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Abstract

This paper considers the fragment ∃∀SO of second-order logic. Many interesting prob-
lems, such as conformant planning, can be naturally expressed as finite domain satisfiabil-
ity problems of this logic. Such satisfiability problems are computationally hard (ΣP2 ) and
many of these problems are often solved approximately. In this paper, we develop a general
approximative method, i.e., a sound but incomplete method, for solving ∃∀SO satisfiability
problems. We use a syntactic representation of a constraint propagation method for first-
order logic to transform such an ∃∀SO satisfiability problem to an ∃SO(ID) satisfiability
problem (second-order logic, extended with inductive definitions). The finite domain sat-
isfiability problem for the latter language is in NP and can be handled by several existing
solvers. Inductive definitions are a powerful knowledge representation tool, and this moti-
vates us to also approximate ∃∀SO(ID) problems. In order to do this, we first show how
to perform propagation on such inductive definitions. Next, we use this to approximate
∃∀SO(ID) satisfiability problems. All this provides a general theoretical framework for a
number of approximative methods in the literature. Moreover, we also show how we can
use this framework for solving practical useful problems, such as conformant planning, in
an effective way.

1. Introduction

Finite model generation is a logical paradigm for solving constraint problems. A successful
instance is the field of SAT, where efficient solvers for the low level CNF language are de-
veloped. Other instances, but for more expressive languages, are Answer Set Programming
(ASP) (Baral, 2003) and model expansion (MX) for (extensions of) first order logic. In ASP,
e.g., finite Herbrand models of an answer set program are computed (Baral, 2003). Model
expansion (MX) (Mitchell & Ternovska, 2005) generalizes Herbrand model generation and
aims at computing one or more models of a theory T that expand a finite interpretation I0

for a (possibly empty) subset of symbols of T . MX for first order logic (MX(FO)) is formally
equivalent to the finite domain satisfiability checking problem for existential second-order
logic (SAT (∃SO))1 which is known from Fagin’s celebrated theorem to capture NP (Fagin,
1974). That is, the problems in NP are exactly those that are in a precise sense equivalent
to an ∃SO satisfiability problem, and hence an MX(FO) problem. A range of solvers exists

1. Or more specifically, to the search problem for a witness of such a problem.
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for finite model generation, e.g., an overview of state-of-the-art ASP and MX(FO(·)) solvers
(here, FO(·) refers to the family of extensions of FO) can be found in the reports of the
ASP competition (e.g., Denecker, Vennekens, Bond, Gebser, & Truszczyński, 2009).

Example 1.1. Here is a bounded planning problem modeled as a Finite Model Generation
problem. The problem is deliberately kept simple as it will serve as the running example
in this paper: a glass may be clean or not, and can be cleaned by the action of wiping. We
can represent this dynamic domain by the following FO theory Tact:

∀t : (Clean(t+ 1) ⇔ Clean(t) ∨Wipe(t)). (1)

Clean(0) ⇔ InitiallyClean. (2)

The bounded planning problem we are considering is then to turn a dirty glass into a clean
one in n steps, where n ∈ N is a given constant. This can indeed be formulated as a
Model Expansion problem: find a model that satisfies Tact while InitiallyClean is false,
and Clean(n) true. We can formulate this problem equivalently as an ∃SO finite domain
satisfiability problem, namely as the satisfiability problem in the range [0 . . . n] of time
points of the following ∃SO formula:

∃Wipe,Clean, InitiallyClean : (ψact ∧ ¬InitiallyClean ∧ Clean(n)), (3)

where with ψact we denote the conjunction of sentences in Tact. For n > 0, this formula is
indeed satisfiable in the suitable interpretation of constants 0 and n and the binary function
+, and, moreover, each witness W for its satisfiability provides a plan. For instance, wiping
at time point 0 does the job, as is verified by the witness W for which WipeW = {0} and
CleanW = {1, . . . , n}.

While a large number of search problems can indeed be seen as Finite Model Generation
problems, there are also a number of problems that are of a higher complexity than NP,
and consequently cannot be formulated as an MX(FO) problem. Indeed, in this paper we
are not interested in NP, but in the next level ΣP

2 of the polynomial hierarchy. Perhaps
the prototypical such problem is finite domain satisfiability for ∃∀SO: satisfaction in finite
interpretations is in ΣP

2 for every ∃∀SO sentence and is ΣP
2 -hard for some such sentences

(Immerman, 1998). An interesting ΣP
2 problem is that of conformant planning, which we

discuss in detail in Section 7, but already introduce in the next example.

Example 1.2. Extending Example 1.1, suppose that we do not know whether the object is
initially clean or dirty, but still want a plan that is guaranteed to make it clean, no matter
what the initial situation was. This is no longer a standard planning problem, but is called
a conformant planning problem. We can formulate this as the following ∃∀SO satisfiability
problem:

∃Wipe∀InitiallyClean,Clean : (ψact ⇒ Clean(n)). (4)

In words, we need an assignment to the action Wipe such that the goal Clean(n) is satisfied
for every initial situation InitiallyClean and fluent Clean that satisfy the action theory.

Solving problems like this would require us to make a choice for the existentially quan-
tified predicates and then check that the implication is satisfied for every interpretation of
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the universally quantified predicates. While this can be done in principle, in practice it
is often too expensive. In this paper, we explore an alternative based on a propagation
method for first order logic developed by Wittocx, Denecker, and Bruynooghe (2010). This
method computes in polynomial time, for a given theory T and a partial interpretation I,
an approximation of what has to be certainly true (= true in all models of T that expand
I) and certainly false (= false in all such models). Now, an interesting property of this
propagation method is that it can be syntactically represented as a monotone inductive
definition (Denecker & Ternovska, 2008) that defines (in an approximative way) these un-
derestimates of the predicates in T and of their complements. Such a monotone inductive
definition is essentially just a set of propagation rules, similar to a definite logic program,
that is interpreted by the least fixpoint of its immediate consequence operator. For any
given theory T we can obtain this approximating definition by a linear transformation of
the original FO formula.

Returning to the above example, we need to find an interpretation for the action pred-
icates, such that for every interpretation of the other predicates, the implication ψact ⇒
Clean(n) is satisfied, i.e., such that without knowing anything about these other predi-
cates, we should already be certain that the implication is satisfied. The basic idea behind
our method is to approximate an ∃∀SO problem of the form ∃P̄∀Q̄ ψ, using the approxi-
mate definition from Wittocx et al. to check whether an interpretation for the existentially
quantified predicates P̄ has the property of making ψ true, regardless of the predicates Q̄.
Essentially, this reduces an ∃∀SO problem to an ∃SO(ID) problem (where with SO(ID) we
refer to SO extended with inductive definitions).

In Section 5, we extend our method to ∃∀SO(ID) problems. As argued by Denecker
and Ternovska, inductive definitions are a useful tool for knowledge representation. For
example, many dynamic domains can be formulated naturally and in a modular way using
inductive definitions, while this can be quite tedious in FO. We already mentioned con-
formant planning as a typical ∃∀SO satisfiability problem. Typically, these conformant
planning problems require the modeling of a dynamic domain. We will come back to the
syntax and semantics of inductive definitions in the next section, but the dynamic domain of
Example 1.1 can, as an alternative to the action theory Tact, be formulated as the following
inductive definition ∆act:

Clean(t+ 1) ← Clean(t).
Clean(t+ 1) ← Wipe(t).
Clean(0) ← InitiallyClean.

 (5)

The conformant planning problem can then be formulated alternatively as the satisfiabil-
ity problem of the formula ∃Wipe∀InitiallyClean,Clean : (∆act ⇒ Clean(n)). However,
this is no longer a ∃∀SO satisfiability problem, but a ∃∀SO(ID) satisfiability problem.
This motivates us to see how we can extend our approximation method to such ∃∀SO(ID)
satisfiability problems. For this purpose, we first show how to symbolically represent prop-
agation on inductive definitions. Next, we show how we can use this together with the
representation of propagation for FO to approximate finite domain ∃∀SO(ID) satisfiability
problems.

Our approximation method has a number of benefits. First of all, it is a general method,
that can be applied automatically to approximately solve any ∃∀SO problem. Second, the
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required computation can be carried out by any off-the-shelf MX(FO(ID)) solver, allowing
our method to benefit effortlessly from improvements in solver technology, such as the
IDP system by Mariën, Wittocx, and Denecker (2006). Finally, as we show in Section 7,
our method elegantly generalizes a number of approximate reasoning methods from the
literature (e.g., Baral, Gelfond, & Kosheleva, 1998; Son, Tu, Gelfond, & Morales, 2005;
Denecker, Cortés Calabuig, Bruynooghe, & Arieli, 2010; Doherty, Magnusson, & Szalas,
2006; Son et al., 2005).

Parts of this work have already been presented at the JELIA 2011 conference (Vlaem-
inck, Wittocx, Vennekens, Denecker, & Bruynooghe, 2010).

2. Preliminaries

We assume familiarity with classical first-order logic (FO) and second-order logic (SO). In
this section we introduce some of the notations and conventions used throughout this paper.

2.1 First-order Logic

A vocabulary Σ is a finite set of predicate symbols ΣP and function symbols ΣF , each with
an associated arity. Constants are function symbols with arity 0. We often denote a symbol
S with arity n by S/n. A Σ−interpretation I consists of a domain D and an assignment
of a relation P I ⊆ Dn to each predicate symbol P/n ∈ Σ and an assignment of a function
F I : Dn → D to each function symbol F/n ∈ Σ. We assume that ΣP contains the equality
predicate ‘=’ interpreted as the identity relation. A pre-interpretation of Σ consists of a
domain and an interpretation of the function symbols. If I is a Σ-interpretation and Σ′ ⊆ Σ,
we denote by I|Σ′ the restriction of I to the symbols of Σ′. If Σ1 and Σ2 are two disjoint
vocabularies, I a Σ1-interpretation with domain D and J a Σ2-interpretation with the same
domain, then I + J denotes the unique (Σ1 ∪ Σ2)-interpretation with domain D such that
(I + J)|Σ1 = I and (I + J)|Σ2 = J .

Terms and formulas over a vocabulary Σ are defined as usual. An expression of the form
P (d̄) where P is an n-ary predicate and d̄ ∈ Dn is called a domain atom. A domain literal
is a domain atom P (d̄) or the negation ¬P (d̄) thereof. As usual, we denote a formula ϕ
by ϕ[x̄] to indicate that the set of free variables of ϕ is a subset of x̄. A formula without
free variables is called a sentence. The satisfaction relation |= is defined as usual. For an
interpretation I, a formula ϕ with n free variables and a tuple of n domain elements d̄, we
use I |= ϕ[d̄] as a shorthand for I, θ[x̄ : d̄] |= ϕ[x̄], where θ is a variable assignment, and
θ[x̄ : d̄] is the variable assignment that is the same as θ except that it maps the variables
x̄ to the domain elements d̄. We define the truth evaluation function (ϕ[d̄])I as follows:
(ϕ[d̄])I = t iff I |= ϕ[d̄] and (ϕ[d̄])I = f otherwise. We say that a formula ϕ is in negation
normal form if ϕ contains no implications or equivalences, and all negations occur directly
in front of atoms. We define the inverse on truth values as follows: (f)−1 = t and (t)−1 = f .
We also define the following strict order on the truth values: f <t t. The truth order
point-wise extends to interpretations: if I and J are two Σ-interpretations, then we say
that I ≤t J if for every predicate symbol P and tuple of domain elements d̄ it holds that
P I(d̄) ≤t P J(d̄).

Similar to how a real number r can be approximated by an interval [l, u] such that l ≤ r ≤
u, in this paper we approximate Σ-interpretations K by a pair (I, J) of Σ-interpretations,

82



An Approximative Inference Method for ∃∀SO

such that I ≤t K ≤t J . We denote by [I, J ] the interval of all such interpretations K.
This interval is empty if and only if I 6≤t J . It follows easily from well-known monotonicity
results, that if we evaluate all positive occurrences (i.e., in the scope of an even number of
negations) of atoms in some formula ϕ by I, and all negative occurrences (i.e., in the scope
of an odd number of negations) by J , we are underestimating the truth of ϕ in the interval
[I, J ]. Conversely, if we evaluate positive occurrences in J and negative occurrences in I,
we are overestimating the truth of ϕ in [I, J ]. To state this property more formally, we
introduce the following notation.

Definition 2.1 (Pos-neg evaluation relation ϕ+I−J). Let ϕ be a Σ-formula and let I and J
be Σ-interpretations. We define the pos-neg evaluation of ϕ in I and J , denoted by ϕ+I−J ,
by induction over the size of ϕ:

• for an atom ϕ = P (t̄), ϕ+I−J = ϕI ;

• for ϕ = ¬ψ, ϕ+I−J = (ψ+J−I)−1;

• for ϕ = ψ1 ∧ ψ2, ϕ+I−J = t iff ψ+I−J
i = t for both i = 1, 2;

• for ϕ = ∃x ψ, ϕ+I−J = t iff there is a d ∈ D such that ψ+I[x/d]−J [x/d] = t.

We now indeed have that, for each K ∈ [I, J ], ϕ+I−J ≤ ϕK ≤ ϕ+J−I . Also, we have
that ϕK = ϕ+K−K .

There is an intimate connection between the approximation of an interpretation by a
pair of interpretations and Belnap’s four-valued logic (1977). We denote the truth values
true, false, unknown and inconsistent of four-valued logic by respectively t, f ,u and i. On
these truth values, the truth order ≤t and precision order ≤p are defined as shown in Figure
1.

A four-valued relation of arity n on some domain D is a function from Dn to {t, f ,u, i}.
A four-valued interpretation I of vocabulary Σ consists of a pre-interpretation and of P I ,
a four-valued relation of arity n on D for each predicate symbol P/n ∈ Σ. Again, the
precision order pointwise extends to interpretations: if I and J are two Σ-interpretations,
then we say that I ≤p J if for every predicate symbol P and tuple of domain elements d̄ it
holds that P I(d̄) ≤p PJ (d̄). Similarly, also the truth order is extended to interpretations.
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Figure 1: The truth and precision order
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There is a natural isomorphism between Belnap’s four truth values and pairs of the two
standard truth values:

τ(t, t) = t;
τ(f , t) = u;
τ(t, f) = i;
τ(f , f) = f .

Intuitively, this mapping τ interprets its first argument as an underestimate to the “real”
truth value, and its second argument as an overestimate: if the underestimate is f and the
overestimate is t, then the real truth value is indeed unknown; whereas, if the underestimate
is t and the overestimate if f , then there cannot exist a real truth value, since t 6≤ f , so we
end up with inconsistency. This isomorphism τ extends in an obvious way to an isomorphism
between pairs (I, J) of two-valued interpretations and four-valued interpretations I which
all share the same pre-interpretations: (I, J) and I are isomorphic iff, for each predicate
P/n and tuple d̄ ∈ Dn, P I(d̄) = τ(P I(d̄), P J(d̄)). We also denote this isomorphism by τ .

There is a tight link between the pos-neg evaluation function ϕ+I−J and the Belnap
evaluation ϕI :

ϕI = τ(ϕ+I−J , ϕ+J−I), where τ(I, J) = I.

When I is a three-valued structure (i.e., it never assigns i) this corresponds to the standard
Kleene evaluation (1952). In the rest of this paper, we will often omit the isomorphism τ ,
and, e.g., simply denote the four-valued truth value of a formula ϕ in a pair of interpretations
(I, J) as ϕ(I,J). An important property, that we already stated above in different notation,
is that ϕ(I,J) ≤p ϕK for all K ∈ [I, J ].

There is a natural and well-known alternative way of using an interval [I, J ] for which
I ≤t J to assign a truth value to a formula ϕ: the supervaluation (van Fraassen, 1966).

Definition 2.2 (Supervaluation sv(I,J)(.)). The supervaluation sv(I,J)(ϕ) of a sentence ϕ
in a pair of interpretations (I, J) (or equivalently, a three-valued interpretation τ(I, J)) is
defined as

sv(I,J)(ϕ) = glb≤p({ϕK |K ∈ [I, J ]}).

It is easy to see that always sv(I,J)(ϕ) ≥p ϕ(I,J). This inequality may be strict. For

instance, if we take ϕ = Q ∨ ¬Q and interpretations I and J such that Q(I,J) = u, then
sv(I,J)(ϕ) = t, but ϕ(I,J) = u. The supervaluation has the following interesting property.
Let I be an interpretation for the free vocabulary of a ∀SO formula ϕ = ∀Q̄ ψ, and let (J1, J2)
be the least precise pair of interpretations for Q̄ in the domain D of I (i.e., Q(J1,J2)(d̄) = u
for all Q/n ∈ Q̄ and d̄ ∈ Dn). We then have that sv(I+J1,I+J2)(ψ) = t if and only if ϕI = t.

Key to our approach is that we can simulate the four-valued truth evaluation in pairs
of interpretations by encoding what is certainly true and certainly false, using a single
two-valued structure Itf over a new vocabulary Σtf . As we show in the next section, this
gives us a convenient vocabulary to syntactically represent the construction of such an
approximation. The new vocabulary Σtf contains the function symbols ΣF of Σ and, for
each predicate P ∈ ΣP , two symbols P ct and P cf . The interpretations of P ct and P cf

in Itf contain, respectively, those tuples d̄ for which P I(d̄) is certainly true and those for
which it is certainly false. Formally, for a vocabulary Σ and a four-valued Σ-interpretation
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I = τ(I, J), the Σtf -interpretation Itf has the same pre-interpretation as I, and is defined
by:

(P ct)I
tf

= {d̄|P I(d̄) ≥p t} = P I ,

(P cf )I
tf

= {d̄|P I(d̄) ≥p f} = Dn \ P J .

An interpretation I is three-valued iff (P ct)I
tf

and (P cf )I
tf

are disjoint for any P ∈ Σ. I
is two-valued iff (P ct)I

tf
and (P cf )I

tf
are each others complement in Dn. Also, if I ≤p J ,

then, for each P , (P ct)I
tf ⊆ (P ct)J

tf
and (P cf )I

tf ⊆ (P cf )J
tf

.

Definition 2.3 (ϕct and ϕcf ). For any given Σ-formula ϕ[x̄], let ϕct[x̄] be the Σtf -formula
obtained by first reducing to negation normal form and then replacing all occurrences of
positive literals P (t̄) by P ct(t̄) and all negative literals ¬P (t̄) by P cf (t̄), and let ϕcf [x̄] be
the formula (¬ϕ[x̄])ct.

An interesting property of the formulas ϕct and ϕcf is that they do not contain negations.
Also, the following proposition is well-known.

Proposition 2.1 (Feferman, 1984). For every Σ-formula ϕ and interpretation I, it holds

that ϕ[d̄]I ≥p t if and only if ϕ[d̄]+I−J = t if and only if (ϕct[d̄])I
tf

= t. Also, ϕ[d̄]I ≥p f

if and only if ϕ[d̄]+J−I = f if and only if (ϕcf [d̄])I
tf

= t.

2.2 FO(ID)

In this subsection we recall FO(ID) (Denecker & Ternovska, 2008), the extension of FO
with a construct to respresent some of the most common forms of inductive definitions,
such as monotone induction, induction over a well-founded order or iterated induction. As
illustrated by Denecker and Ternovska, FO(ID) can be used to represent different sorts
of common knowledge, such as temporal and dynamic domains, the closed world assump-
tion, defaults, causality, etc. In this paper, we use definitions to symbolically represent
propagation, not only for FO formulas, as already mentioned in the introduction, but also
propagation for inductive definitions themselves.

A definitional rule over a vocabulary Σ is an expression of the form ∀x̄ P (t̄)← ϕ where
P (t̄) is an atomic formula and ϕ an FO formula. The symbol ← is a new connective, called
the definitional implication, to be distinguished from the FO material implication symbol
⇐ (or its converse ⇒). A definition ∆ is a finite set of definitional rules. A predicate
symbol P in the head of a rule of ∆ is called a defined predicate; all other predicate and
function symbols in ∆ are called the open symbols or the parameters of the definition; the
set of defined predicates is denoted Def(∆), the remaining symbols Open(∆) (note that
Open(∆) therefore also includes ΣF ).

Given an interpretation for its open predicates, each definition will have a unique model,
that can be constructed by “firing” its rules in an appropriate order. Before defining this
formally, we first consider an example.

Example 2.1. Reachability in a graph is not expressible in FO. That is, there is no FO
formula ϕ over the vocabulary consisting of two predicates Edge/2 and Reach/2 such that
in any model M of ϕ, (d1, d2) ∈ ReachM iff there is a non-empty path from d1 to d2 in the

85



Vlaeminck, Vennekens, Denecker & Bruynooghe

graph represented by EdgeM . We can represent reachability with an inductive definition
however. The following definition defines the predicate Reach in terms of the open predicate
Edge. {

∀x∀y Reach(x, y)← Edge(x, y).

∀x∀y Reach(x, y)← ∃z(Reach(x, z) ∧Reach(z, y)).

}

Definition 2.4 (Operator TO∆ ). With a definition ∆ and a given Open(∆)-interpretation O,
we define the immediate consequence operator TO∆ on two-valued Def(∆)-interpretations
such that TO∆ (I) = J iff for each defined predicate P/n and tuple d̄ ∈ Dn, it holds that
P J(d̄) = t iff there exists a rule ∀xP (t̄)← ϕ[x̄], such that t̄(O+I) = d̄ and ϕ(O+I)[d̄] = t.

The model of a positive definition (i.e., no defined predicates occur negatively in the
body of rules) can be defined as the least fixpoint of this immediate consequence operator.
We use ModI|Open(∆)

(∆) to denote the model of the definition ∆ extending the restriction
of I to the open predicates and function symbols of ∆. When ∆ has no open predicates,
we omit the subscript and simply use Mod(∆). We postpone going into more detail about
how to construct the model of a general (non-monotonic) inductive definition until Section
5. In the next two sections, we only use positive definitions.

FO(ID) formulas are inductively defined by the same rules as standard FO formulas,
augmented with one extra case:

• A definition ∆ over Σ is an FO(ID) formula (over Σ)).

Note that rule bodies do not contain definitions, and that rules only occur inside definitions
and are not FO(ID) formulas themselves whereas definitions can be used in FO(ID) formulas
anywhere atoms can be used.

We can now define the satisfaction relation I |= ϕ of FO(ID) using the standard inductive
rules of FO, augmented with one extra rule:

• I |= ∆ if I = ModI|Open(∆)
(∆),

From now on, we assume without loss of generality that for any definition ∆, it holds that
every defined predicate P ∈ Def(∆) is defined by exactly one rule, denoted by ∀x̄(P (x̄)←
ϕP [x̄]). Indeed, any definition ∆ can be brought into this form by a process similar to
predicate completion. The transformation consists of first transforming rules of the form
∀x̄(P (t̄) ← ϕ) into equivalent rules ∀ȳ(P (ȳ) ← ∃x̄(ȳ = t̄ ∧ ϕ)). Next, one merges all rules
of the form ∀x̄(P (x̄)← ϕi[x̄]) into ∀x̄(P (x̄)← ϕ1[x̄] ∨ . . . ∨ ϕn[x̄]).

3. Propagation for FO

In this section we give a general, symbolic representation of propagation for first-order logic.
For this, we base ourselves on the work by Wittocx et al. (2010). We come back to the
precise relation between the material presented in this section and their work at the end of
this section.

Suppose we have an FO theory T in vocabulary Σ, a pre-interpretation of Σ, and a
finite three-valued interpretation I that represents some (incomplete) knowledge about the
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∀t (Clean(t+ 1) ∨ (¬Clean(t) ∧ ¬Wipe(t))).

Clean(t+ 1) ∨ (¬Clean(t) ∧ ¬Wipe(t))

Clean(t+ 1) ¬Clean(t) ∧ ¬Wipe(t)

¬Clean(t) ¬Wipe(t)

t

t for t = 3

f for t = 3 t for t = 3

t for t = 3 t for t = 3

A1

A2(t)

Clean(t+ 1) A3(t)

¬Clean(t) ¬Wipe(t)

Act1

Act2 (3)

Cleancf (4) Act3 (3)

Cleancf (3) Wipecf (3)

Figure 2: Propagation for FO.

predicates of Σ. We would now like to know the implications of this knowledge, assuming
the theory T is satisfied in the context of I. To find this out, we can look at the set M
of all models of T that complete this three-valued interpretation, i.e., M = {M | M |=
T and I ≤p M}. Given the partial information I, everything that is true in all M ∈ M
must certainly be true according to T , while everything that is false in all such M must
certainly be false according to T . In other words, all the information that T allows us to
derive from I can be captured by the greatest lower bound G = glb≤pM.

In general, computing this greatest lower bound may be too expensive (the data com-
plexity is in ∆P

2 ) to be of practical use. However, we may still achieve useful results by
computing some approximation M̃ such that I ≤p M̃ ≤p G. We can compute such an
approximation by propagating the three-valued interpretation I through the parse tree of
T . We illustrate this with the following example.

Example 3.1. Consider the sentence ψ: ∀t Clean(t+ 1)⇐ Clean(t)∨Wipe(t). Rewriting
this into negation normal form, it becomes:

∀t Clean(t+ 1) ∨ (¬Clean(t) ∧ ¬Wipe(t)).

Now, assume that ψ is satisfied, and that we know that Clean is false at timepoint 4.
From the knowledge that ψ is satisfied, it immediately follows that, for all timepoints t,
the disjunctive formula Clean(t+ 1) ∨ (¬Clean(t) ∧ ¬Wipe(t)) is satisfied. Using the fact
that Clean is false at timepoint 4, we can now deduce that the conjunction (¬Clean(t) ∧
¬Wipe(t)) is true for timepoint 3. Therefore, in all models of ψ where Clean is false at
timepoint 4, Wipe and Clean have to be false at timepoint 3. This reasoning process is
illustrated on the left part of Figure 2.

We now construct a symbolic representation of this propagation process. First, we
introduce some additional vocabulary ΣAux to refer to the different nodes of the parse
tree on which this process operates. We then use this additional vocabulary to transform
an FO formula into an equivalence normal form formula. This is similar to the Tseitin
transformation (1968) for propositional logic.

Definition 3.1 (ENF (ψ)). For an FO formula ψ in negation normal form, we introduce
a new predicate symbol Aϕ of arity n for each non-literal subformula ϕ[x̄] of ψ with n
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free variables. We denote the set of these new predicates by Aux(ψ). Each of these new
predicate symbols is defined by a formula Eq(Aϕ) as follows. To make notation simpler
we assume that each ϕ1, . . . , ϕn is a non-literal subformula. The definitions are analogous
whenever a ϕi is a literal, but instead of Aϕi the literal ϕi itself is used in the body of the
definition.

• If ϕ[x̄] is a subformula of the form ϕ1[x̄1] ∧ ϕ2[x̄2] ∧ . . . ∧ ϕn[x̄n], then Eq(Aϕ) is
∀x̄ (Aϕ(x̄)⇔ Aϕ1(x̄1) ∧Aϕ2(x̄2) ∧ . . . ∧Aϕn(x̄n)).

• If ϕ[x̄] is a subformula of the form ϕ1[x̄1] ∨ ϕ2[x̄2] ∨ . . . ∨ ϕn[x̄n], then Eq(Aϕ) is
∀x̄ (Aϕ(x̄)⇔ Aϕ1(x̄1) ∨Aϕ2(x̄2) ∨ . . . ∨Aϕn(x̄n)).

• If ϕ[x̄] is a subformula of the form ∀ȳ ϕ1[x̄, ȳ], then Eq(Aϕ) equals ∀x̄ (Aϕ(x̄) ⇔
∀ȳ Aϕ1(x̄, ȳ)).

• If ϕ[x̄] is a subformula of the form ∃ȳ ϕ1[x̄, ȳ], then Eq(Aϕ) equals ∀x̄ (Aϕ(x̄) ⇔
∃ȳ Aϕ1(x̄, ȳ)).

We define the equivalence normal form of ψ as the set of all such Eq(Aϕ), and denote
it as ENF (ψ).

Example 3.2. According to this definition, the ENF (ψ) theory from Example 3.1 is:

A1 ⇔ ∀t A2(t).
∀t A2(t) ⇔ Clean(t+ 1) ∨A3(t).
∀t A3(t) ⇔ ¬Clean(t) ∧ ¬Wipe(t).

This is illustrated in the right side of Figure 2.

Using the auxiliary vocabulary, we can now write down the propagations shown in
Figure 2 as the following implications.

A1 ⇒ A2(3).
A2(3) ∧ ¬Clean(4) ⇒ A3(3).
A3(3) ⇒ ¬Clean(3).
A3(3) ⇒ ¬Wipe(3).

Note that these rules are all top-down rules, that is, implications that propagate information
about a subformula down the parse tree, to a component of that subformula (possibly
using also information about other components of the subformula, as in the implication
A2(3)∧¬Clean(4)⇒ A3(3)). In general, also bottom-up propagations are of course possible.
For instance, from Clean(4) we could derive A2(3). For every predicate Aψ, we can derive
from Eq(Aψ) a set of implications ϕ1 ⇒ ϕ2, such that each such propagation corresponds
to deriving the consequent ϕ2 from the antecedent ϕ1 (so, different implications can be
logically equivalent). This is defined in Table 1. The last column of this table indicates
whether the rule is top-down (TD) or bottom-up (BU).

Definition 3.2 (INF (ψ)). Given an equivalence ϕ ∈ ENF (ψ) for a certain formula ψ, we
denote with Imp(ϕ) the set of all implications obtained through Table 1. We define the im-
plication normal form of ψ, denoted by INF (ψ), as follows: INF (ψ) =

⋃
ϕ∈ENF (ψ) Imp(ϕ).
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ϕ = Eq(Aψ) Imp(ϕ)

∀x̄ (L⇔ L1 ∧ . . . ∧ Ln).

∀x̄ (L1 ∧ . . . ∧ Ln ⇒ L). BU
∀x̄ (¬Li ⇒ ¬L). 1 ≤ i ≤ n BU
∀x̄ (L⇒ Li). 1 ≤ i ≤ n TD
∀x̄ (¬L ∧ L1 ∧ . . . ∧ Li−1 ∧ Li+1 ∧ . . . ∧ Ln ⇒ ¬Li). 1 ≤ i ≤ n TD

∀x̄ (L⇔ L1 ∨ . . . ∨ Ln).

∀x̄ (¬L1 ∧ . . . ∧ ¬Ln ⇒ ¬L). BU
∀x̄ (Li ⇒ L). 1 ≤ i ≤ n BU
∀x̄ (¬L⇒ ¬Li). 1 ≤ i ≤ n TD
∀x̄ (L ∧ ¬L1 ∧ . . . ∧ ¬Li−1 ∧ ¬Li+1 ∧ . . . ∧ ¬Ln ⇒ Li). 1 ≤ i ≤ n TD

∀x̄ (L[x̄]⇔ ∀ȳ L′[x̄, ȳ]).

∀x̄ ((∀ȳ L′[x̄, ȳ])⇒ L[x̄]). BU
∀x̄(∃ȳ ¬L′[x̄, ȳ])⇒ ¬L[x̄]). BU
∀x̄∀ȳ (L[x̄]⇒ L′[x̄, ȳ]). TD
∀x̄∀ȳ ((¬L[x̄] ∧ ∀z̄ (ȳ 6= z̄ ⇒ L′[x̄, ȳ][ȳ/z̄]))⇒ ¬L′[x̄, ȳ]). TD

∀x̄ (L[x̄]⇔ ∃ȳ L′[x̄, ȳ]).

∀x̄ ((∀ȳ ¬L′[x̄, ȳ])⇒ ¬L[x̄]). BU
∀x̄(∃ȳ L′[x̄, ȳ])⇒ L[x̄]). BU
∀x̄∀ȳ (¬L[x̄]⇒ ¬L′[x̄, ȳ]). TD
∀x̄∀ȳ ((L[x̄] ∧ ∀z̄ (ȳ 6= z̄ ⇒ ¬L′[x̄, ȳ][ȳ/z̄]))⇒ L′[x̄, ȳ]). TD

Table 1: From ENF to INF

In the work of Wittocx et al. (2010) it is proven that models of ψ and models of INF (ψ)
where Aψ is true correspond, in the sense that the restriction of a model of INF (ϕ) ∧ Aψ
to Σ is also a model of ψ, and vice versa, every model of ψ can be extended to a model
of INF (ψ) ∧ Aψ. These implications will form the core of our approximation method.
While our approximation could be made more complete by adding more implications to
INF (ψ), the above definition tries to strike a balance between completeness and the ease
of automatically deriving the implications.

Example 3.3. For each of the three formulas ϕ in ENF (ψ) in Example 3.2, the following
table shows the corresponding set of implications Imp(ϕ). The complete theory INF (ψ)
consists of the union of these three sets.

A1 ⇔ ∀t A2(t). ∀t (A2(t)⇔ Clean(t+ 1) ∨A3(t)). ∀t (A3(t)⇔ (¬Clean(t) ∧ ¬Wipe(t))).
(∀t A2(t))⇒ A1. ∀t (¬Clean(t+ 1) ∧ ¬A3(t)⇒ ¬A2(t)). ∀t (¬Clean(t) ∧ ¬Wipe(t)⇒ A3(t)).
(∃t¬A2(t))⇒ ¬A1. ∀t (Clean(t+ 1)⇒ A2(t)). ∀t (Clean(t)⇒ ¬A3(t)).
∀t (A1 ⇒ A2(t)). ∀t (A3(t)⇒ A2(t)). ∀t (Wipe(t)⇒ ¬A3(t)).
∀t ((¬A1 ∧ ∀t′ (t 6= t′ ∀t (¬A2(t)⇒ ¬Clean(t+ 1)). ∀t (A3(t)⇒ ¬Clean(t)).

⇒ A2(t′)))⇒ ¬A2(t)). ∀t (¬A2(t)⇒ ¬A3(t)). ∀t (A3(t)⇒ ¬Wipe(t)).
∀t (A2(t) ∧ ¬A3(t)⇒ Clean(t+ 1)). ∀t (¬A3(t) ∧ ¬Wipe(t)⇒ Clean(t)).
∀t (A2(t) ∧ ¬Clean(t+ 1)⇒ A3(t)). ∀t (¬A3(t) ∧ ¬Clean(t)⇒Wipe(t)).

The reader can verify that the four implications representing the propagation in Example 3.1
all indeed belong to INF (ψ).

The propagation process in Example 3.1 can now be described as a least fixpoint-
computation, where we ‘apply’ the implications (i.e., infer the head when the body is
already inferred), until we no longer can infer any new information. We will represent this
fixpoint computation as an inductive definition in the syntax of FO(ID). However, there are
two complications.
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First, in this paper, we do not always need all of the implications in INF (ψ). Indeed,
there will typically be some subset σ ⊆ Σ of symbols about which we already know all there
is to know. In the conformant planning example, for instance, this will be the case for the
existentially quantified predicate Wipe/2, simply because we will use a model expansion
system to guess a complete interpretation for this predicate. The job of the propagation
process is then to figure out the consequences of each particular guess. For this, the impli-
cations with a predicate from σ (i.e., Wipe/2) in their head are obviously not needed.

Second, the fixpoint computation not only needs to infer that atoms are true but also
that they are false. However, the syntax of FO(ID) does not allow negative literals in the
heads of rules. Therefore, our definition will not contain rules with the predicates P of the
original vocabulary Σ in their head, but will instead use predicates P ct and P cf from the
Σtf -vocabulary. Since we do not need rules with the fully known predicates σ in the head,
we will only introduce these P ct and P cf predicates for those P that are in Σ \ σ. For a
given formula ϕ, we therefore define ϕctσ as the formula ϕct (see Definition 2.3) but with P ct

replaced by P and P cf by ¬P for every predicate P ∈ σ.

Definition 3.3 (Approxσ(ψ)). For a formula ψ and σ ⊆ Σ, we define Approxσ(ψ) as the
inductive definition that contains, for every sentence ∀x̄ (ϕ⇒ L[x̄]) of INF (ψ) in which L
is a literal of a predicate not in σ, the definitional rule ∀x̄(L[x̄]ct

σ ← ϕct
σ ). We also define

ApproxBUσ (ψ) (and ApproxTDσ (ψ)) in the same way as Approxσ(ψ), but only containing
definitional rules coming from the bottom-up (respectively, top-down) rules of INF (ψ).

We can often assume without loss of generality that σ = ∅. Whenever this is the case
we drop the σ and use Approx(ψ) rather than Approxσ(ψ), to denote the approximative
definition.

Example 3.4. Using the implications INF (ψ) of Example 3.3, we obtain the definition
shown in Figure 3 for Approx(ψ). If we take σ = {Wipe}, we get the same definition for
Approxσ(ψ) as in Figure 3, apart from the last seven definitional rules that are replaced by
the following five definitional rules.

...
Act3 (t) ← Cleancf (t) ∧ ¬Wipe(t).

Acf3 (t) ← Cleanct(t).

Acf3 (t) ← Wipe(t).
Cleancf (t) ← Act3 (t).

Cleanct(t) ← Acf3 (t) ∧ ¬Wipe(t).


In contrast with Approx(ψ) this definition no longer approximates the predicate Wipe. The
definition Approxσ(ψ) can be used to find out what certainly holds or not holds given a two
valued interpretation for the predicates in σ.

Example 3.5. For a larger example, we look again at the Example 1.1. Let us again take
ψ = ψact and σ = {Wipe}. Then the definition Approxσ(ψ) can be found in the Appendix
A.

This approximative definition has some useful properties, which we formulate in the
next two theorems. The first property is that, when using the approximative definition
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

Act1 ← ∀t Act2 (t).

Acf1 ← ∃t Acf2 (t).
Act2 (t) ← Act1 .

Acf2 (t) ← Acf1 ∧ ∀t′ (t 6= t′ ⇒ Act2 (t′)).

Acf2 (t) ← Cleancf (t+ 1) ∧Acf3 (t).
Act2 (t) ← Cleanct(t+ 1).
Act2 (t) ← Act3 (t).

Cleancf (t+ 1) ← Acf2 (t).

Acf3 (t) ← Acf2 (t).

Cleanct(t+ 1) ← Act2 (t) ∧Acf3 (t).
Act3 (t) ← Act2 (t) ∧ Cleancf (t+ 1).

Act3 (t) ← Cleancf (t) ∧Wipecf (t).

Acf3 (t) ← Cleanct(t).

Acf3 (t) ← Wipect(t).
Cleancf (t) ← Act3 (t).
Wipecf (t) ← Act3 (t).

Cleanct(t) ← Acf3 (t) ∧Wipecf (t).

Wipect(t) ← Acf3 (t) ∧ Cleancf (t).



A1

A2(t)

Clean(t+ 1) A3(t)

¬Clean(t) ¬Wipe(t)

∀t

∨

∧

Figure 3: Example of an approximative definition

together with an encoding of a three-valued interpretation I of the original vocabulary, we
can give an exact characterization of what the approximative definition computes. Indeed,
in this setting, ApproxBU (ψ) actually encodes the three-valued Kleene evaluation of ψ in
I. Moreover, adding the top-down rules does not change this, since they will not compute
actually anything, as long as only information about the original vocabulary is provided
as input. Before we can formally state this property, we need to define how we encode a
four-valued interpretation as a definition. From here on, we assume that for any vocabulary
Σ and Σ-pre-interpretation I, Σ contains a constant symbol Cd for every domain element
d in the domain D of I, and that for the pre-interpretation I it holds that (Cd)

I = d. This
allows us to identify Cd and d and therefore, abusing notation, we will use d to denote Cd
in what follows.

Definition 3.4 (∆I). Given a four-valued Σ-interpretation I, the definition associated to
I is denoted by ∆I and is defined by

∆I = {P ct(d̄)← t | P I(d̄) ≥p t}
∪ {P cf (d̄)← t | P I(d̄) ≥p f}

Theorem 3.1. Given a Σ-formula ψ and a four-valued Σ-interpretation I, the following
holds:

a) In the case that I is three-valued it holds that Approx(ψ) ∪ ∆I is logically equivalent
to ApproxBU (ψ) ∪ ∆I , that is, Mod(Approx(ψ) ∪ ∆I) = Mod(ApproxBU (ψ) ∪ ∆I)
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b) Let M be Mod(Approx(ψ) ∪∆I), v1 the truth value of Actψ in M and v2 be the truth

value of ¬Acfψ in M , then (v1, v2) corresponds to the four-valued truth value ψI , i.e.,

ψI = τ(v1, v2).

Proof. See Appendix B.

In summary, what this theorem says is that, first of all, the approximation always
computes the four-valued Belnap evaluation of ψ in the four-valued structure I. Moreover,
this computation is done by the bottom-up rules of the approximation alone. If I is three-
valued, then the top-down rules actually have no effect at all. If I is four-valued, then
they may still serve a purpose, however: once the bottom-up rules have derived that some
subformula is inconsistent, they can then propagate this information to derive that smaller
formulas are also inconsistent. To see this, consider the following formula P ∧Q, and take
for I the four-valued interpretation such that P = i and Q = t. Then one can verify that
the bottom-up rules in Approx(ψ) ∪ ∆I will infer that both ActP∧Q and AcfP∧Q are true.

However, now the top-down rules can also infer that Qcf has to be true.
In the theorem above the only information we add to the approximative definition is in

the form of the definition ∆I , i.e., we only assert the truth, resp. falsity of domain atoms.
The following definition now allows us to assert the truth or the falsity of any grounded
subformula ϕ[d̄].

Definition 3.5 (∆Φ). Given a Σ-formula ψ, a Σ-pre-interpretation I, and a set Φ of
formulas (¬)ϕ[d̄], such that ϕ[x̄] is a subformula of ψ of arity n and d̄ ∈ Dn where D is the
domain of I, we then define ∆Φ as follows:

∆Φ = {Actϕ (d̄)← t |ϕ[d̄] ∈ Φ} ∪ {Acfϕ (d̄)← t | ¬ϕ[d̄] ∈ Φ}.

If we assert in this way the truth (or the falsity) of a set of grounded subformulas Φ,
then we will obtain an approximation of everything that holds (respectively, does not hold)
in all models of Φ. However, as opposed to the theorem above, the next theorem does not
give an exact characterization of the approximation we get.

Theorem 3.2. Given a Σ-formula ψ, a set Φ as defined above and a subformula ϕ′[x̄′] of

ψ. Let M be Mod(Approx(ψ) ∪ ∆Φ). If M |= Actϕ′(d̄
′) (resp. Acfϕ′ (d̄

′)), then Φ |= ϕ′[d̄′]

(resp. Φ |= ¬ϕ′[d̄′]).

Note that an interesting special case of this theorem is where we take Φ equal to {ψ} and
thus add Actψ ← t to Approx(ψ). Then this definition gives an approximation of everything
that is certainly true resp. certainly false in all models of ψ.

Returning now to the exact relationship between the work of Wittocx et al. (2010) and
the content of this section, we see that Wittocx et al. are only interested in this special
case, i.e., in approximating all models of a theory. For this reason their transformation
from a formula ψ to ENF (ψ) already includes a formula Aψ ⇔ t, which will cause the rule
Actψ ← t to always be included in the approximating definition. All their soundness results
have also been formulated and proven in this setting. However, it is not difficult to see that
the proofs can be trivially adapted to a proof of Theorem 3.2 in the more general setting
used in this section.

92



An Approximative Inference Method for ∃∀SO

4. Approximating ∃∀SO-Satisfiability Problems

We now use the approximate definition from the previous section to approximate the fol-
lowing problem. Take an ∃∀SO formula F = ∃P̄∀Q̄ : ψ. For ease of presentation, we
assume that the second-order formulas in this paper contain no free predicate symbols, but
all results generalize to the setting where there are free predicate symbols. We also assume
that Q̄ contains only predicate symbols. In what follows, we denote the vocabulary of ψ
by Σ. The question we want to answer is whether the formula F is satisfied in a given
finite-domain pre-interpretation I of the constant and function symbols of the formula.
This satisfiability problem boils down to deciding whether we can find a witness for the
satisfiability of this formula, in the following sense.

Definition 4.1 (Witness). We call J a witness for the satisfiability of a formula ∃P̄∀Q̄ : ψ
given a finite Σ pre-interpretation I, if J is an interpretation of Σ \ Q̄ extending I (i.e., J
is an interpretation of the whole vocabulary without the universally quantified predicates)
such that ∀Q̄ : ψ is satisfied in J . Equivalently, J is a witness if in the three-valued Σ-
interpretation J that expands J by assigning u to each domain atom Q(d̄), it holds that
svJ (ψ) = t.

Our goal in this section is now to approximate an ∃∀SO satisfiability problems by an
∃SO satisfiability problem in the following sense.

Definition 4.2 (Sound approximation). Consider the ∃∀SO satisfiability problem for a
formula ∃P̄∀Q̄ : ψ, where ψ is an FO formula in alphabet Σ. An ∃SO(ID) formula of
the form ∃P̄ R̄ : ψ′, where ψ′ is an FO(ID) formula in the alphabet Σ \ Q̄ ∪ R̄, is a sound
approximation of this satisfiability problem if, whenever J is a witness for the satisfiability
of ∃P̄ R̄ : ψ′, then J |Σ\Q̄ is a witness for the satisfiability of ∃P̄∀Q̄ : ψ.

In other words, a sound approximation G of the satisfiability problem for an ∃∀SO
formula F is a stronger ∃SO(ID) formula, i.e., one that has fewer witnesses for P̄ .

4.1 A Naive Method

We can now use the results of Theorem 3.1 to construct a sound approximation for a given
∃∀SO formula.

Definition 4.3 (APP(F )). Given a formula F = ∃P̄∀Q̄ : ψ. Take σ to be the alphabet
of all function symbols in ψ and the predicates P̄ . We define APP(F ) as the ∃SO formula
∃P̄∃R̄ : Approxσ(ψ) ∧Actψ in the vocabulary σ ∪ R̄, where R̄ = (Q̄ ∪Aux(ψ))tf .

The intuition here is that for any σ-interpretation I, Approxσ(ψ) will give the result
of the four-valued evaluation ψI in the Σ-interpretation I that expands I by assigning un-
known to all universally quantified predicates Q̄. If the entire FO formula ψ evaluates to
true in this four-valued interpretation, we know that ψ will be satisfied in any Σ interpreta-
tion that expands I (in other words, for every interpretation of the Q̄ predicates), and thus
that I is a witness for the satisfiability of the entire formula F . The auxiliary predicates
Aux(ψ) — introduced by the transformation to ENF — are needed because of the way in
which the propagation works, but their value is completely determined by that of P̄ .
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Proposition 4.1. For each ∃∀SO formula F of the form ∃P̄∀Q̄ : ψ, it holds that APP(F )
is a sound approximation of F .

Proof. This follows immediately from Theorem 3.1, where we take as three-valued inter-
pretation, the interpretation I such that (Q(d̄))I = u for all Q ∈ Q̄ and d̄ ∈ Dn, and
(P (d̄))I = (P (d̄))I for all P ∈ P̄ and d̄ ∈ Dn, with D the domain of I.

For example, if we take F to be the formula ∃P∀Q : ψ where ψ = P ∨Q, then APP(F )
becomes:

∃P,Qct, Qcf , Actψ , A
cf
ψ :


Actψ ← P ∨Qct

Acfψ ← ¬P ∧Q
cf

Qct ← Actψ ∧ ¬P
Qcf ← Acfψ

 ∧A
ct
ψ .

We start from an interpretation O of the open predicate P of the definition Approx{P}(ψ).
Let us take the interpretation O that makes P true. The unique model I of the definition
that extends O is then the interpretation that assigns true to Actψ and false to Qct, Qcf and

Acfψ . Therefore, this I satisfies both Approx{P}(ψ) and Actψ . Hence, it is a witness for the
satisfiability of APP(F ), and, indeed, it is also a witness for the satisfiability of the original
formula ∃P∀Q : P ∨Q.

This approximation method is sound, but for many applications still too incomplete.
Indeed, let us look at the following formula: F = ∀Q : Q ∨ ¬Q. Then APP(F ) becomes:

∃Qct, Qcf , Actψ , A
cf
ψ :



Actψ ← Qct ∨Qcf

Acfψ ← Qcf ∧Qct
Qct ← Actψ ∧Qct

Qcf ← Acfψ
Qcf ← Actψ ∧Qcf

Qct ← Acfψ


∧Actψ .

The definition does not entail that Actψ , so APP(F ) is unsatisfiable, even though the orig-
inal formula F is clearly always satisfied. The problem here is that, as we showed in the
previous section, the definition encodes the three-valued Kleene evaluation, which is not
strong enough to find out that the formula F is satisfied. To do this, we need the stronger
supervaluation.

Recall that in the preliminaries we saw that supervaluation and Kleene evaluation are
in general not equal. However, for some formulas ψ they are equal. In the literature, several
classes of formulas for which they agree have been proposed, e.g., in the context of locally
closed databases (Denecker et al., 2010), or in the context of reasoning with incomplete
first-order knowledge (Liu & Levesque, 1998). The latter introduces a normal form NF for
first-order formulas, for which the supervaluation coincides with the Kleene evaluation, and
proves for certain classes of formulas that they are in the normal form NF . One such class
is that of all CNF formulas in which every two literals are conflict-free: a pair of literals
is conflict-free if they either have the same polarity, or they use different predicates, or
they use different constants at some argument position. It immediately follows that our
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approximation is complete for ∃∀SO formulas in which the first-order formula satisfies this
condition.

Proposition 4.2. Each ∃∀SO formula F of the form ∃P̄∀Q̄ : ψ, where ψ is in the NF
normal form (according to Liu & Levesque, 1998) is satisfiable with respect to a given finite
pre-interpretation I if and only if the ∃SO-formula APP(F ) is satisfiable w.r.t. I.

Proof. This follows immediately from the results by Liu and Levesque and Theorem 3.1.

4.2 A More Complete Method

Unfortunately, many applications give rise to formulas in which the first-order part falls
outside the class NF , which means that completeness of our method is not guaranteed.
Particularly troublesome in practice are formulas of the common form ∃P̄∀Q̄ : ψ1 ⇒ ψ2.
For such formulas, the naive approximation method of the previous section tries to find
interpretations for P̄ such that the implication ϕ = (ψ1 ⇒ ψ2) holds for all Q̄. However, if
we look at the details of the approximative definitions, we find that Actϕ is defined by a rule

with a body ψcf1 ∨ ψct2 . In other words, the approximation will only derive that ϕ holds for
all Q̄ if it is either the case that ψ1 is false for all Q̄ or that ψ2 is true for all Q̄. However,
this will rarely be the case. In most practical applications, the witnesses of interest will
typically satisfy the implication ψ1 ⇒ ψ2 not because they always falsify ψ1 or always
satisfy ψ2, but rather because each interpretation for Q̄ that satisfies ψ1 also satisfies ψ2.
For instance, in the conformant planning example, there will always be interpretations for
the fluents that do not satisfy the action theory ψact, because they arbitrarily assign some
fluent a value that is wrong for its initial value and the actions that are performed. Even if
a set of actions is a completely correct conformant plan, it therefore cannot make the goal
certainly true, because it will still be unsatisfied in some of these wrong interpretations of
the fluents. Of course, this should not bother a good method for finding conformant plans.
The only thing that should matter is that the goal is satisfied in those interpretations of
the fluents that do satisfy the action theory.

Luckily, our approximation method can also be used to discover this kind of witnesses.
The only thing that is required is to add to the approximative definition ∆ = Approxσ(ϕ)
a rule Actψ1

← t. By doing do, we seed our approximation with the assumption that ψ1

holds. Starting from this assumption, the top-down rules will then derive properties of
the predicates Q̄ that are shared by all interpretations for Q̄ that actually satisfy ψ1. The
bottom-up rules will then propagate this information upwards and discover whether these
properties suffice to ensure that ψ2 also holds. If they do, then we know that ψ2 indeed
must hold in every interpretation for Q̄ that satisfies ψ1 and that we therefore have found
a witness for our formula.

If we want to find both witnesses of this kind and degenerate witnesses that either make
ψ1 false for all Q̄ or ψ2 true for all Q̄, we could simply combine our new method with the old
one and check either whether Actψ2

holds according to ∆ ∪ {Actψ1
← t} or whether Actϕ holds

according to just ∆ itself. However, it turns out that this is not necessary: we can achieve
the same effect by just checking whether ∆∪ {Actψ1

← t} implies Actϕ . This is because, first,

the definition ∆ ∪ {Actψ1
← t} will be able to derive Actϕ whenever ∆ itself can: if ∆ can

derive that Actψ2
then ∆ ∪ {Actψ1

← t} will obviously still be able to do so; if ∆ would be

95



Vlaeminck, Vennekens, Denecker & Bruynooghe

able to derive that Acfψ1
, then ∆ ∪ {Actψ1

← t} will also be able to do so, simply because
our approximation has no flow of information between the ct and cf variants of the same
formula, so the additional assumption that Actψ1

holds will not change the original derivation

of Acfψ1
. Second, if ∆ ∪ {Actψ1

← t} can derive Actψ2
, then it also derives Actϕ , simply because

it contains the rule Actϕ ← Acfψ1
∨ Actψ2

. Therefore, we can find both kinds of witnesses by

checking whether Actϕ is implied by the single definition ∆ ∪ {Actψ1
← t}.

Definition 4.4 (APP⇒(F )). For an ∃∀SO formula F = ∃P̄∀Q̄ : ψ, where ψ is of the
form ψ1 ⇒ ψ2, we define APP⇒(F ) as ∃P̄∃R̄ : ∆⇒ ∧ Actψ , where ∆⇒ is the definition

Approxσ(ψ1 ⇒ ψ2) ∪ {Actψ1
← t}.

Note that we obtain Definition 4.3 as a special case when taking the trivial formula t
for ψ1. This approximation method is still sound, as the following proposition states.

Proposition 4.3. Given a formula F of the form ∃P̄∀Q̄ : ψ, where ψ = ψ1 ⇒ ψ2, the
∃SO(ID) formula APP⇒(F ) is a sound approximation of F .

Proof. See Appendix C.

Since the approximative definition ∆⇒ inAPP⇒(F ) contains all the rules of Approx(F ),
it is not hard to see that this new approximation method is at least as complete as the one
using APP(F ) (Definition 4.3). Moreover, as can be seen from the following example, it is
also strictly more complete.

Example 4.1. Let us consider the following formula F = ∃P∀Q : (Q⇐ P )⇒ Q. We have
that P = t is clearly a witness for this satisfiability problem. If we denote (Q ⇐ P ) ⇒ Q
by ϕ1 and (Q⇐ P ) by ϕ2, then APP(F ) is the following ∃SO formula.

∃PR̄ :



Actϕ1
← Acfϕ2 ∨Qct

Acfϕ1 ← Actϕ2
∧Qcf

Actϕ2
← ¬P ∨Qct

Acfϕ2 ← P ∧Qcf
Qct ← Actϕ2

∧ P
Qcf ← Acfϕ2


∧Actϕ1

.

Now, even for P = t, the definition in the body of this formula will not entail Actϕ1
= t.

Therefore, APP(F ) is not satisfiable. On the other hand, APP⇒(F ) is the same formula
as above, apart from that the definition contains one more rule, that is, the rule Actϕ2

← t.
It is easy to verify that APP⇒(F ) is satisfiable, and indeed has P = t as a witness.

Obviously, the new method is still complete on formulas ∃∀ψ1 ⇒ ψ2, where ψ1 ⇒ ψ2

satisfies the normal form NF . However, our method also works for many formulas outside
this class. Unfortunately, it is difficult to characterize precisely how much more complete the
new method is. For instance, one source of loss in completeness comes from the fact that our
current translation to ENF cannot recognize multiple occurrences of the same subformula,
and will introduce a different Tseitin predicate for each occurrence. Even though we cannot
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guarantee completeness for our method in general, we always found all solutions in the
conformant planning benchmarks we considered in Section 6.

A final remark about this method is that the approximative definition Approxσ(ψ1 ⇒
ψ2) contains a number of rules that are superfluous in our context. Indeed, with our method,
this definition takes as its input an interpretation for P̄ together with the assumption that
ψ1 is certainly true. It then uses the bottom-up and top-down rules derived from ψ1 to
compute the effect of these inputs on the predicates Q̄. Finally, the rules derived from ψ2

then compute whether the derived information about Q̄ suffices to make ψ2 certainly true.
However, as we know from Theorem 3.1, only the bottom-up rules for ψ2 are needed for
this. Therefore, the top-down rules for ψ2 actually contribute nothing and could just as
well be removed. Adapting Definition 4.4 to use ∆⇒BU = ∆⇒ \ ApproxTDσ (ψ2) instead of
∆⇒ leads to the following definition.

Definition 4.5 (APP⇒BU (F )). For an ∃∀SO formula F = ∃P̄∀Q̄ : ψ, where ψ is of the
form ψ1 ⇒ ψ2, we define APP⇒BU (F ) as ∃P̄∃R̄ : ∆⇒BU ∧Actψ , where

∆⇒BU = Approxσ(ψ1 ⇒ ψ2) \ApproxTDσ (ψ2) ∪ {Actψ1
← t}.

It follows directly from Theorem 3.1 and Proposition 4.3 that this too is a sound approx-
imation. Having removed the top-down rules from the approximation of ψ2, the remaining
rules just serve, as we already know, to compute the Kleene evaluation of ψ2. They do
this by computing the Kleene evaluation of each subformula γ of ψ2, for which they use
the Tseitin predicates Actγ and Aptγ . An alternative is to avoid these Tseitin predicates by
defining Actψ2

directly by the single rule:

Actψ2
← (ψ2)ct

This variant is summarized in the following definition.

Definition 4.6 (APP⇒BU,Unf (F )). For an ∃∀SO formula F = ∃P̄∀Q̄ : ψ, where ψ is
ψ1 ⇒ ψ2, we define APP⇒BU,Unf (F ) as ∃P̄∃R̄ : ∆⇒BU,Unf ∧Actψ , where

∆⇒BU,Unf = Approxσ(ψ) \Approxσ(ψ2) ∪ {Actψ2
← (ψ2)ct} ∪ {Actψ1

← t}.

This approximation is actually equivalent to that of Def. 4.5. This follows from the
fact that all bottom-up rules for ψ2 are positive and non-recursive, which allows us to
eliminate the Tseitin predicates introduced for the parse tree of ψ2 by applying the unfolding
procedure from Tamaki and Sato (1984). By iteratively applying this equivalence preserving
procedure, we can reduce all the rules that were generated to approximate ψ2 to just the
single rule Actψ2

← (ψ2)ct.

5. Approximating ∃∀SO(ID)-Satisfiability Problems

Inductive definitions are important for knowledge representation. As argued by Denecker
and Ternovska (2008), inductive definitions are not only used to represent mathematical
concepts, but also the sort of common sense knowledge that is often represented by logic
programs, such as dynamic domains, the closed world assumption, defaults, causality, etc.
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Therefore, inductive definitions can make the task of representing a problem in logic con-
siderably easier. An example of this is the use of inductively defined Situation Calculus for
reasoning about actions (Denecker & Ternovska, 2007). Recall that in the introduction we
showed how to represent Tact from Example 1.1 as an inductive definition ∆act:

Clean(t+ 1) ← Clean(t).
Clean(t+ 1) ← Wipe(t).
Clean(0) ← InitiallyClean.

 .

The associated conformant planning problem can then be expressed as an ∃∀SO(ID) sat-
isfiability problem:

∃Wipe∀Clean, InitiallyClean : ∆act ⇒ Clean(n).

As we will show in more detail in Section 7, a general conformant planning problem can
be seen as a satisfiability problem of the form

∃Ā∀Ī∀F̄ : (∆act ∧ ψinit)⇒ (ψprec ∧ ψgoal),

where the predicates Ā represent the actions, Ī the initial fluents and F̄ the other fluents.
The definition ∆act defines how the fluents change in terms of the action, ψinit is a first
order formula about the initial situation, ψprec describes the preconditions of the actions
and ψgoal the goal. This motivates the extension of our approximation method to formulas
including definitions. However, we do not analyze the general case where definitions may
appear at arbitrary locations in a formula, but instead restrict attention to formulas of the
form

∃P̄∀Q̄ : (∆ ∧ ψ1)⇒ ψ2,

where ∆ is a definition such that Def(∆) ⊆ Q̄ and ψ1 and ψ2 are FO formulas. Even
though these restrictions are not strictly necessary, they allow us to keep the technical
details relatively simple (in particular, we avoid the need for approximation rules that infer
that a definition as a whole is certainly true/false), while still covering the way in which
definitions are typically used: under the assumption that all predicates indeed are what the
definition ∆ and the formula ψ1 say they should be, ψ2 then states what properties they
should satisfy.

To extend our approximative method to ∃∀(∆ ∧ ψ1) ⇒ ψ2 satisfiability problems, we
need a syntactic representation (i.e., an approximative definition) that describes sound
inferences that can be made from the definition in a three-valued context. In this section
we propose two ways to obtain such an approximative definition, and accordingly, two ways
to approximate ∃∀(∆ ∧ ψ1) ⇒ ψ2 satisfiability problems. Before we can continue, we first
need to recall some more preliminaries.

5.1 Preliminaries on the Well-founded Semantics for Inductive Definitions

Earlier, we defined the model of a positive inductive definition given a two-valued interpre-
tation for the open predicates. From here on, the inductive definitions are no longer only
positive definitions, so the model of a definition can no longer always be computed as the
least fixpoint of the immediate consequence operator introduced in Section 2. Moreover,
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in what follows we want to use inductive definitions together with four-valued information
about the open predicates (for example, information obtained through propagation on a
first order theory). Therefore, we now recall (see, e.g., Denecker & Ternovska, 2008) how to
define the well-founded model of a non-monotone inductive definition ∆ (that is, negation
in the body of rules is allowed), given some four-valued information O about its open pred-
icates, which we denote by WFMO(∆). In order to do this, we first need to define some
additional concepts. Recall that ϕP denotes the body of the unique rule with predicate P
in the head.

Definition 5.1 (Operator T O∆ ). For a definition ∆ and a given (potentially 4-valued)
Open(∆)-interpretation O, we define the operator T O∆ on 4-valued Def(∆)-interpretations
with the same domain as Open(∆) such that T O∆ (I) = J iff for each defined predicate P/n
and n-tuple d̄ ∈ Dn, it holds that

PJ (d̄) = ϕO+I
P [d̄]

Recall that in the preliminaries we defined the isomorphism τ that maps a pair of
interpretations (I, J) to the corresponding four-valued interpretation I.

Definition 5.2 (WFMO(∆)). We define the well-founded model of ∆ in O as the 4-valued
interpretation τ(I, J) such that (I, J) is the maximal oscillation pair of the operator STO∆ ,
where STO∆ is the operator λJ(lfp(λK(T O∆ (K,J)1)). I.e., (I, J) is the least precise pair of
2-valued interpretations such that

I = STO∆ (J) and J = STO∆ (I).

Some explanation is in order. First look at the operator λK(T O∆ (K,J)1). This oper-
ator takes a Def(∆)-structure K, turns it into a 4-valued one by combining it with J ,
applies the operator T O∆ , and projects the result on its first argument. We can see that
λK(T O∆ (K,J)1) = L iff for each defined predicate P/n and n-tuple d̄ ∈ Dn, it holds that

PL(d̄) = t iff (ϕP [d̄])+(O1+L)−(O2+J) = t

In other words, positive occurrences of atoms are evaluated in O1 +L, negative occurrences
in O2 + J . For each J , this operator λK(T O∆ (K,J)1) is monotone, and therefore has a
least fixpoint. The operator STO∆ now maps J to this least fixpoint. It can be proven that
this operator is antimonotone, and therefore has a maximal oscillation pair. The definition
of the well-founded model as the maximal oscillation pair of the operator STO∆ is a non-
constructive definition. This maximal oscillation pair can be constructed by iterating the
following operator, starting from the least precise interpretation I that extends O, until it
reaches its least fixpoint.

Definition 5.3 (Stable operator ST O∆). We define the operator ST O∆ on pairs of interpre-
tations as:

ST O∆(I, J) = (STO∆ (J), STO∆ (I)).

The stable operator is monotone w.r.t. the precision order ≤p on pairs of interpretations
and its fixpoints therefore form a complete lattice. The fixpoints of this operator are called
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the four-valued stable fixpoints of ∆, and the least precise of these fixpoints is precisely the
well-founded model of ∆ given O.

We can now define the semantics of inductive definitions in the general case. The
reader can easily verify that this indeed generalizes the definition of ModO(∆) for positive
definitions we gave in Section 2.2.

Definition 5.4 (Satisfaction relation for definitions). I |= ∆ iff (I|Def(∆), I|Def(∆)) is the
well-founded model of ∆ in I|Open(∆).

Note that when the definition ∆ has a three-valued well-founded model for every possible
interpretation of the open predicates Open(∆), the definition has no model (i.e. there
does not exists an interpretation I such that I |= ∆). We call a definition total if it has
a two-valued well-founded model for every possible two-valued interpretation of its open
predicates.

The above definitions generalize in a rather obvious way the standard well-founded
semantics of propositional logic programs and are strongly linked to the stable seman-
tics (Gelfond & Lifschitz, 1988). In the case of a propositional logic program ∆, where
Open(∆) = {}, the operator λK(T∆(K,J)1) is nothing else than the immediate conse-
quence operator T∆J

of the Gelfond Lifschitz reduct ∆J of ∆, and the operator that maps
J to lfp(λK(T∆(K,J)1) is the stable operator of ∆. As shown by Van Gelder (1993), its
maximal oscillation pair is indeed the well-founded model of ∆.

5.2 Approximating ∃∀SO(ID)-Satisfiability Problems

Assume we have a formula ∃∀ψ, where ψ is an FO(ID) formula instead of an FO. The
concepts of witness (Definition 4.1) and sound approximation (Definition 4.2) can straight-
forwardly be generalised for ψ being a FO(ID) formula. This allows us to develop two
approaches. The first one, in Section 5.2.1, replaces the definition by its completion and
then applies the method of Section 4. However, the completion can be weaker than the
definition. Therefore, in Section 5.2.2, we develop another approach that constructs an
approximation for the conjunction of a definition with a FO formula.

5.2.1 Using the Completion of a Definition

Our first approach is based on the use of the completion (Clark, 1978). The completion
of a definition ∆ is the conjunction of the equivalences ∀x̄ P (x̄)⇔ ϕP (x̄) for all predicates
P ∈ Def(∆), where ϕP (x̄) is the body of the unique rule with P in its head. A useful
property is that each definition ∆ implies its completion compl(∆). Moreover, if ∆ is non-
recursive, then the two are actually equivalent. Replacing the definition by its completion
in (∆ ∧ ψ1) ⇒ ψ2 we obtain the formula (comp(∆) ∧ ψ1) ⇒ ψ2. As every model of ∆ is
a model of comp(∆), every model of (comp(∆) ∧ ψ1) ⇒ ψ2 is a model of (∆ ∧ ψ1) ⇒ ψ2

and every witness of the ∃∀ (compl(∆)∧ ψ1)⇒ ψ2 satisfiability problem is a witness of the
∃∀ (∆ ∧ ψ1) ⇒ ψ2 satisfiability problem. Hence we can use the results of Section 4 and
formulate the following proposition.

Proposition 5.1. The formula APP⇒BU ((compl(∆)∧ψ1)⇒ ψ2) is a sound approximation
of ∃P̄∀Q̄(∆ ∧ ψ1)⇒ ψ2.
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The disadvantage of using the completion is that no matter how complete the approx-
imation method defined in Definition 4.4 is, it will never be able to infer something that
follows from ∆ but not from compl(∆). For instance, the inductive definition {P ← P}
entails ¬P , but its completion P ⇔ P does not.

Denecker and Ternovska (2008) have proven that, in addition to non-recursive defini-
tions, a class of recursive definitions are equivalent to their completion. In particular, this
is the case for definitions over a strict well-founded order ≺2. We can therefore replace
those definitions by their completion without losing precision. The theory Tact in Example
1.1 is actually the completion of the definition ∆act. Since ∆act is a recursive definition
over a strict well-founded order (we can make use of the time argument in the predicates
to construct such a well-founded order), ∆act and Tact are equivalent.

The Gaspipe conformant planning problem (Son et al., 2005), on the other hand, uses
a dynamic domain for which the completion does not suffice. Summarized, the objective
of this conformant planning problem is to start a flame in a burner which is connected to
a gas tank through a pipe line. The pipe line consists of sections connected to each other
with valves. When a valve is opened with gas on one side and not on the other, the gas
will spread as far as possible. This can be formalized by an inductive definition of the
reachability relation on the pipe line:{

∀x, t Gas(x, t)← ∃y Gas(y, t) ∧ ∃v Connected(x, y, v) ∧Open(v, t).

∀x, t Gas(x, t)← Tank(x).

}
Such reachability definitions are not equivalent to their completion. Therefore, the approxi-
mative method presented in this subsection will not work. The problem with the completion
in this case is that it does not correctly minimize the defined predicates in the presence of
recursion, which would allow models in which a loop in the pipe line is filled with gas even
when it is not connected to a tank. What is missing, therefore, is the unfounded set reason-
ing that allows the well-founded semantics to correctly minimize the defined predicates.

5.2.2 Using a Certainly True/Possibly True Approximation

The approximative definition Approxσ(ψ) used in Section 4 has the nice property that it
defines, for each subformula of ψ (including ψ itself), whether it is certainly true or certainly
false. It was this property that allowed us to find witnesses by simply asserting that Actψ
had to hold according to this definition. If we want to apply the same method to formulas
ψ that contain a definition ∆, we have to construct an approximative definition that defines
whether each of the subformulas of ∆ (including ∆ itself) is certainly true or certainly
false. In Section 5.2.1, our naive method managed to do this by simply replacing ∆ by its
completion. We now want to improve on this method by constructing an approximation that
also takes into account the unfounded set reasoning that is performed by the well-founded
semantics.

Once we also take this aspect of the well-founded semantics into account, however,
it becomes difficult to define when a definition as a whole is certainly true or certainly
false. Luckily, this is not needed if we stick to our assumption that definitions appear only
in the antecedent of the implication ψ. Indeed, because we approximate implications by

2. An order < is well-founded if there are no infinite descending chains . . . < xn < xn−1 < . . . < x1
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assuming that their antecedent is certainly true (Definition 4.4), all that we really need
is an approximation of the consequences of a definition. To this end, we will transform
the original definition ∆ into an approximative definition ∆′ such that the well-founded
model of ∆′, given an approximation O of the open predicates of ∆, approximates each
of the well-founded models of ∆ given an interpretation O for the open predicates that is
approximated by O. In other words, we construct an approximative definition ∆′ whose
two-valued well-founded model encodes the potentially four-valued well-founded model of
the original definition ∆, given a potentially four-valued interpretation for the predicates of
∆. We therefore again represent a four-valued interpretation of the orginal vocabulary Σ of
∆ by a two-valued interpretation of a larger vocabulary Σ′. However, instead of introducing,
for each predicate P of Σ, a predicate P ct (P is certainly true) and P cf (P is certainly false),
as we did before, we now introduce predicates P ct and P pt (P is possibly true, i.e., P is not
certainly false). Let Σct/pt denote this vocabulary ΣF ∪ {P ct | P ∈ Σ} ∪ {P pt | P ∈ Σ}. For
a four-valued Σ-interpretation I, we define the corresponding Σct/pt-interpretation Ict/pt
as the interpretation with the same pre-interpretation as I such that (P ct)I

ct/pt
= {d̄ |

P I(d̄) ≥p t} and (P pt)I
ct/pt

= {d̄ | (P I(d̄) ≤p t)}.
Also, for a Σ-formula ϕ, we define the formula ϕct/pt as the formula that we obtain after

replacing all positive occurrences of a predicate P in ϕ by P ct, and all negative occurrences
by P pt, and finally reducing to negational normal form. It is easy to see that ϕct/pt can also
be obtained from ϕct by replacing, for every predicate P , all occurrences of P cf by ¬P pt.
Unlike ϕct, ϕct/pt is not always a positive formula as it can contain negations. In particular,
P ct occurs only positively while P pt occurs only negatively. For a subvocabulary σ ⊆ Σ,

ϕ
ct/pt
σ again denotes ϕct/pt but with both P ct and P pt replaced by P for every predicate

P ∈ σ. Again, in what follows we will use σ to denote predicates that do not need to be
approximated because we have two-valued information about them.

Definition 5.5 (App
ct/pt
σ (∆)). For a definition ∆, we define App

ct/pt
σ (∆) as the definition

{Rct ∪Rpt} where Rct consists of the rules

∀x̄(P ct(x̄)← ϕct/ptσ )

and Rpt consists of the rules

∀x̄(P pt(x̄)← ¬(¬ϕ)ct/ptσ )

for every definitional rule ∀x̄ (P (x̄)← ϕ) in ∆.

We again assume for the rest of this paragraph without loss of generality that σ is empty,

and we drop it in the notation of App
ct/pt
σ .

Example 5.1. Consider the following inductive definition.{
B ← B ∨ ¬A
A ← ¬D

}
Assume σ = {}. Then

Appct/pt =


Bct ← Bct ∨ ¬Apt
Act ← ¬Dpt

Bpt ← Bpt ∨ ¬Act
Apt ← ¬Dct

 .
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We see that for a three-valued interpretation {D = u}, which translates to {Dct = f , Dpt =
t}, the approximative definition will correctly infer that Bct is false and Bpt is true. If we
take {D = f} as an interpretation for the open predicate D, we see that the approximative
definition correctly infers that both Bct and Bpt are false. This is an example of unfounded
set reasoning: once A is known to be true, the approximation detects that B could only be
derived from B itself and therefore must be false. This kind of reasoning could not be done
by our previous, completion-based approximation method, since it is only sound w.r.t. the
semantics of the definition itself, and not w.r.t. its weaker completion.

This example also demonstrates why we have to use the vocabulary Σct/pt instead of
Σct/cf , since the latter would have yielded a definition:

Bct ← Bct ∨Acf
Act ← Dcf

Bcf ← Bcf ∧Act
Acf ← Dct

 .

For {D = f}, this definition would fail to infer Bcf . Intuitively, the reason for this is that
the unfounded set reasoning of the well-founded semantics tries to minimize the extension
of the defined predicates by making as many atoms false as possible. Using the Σct/cf

vocabulary, the well-founded semantics of the approximating definition therefore attempts
to falsify as many atoms P cf (d̄) as possible, which actually corresponds to maximizing the
possible extension of the original predicates P , instead of minimizing it as the well-founded
semantics of the original definition does.

Each two-valued interpretation of the “double” vocabulary Σct/pt corresponds to a four-
valued interpretation of the original vocabulary Σ. We again want to establish a link

between the well-founded model of the original definition ∆ and that of App
ct/pt
σ . A compli-

cating factor here is that, as the above example shows, the definition App
ct/pt
σ is no longer

monotone and therefore it is no longer guaranteed to have a two-valued well-founded model.
Because a three-valued interpretation of Σct/pt no longer corresponds to even a four-valued
interpretation of the original vocabulary Σ, we can only prove such a correspondence if the

well-founded model of App
ct/pt
σ is two-valued.

Theorem 5.2. Let O be a four-valued interpretation for the open predicates of a definition
∆. Appct/pt(∆) has a two-valued well-founded model given Oct/pt if and only if ∆ has a
unique four-valued stable fixpoint given O. Moreover, if Appct/pt(∆) has a two-valued well-
founded model I, then the unique four-valued stable fixpoint of ∆ is the unique interpretation
I for which Ict/pt = I.

Proof. See Appendix D.

This theorem requires that ∆ has a unique four-valued stable model for each four-valued
input interpretation O. This is a stronger requirement than the more common condition of
totality, which only requires a definition to have a two-valued well-founded model given a
two-valued input interpretation O. As the following example shows, this stronger condition
is indeed necessary.
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Example 5.2. Consider the following definition:


A← ¬B.
B ← ¬A ∧ C.
C ← O ∧ ¬O.


This definition is total, because, for each two-valued interpretation for the open predicate
O, it has ({A}, {A}) as its two-valued well-founded model. However, for the three-valued
interpretation ({}, {O}) (i.e., “O is unknown”) for the open predicate O, the three-valued
well-founded model ({}, {O,A,B,C}) is not the unique three-valued stable fixpoint, since
({A}, {O,A,C}) is also such a fixpoint. And indeed, we find that

Appct/pt(∆) =



Act ← ¬Bpt.

Bct ← ¬Apt ∧ Cct.
Cct ← Oct ∧ ¬Opt.
Apt ← ¬Bct.

Bpt ← ¬Act ∧ Cpt.
Cpt ← Opt ∧ ¬Oct.


does not have a two-valued well-founded model given {Opt}. The easiest way to see this is
to fill in the fact that we know that Opt is t and Oct is f and propagate this information:



Act ← ¬Bpt.

Bct ← ¬Apt ∧ Cct.
Cct ← f ∧ ¬t.

Apt ← ¬Bct.

Bpt ← ¬Act ∧ Cpt.
Cpt ← t ∧ ¬f .


 



Act ← ¬Bpt.

Bct ← ¬Apt ∧ f .

Apt ← ¬Bct.

Bpt ← ¬Act ∧ t.

Cpt ←


 



Act ← ¬Bpt.

Apt ← ¬f .

Bpt ← ¬Act.
Cpt ←


 



Act ← ¬Bpt.

Apt ←
Bpt ← ¬Act.
Cpt ←


So, we are left with a loop over negation, which means that Act and Bpt will remain unknown
in the three-valued well-founded model ({Apt, Cpt}, {Act, Apt, Cpt, Bpt}) of the definition.

By computing the three-valued well-founded model of ∆ given O, the approximative def-
inition Appct/pt(∆) can produce more precise results than the approximation of compl(∆);
in particular it can detect that atoms in an unfounded set must be false, as illustrated in
Example 5.2 above. To use Appct/pt(∆) in an approximation of an ∃∀(∆∧ϕ)⇒ ψ2-problem,
we still need to show how it can be combined with the approximation Approxσ(ϕ) of ϕ to
produce a sound approximation of ∆∧ϕ. To do this, we need to combine one definition of
ct/cf-predicates with another definition of ct/pt-predicates. We achieve this by first merging
the two definitions and then adding rules that copy information from the one vocabulary
to the other.
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Definition 5.6 (D∆∧ϕ
σ ). Given a vocabulary Σ, a subvocabulary σ ⊂ Σ, an inductive

definition ∆ and first-order formula ϕ. We define D∆∧ϕ
σ as the following inductive definition.

App
ct/pt
σ (∆)
∪

Approxσ(ϕ) ∪ {Actϕ ← t}
∪

{Opt ← ¬Ocf | for every predicate O ∈ Open(∆) \ σ}
∪

{P cf ← ¬P pt | for every predicate P ∈ Def(∆) \ σ}
∪

{Ocf ← f , Oct ← f | for every predicate O ∈ Open(∆) \ σ that does not occur in ϕ}

This definition indeed contains both the rules from the approximation of ∆ and the rules
from the approximation of ϕ, that is, Appct/pt(∆) and Approx(ϕ)∪{Actϕ ← t}, respectively,
but also a number of extra rules that make a connection between these two approximations.
To approximate a defined predicate Q the approximation of ∆ uses the pair of predicates
Qct and Qpt while the approximation of ϕ uses Qct and Qcf . Hence, a number of extra
rules are needed to transfer information between the predicates Qpt and Qcf . The rules
{Opt ← ¬Ocf} transfer information that the approximation of ϕ has derived about the
truth of an open predicate O (by means of Ocf ) to the corresponding predicate Opt of the
approximation of the definition. The rules {P cf ← ¬P pt} in turn propagate information
derived about the truth of a defined predicate in the approximation of the definition to the
corresponding predicate P cf of the approximation of ϕ. Finally, the rules {Ocf ← f , Oct ←
f} make sure that Ocf and Oct are defined atoms (instead of open ones) and that their
default value is u. The following proposition relates the well founded model of D∆∧ϕ

σ with
the models of ∆ ∧ ϕ.

Proposition 5.3. Given a vocabulary Σ, a subvocabulary σ and an FO(ID) formula ∆∧ϕ.
Then, for every σ-interpretation I, if WFMI(D∆∧ϕ

σ ) |= P ct(d̄) (resp. P cf (d̄)), then it holds
for every model M of ∆ ∧ ϕ extending I that M |= P (d̄) (resp. M |= ¬P (d̄)).

Proof. See Appendix E.

This proposition is the analogue for inductive definitions of the result that Theorem 3.2
states for FO formulas. One difference between the two results is that the above proposi-
tion always assumes that the definition ∆ itself holds, while Theorem 3.2 makes no such
assumption about the FO formula ψ that is approximated. As discussed in the beginning of
this section, this restriction is not a problem, because of the way in which we approximate
implications and because we only allow definitions to appear in the antecedent. A second
difference is that Theorem 3.2 applies to arbitrary subformulas ϕ of ψ, while the above
proposition only considers atoms P (d̄). It is, however, an easy corrolary of this proposition
that the result in fact holds for each formula ψ that contains only predicates defined by
D∆∧ϕ, i.e., whenever WFMI(D∆∧ϕ

σ ) |= ψct(d̄) (or ψcf (d̄)), then for every model M of ∆∧ϕ
extending I, it holds that M |= ψ(d̄) (resp. M |= ¬ψ(d̄)).

We introduced the approximation Appct/pt(∆) with the aim of being more complete than
the completion-based approximation. As long as only a single definition ∆ was considered
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in isolation, we succeeded in this goal. However, now that we have also incorporated the
additional formula ϕ, this is no longer the case. For instance, consider the following FO(ID)
theory: {

Q← P
}
∧Q.

Here, the approximation D∆∧ϕ cannot derive that P is certainly true, simply because the
ct/pt-approximation Appct/pt(∆) does not contain rules for head-to-body propagation, i.e.,
there are no rules to infer something about the body of a definitional rule, given information
about its head. By contrast, the approximation of the completion does contain such rules
and therefore has no problems reaching this conclusion. This motivates us to not just use
D∆∧ϕ but to use D∆∧(compl(∆)∧ϕ) instead. Because each definition implies its completion,
this is sound.

To obtain a sound approximation for an ∃∀SO(ID) formula ∃P̄∀Q̄ ψ with ψ = (∆ ∧
ϕ) ⇒ ψ2, we now just need to plug in our approximation D∆∧(compl(∆)∧ϕ) for ∆ into a
suitable ∃SO(ID) formula, similar to the one we defined in Definition 4.4 for an ∃∀SO
formula ∃P̄∀Q̄ ψ1 ⇒ ψ2. A small complication, however, is that, as discussed previously,
our approximation of a definition does not define predicates Act∆ and Acf∆ that tell us when
the definition ∆ as a whole is certainly true or certainly false. Therefore, we can no longer
use our normal approximation of when the entire implication ψ is certainly true. Before
we present the approximation for ∃∀SO(ID), let us first introduce a reformulation of our
original approximation for ∃∀SO, that avoids the use of this Actψ .

Proposition 5.4. For an ∃∀SO formula F = ∃P̄∀Q̄ : ψ, where ψ is of the form ψ1 ⇒ ψ2,
the approximation defined in Definition 4.4, i.e., the formula

∃P̄∃R̄ : (Approxσ(ψ1 ⇒ ψ2) ∪ {Actψ1
← t}) ∧Actψ

is equivalent to

∃P̄∃R̄ : (Approxσ(ψ1) ∪Appoxσ(ψ2) ∪ {Actψ1
← t}) ∧ (Acfψ1

∨Actψ2
)

Proof. This is obvious from the fact that the difference between Approxσ(ψ1 ⇒ ψ2) and
Approxσ(ψ1) ∪ Appoxσ(ψ2) is precisely a set of rules that ensure that Actψ is equivalent to

Acfψ1
∨Actψ2

.

Our approximation for ∃∀SO(ID) now essentially consists of just replacing Approxσ(ψ1)

∪ {Actψ1
← t} and Acfψ1

respectively by D∆∧compl(∆)∧ϕ
σ and Acfϕ in the above form.

Proposition 5.5. Given an ∃∀SO(ID) formula F = ∃P̄∀Q̄ (∆ ∧ ϕ) ⇒ ψ2. We define
APPwf (F ) as the following ∃SO(ID) formula.

∃P̄ R̄ : (D∆∧compl(∆)∧ϕ
σ ∪Approxσ(ψ2)) ∧ (Acfϕ ∨Actψ2

).

Then APPwf (F ) is a sound approximation of F .

In some cases, the approximating D∆∧compl(∆)∧ϕ
σ instead of D∆∧ϕ

σ will not gain us any-
thing. For instance, consider an ∃P̄∀Q̄(∆ ∧ ϕ)⇒ ψ2 problem, where ϕ only contains open
predicates of ∆ (as is the case for the conformant planning problems we consider in the next
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sections). In this case, we will never need head-to-body propagation, and therefore D∆∧ϕ
σ

is just as complete as D∆∧compl(∆)∧ϕ
σ , and we are therefore better off using the former.

As was the case for our approximation method for ∃∀SO , here as well not all rules from
the definition in APPwf are necessary. Indeed, only the bottom-up rules from Approxσ(ψ2)
are needed, and can be unfolded into a single rule. Therefore, below we define two more
variants of Definition 5.5.

Definition 5.7 (APPwfBU (F )). Given an ∃∀SO(ID) formula F = ∃P̄∀Q̄ (∆ ∧ ϕ)⇒ ψ2.

We define APPwfBU (F ) as the following ∃SO(ID) formula,

∃P̄ R̄ : (D∆∧compl(∆)∧ϕ
σ ∪ApproxBUσ (ψ2)) ∧ (Acfϕ ∨Actψ2

),

and we define APPwfBU,Unf (F ) as the following ∃SO(ID) formula,

∃P̄ R̄ : (D∆∧compl(∆)∧ϕ
σ ∪ {Actψ2

← (ψ2)ct}) ∧ (Acfϕ ∨Actψ2
).

6. Experimental Evaluation

In this paper we have seen a number of methods to approximate ∃∀SO and ∃∀SO(ID)
satisfiability problems. In this subsection, we explore, through a number of experiments,
how we can use these methods to solve practically useful problems as fast as possible. We
performed these experiments on a number of conformant planning benchmarks from the
paper of Son et al. (2005). As we show in Section 7, all these benchmarks are of the
form F = ∃∀∆ ⇒ ψ, where ∆ is a stratified definition, and is therefore equivalent to its
completion. Therefore, F is equivalent to the ∃∀SO formula ∃∀ compl(∆) ⇒ ψ, which
we denote by F cp. All experiments were run on a dual core 2.4 Ghz CPU, 2.8 Gb RAM
Linux machine, using the IDP model expansion system for FO(ID) (Mariën et al., 2006).
A time-out of twenty minutes was used.

A first question we want to answer is whether for these definitions, the completion
based approximation is faster than the ct/pt approximation. It is not hard to see that, even
though Approx(compl(∆)) is linear in the size of the parse tree of compl(∆), this definition
may contain more rules than Appct/pt(∆), and moreover, these rules may contain a lot of
recursion. This can pose a challenge for current solvers, and suggests that it is likely to be
more efficient to use the ct/pt approximation for definitions. The first column in Table 2
shows times for using the completion of the definition ∆, that is, APP⇒(F cp), while for the
second column, the ct/pt-approximation of ∆ was used, that is, APPwf (F ). As expected,
the ct/pt-approximation was consistently faster.

Table 2 also compares solving times of the full completion-based approximative definition
(in the first column) with the approximation APP⇒BU (F cp) (Def. 4.5), from which the top-
down propagation rules for ψ have been removed (third column). We see that in the BT
and BTC benchmarks we get an order of magnitude improvement. The fourth column of
Table 2 shows timings for the unfolded approximation of ψ2, APP⇒BU,Unf (F cp), in which the
intermediate Tseitin predicates have been removed (Def. 4.6). We see that this unfolding
consistently provides a speed-up.

These results suggest that combining the above techniques, that is, using the ct/pt
approximation for ∆ and the unfolding of the bottom-up approximation of ψ2 together, will

107



Vlaeminck, Vennekens, Denecker & Bruynooghe

Problem APP⇒(F cp) APPwf (F ) APP⇒BU (F cp) APP⇒BU,Unf (F cp) APPwfBU,Unf (F )

BT(2,2) 0,151 0,109 0,115 0,065 0,031
BT(4,2) 3,404 3,493 0,312 0,153 0,064
BT(6,2) 38,93 14,76 0,876 0,409 0,113
BT(8,4) - - 32,91 1,774 0,462
BT(10,4) - - - - 1,643

BTC(2,2) 0,210 0,131 0,171 0,116 0,037
BTC(4,2) - - 40,081 8,408 0,109
BTC(6,2) - - - - 0,335
BTC(8,4) - - - - 41,894

Domino(100) 0,390 0,026 0,507 0,473 0,049
Domino(200) 1,101 0,036 1,250 1,266 0,052
Domino(500) 6,597 0,067 8,995 6,997 0,128
Domino(1000) 31,275 0,120 42,583 28,387 0,396
Domino(2000) - 0,231 - - 1,530

Ring(2) 7,023 0,374 5,217 2,792 0,100
Ring(4) - - - - 0,358
Ring(6) - - - - 6,650
Ring(8) - - - - 193,290
Ring(10) - - - - 2485

Table 2: The first column gives the name of the benchmark and the other ones different
execution times. The second column gives the execution time for the approximation of the
completion and the third for the cp/pt approximation. The fourth and fifth column use
variants of the completion approximation. For the fourth column, the top-down rules for
ψ2 are removed while in addition, for the fifth column, the remaining bottom-up rules are
unfolded. The last column combines the cp/pt approximation with both other changes. “-”
means the execution was interrupted after 20 minutes.

give us the fastest way of approximating ∃∀(∆ ∧ ψ1)⇒ ψ2 satisfiability problems. Indeed,

this is what formula APPwfBU,Unf (F ) (Definition 5.7) does, and the results of this method
are shown in the last column of Table 2. As expected, this is by far the fastest method.

7. Applications and Related Work

In the literature, many examples can be found of approaches that perform some kind of
approximate reasoning about the models of a logical theory. Often, these approaches, which
are specific to the problem at hand, seem to boil down to an instantiation of the general
methods presented here. In this section we give some examples.

7.1 Conformant Planning

In general, a conformant planning problem is a planning problem in a non-deterministic
domain where the initial state may be not fully known. The goal is to come up with a
plan (i.e., a sequence of actions) that is nevertheless guaranteed to work. This is a hard
problem: the decision problem of deciding whether a conformant plan with a fixed length
k exists is ΣP

2 -complete3 (Baral, Kreinovich, & Trejo, 2000; Turner, 2002). Therefore, one

3. For planning domains where the executability of actions in a given state cannot be determined polyno-
mially, this is even ΣP3 (Turner, 2002)
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typically attempts to solve it approximately. In this section, we show how we can apply our
approximative methods to solve conformant planning problems.

Example 7.1. Let us consider the Clogged Bombs in the Toilet domain (McDermott, 1987;
Son et al., 2005). There are a number of packages and a toilet. Each of the packages may
contain a bomb which can be disarmed by dunking the package in the toilet. Dunking a
package into a toilet also clogs the toilet and we cannot throw a package in a clogged toilet.
Flushing the toilet unclogs it. The effects of the actions on the fluents are modeled by the
following definition ∆act, and the preconditions by the conjunction ψprec of sentences in
Tprec.

∆act =


Clogged(0)← Init Clogged.

Clogged(t+ 1)← ∃p : Dunk(p, t) ∨ (Clogged(t) ∧ ¬Flush(t)).

Armed(p, 0)← Init Armed(p).

Armed(p, t+ 1)← Armed(p, t) ∧ ¬Dunk(p, t).



Tprec =

∀ p t : Dunk(p, t)⇒ ¬Clogged(t).
¬(∃ p t : Dunk(p, t) ∧ Flush(t)).
∀ p p2 t : Dunk(p, t) ∧Dunk(p2, t)⇒ p = p2.
∀ p t t2 : Dunk(p, t) ∧Dunk(p, t2)⇒ t = t2.

Now consider the following regular planning problem: given a completely specified initial
situation (specified by a formula ψinit), find a plan such that all packages are disarmed. We
can formulate this problem as the following formula:

∃Ā, F̄ , Ī : ∆act ∧ ψprec ∧ ψinit ∧ (∃t∀p¬Armed(p, t)),

where with Ā, we denote the action predicates {Dunk/2, F lush/1}, with F̄ we denote
the fluent predicates {Armed/2, Clogged/1} and with Ī we denote the predicates used to
describe the initial situation {Init Clogged/0, Init Armed/1}. Now imagine that initial
situation is not specified, and we want to find a plan that works for all possible initial
situations, in other words a conformant plan. We can formulate the problem of finding such
a plan as follows.

∃Ā∀F̄ , Ī : ∆act ⇒ (ψprec ∧ ∃t ∀p¬Armed(p, t)).

All this can be formalized in general as follows.

Definition 7.1 (Conformant planning). Let Σ be a vocabulary, consisting of a set of
predicates A, denoting actions, I, denoting initial fluents, and F denoting fluents. Let
Tact be an FO(ID) theory and Tinit, Tprec and Tgoal FO theories, all over Σ, such that Tact
specifies the values of the fluents given an interpretation for the actions and initial fluents,
Tinit is a theory specifying the initial situation, Tprec contains preconditions for the actions,
and Tgoal specifies the goal of the planning problem. With ψact we denote the conjunction
of the sentences and possibly definitions in Tact and similarly for the other theories. The
problem of conformant planning is then to decide the satisfiability of the following formula:

∃A∀I ∀F : (ψact ∧ ψinit)⇒ (ψprec ∧ ψgoal). (6)
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∃ĀR̄ :



Cloggedct(0) ← Init Cloggedct.
Cloggedct(t+ 1) ← ∃p : Dunk(p, t) ∨ (Cloggedct(t) ∧ ¬Flush(t)).
Armedct(p, 0) ← Init Armedct(p).

Armedct(p, t+ 1) ← Armed(p, t) ∧ ¬Dunk(p, t).
Cloggedpt(0) ← Init Cloggedpt.

Cloggedpt(t+ 1) ← ∃p : Dunk(p, t) ∨ (Cloggedpt(t) ∧ ¬Flush(t)).
Armedpt(p, 0) ← Init Armedpt(p).

Armedpt(p, t+ 1) ← Armed(p, t) ∧ ¬Dunk(p, t).
Init Cloggedct ← f .

Init Armedct(p) ← f .
Init Cloggedpt ← ¬Init Cloggedcf .
Init Cloggedcf ← f .

Init Armedpt(p) ← ¬Init Armedcf (p).
Init Armedcf ← f .
Cloggedcf (t) ← ¬Cloggedpt(t).
Armedcf (p, t) ← ¬Armedpt(p, t).

Actψ2
← ∀pt : Dunk(p, t)⇒ Cloggedcf (t)

∧¬(∃pt : Dunk(p, t) ∧ Flush(t))
∧∀p1p2t : Dunk(p, t) ∧Dunk(p2, t)⇒ p1 = p2

∧∀pt1t2 : Dunk(p, t1) ∧Dunk(p, t2)⇒ t1 = t2
∧∃t∀p : Armedcf (p, t).


∧

Actψ2
.

Figure 4: The complete approximation of the Clogged Bombs in the Toilet example.

In words, there must be a plan (∃Ā), such that no matter how the nondeterministic
aspects turn out (∀Ī , F̄ ), as long as the specification of the effects of the actions (ψact)
and the (partial) specification of the initial situation (ψinit) are obeyed, the plan will be
executable (ψprec) and achieve the goal (ψgoal).

Formula 6 is now exactly of the form we assumed above, and we can thus use one of our
methods to approximate conformant planning problems.

Example 7.1. (continued) Continuing the Clogged Bombs in the Toilet example, by
using the ct/pt-approximation for the definition, and unfolding the constraint (ψprec ∧
∃t ∀p¬Armed(p, t))ct, we get the approximating ∃SO formula APPwfBU,Unf (Definition 5.7),

shown in Figure 4, where R̄ are the ct- and cf-predicates introduced by the approximation
method.

The result of applying our general approximation method to a conformant planning
problem, as specified by Tact, Tprec, Tgoal and Tinit as above, is very similar to the approx-
imation of an AL action theory by a logic program as in the work of Son et al. (2005).
However, there are some small differences in the details that make it difficult to formally
compare the two. Nevertheless, for all experiments discussed in this section, our method
always finds a correct solution (unless it times out), as does the method of Son et al.
Moreover, the two approaches also found these solutions in comparable execution times.

In more detail, Table 3 presents the following results. We implemented a conformant
planner by iteratively calling the IDP model generator for FO(ID) (Mariën et al., 2006)
on our approximation, giving it an increasing number of timesteps until either a plan is
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Problem IDP Smodels Cmodels

BT(2,2) 0.438 0.199 0.145
BT(4,2) 0.513 0.219 0.212
BT(6,2) 1.050 0.587 0.425
BT(8,4) 1.55 30.9 2.39
BT(10,4) 2.80 - 5.80

BTC(2,2) 0.273 0.136 0.139
BTC(4,2) 0.844 0.412 0.389
BTC(6,2) 1.60 3.88 1.23
BTC(8,4) 43.7 - 102

Cleaner(2,2) 0.644 0.226 0.376
Cleaner(2,5) 1.57 72.5 1.36
Cleaner(2,10) - - -
Cleaner(4,2) 1.55 13.8 1.13
Cleaner(4,5) 2460 - -
Cleaner(4,10) - - -
Cleaner(6,2) 8.30 - 6.16
Cleaner(6,5) - - -

Domino(100) 0.176 0.096 0.090
Domino(200) 0.181 0.114 0.151
Domino(500) 0.212 0.324 0.354
Domino(1000) 0.236 0.618 0.660
Domino(2000) 0.339 1.22 1.32

Ring(2) 0.655 0.285 0.296
Ring(4) 1.56 2.092 0.937
Ring(6) 7.35 19.1 3.542
Ring(8) 157 - 19.860
Ring(10) 1537 - 232

Table 3: Comparison IDP vs Cmodels vs Smodels

found or a maximum number of timesteps is reached. We then compared this planner to
the CPASP conformant planner (Son et al., 2005), using the same experimental setup as
in Section 6. CPASP takes an action theory in the action language AL, and encodes an
approximation of the transition diagram corresponding to that action theory, by means of
an answer set program. Then any answer set solver can be used to find conformant plans.
As Son et al., we used as the ASP solver behind CPASP both CModels (E. Giunchiglia &
Maratea, 2011) and SModels (Niemelä, Simons, & Syrjänen, 2000). As Table 3 shows, the
combination of our approximation and the IDP system is comparable to, but overall slightly
worse, than the combination of CModels and Son et al.’s approximation. When compared
to the same approximation given to SModels, our method tends to be a bit better. These
results are in line with results from the ASP competition (Denecker et al., 2009) concerning
the performance of SModels, CModels and IDP in general, suggesting that, for conformant
planning, our approximation and that of Son et al. are of comparable quality.

Another approximative method for solving conformant planning problems can be found
in the work of Palacios and Geffner (2009). In their paper, the authors consider conformant
planning problems, specified in the language Strips extended with conditional effects and
negation. They define a transformation K0 that transforms such a conformant planning
problem into a classical planning problem in a sound but incomplete way. For each fluent
literal L in the conformant planning specification, two new literalsKL and K¬L are created,
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denoting that L is known to be true, resp. known to be not true, and the initial situation,
action preconditions and effects are translated into an initial situation, preconditions and
effects with reference to these new knowledge literals. It is not hard to verify that our
approximation method generalizes this transformation: if we take an ∃∀SO encoding of a
conformant planning problem P , the ∃SO approximation obtained by our method can be
interpreted as a classical planning problem in the ct/cf vocabulary. This planning problem
will exactly be the planning problem specified by K0(P ) (i.e., the action preconditions and
effects correspond), apart from the initial situation. The K0 transformation does not do
propagation on knowledge about the initial situation: given an initial situation I (specified
as a set of clauses), then K0(I) consists of only those literals KL where L is a unit clause
in I. This means that, e.g., for an initial situation I = {P ∨Q,¬P}, K0(I) will not include
the literal KQ, while our method will be able to infer that Qct holds (which means our
approximation method will be more complete than the K0 transformation).

Being a general method, ours does not only allow for solving conformant planning prob-
lems, but also allows for approximating a number of related problems in temporal domains.
Consider, for example, the following problem: ‘Given that a certain action A happens at
timepoint t, will this certainly lead to a property ψ being true’? This can be formalized as
the following ∀SO satisfiability problem, to which our method applies again.

∀ĀĪF̄ : ((∆act ∧ ψinit ∧ ψprec ∧A(t))⇒ ψ).

This formula is true if for all possible plans in which A(t) happens, the property ψ holds.
A variant on this problem is the so-called projection problem: ‘Given that we exactly know
which actions happened (we can thus assume that the preconditions were satisfied), does
the property ψ hold’? In order to formulate this problem as a SO satisfiability problem, we
need to express that these and only these actions happened. This can be done, for example,
by using an inductive definition ∆Ā. The projection problem can then be expressed as the
∀ĀĪF̄ : ((∆act ∧ ψinit ∧∆Ā) ⇒ ψ) satisfiability problem. Another variant is the following
problem: ‘If the property ψ1 holds for a certain plan, does property ψ2 also hold?’, which
can be expressed as the ∀ĀĪF̄ ((∆act ∧ ψinit ∧ ψprec ∧ ψ1)⇒ ψ2) satisfiability problem.

7.2 Querying and Reasoning in Open Databases

Approximate methods similar to ours have been used in the context of databases without
complete information, in particular in databases without CWA, such as open databases
(Baral et al., 1998; Liu & Levesque, 1998) or databases that make forms of local closed
world assumptions (Denecker et al., 2010; Doherty et al., 2006). In most of these papers
the goal is to compute certain or possible answers to queries. Because this task has a
high complexity (from CoNP for a locally closed database without integrity constraints to
possibly ∆P

2 for databases with first-order constraints - assuming a given finite domain),
approximate methods are presented which translate an FO query into an approximate FO
or FO(FP)4 query that can be solved directly against the database tables using standard
(polynomial) query methods.

The method presented in this paper can provide a similar functionality. Let DB be a
set of ground literals, representing an incomplete database. Let Ψ be a background theory:

4. FO(FP) is the extension of FO with least and greatest fixpoint constructs.
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it may contain integrity constraints, view definitions (datalog view programs are a special
case of FO(ID) definitions), local closed world statements expressed in FO, etc. For a given
FO query ϕQ[x̄], the goal is to find all tuples d̄ such that ϕQ[d̄] holds in all Herbrand models
of DB ∪ Ψ. The problem of deciding whether a given tuple d̄ is an answer corresponds to
the satisfiability problem of the formula

∀R̄(DB ∧Ψ⇒ ϕQ[d̄]), (7)

and we can directly use our approximation method on this problem. While this allows us
to answer yes/no queries as well as to decide whether a given tuple d̄ is a certain answer
to a query, our approximation method does not directly provide a method to compute (an
approximation of) all such tuples.

However, let us look at the following ∃SO satisfiability problem.

∃R̄′ : DDB∧Ψ ∪ApproxBU (ϕQ[x̄]),

It looks very much like our approximation of ∃∀(∆ ∧ ψ1) ⇒ ψ2 satisfiability problems (as
formulated in Proposition 5.5). We again have the definition DDB∧Ψ approximating the
database DB and background knowledge Ψ (note that Ψ possibly contains definitions), and
the bottom up evaluation of the query, only now the constraint ActQ has been dropped.

The definition DDB∧Ψ ∪ ApproxBU (ϕQ[x̄]) consists of rules describing propagations al-
lowed by the database and the theory Ψ, and rules defining the predicate symbol ActϕQ , where
AϕQ is the Tseitin predicate representing the query ϕQ[x̄]. In the unique Herbrand model
of this definition, the interpretation of ActϕQ contains those tuples for which our propagation
can derive that they certainly satisfy the query – a sound approximation of the full set of
answers!

In the work of Denecker et al. (2010), a locally closed database LCDB is assumed. Such
a locally closed database consists of a standard database DB, i.e. a set of atoms, together
with a set of local closed world assumptions LCWA(P (x̄),Ψ[x̄]). Each of these LCWA
statements expresses that the database’s knowledge about P is complete for those tuples x̄
that satisfy the formula Ψ[x̄]. An atom P (d̄) is therefore true if it is in DB and it is false
if it is not in DB and there is a LCWA(P (x̄),Ψ[x̄]) such that Ψ[d̄] holds in the domain
of discourse; otherwise it is unknown. The authors then present an approximate reasoning
method for query answering in locally closed databases and show how this approximate
query answering can be formulated as a fixpoint query. Basically, this boils down to the
following. One constructs the following definition

∆LCWA =


. . .

P ct(x̄)← P (x̄)

P cf (x̄)← ¬P ct(x̄) ∧Ψct
P [x̄]

. . .

 ,

for every relation P and every local closed world assumption LCWA(P (x̄),Ψ[x̄]). Although
the authors do not phrase it in this form, their method for finding an approximation of the
certain answers to a query ϕQ[x̄] actually boils down to solving the following satisfiability
problem:

∃R̄′ : DB ∧ CWA(DB) ∧∆LCWA ∧ApproxBU (ϕQ[x̄]),
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Here R̄′ denotes all predicates and auxiliary predicates occurring in the body of the existen-
tial formula. With CWA(DB), we denote the formula expressing closed world assumption
for the database DB. The presence of this closed world assumption might seem strange at
first sight, since the whole idea behind locally closed world databases is to not assume CWA
per default. However, in order to correctly apply the local closed world assumptions, we
need an exact specification of what is in the database and what is not, and this is precisely
what is expressed by DB ∧ CWA(DB). Indeed, given DB ∧ CWA(DB), ∆LCWA can be
seen as an approximative definition of what is certainly true and false in the context of the
locally closed world assumptions. Again the predicate ActϕQ will contain an approximate
answer to the query ϕQ[x̄], i.e., a lower bound on all the tuples for which the query ϕQ[x̄]

is certainly true. Similarly, the predicate AcfϕQ will contain a lower bound on all the tuples
for which the query is false.

A limitation of the approach by Denecker et al. is that they extend the above method
for only one type of integrity constraints, namely functional dependencies. The way these
functional dependencies are handled is by extending ∆LCWA with extra propagation rules
taking these functional dependencies into account. By contrast, our more general method
can be used to easily extend this to arbitrary integrity constraints. This works as follows.
Let Tint be a set of first-order integrity constraints. We can then approximate the problem
of finding certain queries by the following satisfiability problem.

∃R̄′ : Approx(Tint) ∪ {AT ctint ← t} ∧DB ∧ CWA(DB) ∧∆LCWA ∧ApproxBU (ϕQ[t̄]).

Again, the predicate ActϕQ will contain an approximate answer to the query ϕQ[x̄].
Doherty et al. (2006), propose yet another approach to asking queries to an incomplete

database. The authors use the term approximate database to denote a database, consisting
of two layers: an extentional and an intensional layer. Both of these layers have an external
representation towards the user, and an internal representation.

The extentional database consists of positive and negative literals, and is internally
stored as a classical database, using the Feferman transformation. For example, the exten-
tional database (EDB), as entered by a user,

Color(Car1, Black),¬Color(Car1, Red), Color(Car2, Red),

is internally stored as

Colorct(Car1, Black), Colorcf (Car1, Red), Colorct(Car2, Red).

The intentional database consists of rules to infer additional information from the facts in
the EDB. The user can write down rules of the form (¬)P1(x̄1)∧. . .∧(¬)Pn(x̄n)→ (¬)P (x̄)),
which are then internally stored as ((¬)P1(x̄1))ct ∧ . . . ∧ ((¬)Pn(x̄n))ct → ((¬)P (x̄)))ct. An
example of such a IDB rule is the following rule

Color(x, y1) ∧ y1 6= y2 → ¬Color(x, y2),

which is internally stored as

Colorct(x, y1) ∧ y1 6= y2 → Colorcf (x, y2).

114



An Approximative Inference Method for ∃∀SO

To evaluate a query, a naive algorithm based on exhaustively applying all rules on the EDB
is used.

The rules in the IDB resemble our INF formulas in the sense that both describe valid
inferences that can be made based on incomplete information. The internal representation
of the IDB is indeed similar to our representation of INF formulas as definitional rules.
However, a key difference is that in the approach of Doherty et al., when a user wants to add
a property ψ to the database (e.g., ‘a car can only have one color’), he has to write down all
inferences that are valid according to that property, while in our approach these inference
rules are automatically generated from the property itself. Manually writing down all valid
inferences sanctioned by a property is not an easy task. For example, take the property “a
car has to be inspected if and only if it was suspect and black” from the paper by Doherty
et al.. This can be expressed in FO as the formula ψ = ∀c(Suspect(c)∧Color(c,Black)⇔
Investigate(c)). While, in our method, Approx(ψ) constructs an approximation of all valid
inferences that can be made from this formula, the user has to write down the following
rules in Doherty et al.’s approach:

Suspect(c) ∧ Color(c,Black)→ Investigate(c)
Suspect(c) ∧ ¬Investigate(c)→ ¬Color(c,Black)

¬Suspect(c)→ ¬Investigate(c)
. . .

Our method therefore generalizes the work of Doherty et al. by deriving these rules auto-
matically from a general first-order theory.

Liu and Levesque (1998) propose another type of reasoning in open databases. They
only consider a simple form of first order knowledge bases, called proper knowledge bases.
An interesting feature of these knowledge bases is that it is easy to obtain a complete
characterization of what is certainly true, resp. certainly false. In our terminology, that
means that one can construct a definition ∆, such that KB |= P (d̄) if and only if ∆ |= P ct(d̄)
and KB |= ¬P (d̄) if and only if ∆ |= P cf . It holds that every two valued extension of the
three valued interpretation encoded by ∆ is a model of the KB. Then Levesque et al. use
an evaluation procedure based on the three-valued Kleene-evaluation to check whether a
query holds in the knowledge base. As mentioned earlier, they also define a normal form
NF for queries, for which they prove that the Kleene-evaluation is complete. Our work
extends their work, in the sense that we can take a general first order knowledge base
and approximately solve queries, as we have shown above. Of course, since in general we
can no longer guarantee a complete characterization of what is certainly true/false, we can
no longer guarantee completeness, even if the query is in the normal form NF . Another
difference between the work of Liu and Levesque and our work here, is that they assume a
fixed countable infinite domain, while we assume a fixed finite domain. While this is indeed
a theoretical difference, in practice it does not make any difference, since their evaluation
method only considers a finite set of domain elements that can be determined up-front.

8. Conclusions and Future Work

Even if a problem is computationally hard in general, specific instances of it might still
be solved efficiently. This is why approximate methods are important: they cannot solve
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every instance, but the instances they can solve, they solve quickly. In computational
logic, hard problems arise quite readily. It is therefore not surprising that the literature
contains numerous examples of algorithms that perform approximate reasoning tasks for
various logical formalisms in various specific contexts. Since many of these algorithms share
common ideas, it is a natural question whether they can be seen as instances of some more
general method for a more general language.

This paper presents such a method. We start from the propagation method for FO(·)
developed by Wittocx, Mariën, and Denecker (2008) and its symbolic expression (Wittocx,
2010) and generalize this to a method for approximating the ΣP

2 -complete ∃∀SO(ID) sat-
isfiability problem by solving an NP problem. Importantly, this is a syntactic method that
transforms the ∃∀SO(ID) formula into an ∃SO(ID) formula. This affords us the freedom
to use any off-the-shelf solver for such a language to perform the approximative reasoning.
Moreover, it also makes it significantly easier to update the method by adding (or removing)
specific propagations.

Since our method is an approximation, it is necessarily incomplete. Nevertheless, our
experiments have shown that, in practice, it often does manage to find a solution. An
interesting topic for future work is to determine classes of problems, for which our method
can be shown to be complete.

In summary, the contributions of this paper are that (1) we have extended the logical
representation describing the propagation process to a general method for approximating
SAT (∃∀SO) problems; (2) we have shown how to approximate inductive definitions, and use
this to approximate a class of useful SAT (∃∀SO(ID))-problems; and (3) we have examined
how existing approximation methods fit into our general framework.
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Appendix A. An Example of an Approximation

Figure 5 shows the full approximation of ψact as in Example 1.1.

Appendix B. Proof of Theorem 3.1

Proof. First, remark that Feferman (1984) showed that the four-valued evaluation of a
formula ϕ in an interpretation I can be simulated by computing the standard two-valued
evaluation of ϕct and ϕcf in Itf . It is easy to verify that the bottom-up rules in Approx(ψ)
inductively encode this evaluation. We split the proof in two parts. First we assume that I
is three-valued. We show that in this case only the bottom-up rules are used, i.e., leaving
out the top-down rules does not change the model of the definition. This proves the first
part of the theorem, and together with the above remark also proves the second part of
the theorem for the case that I is three-valued. Then, all that is left to prove, is that the
second part of the theorem also holds for four-valued I.
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

Actψact ← Act0 ∧Act8 . Acf8 ← Acf9 .

Acfψact ← Acf0 . Acf8 ← Acf11.

Acfψact ← Acf8 . Act8 ← (Act9 ∧Act11).

Act0 ← Actψact . Act9 ← Act8 .

Act8 ← Actψact . Acf9 ← (Acf8 ∧Act11).

Acf0 ← Acfψact ∧A
ct
8 . Act11 ← Act8 .

Acf8 ← Acfψact ∧A
ct
0 . Acf11 ← (Acf8 ∧Act9 ).

Act9 ← Cleancf (0).
Act0 ← (∀t : Act1 (t)). Act9 ← InitiallyCleanct.

Acf0 ← (∃t : Acf1 (t)). Acf9 ← (Cleanct(0) ∧ InitiallyCleancf ).

Act1 (t) ← Act0 . Cleanct(0) ← Acf9 .

Acf1 (t) ← (Acf0 ∧ (∀t1 : (t1 = t ∨Act1 (t1)))). Cleancf (0) ← (Act9 ∧ InitiallyCleancf ).

Acf1 (t) ← Acf2 (t). InitiallyCleancf ← Acf9 .

Acf1 (t) ← Acf5 (t). InitiallyCleanct ← (Act9 ∧ Cleanct(0).
Act1 (t) ← (Act2 (t) ∧Act5 (t)). Act11 ← Act12.
Act2 (t) ← Act1 (t). Act11 ← Cleanct(0).

Acf2 (t) ← (Acf1 (t) ∧Act5 (t)). Acf11 ← (Acf12 ∧ Cleancf (0)).

Act5 (t) ← Act1 (t). Acf12 ← Acf11.

Acf5 (t) ← (Acf1 (t) ∧Act2 (t)). Act12 ← (Act11 ∧ Cleancf (0)).

Act2 (t) ← Cleancf ((t+ 1)). Cleancf (0) ← Acf11.

Act2 (t) ← Act4 (t). Cleanct(0) ← (Act11 ∧A
cf
12).

Acf2 (t) ← (Cleanct(t+ 1)) ∧Acf4 (t)). Act12 ← InitiallyCleancf .

Cleanct(t+ 1) ← Acf2 (t). Acf12 ← InitiallyCleanct.

Cleancf (t+ 1) ← (Act2 (t) ∧Acf4 (t)). InitiallyCleancf ← Act12.

Acf4 (t) ← Acf2 (t). InitiallyCleanct ← Acf12.
Act4 (t) ← (Act2 (t) ∧ Cleanct(t+ 1)).
Act4 (t) ← Cleanct(t).
Act4 (t) ← Wipe(t).

Acf4 (t) ← (Cleancf (t) ∧ ¬Wipe(t)).

Cleancf (t) ← Acf4 (t).
Cleanct(t) ← (Act4 (t) ∧ ¬Wipe(t)).
Act5 (t) ← Act6 (t).
Act5 (t) ← Cleanct(t+ 1).

Acf5 (t) ← (Acf6 (t) ∧ Cleancf (t+ 1)).

Acf6 (t) ← Acf5 (t).
Act6 (t) ← (Act5 (t) ∧ Cleancf (t+ 1)).

Cleancf ((t+ 1)) ← Acf5 (t).

Cleanct((t+ 1)) ← (Act5 (t) ∧Acf6 (t)).

Acf6 (t) ← Cleanct(t).

Acf6 (t) ← Wipe(t).
Act6 (t) ← (Cleancf (t) ∧ ¬Wipe(t)).
Cleancf (t) ← Act6 (t).

Cleanct(t) ← (Acf6 (t) ∧ ¬Wipe(t)).


Figure 5: Approx{Wipe}(ψact), with ψact taken from Example 1.1.

So let us assume that I is three-valued. We prove that Mod(ApproxBU (ψ) ∪ ∆I) =
Mod(Approx(ψ) ∪∆I) by contradiction. Assume there is a predicate Actϕ (the proof goes

analogously for Acfϕ ) such that Mod(Approx(ψ) ∪ ∆I) |= Actϕ but Mod(ApproxBU (ψ) ∪
∆I) 6|= Actϕ . In the preliminaries we recalled that the model of a positive inductive definition

is the least-fixpoint of the immediate consequence operator TO∆ . The model of such a
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definition is thus the limit of a sequence of applications of the immediate consequence
operator. One can prove (see, e.g., Denecker & Ternovska, 2004) that we do not have to
apply the immediate consequence operator of the complete definition in every step. I.e.,
applying the immediate consequence operator of a subset of the definition, until there no
longer exists such a immediate consequence operator that will give something new, gives
the same model. Suppose we take such a sequence where we first apply all the bottom-up
rules, and only after no bottom-up rules are applicable we try to apply the top-down rules.
Suppose Actϕ is the first atom we infer with the top down rules in this sequence. Obviously
Actϕ cannot be the top-level atom Actψ , since there are no top-down rules for this. We can now
do a case study on the type of (sub)formula ϕ occurs in, e.g., assume that ϕ is a subformula
of the formula ψ where ψ = ϕ∨ ϕ′. From the fact that Actϕ is true, it follows that the body

of the top down rule Actϕ ← Actψ ∧ A
cf
ϕ′ has to be true, and thus that Actψ and Acfϕ′ are true.

Since Actϕ was the first atom to be inferred by a top-down rule, we have that since Actψ is

true, also Actϕ ∨ Actϕ′ must be true. Now since Actϕ only became true in the last step of the

sequence, we have that Actϕ′ must have been true already. This means that after applying

the bottom-up rules Actϕ′ and Acfϕ′ are both true, which is a contradiction with the fact that
I was three-valued and that the bottom-up rules encode the four-valued evaluation. The
proof is analogous for the other types of subformulas.

Now in the case that I is four-valued, and not three-valued it is no longer the case
that only the bottom-up rules contribute to the model (i.e., Mod(ApproxBU (ψ) ∪ ∆I) 6=
Mod(Approx(ψ) ∪ ∆I)). To see this, consider the following formula P ∧ Q, and take for
I the four-valued interpretation such that P = i and Q = t. Then one can verify that
the bottom-up rules in Approx(ψ) ∪ ∆I will infer that both ActP∧Q and AcfP∧Q are true.

However, now the top-down rules can also infer that Qcf has to be true. What happens is
that once an inconsistency is inferred for a certain subformula, this propagates back down
the parse-tree. However, similar to above, we can again do a case study on the structure of
ψ to prove that (for the ‘top’ formula ψ ) Mod(ApproxBU (ψ)∪∆I) |= Actψ ∧A

cf
ψ if and only

if Mod(Approx(ψ) ∪ ∆I) |= Actψ ∧ A
cf
ψ . Now since since ApproxBU (ψ) is clearly a direct

encoding of the four-valued evaluation, this concludes the proof.

Appendix C. Proof of Proposition 4.3

Proof. Take a witness I for the satisfiability of APP⇒(F ). First let us remark that
Open(Approxσ(ψ1 ⇒ ψ2) ∪ {Actψ1

← t}) = σ. From the fact that I is a witness of the
satisfiability of APP⇒(F ) we know that the model M of this definition extending I con-

tains Actψ and by construction of Approxσ(ψ1 ⇒ ψ2) it must also contain either Acfψ1
or

Actψ2
.

Assume first that Acfψ1
is true in M . Then application of Theorem 3.2 (where we take

Φ = {ψ1} and ϕ′ = ψ1) gives: if M extends I and M |= ψ1, then M 6|= ψ1, so the assumption
that M |= ψ1 results in a contradiction and hence M 6|= ψ1, in which case ψ1 ⇒ ψ2 holds
for every M extending I, and thus is I a witness for the satisfiability of F .

Next, assume that Actψ2
is true in M . Again applying Theorem 3.2 (where this time

Φ = {ψ1} and ϕ′ = ψ2) gives: if M extends I and M |= ψ1 then M |= ψ2, hence also in this
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case does ψ1 ⇒ ψ2 hold for every M extending I, and again this means that I is a witness
of the satisfiability of F .

Appendix D. Proof of Theorem 5.2

A key ingredient in the proof of Theorem 5.2 is the following property of Appct/pt(∆).

Its immediate consequence operator TO
ct/pt

Appct/pt(∆)
on two-valued interpretations simulates

the immediate consequence operator T (O1,O2)
∆ on four-valued interpretations of the original

definition. This is made more precise in the following lemma.

Definition D.1. For a pair of Σ-interpretations (I, J), we use t(I, J) to denote the Σct/pt-
interpretation (I, J)ct/pt.

Lemma D.1. For each (O1, O2) and (I, J),

T (O1,O2)
∆ (I, J) = t−1(T

t(O1,O2)

Appct/pt(∆)
(t(I, J))).

Proof. Let (I ′, J ′) be T (O1,O2)
∆ (I, J) and let F = T

t(O1,O2)

Appct/pt(∆)
(t(I, J)). We first show that

F |Σct = I ′. Since F |Σct depends only on the rules of Appct/pt(∆) with a predicate from Σct,
we can discard all rules with a head from Σpt. As a result, we are left with a single copy of ∆
in which positive occurrences of atoms have been replaced by their ·ct variant and negative
ones by their ·pt variant. This implies that the evaluation of the bodies of these remaining
rules according to t(O1 ∪ I,O2 ∪ J) will be identical to the evaluation of the bodies of the
original rules by (O1 ∪ I,O2 ∪ J) in the construction of I ′, thus proving the equality. The
proof of the remaining equality F |Σpt = J ′ is analoguous.

Proof of Theorem 5.2. First, recall that, given some partial knowledge (O1, O2), the three-
valued well-founded models of ∆, resp. Appct/pt(∆) are the least fixpoints of operators

ST (O1,O2)
∆ resp. ST t(O1,O2)

Appct/pt(∆)
(note that since t(O1, O2) is two-valued, we abuse notation

here and in the rest of the proof and denote the two-valued pair (t(O1, O2), t(O1, O2)) by
t(O1, O2)).

Now, the latter operator is rather peculiar, in the sense that it is actually juggling four
different interpretations of the original alphabet Σ. In more detail, each element in its
domain looks like this:

(I, J) =

Ict Jct
∪ , ∪
Ipt Jpt

 .

where Ict and Jct interpret the alphabet Σct, and Ipt and Jpt interpret Σpt. If we now apply

the operator ST t(O1,O2)

Appct/pt(∆)
, we obtain a new such pair:

(I ′, J ′) =

I ′ct J ′ct
∪ , ∪
I ′pt J ′pt

 .
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From the general definition of the ST O∆ construction, it is obvious that I ′ct∪I ′pt depends only
on Jct ∪ Jpt. However, in this particular case, the operator exhibits even more structure.

The operator ST
(O1,O2)

Appct/pt(∆)
(J) uses its argument J as a fixed interpretation for the negative

occurrences, which remains constant throughout the least fixpoint computation over the
positive occurrences. Now, Appct/pt(∆) contains two copies of ∆ which interact only through
negative occurrences (that is, all occurrences of a ·pt predicate in the body of a rule with
a ·ct predicate in its head are always negative ones, and vice versa). This means that as
long as we keep the interpretation of the negative occurrence fixed to a constant value J ,
these two copies of ∆ do not interact at all. Consequently, to construct I ′ct, we can discard
all rules with a ·pt predicate in its head. This means we are left with rules whose head
is a ·ct predicate and whose body contains only positive occurrences of ·ct predicates and
negative occurrences of ·pt predicates. Therefore, I ′ct depends only on Jpt. Moreover, the
value of I ′ct will be such that if we map its symbols back to the original alphabet Σ (let

orig(σct) = orig(σpt) = σ for all σ ∈ Σ), then orig(I ′ct) = ST
(O1,O2)
∆ (orig(Jpt)). Similarly,

we also obtain that:

orig(I ′pt) = ST
(O1,O2)
∆ (orig(Jct)),

orig(J ′ct) = ST
(O1,O2)
∆ (orig(Ipt)),

orig(J ′pt) = ST
(O1,O2)
∆ (orig(Ict)).

In other words,

(orig(I ′ct), orig(J ′pt)) = ST (O1,O2)
∆ (orig(Ict), orig(Jpt)),

(orig(I ′pt), orig(J ′ct)) = ST (O1,O2)
∆ (orig(Ipt), orig(Jct)).

Now, if we consider the construction of the well-founded model of Appct/pt(∆), we have a
sequence of this form:I0

ct J0
ct

∪ , ∪
I0
pt J0

pt

 7→
I1

ct J1
ct

∪ , ∪
I1
pt J1

pt

 7→
I2

ct J2
ct

∪ , ∪
I2
pt J2

pt

 7→ · · · 7→
I∞ct J∞ct
∪ , ∪
I∞pt J∞pt

 .

Let (Ii, J i)i≥0 be the well-founded model construction for the original definition ∆, i.e., for

all predicates P/n ∈ Def(∆) and domain tuples d̄ ∈ Dn we have that (P (d̄))I
0

= f and

(P (d̄))J
0

= t, and (In+1, Jn+1) = ST (O1,O2)
∆ (In, Jn) for n ≥ 0. It is easy to see that we have

that t−1(I0
ct ∪ J0

pt) = (I0, J0). This provides a base case, while the above equation provides
the inductive step to prove that, for each i, (Ii, J i) = t−1(Iict ∪ J ipt). In other words, the
well-founded model construction for the original definition ∆ is tracked by these elements
of the well-founded model construction for Appct/pt(∆):I0

ct ·
∪ , ∪
· J0

pt

 7→
I1

ct ·
∪ , ∪
· J1

pt

 7→
I2

ct ·
∪ , ∪
· J2

pt

 7→ · · · 7→
I∞ct ·
∪ , ∪
· J∞pt

 .

What about the other diagonal? There we have that t−1(Jct0 ∪ Ict0 ) = (>,⊥), which is
the most precise element >p in the lattice of pairs of interpretations. Therefore, we find
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that the other diagonal actually tracks the construction of the greatest fixpoint of ST (O1,O2)
∆ .

Combining these two results, we see that if (L1, L2) and (G1, G2) are these least and greatest
fixpoint, respectively, the well-founded model of Appct/pt(∆) looks like this:L1 G1

∪ , ∪
G2 L2

 .

Note that a unique four-valued stable fixpoint is both the least and greatest stable fixpoint
and hence also the well-founded fixpoint. This immediately concludes the proof.

Appendix E. Proof of Proposition 5.3

Lemma E.1. Given a Σ-definition ∆, and a FO-formula ψ. Let σ be a subset of Σ′ (a
renamed copy of Σ). Consider the definition

D = Appct/pt(∆) ∪ {P ct ← P ′ct}P∈σ ∪ {Opt ← O′pt}O∈σ∩Open(∆′).

Assume that we have a three-valued interpretation I that approximates all models of ∆∧ψ.
Then it holds that WFMIct/pt(D) also approximates ∆ ∧ ψ, i.e.,

- if P ct(d̄) ∈WFMIct/pt(D), then |= (∆ ∧ ψ)⇒ P (d̄),

- if P pt(d̄) 6∈WFMIct/pt(D), then |= (∆ ∧ ψ)⇒ ¬P (d̄).

Proof. We prove this through induction over a well-founded model construction alternative
to the one we described in this paper, which can be found in the work by Denecker and
Vennekens (2007). Assume we have an induction sequence (Ii)0≤i≤n, of four-valuedDef(D)-
interpretations such that I0 is the interpretation in which everything is completely unknown,
and In = WFMIct/pt(D). We prove for every i that Ii is a sound approximation of ∆ ∧ ψ.
This is trivially the case for n = 0. So now assume that Ik is a sound approximation of
∆∧ψ. We have to prove that this is also the case for Ik+1. We need to prove two things for
this: first, an atom P ct(d̄) cannot be true in Ik+1 if P (d̄) is not true in all models of ∆∧ψ,
and second, that an atom P pt(d̄) cannot be false in Ik+1 if it is not false in all models of
∆ ∧ ψ. We prove both cases by contradiction.

We start with the first case. So assume that in the k-th well-founded induction step,
for a certain predicate P and domain tuple D̄, P ct(d̄) is incorrectly deduced, i.e., there
exists a model M |= ∆ ∧ ψ, s.t. M 6|= P (d̄). Since P ct(d̄) was inferred in the k-th step,
this means that the body of the rule defining P ct(d̄), that is, (ϕP )ct[d̄] was already made
true in a previous step. The induction hypothesis then tells us that in every model M of
∆ ∧ ψ it holds that M |= ϕP [d̄], but then the semantics of inductive definitions says that
also M |= P , which is a contradiction with our assumption.

Next, we consider the second case. This time, assume that in the k-th well-founded
induction step, P pt(d̄) is inferred to be false, while there exists a model M of ∆ ∧ ψ, s.t.
M |= ∆∧ψ∧P (d̄). Now, using this alternative version of the well-founded semantics, there
are two ways for a domain atom to become false. Indeed, a domain atom can become false
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because the body of the defining rule was already false, or because it is part of an unfounded
set.

If P pt(d̄) was made false because the body of the defining rule (ϕP )pt was already false,
an argument completely analogous to the one above - using the induction hypothesis - again
gives a contradiction with the assumption. So now, all that is left to prove, is that P pt(d̄)
cannot be incorrectly made false through the application of an unfounded set rule. If P pt(d̄)
is made false through the application of the unfounded set rule, this means that there is a
set US of atoms, that are unknown in Ik, such that when made false in the bodies of the
rules defining these atoms, the Kleene evaluation of these bodies returns false. It is possible
to verify that we can always find an US such that it only contains ·pt-atoms.

Now let us take such a model M of ∆ ∧ ψ. Such an M is obviously also a model
of ∆. Consider the corresponding set US′, consisting of domain atoms P (d̄), such that
P pt(d̄) ∈ US. For every atom Qpt[d̄] in the body (ϕP )pt not in the set US, the induction
hypothesis actually tells us that (Q[d̄])M ≤t (Qpt[d̄])Ik . Similarly, for every atom Qct in
the body of (ϕP )pt, it says that (Qct[d̄])Ik ≤t (Q[d̄])M . Now, since Qpt atoms occur only
positively and and Qct only negatively in (ϕP )pt, it follows that M interprets literals that
are not in US′ in a more ‘false’ way than Ik. Thus, US′ is also an unfounded set (indeed,
turning all the atoms in US′ to false will make all the bodies of the defining rules false), and
thus M |= ¬P (d̄), which is again a contradiction with the assumption, and which concludes
the proof of this lemma.

Proof of Proposition 5.3. The proof of this proposition is now an easy proof over induction
on the construction of the well-founded model of D∆∧ψ, using the lemma above, and the
soundness of Approx(ψ).
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