-like approaches for link labeling. LDA is essentially a Bayesian network that
models the probabilistic dependencies between documents, associated topics, and words as-
sociated with those topics. They propose to extend this model with the Author-Recipient-
Topic (ART) model, where the choice of topic for each document (message) depends on
both the author and the recipient of the message. Once parameters are learned for the
model, inference (e.g., with Gibbs sampling) can be used to infer the most likely latent
topics for each message. They make use of these topics to assign roles to people in an email
communication network, and demonstrate that it outperforms simpler models.

Supervised techniques can also be used for link labeling. For instance, Taskar et al.
(2003) study an academic webpage network and consider how to predict node labels (such
as “Student” or “Professor”) while simultaneously predicting link labels (such as “adviser-
of”). Given a labeled training graph, they learn a complex Relational Markov Network
(RMN) that can predict these labels and the existence of new links. To make the link
prediction tractable, only some candidate new links are considered, such as those links
suggested by a textual reference, inside a page, to some other entity in the graph. The
RMN utilizes text-based features, for instance based on the anchor text for known links
or the heading for the HTML section in which a possible link reference is found. They
demonstrate that the RMN’s joint inference over nodes and links improves performance
compared to separate inference. However, learning and inference with RMNs can often be
a significant challenge, which in practice limits the number and types of feature that can
be considered.

The RMN approach learns from some training data and then uses joint inference over
the entire graph. A simpler supervised approach is to create a set of features for each link
and use these features for learning and inference with an arbitrary classifier that treats each
link separately. Leskovec, Huttenlocher, and Kleinberg (2010) study a particular form of
this approach where there are only two link labels, representing a positive or negative rela-
tionship (such as friendship vs. animosity). They create link features based on the (signed)
degree of the nodes involved in each link and also based on transitivity-like properties com-
puted from the known labels of nearby links. They demonstrate this approach using data
from Epinions, Wikipedia, and Slashdot, where users have manually indicated positive or
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negative relationships to other users. Given a network with almost all edges labeled, the
label classifier is able to predict the label (positive or negative) of a single unlabeled edge
with high accuracy. Interestingly, they show that a classifier’s predictive accuracy for a
particular dataset decreases only slightly when the classifier is trained on a different dataset
vs. being trained on the same dataset that is used for predictions. They argue that theories
of balance and status from social psychology partially explain this ability of their predictive
models to generalize across datasets. Unlike most of the other techniques discussed in this
section, this work does not make use of text-based features. However, the general problem
of predicting the “sign” of a link is related to sentiment analysis (or opinion mining) in
natural language processing (Godbole, Srinivasaiah, & Skiena, 2007; Pang & Lee, 2008).
These sentiment analysis algorithms could be reformulated to predict the label (such as
positive or negative) of a link given its associated text.

Because a link between two nodes can be established based on many different kinds of
relationships, there are many other types of algorithms that could potentially be used for
labeling links, even if the original algorithm was not designed for this purpose. For instance,
Markov Logic Networks (MLNs) have been used to extract semantic networks from text,
yielding a graph where the nodes represent objects or concepts (Kok & Domingos, 2008).
This process produces relations such as “teaches that” or “is written in” between the nodes,
which could be used as link labels in further analysis. Another example is the Group-Topic
(GT) model proposed by McCallum, Wang, and Mohanty (2007), which, like the previously
mentioned ART model, is a Bayesian network. The model is intended for graphs where two
nodes (such as people) become connected when they both participate in the same “event,”
such as both voting yes for the same political bill. Rather than directly labeling links (like
ART), the GT model clusters these nodes (such as people) into latent groups based on
textual descriptions of the events/votes. However, the GT model also simultaneously infers
a set of likely topics for each event, which could be used to label the implicit links between
the nodes. The results of the model could also be used to add new nodes to the graph that
represent the latent groups that were discovered.

4.3 Link Feature Construction

Link feature construction is the systematic construction of features on the links, typically for
the purpose of improving the accuracy or understandability of SRL algorithms. Link feature
construction can be important for many prediction tasks, but has received considerably
less attention than node feature construction in the literature. Fortunately, many of the
computations that have been developed for node feature construction can also apply to link
features. To avoid redundancy, we defer most of our analysis of feature construction to the
discussion of node feature construction in Section 6.3. This section briefly discusses how
such techniques for node feature construction can be applied to links, then summarizes the
major types of link features that can be computed.

Section 6.3 will later describe how feature values for relational data are often based on
aggregating values from multiple nodes. For instance, such a feature might compute the
average or the most common feature value among all of the neighbors of a particular node.
Such aggregation-based features help to account for the varying number of neighbors that a
node may have. For links, aggregation is less essential, since (usually) each link has precisely
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(a) Before link-aggregation (b) After link-aggregation

Figure 4: Link Feature Aggregation Example: The figure demonstrates how an un-
known link feature value can be computed by aggregating the link feature values
of surrounding links. Here the aggregation operator is Mode.

two endpoint nodes. However, aggregation can still be useful for computing features that
collect information from a larger area of the graph. For instance, in Figure 4, a link feature
value is being computed for the link in the center of the subgraph (the “target link”). The
computation considers the feature values (positive or negative signs) for all of the links that
are adjacent to the target link. In this case, the aggregation operator is Mode, and the
result is the new link feature value. This example used link features as the input, but node
feature values (e.g., of the lightly-shaded nodes in Figure 4) could also be aggregated to
form a new link feature. In this way, all of the aggregation operators discussed for nodes in
Section 6.3 can also be applied to links.

Figure 5 summarizes the kinds of features that can be constructed for a link. This figure
is organized around the sources of information that go into computing a single link feature
(i.e., the inputs), rather than the details of the feature computation (such as the type of
aggregation or other function used). The bottom of the figure shows the four types of link
features, each represented by a subgraph. In each case, the emphasized link at the bottom
of the subgraph is the target link for which a new feature value is being computed. Each
of the subgraphs shows varying amounts of information because each displays only those
features, nodes, and/or links that can be used as inputs for that kind of link feature.

The simplest type is the non-relational link feature, which can be computed for each
link solely from information that is already known about that link. Thus, Figure 5A shows
only the feature values which are already known for the target link, which can be used to
construct a new feature value. For instance, if a message is associated with each link, then
a link feature could count the number of times that a certain word occurs, or the number
of distinct words. Alternatively, if a date is associated with the link, then a feature might
compute the number of months since the link was formed. Onnela et al. (2007) computed
this kind of feature when they aggregated the duration of all phone calls between two people
to form a new link feature (which they also used as a link weight).

The remaining feature types are all relational, meaning that they depend in some way
on the graph (not just a single link). First, topology features (Figure 5B) are those that
can be computed using only the topology of the graph. Such a feature might, for instance,
compute the total number of links that are adjacent to the target link. Likewise, Kahanda
and Neville (2009) computed the clustering coefficient of a pair of linked nodes, which
measures the extent to which the two nodes have neighbors in common (Newman, 2003), as
well as other topological features such as the Adamic/Adar measure discussed in Section 4.1.
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Figure 5: Link Feature Taxonomy: The link feature classes are non-relational features,
topology features, relational link-value features, and relational node-value features.
In the subgraphs at bottom, only the information that is potentially used by
that class of link feature (i.e., nodes V , links E, node features XV , and/or link
features XE) is shown. The emphasized link represents where the feature value
is computed (i.e., the “target link”).

They used these link features to help predict link strength, but they could also be used for
other tasks.

Next, relational link-value features are those that are computed using the feature values
of nearby links. For instance, Figure 5C shows how link labels of personal (p) or work
(w) might be identified from links adjacent to the target link. A new link feature could
be formed by representing the distribution of these labels, by taking the most common
label, or (when the link features are numeric) by averaging. Leskovec, Huttenlocher, and
Kleinberg (2010) used such link-value features when working with graphs where each link
had a “sign” feature of positive or negative (as with Figure 4). They computed features
based on the signed-degree of the two nodes connected by the target link as well as more
complex measures based on other paths between these two nodes (e.g., to measure sign
transitivity).
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Finally, relational node-value features are those that are computed using the feature
values of the nodes that are close to or are attached to the target link. For instance,
Figure 5D shows how node labels of conservative (C) or liberal (L) might be identified for
nodes close to the target link. As with link-value features, these labels could be used to
create a new feature value by summarization or aggregation. Often, only the two nodes
that are directly attached to the target link are used. For instance, both the work of Gilbert
and Karahalios (2009) and Kahanda and Neville (2009) construct link features based on the
similarity of two nodes’ social network profiles. However, the feature values of more distant
nodes could also be used, for instance to compute a new link feature based on how similar
the friends of two people (nodes) are.

5. Node Prediction

Node transformation includes node prediction (e.g., predicting the existence of new nodes)
and node interpretation (e.g., constructing node weights, labels, or features). This section
focuses on node prediction, while Section 6 considers node interpretation.

Given a graph with existing nodes V , node prediction can be used in two distinct ways.
First, a node prediction algorithm could be used to discover additional nodes that are of
the same type as those that are already present in V . For instance, given a set of people
that communicate via email, a simple algorithm might be used to create new nodes that
represent email recipients that are implied by the messages, but not explicitly represented in
the original graph. Alternatively, supervised or unsupervised machine learning techniques
could be used to discover, for instance, new research papers or people from information
available on the web (Craven et al., 2000; Cafarella, Wu, Halevy, Zhang, & Wang, 2008).
These techniques are valuable, and can certainly be used to add new nodes to a graph.
However, most such work has been examined in the context of general knowledge base
construction, rather than relational learning.4

We focus on the second type of node prediction, which involves predicting nodes of a
different type than those that are already present in the graph. These new nodes might
represent locations, communities (Kleinberg, 1999), roles (McCallum, Wang, & Corrada-
Emmanuel, 2007; Rossi, Gallagher, Neville, & Henderson, 2012), shared characteristics,
social processes (Tang & Liu, 2009; Hoff et al., 2002), functions (Letovsky & Kasif, 2003),
or some other kind of relationship. For instance, in the running Facebook example, a
newly discovered node may represent a common interest or hobby that multiple people
share. These nodes are usually referred to as “latent nodes” (and the nodes connected to
each such node form a “latent group”).5 The meaning of these nodes will depend upon
what features and/or links were included as input to the node prediction algorithm. For
instance, including work-based friendships will lead to very different groups than if only
personal friendships are considered.

4. The recent work of Kim and Leskovec (2011) is an exception. Their technique uses EM to infer the
existence of missing nodes and links based on only the known topology of the graph.

5. Prior work sometimes refers to such nodes as “hidden” nodes, especially when they are thought to
represent concrete characteristics, such as geographic location, that could be measured but were, for
some reason, not observed in the data.
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Figure 6: Alternative Representations for Newly Predicted Groups: The left
figure shows how a new feature (with value X or Y) could be added to each node,
while the right figure demonstrates the creation of two new nodes to represent
the groups.

There are many advantages of this type of representation change with regards to ac-
curacy and understandability. For instance, nodes that are not directly connected in the
original graph but are similar in some way become, because of the links to the new nodes,
closer in graph space. Intuitively, nodes connected to a high level concept should share some
latent properties and representing that latent structure can directly impact classification,
network analysis, and many other tasks. For instance, reducing the path length between
similar nodes enables influence from these nodes to propagate more effectively if collective
classification (CC) is performed on these nodes. A model can still learn about and exploit
these new nodes and relationships, even if the semantic meaning of the new nodes is not
precisely understood.

The most popular methods for predicting new nodes are based on clustering, which in
our context means the grouping of nodes such that nodes within a group are more similar
to each other than they are to the nodes in other groups. Typically, one new node is created
for each group, and then links are added between each existing node and its corresponding
group node (see right side of Figure 6). Some techniques may also associate each node with
multiple groups, with link weights representing the affinity to each group.

When new groups are discovered, whether via clustering or via some other technique, an
alternative to creating new nodes and links is to simply add new feature(s) to each node that
represent the group information. The left side of Figure 6 demonstrates this alternative.
For instance, a new node feature might represent having running as hobby, or it may simply
represent belonging to discovered group #17, which is of unknown meaning. Popescul and
Ungar (2004) use the CiteSeer dataset to demonstrate that this technique can derive features
that can improve predictive accuracy. An advantage of this approach, as opposed to adding
new nodes, is that it potentially enables simpler, non-relational algorithms to make use of
the new information. A potential disadvantage, though, is that it also does not allow for
algorithms such as CC to propagate influence between newly connected nodes, as discussed
above. However, some such methods use this general strategy to generate much larger
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numbers of latent features that can be used for classification (Tang & Liu, 2009; Menon &
Elkan, 2010). Tang & Liu demonstrate that, in some cases, the resultant large number of
link-based features may make collective inference unnecessary for obtaining good accuracy.
Naturally, whether the information discovered from these clusterings is best represented
via new nodes or new features will depend upon the dataset and the inference task. In
this section, for simplicity we will discuss each algorithm assuming that new nodes will be
created (even if the algorithm was originally described in terms of creating new features).

As with our discussion of link prediction, we organize our discussion around the kinds
of information that are used for prediction. Section 5.1 discusses non-relational (attribute-
based) node prediction, Section 5.2 discusses topology-based node prediction, and Sec-
tion 5.3 discusses hybrid approaches that use both the node feature values and the topology
of the graph.

5.1 Non-relational (Attribute-Based) Node Prediction

There are many clustering algorithms that can be used to cluster existing nodes using only
their non-relational features (attributes), which can then be used to add new nodes to a
graph. The two primary types are hierarchical clustering algorithms (e.g., agglomerative or
divisive clustering) and partitioning algorithms such as k-means, k-medoids (Berkhin, 2006;
Zhu, 2006), EM-based algorithms, and self-organizing maps (Kohonen, 1990). We do not
discuss these algorithms further since they have been well studied for non-relational data
and can be easily applied to relational data if clustering based only on attribute values is
desired.

5.2 Topology-Based Node Prediction

The techniques described in this section link existing nodes to one or more new nodes (i.e.,
latent groups), based only on the original link structure of the graph. In most cases, finding
this grouping depends upon computing some kind of similarity metric between every pair
of nodes. Two key questions thus serve to identify these techniques. First, what kind
of similarity metric should be used? Second, how should the metric be used to predict
groupings? We address each question in turn.

5.2.1 Types of Metrics for Group Prediction

Any type of topology-based link weighting metric (see Table 3.2) could conceivably be used
for latent node prediction. A metric will be suitable so long as it produces high values
for pairs of nodes that should belong to the same group and lower values for other pairs.
For instance, a high value of the Katz metric (see Section 3.2) indicates that two nodes
have many short paths between them, and thus may belong to the same group. Metrics
representing distance rather than similarity can also be used after negating the metric. For
instance, Girvan and Newman (2002) focus on detecting community structure by extending
the concept of node-betweenness to links. Intuitively, if a network contains latent groups
that are only loosely connected by a few intergroup links, then all shortest paths between
different groups must go along these links. These links that connect the different groups
are assigned a high link-betweenness value (which corresponds to a low similarity value).
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The underlying group structure can then trivially be revealed by removing the links with
highest betweenness.

This idea of using link-betweenness for relational clustering has been extended in a
number of directions. For instance, Newman and Girvan (2004) introduced random-walk
betweenness, which is the expected number of times that a random walk between a pair of
nodes will pass down a particular link. In addition, Radicchi, Castellano, Cecconi, Loreto,
and Parisi (2004) proposed using a link-based clustering coefficient metric. They showed
that this metric performs comparably to the original link-betweenness metric of Girvan and
Newman, but is much faster because it is a local graph measure instead of a global graph
measure.

Zhou (2003) describes a new metric, the “dissimilarity index,” which can be computed
as follows. For each node i, compute a vector di where each value dij represents the
distance from node i to node j (Zhou measures distance based on the average number of
steps needed for a random walk starting at node i to reach node j, but any distance metric
could be used). If nodes i and k are very similar, they should have very similar distance
vectors. Thus, the dissimilarity index for nodes i and k is defined based on a Euclidean-like
distance computation between vectors di and dk. Zhou demonstrates that this technique
outperforms the link-betweenness approach of Girvan & Newman for some random modular
networks.

Relatively simple metrics can often lead to useful results. For instance, Ravasz et al.
(2002) used a simple clustering coefficient metric to study metabolic networks. Their study
reveals that the metabolic networks of forty-three organisms are organized into many small,
highly-connected modules. Furthermore, they find that for E. coli, the hidden hierarchical
modularity closely overlaps with known metabolic functions.

5.2.2 Using the Metrics for Group Prediction

The simplest techniques for identifying new groups is to perform some kind of hierarchical
clustering. For instance, after similarities or weights have been computed for every pair of
nodes, all links can be removed from the graph. Next, the weighted links are placed between
the nodes one by one, ordered by their weights. The intuition is that varying degrees of
clusters are formed as more links are added. In particular, this approach forms a hierarchical
tree where the leaves represent the finest granularity of clustering where every node is a
separate cluster. As we move up the tree larger clusters are formed, until we reach the top
where all the nodes are joined in one large cluster. This type of hierarchical approach was
used in the work of Zhou (2003). Girvan and Newman (2002) use a similar strategy, but
start instead with the original graph and iteratively remove the less similar links from the
graph to reveal the underlying community structure. A challenge with these approaches,
as with clustering in general, is to select the appropriate number of final clusters, which
corresponds to selecting a level in the clustering tree.

Spectral clustering (Dhillon, 2001; Ng, Jordan, & Weiss, 2001; Kamvar, Klein, & Man-
ning, 2003) can also be used for group identification. Spectral clustering relies upon com-
puting a similarity matrix S that describes all the data points, then transforming the matrix
in a way that yields a new matrix U where clustering the rows of U using a simple clustering
algorithm (such as k-means) can trivially identify the interesting groups in the data. The
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matrix transformation has several variants, but involves computing some kind of Laplacian
of S, then computing the eigenvectors of the resultant matrix and using those eigenvec-
tors to represent the original data. The motivation for this transformation can be seen
as identifying good graph cuts in the original graph (those that yield good separations of
highly-connected nodes into groups) or as identifying those nodes that are closely related
in terms of random walks; see the work of von Luxburg (2007) for an overview. Spectral
clustering was originally applied to non-relational data, but, as with the hierarchical tech-
niques described above, it can be applied to relational data by using link-based metrics
for computing the similarity matrix. For instance, Neville and Jensen (2005) use the node
adjacency matrix and the spectral clustering technique described by Shi and Malik (2000)
to identify latent groups in their graphs. They show that this technique enables simpler
inference (since each group can be handled separately), and ultimately yields more accurate
classification compared to approaches that ignore the group structure. Tang and Liu (2011)
also use spectral clustering on the link graph, but do so in order to create a much larger
number of latent features that are then used to learn a supervised classifier. Unlike the
latent groups from the work of Neville and Jensen, this technique allows each node to be
associated with more than one cluster in the output of the spectral clustering, which Tang
& Liu claim leads to improved classification accuracy. Spectral clustering can also be used
with more complex similarity metrics, as described in the next subsection.

Techniques borrowed from web search can also be useful for node prediction. For in-
stance, given the adjacency matrix A for a webpage graph, the Hits algorithm (Kleinberg,
1999) computes the first few eigenvectors of AAT and ATA, which represent the most
authoritative nodes (the “authorities”) as well as prominent nodes that point to them (the
“hubs”). Normally, this algorithm is used to find only the single most prominent “commu-
nity” of authorities and hubs (to assist with a web search), but secondary communities can
be discovered by also considering the non-principal eigenvectors of AAT and ATA (Gib-
son, Kleinberg, & Raghavan, 1998). A node prediction algorithm could then treat each
such community as a latent group and add a new node and links to represent this group.
These techniques may be especially useful for detecting patterns of influence in a graph and
adding more explicit links to represent this influence.

5.3 Hybrid Node Prediction

The techniques in the previous section added new nodes to the graph, often based on
clustering, using only the topology of the graph. In principle, a technique that also used
the nodes’ attributes should produce more meaningful latent groups/nodes. This section
considers how to add such attribute information to techniques for node prediction.

A simple approach is to define some kind of similarity metric that combines non-
relational and topology-based similarity into a single value, then provide that similarity
metric to one of the previously mentioned clustering algorithms. For instance, Neville,
Adler, and Jensen (2004) use a weighted combination of attribute and link information

S(i, j) = α · 1

k

∑
k

sk(i, j) + (1− α) · l

as a metric, where sk(i, j) = 1 iff nodes i and j have the same value for the kth attribute,
and l = 1 iff a link exists between i and j. Here the constant α controls the relative

395



Rossi, McDowell, Aha, & Neville

importance of the attributes vs. the links. They use this metric with the NCut spectral
clustering technique to add new nodes to the graph, and demonstrate that these additional
nodes increase the performance of relational classification. A similar weighted combination
of attribute and link-based similarity is used by Bhattacharya and Getoor (2005) for entity
resolution.

Attribute-based information can also be incorporated on an ad-hoc basis. For instance,
Adibi, Chalupsky, Melz, Valente, et al. (2004) describe a group finding algorithm where an
initial seed set of clusters is formed based on a handcrafted set of logical rules, and then
these clusters are refined using a probabilistic system based on mutual information. In their
system, the logic-based component primarily uses the attributes about each node (person),
while the probabilistic system primarily uses the links that describe connections between
the people. However, both components make some use of both attributes and links.

A more principled approach is to define some kind of generative model that represents
the dependence of the observed attributes and links on some latent group nodes, then use
that model to estimate group membership. For instance, Kubica, Moore, Schneider, and
Yang (2002) define a generative model where each node belongs to one or more groups, and
group members tend to link to each other. In particular, they use a group membership
chart to track whether each node belongs to each group, and do a local search over possible
states of the chart (using stochastic hill climbing) to try to identify membership changes
that would better explain the known data. At each step, maximum likelihood is used to
estimate the parameters of the model. They demonstrate the usefulness of their technique
on news articles, webpages, and some synthetic data.

Generative models can also be used with more sophisticated inference. For example,
Taskar, Segal, and Koller (2001) treat group membership as a latent variable and then uses
loopy belief propagation to implicitly perform a clustering of the nodes. Likewise, Mixed
Membership Relational Clustering (MMRC) (Long et al., 2007) uses EM variants to esti-
mate group memberships. In particular, it uses a first round of hard clustering (where each
object is assigned to exactly one cluster), following by a round of soft clustering where con-
tinuous strength values are associated with each membership assignment. Mixed member-
ship stochastic blockmodels (Airoldi et al., 2008) also assign continuous group membership
values to each node, but use only topological information (not attributes) for their group
assignments and use variational inference techniques with the generative model. Finally,
Long, Zhang, Wu, and Yu (2006) demonstrate how node clustering can be performed in-
stead using spectral clustering, and focuses particularly on how to simultaneously cluster
multiple types of nodes (e.g., to simultaneously cluster web pages and web users into two
distinct sets of groups).

Most group prediction algorithms assume that links are more likely to connect nodes
that belong to the same group. An exception is the work of Anthony and desJardins (2007),
who also use a generative model where the links and attributes depend on some latent group
memberships, but where some types of links are more likely to occur between nodes that
do not belong to the same group. For instance, they note that if groups in a social network
are defined by gender, then a link representing “dating” is more likely to connect two nodes
from different groups.
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Figure 7: Lifted Graph Representation: The initial graph G is clustered and trans-
formed into a lifted graph representation G̃. The lifted graph representation is
created by clustering nodes, links, or both.

5.4 Discussion

Most of the techniques described above produce a single clustering of the nodes, usually
based on assigning every node to a single group. In contrast, multi-clustering is an emerging
research area that aims to provide multiple orthogonal clusterings of complex data (Strehl
& Ghosh, 2003; Topchy, Law, Jain, & Fred, 2004). For instance, individuals in Facebook
might be clustered in multiple ways where latent node types might represent friend groups,
work relations, socioeconomic status, locations, or family circles. A type of multi-clustering
is performed by McCallum, Wang, and Corrada-Emmanuel (2007) where latent nodes are
created based on roles and topics. In addition, Kok and Domingos (2007) propose Statis-
tical Predicate Invention (SPI), a node transformation approach based on Markov Logic
Networks (Richardson & Domingos, 2006). SPI clusters nodes, features and links form-
ing the basis for the prediction of predicates (or potential nodes). SPI considers multiple
relational clusterings based on the observation that multiple distinct clusterings may be
necessary to, for instance, group individuals based on their friendships and their work rela-
tionships. They demonstrate that MLN inference can estimate these clusters and improves
performance compared to two simpler baselines. A similar node prediction approach applies
MLNs for role labeling (Riedel & Meza-Ruiz, 2008).

Node deletion may also be useful in some cases. For instance, node deletion might be
beneficial for removing outdated or spurious nodes from the graph. Alternatively, there
may be multiple nodes that represent the same real-world object or concept, in which case
deletion for the purposes of entity resolution can be important (Pasula, Marthi, Milch,
Russell, & Shpitser, 2003; Bhattacharya & Getoor, 2007; Singla & Domingos, 2006).

Finally, node representation changes can be used to not only to improve accuracy, but
also to yield graphs that can be processed more efficiently or that have other desirable
properties. Section 5.2 already discussed how Neville and Jensen (2005) used the addition of
latent nodes to enable simpler inference. Another possibility is the creation of “super-nodes”
that represent more than one of the original nodes. For instance, Figure 7 demonstrates how
five original nodes can, after clustering, be collapsed into three super-nodes, yielding a “lifted
graph” representation. This kind of representation change can be used for more efficient
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inference in Markov Logic Networks (see Section 6.3) and for network anonymization (see
Section 8.6).

6. Node Interpretation

Node interpretation is the process of constructing weights, labels, or general features for
the nodes. As with the symmetric tasks for link interpretation, node weighting seeks to
assign a continuous value to each node, representing the node’s importance, while node
labeling seeks to assign a discrete value to each link, representing the type, group, or class
of a node. Likewise, node feature construction is the process of systematically generating
general-purpose node features based on, for instance, aggregation, dimensionality reduction,
or subgraph patterns.

As discussed in Section 4 for links, node feature construction could be viewed as sub-
suming node weighting and node labeling, since general feature construction could always
be used to construct feature values that are treated as weights or labels for the nodes. In
practice, however, the techniques used tend to be rather different. For instance, PageRank
is often used for node weighting and supervised classification is often used for node labeling,
but these techniques are rarely used for general feature construction. Nonetheless, for node
interpretation (more so than with link interpretation) there is some substantial overlap be-
tween the techniques actually used for weighting and labeling vs. those used for general
feature construction. Below, we first discuss node weighting in Section 6.1 and labeling in
Section 6.2. Section 6.3 then discusses node feature construction, mentioning only briefly
the relevant techniques that were previously discussed for weighting and labeling.

6.1 Node Weighting

Given the initial graph G = 〈V,E,XV ,XE〉, the task is to assign a continuous value (the
weight) to each existing node in G, representing the importance or influence of that node.
Node weighting techniques have been used for information retrieval, search engines, social
network analysis, and many other domains as a way to discover the most important nodes
with respect to some defined measure. As with node prediction they can be classified based
on whether they use only the node attributes, only the graph topology, or both to construct
a weighting.

6.1.1 Non-relational (Attribute-Based) Node Weighting

The simplest node weighting techniques use only the node features XV (i.e., the attributes).
For instance, nodes representing documents might be weighted based on the number of
query-relevant words they contain, while nodes representing companies might be ranked
based on their gross annual sales. Many more sophisticated strategies have also been con-
sidered. For instance, Latent Semantic Indexing (Deerwester et al., 1990) can be used to
identify the most important semantic concepts in a corpus of text, then nodes can be ranked
based on their connection to these concepts. These methods have been extensively applied
to quantify or rank the importance of scientific publications (Egghe & Rousseau, 1990).
However, because these techniques have been extensively studied elsewhere and also ignore
graph structure (such as citations), we do not discuss them further here.
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6.1.2 Topology-Based Node Weighting

Several node weighting algorithms that use only the topology of the graph were developed
to support early search engines. Examples of this kind of algorithm include PageRank
(Page et al., 1999), Hits (Kleinberg, 1999), and SALSA (Lempel & Moran, 2000). Each
of these algorithms rank the relative importance of web sites, conceptually based on some
kind of eigenvector analysis (Langville & Meyer, 2005), though in practice iterative com-
putation may be used. For instance, PageRank models the web as a Markov Chain and is
implemented by systematically computing the principal eigenvector of limk→∞Ake where
A is the adjacency matrix and e is the unit vector. Hits, as previously described, in-
stead computes the principal eigenvectors of AAT and ATA. These algorithms continue
to be very important for webpage ranking, but can also be applied to many other kinds of
graphs (Kosala & Blockeel, 2000).

In social network analysis, the objective of topology-based node weighting is typically
to identify the most influential or significant individuals in a social network. There have
been a variety of centrality measures devised that use the local and global network struc-
ture to characterize the importance of individuals (Wasserman & Faust, 1994). Examples
of these metrics include node degree, clustering coefficient (Watts & Strogatz, 1998), be-
tweenness (Freeman, 1977), closeness (i.e., distance/shortest paths), eigenvector central-
ity (Bonacich & Lloyd, 2001), and many others (Jackson, 2008; Newman, 2010; Sabidussi,
1966). In addition, White and Smyth (2003) considered how to compute relative node
rankings, i.e., rankings relative to a set of particularly interesting nodes. They show how
to compute such relative rankings both for metrics based on shortest paths as well as for
Markov chain-based techniques (e.g., to produce “PageRank with priors”). In addition,
some of the similarity metrics described in Table 3.2 can alternatively be formulated for
computing weights on nodes.

More recently, node weighting techniques have been extended to measure the relative
importance of nodes in temporally-varying data. For instance, both Kossinets, Kleinberg,
and Watts (2008) and Tang et al. (2009) define notions of temporal distance based on an
analysis of how frequently information is exchanged between nodes. This information can
be used to define a range of new graph metrics, such as global temporal efficiency, local tem-
poral efficiency, and the temporal clustering coefficient (Tang et al., 2009). More recently,
Tang, Musolesi, Mascolo, Latora, and Nicosia (2010) define notions of temporal betweenness
and temporal closeness. They argue that incorporating temporal information with these
metrics provides both a better understanding of dynamic processes in the network and more
accurately identifies the most important nodes (people). All of these metrics primarily con-
cern networks that have time-varying interactions (e.g., communications between people),
but they could also be applied to other types of data with intermittent interactions between
nodes or where nodes/link join and leave the network over time. Some of these metrics also
apply to links, and could possibly be used to improve link prediction algorithms.

6.1.3 Hybrid Node Weighting

There are also hybrid node weighting approaches that use both the attributes and the graph
topology (Bharat & Henzinger, 1998; Cohn & Hofmann, 2001). For instance, there are
various approaches that modify Hits (Chakrabarti, Dom, Raghavan, et al., 1998; Bharat
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& Henzinger, 1998) and PageRank (Haveliwala, 2003) to construct node weights based on
both content and links. Topic-Sensitive PageRank (Haveliwala, 2003) seeks to compute a
biased set of PageRank vectors using a set of representative topics. Alternatively, Kolda,
Bader, and Kenny (2005) propose TOPHITS, a hybrid approach that adds anchor text (i.e.,
the clickable text on each hyperlink) to the adjacency matrix representation used by Hits.
They then use a higher-order analogue of SVD known as Parallel Factors (PARAFAC)
decomposition (Harshman, 1970) to identify both the key topics in the graph as well as the
most important nodes. Other hybrid approaches have been proposed such as SimRank (Jeh
& Widom, 2002), Topical methods (Haveliwala, 2003; Nie, Davison, & Qi, 2006; Kolda
& Bader, 2006), Probabilistic HITs (Cohn & Chang, 2000), and many others (Richardson
& Domingos, 2002; Lassez et al., 2008). Section 7 discusses further relevant work in the
context of joint node and link transformation techniques.

Recently, node weighting approaches have been applied in Adversarial Information Re-
trieval (AIR) to detect or moderate the influence of spam web sites. Typically, these tech-
niques produce weights using both the topology of the graph and some other information,
but not necessarily the kind of attribute information that is used by the techniques discussed
above. For instance, TrustRank (Gyongyi, Garcia-Molina, & Pedersen, 2004) is based on
PageRank and uses a set of trusted sites evaluated by humans to propagate the trust to
other locally reachable sites. On the other hand, SpamRank (Benczúr, Csalogány, Sarlós, &
Uher, 2005) measures the amount of undeserved PageRank by analyzing the backlinks of a
site. There are other algorithms that try to identify link farms and link spam alliances (Wu
& Davison, 2005), given a seed set of known link farm pages. Among these AIR methods,
TrustRank is the most widely known but suffers from biases where the human-selected set
of trustworthy sites may favor certain communities over others.

6.2 Node Labeling

Given the initial graph G = 〈V,E,XV ,XE〉, the task is to assign some discrete label for
some or all of the nodes in G. We first discuss labeling techniques based on classification,
then consider unsupervised textual analysis techniques.

In many cases, node labeling may be considered an end in itself. For instance, in our
running Facebook example, the stated goal is to predict the political affiliation of each
node where that label is not already known. In other cases, however, node labeling is
more properly understood as a representation change that supports the desired task. For
instance, for some definitions of anomalous link detection (Rattigan & Jensen, 2005), having
estimated node labels would allow us to identify links between nodes whose labels indicate
they should rarely, if ever, be connected. Alternatively, for some datasets estimating node
labels may enable us to subsequently partition the data based on node type, enabling us to
learn more accurate models for each type of node.

Even when node labeling is the final goal, as with our Facebook example, intermediate
label estimation may still be useful as a representation change. In particular, Kou and Cohen
(2007) describe a “stacked model” for relational classification that relabels the training set
with estimated node labels using a non-relational classifier. They then use these estimated
labels to learn a new classifier (one that uses both attributes and relational features), and
use the new classifier to perform relational classification on the test graph. This approach
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yields high accuracy, comparable to that of much more complex algorithms for collective
classification (CC). Fast and Jensen (2008) analyze this result and discuss how it can be
explained by a natural bias in most CC algorithms: training is performed with the given
node labels but the inference depends in part on estimated labels (McDowell, Gupta, &
Aha, 2009). Stacked models compensate for this bias by instead training with the relabeled
(estimated) training set. In addition, inference with the new classifier needs only a single
pass over the test graph, yielding much faster inference than CC techniques like Gibbs
sampling or belief propagation. More recently, Maes, Peters, Denoyer, and Gallinari (2009)
extend these ideas of node relabeling in order to generate a larger training set via multiple
simulated iterations of classification. They show that in some cases this approach can
outperform stacked models and other CC algorithms like Gibbs sampling.

Thus, there are multiple reasons for creating new labels for the nodes in a graph. This
labeling can be accomplished by relational-aware algorithms like those described above as
well as by earlier algorithms used for relational or collective classification (Chakrabarti,
Dom, & Indyk, 1998; Neville & Jensen, 2000; Taskar et al., 2001; Lu & Getoor, 2003;
Macskassy & Provost, 2003). Node labeling can of course also be done by traditional,
non-relational algorithms such as SVM, decision trees, kNN, logistic regression, and Naive
Bayes, among various others (Lim, Loh, & Shih, 2000; Michie, Spiegelhalter, Taylor, &
Campbell, 1994; Burges, 1998; Cristianini & Shawe-Taylor, 2000; Joachims, 1998). These
methods simply use features X̃V and do not exploit topology or link-structure.

The above techniques all assign new labels via supervised learning. Labels can also
be assigned via unsupervised techniques for textual analysis. There are many networks in
the real-world that contain textual content such as social networks, email/communication
networks, citation networks, and many others. Traditional textual analysis models such as
LSA (Deerwester et al., 1990), PLSA (Hofmann, 1999) and LDA (Blei et al., 2003) can be
used to assign each node a topic representing an abstraction of the textual information.
More recent techniques such as Link-LDA (Erosheva, Fienberg, & Lafferty, 2004) and Link-
PLSA (Cohn & Hofmann, 2001) aim to incorporate the link structure into the traditional
techniques in order to more accurately discover a node’s type.6 In particular, the work
of Cohn and Hofmann demonstrate that their technique can produce more accurate node
labels than techniques that use only the node attributes or only the link topology. There
have also been more sophisticated topic models that have been developed for specific tasks
such as social tagging (Lu, Hu, Chen, & ran Park, 2010) or temporal data (Huh & Fienberg,
2010; He & Parker, 2010).

6.3 Node Feature Construction

Node feature construction is the systematic construction of features for the nodes, typically
for the purpose of improving the accuracy or understandability of SRL algorithms. Feature
construction is the most common relational representation change, and is very frequently
done before performing a task such as classification. For instance, before performing CC to
classify the nodes in our example Facebook political affiliation task, we are likely to compute

6. The names for Link-LDA and Link-PLDA come from the work of Nallapati, Ahmed, Xing, and Cohen
(2008), not from the original papers describing the techniques.
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some new features representing the information about each node (e.g., age bracket?) and
the known information about each node’s neighbors (e.g., how many are liberal?).

Different techniques for node feature construction have been described by many previous
investigations, though feature construction was not necessarily the focus of many of those
investigations. In this section, we summarize and explain the different aspects of feature
construction. In particular, Section 6.3.1 presents and discusses a taxonomy of features
based on what kinds of inputs, such as topology information or link feature values, they
use for computing the new feature values. Next, Section 6.3.2 describes the possible oper-
ators, such as aggregation or discretization, that can be applied to these inputs. Finally,
Section 6.3.3 examines how to perform automatic feature search and selection to support a
desired computational task.

6.3.1 Relational Feature Inputs

A node feature can be categorized according to the types of information that it uses for
computing feature values. The possible information to use includes the set of nodes V or
links E, the node features XV , and the link features XE . Figure 8 shows our taxonomy of
node features based on which of these sources of information (the “inputs”) they use. This
taxonomy is consistent with some distinctions that have been previously made in the litera-
ture (e.g., between non-relational and relational features), but to the best of our knowledge
this more complete taxonomy has never been previously described. The taxonomy consists
of four basic types: non-relational features and three types of relational features (topol-
ogy features, relational link-value features, and relational node-value features). Below we
describe and give examples of each.

� Non-relational Features: A node feature is considered a non-relational feature if
the value of the feature for a particular node is computed using only the non-relational
features (i.e., attributes) of that node, ignoring any link-based information. For in-
stance, Figure 8A shows a node and the corresponding node’s feature vector. A new
feature value might be constructed from this vector using some kind of dimensional-
ity reduction, by adding together several feature values, by thresholding a particular
value, etc.

� Topology Features: A feature is considered a topology-based feature if values of
the feature are computed using only the nodes V and links E, ignoring any existing
node and link feature values. For instance, in Figure 8B, a new feature value is being
computed for the node in the bottom left of the figure (the “target node”), using only
the topological information shown. In particular, the new feature value might count
the number of adjacent nodes, or count how many shortest paths in the graph pass
through the target node.

� Relational Link-value Features: A feature is considered a relational link-value
feature if the feature values of the links that are adjacent to the target node are
used for computing the new feature. Typically, some kind of aggregation operator is
applied to these values, such as count, mode, average, proportion, etc. For instance,
in Figure 8C, the values on the links shown represent communication topics (work or
personal), and a new link-value feature might compute the mode of these values (p).
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Figure 8: Node Features Taxonomy Based on Inputs Used: The classes of node
features are non-relational features, topology features, relational link-value fea-
tures, and relational node-value features. These classes are defined with respect
to the relational information used in the construction of the features (i.e., nodes
V , links E, node features XV , link features XE). The double-lined “target” node
represents where the new feature value is being computed. Parts C and D show
only a single feature value for each link or node for simplicity, but in general more
than one such feature may exist and be used.

Usually this computation will include only the links directly connected to the target
node, but links a few hops away could also be used.

� Relational Node-value Features: A feature is considered a relational node-value
feature if the feature values of nodes linked to the target node are used in the con-
struction. Links are used only for identifying these nodes, although nodes more than
one hop away from the target node may also be included. For instance, Figure 8D
shows the feature values of adjacent nodes (C or L) which could, for instance, be
used to compute a new node-value feature based on the mode (L) of those values.
Alternatively, one feature might count the number of adjacent “C” nodes and another
might count the number of adjacent “L” nodes.
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Feature computation may also be applied recursively. For instance, the ReFeX sys-
tem (Henderson, Gallagher, Li, Akoglu, Eliassi-Rad, Tong, & Faloutsos, 2011) first com-
putes features for every node based on their degree (a topology-based feature), then con-
siders recursive combinations of these features (such as the mean out-degree of a node’s
neighbors). Henderson et al. show that such recursive features can often improve classi-
fication accuracy for datasets where the network structure is predictive. Alternatively, a
topology-based feature such as betweenness might be computed, then a relational node-
value feature might compute the average betweenness of the nodes that are neighbors of
the target and have a label of “C.” This is an example of a hybrid feature that uses both
node-value and topology-based information.

Another interesting aspect of relational features is the potential for feature value re-
computation. In particular, many techniques for collective classification involve computing
a node feature (such as the number of neighbors currently labeled “C”) where that feature
depends on other feature values that are estimated (e.g., the predicted node labels) and
thus may change (Jensen et al., 2004; Sen et al., 2008). In addition, McDowell, Gupta,
and Aha (2010) describe features that have a similar need for recomputation, because the
“meta-features” they use depend upon the estimated label probabilities for each node in the
neighborhood of the target node. In contrast, this kind of feature re-computation has much
less applicability for non-relational data, where the nodes are assumed to be independent
of each other. However, it can occur with techniques such as semi-supervised learning or
co-learning.

6.3.2 Relational Feature Operators

The previous section described features according to the different kinds of inputs that they
use during feature value computation, whereas this section describes the different operators
that can be used for this computation. Table 5 summarizes these operators. In some
cases, an operator can be used for many different types of relational input. For instance,
aggregation operators can be computed using the graph topology, relational node-value
inputs, and/or relational link-value inputs, as indicated by the appropriate checkmarks in
Table 5. In contrast, path or walk-based operators generally use only the graph topology; for
these operators, the lighter colored checkmarks in Table 5 indicate that path/walk-based
operators could sensibly be used in conjunction with relational link-value or node-values
inputs, but this has been rarely if ever done. Below we discuss each of the operators from
Table 5 in more detail.

Relational Aggregates: Aggregation refers to a function that returns a single value
from a collection of input values such as a set, bag, or list. The most classical statistical
aggregation operators are Average, Mode, Exists, Count, Max, Min, and Sum (Neville
& Jensen, 2000; Lu & Getoor, 2003). For SRL, another frequent operator is Proportion,
which computes, for instance, the fraction of a node’s neighbors that meet some criteria
such as having the label “C” (McDowell, Gupta, & Aha, 2007). These operators may also
be combined with thresholds, e.g., to evaluate whether the Count of a node’s neighbors
labeled “C” is at least 3. The thresholding turns the numerical aggregate into a Boolean
feature, which is needed for tree-based algorithms (Neville, Jensen, Friedland, et al., 2003).
Perlich and Provost (2003) describe a set of more complex relational aggregates that depend
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Relational aggregates Mode, Average, Count, Proportion, De-
gree, ...

X X X

Temporal aggregates Exponential/linear decay, union, ... X X X X

Set operators Union, intersection, multiset, ... X X X

Clique potentials Direct link cliques, co-citation cliques, triads, ... X X X

Subgraph patterns Two star, three-star, triangle (i.e., transitivity), ... X X X

Dimensionality reduction PCA, SVD, Factor Analysis, Principal Factor Anal-
ysis, Independent Component Analysis, ...

X X X

Path/walk-based measures Betweenness, common neighbors, Jaccard’s coeffi-
cient, Adamic/Adar, shortest paths, random-walks,
...

X X X

Textual analysis LSA, LDA, PLSA, Link-LDA, Link-PLSA, ... X X X

Relational clustering Spectral partitioning, Hierarchical clustering, Par-
titioning relocation methods (k-means, k-medoids),
...

X X X X

Table 5: Relational Feature Operators: Summary of the most popular types of re-
lational feature operators. A check is used to indicate the classes of inputs (see
Section 6.3.1) that each operator most naturally uses for constructing feature val-
ues, while a lighter check indicates that the operator could sensibly be used with
that input but that this combination has rarely if ever been used.
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on the distribution of attribute values that are associated with each node (e.g., via links or a
relational join). For instance, these aggregates may use a function such as the edit distance
to compare each node’s distribution to a reference distribution computed from the training
data. Perlich and Provost demonstrate that these aggregations can in some cases improve
performance compared to simpler alternatives. There are also aggregate operators that use
only topology-based information. For instance, the operator Degree, which simply counts
the number of adjacent links, can be a predictive feature, but should be applied carefully
to relational data to avoid bias (Jensen, Neville, & Hay, 2003).

Temporal Aggregates: Relational information might also contain temporal information
in the form of timestamps or durations for the links, node, or features. In general, such data
can be handled by defining special temporal-aggregation features computed over the raw
data (McGovern, Collier, Matthew Gagne, Brown, & Rodger, 2008) or by defining a graph
that summarizes all of the temporal information (usually by decreasing the importance of
less recent information) (Sharan & Neville, 2008; Rossi & Neville, 2010). Rossi and Neville
discuss an example of the latter approach, where they explore the impact of using various
temporal-relational information and various kernels for summarization. Alternatively, Sec-
tion 6.1 discusses how notions of temporal distance can be used to modify path/walk-based
metrics such as node betweenness and closeness.

Set Operators: The traditional domain-independent set operators such as set union,
intersection, and difference can be applied to construct features (Kohavi & John, 1997).
For instance, if there are two attributes that both represent the presence of some word
in a page (node), a new feature might represent the case where a page contains both
of those words (i.e., feature intersection). For relational data, more complex set-based
features are possible. For instance, a feature for collective classification might represent the
union of all the class labels of the nodes adjacent to the target node. Neville, Jensen, and
Gallagher (2003) propose a more complex approach where the feature value is a multiset
that represents the complete distribution of adjacent nodes’ labels (e.g., {3C, 2M, 5L} to
indicate the labels of ten adjacent nodes). Using this feature representation, they show
that the “independent-value” approach that assumes that the labels are independently
drawn from the same distribution yields the most effective relational classification. Recently,
McDowell et al. (2009) showed that, for CC, this “multiset” approach usually outperformed
other types of features such as the proportion or count-based aggregates discussed above.

Clique Potentials: Some probabilistic models such as Relational Markov Networks (RMNs)
(Taskar et al., 2002) perform inference over related nodes without computing aggregates.
Instead, they use clique-specific potential functions to represent the probabilistic dependen-
cies, and a product term in the probability computation naturally expands to accommodate
a varying number of neighbors for each node. In one sense, this is a “featureless” approach,
since there is no need to choose a relational aggregation function. However, different kinds
of dependencies can still be represented by different cliques. For instance, Taskar et al.
consider different sets of cliques for webpage classification: one based only on hyperlinks,
the other including information based on where links appear within a page. Likewise, later
work added additional types of cliques to enable link prediction (Taskar et al., 2003). Thus,
even with these models there remain important feature choices to be made.
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Figure 9: Subgraph Patterns with Link Labels. Each subgraph represents a possible
pattern that a particular feature could look for in relation to the target node (the
bottom-left node in each case).

Other probabilistic models also use link-based information without computing explicit
features, such as the random walk-based classifier of Lin and Cohen (2010) or the weighted-
neighbor approach of Macskassy and Provost (2007). Even in these cases, however, choices
remain about what types of links to use. For instance, in webpage graphs, “co-citation”
links may be more predictive of class labels than direct links (Macskassy & Provost, 2007;
McDowell et al., 2009).

Subgraph Patterns: A subgraph pattern feature is one that is based on the existence of a
particular pattern in the graph adjacent to the target node. Such a feature might count how
many times a particular pattern exists for the target node, or produce a value of true if at
least one such pattern exists. The simplest such pattern is called reciprocity; it is true when
the target node i links to node j and j links back to i. In most cases, however, the patterns
are more complex and involve more nodes. Robins, Pattison, Kalish, and Lusher (2007)
define many such patterns including two-star (a node with at least two links), three-star (a
node with at least three links), and triangle (also known as transitivity, where i → j → k
and i→ k). Most such patterns can be defined for both directed and undirected links.

Many other patterns are possible. For instance, Robins, Snijders, Wang, and Handcock
(2006) use subgraph patterns for probabilistically modeling graphs. They argue that using
more complex patterns such as the alternating k-triangle (based on finding k triangles that
all share a common side) can help to avoid degeneracy that might otherwise arise during
graph generation. Furthermore, subgraph patterns can also be extended to exploit labels
on the links and/or nodes. For instance, assume some links are labeled with τ1 or τ2 (repre-
senting different topics) and some links are labeled with a plus or minus sign (representing
positive or negative relationships). Figure 9 demonstrates three possible subgraph patterns,
based on different link labelings, relative to the target node shown at the bottom left of
each subgraph. A subgraph feature could compute, for each node, the number of matches
for one of these patterns, and this feature could be used for later analysis.

Dimensionality Reduction The goal of dimensionality reduction is to find a lower k-
dimensional representation of the initial n features (Sarwar, Karypis, Konstan, & Riedl,
2000; Fodor, 2002). More formally, given an initial n-dimensional feature vector x =
{x1, x2, ..., xn}, find a lower k-dimensional representation x̃ such that x̃ = {x̃1, x̃2, ..., x̃k}
with k ≤ n where the most significant information of the original data is captured, accord-
ing to some criterion. There are many dimensionality reduction methods such as Principal
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Component Analysis (PCA), Principal Factor Analysis (PFA), and Independent Component
Analysis (ICA).

Dimensionality reduction techniques can be applied on the adjacency matrix A of the
graph G to create a low-dimensionality graph representation; Section 3.3 explained how this
can be used for link prediction. These techniques can also be useful for feature computation.
For instance, Bilgic, Mihalkova, and Getoor (2010) investigate active learning to improve
the accuracy of collective classification. Their technique involves both non-relational and
relational features, but they demonstrate that first applying dimensionality reduction (with
PCA) to the non-relational features simplifies learning, leading to substantial gains in ac-
curacy.

Other Operators: We mention only briefly those operators that have already been dis-
cussed extensively elsewhere. Path-based measures (such as betweenness and distance)
and walk-based measures (such as PageRank) were discussed in Sections 6.1. These
types of measures have been used as features in a classifier to predict links (Lichtenwalter
et al., 2010) as well as for validating relational sampling techniques (Leskovec, Chakrabarti,
Kleinberg, Faloutsos, & Ghahramani, 2010; Moreno & Neville, 2009; Ahmed, Neville, &
Kompella, 2012a, 2012b). These measures typically use only the topology (not the fea-
tures), but one could easily imagine computing metrics based, for instance, only on paths
where each edge had a particular label or type. Textual analysis techniques were discussed
in Sections 4.2 and 6.2, and relational clustering techniques were discussed in Section 5.
These operators were used specifically for node/link prediction, weighting, or labeling, but
can also be used for more general feature construction.

Finally, there are operators based on similarity measures. Similarity between two
nodes is often computed, for instance for link prediction (Section 3) or weighting (Sec-
tion 4.1). Such computations can easily lead to a feature value for a link, since the link
obviously refers to two endpoint nodes that can be compared. However, for computing a
node feature value, there is usually no obvious other node for comparison, so similarity mea-
sures are not typically used for node feature values. Such measures can, however, be used for
node prediction, and Section 5 discusses how in some cases newly discovered nodes/groups
can be used to create new node features. As a particular instance of relational similarity
functions, graph kernels for structured data (Gärtner, 2003) can also be used. Such kernels
can be used either between the nodes of a single graph (Kondor & Lafferty, 2002) or to
compute the similarity between two graphs (Vishwanathan, Schraudolph, Kondor, & Borg-
wardt, 2010). For instance, the former type of kernel is another technique that could also
be used for link or group prediction.

Discussion: Many of the feature operators discussed can naturally be used to compute fea-
ture values for links in additions to nodes. For instance, textual analysis can be applied to
links if there is text associated with each link, and most node-centered path-based measures
have analogous formulations for links. One difference is that nodes naturally may link to
many other nodes, whereas we assume links with just two endpoints. Thus, relational aggre-
gates such as Count do not initially seem as useful for computing link features. However,
Figure 4 previously demonstrated how link-aggregation can be accomplished by broaden-
ing the computation to include the multiple links or nodes that are logically connected to
each endpoint node of the target link. Naturally, some feature inputs and operators are
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better suited for computing node features vs. for computing link features. The next section
examines how to select the most appropriate features for a given task.

6.3.3 Searching, Evaluating, and Selecting Relational Features

Given the large number of possible features that could be used for some task (such as the
example Facebook classification task), which features should actually be used to learn a
model? In some cases, such selection is done manually based on prior experience or trial
and error. In many situations, though, more automatic feature selection is desirable. For
non-relational data, this has been a widely studied topic in machine learning (Guyon &
Elisseeff, 2003; Koller & Sahami, 1996; Yang & Pedersen, 1997; Dash & Liu, 1997; Jain
& Zongker, 1997; Pudil, Novovicová, & Kittler, 1994), but selecting relational features has
received considerably less attention. Given the large number of possible features, efficient
strategies for searching over and evaluating the possible features is needed. In this section,
we first summarize these two key problems of feature search and feature evaluation, then
give examples of how these issues have been resolved in actual SRL systems.

Search: The first step in searching over the relational features is to define the possible
relational feature space by specifying the possible raw feature inputs (e.g., node and link
feature values) and operators to consider. The possible operators can include domain-
independent operators (e.g., mode, count) and/or problem-specific operators (e.g., count the
number of friends divided by the number of groups). Domain-independent operators are
obviously more general and easier to apply, while the problem-specific operators can reduce
the number of possibilities that must be considered but require more effort and expert
knowledge. However, both approaches are vulnerable to selection biases (Jensen et al., 2003;
Jensen & Neville, 2002). The second step is to pick an appropriate search strategy, usually
either exhaustive, random, or guided. An exhaustive strategy will consider all features
that are possible given the specified inputs and operators, while a random strategy will
consider only a fraction of this space. A guided strategy will use some heuristic or sub-
system to identify the features that should be considered. In all three cases, each feature
that is considered is subjected to some evaluation strategy that assesses it usefulness; these
strategies are described next.

Evaluation and Selection: Each feature that is considered must be evaluated in some
way to determine if it will be retained for use in the final model. For instance, a candidate
feature may be evaluated by adding it to the current classification model; if it improves
accuracy on a holdout set, then it is immediately (and greedily) added to the set of retained
features (Davis, Burnside, Castro Dutra, Page, & Costa, 2005; Davis, Ong, Struyf, Burnside,
Page, & Costa, 2007). In other cases, every candidate feature is assigned some score and
then only the best scoring feature is retained (Neville, Jensen, Friedland, et al., 2003), or
features are added to the model based on decreasing score, so long as the new features
continue to improve the model (Mihalkova & Mooney, 2007). Simpler techniques that do
not require evaluating the overall model can also be used. For instances, metrics such as
correlation or mutual information can be used to estimate how useful the feature is for the
desired task. Other metrics or strategies that could be used include Akaike’s information
criterion (AIC) (Akaike, 1974), Mallows Cp (Mallows, 1973), Bayesian information criterion
(BIC) (Hannan & Quinn, 1979; Schwarz, 1978) and many others (Shao, 1996; George &
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Proposed System Search method Feature Evaluation

RPT (Neville, Jensen, Friedland, et al.,

2003)

Exhaustive Chi-square statistic/p-value

RDN-Boosting (Natarajan, Khot, Ker-
sting, Gutmann, & Shavlik, 2012; Khot,
Natarajan, Kersting, & Shavlik, 2011)

Exhaustive Weighted variance

ReFeX (Henderson et al., 2011) Exhaustive Log-binning disagreement

Spatiotemporal RPT (McGovern

et al., 2008)

Random Chi-square statistic/p-value

SAYU (Davis et al., 2005) Aleph AUC-PR

nFOIL (Landwehr et al., 2005) FOIL Conditional Log-Likelihood

SAYU-VISTA (Davis et al., 2007) Aleph AUC-PR

ProbFOIL (De Raedt & Thon, 2010) FOIL m-estimate

kFOIL (Landwehr et al., 2010) FOIL Kernel target alignment

PRM struct. learning (Getoor, Fried-

man, Koller, & Taskar, 2001)

Greedy hill-climbing Bayesian model selection

TSDL (Kok & Domingos, 2005) Beam search WPLL

BUSL (Mihalkova & Mooney, 2007) Template-based WPLL

PBN Learn-And-Join (Khosravi,

Tong Man, Xu, & Bina, 2010)

Level-wise search Pseudo-likelihood

Discriminative MLN structure
learning (Huynh & Mooney, 2008; Biba,
Ferilli, & Esposito, 2008)

Aleph++ m-estimate

Table 6: Systems for Searching for and Selecting Node Features: A summary
of some of the systems that can be used to automatically search for and select the
most appropriate features for a given task. Note that, depending on the context,
these papers may be describe their function in terms of learning the best rules for
a system or of learning the structure (e.g., of a MLN). Only some of the MLN-
based systems are described; for some of these, WPLL is the “weighted pseudo
log-likelihood.”

McCulloch, 1993). Frequently, a possible feature may have a particular parameter whose
value must be set (such as a threshold); selecting the best value for a given feature can
use the same evaluation metrics or may use a simpler estimation technique, e.g., based on
maximum likelihood.

Examples: Table 6 summarizes the strategies used by a number of SRL systems that au-
tomatically search for features. The columns of the table describe how each system searches
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for features and how the features are evaluated. For instance, Relational Probability Trees
(RPTs) (Neville, Jensen, Friedland, et al., 2003) are an extension of probability estimation
trees for relational data that use an exhaustive search strategy for feature selection. In par-
ticular, RPT learning involves automatically searching over the space of possible features
using aggregation functions such as Mode, Average, Count, Proportion, Min, Max,
Exists, and Degree. These aggregations can involve node and link feature values (e.g.,
for Average) or just topology information (e.g., for Degree). These features are used
for classification tasks, such as predicting the class label for a document. Each feature is
evaluated based on using the chi-square statistic to measure the correlation between the
feature and the class label; this yields a feature score and an associated p-value. Features
with p-values below the level of statistical significance are discarded, then the remaining
feature with the highest score is chosen for inclusion in the model. This selection process
has also been extended to use randomization tests to adjust for biases that are common in
relational data (Jensen et al., 2003; Jensen & Neville, 2002). RPTs have also been extended
for temporal domains (Sharan & Neville, 2008; Rossi & Neville, 2012).

RPTs represent the conditional probability distributions using a single tree. In contrast,
Natarajan et al. (2012) propose using gradient boosting (Friedman, 2001) such that each
conditional probability distribution is represented as a weighted sum of regression trees
grown in a stage-wise optimization. The features for each tree are selected via a depth-
limited, exhaustive search, though they note that domain knowledge could also be used to
guide this search. Natarajan et al. argue that the resultant set of multiple, relatively shallow
trees allows efficient learning of complex structures, and demonstrate that this technique
can outperform alternatives based on single trees or the Markov Logic Networks discussed
below.

Another system that uses exhaustive search is ReFeX (Henderson et al., 2011), which
uses aggregates of Sum and Mean operators to recursively generate features based on the
degree of a node and its local neighborhood. To prune the resultant large set, ReFeX uses
logarithmic binning of the feature values, clusters features based on their similarity in the
binned space, and then retains only one feature from each cluster. The logarithmic binning
is chosen because it favors features that are more discriminative for high-degree nodes.
This recursive approach has also been modified for constructing features over dynamic
networks (Rossi, Gallagher, Neville, & Henderson, 2012).

Alternatively, spatiotemporal RPTs (McGovern et al., 2008) use a random search strat-
egy. In particular, these RPTs add temporal and spatial-based features to the set of possible
features. The resultant feature space is too large for exhaustive search, so instead random
sampling is used. After a pre-defined number of features have been considered, the best
scored feature is added to the model.

The remaining systems that we will discuss all use a guided search strategy, where
some heuristic or sub-system provides candidate features that are considered. For instance,
several such systems (Davis et al., 2005; Landwehr et al., 2005) use an ILP system to
generate candidate features, then evaluate those features and select some for ultimate use.
In particular, SAYU (Davis et al., 2005) uses the ILP system Aleph (Srinivasan, 1999) to
generate a candidate feature (which they consider to be a new “view” on the original data).
Aleph creates candidates features based on positive examples, from the training data, of
the concept which is being predicted. Each proposed feature is evaluated by learning a
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new model that includes the feature and then computing the area under the precision-recall
curve (AUC-PR). If a feature improves the AUC-PR score, it is permanently added to
the model and the feature search continues. SAYU-VISTA (Davis et al., 2007) retains this
same general approach but extends the types of features that can be considered, in particular
adding the ability to dynamically link together objects of different types and to recursively
build new features from other constructed features. Davis et al. demonstrate that the link
connections are especially helpful in improving performance compared to the original SAYU
system. Landwehr et al. (2005) describe the nFOIL system which is very similar to SAYU
but was developed independently, while De Raedt and Thon (2010) describe how ProbFOIL
upgrades a deterministic rule learner like FOIL to be probabilistic. Landwehr et al. (2010)
describe the related kFOIL system which integrates FOIL with kernel methods. They also
consider the impact of several different feature scoring functions.

A number of systems have considered how to perform structure learning for Proba-
bilistic Relational Models (PRMs) (Getoor et al., 2001) or for Markov Logic Networks
(MLNs) (Domingos & Richardson, 2004), which is a more general case of the feature selec-
tion problems described above. For instance, a MLN is a weighted set of first-order formulas;
structure learning corresponds to learning these formulas while weight learning corresponds
to learning the associated weights. The first MLN structure learning approaches systemati-
cally construct candidate clauses by starting from an empty clause, greedily adding literals
to it, and testing the resulting clauses fit to the training data using a statistical measure (Kok
& Domingos, 2005; Biba et al., 2008). However, these “top-down” approaches are inefficient
because the initial proposal of clauses ignores the training data, resulting in a large number
of possible features being considered and possible problems with local minima. In response,
a number of “bottom-up” approaches have been proposed. In particular, Mihalkova and
Mooney (2007) use a propositional Markov network structure learner to construct template
networks to guide the construction of features based on the training data. More recent
work has examined how to enable bottom-up approaches to learn longer clauses based on
constraining the search to only consider features consistent with certain patterns or mo-
tifs (Kok & Domingos, 2010), or by clustering the input nodes to create a “lifted graph”
representation, enabling feature search over a smaller graph (Kok & Domingos, 2009).

Khosravi et al. (2010) perform MLN structure learning by first learning the structure of
a simpler Parametrized Bayes Net (PBN) (Poole, 2003), then converting the result into a
MLN. For data that contains a significant number of descriptive attributes, they show that
this approach dramatically improves the runtime of structure learning and also improves
predictive accuracy. Schulte (2011) has given a theoretical justification for this approach.
Another alternative, proposed by Khot et al. (2011), is to extend the previously mentioned
work of Natarajan et al. (2012) on gradient boosting to MLNs. Essentially, the problem
of learning MLNs is transformed into a series of relational regression problems where the
functional gradients are represented as clauses or trees. For several datasets they demon-
strate faster MLN structure learning that is as accurate or better than baselines including
the algorithms of Mihalkova and Mooney (2007) and Kok and Domingos (2010).

The above techniques for MLNs all seek to learn a network structure that best explains
the training data as a whole. In contrast, for situations where the prediction of a spe-
cific predicate is desired (e.g., to predict the political affiliation in our Facebook example),
Huynh and Mooney (2008) and Biba et al. (2008) both propose discriminative approaches

412



Transforming Graph Data for Statistical Relational Learning

to MLN structure learning. For instance, Huynh and Mooney use a modified version of
Aleph (Srinivasan, 1999) to compute a large number of candidate clauses, then use a form
of L1-regularization to force the weights that are subsequently learned for these clauses to
be zero when the clause is not very helpful for predicting the predicate. This regularization,
in conjunction with an appropriate optimization function, effectively leads to selecting a
smaller set of features that are useful for the desired task.

Discussion: We focus in this article on graph-based data representations (see Section 1.2).
However, many of the examples discussed above use a logical representation instead. We
include them in this section because the techniques used for constructing and searching
for features or rules are very similar in both settings. For instance, both RPTs (a graph-
based approach) and RDN-Boosting (a logical approach) use an exhaustive search over
probabilistic decision trees, with different feature scoring strategies.

Popescul et al. (2003a) examine how to automatically learn new relational features for
links (to support link prediction), but their techniques could also be applied to constructing
node features. In particular, they treat each feature as a relational database query, and use
the concept of refinement graphs (Shapiro, 1982) to consider refining an initial query with
equi-joins, equality selections, and statistical aggregates. After each refinement, further
refinements can be considered; this search is guided by sampling over some possible fur-
ther refinements and proceeding only if the results of a particular refinement or type seems
promising. The features chosen are combined with a logistic regression classifier. For evalu-
ation of the specific features, they use the Bayesian Information Criterion (BIC) (Schwarz,
1978), which includes a term than penalizes feature complexity to reduce the danger of
overfitting.

We discussed multiple systems that include notions of aggregation including RPTs,
SAYU-VISTA, and the work of Popescul et al. (2003a) discussed above. There are also
other aggregate-based learning approaches such as Crossmine (Yin, Han, Yang, & Yu, 2006),
CLAMF (Frank, Moser, & Ester, 2007), Multi-relational Decision Trees (MRDTL) (Leiva,
Gadia, & Dobbs, 2002), Confidence-based Concept Discovery (C2D) (Kavurucu, Senkul, &
Toroslu, 2008), and many others (Perlich & Provost, 2006; Krogel & Wrobel, 2001; Knobbe,
Siebes, & Marseille, 2002). There are also other possibilities for feature evaluation. For
instance, GleanerSRL (Goadrich & Shavlik, 2007) uses Aleph (Srinivasan, 1999) to search
for clauses and then uses a metric of precision × recall for evaluating the clauses.

7. Jointly Transforming Nodes and Links

In the previous sections, we primarily discussed relational representation transformation
techniques that are applied independently of one another. For instance, one technique
might be used to predict links, while another builds on the transformed representation by
applying a node labeling technique. This section instead examines “joint” transformation
tasks that combine node and link transformation in some way, for instance to label the nodes
and weight the links simultaneously. Such techniques may enable each subtask to influence
the other in helpful ways, and avoids any bias that might be introduced by requiring the
serialization of two tasks (such as link weighting and node labeling) that might usefully be
performed jointly.
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One recent approach proposed by Namata, Kok, and Getoor (2011) collectively per-
forms link prediction, node labeling, and entity resolution (which can be seen as a form
of node deletion/merging). They present an iterative algorithm that solves all three tasks
simultaneously by propagating information among solutions to the above three tasks. In
particular, they introduce the notion of inter-relational features, which are relational fea-
tures for one task that depend upon the predicted values for another. Their results show
that using such features can improve accuracy, and that inferring predicted values for all
three tasks simultaneously can significantly improve accuracy compared to performing the
three tasks in sequence, even if all possible orderings are considered.

Techniques that model the full distribution across links and attributes such as RMNs
(Taskar et al., 2002), PRMs (Friedman et al., 1999), and MLNs (Domingos & Richardson,
2004) can also be used in this scenario, for instance to jointly predict node and link labels.
In this section, however, we focus particularly on recent techniques that all presume the
existence of some textual content that is associated with the nodes or links of the graph
(although the basic algorithms would also work with other kinds of features). We consider
three types of techniques, based on what kind of input text they use: stand-alone text
documents (e.g., legal memos with no links), text documents connected by links (e.g.,
webpages with hyperlinks), or entities connected by links that have associated text (e.g.,
people connected by email messages). Table 7 lists some of the most prominent models,
grouped according to these three types. The columns of this table indicate what kinds of
input the models use (middle section) and the types of transformation they can perform
(right-hand section). The text documents corresponds to node features in this table, while
text associated with links yields link features. Below we discuss each of the three types of
techniques in more detail.

7.1 Using Text Documents with No Links

First, many techniques can be used to assign topics or labels to the nodes when those nodes
(such as documents) have associated text. For instance, the first row of Table 7 indicates
that LDA and PLSA use only the nodes and node features and can perform node prediction,
weighting, and labeling. Section 6 already mentioned how these techniques can be used to
label each node with one or more discovered topics, which is their more typical use. However,
these techniques can also perform node weighting (using the weights associated with the
topics) and/or node prediction (by converting the discovered topics to new latent nodes
as discussed in the introduction to Section 5). In Table 7, we use lighter checkmarks to
represent these kind of situations where a transformation task could be performed by a
particular model but is not its primary use/output.

LDA and PLSA treat each document as a bag of words and seek to assign one or more
topics (labels) to each document based on the words. In contrast, Nubbi (Chang, Boyd-
Graber, & Blei, 2009) designs an approach based on LDA where a graph is defined based on
objects (nodes) that are referenced in a set of documents, then links are predicted based on
the relationships that are implied in the text of the documents. In addition, the nodes and
links are associated with their most likely topic(s) based on these relationships. Thus, this
model simultaneously performs link prediction, link labeling, and node labeling. A similar
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Joint Transformation Model E XE V XV Ẽ X̃E X̃E Ṽ X̃V X̃V

LDA/PLSA X X X X X

Nubbi X X X X X X X

Link-LDA, Link-PLSA X X X X X X X X

Pairwise-Link-LDA X X X X X X X X

Link-PLSA-LDA X X X X X X X X

Relational Topic Model (RTM) X X X X X X X X

Topic-Link LDA X X X X X X X X

Group-Topic (GT) X X X X X X X X

Author-Recipient-Topic (ART) X X X X X X

Block-LDA X X X X X X X X

Table 7: Summary of the Joint Transformation Models: The middle section of the
table indicates what types of graph features are used as inputs to the model, while
the right side of the table indicates what types of link or node transformation can
be performed by the model. Lighter checkmarks indicate that the output of the
model can be transformed to perform a particular transformation task (e.g., to
use the node labels to create new latent group nodes), but where that task was
not the primary goal of the specified model.
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result is produced by the semantic network extraction of Kok and Domingos (2008) that
was discussed in Section 4.2.

7.2 Using Text Document with Links

The second type of joint transformation also uses text documents, but adds known links
between the documents to the model. For instance, Section 6 discussed how Link-LDA and
Link-PLSA add link modeling to LDA and PLSA in order to perform node labeling; as
discussed above for LDA and PLSA this can be modified to also achieve node prediction
and weighting. As shown in Table 7, Link-LDA and Link-PLSA can also be used for link
prediction and weighting by learning a model from a training graph and then using it to
predict unseen links on a new test graph (Nallapati et al., 2008).

Link-LDA and Link-PLSA model links in a way that is very similar to how they model
the presence of words in a document (node). For instance, in Link LDA’s generative model,
to generate one word, each document chooses a topic, then chooses a word from a topic-
specific multinomial. The identical process (using a topic-specific multinomial) is used to
generate, for a particular document, one target document to link to. Thus, Link-LDA and
Link-PLSA directly extend the original LDA and PLSA models to add links.

Nallapati et al. (2008) argue that Link-LDA’s and Link-PLSA’s extensions for links,
while pragmatic, do not adequately capture the topical relationship between two documents
that are linked together. Instead, they propose two alternatives. The first, Pairwise Link-
LDA, replaces the link model of Link-LDA with a model based on mixed membership
stochastic blockmodels (Airoldi et al., 2008), where each possible link is modeled as a
Bernoulli variable that is conditioned on a topic chosen based on the topic distributions of
each of the two endpoints of the link. The second approach, Link-PLSA-LDA, retains the
link generation model of Link-LDA, but changes the word generation model for some of the
documents (the ones with incoming links) so that the words in such a document depend on
the topics of other documents that link to it. The downside of this latter approach is that
it only works when the nodes can be divided into a set with only outgoing links and a set
with only incoming links. However, Nallapati et al. argue that this limitation can be largely
overcome by duplicating any nodes that have both incoming and outgoing links. Moreover,
this approach is much faster and more scalable than Pairwise Link-LDA. Nallapati et al.
demonstrate that both models outperform Link-LDA on a likelihood ranking task, and that
Link-PLSA-LDA also outperforms Link-LDA on a link prediction task. They also show
that Link-PLSA-LDA and Link-LDA were comparable in terms of execution time, but that
Pairwise Link-LDA was much slower.

Changes to the generative model used by each of these approaches encode different as-
sumptions about the data and can lead to significant performance differences. For instance,
Chang and Blei (2009) introduce the Relational Topic Model (RTM) and compare it to the
Pairwise Link-LDA model discussed above. Both models allow similar flexibility in terms
of how links are defined, but Chang and Blei argue that their model forces the same topic
assignments that are used to generate the words in the documents to also generate the
links, which is not true of Pairwise Link-LDA. They then demonstrate that RTM provides
more accurate predictions and link suggestions than Pairwise Link-LDA and several other
baselines.
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Another possible change to the model is to add other types of objects. For instance,
Topic-Link LDA (Liu, Niculescu-Mizil, & Gryc, 2009) models not only documents, links,
and the most likely topics associated with each document, but also explicitly considers the
author of each document and clusters these authors into multiple “communities.” Creating
this new clustering is not equivalent to finding per-document topics because each author
is associated with more than one document. They argue that this approach is analogous
to unifying the separate tasks of (1) assigning topics to documents and (2) analyzing the
social network of authors. They show that their approach can in some cases outperform
LDA and Link-LDA.

7.3 Using Text Associated with Links

The final type of joint transformation techniques form link features based on text associated
with links, such as the text of email messages (McCallum, Wang, & Corrada-Emmanuel,
2007) or scientific abstracts that relate to a particular protein-protein interaction (Bala-
subramanyan & Cohen, 2011). Several such techniques were discussed previously in the
context of link interpretation. For instance, Section 4.2 discussed how models such as the
Author-Recipient-Topic (ART) model (McCallum, Wang, & Corrada-Emmanuel, 2007) and
the Group-Topic (GT) model (McCallum, Wang, & Mohanty, 2007) extend LDA to perform
link labeling; the strength of these predicted labels (topics) can also be used to weight the
links. In addition, the GT model directly assigns nodes to groups (i.e., node labeling), while
the labels that ART associates with each link could also be used to label the associated
nodes. The RART model (McCallum, Wang, & Corrada-Emmanuel, 2007) extends ART
by allowing a node to have multiple roles. More recently, Block-LDA (Balasubramanyan
& Cohen, 2011) merges the ideas from these latent variables models with stochastic block-
models. More specifically, the Block-LDA shares information through three components:
the link model shares information with a block structure which is then shared by the topic
model. Unlike GT and ART, however, Block-LDA focuses on labeling the nodes rather
than the links. Balasubramanyan and Cohen evaluate Block-LDA on a protein dataset and
the Enron email corpus and demonstrate that it outperforms Link-LDA and several other
baselines on the task of protein functional category prediction.

7.4 Discussion

Most of the techniques discussed above are variants of latent group models that focus on
node and/or link label prediction, but they can also be used for node prediction where the
new nodes represent newly discovered topics or latent groups. These models have also been
extended to incorporate notions of time (Dietz, Bickel, & Scheffer, 2007; Wang, Blei, &
Heckerman, 2008; Wang & McCallum, 2006), topic hierarchies (Li & McCallum, 2006), and
correlations between topics (Blei & Lafferty, 2007). In addition, links are usually assumed
to be generated based on the overall topic(s) of a node or link. In contrast, the Latent
Topic Hypertext Model (LTHM) (Gruber, Rosen-Zvi, & Weiss, 2008) models each link as
originating from some specific word in a document. Somewhat surprisingly, they show
that this approach leads to a model with fewer parameters than models like Link-LDA,
and demonstrate that their approach outperforms both Link-LDA and Link-PLSA when
evaluated on a link prediction task.
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(a) Initial Graph (b) Joint Transformation

Figure 10: Example of Joint Transformation: In this example, new latent nodes
are added to represent discovered topics, and weighted links are added from
each original node to a new latent node. In addition, weighted links are added
between the latent nodes, representing connection strength between these topics.
Finally, new links between the original nodes may be also be predicted. Note
this example is adapted from results found in the work of Nallapati et al. (2008).

If new nodes are added to the graph to represent discovered topics, then links are
invariably added to connect existing nodes to the new nodes. However, some models may
also learn information about how the discovered topics are related to each other. For
instance, Figure 10 shows how two new topics are discovered in a graph and how they are
connected to the existing nodes. In addition, the topics are connected to each other with
new links where the weight of each link represents how frequently a document from that
topic cites a document representing a different topic. Adding these additional links to the
graph lets the original nodes be connected more closely not only to their primary topics but
also to related topics.

8. Discussion and Challenges

In this section we discuss additional issues that are related to relational representation
transformation and highlight important challenges for future work.

8.1 Guiding and Evaluating Representation Transformation

The goal of representation transformation is often to “improve” the data representation in
some way that leads to better results for a subsequent task or possibly to a more understand-
able representation. How can we evaluate whether a particular transformation technique
has accomplished this goal? We first address this question, then consider when the final
goal can be used to more directly guide the initial transformation.

For some tasks, representation evaluation is straightforward provided that ground truth
values are known for a hold-out data set. For instance, to test if a technique for link
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prediction is effective, accuracy can be measured for links predicted for the hold-out set
(Taskar et al., 2003; Liu et al., 2009). The particular evaluation metric can be modified as
appropriate for the domain. For instance, Chang and Blei (2009) evaluate the precision of
the twenty highest-ranked links suggested for each document, while Nallapati et al. (2008)
consider a custom metric called “RKL” that measures the rank of the last true link suggested
by the model. Likewise, if the desired task involves classification, then a classification
algorithm can be run on the hold-out data, with and without the representation change, to
see if the change increases classification accuracy.

In other cases, it may be difficult to directly measure how well a representation change
has performed, but classification can be used as a surrogate measure: if accuracy increases,
the change is assumed to be beneficial. For instance, classification has been used to eval-
uate link prediction (Gallagher et al., 2008), link weighting (Xiang et al., 2010), link la-
beling (Rossi & Neville, 2010; Macskassy, 2007), and node prediction (Neville & Jensen,
2005). In addition, node labeling is naturally a classification problem, while node weighting
is usually evaluated in other ways, e.g., based on query relevance.

Other techniques can be used when direct evaluation is not feasible, but there exists
some other metric that is believed to be related. For instance, higher autocorrelation in a
graph can be associated with the presence of more sensible links, and algorithms such as
collective classification typically perform better when the level of autocorrelation is higher.
Thus, Xiang et al. (2010) demonstrate the success of their technique for estimating relation-
ship strengths (link weights) based in part on showing an increase in autocorrelation when
measured for several attributes in a social network. Likewise, increased information gain
for some of the attributes could be used to demonstrate an improved representation (Lippi,
Jaeger, Frasconi, & Passerini, 2009), or link perplexity could be used to assess topic la-
belings (Balasubramanyan & Cohen, 2011). Naturally, the most appropriate evaluation
techniques vary based upon the task, and a comparison of transformation techniques may
yield different results depending upon what metric is chosen.

Ideally, representation transformation would be guided more directly by the final goal
as it is executed, rather than only being evaluated when the transformation is complete.
This is often the case for the feature selection and structure learning algorithms discussed
in Section 6.3: task accuracy (or a surrogate measure) is evaluated with a particular feature
added, and it is retained if accuracy has improved. In other cases, the transformation is
even more directly specified by the desired end goal. For instance, the “supervised random
walk” approach discussed in Section 3.3 uses a gradient descent method to obtain new link
weights such that links predicted by a subsequent random walk (their final goal) will be
more accurate. Likewise, Menon and Elkan (2010) show how to add supervision to methods
for generating latent features (see introduction to Section 5) so that the features learned
would be more relevant to their final classification task. They show, however, that adding
such supervision is not always helpful. As a final example, Shi, Li, and Yu (2011) use a
quadratic program to optimize a linear combination of link weights such that the final link
weights will lead directly to more accurate classification via a label propagation algorithm.

In general, ensuring that a particular transformation will improve performance on the
final SRL task remains challenging. Many transformations cannot be directly guided by the
final goal, either because suitable supervised data is not available, or because it is not clear
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how to modify the transformation algorithms to use such information (e.g., with the latent
topic models of Section 7 or the group detection algorithms of Section 5).

8.2 Causal Discovery

Causal discovery refers to identifying cause-and-effect relationships (i.e., smoking causes
cancer) from either online experimentation (Aral & Walker, 2010) or from observational
data. The challenge is to distinguish true causal relationships from mere statistical correla-
tions. One approach is to use quasi-experimental designs (QEDs), which take advantage of
circumstances in non-experimental data to identify situations that provide the equivalent of
experimental control and randomization. Jensen, Fast, Taylor, and Maier (2008) propose a
system to discover knowledge by applying QEDs that were discovered automatically. More
recently, Oktay, Taylor, and Jensen (2010) apply three different QEDs to demonstrate how
one can gain causal understanding of a social media system. There is also another causal
discovery technique for linear models proposed by Wang and Chan (2010). The challenge
remains of how to extend these techniques to apply to a broader range of relational data.

8.3 Subgraph Transformation and Graph Generation

The majority of this article focused on transformation tasks centered around the nodes or
links of the graphs. However, there are also useful tasks for subgraph transformation which
seek to identify frequent/informative substructures in a set of graphs or to create features
or classify such subgraphs (Inokuchi, Washio, & Motoda, 2000; Deshpande, Kuramochi,
Wale, & Karypis, 2005). For instance, Kong and Yu (2010) consider how to use semi-
supervised techniques to perform feature selection for subgraph classification given only a
few labeled subgraphs. As with nodes and links, for subgraphs the tasks of prediction,
labeling, weighting, and feature generation can all be described. Many of the techniques
that we described for node-centered features can also be used in this context, but a full
discussion of subgraph transformation is beyond the scope of this article.

Recently, graph generation algorithms have attracted significant interest. These algo-
rithms use some model to represent a family of graphs, and present a way to generate multi-
ple samples from this family. Two prominent models are Kronecker Product Graph Models
(KPGMs) (Leskovec, Chakrabarti, et al., 2010) and those based on preferential attachment
(Price, 1976; Barabási & Albert, 1999). These graph generation methods take advantage
of global (with KPGMs) and local (with preferential attachment models) graph properties
to generate a distribution of graphs that can potentially include attributes. Sampling from
these models can be useful for creating more robust algorithms, for instance by training a
classifier on a family of related graphs instead of on a single graph. Newman (2003) surveys
additional network models and properties that are relevant to graph generation.

8.4 Model Representation

In SRL there is also the notion of model representation: what kind of statistical model is
learned to represent the relationship between the nodes, links, and their features? Some of
the most prominent models for SRL are Probabilistic Relational Models (PRMs) (Friedman
et al., 1999), Relational Markov Networks (RMNs) (Taskar et al., 2002), Relational Depen-
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dency Networks (RDNs) (Neville & Jensen, 2007), Structural Logistic Regression (Popescul
et al., 2003b), Conditional Random Fields (CRFs) (Lafferty, McCallum, & Pereira, 2001),
and Markov Logic Networks (MLNs) (Domingos & Richardson, 2004; Richardson & Domin-
gos, 2006); full discussion of these models is beyond the scope of this article. In many cases
techniques for relational representation transformation, such as link prediction, can be per-
formed regardless of what kind of statistical model will be subsequently used. However, the
choice of statistical model does strongly interact with what kinds of node and link features
are useful (or even possible to use); Section 6.3 describes some of these connections. While
a number of relevant comparisons have already been published (Jensen et al., 2004; Neville
& Jensen, 2007; Macskassy & Provost, 2007; Sen et al., 2008; McDowell et al., 2009; Crane
& McDowell, 2011), more work is needed to evaluate the interaction between the choice of
statistical model and feature selection, and to evaluate which statistical models work best
in domains with certain characteristics.

8.5 Temporal and Spatial Representation Transformation

Where appropriate, we have already discussed multiple techniques that can incorporate
temporal information from graph data (see especially Sections 4.2, 6.1, and 6.3). These
techniques focused on solving particular problems such as node classification, but dealing
with such data invariably requires studying how to represent the time-varying elements.
However, more work is needed to examine the general tradeoffs involved with different
temporal representations. For instance, Hill, Agarwal, Bell, and Volinsky (2006) provide a
generic framework for modeling any temporal dynamic network where the central goal is to
build an approximate representation that satisfies pre-specified objectives. They focus on
summarization (representing historical behavior between two nodes in a concise manner),
simplification (removing noise from both edges and nodes, spurious transactions, or stale re-
lationships), efficiency (supporting fast analysis and updating), and predictive performance
(optimizing the representation to maximize predictive performance). This work provides a
number of useful building blocks, but more comparisons are needed to, for instance, eval-
uate the merits of using summarized networks with general-purpose algorithms vs. using
more specialized algorithms with data that maintains the temporal distinctions.

Temporal data is one particular kind of data that can be represented as a relational
sequence. Kersting, De Raedt, Gutmann, Karwath, and Landwehr (2008) survey the area
of relational sequence learning and explains multiple tasks related to such data, such as
sequence mining and alignment. These tasks often involve the need to identify relevant
features or structure, such as identifying frequent patterns or useful similarity functions.
Thus, the set of useful techniques for feature construction and search in this domain overlap
with those discussed in Section 6.3.

8.6 Privacy Preserving Representation

There is sometimes a desire to make private graph-based data publicly available (e.g., to
support research or public policy) in a way that preserves the privacy of the individuals
described by the data. The goal of privacy preserving representation is to transform the
data in a way that minimizes information loss while maximizing anonymization, e.g., to
prevent individuals in the anonymized network from being identified. Naive approaches to
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anonymization operate by simply replacing an individual’s name (or other attributes) with
arbitrary and meaningless unique identifiers. However, in social networks there are many
adversarial methods through which the true identity of a user can often be discovered from
such an anonymized network. In particular, the adversarial methods can use the network
structure and/or remaining attributes to discover the identities of users within the network
(Liu & Terzi, 2008; Zhou, Pei, & Luk, 2008; Narayanan & Shmatikov, 2009).

An early approach by Zheleva and Getoor (2007) examines how a graph may be modified
to prevent sensitive relationships (a particular kind of labeled link) from being disclosed.
They describe their approach in terms of node anonymization and edge anonymization.
Node anonymization clusters the nodes into m equivalence classes based on node attributes
only, while most of the edge anonymization approaches are based on cleverly removing
sensitive edges. Backstrom, Dwork, and Kleinberg (2007) address a related family of attacks
where an adversary is able to learn whether an edge exists between targeted pairs of nodes.

More recently, Hay, Miklau, Jensen, Towsley, and Weis (2008) study privacy issues in
graphs that contain no attributes. Their goal is to prevent “structural re-identification”
(i.e., identity reconstruction using graph topology information) by anonymizing a graph via
creating an aggregate network model that allows for samples to be drawn from the model.
The approach generalizes a graph by partitioning the nodes and then summarizing the graph
at the partition level. This approach differs from the other approaches described above
because it drastically changes the representation as opposed to making more incremental
changes. However, this method enforces privacy while still preserving enough of the network
properties to allow for a wide variety of network analyses to be performed.

In each of these investigations the key factors are the information available in the graph,
the resources of the attacker, and the type of attacks that must be defended against. In
addition, if an attacker can possibly obtain additional information related to the graph
from other sources, then the challenges are even more difficult. More work is needed to
provide strong privacy guarantees while still enabling partial public release of graph-based
information.

9. Conclusion

Given the increasing prevalence and importance of relational data, this article has surveyed
some of the most significant current issues in relational representation transformation. Af-
ter presenting a new taxonomy of important transformation tasks in Section 2, we next
discussed the four primary tasks of link prediction, link interpretation, node prediction,
and node interpretation. Section 7 considered how some of these tasks can be accomplished
simultaneously via techniques for joint transformation. Finally, Section 8 considered how
to perform representation evaluation and key challenges for future work.

There are additional possible representation transformations that we have not had space
to discuss, or that do not fit cleanly in the taxonomy of Figure 2. For instance, in a bipartite
graph of customers and products, it may be useful to eliminate all product nodes, replacing
their information content with new links among the customers that purchased the same
product. This is somewhat related to the group discovery techniques of Section 5. We
have also not considered in any depth the potential for transforming nodes into edges or
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vice versa (though the representation choices of Figure 6 are also relevant here), and this
technique can sometimes be a useful pre-processing step.

The taxonomy presented in Section 2 highlighted the symmetry between the possible
transformation tasks for links and those for nodes. This symmetry helped to organize this
survey, and also suggests areas where techniques developed for one of these entities can
be used for an analogous task with the other. For instance, Liben-Nowell and Kleinberg
(2007) reformulated traditional node weighting algorithms to weight links. Likewise, topic
discovery techniques based on LDA can be used both for node labeling and for link labeling.
Finally, many of the techniques used to create node features can also be used to create link
features, and vice versa, although node features have been studied much more thoroughly.

As discussed in Section 8, there remains much work to do. For instance, link prediction
remains a very difficult problem, especially for the general case where any two arbitrary
nodes might be connected together. Even more significantly, while we have described a
wide range of techniques that can address each of the transformation tasks, at the end of
the day the practitioner is left with a wide range of choices without many guarantees about
what might work best. For instance, node weighting may improve classification accuracy
for one dataset but decrease it on another. This challenge is made all the more difficult
because the techniques that we have described come from a wide range of areas, including
graph theory, social network analysis, numerical linear algebra (e.g., matrix factorization),
metric learning, information theory, information retrieval, inductive logic programming,
statistical relational learning, and probabilistic graphical models. While the breadth of
techniques relevant to relational transformation is a wonderful resource, it also means that
evaluating the representation change techniques that are relevant to a particular task is
a time-consuming, technically challenging, and incomplete process. Therefore, much more
work is needed to establish a theoretical understanding of how different representation
changes affect the data, how different data characteristics interact with this process, and
how the combination of these techniques and the data characteristics affect the final results
of an analysis with relational data.
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