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Abstract

In some domestic professional sports leagues, the home stadiums are located in cities
connected by a common train line running in one direction. For these instances, we can
incorporate this geographical information to determine optimal or nearly-optimal solutions
to the n-team Traveling Tournament Problem (TTP), an NP-hard sports scheduling prob-
lem whose solution is a double round-robin tournament schedule that minimizes the sum
total of distances traveled by all n teams.

We introduce the Linear Distance Traveling Tournament Problem (LD-TTP), and solve
it for n = 4 and n = 6, generating the complete set of possible solutions through elementary
combinatorial techniques. For larger n, we propose a novel “expander construction” that
generates an approximate solution to the LD-TTP. For n ≡ 4 (mod 6), we show that our
expander construction produces a feasible double round-robin tournament schedule whose
total distance is guaranteed to be no worse than 4

3
times the optimal solution, regardless

of where the n teams are located. This 4

3
-approximation for the LD-TTP is stronger than

the currently best-known ratio of 5

3
+ ε for the general TTP.

We conclude the paper by applying this linear distance relaxation to general (non-
linear) n-team TTP instances, where we develop fast approximate solutions by simply
“assuming” the n teams lie on a straight line and solving the modified problem. We
show that this technique surprisingly generates the distance-optimal tournament on all
benchmark sets on 6 teams, as well as close-to-optimal schedules for larger n, even when
the teams are located around a circle or positioned in three-dimensional space.

1. Introduction

In this paper, we introduce a simple yet powerful technique to develop approximate solutions
to the Traveling Tournament Problem (TTP), by “assuming” the n teams are located on a
straight line, thereby reducing the

(n
2

)

pairwise distance parameters to just n− 1 variables,
and then solving the relaxed problem.

The Traveling Tournament Problem (TTP) was inspired by the real-life problem of
optimizing the regular-season schedule for Major League Baseball. The goal of the TTP
is to determine the optimal double round-robin tournament schedule for an n-team sports
league that minimizes the sum total of distances traveled by all n teams. Since the problem
was first proposed (Easton, Nemhauser, & Trick, 2001), the TTP has attracted a significant
amount of research (Kendall, Knust, Ribeiro, & Urrutia, 2010), with numerous heuristics
developed for solving hard TTP instances, such as local search techniques as well as integer
and constraint programming.
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In many ways, the TTP is a variant of the well-known Traveling Salesman Problem
(TSP), asking for a distance-optimal schedule linking venues that are close to one another.
The computational complexity of the TSP is NP-hard; recently, it was shown that solving
the TTP is strongly NP-hard (Thielen & Westphal, 2010).

In the Linear Distance Traveling Tournament Problem (LD-TTP), we assume the n
teams are located on a straight line. This straight line relaxation is a natural heuristic
when the n teams are located in cities connected by a common train line running in one
direction, modelling the actual context of domestic sports leagues in countries such as Chile,
Sweden, Italy, and Japan. For example, Figure 1 illustrates the locations of the six home
stadiums in Nippon Pro Baseball’s Central League, all situated in close proximity to major
stations on Japan’s primary bullet-train line.

Figure 1: The six Central League teams in Japanese Pro Baseball.

In Section 2, we formally define the TTP. In Section 3, we solve the LD-TTP for n = 4
and list all 18 non-isomorphic tournament schedules achieving the optimal distance. In
Section 4, we solve the LD-TTP for n = 6 and show that there are 295 non-isomorphic
tournament schedules that can attain one of the seven possible values for the optimal
distance. In Section 5, we provide an “expander construction” to produce a feasible double
round-robin tournament schedule for any tournament on n = 6m − 2 teams, and prove
that it is a 4

3 -approximation of the distance-optimal schedule, for any m ≥ 1. In Section 6,
we apply our theories to all known (non-linear) 6-team benchmark sets (Trick, 2012), and
show that in all cases, the optimal solution appears in our list of 295. We also apply our
expander construction to various benchmark sets on 10 and 16 teams, showing that this
optimality gap is actually far lower than the theoretical maximum of 33.3%. In Section 7,
we do an in-depth analysis of the optimality gap, and conclude the paper in Section 8 with
some open problems and directions for future research.

2. The Traveling Tournament Problem

Let {t1, t2, . . . , tn} be the n teams in a sports league, where n is even. Let D be the n× n
distance matrix, where entry Di,j is the distance between the home stadiums of teams ti
and tj. By definition, Di,j = Dj,i for all 1 ≤ i, j ≤ n, and all diagonal entries Di,i are zero.
We assume the distances form a metric, i.e., Di,j ≤ Di,k +Dk,j for all i, j, k.
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The TTP requires a tournament lasting 2(n−1) days, where every team has exactly one
game scheduled each day with no byes or days off (this explains why n must be even.) The
objective is to minimize the total distance traveled by the n teams, subject to the following
conditions:

(a) each-venue: Each pair of teams plays twice, once in each other’s home venue.

(b) at-most-three: No team may have a home stand or road trip lasting more than three
games.

(c) no-repeat: A team cannot play against the same opponent in two consecutive games.

When calculating the total distance, we assume that every team begins the tournament
at home and returns home after playing its last away game. Furthermore, whenever a team
has a road trip consisting of multiple away games, the team doesn’t return to their home
city but rather proceeds directly to their next away venue.

To illustrate with a specific example, Table 1 lists the distance-optimal schedule (Easton
et al., 2001) for a bechmark set known as NL6 (six teams from Major League Baseball’s
National League). In this schedule, as with all subsequent schedules presented in this paper,
home games are marked in bold.

Team 1 2 3 4 5 6 7 8 9 10
Florida (FLO) ATL PHI NYK PIT NYK MON PIT PHI MON ATL

Atlanta (ATL) FLO NYK PIT PHI MON PIT PHI MON NYK FLO
Pittsburgh (PIT) NYK MON ATL FLO PHI ATL FLO NYK PHI MON
Philadelphia (PHI) MON FLO MON ATL PIT NYK ATL FLO PIT NYK
New York (NYK) PIT ATL FLO MON FLO PHI MON PIT ATL PHI

Montreal (MON) PHI PIT PHI NYK ATL FLO NYK ATL FLO PIT

Table 1: An optimal TTP solution for NL6.

For example, the total distance traveled by Florida is DFLO,ATL+DATL,PHI+DPHI,FLO+
DFLO,NYK+DNYK,MON+DMON,PIT+DPIT,FLO. Based on the NL6 distance matrix (Trick,
2012), the tournament schedule in Table 1 requires 23916 miles of total team travel, which
can be shown to be the minimum distance possible.

3. The 4-Team LD-TTP

Figure 2: The general instance of the LD-TTP for n = 4.

In the Linear Distance TTP, we assume the n home stadiums lie on a straight line, with
t1 at one end and tn at the other. Thus, Di,j = Di,k + Dk,j for all triplets (i, j, k) with
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1 ≤ i < k < j ≤ n. Since the Triangle Inequality is replaced by the Triangle Equality, we
no longer need to consider all

(n
2

)

entries in the distance matrix D; each tournament’s total
travel distance is a function of n− 1 variables, namely the set {Di,i+1 : 1 ≤ i ≤ n− 1}. For
notational convenience, denote di := Di,i+1 for all 1 ≤ i ≤ n− 1.

Team 1 2 3 4 5 6
t1 t4 t3 t2 t4 t3 t2

t2 t3 t4 t1 t3 t4 t1
t3 t2 t1 t4 t2 t1 t4
t4 t1 t2 t3 t1 t2 t3

Table 2: An optimal LD-TTP solution for n = 4.

Table 2 gives a feasible solution to the 4-team LD-TTP. We claim that this solution is
optimal, for all possible 3-tuples (d1, d2, d3). To see why this is so, define ILBti to be the
independent lower bound for team ti, the minimum possible distance that can be traveled
by ti in order to complete its games, independent of the other teams’ schedules. Then a
trivial lower bound for the total travel distance is TLB ≥

∑n
i=1 ILBti .

Recall that when calculating ti’s travel distance, we assume that ti begins the tourna-
ment at home and returns home after playing its last away game. Since ti must play a road
game against each of the other three teams, ILBti = 2(d1 + d2 + d3) for all 1 ≤ i ≤ 4. This
implies that TLB ≥ 8(d1 + d2 + d3). Since Table 2 is a tournament schedule whose total
distance is the trivial lower bound, this completes the proof.

We remark that Table 2 is not the unique solution - for example, we can generate another
optimal schedule by simply reading Table 2 from right to left. Assuming the first match
between t1 and t2 occurs in the home city of t2, a straightforward computer search finds 18
different schedules with total distance 8(d1 + d2+ d3), which are provided in Table 3 below.
(For readability, we have replaced each occurrence of ti by the single index i.) Thus, by
symmetry, there are 36 optimal schedules for the 4-team LD-TTP. For the interested reader,
Appendix A provides the actual Maplesoft code that generated these optimal schedules.

234234 234243 234342 243234 243243 243432 342342 342432 432342
143143 143134 143431 134143 134134 134341 431431 431341 341431
412412 412421 412124 421412 421421 421214 124124 124214 214124
321321 321312 321213 312321 312312 312123 213213 213123 123213

432432 342342 342432 342342 342432 432342 432432 432342 432432
341341 431431 431341 431431 431341 341431 341341 341431 341341
214214 124124 124214 124124 124214 214124 214214 214124 214214
123123 213213 213123 213213 213123 123213 123123 123213 123123

Table 3: The eighteen non-isomorphic optimal LD-TTP solutions for n = 4.

This completes the analysis of the 4-team Linear Distance TTP.
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4. The 6-Team LD-TTP

Unlike the previous section, the analysis for the 6-team LD-TTP requires more work.

Figure 3: The general instance of the LD-TTP for n = 6.

Any 6-team instance of the LD-TTP can be represented by the 5-tuple (d1, d2, d3, d4, d5).
We define S = 14d1 + 16d2 + 20d3 + 16d4 + 14d5. We claim the following:

Theorem 1. Let Γ be a 6-team instance of the LD-TTP. The optimal solution to Γ is a
schedule with total distance S + 2min{d2 + d4, d1 + d4, d3 + d4, 3d4, d2 + d5, d2 + d3, 3d2}.

We will prove Theorem 1 through elementary combinatorial arguments, thus demon-
strating the utility of this linear distance relaxation and presenting new techniques to attack
the general TTP in ways that differ from integer/constraint programming. Our proof will
follow from several lemmas, which we now prove one by one.

Lemma 1. Any feasible schedule of Γ must have total distance at least S.

Proof. For each 1 ≤ k ≤ 5, define ck to be the total number of times a team crosses the
“bridge” of length dk, connecting the home stadiums of teams tk and tk+1. Let Z be the
total travel distance of this schedule. Since Γ is linear, Z =

∑5
k=1 ckdk. Since each team

crosses every bridge an even number of times, ck is always even.

Let Lk be the home venues of {t1, t2, . . . , tk} and Rk be the home venues of {tk+1, . . . , t6}.
By the each-venue condition, every team in Lk plays a road game against every team in Rk.
By the at-most-three condition, every team in Lk must make at least 2d6−k

3 e trips across
the bridge, with half the trips in each direction. Similarly, every team in Rk must make at
least 2dk3e trips across the bridge, implying that ck ≥ 2kd6−k

3 e+ 2(6− k)dk3 e.

Thus, c1 ≥ 14, c2 ≥ 16, c4 ≥ 16, and c5 ≥ 14. We now show that c3 ≥ 20, which will
complete the proof that Z =

∑

ckdk ≥ 14d1 + 16d2 + 20d3 + 16d4 + 14d5 = S.

Since there are n = 6 teams, there are 2(n− 1) = 10 days of games. For each 1 ≤ i ≤ 9,
let Xi,i+1 be the total number of times the d3-length bridge is crossed as the teams move
from their games on the ith day to their games on the (i+1)th day. Let Xstart,1 and X10,end

respectively be the number of times the teams cross this bridge to play their first game, and
return home after having played their last game. Then c3 = Xstart,1+

∑9
i=1 Xi,i+1+X10,end.

For each 1 ≤ i ≤ 9, let f(i) denote the number of games played in L3 on day i. Thus,
on day i, exactly 2f(i) teams are to the left of this bridge and 6 − 2f(i) teams are to the
right. So f(i) ∈ {0, 1, 2, 3} for all i. Since |L3| and |R3| are odd, we have Xstart,1 ≥ 1 and
X10,end ≥ 1.

If f(i) < f(i + 1), then Xi,i+1 ≥ 2, as at least two teams who played in R3 on day i
must cross over to play their next game in L3. Similarly, if f(i) > f(i+1), then Xi,i+1 ≥ 2.

If f(i) = f(i+ 1) = 1, then on day i, two teams p and q play in L3 while the other four
teams play in R3. If Xi,i+1 = 0 then no team crosses the bridge after day i, forcing p and
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q to play against each other on day i+ 1, thus violating the no-repeat condition. Thus, at
least one of p or q must cross the bridge, exchanging positions with at least one other team
who must cross to play in L3. Thus, Xi,i+1 ≥ 2. Similarly, if f(i) = f(i + 1) = 2, then
Xi,i+1 ≥ 2.

If f(i) = f(i+ 1) = 0, then all teams play in R3 on days i and i+ 1. Then Xstart,1 = 3
if i = 1 and X10,end = 3 if i = 9. If 2 ≤ i ≤ 8, then each of {t1, t2, t3} must play a home
game on either day i− 1 or day i+2, in order to satisfy the at-most-three condition. Thus,
on one of these two days, at least two teams in {t1, t2, t3} play at home, implying at least
four teams are in L3. Therefore, we must have Xi−1,i ≥ 4 or Xi+1,i+2 ≥ 4.

We derive the same results if f(i) = f(i + 1) = 3. We have Xstart,1 = 3 if i = 1,
X10,end = 3 if i = 9, and either Xi−1,i ≥ 4 or Xi+1,i+2 ≥ 4 if 2 ≤ i ≤ 8.

So in our double round-robin schedule, if the sequence {f(1), . . . , f(10)} has no pair of
consecutive 0s or consecutive 3s, then c3 = Xstart,1+

∑9
i=1Xi,i+1+X10,end ≥ 1+9·2+1 = 20.

And if this is not the case, we still have c3 ≥ 20 from the results of the previous two
paragraphs. We have therefore proven that Z =

∑

ckdk ≥ S.

Lemma 2. Consider a feasible schedule of Γ with total distance Z =
∑

ckdk. If c2 = 16,
then teams t1 and t2 must play against each other on Days 1 and 10.

Proof. As we did in Lemma 1, for each 1 ≤ i ≤ 9 define X∗
i,i+1 be the total number

of times the d2-length bridge is crossed as the teams move from their games on the ith

day to their games on the (i + 1)th day. Similarly define X∗
start,1 and X∗

10,end so that

c2 = X∗
start,1 +

∑9
i=1 X

∗
i,i+1 +X∗

10,end.

We now prove that
∑9

i=1X
∗
i,i+1 ≥ 16. To do this, for each 1 ≤ i ≤ 10, let g(i) denote

the number of games played in L2 (i.e., the home stadiums of t1 and t2) on day i. So on
day i, exactly 2g(i) teams are to the left of the d2-length bridge and 6− 2g(i) teams are to
the right. Clearly, 0 ≤ g(i) ≤ 2 for all 1 ≤ i ≤ 10.

If |g(i + 1) − g(i)| = 1, then X∗
i,i+1 ≥ 2, as at least two teams who played on day i

on one side of the bridge must cross over to play their next game on the other side. If
|g(i + 1)− g(i)| = 2, then X∗

i,i+1 = 4.

If g(i) = g(i+ 1) = 1, then on day i, two teams p and q play in L2 while the other four
teams play in R2. If X∗

i,i+1 = 0 then no team crosses the bridge after day i, forcing p and
q to play against each other on day i+ 1, thus violating the no-repeat condition. Thus, at
least one of p or q must cross the bridge, exchanging positions with at least one other team
who must cross to play in L2. Thus, X

∗
i,i+1 ≥ 2. Similarly, if g(i) = g(i + 1) = 2, then two

teams p and q play in R2 while the other four teams play in L2, and we apply the same
argument to show that X∗

i,i+1 ≥ 2. The remaining case to consider is g(i) = g(i + 1) = 0,
in which case X∗

i,i+1 could equal 0.

Suppose there are a days with g(i) = 0, b days with g(i) = 1, and c days with g(i) = 2.
Then a+ b+ c = 10. Since each of t1 and t2 play five home games, this implies b+2c = 10.
From this, we see that a = c and that there are only six possible triplets for (a, b, c), namely
(0, 10, 0), (1, 8, 1), (2, 6, 2), (3, 4, 3), (4, 2, 4), and (5, 0, 5).

If a = 0 or a = 1, then there does not exist an index i with g(i) = g(i+1) = 0, implying
that X∗

i,i+1 ≥ 2 for all 1 ≤ i ≤ 9. Hence,
∑9

i=1 X
∗
i,i+1 ≥ 9× 2 = 18 in these cases. If a = 2,

then there is at most one index i with g(i) = g(i+1) = 0, implying that
∑9

i=1X
∗
i,i+1 ≥ 16.
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Suppose
∑9

i=1X
∗
i,i+1 < 16. Then we must have 3 ≤ a ≤ 5, with two or more indices i sat-

isfying g(i) = g(i+ 1) = 0. For example, one such 10-tuple is (g(1), g(2), . . . , g(9), g(10)) =
(1, 0, 0, 0, 1, 1, 1, 2, 2, 2), which can have

∑9
i=1X

∗
i,i+1 = 14. A simple case analysis of each

of (a, b, c) ∈ {(3, 4, 3), (4, 2, 4), (5, 0, 5)} shows that all such “bad” 10-tuples violate the at-
most-three condition; for example, in the 10-tuple above, either t1 or t2 must play four
consecutive road games to start the tournament, which is a contradiction.

Therefore, we have proven that
∑9

i=1X
∗
i,i+1 ≥ 16 in all cases. This implies that if

c2 = 16, then X∗
start,1 = X∗

10,end = 0. Hence, on Days 1 and 10, t1 and t2 stay in L2 while
the other four teams stay in R2. Since t1 and t2 are the only teams in L2, clearly this forces
these two teams to play against each other, to begin and end the tournament.

Lemma 3. Let S1 be the set of tournament schedules with distance S +2(d2 + d4), S2 with
distance S + 2(d1 + d4), S3 with distance S + 2(d3 + d4), S4 with distance S + 6d4, S5 with
distance S+2(d2+d5), S6 with distance S+2(d2+d3), and S7 with distance S+6d2. Then
each set in {S1, S2, . . . , S7} is non-empty.

Proof. For each of these seven sets, it suffices to find just one feasible schedule with the
desired total distance. For each of {S1, S2, S3, S4}, at least one such set has appeared
previously in the literature, as the solution to a 6-team benchmark set or in some other
context. (As we will see in the following section, we can label the six teams of the NL6
benchmark set so that Table 1 is an element of S4.)

1 2 3 4 5 6 7 8 9 10 d1 d2 d3 d4 d5
t1 t2 t3 t4 t6 t3 t5 t6 t4 t5 t2 4 4 4 2 2
t2 t1 t6 t5 t4 t6 t3 t4 t5 t3 t1 2 4 2 2 2
t3 t4 t1 t6 t5 t1 t2 t5 t6 t2 t4 2 4 4 2 2
t4 t3 t5 t1 t2 t5 t6 t2 t1 t6 t3 2 2 4 4 2
t5 t6 t4 t2 t3 t4 t1 t3 t2 t1 t6 2 2 2 4 2
t6 t5 t2 t3 t1 t2 t4 t1 t3 t4 t5 2 2 2 4 4

Table 4: Optimal CIRC6 solution, with distance S+2(d2+d4) = 14d1+18d2+20d3+18d4+14d5.

The solution to CIRC6 (Trick, 2012), where Di,j = min{j− i, 6− (j− i)} for all 1 ≤ i <
j ≤ 6, is an element of S1. Table 4 provides this schedule. For each 1 ≤ k ≤ 5, we list the
number of times the dk bridge is crossed by each of the six teams.

We conclude the proof by noting that |Si+3| = |Si| for 2 ≤ i ≤ 4, as we can label the
teams backward from t6 to t1 to create a feasible schedule where each distance dk is replaced
by d6−k. Therefore, we have shown that each Si is non-empty.

We are now ready to prove Theorem 1, that the optimal solution to any 6-team instance
Γ is a schedule that appears in S1 ∪ S2 ∪ . . . ∪ S7. We note that any of these seven optimal
distances can be the minimum, depending on the 5-tuple (d1, d2, d3, d4, d5).

Proof. Suppose the optimal solution to Γ has total distance Z =
∑

ckdk. By Lemma 1,
c1, c5 ≥ 14, c2, c4 ≥ 16, and c3 ≥ 20. Recall that each coefficient ck is even.
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By Lemma 3, S1 is non-empty, and so a schedule cannot be optimal if Z > S+2(d2+d4).
Thus, if c2, c4 ≥ 18, then we must have (c1, c2, c3, c4, c5) = (14, 18, 20, 18, 14) so that Z =
S + 2(d2 + d4), forcing the schedule to be in set S1.

Suppose that c2 ≤ c4, so that it suffices to check the possibility c2 = 16. By Lemma 2,
t1 and t2 must play against each other on Days 1 and 10. There are three cases:

Case 1: c2 = 16, c1 = 14.

Case 2: c2 = 16, c1 ≥ 16, c4 = 16.

Case 3: c2 = 16, c1 ≥ 16, c4 ≥ 18.

In Case 1, every team must travel the minimum number of times across the d1- and
d2-bridges: team t1 can only take two road trips, team t2 can only take two road trips to
play {t3, t4, t5, t6}, and each of {t3, t4, t5, t6} must play their road games against t1 and t2
on consecutive days.

By symmetry, we may assume that the first match between t1 and t2 occurs in the home
city of t2 (i.e., it is a road game for t1). By Lemma 2, the schedule for team t1 must be one
of the following four cases, for some permutation {p, q, r, s} of {3, 4, 5, 6}.

Case Team 1 2 3 4 5 6 7 8 9 10
#A1 t1 t2 t? tp tq t? t? t? tr ts t2

#A2 t1 t2 t? t? tp tq t? t? tr ts t2

#A3 t1 t2 t? tp tq tr t? t? t? ts t2

#A4 t1 t2 t? t? tp tq tr t? t? ts t2

In all four cases, t1 plays a home game against ts on day 9. In other words, ts plays
on the road against t1 on day 9, forcing ts’s road game against t2 to take place either the
day before or the day after. The latter is not possible, as t2 already has a game scheduled
against t1 on day 10; thus, ts must play on the road against t2 on day 8.

Hence, t2 plays a home game against ts on day 8 and a road game against t1 on day 10.
Now suppose that t2 has a home game on day 9. Then t2’s opponent that day must be tr,
and we must have either Case #A1 or #A2 above. (This is the only way we can ensure tr
plays their road games against t1 and t2 on consecutive days.)

Team 1 2 3 4 5 6 7 8 9 10
t1 t1 tr ts t2

t2 t1 ts tr t1

There are six teams in the tournament, and on days 8 and 9, the same set of four teams
have each been assigned a game. From the above table, it is clear that teams tp and tq must
play each other on day 8 and day 9, which is a violation of the no-repeat condition. This
is a contradiction, and therefore t2 must play a road game on day 9, against some team in
{t3, t4, t5, t6}.

As mentioned earlier, t2 can only take two road trips to play the four teams in {t3, t4, t5, t6},
which forces one of the following two scenarios:
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Case Team 1 2 3 4 5 6 7 8 9 10
#B1 t2 t1 tp tq t? t? t? tr ts t? t1
#B2 t2 t1 tp t? t? t? tq tr ts t? t1

For each of the 4× 2 = 8 pairs matching the cases for t1 with the cases for t2, we check
whether there exists a feasible schedule for which each team in {t3, t4, t5, t6} plays their road
games against t1 and t2 on consecutive days. A quick check shows that the only possibility
is the pairing of Case #A1 with Case #B1, leading to the following schedule for the first
two teams:

Team 1 2 3 4 5 6 7 8 9 10
t1 t2 t? tp tq t? t? t? tr ts t2

t2 t1 tp tq t? t? t? tr ts t? t1

This structural characterization reduces the search space considerably, and from this
(see Appendix B) we show that either (i) c4 ≥ 22, or (ii) c3 ≥ 22 and c4 ≥ 18. By Lemma
3, the latter implies Z = S + 2(d3 + d4) and the former implies Z = S + 6d4. Therefore,
this optimal schedule must be in S3 or S4.

In Case 2, we demonstrate that no structural characterization exists if c2 = c4 = 16. To
do this, we use Lemma 2 (for c2 = 16) and its symmetric analogue (for c4 = 16) to show
that in order not to violate the at-most-three or no-repeat conditions, t3 and t4 must play
each other on Days 1 and 10, as well as on some other Day i with 2 ≤ i ≤ 9. But then this
violates the each-venue condition. Hence, we may eliminate this case.

In Case 3, if c1 ≥ 16 and c4 ≥ 18, then Z is at least S + 2(d1 + d4). By Lemma 3, we
must have Z = S + 2(d1 + d4) and this optimal schedule must be in S2.

So we have shown that if c2 = 16, then the schedule appears in S2 ∪ S3 ∪ S4. By
symmetry, if c4 = 16, then the schedule appears in S5 ∪ S6 ∪ S7. Finally, if c2, c4 ≥ 18, the
schedule appears in S1. This concludes the proof.

By Theorem 1, there are only seven possible optimal distances. For each optimal dis-
tance, we can enumerate the set of tournament schedules with that distance, thus producing
the complete set of possible LD-TTP solutions, over all instances, for the case n = 6.

Theorem 2. Consider the set of all feasible tournaments for which the first game between
t1 and t2 occurs in the home city of t2. Then there are 295 schedules whose total distance
appears in S1 ∪ S2 ∪ . . . ∪ S7, grouped as follows:

Total Distance ∈ S1 ∈ S2 ∈ S3 ∈ S4 ∈ S5 ∈ S6 ∈ S7

# of Schedules 223 4 8 24 4 8 24

We derive Theorem 2 by a computer search. For each of {S1, S2, S3, S4}, we develop
a structural characterization theorem, similar to Case 1 above, that shows that a feasible
schedule in that set must have a certain form. This characterization reduces the search
space, from which a brute-force search (using Maplesoft) enumerates all possible schedules.
While it took several days to enumerate the 223 schedules in S1, Maplesoft took less than
100 seconds to enumerate the set of schedules in S3 and S4. As noted earlier, once we have
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the set of schedules in Si (for 2 ≤ i ≤ 4), we immediately have the set of schedules in Si+3

by symmetry. For the full details of each case, we refer the reader to Appendix B.

Let us briefly explain why |S1| is odd. For any schedule S, let Ψ(S) denote the schedule
produced by playing the games backwards (i.e., ti hosts tj on day d in S iff ti hosts tj on
day (11 − d) in Ψ(S).) And let Φ(S) denote the schedule produced by labelling the six
teams in reverse order (i.e., ti hosts tj on day d in S iff t7−i hosts t7−j on day d in Φ(S).)
For any schedule S, clearly S 6= Ψ(S) and S 6= Φ(S).

For any schedule S∗ ∈ S1, exactly one of Φ(S∗) and Φ(Ψ(S∗)) belongs to S1, since we’ve
stipulated that the first game between t1 and t2 occurs in the home city of t2. Since the
mapping functions Φ and Φ(Ψ) are involutions, the schedules in S1 can be grouped into
“pairs”. However, in 13 exceptional cases, the schedule S∗ ∈ S1 does not have a pair, since
S∗ = Φ(Ψ(S∗)). One such example is given in Table 5.

1 2 3 4 5 6 7 8 9 10
t1 t3 t6 t5 t4 t3 t5 t2 t4 t6 t2

t2 t4 t5 t4 t3 t6 t3 t1 t6 t5 t1
t3 t1 t4 t6 t2 t1 t2 t6 t5 t4 t5

t4 t2 t3 t2 t1 t5 t6 t5 t1 t3 t6

t5 t6 t2 t1 t6 t4 t1 t4 t3 t2 t3
t6 t5 t1 t3 t5 t2 t4 t3 t2 t1 t4

Table 5: A schedule S∗ in S1 with the property that S∗ = Φ(Ψ(S∗)).

In the above schedule, for any pair (i, j), ti hosts tj on day d iff t7−i hosts t7−j on day
11 − d. These thirteen exceptions justify the odd parity of |S1|. For 2 ≤ i ≤ 7, there is no
schedule with S∗ = Φ(Ψ(S∗)), which explains why |Si| is even in each of these cases.

5. An Approximation Algorithm

We have solved the LD-TTP for n = 4 and n = 6, and in both cases, determined the
complete set of schedules attaining the optimal distances. A natural follow-up question is
whether our techniques scale for larger values of n. To give a partial answer to this question,
we show that for all n ≡ 4 (mod 6), we can develop a solution to the n-team LD-TTP whose
total distance is at most 33% higher than that of the optimal solution, although in practice
this optimality gap is actually much lower.

While our construction is only a 4
3 -approximation, we note that this ratio is stronger than

the currently best-known (53 + ε)-approximation for the general TTP (Yamaguchi, Imahori,
Miyashiro, & Matsui, 2011). Our schedule is based on an “expander construction”, and is
completely different from previous approaches that generate approximate TTP solutions.
We now describe this construction, and apply it to benchmark instances on 10 teams and
16 teams.

Let m be a positive integer. We first create a single round-robin tournament U on 2m
teams, and then expand this to a double round-robin tournament T on n = 6m− 2 teams.
We use a variation of the Modified Circle Method (Fujiwara, Imahori, Matsui, & Miyashiro,
2007) to build U , our single round-robin schedule. Let {u1, u2, . . . , u2m−1, x} be the 2m
teams. Then each team plays 2m− 1 games, according to this three-part construction:
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(a) For 1 ≤ k ≤ m, team k plays the other teams in the following order: {2m − k +
1, 2m − k + 2, . . . , 2m− 1, 1, 2, . . . , k − 1, x, k + 1, k + 2, . . . , 2m− k}.

(b) For m + 1 ≤ k ≤ 2m − 1, team k plays the other teams in the following order:
{2m− k + 1, 2m − k + 2, . . . , k − 1, x, k + 1, k + 2, . . . , 2m− 1, 1, 2, . . . , 2m− k}.

(c) Team x plays the other teams in the following order: {1,m + 1, 2,m + 2, . . . ,m −
1, 2m − 1,m}.

1 2 3 4 5 6 7
u1 x© u2 u3 u4 u5 u6 u7

u2 u7 u1 x© u3 u4 u5 u6

u3 u6 u7 u1 u2 x© u4 u5

u4 u5 u6 u7 u1 u2 u3 x©
u5 u4 x© u6 u7 u1 u2 u3

u6 u3 u4 u5 x© u7 u1 u2

u7 u2 u3 u4 u5 u6 x© u1

x u1 u5 u2 u6 u3 u7 u4

Table 6: The single round-robin construction for 2m = 8 teams.

For all games not involving team x, we designate one home team and one road team as
follows: for 1 ≤ k ≤ m, uk plays only road games until it meets team x, before finishing
the remaining games at home. And for m+1 ≤ k ≤ 2m− 1, we have the opposite scenario,
where uk plays only home games until it meets team x, before finishing the remaining games
on the road. As an example, Table 6 provides this single round-robin schedule for the case
m = 4.

This construction ensures that for any 1 ≤ i, j ≤ 2m−1, the match between ui and uj has
exactly one home team and one road team. To verify this, note that ui is the home team and
uj is the road team iff i occurs before j in the set {1, 2m−1, 2, 2m−2, . . . ,m−1,m+1,m}.

Now we “expand” this single round-robin tournament U on 2m teams to a double
round-robin tournament T on n = 6m − 2 teams. To accomplish this, we keep x and
transform uk into three teams, {t3k−2, t3k−1, t3k}, so that the set of teams in T is precisely
{t1, t2, t3, . . . , t6m−5, t6m−4, t6m−3, x}.

6r − 5 6r − 4 6r − 3 6r − 2 6r − 1 6r
t3i−2 t3j−1 t3j t3j−2 t3j−1 t3j t3j−2

t3i−1 t3j t3j−2 t3j−1 t3j t3j−2 t3j−1

t3i t3j−2 t3j−1 t3j t3j−2 t3j−1 t3j

t3j−2 t3i t3i−1 t3i−2 t3i t3i−1 t3i−2

t3j−1 t3i−2 t3i t3i−1 t3i−2 t3i t3i−1

t3j t3i−1 t3i−2 t3i t3i−1 t3i−2 t3i

Table 7: Expanding one time slot in U to six time slots in T .
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Suppose ui is the home team in its game against uj, played in time slot r. Then we
expand that time slot in U into six time slots in T , namely the slots 6r − 5 to 6r. We
describe the match assignments in Table 7.

Before proceeding further, let us explain the idea behind this construction. Recall that
by the each-venue condition, each team in T must visit every opponent’s home stadium
exactly once, and by the at-most-three condition, road trips are at most three games. We
will build a tournament that maximizes the number of three-game road trips, and ensure
that the majority of these road trips involve three venues closely situated to one another, to
minimize total travel. In Table 7 above, if {t3j−2, t3j−1, t3j} are located in the same region,
then each of the teams in {t3i−2, t3i−1, t3i} can play their three road games against these
teams in a highly-efficient manner.

We now explain how to expand the time slots in games involving team x. For each
1 ≤ k ≤ m, consider the game between uk and x. We expand that time slot in U into six
time slots in T , as described in Table 8.

6r − 5 6r − 4 6r − 3 6r − 2 6r − 1 6r
t3k−2 x t3k t3k−1 x t3k t3k−1

t3k−1 t3k x t3k−2 t3k x t3k−2

t3k t3k−1 t3k−2 x t3k−1 t3k−2 x

x t3k−2 t3k−1 t3k t3k−2 t3k−1 t3k

Table 8: The six time slot expansion for 1 ≤ k ≤ m.

And for each m + 1 ≤ k ≤ 2m − 1, consider the game between uk and x. We expand
that time slot in U into six time slots in T , as described in Table 9.

6r − 5 6r − 4 6r − 3 6r − 2 6r − 1 6r
t3k−2 x t3k t3k−1 x t3k t3k−1

t3k−1 t3k x t3k−2 t3k x t3k−2

t3k t3k−1 t3k−2 x t3k−1 t3k−2 x
x t3k−2 t3k−1 t3k t3k−2 t3k−1 t3k

Table 9: The six time slot expansion for m+ 1 ≤ k ≤ 2m− 1.

This construction builds a double round-robin tournament T with n = 6m − 2 teams
and 2n − 2 = 12m − 6 time slots. To give an example, Table 10 provides T for the case
m = 2.

It is straightforward to verify that this tournament schedule on n = 6m − 2 teams is
feasible for all m ≥ 1, i.e., it satisfies the each-venue, at-most-three, and no-repeat conditions.
We now show that this expander construction gives a 4

3 -approximation to the LD-TTP,
regardless of the values of the distance parameters d1, d2, . . . , dn−1.

Let Γ be an n-team instance of the LD-TTP, with n = 6m−2 for some m ≥ 1. Let S be
the total distance of the optimal solution of Γ. Using our expander construction, we generate
a feasible tournament with total distance less than 4

3S. This gives a 4
3 -approximation to

the LD-TTP.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t1 x t3 t2 x t3 t2 t5 t6 t4 t5 t6 t4 t8 t9 t7 t8 t9 t7

t2 t3 x t1 t3 x t1 t6 t4 t5 t6 t4 t5 t9 t7 t8 t9 t7 t8

t3 t2 t1 x t2 t1 x t4 t5 t6 t4 t5 t6 t7 t8 t9 t7 t8 t9

t4 t9 t8 t7 t9 t8 t7 t3 t2 t1 t3 t2 t1 x t6 t5 x t6 t5

t5 t7 t9 t8 t7 t9 t8 t1 t3 t2 t1 t3 t2 t6 x t4 t6 x t4
t6 t8 t7 t9 t8 t7 t9 t2 t1 t3 t2 t1 t3 t5 t4 x t5 t4 x

t7 t5 t6 t4 t5 t6 t4 x t9 t8 x t9 t8 t3 t2 t1 t3 t2 t1
t8 t6 t4 t5 t6 t4 t5 t9 x t7 t9 x t7 t1 t3 t2 t1 t3 t2
t9 t4 t5 t6 t4 t5 t6 t8 t7 x t8 t7 x t2 t1 t3 t2 t1 t3
x t1 t2 t3 t1 t2 t3 t7 t8 t9 t7 t8 t9 t4 t5 t6 t4 t5 t6

Table 10: The case m = 2, producing a 10-team tournament.

Let y1, y2, . . . , yn be the n = 6m − 2 teams of Γ, in that order, with dk being the
distance from yk to yk+1 for all 1 ≤ k ≤ n − 1. Now we map the set {t1, t2, . . . , tn−1, x}
to {y1, y2, . . . , yn} as follows: ti = yi for 1 ≤ i ≤ 3m − 3, x = y3m−2, and ti = yi+1 for
3m − 2 ≤ i ≤ 6m − 3. In Figure 4 below, we illustrate this mapping for the case m = 2,
where the n = 6m− 2 teams are divided into three triplets and a singleton x:

Figure 4: The labeling of the n = 6m− 2 teams, for m = 2.

We then apply this labeling to our expander construction to create a feasible n-team
tournament T , where n = 6m− 2 for some m ≥ 1. The following theorem tells us the total
distance of this tournament, as a function of the n− 1 distance parameters d1, d2, . . . , dn−1.

Theorem 3. Let T be the n-team double round-robin tournament created by our expander
construction, where n = 6m − 2. For each 1 ≤ k ≤ 6m − 3, let fk be the total number
of times the dk-length “bridge” is crossed, so that the total distance of T is

∑n−1
k=1 fkdk.

Then the value of fk is given by Table 11. In addition, f1 = (8n − 8)/3, f2 = 4n − 4,
f3m−2 = fn/2−1 = (n2 + 6n − 16)/3, f3m−1 = fn/2 = (n2 + 9n − 22)/3, f3m = fn/2+1 =
(n2 + 9n − 34)/3, and f6m−3 = fn−1 = (8n − 2)/3.

Case k fk
(a) k = 4, 7, 10, . . . , 3m− 5 4k(n− k)/3 + (6n+ 8k − 20)/3
(b) k = 5, 8, 11, . . . , 3m− 4 4k(n− k)/3 + (4n+ 12k − 20)/3
(c) k = 3, 6, 9, 12, . . . , 3m− 3 4k(n− k)/3 + (4n+ 6k − 16)/3
(d) k = 3m+ 1, 3m+ 4, . . . , 6m− 8, 6m− 5 4k(n− k)/3 + (8n− 4k − 22)/3
(e) k = 3m+ 2, 3m+ 5, . . . , 6m− 7, 6m− 4 4k(n− k)/3 + (14n− 10k − 16)/3
(f) k = 3m+ 3, 3m+ 6, . . . , 6m− 6 4k(n− k)/3 + (4n− 2k − 4)

Table 11: The formulas for fk as a function of n and k.
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Proof. For each of the six cases, we carefully enumerate the number of times each team
crosses the bridge, by considering the activity of each team in the tournament schedule T .

(a) Of the k teams to the left of the dk-length bridge, one team crosses the bridge 2(n−k)/3
times, (k + 5)/3 teams cross the bridge 2(n − k + 3)/3 times and (2k − 8)/3 teams
cross the bridge 2(n − k + 6)/3 times. And of the n − k − 1 teams to the right of
the bridge (not including team x), (2n − 3k − 5)/3 of these teams cross the bridge
2(k+2)/3 times and the remaining (n+2)/3 teams cross the bridge 2(k+5)/3 times.
Finally, team x crosses the bridge (4k+2)/3 times. From there, we sum up the cases
and determine that fk = 4k(n − k)/3 + (6n + 8k − 20)/3.

(b) Of the k teams to the left of the dk-length bridge, one team crosses the bridge 2(n−
k + 1)/3 times, (k + 4)/3 teams cross the bridge 2(n− k + 4)/3 times and (2k − 7)/3
teams cross the bridge 2(n− k + 7)/3 times. And of the n− k − 1 teams to the right
of the bridge (not including team x), (2n− 3k − 2)/3 of these teams cross the bridge
2(k + 1)/3 times, (n − 4)/3 teams cross the bridge 2(k + 4)/3 times, and one team
crosses 2(k + 7)/3 times. Finally, team x crosses the bridge (4k − 2)/3 times. From
there, we sum up the cases and determine that fk = 4k(n− k)/3+ (4n+12k− 20)/3.

(c) Of the k teams to the left of the dk-length bridge, (k + 6)/3 of these teams cross the
bridge 2(n − k + 2)/3 times, and the remaining (2k − 6)/3 teams cross the bridge
2(n − k + 5)/3 times. And of the n − k − 1 teams to the right of the bridge (not
including team x), (n − k − 1)/3 of these teams cross the bridge 2k/3 times and the
remaining 2(n − k − 1)/3 teams cross the bridge (2k + 6)/3 times. Finally, team x
crosses the bridge 4k/3 times. From there, we sum up the cases and determine that
fk = 4k(n− k)/3 + (4n+ 6k − 16)/3.

(d) Of the k−1 teams to the left of the dk-length bridge (not including team x), (k+5)/3
teams cross the bridge 2(n − k)/3 times, and the remaining (2k − 8)/3 teams cross
the bridge 2(n − k + 3)/3 times. And of the n − k teams to the right of the bridge,
(n−k+3)/3 cross the bridge 2(k+2)/3 times and the remaining (2n−2k−3)/3 teams
cross the bridge 2(k+5)/3 times. Finally, team x crosses the bridge 2(n−k)/3 times.
From there, we sum up the cases and determine that fk = 4k(n−k)/3+(8n−4k−22)/3.

(e) Of the k − 1 teams to the left of the dk-length bridge (not including team x), (3k −
n + 4)/3 teams cross the bridge 2(n − k + 1)/3 times, and the remaining (n − 7)/3
teams cross the bridge 2(n − k + 4)/3 times. And of the n − k teams to the right
of the bridge, (n − k + 4)/3 cross the bridge 2(k + 4)/3 times and the remaining
(2n − 2k − 4)/3 teams cross the bridge 2(k + 7)/3 times. Finally, team x crosses the
bridge 2(n − k + 4)/3 times. From there, we sum up the cases and determine that
fk = 4k(n− k)/3 + (14n − 10k − 16)/3.

(f) Of the k − 1 teams to the left of the dk-length bridge (not including team x), (3k −
n + 1)/3 teams cross the bridge 2(n − k + 2)/3 times, and the remaining (n − 4)/3
teams cross the bridge 2(n − k + 5)/3 times. And of the n − k teams to the right
of the bridge, (n − k + 2)/3 cross the bridge 2(k + 3)/3 times and the remaining
(2n − 2k − 2)/3 teams cross the bridge 2(k + 6)/3 times. Finally, team x crosses the
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bridge 2(n − k + 2)/3 times. From there, we sum up the cases and determine that
fk = 4k(n− k)/3 + (4n− 2k − 4).

Finally, we clear all the exceptional cases. If k = 1, team t1 crosses the bridge 2(n−1)/3
times, while the remaining n − 1 teams cross twice. Thus, f1 = 2(n − 1)/3 + 2(n − 1) =
(8n− 8)/3. If k = 2, team t1 crosses the bridge 2(n− 1)/3 times, team t2 crosses 2(n+2)/3
times, (2n − 5)/3 teams cross twice, and (n − 1)/3 teams cross four times. Thus, f2 =
2(n − 1)/3 + 2(n + 2)/3 + (4n − 10)/3 + (4n − 4)/3 = 4n − 4. If k = n − 1, team tn
crosses the bridge 2(n + 2)/3 times, while the remaining n − 1 teams cross twice. Thus,
fn−1 = 2(n+ 2)/3 + 2(n − 1) = (8n− 2)/3.

For k = n
2 − 1, the formula for fk is the same as that of case (d), except that one team

makes an additional trip across the bridge. For k = n
2 − 1, the formula for fk is the same

as that of case (e), except that one team makes one fewer trip across the bridge. Finally,
for k = n

2 + 1, the formula for fk is the same as that of case (f), except that two teams
make one additional trip across the bridge. A straightforward calculation then results in
verifying that f3m−2 = fn/2−1 = (n2 + 6n − 16)/3, f3m−1 = fn/2 = (n2 + 9n − 22)/3, and
f3m = fn/2+1 = (n2 + 9n − 34)/3. This completes the proof.

For example, for the case m = 2 (see Table 10), we have n = 10, and so the total travel
distance of T is 24d1 + 36d2 + 42d3 + 48d4 + 56d5 + 52d6 + 38d7 + 36d8 + 26d9.

Let S =
∑n−1

k=1 lkdk be the trivial lower bound of Γ, found by adding the independent
lower bounds for each team ti. As we described in the proof of Lemma 1, we have lk =
2kdn−k

3 e+ 2(n− k)dk3e because each of the k teams to the left of the dk bridge must make

at least 2dn−k
3 e trips across the bridge, and the n− k teams to the right of this bridge must

make at least 2dk3e trips across.

For m ≥ 3, it is straightforward to verify that fk
lk

< 4
3 for all 1 ≤ k ≤ n − 1, thus

establishing our 4
3 -approximation for the LD-TTP. This ratio of 4

3 is the best possible due

to the case k = 3, which has f3 = 16n−34
3 and l3 = 4n − 8, implying f3

l3
→ 4

3 as n → ∞.
This worst-case scenario is achieved when dk = 0 for all k 6= 3, i.e., when teams {t1, t2, t3}
are located at one vertex, and the remaining n− 3 teams are located at another vertex.

A natural question is whether there exist similar constructions for n ≡ 0 and n ≡ 2
(mod 6). In these cases, in addition to the n ≡ 4 case we just analyzed, we ask whether a
4
3 -approximation is best possible. This is just one of many open questions arising from this
work.

6. Application to Benchmark Sets

We now apply our theories to various benchmark TTP sets. We start with the case n = 6,
and apply Theorems 1 and 2 to all known 6-team TTP benchmarks. In addition to NL6,
we examine a six-team set from the Super Rugby League (SUPER6), six galaxy stars whose
coordinates appear in three-dimensional space (GALAXY6), our earlier six-team circular
distance instance (CIRC6), and the trivial constant distance instance (CON6) where each
pair of teams has a distance of one unit.

For all our benchmark sets, we first order the six teams so that they approximate a
straight line, either through a formal “line of best fit” or an informal check by inspection.
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Having ordered our six teams, we determine the five-tuple (d1, d2, d3, d4, d5) from the dis-
tance matrix and ignore the other

(6
2

)

− 5 = 10 entries. Modifying our benchmark set and
assuming the six teams lie on a straight line, we solve the LD-TTP via Theorem 1. Using
Theorem 2, we take the set of tournament schedules achieving this optimal distance and
apply the actual distance matrix of the benchmark set (with all

(6
2

)

entries) to each of these
optimal schedules and output the tournament with the minimum total distance.

This simple process, each taking approximately 0.3 seconds of computation time per
benchmark set, generates a feasible solution to the 6-team TTP. To our surprise, this
algorithm outputs the distance-optimal schedule in all five of our benchmark sets. This
was an unexpected result, given the non-linearity of our data sets: for example, CIRC6
has the teams arranged in a circle, while GALAXY6 uses three-dimensional distances. To
illustrate our theory, let us begin with NL6, ordering the six teams from south to north:

Figure 5: Location of the six NL6 teams.

Thus, Florida is t1, Atlanta is t2, Pittsburgh is t3, Philadelphia is t4, New York is t5, and
Montreal is t6. From the NL6 distance matrix (Trick, 2012), we have (d1, d2, d3, d4, d5) =
(605, 521, 257, 80, 337).

Since 2min{d2 + d4, d1 + d4, d3 + d4, 3d4, d2 + d5, d2 + d3, 3d2} = 6d4 = 480, Theorem
1 tells us that the optimal LD-TTP solution has total distance S + 6d4 = 14d1 + 16d2 +
20d3 + 22d4 + 14d5 = 28424. By Theorem 2, there are 24 schedules in set S4, all with total
distance S + 6d4. Two of these 24 schedules are presented in Table 12.

1 2 3 4 5 6 7 8 9 10
t1 t2 t4 t5 t3 t5 t6 t3 t4 t6 t2

t2 t1 t5 t3 t4 t6 t3 t4 t6 t5 t1
t3 t5 t6 t2 t1 t4 t2 t1 t5 t4 t6
t4 t6 t1 t6 t2 t3 t5 t2 t1 t3 t5
t5 t3 t2 t1 t6 t1 t4 t6 t3 t2 t4

t6 t4 t3 t4 t5 t2 t1 t5 t2 t1 t3

1 2 3 4 5 6 7 8 9 10
t1 t2 t5 t6 t3 t6 t4 t3 t5 t4 t2

t2 t1 t6 t3 t5 t4 t3 t5 t4 t6 t1
t3 t6 t4 t2 t1 t5 t2 t1 t6 t5 t4

t4 t5 t3 t5 t6 t2 t1 t6 t2 t1 t3
t5 t4 t1 t4 t2 t3 t6 t2 t1 t3 t6
t6 t3 t2 t1 t4 t1 t5 t4 t3 t2 t5

Table 12: Two LD-TTP solutions with total distance S + 6d4.

Removing this straight line assumption, we now apply the actual NL6 distance matrix
to determine the total distance traveled for each of these 24 schedules from set S4, which
will naturally produce different sums. The left schedule in Table 12 is best among the
24 schedules, with total distance 23916, while the right schedule is the worst, with total
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distance 24530. We note that the left schedule, achieving the optimal distance of 23916
miles, is identical to Table 1.

We repeat the same analysis with the other four benchmark sets. In each, we mark
which of the sets {S1, S2, . . . , S7} produced the optimal schedule.

Benchmark Optimal LD-TTP Optimal
Data Set Solution Solution Schedule
NL6 23916 23916 ∈ S4

SUPER6 130365 130365 ∈ S3

GALAXY6 1365 1365 ∈ S1

CIRC6 64 64 ∈ S1

CON6 43 43 ∈ S1

Table 13: Comparing LD-TTP to TTP on benchmark data sets.

A sophisticated branch-and-price heuristic (Irnich, 2010) solved NL6 in just over one
minute, yet required three hours to solve CIRC6. The latter problem was considerably
more difficult due to the inherent symmetry of the data set, which required more branching.
However, through our LD-TTP approach, both problems can be solved to optimality in the
same amount of time – approximately 0.3 seconds.

Based on the results of Table 13, we ask whether there exists a 6-team instance Γ where
the optimal TTP solution is different from the optimal LD-TTP solution. This question
will be answered in the following section.

To conclude this section, we apply the 4
3 -approximation produced by our expander

construction to various (non-linear) benchmark sets with n ≡ 4 (mod 6). We apply our
construction to the 10-team and 16-team instances of our earlier examples (Trick, 2012).

Instance Optimal Our Solution Percentage Gap
CONS10 124 128 3.2%
CIRC10 242 276 14.0%
NL10 59436 63850 7.4%

SUPER10 316329 361924 14.4%
GALAXY10 4535 4862 7.2%
CONS16 327 334 2.1%
CIRC16 [846, 916] 994 [8.5%, 17.5%]
NL16 [249477, 261687] 286439 [9.5%, 14.8%]

GALAXY16 [13619, 14900] 15429 [3.6%, 13.3%]

Table 14: Comparing our construction to the optimal solution in nine benchmark sets.

For the GALAXY, NL, and SUPER instances, we first need to arrange the n teams to
approximate a straight line. To do this, we apply a simple algorithm that first randomly
assigns the n teams to {t1, t2, . . . , tn−1, x}, and calculates the sum total of distances between
each “adjacent” pair of teams. We generate a local line-of-best-fit by recursively selecting
two teams ti and tj and switching their positions if it reduces the sum of these n−1 distances.
The algorithm terminates with a permutation of the n teams to {t1, t2, . . . , tn−1, x} that is
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locally optimal (but perhaps not globally), from which we apply the expander construction
to calculate the total travel distance of our n-team tournament.

Instead of a time-consuming process that enumerates all n! permutations of the teams,
our simple algorithm generates a fast solution to each of our benchmark instances in less
than 2 seconds of total computation time. Despite the simplicity of our approach, we see
in Table 14 that the optimality gap is extremely small for the constant instances (CONS),
and is quite reasonable for all the other (non-linear) instances.

7. Optimality Gap

In Table 13, all five of the 6-team benchmark instances produced identical solutions for both
the TTP and LD-TTP. A natural question is whether this is always the case. We show that
the TTP and LD-TTP solutions must be identical for n = 4, but not necessarily for n = 6.

For any instance Γ on n teams, define XΓ to be the total distance of an optimal TTP
solution, and X∗

Γ to be the total distance of an optimal LD-TTP solution. Define OGn to

be the maximum optimality gap, the largest value of
X∗

Γ
−XΓ

XΓ
taken over all instances Γ.

Theorem 4. For any instance Γ on n = 4 teams, the optimal TTP solution is the optimal
LD-TTP solution. In other words, OG4 = 0%.

Proof. In Table 3, we showed that there are 18 non-isomorphic schedules with total distance
8(d1 + d2 + d3), i.e., 18 different solutions to the LD-TTP. For each of these 18 schedules,
we remove the linear distance assumption and determine the total travel distance as a
function of the six distance parameters (i.e., the variables in {Di,j : 1 ≤ i < j ≤ 4}). For
example, the schedule in Table 2 has total distance 4D1,2 + 2D1,3 +2D1,4 + 3D2,3 +D2,4 +
5D3,4 which we represent by the 6-tuple (4, 2, 2, 3, 1, 5). Considering all 4! permutations
of {t1, t2, t3, t4}, there are 18 × 24 tournament schedules, producing 36 unique 6-tuples,
including (4, 2, 2, 3, 1, 5). Denote by L this set of thirty-six 6-tuples.

A brute-force enumeration finds 1920 feasible 4-team tournaments. For each of these
1920 tournaments, we determine the 6-tuple representing the total travel distance, and find
246 unique 6-tuples, which we denote by set A. By definition, L ⊂ A.

To prove that OG4 = 0, we must verify that for any set {D1,2,D1,3,D1,4,D2,3,D2,4,D3,4}
satisfying the Triangle Inequality, the optimal solutions of the TTP and LD-TTP are the
same, i.e., the optimal solution among all schedules (whose six-tuples are given by A)
appears in the subset of linear-distance schedules (whose six-tuples are given by L). To
establish this, we first use the Triangle Inequality to verify that for 204 of the 246−36 = 210
elements in A\L, the corresponding schedule is dominated by at least one of the elements
in L.

For example, the six-tuple (3, 4, 3, 4, 1, 4) is one of the 210 elements in A\L. Comparing
this with the six-tuple (4, 2, 2, 3, 1, 5) ∈ L, we see that the corresponding schedule in A\L has
total distance 2D1,3+D1,4+D2,3−D1,2−D3,4 = (D1,3+D1,4−D3,4)+(D1,3+D2,3−D1,2) ≥ 0
more than the corresponding schedule in L, which is given in Table 2.

A computer search shows that 204 of the 210 elements in A\L can be handled by
applying the Triangle Inequality in this way, showing it is dominated by at least one ele-
ment in L. There are just six “exceptions”, namely the 6-tuples in the set {(2, 3, 3, 3, 3, 4),
(3, 2, 3, 3, 4, 3), (3, 3, 2, 4, 3, 3), (3, 3, 4, 2, 3, 3), (3, 4, 3, 3, 2, 3), and (4, 3, 3, 3, 3, 2)}. In these
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cases, the analysis is slightly harder. Consider the six-tuple (2, 3, 3, 3, 3, 4); the rest can be
handled in the same way, by symmetry.

There are twelve 6-tuples in L which have 17 total trips, where the D1,2 coefficient is
strictly less than the D4,5 coefficient. (An example of one such 6-tuple is (4, 2, 2, 3, 1, 5).)
Taking its average, we derive the 6-tuple (7/3, 17/6, 17/6, 17/6, 17/6, 10/3), implying the
existence of at least one LD-TTP schedule whose total distance X is at most (14D1,2 +
17D1,3 + 17D1,4 + 17D2,3 + 17D2,4 + 20D3,4)/6. Let Y be the distance represented by the
6-tuple (2, 3, 3, 3, 3, 4). Then by the Triangle Inequality,

6(Y −X) = −2D1,2 +D1,3 +D1,4 +D2,3 +D2,4 + 4D3,4

= (D1,3 +D3,4 +D4,2 −D2,1) + (D1,4 +D4,3 +D3,2 −D2,1) + 2D3,4

≥ 0 + 0 + 2× 0 = 0.

In other words, we have shown that every element in A\L is dominated by at least
one element in L. Therefore, for any choice of {D1,2,D1,3,D1,4,D2,3,D2,4,D3,4} satisfying
the Triangle Inequality, the optimal solutions of the TTP and LD-TTP are the same, i.e.,
OG4 = 0%.

In an earlier paper (Hoshino & Kawarabayashi, 2012), the authors conjectured that
OG6 > 0%, although we were unable to find a 6-team instance with a positive optimality
gap. Here we present a simple instance to show that OG6 ≥

1
43 ∼ 2.3%.

Let Γ be the 6-team instance with D1,2 = D5,6 = 2 and all other Di,j = 1. Clearly
these

(

6
2

)

= 15 distances satisfy the Triangle Inequality. We now show that XΓ = 43 and
X∗

Γ = 44, thus proving that OG6 ≥ 1
43 . Consider Table 15, which is a solution to the TTP

(but not LD-TTP) with 43 trips.

1 2 3 4 5 6 7 8 9 10 # of Trips
t1 t5 t2 t3 t5 t3 t4 t6 t4 t2 t6 7
t2 t6 t1 t5 t6 t5 t3 t4 t3 t1 t4 7
t3 t4 t6 t1 t4 t1 t2 t5 t2 t6 t5 8
t4 t3 t5 t6 t3 t6 t1 t2 t1 t5 t2 7
t5 t1 t4 t2 t1 t2 t6 t3 t6 t4 t3 7
t6 t2 t3 t4 t2 t4 t5 t1 t5 t3 t1 7

Table 15: An optimal 43-trip TTP solution that beats the optimal LD-TTP solution.

By inspection, we see that no team travels along the bridge connecting the stadiums of
t1 and t2, or along the bridge connecting the stadiums of t5 and t6. Thus, the total travel
distance must be 43× 1 = 43, since the 2-unit distances D1,2 and D5,6 do not appear in the
total sum. Since every 6-team tournament must have at least 43 total trips (see Table 13),
this proves that XΓ = 43.

For each of the 295 potentially-optimal LD-TTP schedules in Theorem 2, we consider
all 6! = 720 permutations of (t1, t2, t3, t4, t5, t6) to see if any tournament can have total
distance 43. A computer search shows that 36 of the 295 schedules can have total distance
44, but none can have distance 43. This proves that X∗

Γ = 44 is the optimal LD-TTP travel
distance for this instance Γ.

275



Hoshino & Kawarabayashi

Therefore, the maximum optimality gap OG6 is at least 1
43 ∼ 2.3%. We ask whether

this gap can be made larger, and propose the following question.

Problem 1. Determine the value of OGn for n ≥ 6.

Suppose that OG6 = 5%. Then one of the 295 LD-TTP solutions in Theorem 2 is at
most 5% higher than the optimal TTP solution, found at a fraction of the computational
cost. Of course, this is not necessary for the case n = 6 as we can use integer and constraint
programming to output the TTP solution in a reasonable amount of time. However, for
larger values of n, this linear distance relaxation technique would allow us to quickly generate
close-to-optimal solutions when the exact optimal total distance is unknown or too difficult
computationally. We are hopeful that this approach will help us develop better upper
bounds for large unsolved benchmark instances.

8. Conclusion

In many professional sports leagues, teams are divided into two conferences, where teams
have intra-league games within their own conference as well as inter-league games against
teams from other conference. The TTP models intra-league tournament play. The NP-
complete Bipartite Traveling Tournament Problem (Hoshino & Kawarabayashi, 2011) mod-
els inter-league play, and it would be interesting to see whether our linear distance relaxation
can also be applied to bipartite instances to help formulate new ideas in inter-league tour-
nament scheduling.

We conclude the paper by proposing two new benchmark instances for the Traveling
Tournament Problem, as well as an open problem and a conjecture on the Linear Distance
TTP. We first begin with the benchmark instances.

For each n ≥ 4, define LINEn to be the instance where the n teams are located on a
straight line, with a distance of one unit separating each pair of adjacent teams, i.e., dk = 1
for all 1 ≤ k ≤ n − 1. And define INCRn to be the increasing-distance scenario where the
n teams are arranged so that dk = k for all 1 ≤ k ≤ n− 1. Figure 6 illustrates the location
of each team in INCR6.

Figure 6: The instance INCR6.

By definition, the TTP solution matches the LD-TTP solution for each of these two
instances. By Theorem 1, the optimal solutions for LINE6 and INCR6 have total distance
84 and 250, respectively. This naturally motivates the following problem:

Problem 2. Solve the TTP for the instances LINEn and INCRn, for n ≥ 8.

We conclude with one more problem, inspired by Theorem 2 which listed all seven
possible optimal distances for the 6-team LD-TTP:
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Problem 3. Let PDn denote the number of possible distances that can be a solution to the
n-team LD-TTP. For example, PD4 = 1 and PD6 = 7. Prove or disprove that PDn is
exponential in n.
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Appendix A

We used Maplesoft (www.maplesoft.com) to generate the set of optimal LD-TTP schedules
for n = 4 and n = 6. In this appendix, we explain the process by which we generated the
36 optimal schedules for the case n = 4.

To simplify notation, we used the numbers 1 to 4 to represent the team numbers of
opponents for road games, and the numbers 11 to 14 to represent the team numbers of
opponents for home games. Thus, in our notation, the schedule on the left (from Table 2)
is identical to the 4× 6 matrix on the right.

Team 1 2 3 4 5 6
t1 t4 t3 t2 t4 t3 t2

t2 t3 t4 t1 t3 t4 t1
t3 t2 t1 t4 t2 t1 t4
t4 t1 t2 t3 t1 t2 t3

14 13 2 4 3 12
13 14 11 3 4 1
2 1 14 12 11 4
1 2 3 11 12 13

To produce the set of 36 schedules, the following code was used:

restart: with(combinat):

A1 := ‘<,>‘(12, 1, 14, 3): A2 := ‘<,>‘(12, 1, 4, 13):

A3 := ‘<,>‘(2, 11, 14, 3): A4 := ‘<,>‘(2, 11, 4, 13):

B1 := ‘<,>‘(13, 14, 1, 2): B2 := ‘<,>‘(13, 4, 1, 12):

B3 := ‘<,>‘(3, 14, 11, 2): B4 := ‘<,>‘(3, 4, 11, 12):

C1 := ‘<,>‘(14, 13, 2, 1): C2 := ‘<,>‘(14, 3, 12, 1):

C3 := ‘<,>‘(4, 13, 2, 11): C4 := ‘<,>‘(4, 3, 12, 11):

Z[{1, 2}] := d1: Z[{2, 3}] := d2: Z[{3, 4}] := d3:

Z[{1, 3}] := d1+d2: Z[{1, 4}] := d1+d2+d3: Z[{2, 4}] := d2+d3:

dist := proc (myinput, k)

local i, myseq, x; x := 0; myseq := [7, op(myinput), 7];

for i to 7 do

if 7<= myseq[i] and 7<= myseq[i+1] then x:=x

elif 7<= myseq[i] and myseq[i+1]<7 then x:=x+Z[{myseq[i+1],k}]

elif myseq[i]<7 and 7<= myseq[i+1] then x:=x+Z[{myseq[i],k}]
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elif myseq[i]<7 and myseq[i+1]<7 then x:=x+Z[{myseq[i+1],myseq[i]}]

else RETURN(ERROR)

fi:

od: x: end:

checker := proc (my720)

local k, flag, x, y, goodlist, temp; goodlist := NULL;

for k to 720 do

temp := Matrix([seq(my720[k][t], t = 1 .. 6)]); flag := 0;

for x to 4 do for y to 5 do

if abs(temp[x][y]-temp[x][y+1])=10 then flag:=1 fi:

od: od:

for x to 4 do

if dist([seq(temp[x,k],k = 1..6)],x)<>2*(d1+d2+d3) then flag := 1 fi:

od:

if flag = 0 then goodlist := goodlist, temp: fi:

od: goodlist: end:

my720 := permute([A1, A4, B1, B4, C1, C4]): set1 := checker(my720):

my720 := permute([A1, A4, B1, B4, C2, C3]): set2 := checker(my720):

my720 := permute([A1, A4, B2, B3, C1, C4]): set3 := checker(my720):

my720 := permute([A1, A4, B2, B3, C2, C3]): set4 := checker(my720):

my720 := permute([A2, A3, B1, B4, C1, C4]): set5 := checker(my720):

my720 := permute([A2, A3, B1, B4, C2, C3]): set6 := checker(my720):

my720 := permute([A2, A3, B2, B3, C1, C4]): set7 := checker(my720):

my720 := permute([A2, A3, B2, B3, C2, C3]): set8 := checker(my720):

finallist := [set1, set2, set3, set4, set5, set6, set7, set8];

Appendix B

We now provide the Maplesoft code from which we generated the 295 non-isomorphic sched-
ules in Theorem 2. Due to symmetry, we only need to consider the cases S1, S2, S3, S4. The
authors would be happy to provide the full set of 295 schedules (available as a simple .txt
file upon request), and/or answer any questions that explain why this code generates the
complete set of optimal schedules for the n = 6 case of the LD-TTP.

restart: with(combinat):

Z := Matrix(6, 6, 0):

Z[1, 2] := a: Z[1, 3] := a+b: Z[1, 4] := a+b+c: Z[1, 5] := a+b+c+d:

Z[1, 6] := a+b+c+d+e: Z[2, 3] := b: Z[2, 4] := b+c: Z[2, 5] := b+c+d:

Z[2, 6] := b+c+d+e: Z[3, 4] := c: Z[3, 5] := c+d: Z[3, 6] := c+d+e:

Z[4, 5] := d: Z[4, 6] := d+e: Z[5, 6] := e:

for i to 6 do for j from i+1 to 6 do Z[j, i] := Z[i, j] od: od:

all252 := choose(10, 5): combos := []:
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for i to 252 do

test := all252[i]: flag := 0:

for j to 2 do if test[j+3]-test[j] <= 3 then flag := 1: fi: od:

for j to 4 do if test[j+1]-test[j] >= 5 then flag := 1: fi: od:

if ‘or‘(test[1] >= 5, test[5] <= 6) then flag := 1 fi:

if flag = 0 then combos := [op(combos), test]: fi:

od:

totaldist := proc (myinput, k)

local i, myseq, y; y := 0; myseq := [7, op(myinput), 7];

for i to 11 do

if 7<= myseq[i] and 7<= myseq[i+1] then y:=y

elif 7<= myseq[i] and myseq[i+1]<7 then y:=y+Z[myseq[i+1],k]

elif myseq[i]<7 and 7<= myseq[i+1] then y:=y+Z[myseq[i],k]

elif myseq[i]<7 and myseq[i+1]<7 then y:=y+Z[myseq[i+1],myseq[i]]

else RETURN(ERROR)

fi:

od: y: end:

getseq := proc (myfive, k)

local myperm, myseq, mylist, i, j;

mylist := []; myperm := permute(‘minus‘({1, 2, 3, 4, 5, 6}, {k}));

for i to 120 do myseq := [seq(7, i = 1 .. 10)];

for j to 5 do myseq[myfive[j]] := myperm[i][j]: od:

mylist := [op(mylist), myseq]

od:

mylist: end:

checkdup := proc (tryj, j, tryk, k)

local i, val1, val2, x; x := 0;

i:=0: while x=0 and i<10 do

i:=i+1; if tryj[i]=tryk[i] and tryj[i]<7 then x:=1: fi: od:

i:=0: while x=0 and i<10 do

i:=i+1; if tryj[i]=k then if tryk[i]<7 then x:=1: fi: fi: od:

i:=0: while x=0 and i<10 do

i:=i+1; if tryk[i]=j then if tryj[i]<7 then x:=1: fi: fi: od:

i:=0: while x=0 and i<10 do

i:=i+1; if tryk[i]=j then val1:=i fi: if tryj[i]=k then val2:=i: fi: od:

if x = 0 then if abs(val1-val2) <= 1 then x := 1: fi: fi:

x: end:

fivetuple := proc (myset)

[coeff(myset,a),coeff(myset,b),coeff(myset,c),coeff(myset,d),coeff(myset,e)]:

end:
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for p to 5 do for q to 5 do for r to 5 do

for s to 5 do for t to 5 do for k to 6 do

S[k, [2*p, 2*q, 2*r, 2*s, 2*t]] := NULL:

od: od: od: od: od: od:

for kk to 6 do allvals[kk] := {}: od:

for r to 194 do x := getseq(combos[r], 1):

for s to 120 do if ‘in‘(2, {seq(x[s][k], k = 6 .. 10)}) then

y := fivetuple(totaldist(x[s], 1));

allvals[1] := {y, op(allvals[1])}; S[1, y] := S[1, y], x[s] fi: od: od:

for r to 194 do x := getseq(combos[r], 2):

for s to 120 do y := fivetuple(totaldist(x[s], 2));

allvals[2] := {y, op(allvals[2])}; S[2, y] := S[2, y], x[s] od: od:

for r to 194 do x := getseq(combos[r], 3);

for s to 120 do y := fivetuple(totaldist(x[s], 3));

allvals[3] := {y, op(allvals[3])}; S[3, y] := S[3, y], x[s] od: od:

for r to 194 do x := getseq(combos[r], 4);

for s to 120 do y := fivetuple(totaldist(x[s], 4));

allvals[4] := {y, op(allvals[4])}; S[4, y] := S[4, y], x[s] od: od:

for r to 194 do x := getseq(combos[r], 5);

for s to 120 do y := fivetuple(totaldist(x[s], 5));

allvals[5] := {y, op(allvals[5])}; S[5, y] := S[5, y], x[s] od: od:

for r to 194 do x := getseq(combos[r], 6);

for s to 120 do y := fivetuple(totaldist(x[s], 6));

allvals[6] := {y, op(allvals[6])}; S[6, y] := S[6, y], x[s] od: od:

for pp to 10 do for qq to 10 do for rr to 10 do for ss to 10 do

triplet1[[2*pp, 2*qq, 2*rr, 2*ss, 6]] := []: od: od: od: od:

for pp to 10 do for qq to 10 do for rr to 10 do for ss to 10 do

triplet2[[6, 2*ss, 2*rr, 2*qq, 2*pp]] := []: od: od: od: od:

for pp to nops(allvals[1]) do

for qq to nops(allvals[2]) do

for rr to nops(allvals[3]) do

val := allvals[1][pp]+allvals[2][qq]+allvals[3][rr];

triplet1[val] := [op(triplet1[val]), [pp, qq, rr]]

od: od: od:

for pp to nops(allvals[4]) do
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for qq to nops(allvals[5]) do

for rr to nops(allvals[6]) do

val := allvals[4][pp]+allvals[5][qq]+allvals[6][rr];

triplet2[val] := [op(triplet2[val]), [pp, qq, rr]]

od: od: od:

getnext := proc (inputset, x, setx)

local i, k1, k2, k3, candx, mylist;

mylist := NULL;

k1 := op(‘minus‘({1, 2, 3, 4, 5, 6, 7}, {op(inputset[1])}));

k2 := op(‘minus‘({1, 2, 3, 4, 5, 6, 7}, {op(inputset[2])}));

k3 := op(‘minus‘({1, 2, 3, 4, 5, 6, 7}, {op(inputset[3])}));

for i to nops(setx) do candx := setx[i];

if checkdup(candx, x, inputset[1], k1) = 0 then

if checkdup(candx, x, inputset[2], k2) = 0 then

if checkdup(candx, x, inputset[3], k3) = 0 then

mylist := mylist, candx fi: fi: fi: od:

[mylist]: end:

getpos := proc (aval, bval, cval, dval)

local pos3, pos4, pos5, pos6;

if aval = 3 then pos3 := 2 elif aval = 4 then pos4 := 2 elif aval = 5 then

pos5 := 2 elif aval = 6 then pos6 := 2 else RETURN(ERROR) end if;

if bval = 3 then pos3 := 3 elif bval = 4 then pos4 := 3 elif bval = 5 then

pos5 := 3 elif bval = 6 then pos6 := 3 else RETURN(ERROR) end if;

if cval = 3 then pos3 := 7 elif cval = 4 then pos4 := 7 elif cval = 5 then

pos5 := 7 elif cval = 6 then pos6 := 7 else RETURN(ERROR) end if;

if dval = 3 then pos3 := 8 elif dval = 4 then pos4 := 8 elif dval = 5 then

pos5 := 8 elif dval = 6 then pos6 := 8 else RETURN(ERROR) end if;

[pos3, pos4, pos5, pos6]: end:

firsttwo := proc (aval, bval, cval, dval,new1,new2)

local pairs12, p, q, i, t1, t2, flag; pairs12 := {};

for p to nops(new1) do for q to nops(new2) do

if checkdup(new1[p], 1, new2[q], 2) = 0 then

if new1[p][4] <> bval and new1[p][6] <> cval and new1[p][9] <> dval and

new2[q][2] <> aval and new2[q][5] <> bval and new2[q][7] <> cval then

flag := 0;

t1:=[2,aval,bval,new1[p][4],new1[p][5],new1[p][6],cval,dval,new1[p][9],2];

t2:=[1,new2[q][2],aval,bval,new2[q][5],new2[q][6],new2[q][7],cval,dval,1];

for i to 9 do if t1[i]=t2[i+1] and t1[i+1]=t2[i] then flag:=1 fi: od:

if flag = 0 then pairs12 := {op(pairs12), [new1[p], new2[q]]} fi: fi: fi:

od: od:

pairs12: end:
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firstthree := proc (pairs12, sixpos, new6)

local last6, mytry, trips126, p, q, k; last6 := {}; trips126 := {};

for k to nops(new6) do mytry := new6[k];

if mytry[sixpos] = 1 and mytry[sixpos+1] = 2 then

last6 := {op(last6), mytry} fi:

od:

for p to nops(pairs12) do for q to nops(last6) do

if checkdup(pairs12[p][1], 1, last6[q], 6) = 0 and

checkdup(pairs12[p][2], 2, last6[q], 6) = 0 then

trips126 := {op(trips126), [op(pairs12[p]), last6[q]]}: fi:

od: od:

trips126: end:

steps126 := proc (new1, new2, new6)

local i, j, k, finalsol; finalsol := NULL;

for i to nops(new1) do for j to nops(new2) do

if checkdup(new1[i], 1, new2[j], 2) = 0 then

for k to nops(new6) do

if checkdup(new1[i], 1, new6[k], 6) = 0 and

checkdup(new2[j], 2, new6[k], 6) = 0 then

finalsol := finalsol, [new1[i], new2[j], new6[k]]:

fi: od: fi: od: od:

[finalsol]: end:

steps345 := proc (iset, new3, new4, new5)

local mylist, tryd, trye, tryf, candd, cande, candf, a, b, c;

mylist := NULL; tryd := getnext(iset, 3, new3);

if tryd <> [] then trye := getnext(iset, 4, new4);

if trye <> [] then tryf := getnext(iset, 5, new5);

if tryf <> [] then for a to nops(tryd) do candd := tryd[a];

for b to nops(trye) do cande := trye[b];

if checkdup(candd, 3, cande, 4) = 0 then

for c to nops(tryf) do candf := tryf[c];

if checkdup(candf, 5, candd, 3) = 0 then

if checkdup(candf, 5, cande, 4) = 0 then

mylist := mylist, [iset[1], iset[2], candd, cande, candf, iset[3]]:

fi: fi: od: fi: od: od: fi: fi: fi:

[mylist]: end:

allsix := proc (my126,aval,bval,cval,dval,new3,new4,new5)

local last3, last4, last5, k, mytry, tempval, pos3, pos4, pos5,

finalresult, p, q, r, s, trips345, my345, valnext, finalans;

last3:={}; last4:={}; last5:={}; finalresult:={}; trips345:={};

tempval := getpos(aval, bval, cval, dval);

pos3 := tempval[1]; pos4 := tempval[2]; pos5 := tempval[3];
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for k to nops(new3) do mytry := new3[k];

if mytry[pos3] = 1 and mytry[pos3+1] = 2 then

if checkdup(my126[1], 1, mytry, 3) = 0 and

checkdup(my126[2], 2, mytry, 3) = 0 and

checkdup(my126[3], 6, mytry, 3) = 0 then

last3 := {op(last3), mytry} fi: fi:

od:

for k to nops(new4) do mytry := new4[k];

if mytry[pos4] = 1 and mytry[pos4+1] = 2 then

if checkdup(my126[1], 1, mytry, 4) = 0 and

checkdup(my126[2], 2, mytry, 4) = 0 and

checkdup(my126[3], 6, mytry, 4) = 0 then

last4 := {op(last4), mytry} fi: fi:

od:

for k to nops(new5) do mytry := new5[k];

if mytry[pos5] = 1 and mytry[pos5+1] = 2 then

if checkdup(my126[1], 1, mytry, 5) = 0 and

checkdup(my126[2], 2, mytry, 5) = 0 and

checkdup(my126[3], 6, mytry, 5) = 0 then

last5 := {op(last5), mytry} fi: fi:

od:

for p to nops(last3) do for q to nops(last4) do

if checkdup(last3[p], 3, last4[q], 4) = 0 then

for r to nops(last5) do

if checkdup(last3[p], 3, last5[r], 5) = 0 and

checkdup(last4[q], 4, last5[r], 5) = 0 then

trips345 := {op(trips345), [last3[p], last4[q], last5[r]]}:

fi: od: fi: od: od:

for s to nops(trips345) do my345 := trips345[s];

finalresult := {op(finalresult),

[my126[1], my126[2], my345[1], my345[2], my345[3], my126[3]]}:

od:

finalresult: end:

checkallsolutions := proc(sixtuples)

local k,rr,mysolutions,cand1,cand2,cand3,cand4,cand5,cand6,

new1,new2,new3,new4,new5,new6,mytry,firsthalf,val:

mysolutions := []:

for rr to nops(sixtuples) do

cand1 := [S[1, allvals[1][sixtuples[rr][1]]]];

cand2 := [S[2, allvals[2][sixtuples[rr][2]]]];

cand3 := [S[3, allvals[3][sixtuples[rr][3]]]];

cand4 := [S[4, allvals[4][sixtuples[rr][4]]]];

cand5 := [S[5, allvals[5][sixtuples[rr][5]]]];

cand6 := [S[6, allvals[6][sixtuples[rr][6]]]];
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new1 := {}; new2 := {}; new3 := {}; new4 := {}; new5 := {}; new6 := {};

for k to nops(cand1) do mytry := cand1[k]; new1 := {mytry, op(new1)}: od:

for k to nops(cand2) do mytry := cand2[k]; new2 := {mytry, op(new2)}: od:

for k to nops(cand3) do mytry := cand3[k]; new3 := {mytry, op(new3)}: od:

for k to nops(cand4) do mytry := cand4[k]; new4 := {mytry, op(new4)}: od:

for k to nops(cand5) do mytry := cand5[k]; new5 := {mytry, op(new5)}: od:

for k to nops(cand6) do mytry := cand6[k]; new6 := {mytry, op(new6)}: od:

firsthalf := steps126(new1, new2, new6);

for k to nops(firsthalf) do val:=steps345(firsthalf[k],new3,new4,new5);

if val <> [] then mysolutions := [op(mysolutions), op(val)]: fi:

od: od:

mysolutions: end:

generatesolutions := proc(sixtuples)

local cand1,cand2,cand3,cand4,cand5,cand6,new1,new2,new3,new4,new5,new6,

k,rr,x,y,mytry,flag,aval,bval,cval,dval,pairs12,sixpos,trips126,my24,sols:

sols := {}: my24 := permute([3,4,5,6]):

for rr to nops(sixtuples) do

cand1 := [S[1, allvals[1][sixtuples[rr][1]]]];

cand2 := [S[2, allvals[2][sixtuples[rr][2]]]];

cand3 := [S[3, allvals[3][sixtuples[rr][3]]]];

cand4 := [S[4, allvals[4][sixtuples[rr][4]]]];

cand5 := [S[5, allvals[5][sixtuples[rr][5]]]];

cand6 := [S[6, allvals[6][sixtuples[rr][6]]]];

new1:={}; new2:={}; new3:={}; new4:={}; new5:={}; new6:={};

for k to nops(cand1) do mytry := cand1[k];

if {mytry[1], mytry[2], mytry[3], mytry[7], mytry[8]} = {7} and

mytry[10] = 2 then new1 := {mytry, op(new1)}: fi: od:

for k to nops(cand2) do mytry := cand2[k];

if {mytry[3], mytry[4], mytry[8], mytry[9], mytry[10]} = {7} and

mytry[1] = 1 then new2 := {mytry, op(new2)}: fi: od:

for k to nops(cand3) do mytry := cand3[k]; flag := 0;

if ‘and‘(mytry[1] > 2, mytry[10] > 2) then

if mytry[2] = 1 and mytry[3] = 2 then flag := 1 fi:

if mytry[3] = 1 and mytry[4] = 2 then flag := 1 fi:

if mytry[7] = 1 and mytry[8] = 2 then flag := 1 fi:

if mytry[8] = 1 and mytry[9] = 2 then flag := 1 fi:

if flag = 1 then new3 := {mytry, op(new3)}: fi: fi: od:

for k to nops(cand4) do mytry := cand4[k]; flag := 0;

if ‘and‘(mytry[1] > 2, mytry[10] > 2) then

if mytry[2] = 1 and mytry[3] = 2 then flag := 1 fi:

if mytry[3] = 1 and mytry[4] = 2 then flag := 1 fi:

if mytry[7] = 1 and mytry[8] = 2 then flag := 1 fi:

if mytry[8] = 1 and mytry[9] = 2 then flag := 1 fi:

if flag = 1 then new4 := {mytry, op(new4)}: fi: fi: od:
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for k to nops(cand5) do mytry := cand5[k]; flag := 0;

if ‘and‘(mytry[1] > 2, mytry[10] > 2) then

if mytry[2] = 1 and mytry[3] = 2 then flag := 1 fi:

if mytry[3] = 1 and mytry[4] = 2 then flag := 1 fi:

if mytry[7] = 1 and mytry[8] = 2 then flag := 1 fi:

if mytry[8] = 1 and mytry[9] = 2 then flag := 1 fi:

if flag = 1 then new5 := {mytry, op(new5)}: fi: fi: od:

for k to nops(cand6) do mytry := cand6[k]; flag := 0;

if ‘and‘(mytry[1] > 2, mytry[10] > 2) then

if mytry[2] = 1 and mytry[3] = 2 then flag := 1 fi:

if mytry[3] = 1 and mytry[4] = 2 then flag := 1 fi:

if mytry[7] = 1 and mytry[8] = 2 then flag := 1 fi:

if mytry[8] = 1 and mytry[9] = 2 then flag := 1 fi:

if flag = 1 then new6 := {mytry, op(new6)}: fi: fi: od:

for x to 24 do

aval := my24[x][1]; bval := my24[x][2];

cval := my24[x][3]; dval := my24[x][4];

pairs12 := firsttwo(aval, bval, cval, dval,new1,new2);

sixpos := getpos(aval, bval, cval, dval)[4];

trips126 := firstthree(pairs12, sixpos, new6);

for y to nops(trips126) do

sols := {op(sols),op(allsix(trips126[y],

aval,bval,cval,dval,new3,new4,new5))}:

od:

od:

od:

sols: end:

S4cases := []:

for pp to 8 do for qq to 8 do

xx := triplet1[[8, 10, 2*pp, 2*qq, 6]];

yy := triplet2[[6, 6, 20-2*pp, 22-2*qq, 8]];

for u in xx do for v in yy do S4cases := [op(S4cases), [op(u), op(v)]]:

od: od: od: od:

SolutionsForS4 := generatesolutions(S4cases):

S3cases := []:

for pp from 2 to 8 do for qq to 8 do

xx := triplet1[[8, 10, 2*pp, 2*qq, 6]];

yy := triplet2[[6, 6, 22-2*pp, 18-2*qq, 8]];

for u in xx do for v in yy do S3cases := [op(S3cases), [op(u), op(v)]]:

od: od: od: od:

SolutionsForS3 := generatesolutions(S3cases):

285



Hoshino & Kawarabayashi

S2cases := []:

for pp to 9 do for qq to 9 do

xx := triplet1[[10, 10, 2*pp, 2*qq, 6]];

yy := triplet2[[6, 6, 20-2*pp, 18-2*qq, 8]];

for u in xx do for v in yy do S2cases := [op(S2cases), [op(u), op(v)]]:

od: od: od: od:

SolutionsForS2 := checkallsolutions(S2cases):

S1cases := []:

for pp to 8 do for qq to 8 do for rr to 8 do

xx := triplet1[[8, 2*pp, 2*qq, 2*rr, 6]]:

yy := triplet2[[6, 18-2*pp, 20-2*qq, 18-2*rr, 8]]:

for u in xx do for v in yy do S1cases := [op(S1cases), [op(u), op(v)]]:

od: od: od: od: od:

SolutionsForS1 := checkallsolutions(S1cases):
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