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Abstract

We study a logic-based approach to versioning of ontologies. Under this view, ontologies
provide answers to queries about some vocabulary of interest. The difference between
two versions of an ontology is given by the set of queries that receive different answers.
We investigate this approach for terminologies given in the description logic EL extended
with role inclusions and domain and range restrictions for three distinct types of queries:
subsumption, instance, and conjunctive queries. In all three cases, we present polynomial-
time algorithms that decide whether two terminologies give the same answers to queries
over a given vocabulary and compute a succinct representation of the difference if it is non-
empty. We present an implementation, CEX2, of the developed algorithms for subsumption
and instance queries and apply it to distinct versions of Snomed CT and the NCI ontology.

1. Introduction

Terminologies are lightweight ontologies that are used to provide a common vocabulary
for a domain of interest together with descriptions of the meaning of terms built from the
vocabulary and relationships between them. They are being used in areas such as medical
informatics, bio-informatics, and the semantic web to capture domain semantics and pro-
mote interoperability. Terminologies are often large and complex. For example, the widely
used medical terminology Snomed CT (Systematized Nomenclature of Medicine Clinical
Terms) contains more than 300 000 term definitions (IHTSDO, 2008). Another example is
the National Cancer Institute ontology (NCI) consisting of more than 60 000 axioms (Gol-
beck, Fragaso, Hartel, Hendler, Oberhaler, & Parsia, 2003). Engineering, maintaining, and
using such terminologies is a complex and laborious task, which is practically unfeasible
without appropriate tool support. In this article, we focus on a principled logic-based
approach to support for terminology versioning.

Dealing with multiple versions of the same information unit is nothing new in comput-
ing, and version control is a well established computer technology. Although modern version
control systems provide a range of operations including support for collaborative develop-
ment, branching, merging, etc., these operations extend and rely on the basic operations of
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detecting and representing the differences between versions. In this paper, we focus on this
basic problem of versioning.

The need for versioning support is recognised by the ontology research community and
ontology users, and a large number of approaches and tools have been developed. In our
review of currently existing support for ontology versioning, we distinguish three approaches
and describe them according to the difference between ontologies they compute:

1. versioning based on syntactic difference (syntactic diff);

2. versioning based on structural difference (structural diff);

3. versioning based on logical difference (logical diff).

The syntactic diff underlies most existing version control systems used in software devel-
opment (Conradi & Westfechtel, 1998) (such as, for example, RCS, CVS, SCCS). It works
with text files and represents the difference between versions as blocks of text present in one
version but not another, ignoring any meta-information about the document. As observed
already in the work of Noy and Musen (2002), ontology versioning cannot rely on a purely
syntactic diff operation since many syntactic differences (e.g., the order of ontology axioms)
do not affect the semantics of ontologies. Therefore, ontology versioning based on syntactic
difference is essentially limited to comparing rather informal change logs (Oliver, Shahar,
Shortliffe, & Musen, 1999).

The structural diff extends the syntactic diff by taking into account information about
the structure of ontologies. It has been suggested for dealing with structured and hierar-
chical documents such as UML diagrams, database schemas, or XML documents (see, e.g.,
Ohst, Welle, & Kelter, 2003, and references within). For ontologies, the main characteristic
of the structural diff is that it regards them as structured objects, such as an is-a taxon-
omy (Noy & Musen, 2002), a set of RDF triplets (Klein, Fensel, Kiryakov, & Ognyanov,
2002) or a set of class defining axioms (Redmond, Smith, Drummond, & Tudorache, 2008;
Jiménez-Ruiz, Cuenca Grau, Horrocks, & Llavori, 2011). Changes to ontologies are mostly
described in terms of structural operations, for example, adding or deleting a class, ex-
tending a class, renaming slots, moving a class from one place in the hierarchy to another,
adding or deleting an axiom, class renaming, etc.; sometimes basic logical properties of
ontologies, e.g., the equivalence of different structural forms of concepts, are also taken into
account (Palma, Haase, Corcho, & Gómez-Pérez, 2009; Jiménez-Ruiz et al., 2011). Ontol-
ogy versioning based on structural diff of some form is available in most current ontology
editors and ontology management systems either natively or through plugins (Noy & Musen,
2002; Klein et al., 2002; Jiménez-Ruiz et al., 2011).

Though very helpful, the structural diff still has the deficiency of having no unambigu-
ous semantic foundation and being syntax dependent. Moreover, it is tailored towards
applications of ontologies which are based on the induced concept hierarchy (or some mild
extension of it), but does not capture modern applications such as ontology based data ac-
cess (OBDA) (Poggi, Lembo, Calvanese, Giacomo, Lenzerini, & Rosati, 2008; Lutz, Toman,
& Wolter, 2009) in which ontologies are used to provide a user-oriented view of the data
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and make it accessible via queries formulated solely in the language of the ontology without
any knowledge of the actual structure of the data.1

The logical diff has only been recently introduced (Konev, Walther, & Wolter, 2008;
Kontchakov, Wolter, & Zakharyaschev, 2010) and completely abstracts from the representa-
tion of the ontology. Here, an ontology is regarded as a set of axioms formulated in a logical
language with a formal and unambiguous semantics. Under this view, ontologies provide
answers to queries about some vocabulary of interest. Typical queries include subsumption
queries between concepts and, if the ontology is used to access instance data, instance and
conjunctive queries. The logical diff is motivated by this view. If two versions of an ontology
give the same answers to a class of queries relevant to an application domain, they may be
deemed to have no difference regardless of their syntactic or structural form; and queries
producing different answers from the versions may be considered as a characterisation of
the difference itself. In this way one can, for example, define exactly the differences visible
when querying instance data or exactly the differences expressed by subsumptions between
concepts.

To make this approach work in practice, at least two problems have to be addressed:

• For most ontology languages and classes of queries the computational complexity of
even detecting if two ontology versions differ over a certain vocabulary is at least
one exponential harder than ontology classification and is sometimes undecidable;
and even if the computational complexity does not increase, searching for differences
between ontologies within a certain vocabulary requires techniques that are very dif-
ferent from those used for standard reasoning (Lutz, Walther, & Wolter, 2007; Lutz
& Wolter, 2010; Cuenca Grau, Horrocks, Kazakov, & Sattler, 2008).

• If the set of queries producing different answers from the two versions is not empty,
it is typically infinite and, therefore, cannot be presented to the user as such. Thus,
techniques to succinctly characterise its elements and present them to the user are
required.

The aim of this paper is to provide first steps toward solutions to these problems for
terminologies (aka classical TBoxes) given in the description logic ELHr that extends the
description logic EL underlying the OWL 2 EL profile with role inclusions and domain and
range restrictions (Baader, Brandt, & Lutz, 2008). Our main contributions are as follows:

1. It has been argued that syntax-dependence should be regarded as an advantage rather than a deficiency
in the context of versioning (Gonçalves, Parsia, & Sattler, 2011; Jiménez-Ruiz et al., 2011). For exam-
ple, Jiménez-Ruiz et al. argue that logical equivalence between ontologies can be too permissive: “even if
O ≡ O′ – the strongest assumption from a semantic point of view – conflicts may still exist. This might
result from the presence of incompatible annotations (statements that act as comments and do not carry
logical meaning), or a mismatch in modelling styles; for example, O may be written in a simple language
such as the OWL 2 EL profile and contain α = (A v BuC), while O′ may contain β = (¬Bt¬C v ¬A).
Even though α ≡ β, the explicit use of negation and disjunction means that O′ is outside the EL profile.”
We agree with Jiménez-Ruiz et al. and Gonçalves et al. that there are various applications in which a
structural rather than logical difference is appropriate. Even a syntactic diff has applications in ontology
versioning. In practice, we see logic-based approaches as complementary to structural approaches. An
interesting analysis of NCI versions taking into account both structural and logical differences is given
in the work of Gonçalves et al.
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• for subsumption, instance, and conjunctive queries, we present polynomial-time algorithms
that decide whether two ELHr-terminologies give different answers to some query from the
respective class of queries over a given signature of concept and role names (note that we
use the terms signature and vocabulary synonymously).

• Besides of a polynomial-time decision procedure detecting differences, we also develop a
succinct presentation of the (typically infinite) difference. This presentation can be com-
puted in polynomial time as well.

• We present two different types of polynomial-time algorithms for deciding the existence
of logical differences between terminologies and for computing a succinct representation
of it: the first type of algorithms is conceptually more transparent as it keeps the two
input terminologies separate and reduces (a substantial part of) the difference problem to
an instance checking problem for an ABox. Such algorithms are, however, not sufficiently
efficient on very large inputs. For example, substantial performance problems occur when
computing the differences between versions of Snomed CT on their joint signature since
the constructed ABox is typically of quadratic size in the input terminologies. The second
variant of algorithms, which is based on dynamic programming, is more efficient in practice.
It is developed in detail for acyclic ELHr-terminologies.

•We present an implementation, CEX2, that is based on the second type of algorithms and
computes a succinct representation of the difference between acyclic ELHr-terminologies
for the concept and instance query case. In addition, a prototype implementation of the
ABox-based algorithm is used to estimate its efficiency.

• As an important tool in our investigation, we present description logics, ELran and
ELran,u,u, that capture as subsumption differences the instance and query difference be-
tween ELHr-terminologies. This result is presented for general ELHr-TBoxes and can,
therefore, be exploited in future work on versioning for general ELHr-TBoxes.

• We present experiments using CEX2 that illustrate the efficiency of the algorithms and
potential applications to terminologies such as Snomed CT and NCI. A plugin for Protégé
is discussed. CEX2 extends the functionality of the first version of CEX (Konev, Walther, &
Wolter, 2008) and of the OwlDiff plugin (Křemen, Šmı́d, & Kouba, 2011), which implements
the algorithms developed by Konev, Walther, and Wolter. Based on Snomed CT, we also
investigate the performance of the ABox-based algorithms in practice.

This paper is based on, and extends the work of Konev, Walther, and Wolter (2008).
To improve readability, a number of proofs have been deferred to an appendix.

2. Preliminaries

Let NC, NR, and NI be countably infinite and mutually disjoint sets of concept names, role
names, and individual names. EL-concepts C are built according to the rule

C := A | > | C uD | ∃r.C,

where A ∈ NC, r ∈ NR, and C,D range over EL-concepts. The set of ELHr-inclusions
consists of

• concept inclusions C v D, ran(r) v D and ran(r) u C v D,
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• concept equations C ≡ D, and

• role inclusions r v s,

where C and D are EL-concepts and r, s ∈ NR. An ELHr-TBox T is a finite set of ELHr-
inclusions. Inclusions of the form ran(r) v D and ran(r)uC v D are also referred to as range
restrictions, and inclusions of the form ∃r.> v D are referred to as domain restrictions.

An ELHr-TBox is called an ELHr-terminology if all its concept inclusions and equations
are of the form

• A v C and A ≡ C,

• ran(r) v C, and

• ∃r.> v C,

where A ∈ NC and r ∈ NR, C is an EL-concept such that C 6= >, C 6= > u >, etc., and no
concept name occurs more than once on the left-hand side. Note that, in concept inclusions
of the form ∃r.> v C, the concept ∃r.> is often denoted dom(r). A terminology is acyclic
(or unfoldable) if the process of exhaustively substituting definitions in place of the defined
concept names terminates. For example, if a terminology contains a concept inclusion

Mother v ∃hasMother.Mother

it is not acyclic. Formally, consider the relation ≺T between concept names by setting
A ≺T B if there exists an ELHr-inclusion of the form A ≡ C or A v C in T such that B
occurs in C. A terminology T is acyclic if the transitive closure ≺+

T of ≺T is irreflexive.

In description logic, instance data are represented by ABox assertions of the form >(a),
A(a) and r(a, b), where a, b ∈ NI, A ∈ NC, and r ∈ NR. An ABox A is a non-empty finite
set of ABox-assertions. A is said to be a singleton ABox if it contains exactly one ABox
assertion. By obj(A) we denote the set of individual names in A. A knowledge base K (KB)
is a pair (T ,A) consisting of a TBox T and an ABox A. Assertions of the form C(a) and
r(a, b), where a, b ∈ NI, C an EL-concept, and r ∈ NR, are called instance assertions. Note
that instance assertions of the form C(a) with C not a concept name nor C = > do not
occur in ABoxes.

The semantics of ELHr is given by interpretations I = (∆I , ·I), where the domain ∆I

is a non-empty set, and ·I is a function mapping each concept name A to a subset AI of
∆I , each role name r to a binary relation rI ⊆ ∆I ×∆I , and each individual name a to an
element aI ∈ ∆I . The extension CI of a concept C is defined by induction as follows:

>I := ∆I

(C uD)I := CI ∩DI
(∃r.C)I := {d ∈ ∆I | ∃e ∈ CI : (d, e) ∈ rI}
ran(r)I := {d ∈ ∆I | ∃e : (e, d) ∈ rI}

I satisfies

• a concept inclusion C v D, in symbols I |= C v D, if CI ⊆ DI ;
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• a concept equation C ≡ D, in symbols I |= C ≡ D, if CI = DI ;

• a role inclusion r v s, in symbols I |= r v s, if rI ⊆ sI ;

• an assertion C(a), in symbols I |= C(a), if aI ∈ CI ,

• an assertion r(a, b), in symbols I |= r(a, b), if (aI , bI) ∈ rI .

We say that an interpretation I is a model of a TBox T (ABox A) if I |= α for all α ∈ T
(α ∈ A). An ELHr-inclusion α follows from a TBox T if every model of T is a model of
α, in symbols T |= α. |= α is used to denote that α follows from the empty TBox and we
sometimes write r vT s for T |= r v s. An instance assertion α follows from a KB (T ,A)
if every individual name that occurs in α also occurs in obj(A) and every model of (T ,A) is
a model of α, in symbols (T ,A) |= α. The most important ways of querying ELHr-TBoxes
and KBs are

• subsumption: check whether T |= α, for an ELHr-inclusion α and TBox T ,

• instance checking: check whether (T ,A) |= α, for an instance assertion α and KB
(T ,A), and

• conjunctive query answering.

To define the latter, call a first-order formula q(~x) a conjunctive query if it is of the form
∃~yψ(~x, ~y), where ψ is a conjunction of expressions A(t), A ∈ NC, and r(t1, t2), r ∈ NR, with
t, t1, t2 drawn from NI and the sequences of variables ~x and ~y. Let ~x = x1, . . . , xk. Let I be
an interpretation and π be a mapping from ~x∪ ~y into ∆I . Set π(a) = aI for all a ∈ obj(A).
We say that a vector ~a = a1, . . . , ak is a π-match of q(~x) and I if π satisfies the following
conditions:

• π(t) ∈ AI for every conjunct A(t) of ψ;

• (π(t1), π(t2)) ∈ rI for every conjunct r(t1, t2) of ψ;

• π(xi) = aIi for 1 ≤ i ≤ k.

We set I |= q[~a] if, and only if, there exists a π such that ~a is a π-match of q(~x) and I. Let
(T ,A) be a KB. Then a sequence ~a of members of obj(A) is a certain answer to q(~x) of a
KB (T ,A), in symbols (T ,A) |= q(~a), if I |= q[~a], for every model I of (T ,A).

All three types of querying ELHr-TBoxes have been studied extensively. The complexity
of subsumption and instance checking is in PTime (Baader et al., 2008). The combined
complexity of answering Boolean conjunctive queries (i.e., deciding whether (T ,A) |= q for
a conjunctive query q without free variables) is coNP-complete (Rosati, 2007) and its data
complexity is in PTime (Rosati, 2007). Information on reasoners for subsumption checking
for ELHr can be found in the work of Delaitre and Kazakov (2009), Kazakov, Krötzsch,
and Simancik (2011), and Mendez and Suntisrivaraporn (2009). Lutz et al. (2009) present
an approach to efficient conjunctive query answering for ELHr.
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2.1 Normal Form

It is often convenient to consider normalised ELHr-terminologies. Let T be an ELHr-
terminology and A a concept name. Call A

• primitive in T if A ∈ NC \ ({A ∈ NC | A ≡ C ∈ T } ∪ {A ∈ NC | A v C ∈ T });

• pseudo-primitive in T if A ∈ NC \ {A ∈ NC | A ≡ C ∈ T }.

Note that concept names that do not occur in T are primitive and pseudo-primitive in T .
Call a concept name A non-conjunctive in T if it is pseudo-primitive in T or there exists
a concept of the form ∃r.C such that A ≡ ∃r.C ∈ T . Otherwise, A is called conjunctive
in T . Thus, A is conjunctive in T if, and only if, there exists a concept name B such that
A ≡ B ∈ T or there exist C1, . . . , Cn, n ≥ 2, such that A ≡ C1 u · · · u Cn ∈ T . Let X be a
finite set of concepts. We say that a concept F is a conjunction of concepts in X if F is of
the form

d
D∈X D. Any D ∈ X is then called a conjunct of F and, if D is a concept name,

then it is called an atomic conjunct of F . We sometimes write D ∈ F instead of D ∈ X.
An ELHr-terminology T is normalised if it consists of ELHr-inclusions of the following

form:

• A ≡ ∃r.B, or A ≡ F , where A, B are concept names and F is a non-empty conjunction
of concept names such that every conjunct B′ of F is non-conjunctive in T ;

• E v ∃r.B, E v ∃r.>, or E v F , where B is a concept name, E is either a concept
name, or is of the form ∃s.>, or ran(s), and F is a non-empty conjunction of concept
names such that every conjunct B′ of F is non-conjunctive in T .

As the following lemma shows, any ELHr-terminology can be normalised yielding a
model conservative extension of the original terminology.

Lemma 1. For every ELHr-terminology T , one can construct in polynomial time a nor-
malised terminology T ′ of polynomial size in |T | such that sig(T ) ⊆ sig(T ′), T ′ |= T , and
for every model I of T there exists a model J of T ′ such that ∆I = ∆J and XI = XJ for
every X ∈ sig(T ). Moreover, T ′ is acyclic if T is acyclic.

Normalised terminologies in the sense defined above are a minor modification of nor-
malised terminologies as defined by Baader (2003). The straightforward extension of the
proof given by Baader is provided in the appendix.

2.2 Canonical Model

We define a canonical model, IK, for ELHr-knowledge bases K. IK can be constructed in
polynomial time and gives the same answers to instance queries as K; i.e., IK |= α if, and
only if, K |= α, for any instance assertion α. The construction is similar to the canonical
model introduced by Lutz et al. (2009).

Let sub(T ) denote the set of all subconcepts of concepts used in T , rol(T ) the set of all
role names occurring in T . Take fresh individual names xran(r),D for every r ∈ rol(T ) and
D ∈ sub(T ) and set

NIaux := {xran(r),D | r ∈ rol(T ) and D ∈ sub(T )}.
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Now define the generating interpretation WK of a KB K = (T ,A) as follows:

∆WK := obj(A) ∪ NIaux;
AWK := {a ∈ obj(A) | K |= A(a)} ∪ {xran(r),D ∈ NIaux | T |= ran(r) uD v A};
rWK := {(a, b) ∈ obj(A)× obj(A) | s(a, b) ∈ A and T |= s v r} ∪

{(a, xran(s),D) ∈ obj(A)× NIaux | K |= ∃s.D(a) and T |= s v r} ∪
{(xran(s),D, xran(s′),D′) ∈ NIaux × NIaux | T |= ran(s) uD v ∃s′.D′, T |= s′ v r};

aWK := a, for all a ∈ obj(A).

A path inWK is a finite sequence d0r1d1 · · · rndn, n ≥ 0, where d0 ∈ obj(A) and, for all i < n,
(di, di+1) ∈ rWKi+1 . We use paths(WK) to denote the set of all paths inWK. If p ∈ paths(WK),
then tail(p) denotes the last element dn in p.

The canonical model IK of a knowledge base K is the restriction of WK to all domain
elements d such that there is a path in WK with tail d. The following result summarises
the main properties of IK.

Theorem 2. Let K = (T ,A) be an ELHr-KB. Then

1. IK is a model of K;

2. IK can be computed in polynomial time in the size of K;

3. for all xran(s),D ∈ ∆IK and all a ∈ obj(A), if C is an EL-concept or C = ran(r), then

• K |= C(a) if, and only if, aIK ∈ CIK.

• T |= ran(s) uD v C if, and only if, xran(s),D ∈ CIK.

The proof of Theorem 2 is given in the appendix. It follows from Point 3 that IK gives
the same answers to instance queries as K itself.

3. Logical Difference

In this section, we introduce three notions of logical difference between TBoxes and the
derived notion of Σ-inseparability. Intuitively, the logical difference between two TBoxes T1

and T2 should be the set of all ‘relevant formulas’ ϕ such that T1 |= ϕ and T2 6|= ϕ or vice
versa. Of course, which formulas ϕ are relevant depends on the application domain. In many
applications only subsumptions between concepts are relevant, but if TBoxes are employed
to access instance data, then answers to instance or even conjunctive queries can be relevant
as well. In addition, in applications of large-scale terminologies such as Snomed CT and
NCI typically only a very small subset of the vocabulary of the terminology is relevant.
Thus, a meaningful notion of logical difference should take into account only those formulas
that are given in a certain signature of interest, where a signature Σ is a subset of NC ∪NR.
Given a concept, role, concept inclusion, TBox, ABox, or query E, we denote by sig(E)
the signature of E, that is, the set of concept and role names occurring in it. We call E a
Σ-concept, Σ-concept inclusion, Σ-TBox, Σ-ABox, or Σ-query, respectively, if sig(E) ⊆ Σ.
Similarly, an ELΣ-concept C is an EL-concept such that sig(C) ⊆ Σ and an ELHrΣ-inclusion
α is an ELHr-inclusion such that sig(α) ⊆ Σ.

The first notion of logical difference we introduce corresponds to applications in which
only subsumptions are relevant.
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Definition 3 (Σ-concept difference). The Σ-concept difference between ELHr-TBoxes T1

and T2 is the set cDiffΣ(T1, T2) of all ELHrΣ-inclusions α such that T1 |= α and T2 6|= α.
We say that T1 and T2 are Σ-concept inseparable, in symbols T1 ≡CΣ T2, if cDiffΣ(T1, T2) =
cDiffΣ(T2, T1) = ∅.

Σ-concept inseparability between T1 and T2 means that T1 can be replaced by T2 in
any application that is only concerned with ELHrΣ-inclusions.2 As the following example
shows, however, Σ-concept inseparable terminologies can give different answers for the same
instance query and data.

Example 4. Let T1 = {ran(r) v A1, ran(s) v A2, B ≡ A1 u A2}, T2 = ∅,Σ = {r, s, B}.
One can show that T1 and T2 are Σ-concept inseparable. However, for the Σ-ABox A =
{r(a, c), s(b, c)} we have (T1,A) |= B(c) but (T2,A) 6|= B(c).

To take into account the differences between TBoxes that are relevant if TBoxes are
used to access instance data, we consider the Σ-instance difference.

Definition 5 (Σ-instance difference). The Σ-instance difference between TBoxes T1 and T2

is the set iDiffΣ(T1, T2) of pairs of the form (A, α), where A is a Σ-ABox and α a Σ-instance
assertion such that (T1,A) |= α and (T2,A) 6|= α. We say that T1 and T2 are Σ-instance
inseparable, in symbols T1 ≡iΣ T2, if iDiffΣ(T1, T2) = iDiffΣ(T2, T1) = ∅.

In contrast to ELHr, it has been shown by Lutz and Wolter (2010) that for EL-TBoxes
there is no difference between Σ-concept inseparability and Σ-instance inseparability. In
this paper we extend this result to ELHr-TBoxes without range restrictions (the proof is
given after Corollary 37):

Theorem 6. Let T1 and T2 be ELHr-TBoxes without range restrictions and Σ a signature.
Then T1 ≡CΣ T2 if, and only if, T1 ≡iΣ T2.

Sometimes, instance queries are not sufficiently expressive, and conjunctive queries are
employed. In that case, the following notion of difference is appropriate.

Definition 7 (Σ-query-difference). The Σ-query difference between TBoxes T1 and T2 is
the set qDiffΣ(T1, T2) of pairs of the form (A, q(~a)), where A is a Σ-ABox, q(~x) a Σ-
conjunctive query, and ~a a tuple of individual names in A such that (T1,A) |= q(~a) and
(T2,A) 6|= q(~a). We say that T1 and T2 are Σ-query inseparable, in symbols T1 ≡qΣ T , if
qDiffΣ(T1, T2) = qDiffΣ(T2, T1) = ∅.

As observed by Lutz and Wolter (2010) already, even for EL Σ-instance inseparability
does not imply Σ-query inseparability. The following is a simple example.

Example 8. Let T1 = {A v ∃r.B}, T2 = ∅,Σ = {A,B}. Then T1 and T2 are Σ-instance
inseparable, but they are not Σ-query inseparable. Consider the Σ-ABox A = {A(a)} and
the Σ-query q = ∃x.B(x). Then (T1,A) |= q but (T2,A) 6|= q.

2. We refer the reader to the conclusion of this paper for a brief discussion of this claim.
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It is shown by Lutz and Wolter (2010) that Example 8 is essentially the only situation
in which there is a difference between Σ-instance inseparability and Σ-query inseparability
in EL: the two notions become equivalent for EL if the universal role is admitted in instance
queries (e.g., in Example 8, the conjunctive query ∃x.B(x) corresponds to the instance query
∃u.B(a) for the universal role u). In contrast, for ELHr there are more subtle differences
between the instance and the query case.

Example 9. Let T1 = {A v ∃s.>, s v r1, s v r2}, T2 = {A v ∃r1.> u ∃r2.>},Σ =
{A, r1, r2}. Then T1 and T2 are Σ-concept and Σ-instance inseparable, but they are not
Σ-query inseparable. To show the latter, let A = {A(a)} and let q = ∃x(r1(a, x)∧ r2(a, x)).
Then (T1,A) |= q but (T2,A) 6|= q.

We have seen that Σ-concept inseparability does not imply Σ-instance inseparability
and that Σ-instance inseparability does not imply Σ-query inseparability. The converse
implications, however, hold:

Lemma 10. For all ELHr-TBoxes T1 and T2 and all signatures Σ:

T1 ≡qΣ T2 ⇒ T1 ≡iΣ T2 ⇒ T1 ≡CΣ T2.

Proof. The first implication follows from the observation that every instance query can be
regarded as a conjunctive query. For the second implication, note first that if s v r ∈
cDiffΣ(T1, T2), then ({s(a, b)}, r(a, b)) ∈ iDiffΣ(T1, T2). Now let C v D ∈ cDiffΣ(T1, T2).
One can construct a Σ-ABox AC with individual a such that for all EL-concepts D′:
(T ,AC) |= D′(a) if, and only if, T |= C v D′ (cf. Lemma 36). Thus (AC , D(a)) ∈
iDiffΣ(T1, T2).

Having introduced three notions of difference between ELHr-TBoxes, we now investi-
gate two problems: (i) how to detect whether there is any difference between two ELHr-
terminologies and, if so, (ii) how to represent the differences.

In what follows we assume that the fresh symbols used in the normalised form of ter-
minologies do not occur in the signature Σ for which we compute the difference between
terminologies. Then we obtain the following lemma as a direct corollary of Lemma 1.

Lemma 11. For any ELHr-terminologies T1, T2 and their normalised forms T ′1 , T ′2 as
defined in Lemma 1, we have that the following hold:

• cDiffΣ(T1, T2) = cDiffΣ(T ′1 , T ′2 );

• iDiffΣ(T1, T2) = iDiffΣ(T ′1 , T ′2 );

• qDiffΣ(T1, T2) = qDiffΣ(T ′1 , T ′2 ).

From now on, unless stated otherwise, we consider normalised terminologies only.
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4. The Case of EL-Terminologies

Before investigating the logical difference for ELHr-terminologies, we illustrate the main
ideas behind the proofs by considering the Σ-concept difference for EL-terminologies. An
EL-terminology is an ELHr-terminology consisting of EL-inclusions only, that is, concept
inclusions of the form A v C and concept equations of the form A ≡ C. We start with the
observation that even for acyclic EL-terminologies there are T1 and T2 in which cDiffΣ(T1, T2)
contains inclusions of at least exponential size only. Thus, when searching for witness
inclusions in cDiffΣ(T1, T2), one has to deal with the case in which all witness inclusions
have at least exponential size.

Example 12. Consider

T1 = {A0 v B0, A1 ≡ Bn} ∪ {Bi+1 ≡ ∃r.Bi u ∃s.Bi | 0 ≤ i < n}
T2 = {A1 v F0} ∪ {Fi v ∃r.Fi+1 u ∃s.Fi+1 | 0 ≤ i < n}

and Σ = {A0, A1, r, s}. Then a concept inclusion in cDiffΣ(T1, T2) of minimal size is given
by Cn v A1, where

C0 = A0 and Ci+1 = ∃r.Ci u ∃s.Ci, for i ≥ 0.

Clearly, Cn is of exponential size. Note, however, that if we use structure sharing and define
the size of Cn as the number of its subconcepts, then Cn is only of polynomial size.

We now derive basic properties of EL-terminologies using a sequent calculus.

4.1 Proof System for EL

We derive basic properties of EL from the Gentzen-style sequent calculus presented by Hof-
mann (2005); see Figure 1. The calculus operates on sequents of the form C v D, where
C,D are EL-concepts; here the symbol v is treated as a syntactic separator. A derivation
(or, equivalently, a proof ) of a sequent C v D is a finite rooted tree whose nodes are labelled
with sequents, whose root is labelled with C v D, whose leaves are labelled with axioms
(instances of Ax or AxTop) and whose internal nodes are labelled with the result of an
application of one of the inference rules to the labels of their children. The length of a
derivation is the number of rule applications in the derivation.

Example 13. Let T = {A ≡ B1uB2, F v B1}. A derivation D of the sequent ∃r.(FuB2) v
∃r.A is shown below. The root of the derivation D is labelled with ∃r.(F uB2) v ∃r.A and
the two leaves with B1 v B1 and B2 v B2, respectively.

B1 v B1
(Ax)

F v B1
(PDefL)

F uB2 v B1
(AndL1)

B2 v B2
(Ax)

F uB2 v B2
(AndL2)

F uB2 v B1 uB2
(AndR)

F uB2 v A
(DefR)

∃r.(F uB2) v ∃r.A
(Ex)
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C v C (Ax)
C v > (AxTop)

C v E
C uD v E (AndL1)

D v E
C uD v E (AndL2)

C v E C v D
C v D u E (AndR)

C v D
∃r.C v ∃r.D (Ex)

CA v D
A v D (DefL)

D v CA

D v A (DefR)
where A ≡ CA ∈ T

CA v D
A v D (PDefL)

where A v CA ∈ T

Figure 1: Gentzen-style proof system for EL-terminologies.

Notice that the basic calculus of Hofmann (2005) considers EL without the constant >
and for terminologies without concept inclusions. To take care of >, we have added the
rule (AxTop), and (PDefL) is the rule representing inclusions of the form A v C. Cut-
elimination, completeness, and correctness can now be shown in a straightforward extension
of the proof given by Hofmann.

For a terminology T and concepts C,D, we write T ` C v D if, and only if, there exists
a proof of C v D in the calculus of Figure 1.

Theorem 14 (Hofmann). For all EL-terminologies T and concepts C,D, it holds that
T |= C v D if, and only if, T ` C v D.

We apply this calculus to derive a description of the syntactic form of concepts C such
that T |= C v D, where D is non-conjunctive in T .

Lemma 15. Let T be a normalised EL-terminology, r a role name, A a concept name and
D an EL-concept.

1. Assume

T |=
l

1≤i≤n
Ai u

l

1≤j≤m
∃rj .Cj v A,

where A is pseudo-primitive in T , Ai are concept names for 1 ≤ i ≤ n, Cj are EL-
concepts for 1 ≤ j ≤ m, and m,n ≥ 0. Then there exists Ai, 1 ≤ i ≤ n, such that
T |= Ai v A.

2. Assume now

T |=
l

1≤i≤n
Ai u

l

1≤j≤m
∃rj .Cj v ∃r.D,

where Ai are concept names for 1 ≤ i ≤ n, Cj are EL-concepts for 1 ≤ j ≤ m, and
m,n ≥ 0. Then

• there exists Ai, 1 ≤ i ≤ n, such that T |= Ai v ∃r.D or

• there exists rj, 1 ≤ j ≤ m, such that rj = r and T |= Cj v D.
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Proof. We use Theorem 14. First, we prove Point 1. Let C =
d

1≤i≤nAi u
d

1≤j≤m ∃rj .Cj
and assume T |= C v A, where A is pseudo-primitive in T . Let D be a proof of C v A.
Note that, since A is pseudo-primitive in T (and a concept name), by inspecting the form
of the conclusions of the inference rules, one can see that the root of the derivation D can
only have been derived by either Ax, AndL1, AndL2, DefL, or PDefL. We now show
that there exists Ai, 1 ≤ i ≤ n, such that T |= Ai v A by induction on n + m, i.e. the
number of conjuncts in C. It is easy to see that n+m ≥ 1 as T 6|= > v A by definition of
terminologies T .

The base case of n+m = 1 is trivial: the root of D can only have been derived by one
of Ax, DefL, or PDefL; so, we can conclude that C = A1; i.e. n = 1, m = 0, and we set
Ai = A1.

Assume n + m > 1. Then the root of D can only have been derived by either AndL1
or AndL2. In both cases, the premise used in the application of either inference rule is
a sequent C ′ v A such that either C = C ′ u D or C = D u C ′ for an EL-concept D.
Thus, C ′ contains less conjuncts than C (but still at least one). We can also conclude that
T |= C ′ v A holds by Theorem 14. By applying the induction hypothesis, there hence
exists a concept name Ai which is a conjunct of C ′ such that T |= Ai v A. Finally, we still
note that Ai is also a conjunct of C.

We now prove Point 2. Let C =
d

1≤i≤nAiu
d

1≤j≤m ∃rj .Cj and assume T |= C v ∃r.D.
LetD be a proof of C v ∃r.D. Note that due to the form of the right-hand side of the sequent
C v ∃r.D, the rule used to derive the root of D can only have been one of Ax, AndL1,
AndL2, DefL, PDefL, or Ex. We now prove that either there exists Ai, 1 ≤ i ≤ n, such
that T |= Ai v ∃r.D, or there exists rj , 1 ≤ j ≤ m, with rj = r and T |= Cj v D by
induction on n+m again. Similarly to above, we have n+m ≥ 1.

If n+m = 1, the rule used to derive the root of D can only have been one of Ax, DefL,
PDefL, or Ex. We have two subcases:

• the root of D was derived with DefL or PDefL: then n = 1, m = 0 and C = A1; i.e.
T |= Ai v ∃r.D for Ai = A1.

• the root of D was derived with Ax or Ex: then n = 0, m = 1, C = ∃r1.C1, and
r1 = r. If C1 = D, then obviously T |= C1 v D holds. Otherwise, the rule Ex was
used to derive the root of D and T ` C1 v D holds, which implies that T |= C1 v D.
Thus, in any case, rj = r and T |= Cj v D holds for j = 1.

The case n+m > 1 can be proved by induction analogously to the proof of Point 1 above.

We apply Lemma 15 to elements of cDiffΣ(T1, T2).

Theorem 16 (Primitive witness for EL). Let T1 and T2 be EL-terminologies and Σ a
signature. If ϕ ∈ cDiffΣ(T1, T2), then either C v A or A v D is a member of cDiffΣ(T1, T2),
where A ∈ sig(ϕ) is a concept name and C, D are EL-concepts occurring in ϕ.

Proof. Let ϕ = C v D ∈ cDiffΣ(T1, T2). The proof is by induction on the construction of
D. We have D 6= > as T2 |= C v >. If D = D1 uD2, then one of C v Di, i = 1, 2, is in
cDiffΣ(T1, T2) and we can apply the induction hypothesis. If D = ∃r.D1 then, by Lemma 15,
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either (i) there exists a conjunct A of C, A a concept name, such that T1 |= A v D, or (ii)
there exists a conjunct ∃r.C1 of C with T1 |= C1 v D1.

In case (i) it follows that T2 6|= A v D as otherwise T2 |= C v D and C v D 6∈
cDiffΣ(T1, T2) due to |= C v A. Hence, A v D ∈ cDiffΣ(T1, T2).

Finally, for case (ii) we obtain T2 6|= C1 v D1 as otherwise |= C v ∃r.C1, T2 |= ∃r.C1 v D
and C v D 6∈ cDiffΣ(T1, T2) again. Thus, C1 v D1 ∈ cDiffΣ(T1, T2) and we can apply the
induction hypothesis.

By Theorem 16, every inclusion C v D in the Σ-concept difference of T1 and T2 “con-
tains” a basic witness inclusion that has a concept name either on the right-hand side or
the left-hand side. We define

• the set of left-hand Σ-concept difference witnesses, cWtnlhs
Σ (T1, T2), as the set of all

A ∈ Σ ∩ NC such that there exists a concept D with A v D ∈ cDiffΣ(T1, T2) and

• the set of right-hand Σ-concept difference witnesses, cWtnrhs
Σ (T1, T2), as the set of all

A ∈ Σ ∩ NC such that there exists a concept C with C v A ∈ cDiffΣ(T1, T2).

We regard the concept names in cWtnlhs
Σ (T1, T2) and cWtnrhs

Σ (T1, T2) as a succinct and, in a
certain sense, complete representation of the Σ-concept difference between T1 and T2 and
define the set of all Σ-concept difference witnesses as

cWtnΣ(T1, T2) = (cWtnlhs
Σ (T1, T2), cWtnrhs

Σ (T1, T2)).

In what follows, we first present a polytime algorithm computing cWtnrhs
Σ (T1, T2). A poly-

time algorithm computing cWtnlhs
Σ (T1, T2) has already been given by Lutz and Wolter (2010)

(for EL-TBoxes). We briefly present it since an extension will be developed when we con-
sider ELHr-terminologies. Both algorithms together decide Σ-concept inseparability since,
by Theorem 16, T1 and T2 are Σ-concept inseparable if, and only if, cWtnΣ(T1, T2) =
cWtnΣ(T2, T1) = (∅, ∅).

4.2 Computing cWtnrhs
Σ (T1, T2)

Let A ∈ Σ and assume we want to decide whether A ∈ cWtnrhs
Σ (T1, T2). Thus, we want to

decide whether there exists a Σ-concept C such that T1 |= C v A and T2 6|= C v A. Our
general strategy is as follows. Let

noimplyT2,Σ(A) = {C | T2 6|= C v A, C an ELΣ-concept}.

We aim at an algorithm that checks whether noimplyT2,Σ(A) contains some C with T1 |=
C v A. For two sets C and D of concepts we call C a cover of D if C ⊆ D and for all
D ∈ D there exists a C ∈ C such that |= C v D. Thus, C ⊆ noimplyT2,Σ(A) is a cover
of noimplyT2,Σ(A) if for all D ∈ noimplyT2,Σ(A) there exists a C ∈ C such that |= C v D.
Note that if C is a cover of noimplyT2,Σ(A), then there exists some Σ-concept C such that
C v A ∈ cDiffΣ(T1, T2) if, and only if, there exists some C ∈ C such that T1 |= C v A.
Thus we have reduced the original problem to the construction of an appropriate cover C
and deciding the subsumption problem T1 |= C v A, for C ∈ C. Unfortunately, in general,
no finite cover exists. The following example illustrates the situation.
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Example 17. (1) Let Σ = {A,B, r} and T2 = ∅. Then noimplyT2,Σ(A) contains all Σ-
concepts that do not have A as an atomic conjunct. Clearly, noimplyT2,Σ(A) contains no
finite cover.

(2) Let Σ′ = {A,B, r} and T ′2 = {A ≡ ∃r.A}. Then noimplyT ′2 ,Σ′(A) contains all
Σ′ \ {A}-concepts and contains no finite cover.

(3) Let Σ′′ = {A,B1, B2} and T ′′2 = {A ≡ B1 u B2}. Then {B1, B2} is a cover of
noimplyT ′′2 ,Σ′′(A).

As a consequence, instead of directly constructing a cover of noimplyT2,Σ(A), we first
construct transparent and small covers of

noimplyT2,Σ(A) ∩ {C | depth(C) ≤ n},

for all n ≥ 0, where depth(C) is the role-depth of C; i.e., the number of nestings of existential
restrictions in C.3 Those covers are denoted noimplynT2,Σ(A), n ≥ 0, and are singleton
sets if A is non-conjunctive in T2 and finite sets containing at most k concepts if A ≡
B1u· · ·uBk ∈ T2. Based on this sequence, we present two distinct algorithms for computing
cWtnrhs

Σ (T1, T2):

1. we encode the infinite sequence noimplynT2,Σ(A), n ≥ 0, into a polynomial-size ABox
AT2,Σ. In this way we obtain a reduction of the original problem to an instance
checking problem for the knowledge base (T1,AT2,Σ). In a certain sense, the ABox
AT2,Σ encodes a (in general infinite) cover of noimplyT2,Σ(A).

2. we employ the terminology T1 in a dynamic programming approach to decide which
concepts in noimplynT2,Σ(A) are relevant for deciding whether A ∈ cWtnrhs

Σ (T1, T2).
Although less transparent, for large terminologies the latter approach is considerably
more efficient. We develop it for acyclic terminologies.

For an EL-terminology T , a concept name A and a signature Σ, set

preΣ
T (A) = {B ∈ Σ | T |= B v A}.

The finite covers noimplynT2,Σ(A), n ≥ 0, are defined in Figure 2. For n = 0, the
set noimplynT2,Σ(A) consists of concepts without role names. We distinguish between con-
junctive and non-conjunctive A. Note that if A is non-conjunctive, then noimplynT2,Σ(A)
is a singleton set. Example 17 (3) shows that this is not always the case for conjunc-
tive A. For n + 1, we distinguish between pseudo-primitive concept names, conjunctive
concept names, and those that have a definition of the form A ≡ ∃r.C. Again, for non-
conjunctive A, noimplyn+1

T2,Σ(A) is a singleton set. Note that the concepts allnΣ are covers of
{C | depth(C) ≤ n, C an ELΣ-concept}, for all n ≥ 0. We illustrate the definitions using
the EL-terminologies from Example 17.

Example 18. (1) Let Σ = {A,B, r} and T2 = ∅. Then A and B are non-conjunctive in T2

and noimply0
T2,Σ(A) = {B} and noimply0

T2,Σ(B) = {A}. A and B are also pseudo-primitive

in T2, and so noimply1
T2,Σ(A) = {B u ∃r.(A uB)} and noimply1

T2,Σ(B) = {A u ∃r.(A uB)}.

3. More precisely depth(A) = 0, depth(C1 u C2) = max{depth(C1), depth(C2)}, and depth(∃r.D) =
depth(D) + 1.

647



Konev, Ludwig, Walther, & Wolter

Set, inductively,

all0Σ =
l

A′∈Σ

A′ and alln+1
Σ =

l

A′∈Σ

A′ u
l

s∈Σ

∃s.allnΣ.

Define noimply0
T2,Σ(A) as follows:

• if A is non-conjunctive in T2, then

noimply0
T2,Σ(A) = {

l

A′∈Σ\preΣ
T2

(A)

A′};

• if A is conjunctive and A ≡ F ∈ T2, then

noimply0
T2,Σ(A) =

⋃
B∈F

noimply0
T2,Σ(B);

and define, inductively, noimplyn+1
T2,Σ(A) by

• if A is pseudo-primitive in T2, then

noimplyn+1
T2,Σ(A) = {

l

A′∈(Σ\preΣ
T2

(A))

A′ u
l

s∈Σ

∃s.allnΣ}.

• If A is conjunctive and A ≡ F ∈ T2, then

noimplyn+1
T2,Σ(A) =

⋃
B∈F

noimplyn+1
T2,Σ(B).

• If A ≡ ∃r.B ∈ T2, then

noimplyn+1
T2,Σ(A) = {Cn+1

Σ,T2}, where

Cn+1
Σ,T2 = (

l

A′∈(Σ\preΣ
T2

(A))

A′ u
l

r 6=s∈Σ

∃s.allnΣ u
l

r∈Σ
E∈noimplynT2,Σ

(B)

∃r.E).

Figure 2: Definition of noimplynT2,Σ(A)

(2) Let Σ′ = {A,B, r} and T ′2 = {A ≡ ∃r.A}. Then A and B are non-conjunctive in T ′2
and noimply0

T ′2 ,Σ′
(A) = {B} and noimply0

T ′2 ,Σ′
(B) = {A}. B is pseudo-primitive in T ′2 and so

noimply1
T2,Σ(B) = {A u ∃r.(A uB)}. A ≡ ∃r.A ∈ T ′2 and so noimplyT ′2 ,Σ′(A) = {B u ∃r.B}.

(3) Let Σ′′ = {A,B1, B2} and T ′′2 = {A ≡ B1 uB2}. B1 and B2 are non-conjunctive in
T ′′2 and so noimply0

T ′′2 ,Σ′′
(B1) = {B2} and noimply0

T ′′2 ,Σ′′
(B2) = {B1}. A is conjunctive in T ′′2
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and, by definition, noimply0
T ′′2 ,Σ′′

(A) = {B1, B2}. Since Σ does not contain any role names,

we have noimply0
T ′′2 ,Σ′′

(X) = noimplynT ′′2 ,Σ′′
(X), for all X ∈ {A,B1, B2} and n > 0.

The following lemma shows the correctness of the definition of noimplynT2,Σ(A).

Lemma 19. Let T2 be a normalised EL-terminology, Σ be a signature, and A ∈ NC. Then
noimplynT2,Σ(A) is a cover of noimplyT2,Σ(A) ∩ {C | depth(C) ≤ n}. Namely, for all n ≥ 0,

C1. T2 6|= C v A, for all C ∈ noimplynT2,Σ(A).

C2. For all ELΣ-concepts D with n = depth(D), if T2 6|= D v A, then |= C v D for some
C ∈ noimplynT2,Σ(A).

In particular,
⋃
n≥0 noimplynT2,Σ(A) is a cover of noimplyT2,Σ(A).

Proof. C1. Assume first that A is pseudo-primitive in T2. Then noimplynT2,Σ(A) consists of
C =

d
A′∈(Σ\preΣ

T2
(A))A

′ u F , where F is a (possibly empty) conjunction of concepts of the

form ∃s.Fi. By Lemma 15, T2 6|= C v A because the only atomic conjuncts of C are in
Σ \ preΣ

T2(A).
We now prove C1 for concept names A which are not pseudo-primitive in T2. The proof

is by induction on n. For n = 0 and A ≡ ∃r.B ∈ T2, assume T2 |=
d
A′∈(Σ\preΣ

T2
(A))A

′ v A.

As A ≡ ∃r.B ∈ T2, we have by Lemma 15 that there must exist A′ ∈ Σ \ preΣ
T2(A) with

T2 |= A′ v A. But this contradicts the definition of the set preΣ
T2(A)). For n = 0 and A

conjunctive with A ≡ F ∈ T2, let C ∈ noimplynT2,Σ(A) =
⋃
B∈F noimplynT2,Σ(B). There hence

exists an atomic conjunct B of F such that C ∈ noimplynT2,Σ(B). As T2 is normalised, B is
non-conjunctive, i.e. property C1 has already been proved above for B. Thus, T2 6|= C v B,
which implies that T2 6|= C v A as otherwise T2 |= C v B would hold.

For the induction step, assume C1 has been proved for n ≥ 0.
Let A ≡ ∃r.B ∈ T2 and let Cn+1

T2,Σ be the only element of noimplyn+1
T2,Σ(A). Assume

T2 |= Cn+1
T2,Σ v A. By Lemma 15 there are two possibilities:

• T2 |=
d
A′∈(Σ\preΣ

T2
(A))A

′ v ∃r.B. Similarly to above, the claim follows from Lemma 15

and the fact that A ≡ ∃r.B ∈ T2.

• r ∈ Σ and there exists E ∈ noimplynT2,Σ(B) such that T2 |= E v B. This is excluded
by the induction hypothesis.

We have derived a contradiction. The case A ≡ F ∈ T2, A conjunctive in T2, is considered
analogously to the case n = 0.

C2. Let n = 0 and assume first that A is non-conjunctive. Let D be a Σ-concept
with depth(D) = 0 and T2 6|= D v A. Then all conjuncts of D are in Σ \ preΣ

T2(A) and
we obtain |=

d
A′∈Σ\preΣ

T2
(A)A

′ v D. Now assume A is conjunctive in T2 and A ≡ F ∈ T2.

Let D be a Σ-concept with depth(D) = 0 and T2 6|= D v A. Then T2 6|= D v B, for some
conjunct B of F . By induction, |= C v D for the (unique as B must be non-conjunctive)
C ∈ noimply0

T2,Σ(B), and therefore |= C v D for some C ∈ noimply0
T2,Σ(A).

For the induction step, assume that C2 has been shown for n. Let D be a Σ-concept
with T2 6|= D v A and depth(D) = n+ 1.
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(a) Let A be pseudo-primitive in T2. Then the atomic conjuncts of D are included in
Σ \ preΣ

T2(A). Now |= C v D follows immediately for C =
d
A′∈Σ\preΣ

T2
(A)A

′ u
d
s∈Σ ∃s.allnΣ.

(b) Let A ≡ ∃r.B ∈ T2. Let Cn+1
T2,Σ be the only element of noimplyn+1

T2,Σ(A) and assume

D =
l

E∈Q0

E u
l

(s,D′)∈Q1

∃s.D′.

Then Q0 ⊆ Σ \ preΣ
T2(A). Hence, |= Cn+1

T2,Σ v
d
E∈Q0

E. Now consider a conjunct ∃s.D′ of D.
We distinguish two cases:

• if s 6= r, then |= Cn+1
T2,Σ v ∃s.D

′, as required.

• if s = r, then s ∈ Σ and it is sufficient to show that there exists E ∈ noimplynT2,Σ(B)
such that |= E v D′. Suppose there does not exist such an E. Then, by (the
contraposition of) the induction hypothesis, T2 |= D′ v B. But this contradicts
T2 6|= D v A (as A ≡ ∃r.B ∈ T2).

(c) A is conjunctive in T2 and A ≡ F ∈ T2. This case is analogous to the case in which
A is conjunctive in T2 and n = 0.

Corollary 20. For all normalised EL-terminologies T1 and T2 and all A ∈ NC the following
conditions are equivalent:

• there exists an ELΣ-concept C such that T1 |= C v A and T2 6|= C v A;

• there exists n ≥ 0 and C ∈ noimplynT2,Σ(A) such that T1 |= C v A.

Observe that a direct application of Corollary 20 does not yield a procedure for com-
puting cWtnrhs

Σ (T1, T2) as it gives no bound on n for the set noimplynT2,Σ(A). At this point
we present two ways of avoiding this problem (as well as the problem that concepts in
noimplynT2,Σ(A) can be of exponential size). Firstly, instead of working with covers we con-
struct an ABox encoding covers. In contrast to concepts, ABoxes admit the encoding of
structure sharing and cycles and so, intuitively, admit the polynomial reconstruction of the
‘infinite concept’

d
n≥0,C∈noimplynT2,Σ

(A)C.

The ABox AT2,Σ is constructed in Figure 3, where for a normalised EL-terminology T
and a concept name A ∈ sig(T ), we set

non-conjT (A) =

{
{A}, A is non-conjunctive in T
{B1, . . . , Bn}, A ≡ B1 u · · · uBn ∈ T

Note that the construction of AT2,Σ is very similar to the construction of noimplynT2,Σ(A).
The assertions for the individual ξΣ play the role of the concepts allnΣ, n ≥ 0, and the
assertions for the individuals ξA play the role of the sets noimplynT2,Σ(A), n ≥ 0. In fact, one
can readily show that AT2,Σ |= C(ξA) for any C ∈ noimplynT2,Σ(A) and A non-conjunctive in
T2 and, conversely, (a more involved proof) shows that whenever AT2,Σ |= D(ξA) for some
EL-concept D, then there exist n ≥ 0 and C ∈ noimplynT2,Σ(A) such that |= C v D. We
illustrate the construction of AT2,Σ using the EL-terminologies from Example 17.
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Let
{ξA | A ∈ sig(T2) ∪ Σ and non-conjunctive in T2} ∪ {ξΣ} ⊆ NI.

be a set of individual names. For A non-conjunctive in T2, define setsAT2,Σ(A) of assertions
as follows

• if A is pseudo-primitive in T2, then

AT2,Σ(A) = {A′(ξA) | A′ ∈ Σ \ preΣ
T2(A)} ∪ {r(ξA, ξΣ) | r ∈ Σ},

• if A ≡ ∃r.B ∈ T2, then

AT2,Σ(A) ={A′(ξA) | A′ ∈ Σ \ preΣ
T2(A)}

∪ {s(ξA, ξΣ) | r 6= s ∈ Σ}
∪ {r(ξA, ξB′) | B′ ∈ non-conjT2(B), if r ∈ Σ}

Let

AT2,Σ = {A′(ξΣ) | A′ ∈ Σ } ∪ { r(ξΣ, ξΣ) | r ∈ Σ } ∪
⋃

A∈Σ∪sig(T2)
A is non-conjunctive in T2

AT2,Σ(A)

Figure 3: Construction of AT2,Σ.

Example 21. (1) Let Σ = {A,B, r} and T2 = ∅. Then

AT2,Σ = {A(ξB), B(ξA), r(ξA, ξΣ), r(ξB, ξΣ)} ∪ AΣ,

where AΣ = {A(ξΣ), B(ξΣ), r(ξΣ, ξΣ)}.
(2) Let Σ′ = {A,B, r} and T ′2 = {A ≡ ∃r.A}. Then

AT ′2 ,Σ′ = {A(ξB), B(ξA), r(ξA, ξA), r(ξB, ξΣ′)} ∪ AΣ′ ,

where AΣ′ = {A(ξΣ′), B(ξΣ′), r(ξΣ′ , ξΣ′)}.
(3) Let Σ′′ = {A,B1, B2} and T ′′2 = {A ≡ B1 uB2}. Then

AT ′′2 ,Σ′′ = {B1(ξB2), B2(ξB1)} ∪ AΣ′′ ,

where AΣ′′ = {A(ξΣ′′), B1(ξΣ′′), B2(ξΣ′′)}.

We now obtain the following characterisation of cWtnrhs
Σ (T1, T2).

Theorem 22. Let T1 and T2 be normalised EL-terminologies and Σ a signature. Then the
following conditions are equivalent for any A ∈ Σ:

• A ∈ cWtnrhs
Σ (T1, T2);

• there exist n ≥ 0 and C ∈ noimplynT2,Σ(A) such that T1 |= C v A;
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• (T1,AT2,Σ) |= A(ξB) for some B ∈ non-conjT2(A).

The equivalence of Points 1 and 2 follows from Corollary 20. We do not give a detailed
proof of the equivalence of Points 2 and 3 as this follows from the more general results for
ELHr-terminologies we present below.

Example 23. For a normalised form of the terminologies from Example 12,

T1 = {A0 v B0, A1 ≡ Bn} ∪ {Bi+1 ≡ B′i+1 uB′′i+1 | 0 ≤ i < n}
∪ {B′i+1 ≡ ∃r.Bi | 0 ≤ i < n} ∪ {B′′i+1 ≡ ∃s.Bi | 0 ≤ i < n}

T2 = {A1 v F0} ∪ {Fi ≡ F ′i u F ′′i | 0 ≤ i < n}
∪ {F ′i v ∃r.Fi+1 | 0 ≤ i < n} ∪ {F ′′i v ∃s.Fi+1 | 0 ≤ i < n},

and Σ = {A0, A1, r, s}, the ABox AT2,Σ can be graphically represented as

· · ·
ξΣ

A0,A1

ξA1
A0

ξA0
A1 ξF ′

0
A0

ξF ′′
0

A0

ξF ′
1

A0,A1

ξF ′′
1

A0,A1

ξF ′
n

A0,A1

ξF ′′
n

A0,A1r, s

r, s

r, s

r, s

r, s

r, s

r, s

r, s

r, s

It should be clear that (T1,AT2,Σ) |= A1(ξA1). In fact, (T1,A) |= A1(ξA1) holds already for
the restriction A of AT2,Σ to the individuals {ξA1 , ξΣ}.

Theorem 24. For EL-terminologies T1 and T2 and a signature Σ, the set cWtnrhs
Σ (T1, T2)

can be computed in polynomial time.

Proof. It suffices to give a polynomial time algorithm that decides for every A ∈ Σ whether
A ∈ cWtnrhs

Σ (T1, T2). First, the ABox AT2,Σ can be computed in polynomial time and is
of quadratic size in T2. By Theorem 22, A ∈ cWtnrhs

Σ (T1, T2) iff (T1,AT2,Σ) |= A(ξB) for
some B ∈ non-conjT2(A), and the latter condition can be checked in polynomial time since
instance checking is in polynomial time for EL-TBoxes.

Regarding the efficiency of this approach, observe that for typical terminologies and large
Σ, the ABox AT2,Σ is indeed of quadratic size in T2 since Σ \ preΣ

T2(A) will typically contain
most of the concept names in Σ. Thus, for very large terminologies and Σ a straightforward
implementation of this rather elegant algorithm does not work efficiently as one would have
to store an ABox of quadratic size and do instance checking for it. We refer the reader to
Table 3 and its discussion where a prototype implementation of this approach is applied to
modules of Snomed CT.

We now describe our second approach for computing cWtnrhs
Σ (T1, T2), which only works

for acyclic EL-terminologies. Recall that A ∈ cWtnrhs
Σ (T1, T2) if, and only if, there ex-

ists an ELΣ-concept C such that T2 6|= C v A and T1 |= C v A. Thus, we have
A 6∈ cWtnrhs

Σ (T1, T2) if, and only if, for every ELΣ-concept C with C ∈ noimplyT2,Σ(A)
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procedure NotWitness(E)
if E is pseudo-primitive in T1 then

NotWitness(E) :=
{
A ∈ Ξ | preΣ

T1(E) ⊆ preΣ
T2(A)

}
end if

if (E ≡ E1 u · · · u Ek ∈ T1) then
NotWitness(E) :=

⋃k
i=1 NotWitness(Ei)

end if

if E ≡ ∃r.E′ ∈ T1 then
if r /∈ Σ or All ∈ NotWitness(E′) then

NotWitness(E) :=
{
A ∈ Ξ | preΣ

T1(E) ⊆ preΣ
T2(A)

}
else

NotWitness(E) :=

A ∈ Ξ

∣∣∣∣∣∣
A ≡ ∃r.A′ ∈ T2

non-conjT2(A′) ⊆ NotWitness(E′)
preΣ
T1(E) ⊆ preΣ

T2(A)


end if

end if
end procedure

Figure 4: Computation of NotWitness(E).

it holds that C ∈ noimplyT1,Σ(A). Our approach is now based on computing a ‘not witness’
relation NW ⊆ ((sig(T1) ∪ Σ) ∩ NC)× ((sig(T2) ∪ Σ) ∩ NC), which is defined as follows:

(E,A) ∈ NW if, and only if, (†) noimplyT2,Σ(A) ⊆ noimplyT1,Σ(E)

Observe that A ∈ cWtnrhs
Σ (T1, T2) if, and only if, (A,A) 6∈ NW; hence, to compute the

set cWtnrhs
Σ (T1, T2) it is sufficient to compute the relation NW. In practice, it is crucial to

compute the relation NW rather than its complement: in typical terminologies most concept
names are unrelated in the sense that they do not subsume each other. Thus, the relation
NW is much smaller than its complement (which contains, among others, all pairs (E,A)
that do not subsume each other in T1 and T2).

To determine the pairs (E,A) ∈ NW, we aim at computing for every concept name
E ∈ sig(T1) ∪ Σ the set of concept names A ∈ sig(T2) ∪ Σ for which the property (†) holds.
This set will be called NotWitness(E) and is computed in Figure 4, with the following
modifications: (1) we only consider those A ∈ sig(T2) ∪ Σ which are non-conjunctive in T2

and take conjunctive concept names into account later. (2) We consider a fresh concept
name All not occurring in Σ ∪ sig(T1) ∪ sig(T2) – informally standing for ‘all possible Σ-
concepts’.

Thus, the procedure, NotWitness(E) given in Figure 4 recursively associates with every
E ∈ sig(T1) ∪ Σ a subset of the set

Ξ = {All} ∪ {A | A ∈ (sig(T2) ∪ Σ), A is non-conjunctive in T2 }

and NW is a relation over

((sig(T1) ∪ Σ) ∩ NC)× (((sig(T2) ∪ Σ) ∩ NC) ∪ {All}).
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Note that unlike in the approach for computing cWtnrhs
Σ (T1, T2) that was presented previ-

ously, the approach described here does not handle the two terminologies separately. In
the previous approach the ABox AT2,Σ could be precomputed for T2 and then be re-used to
compare T2 against any other terminology T1, whereas here both terminologies are analysed
simultaneously. We now prove the correctness of the procedure NotWitness(E).

Lemma 25. For any normalised acyclic EL-terminologies T1 and T2, any signature Σ, any
E ∈ sig(T1) ∪ Σ and any A ∈ Ξ the following holds: A ∈ NotWitness(E) if, and only if,
(E,A) ∈ NW.

Proof. We prove that for any E ∈ sig(T1) ∪ Σ and any A ∈ Ξ the following two conditions
are equivalent:

• A ∈ NotWitness(E);

• for all n ≥ 0 and all C ∈ noimplynT2,Σ(A): T1 6|= C v E.

This is sufficient since
⋃
n≥0 noimplynT2,Σ(A) is a cover of noimplyT2,Σ(A) (Lemma 19).

For E 6∈ sig(T1) the claim is trivial. For E ∈ sig(T1) the proof is by induction relative
to the relation �T1 ⊆ sig(T1) × sig(T1) (whose definition can be found on page 637). Note
that since the considered terminologies are acyclic and sig(T1) is finite, the relation �T1 is
well-founded.

We distinguish between the possible definitions of E in T1. Suppose E is pseudo-
primitive in T1. For A ∈ Ξ, it follows from the definition of noimplynT2,Σ(A) and from
Lemma 15 that there exist n ≥ 0 and C ∈ noimplynT2,Σ(A) such that T1 |= C v E if, and

only if, T1 |= B v E for some B ∈ (Σ \ preΣ
T2(A)). Note that for all B ∈ (Σ \ preΣ

T2(A)),

T1 6|= B v E holds if, and only if, for every B ∈ Σ, T1 |= B v E implies that B ∈ preΣ
T2(A).

Thus, for every n and C ∈ noimplynT2,Σ(A), T1 6|= C v E if, and only if, preΣ
T1(E) ⊆ preΣ

T2(A)
if, and only if, A ∈ NotWitness(E).

Assume that E ≡ E1 u · · · u Ek ∈ T1. Then, for any concept C, T1 6|= C v E if, and
only if, T1 6|= C v Ei for some 1 ≤ i ≤ k. Hence, by applying the induction hypothesis we
obtain for every n and C ∈ noimplynT2,Σ(A), T1 6|= C v E if, and only if, A ∈ NotWitness(Ei)
for some 1 ≤ i ≤ k, if, and only if, A ∈ NotWitness(E).

Finally, assume that E ≡ ∃r.E′ ∈ T1. Notice that, since All /∈ (Σ ∪ sig(T1) ∪ sig(T2)) (in
particular, All is pseudo-primitive in T2), we have preΣ

T2(All) = ∅. Thus, by definition for
every n ≥ 0, noimplynT2,Σ(All) = {allnΣ}. By applying the induction hypothesis we can assume
that the lemma holds for E′, which implies that All /∈ NotWitness(E′) if, and only if, for
some n ≥ 0, T1 |= allnΣ v E′. We now distinguish between the following cases, analogously
to the case distinction in procedure NotWitness(E) (see Figure 4).

If r /∈ Σ, for any Σ-concept of the form ∃s.G, where s ∈ NR ∩ Σ, we have r 6= s and
T1 6|= ∃s.G v ∃r.E′. Similarly, if All ∈ NotWitness(E′), it holds for every n ≥ 0 that
T1 6|= allnΣ v E′. Hence, for any Σ-concept of the form ∃s.G, we obtain T1 6|= ∃s.G v ∃r.E′
as otherwise T1 |= allnΣ v E′ would hold for n = depth(∃s.G) (where depth(∃s.G) is the
role-depth of ∃s.G). So, by Lemma 15, these two cases are analogous to the case of E being
pseudo-primitive considered above.

Assume now that r ∈ Σ and All /∈ NotWitness(E′), that is, for some n0 ≥ 0 we have
T1 |= alln0

Σ v E′.

654



The Logical Difference for the Lightweight Description Logic EL

First, we observe that if A does not have a definition of the form A ≡ ∃r.A′ in T2, then for
the unique C ∈ noimplyn0+1

T2,Σ (A) we have T1 |= C v E as ∃r.alln0
Σ is a conjunct of C (and as A

is non-conjunctive in T2 by definition of the set Ξ). IfA has a definition of the formA ≡ ∃r.A′
in T2, for any n ≥ 0 and C ∈ noimplynT2,Σ(A), we have by Lemma 15 that T1 6|= C v E

if, and only if, preΣ
T1(E) ⊆ preΣ

T2(A), and, if n > 0, for every C ′ ∈ noimplyn−1
T2,Σ(A′) we have

T1 6|= C ′ v A′.
We can conclude that in case r ∈ Σ and All /∈ NotWitness(E′), for any A ∈ Ξ, any

n ≥ 0, and any C ∈ noimplynT2,Σ(A), we have T1 6|= C v E, if, and only if, A ≡ ∃r.A′ ∈
T2, preΣ

T1(E) ⊆ preΣ
T2(A) and for any m ≥ 0 and any C ′ ∈ noimplymT2,Σ(A′) we have

T1 6|= C ′ v E′. Notice further that, by definition for any m ≥ 0, noimplymT2,Σ(A′) =⋃
B∈non-conjT2 (A′) noimplymT2,Σ(B). Thus, for any m ≥ 0 and any C ′ ∈ noimplymT2,Σ(A′),

T1 6|= C ′ v E′ holds if, and only if, for any m ≥ 0, any B ∈ non-conjT2(A′) and any
C ′ ∈ noimplymT2,Σ(B), T1 6|= C ′ v E′, if, and only if, for any B ∈ non-conjT2(A′), B ∈
NotWitness(E′) holds by applying the induction hypothesis.

Thus, T1 6|= C v E, for any n ≥ 0 and C ∈ noimplynT2,Σ(A), if, and only if, A ∈
NotWitness(E).

Corollary 26. Let T1 and T2 be normalised acyclic EL-terminologies and Σ a signature.
Then cWtnrhs

Σ (T1, T2) = {A ∈ sig(T1) ∩ Σ | ∃B ∈ non-conjT2(A) with B 6∈ NotWitness(A) }.

Proof. First, we observe that if A ∈ cWtnrhs
Σ (T1, T2), A ∈ sig(T1) must hold as otherwise

for any Σ-concept C we have T1 |= C v A if, and only if, |= C v A, and thus A 6∈
cWtnrhs

Σ (T1, T2). Now, for all A ∈ NC we have:

A ∈ cWtnrhs
Σ (T1, T2) iff A ∈ sig(T1) ∩ Σ (by our observation) and, by definition,

there exists a Σ-concept C with T2 6|= C v A and T1 |=
C v A

iff A ∈ sig(T1) ∩ Σ and there exists B ∈ non-conjT2(A) and
a Σ-concept C with T2 6|= C v B and T1 |= C v A (as
otherwise T2 |= C v A would hold)

iff A ∈ sig(T1) ∩ Σ and there exists B ∈ non-conjT2(A) with
(A,B) 6∈ NW (by definition of the relation NW)

iff A ∈ sig(T1) ∩ Σ and there exists B ∈ non-conjT2(A) with
B 6∈ NotWitness(A), by Lemma 25.

For acyclic terminologies, we now obtain an alternative proof of Theorem 24.

Theorem 27. For acyclic EL-terminologies T1 and T2 and a signature Σ, cWtnrhs
Σ (T1, T2)

can be computed in polynomial time using the procedure NotWitness(E).

Proof. To compute the set cWtnrhs
Σ (T1, T2), it is sufficient by Corollary 26 to compute the

sets NotWitness(E) for every E ∈ sig(T1). Assuming that T1 and T2 are classified and the
result of classification is cached, NotWitness(E) can be computed for all E ∈ sig(T1), in the
worst case, in time O((|T1|+ |T2|)3).

Example 28. For the acyclic terminologies T1, T2 and the signature Σ from Example 23,

NotWitness(A0) = {A0}, NotWitness(B0) = {A0}
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and for all other concept names X ∈ sig(T1), NotWitness(X) = ∅. In particular A1 /∈
NotWitness(A1), so we conclude that A1 is a concept difference witness.

4.3 Computing cWtnlhs
Σ (T1, T2)

Recall that the set of left-hand Σ-concept difference witnesses, cWtnlhs
Σ (T1, T2), is the set

of all A ∈ Σ ∩ NC such that there exists a concept C with A v C ∈ cDiffΣ(T1, T2). The
tractability of computing cWtnlhs

Σ (T1, T2) for EL has been proved by Lutz and Wolter (2010)
for arbitrary EL-TBoxes by reduction to simulation checking. Here we formulate the main
steps again because we employ the same technique when dealing with the logical difference
for ELHr-terminologies.

For any two interpretations I1 and I2 we say that a relation S between I1 and I2 is a
Σ-simulation if, and only if, the following conditions hold:

• if (d, e) ∈ S and d ∈ AI1 with A ∈ Σ, then e ∈ AI2 ;

• if (d, e) ∈ S and (d, d′) ∈ rI1 with r ∈ Σ, then there exists e′ with (d′, e′) ∈ S and
(e, e′) ∈ rI2 .

For d ∈ ∆I1 and e ∈ ∆I2 we write (I1, d) ≤Σ (I2, e) if there exists a Σ-simulation re-
lation S between I1 and I2 such that (d, e) ∈ S. It can be checked in polynomial time
whether (I1, d) ≤Σ (I2, e) and various polynomial-time algorithms checking the existence of
simulations have been developed (Clarke & Schlingloff, 2001; Crafa, Ranzato, & Tapparo,
2011; van Glabbeek & Ploeger, 2008). Simulations characterise the expressive power of
EL-concepts in the following sense.

Lemma 29 (Lutz & Wolter, 2010). Let I1 and I2 be interpretations, Σ a signature, d ∈ ∆I1,
and e ∈ ∆I2. Then

(I1, d) ≤Σ (I2, e) ⇔ for all ELΣ-concepts C: d ∈ CI1 ⇒ e ∈ CI2 .

It follows that for any A ∈ Σ, we have

A ∈ cWtnlhs
Σ (T1, T2) ⇔ (IK1 , a) 6≤Σ (IK2 , a)

where Ki = (Ti,A) for A = {A(a)} and IKi is the canonical model for Ki, i = 1, 2.
To see this, recall that by Theorem 2 for every EL-concept C, a ∈ CIKi if, and only if,
(Ti,A) |= C(a). The latter condition is equivalent to Ti |= A v C. We have, therefore,
proved:

Theorem 30 (Lutz & Wolter, 2010). For EL-TBoxes T1 and T2 and signatures Σ, the set
cWtnlhs

Σ (T1, T2) can be computed in polynomial time.

The following example illustrates the use of simulations between canonical models to
determine cWtnlhs

Σ (T1, T2).

Example 31. Let Σ = {A, r,B1, B2} and

T1 = {A v ∃r.F0, F0 v F1 u F2, F1 v ∃r.B1, F2 v ∃r.B2},
T2 = {A v G1 uG2, G1 v ∃r.G′1, G2 v ∃r.G′2, G′1 v ∃r.B1, G

′
2 v ∃r.B2}
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To check whether A ∈ cWtnlhs
Σ (T1, T2) consider the KBs K1 = (T1, {A(a)}) and K2 =

(T2, {A(a)}). Then A ∈ cWtnlhs
Σ (T1, T2) iff (IK1 , a) 6≤Σ (IK2 , a), for the canonical models

IK1 and IK2 of K1 and K2, respectively. Illustrations of the canonical models IK1 and IK2

are shown below.

IK1 A
a

xran(r),F0

xran(r),B1

B1

xran(r),B2

B2

r

r r

IK2A
a

xran(r),G′
1

xran(r),G′
2

xran(r),B1

B1

xran(r),B2

B2

rr

r r

But (IK1 , a) 6≤Σ (IK2 , a) because the point xran(r),F0
is neither Σ-simulated by xran(r),G′1

nor
Σ-simulated by xran(r),G′2

. A concept inclusion in cDiffΣ(T1, T2) with A on the left-hand side
is given by A v ∃r.((∃r.B1) u (∃r.B2)).

5. ELHr-Instance Difference

Our polynomial-time algorithms for inseparability and logical difference in ELHr are based
on extensions of the ideas used in Section 4 for EL. There is, however, one important
difference: we introduce new logics, ELran and ELran,u,u, for which the concept difference
captures exactly the instance and, respectively, query difference in ELHr. To prove an ana-
logue of Theorem 16 for those languages and, thereby, for the instance and query difference
for ELHr, we introduce a sequent calculus which characterises all ELran-consequences of
ELHr-terminologies. We start our investigation with the instance difference case since it is
more transparent than the concept difference case (recall that for EL there is no difference
between the instance and the concept difference).

5.1 ELran-Concept Difference

Recall Example 4 showing that ELHr Σ-concept inseparability does not imply Σ-instance
inseparability:

T1 = {ran(r) v A1, ran(s) v A2, B ≡ A1 uA2}, T2 = ∅, Σ = {r, s, B}.

Notice that for the ABox A = {r(a, c), s(b, c)}, exhibiting the instance difference between
T1 and T2, c is in the range of both r and s. This example suggests that if ran(r) and ran(s)
could be used in complex concepts, this kind of difference can be made visible for a concept
language.

Definition 32 (ELran). Cran-concepts are constructed using the following syntax rule

C := A | ran(r) | C uD | ∃r.C,

where A ∈ NC, C,D range over Cran-concepts and r ∈ NR. The set of ELran-inclusions
consists of all concept inclusions C v D and role inclusions r v s, where C is a Cran-
concept, D an EL-concept, and r, s ∈ NR.
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Clearly, every ELHr-inclusion is an ELran-inclusion. Additionally, in ELran-inclusions
the concept ran(r) can occur everywhere in concepts on the left-hand side of inclusions.
This gives us additional concept inclusions for the Σ-concept difference.

Example 33. For T1 and T2 from Example 4, we have T1 |= ran(r) u ran(s) v B, but
T2 6|= ran(r) u ran(s) v B. Thus, using the Cran-concept ran(r) u ran(s) we can simulate
the ABox {r(a, c), s(b, c)} from Example 4 and make the Σ-difference that could not be
observed in ELHr visible in ELran.

We now show that Example 33 can be generalised to arbitrary TBoxes. To this end, we
consider the following straightforward generalisation of the Σ-concept difference to differ-
ences over ELran.

Definition 34 (ELranΣ -difference). The ELranΣ -difference between ELHr-TBoxes T1 and T2

is the set cDiffran
Σ (T1, T2) of all ELranΣ -inclusions α such that T1 |= α and T2 6|= α.

To prove the equivalence between Σ-instance difference in ELHr and Σ-concept differ-
ence in ELran, we first associate with every ABox A and individual a in A a set CranA,a of
Cran-concepts. Assume A is given. Let, inductively, for a ∈ obj(A):

C0,ran
A,a = (

l

A(a)∈A

A) u (
l

r(b,a)∈A

ran(r));

and
Cn+1,ran
A,a = (

l

A(a)∈A

A) u (
l

r(b,a)∈A

ran(r)) u (
l

r(a,b)∈A

∃r.Cn,ranA,b ),

and set
CranA,a = {Cn,ranA,a | n ≥ 0}

Observe that A |= Cn,ranA,a (a) for all n > 0. Moreover, the lemma below shows that, intu-
itively, the infinite conjunction

d
CranA,a is the most specific “concept” with A |=

d
CranA,a(a).

Conversely, we associate an ABox with a Cran-concept. The construction is straight-
forward; however, some care has to be taken since we do not introduce structure sharing
but associate distinct individual names with distinct occurrences of subconcepts. Given a
Cran-concept C, we first define a path in C as a finite sequence C0 · r1 · C1 · · · · · rn · Cn,
where C0 = C, n ≥ 0, and ∃ri+1.Ci+1 is a conjunct of Ci, for 0 ≤ i < n. We use paths(C)
to denote the set of all paths in C. If p ∈ paths(C), then tail(p) denotes the last element
Cn in p.

Now, let aran and ap for p ∈ paths(C) be individual names and set inductively:

AC = { s(ap, aq) | p, q ∈ paths(C); q = p · s · C ′, for some C ′ }
∪ {A(ap) | A is a conjunct of tail(p), p ∈ paths(C) }
∪ {>(ap) | > is a conjunct of tail(p), p ∈ paths(C) }
∪ { r(aran, ap) | ran(r) is a conjunct of tail(p), p ∈ paths(C) }

Example 35. Let C = (∃r.(A u ran(v))) u (∃s.((∃t.(A u ran(v))) u (∃t.(B u ran(s))))) be a
Cran-concept. Then AC can be represented graphically as follows.
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aC

A

aran

A B

sr

t t

v

v

s

We only indicate aC and aran; other individuals are identified by paths in C. Note that
different occurrences of A u ran(v) in C correspond to different individuals in AC .

Lemma 36. Let T be an ELHr-TBox, A be an ABox, C0 and D0 be Cran-concepts, and let
a0 ∈ obj(A). Then

• (T ,A) |= D0(a0) if, and only if, there exists n ≥ 0 such that T |= Cn,ranA,a0
v D0;

• T |= C0 v D0 if, and only if, (T ,AC0) |= D0(aC0).

Below, we will employ this lemma to transfer an analogue of Theorem 16 for ELran to
ELHr-instance differences. For now, we only note the following consequence:

Corollary 37. For any two ELHr-TBoxes T1 and T2, cDiffran
Σ (T1, T2) = ∅ if, and only if,

iDiffΣ(T1, T2) = ∅.

Proof. If (A, D0(a0)) ∈ iDiffΣ(T1, T2), then there exists an n ≥ 0 such that Cn,ranA,a0
v

D0 ∈ cDiffran
Σ (T1, T2). Conversely, if C0 v D0 ∈ cDiffran

Σ (T1, T2), then (AC0 , D0(aC0)) ∈
iDiffΣ(T1, T2).

Note that Theorem 6 follows from Corollary 37 since for any ELHr-TBox T without
range restrictions T |= C v D if, and only if, T |= C ′ v D, where C ′ is obtained from C
by replacing any concept of the form ran(r) in C by >.

5.2 Proof System for ELHr

The Gentzen-style proof system for ELHr consists of the rules given in Figures 1 and 5.
Cut elimination, correctness, and completeness of the proof system can be shown similarly
to the corresponding proofs given by Hofmann (2005).

Theorem 38. For all ELHr-terminologies T and Cran-concepts C and D, it holds that
T |= C v D if, and only if, T ` C v D.

We now generalise Lemma 15 to ELHr-terminologies.

Lemma 39. Let T be an ELHr-terminology, A a concept name and ∃r.D an EL-concept.
Assume

T |=
l

1≤i≤l
ran(si) u

l

1≤j≤n
Aj u

l

1≤k≤m
∃rk.Ck v ∃r.D,

where Ck, 1 ≤ k ≤ m, are Cran-concepts and l,m, n ≥ 0. Then at least one of the following
conditions holds:
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∃r.(C u ran(r)) v D
∃r.C v D (ExRan)

B v D
∃r.C v D (Dom)

where ∃r.> v B ∈ T

A v D
ran(r) v D

(Ran)
where ran(r) v A ∈ T

∃s.C v D
∃r.C v D (Sub)

ran(s) v D
ran(r) v D

(RanSub)
where r v s ∈ T

Figure 5: Additional rules for ELHr-terminologies.

(e1) there exists rk, 1 ≤ k ≤ m, such that T |= rk v r and T |= Ck u ran(rk) v D;

(e2) there exists Aj, 1 ≤ j ≤ n, such that T |= Aj v ∃r.D;

(e3) there exists rk, 1 ≤ k ≤ m, such that T |= ∃rk.> v ∃r.D;

(e4) there exists si, 1 ≤ i ≤ l, such that T |= ran(si) v ∃r.D.

Now assume that A is pseudo-primitive and

T |=
l

1≤i≤l
ran(si) u

l

1≤j≤n
Aj u

l

1≤k≤m
∃rk.Ck v A,

where Ck, 1 ≤ k ≤ m, are Cran-concepts and l,m, n ≥ 0. Then at least one of the following
conditions holds:

(a1) there exists Aj, 1 ≤ j ≤ n such that T |= Aj v A;

(a2) there exists rk, 1 ≤ k ≤ m such that T |= ∃rk.> v A;

(a3) there exists si, 1 ≤ i ≤ l such that T |= ran(si) v A.

Proof. We prove the first part of the lemma, the second part can then be proved analogously.

Let C =
d

1≤i≤l ran(si) u
d

1≤j≤nAj u
d

1≤k≤m ∃rk.Ck and assume that T |= C v ∃r.D
holds. Then, we have T ` C v ∃r.D by Theorem 38, which implies that there exists a
derivation D of the sequent C v ∃r.D. The proof now proceeds by induction on the depth
of D, i.e. the maximal length of any path from the root to one of the leaves of D.

Notice that if l + n + m ≥ 2, the root of D can only have been derived by AndL1 or
AndL2. The lemma follows then from the induction hypothesis.

Otherwise, we have l + n + m = 1. Note that l + m + n = 0 is not possible since
T 6|= > v ∃r.D by definition of the terminology T . If C = A1 or C = ran(s1), then (e2) or
(e4), respectively, hold already. It remains to consider the case where C = ∃r1.C1. Then,
the rule used to derive the root of D can only have been one of Ax, Ex, ExRan, Dom or
Sub. We consider those cases one by one:
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• the root of D was derived with Ax: then by considering the form of the inference rule,
r1 = r and C1 = D. Hence T |= r1 v r and T |= C1 u ran(r1) v D, which implies
that (e1) holds.

• the root of D was derived with Ex: then r1 = r and T ` C1 v D. Hence, T |= r1 v r
and T |= C1 v D holds by Theorem 38. Thus, T |= C1 u ran(r1) v D and we can
infer that (e1) holds again.

• the root of D was derived with Dom: we have T ` B v ∃r.D and ∃r1.> v B ∈ T .
Then by Theorem 38, T |= B v ∃r.D and hence, T |= ∃r1.> v ∃r.D, that is, (e3)
holds.

• the root of D was derived with ExRan: we obtain T ` ∃r1.(C1 u ran(r1)) v ∃r.D.
Since the sequent ∃r1.(C1 u ran(r1)) v ∃r.D has a derivation that is of shorter length
than D, we can apply the induction hypothesis. Hence, either T |= ∃r1.> v ∃r.D,
that is, (e3) holds, or T |= r1 v r and T |= (C1 u ran(r1))u ran(r1) v D. Hence (e1)
holds as |= C1 u ran(r1) v (C1 u ran(r1)) u ran(r1).

• the root of D was derived with Sub: we obtain T ` ∃s.C1 v ∃r.D and r1 v s ∈ T .
By the induction hypothesis, either T |= ∃s.> v ∃r.D, or T |= s v r and T |=
C1 u ran(s) v D. It can be seen that T |= ∃r1.> v ∃r.D, or T |= r1 v r and
T |= C1 u ran(r1) v D, respectively. Hence (e3) or (e1) holds.

We now prove an extension of Theorem 16 to ELran-consequences of ELHr-terminologies.
We give a rather detailed description of the simple witness inclusions contained in members
of cDiffran

Σ (T1, T2) since we are going to use this result again when analysing the concept
difference in ELHr.

Theorem 40 (Primitive witness for ELran-differences). Let T1 and T2 be ELHr-terminologies
and Σ a signature. If ϕ ∈ cDiffran

Σ (T1, T2), then either there exist {r, s} ⊆ sig(ϕ) with
r v s ∈ cDiffran

Σ (T1, T2) or ϕ is of the form C v D, and one of

1. C ′ v A or ran(r) u C ′ v A,

2. A v D′, ∃r.> v D′ or ran(r) v D′

is a member of cDiffran
Σ (T1, T2), where r ∈ sig(ϕ), A ∈ sig(ϕ) is a concept name, C ′ is a

subconcept of C and D′ is a subconcept of D.

Proof. Let C v D ∈ cDiffran
Σ (T1, T2), where C is a Cran-concept and D an EL-concept. We

prove the theorem by induction on the structure of D.
Notice that D 6= > as T2 |= C v >. If D is a concept name, then an inclusion from

Point 1 exists. If D = D1 u D2, then one of C v Di, i = 1, 2, is in cDiffran
Σ (T1, T2).

We can apply the induction hypothesis and we can infer that an inclusion from Point 1
or Point 2 exists. If D = ∃r.D1, let C =

d
1≤i≤l ran(si) u

d
1≤j≤nAj u

d
1≤k≤m ∃rk.Ck.

Then, by Lemma 39, one of (e1)–(e4) holds. Cases (e2)–(e4) directly entail that an
inclusion from Point 1 or Point 2 exists. In case of (e1), either rk v r ∈ cDiffran

Σ (T1, T2)
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or T1 |= Ck u ran(rk) v D1 but T2 6|= Ck u ran(rk) v D1 (as otherwise T2 |= C v D would
hold). Now we can apply the induction hypothesis to D1 and conclude that an inclusion
from Point 1 or Point 2 exists.

5.3 Instance Difference Witnesses

Similarly to Theorem 16 for the concept difference between EL-terminologies and de-
rived from its extension, Theorem 40, for ELran, we show that every member (A, α) of
iDiffΣ(T1, T2) gives rise to a basic witness in which either the ABox or the instance query
are atomic. To keep the formulation succinct we give an abstract description of the rela-
tionship between (A, α) ∈ iDiffΣ(T1, T2) and its witness using only the signature of (A, α).
The interested reader will have no problem to derive a stronger relationship between (A, α)
and its witness from the proof.

Theorem 41 (Primitive witness for ELHr-instance differences). Let T1 and T2 be ELHr-
terminologies and Σ a signature. If ϕ ∈ iDiffΣ(T1, T2), then at least one of the following
conditions holds:

1. ({r(a, b)}, s(a, b)) ∈ iDiffΣ(T1, T2), for some r, s ∈ sig(ϕ);

2. (A, A(b)) ∈ iDiffΣ(T1, T2), for some concept name A ∈ sig(ϕ), individual b, and
ABox A with sig(A) ⊆ sig(ϕ).

3. (A, D(b)) ∈ iDiffΣ(T1, T2), for some singleton ABox A, individual b in A, and EL-
concept D such that sig(A), sig(D) ⊆ sig(ϕ);

Proof. Let (A, α) ∈ iDiffΣ(T1, T2). We distinguish the following cases.
(a) If α = s(a, b), then (T1,A) |= s(a, b) if, and only if, for some r(a, b) ∈ A we have T1 |=

r v s. As (T2,A) 6|= s(a, b) we obtain T2 6|= r v s. Thus, ({r(a, b)}, s(a, b)) ∈ iDiffΣ(T1, T2)
and Point 1 holds.

(b) Assume α = D(b) for some EL-concept D. By Lemma 36, for some n ≥ 0 we have
T1 |= Cn,ranA,b v D and T2 6|= Cn,ranA,b v D. By Theorem 40, one of (i) r v s, (ii) A v D′, (iii)
∃r.> v D′, (iv) ran(r) v D′, (v) C v A, or (vi) ran(r)uC v A is a member of cDiffran

Σ (T1, T2),
where r ∈ sig(ϕ), A ∈ sig(ϕ) is a concept name, C is a subconcept of Cn,ranA,b and D′ is a
subconcept of D. If (i) r v s ∈ cDiffran

Σ (T1, T2), then ({r(a, b)}, s(a, b)) ∈ iDiffΣ(T1, T2) and
Point 1 holds.

Now let F v G denote the member of cDiffran
Σ (T1, T2) in the cases (ii)-(vi) above. Con-

sider the ABox AF associated with the Cran-concept F in Point 2 of Lemma 36. Then
sig(AF ) ⊆ sig(ϕ) and (AF , G(aF )) ∈ iDiffΣ(T1, T2).

In case (ii), we obtain that F = A is a concept name. Hence AF = {A(aF )} and Point 3
holds. For case (iii), we obtain AF = {r(aF , a>),>(a>)} and Point 3 of the lemma applies
again (after removing >(a>) from AF ). Similarly, if (iv), then AF = {r(aran, aF )}, and
Point 3 of the lemma holds. Finally, for the cases (v) and (vi), G ∈ sig(ϕ) is a concept
name. Hence Point 2 of the lemma applies.

Theorem 41 justifies the following finite representation of the Σ-instance difference be-
tween ELHr-terminologies. It corresponds exactly to the three distinct points of the theo-
rem. Assume T1 and T2 are given. Let

662



The Logical Difference for the Lightweight Description Logic EL

• the set of role Σ-instance difference witnesses, iWtnR
Σ(T1, T2), consist of all r v s such

that T1 |= r v s and T2 6|= r v s;

• the set of right-hand Σ-instance difference witnesses, iWtnrhs
Σ (T1, T2), consist of all

A ∈ Σ such that there exists A with (A, A(a)) ∈ iDiffΣ(T1, T2);

• the set of left-hand Σ-instance difference witnesses, iWtnlhs
Σ (T1, T2), consist of all A ∈ Σ

such that there exists C(a) with ({A(a)}, C(a)) ∈ iDiffΣ(T1, T2) and all r ∈ Σ such
that there exists C(c) with c = a or c = b such that ({r(a, b)}, C(c)) ∈ iDiffΣ(T1, T2).

The set of all Σ-instance difference witnesses is defined as

iWtnΣ(T1, T2) = (iWtnR
Σ(T1, T2), iWtnrhs

Σ (T1, T2), iWtnlhs
Σ (T1, T2)).

By Theorem 41, observe that iWtnΣ(T1, T2) = (∅, ∅, ∅) if, and only if, iDiffΣ(T1, T2) = ∅. The
set iWtnR

Σ(T1, T2) can be easily computed in polynomial time and will not be analysed further
in this paper. Thus, our aim now is to present polynomial-time algorithms computing
iWtnrhs

Σ (T1, T2) and iWtnlhs
Σ (T1, T2).

5.4 Computing iWtnrhs
Σ (T1, T2)

We compute iWtnrhs
Σ (T1, T2) in two different ways: first, we present the more transparent

ABox approach that works for arbitrary ELHr-terminologies, and second we present the
more efficient dynamic programming approach that works for acyclic ELHr-terminologies
only. Both approaches have been introduced in Section 4.2 for EL-terminologies. We start
with the ABox approach and exhibit a Σ-ABox AT2,Σ depending on T2 and Σ only such that
for non-conjunctive A ∈ Σ there exists an ABox A such that (A, A(d)) ∈ iDiffΣ(T1, T2) if,
and only if, (T1,AT2,Σ) |= A(ξA) for a certain individual name ξA. The case of conjunctive
A is reduced to this condition for its defining concept names.

To deal with ELHr-terminologies rather than with EL-terminologies we have to extend
the structure of AT2,Σ significantly. To describe the model-theoretic properties of AT2,Σ, we
require the notion of a Σ-range simulation. They capture model-theoretically the expressive
power of Cran-concepts (the concepts that have been used to describe the Σ-instance differ-
ence in terms of subsumption, cf. Lemma 36). For any two ABoxes A1,A2 with designated
individual names a1 and a2, we say that a relation S between obj(A1) and obj(A2) is a
Σ-simulation if, and only if,

(S1) (a1, a2) ∈ S;

(S2) for all A ∈ Σ: if (a, b) ∈ S and A(a) ∈ A1, then A(b) ∈ A2;

(S3) for all r ∈ Σ: if (a, b) ∈ S and r(a, a′) ∈ A1, then there exists b′ with (a′, b′) ∈ S and
r(b, b′) ∈ A2.

We say that S is a Σ-range simulation if, in addition,

(RS) for all r ∈ Σ: if (a, b) ∈ S and there exists c such that r(c, a) ∈ A1, then there exists
c′ with r(c′, b) ∈ A2.

In what follows we write

663



Konev, Ludwig, Walther, & Wolter

• (A1, a1) ≤Σ (A2, a2) if there exists a Σ-simulation between (A1, a1) and (A2, a2); and

• (A1, a1) ≤ran
Σ (A2, a2) if there exists a Σ-range simulation between (A1, a1) and

(A2, a2).

The following lemma shows that range simulations characterise Cran-concepts.

Lemma 42. Let A1 and A2 be Σ-ABoxes with designated individual names a1 and a2. If
(A1, a1) ≤ran

Σ (A2, a2), then (T ,A1) |= C(a1) implies (T ,A2) |= C(a2) for all Cran-concepts
C.

Proof. We apply Lemma 36. Let S be a Σ-range simulation between A1 and A2 with
(a1, a2) ∈ S. One can prove by induction on n that for all n ≥ 0, for all a ∈ obj(A1) and
for all b ∈ obj(A2),

(∗) If (a, b) ∈ S, then A2 |= Cn,ranA1,a
(b).

Now assume that (A1, a1) ≤ran
Σ (A2, a2) and that (T ,A1) |= C(a1) holds for a Cran-

concept C. Then, by Lemma 36, there exists n ≥ 0 such that T |= Cn,ranA1,a1
v C. Moreover,

as (A1, a1) ≤ran
Σ (A2, a2), we have by (∗) that A2 |= Cn,ranA1,a1

(a2), which then implies that
(T ,A2) |= C(a2), as required.

The construction of AT ,Σ is now given in Figure 6, where T is a normalised ELHr-
terminology and Σ a signature. We advise the reader to recall the definition of AT ,Σ given
in Figure 3 for EL-terminologies T and then consider the additional ingredients required
for ELHr-terminologies. We remind the reader of the definition of non-conjT (A) from
Section 4.2:

non-conjT (A) =

{
{A}, A is non-conjunctive in T
{B1, . . . , Bn}, A ≡ B1 u · · · uBn ∈ T

In Figure 6, we also use the following sets, for A ∈ NC and r ∈ NR:

• preCΣ
T (A) = {B ∈ Σ ∩ NC | T |= B v A },

• preDomΣ
T (A) = { r ∈ Σ ∩ NR | T |= ∃r.> v A },

• preRanΣ
T (A) = { r ∈ Σ ∩ NR | T |= ran(r) v A },

• preRoleΣ
T (r) = { s ∈ Σ ∩ NR | T |= s v r }.

The following example illustrates the definition of AT ,Σ.

Example 43. For T1 = {ran(r) v A1, ran(s) v A2, B ≡ A1uA2}, T2 = ∅, and Σ = {r, s, B}
defined as in Example 4, we have

AT2,Σ = {B(ξΣ), r(ξΣ, ξΣ), s(ξΣ, ξΣ), r(ξB, ξΣ), s(ξB, ξΣ), r(ξΣ, ξB), s(ξΣ, ξB)}.

It holds that (T1,AT2,Σ) |= B(ξB) and (T2,AT2,Σ) 6|= B(ξB).
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Let
{ξA | A ∈ sig(T ) ∪ Σ and non-conjunctive in T } ∪ {ξΣ} ⊆ NI.

be a set of individual names. For A non-conjunctive in T , define sets AT ,Σ(A) of assertions
as follows

• if A is pseudo-primitive in T , then

AT ,Σ(A) = {A′(ξA) | A′ ∈ Σ \ preCΣ
T (A) }

∪ { r(ξA, ξΣ) | r ∈ Σ \ preDomΣ
T (A) }

∪ { r(ξΣ, ξA) | r ∈ Σ \ preRanΣ
T (A) },

• if A ≡ ∃r.B ∈ T , then for s ∈ NR let

ΞA = { (s, ξB′) | B′ ∈ non-conjT (B), s ∈ preRoleΣ
T (r) \ (preDomΣ

T (A) ∪ preRanΣ
T (B′)) }

and set

AT ,Σ(A) = {A′(ξA) | A′ ∈ Σ \ preCΣ
T (A) }

∪ { s(ξΣ, ξA) | s ∈ Σ \ preRanΣ
T (A) }

∪ { s(ξA, ξΣ) | s ∈ Σ \ (preRoleΣ
T (r) ∪ preDomΣ

T (A)) }
∪ { s(ξA, ξ) | (s, ξ) ∈ ΞA }.

Let

AT ,Σ = {A′(ξΣ) | A′ ∈ Σ } ∪ { r(ξΣ, ξΣ) | r ∈ Σ } ∪
⋃

A∈Σ∪sig(T )
A is non-conjunctive in T

AT ,Σ(A)

Figure 6: Construction of AT ,Σ for ELHr-terminologies.

Lemma 44. For every normalised ELHr-terminology T and signature Σ the following
conditions are equivalent for all Σ-ABoxes A, A ∈ sig(T ) ∪ Σ non-conjunctive in T , and
all a ∈ obj(A):

1. (T ,A) 6|= A(a);

2. ξA ∈ obj(AT ,Σ) and (A, a) ≤ran
Σ (AT ,Σ, ξA).

Lemma 44 is proved in the appendix.

Lemma 45. Let T1 and T2 be normalised ELHr-terminologies, Σ a signature and A ∈ Σ.
Let AT2,Σ be the ABox constructed in Figure 6. Then the following conditions are equivalent:

• there exists a Σ-ABox A such that (T1,A) |= A(a) and (T2,A) 6|= A(a);

• (T1,AT2,Σ) |= A(ξB) for some B ∈ non-conjT2(A).
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Proof. Assume there exists a Σ-ABox A and a ∈ obj(A) with (T1,A) |= A(a) and (T2,A) 6|=
A(a). Then, as (T2,A) 6|= A(a), for some B ∈ non-conjT2(A), (T2,A) 6|= B(a). Hence,
by Lemma 44, (A, a) ≤ran

Σ (AT2,Σ, ξB). But then, by Lemma 42, (T1,AT2,Σ) |= A(ξB), as
required.

Conversely, suppose that (T1,AT2,Σ) |= A(ξB) for some B ∈ non-conjT2(A) with ξB ∈
obj(AT2,Σ). Notice that, by Lemma 44, (T2,AT2,Σ) 6|= B(ξB). Hence (T2,AT2,Σ) 6|= A(ξB)
and so AT2,Σ and ξB witness Point 1.

Theorem 46. Let T1 and T2 be normalised ELHr-terminologies and Σ a signature. Then
iWtnrhs

Σ (T1, T2) can be computed in polynomial time.

Proof. By Lemma 45, A ∈ iWtnrhs
Σ (T1, T2) if, and only if, for some B ∈ non-conjT2(A) we have

(T1,AT2,Σ) |= A(ξB). It remains to observe that AT2,Σ can be constructed in polynomial
time and checking whether (T1,AT2,Σ) |= A(ξB) is in polynomial time.

We now briefly describe how the dynamic programming approach for computing the set
iWtnrhs

Σ (T1, T2) for acyclic terminologies is extended from EL to ELHr. The extension of
the NotWitness(E) algorithm from Figure 4 to ELHr is given in Figure 7. As in Figure 4,
the procedure NotWitness(E) recursively associates with every E ∈ sig(T1) ∪ Σ a subset of

Ξ = {All} ∪ {A | A ∈ (sig(T2) ∪ Σ), A is non-conjunctive in T2 }.

The conditions for A ∈ NotWitness(E) become more complex since now one has to take into
account the sets preRanΣ

T (E) and preDomΣ
T (E). To prove the correctness of the NotWitness

algorithm, we observe the following consequence of Lemma 36.

Corollary 47. Let T1 and T2 be normalised acyclic ELHr-terminologies and Σ a signature.
Then iWtnrhs

Σ (T1, T2) = {A ∈ Σ | ∃ Cran-concept C such that C v A ∈ cDiffran
Σ (T1, T2) }.

Proof. First, let A ∈ iWtnrhs
Σ (T1, T2). Then there exists a Σ-ABox A such that (T1,A) |=

A(a) and (T2,A) 6|= A(a). Hence, by Point 1 of Lemma 36 there exists n ≥ 0 such that
Cn,ranA,a v A ∈ cDiffran

Σ (T1, T2). Note that Cn,ranA,a is a Cran-concept. Conversely, assume A ∈ Σ
such that there exists a Cran-concept C with C v A ∈ cDiffran

Σ (T1, T2). Then by Point 2 of
Lemma 36, (AC , A(aC)) ∈ iDiffΣ(T1, T2), i.e. A ∈ iWtnrhs

Σ (T1, T2).

We now formulate the correctness of the NotWitness algorithm in the same way as in
Corollary 26.

Theorem 48. Let T1 and T2 be normalised acyclic ELHr-terminologies and Σ a signature.
Then iWtnrhs

Σ (T1, T2) = {A ∈ sig(T1) ∩ Σ | ∃B ∈ non-conjT2(A) with B 6∈ NotWitness(A) }.

The proof is an extension of the proofs of Lemma 25 and Corollary 26. Namely, one can
show that for all A ∈ sig(T1) ∪ Σ and all B ∈ sig(T2) ∪ Σ such that B is non-conjunctive
in T2 the following conditions are equivalent:

• B ∈ NotWitness(A);

• for all CranΣ -concepts C: T2 6|= C v B implies T1 6|= C v A.

Using Corollary 47, we thus obtain for every A ∈ Σ: A ∈ iWtnrhs
Σ (T1, T2) if, and only if,

there exists a CranΣ -concept C with T2 6|= C v A and T1 |= C v A if, and only if, there exists
B ∈ non-conjT2(A) with B 6∈ NotWitness(A).
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procedure AuxPP(E)
if preCΣ

T1
(E) = ∅ and preRanΣ

T1
(E) = ∅ and preDomΣ

T1
(E) = ∅ then

return {All}
else

Auxconcept := {A ∈ Ξ | preCΣ
T1

(E) ⊆ preCΣ
T2

(A) }
Auxran := {A ∈ Ξ | preRanΣ

T1
(E) ⊆ preRanΣ

T2
(A) }

Auxdom := {A ∈ Ξ | preDomΣ
T1

(E) ⊆ preDomΣ
T2

(A) }
return Auxconcept ∩Auxran ∩Auxdom

end if
end procedure

procedure NotWitness(E)
if E is pseudo-primitive in T1 then

NotWitness(E) := AuxPP(E)

else if E ≡ E1 u · · · u Ek ∈ T1 then
NotWitness(E) :=

⋃k
i=1 NotWitness(Ei)

else if E ≡ ∃r.E′ ∈ T1 then
if preRoleΣ

T1
(r) = ∅ or All ∈ NotWitness(E′) then

NotWitness(E) := AuxPP(E)
else

Auxrole,prim :=

{
A ∈ Ξ

∣∣∣∣ A is pseudo-primitive in T , and

preRoleΣ
T1

(r) ⊆ preDomΣ
T2

(A)

}

Auxrole,exist :=


A ∈ Ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A ≡ ∃t.B ∈ T2,

preRoleΣ
T1

(r) ⊆ preRoleΣ
T2

(t) ∪ preDomΣ
T2

(A), and

for all s ∈ preRoleΣ
T1

(r) ∩ preRoleΣ
T2

(t) with

s /∈ preDomΣ
T2

(A) and B′ ∈ non-conjT2
(B) with

s 6∈ preRanΣ
T2

(B′), there exists E′′ ∈ non-conjT1
(E′)

with B′ ∈ NotWitness(E′′) and s 6∈ preRanΣ
T1

(E′′)


NotWitness(E) := (Auxrole,prim ∪Auxrole,exist) ∩ AuxPP(E)

end if
end if

end procedure

Figure 7: Computation of NotWitness(E) for ELHr.

5.5 Tractability of iWtnlhs
Σ (T1, T2)

We prove the tractability of iWtnlhs
Σ (T1, T2) by the same reduction to simulation checking as

in the case of EL-terminologies (Theorem 30).

Theorem 49. Let T1 and T2 be ELHr-TBoxes and let Σ be a signature. Then the set
iWtnlhs

Σ (T1, T2) can be computed in polynomial time.

Proof. For any concept name A ∈ Σ we have

A ∈ iWtnlhs
Σ (T1, T2) ⇔ (IK1 , a) 6≤Σ (IK2 , a)
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where Ki = (Ti,A) for A = {A(a)} and IKi is the canonical model for Ki, i = 1, 2. Indeed,
({A(a)}, C(a)) ∈ iDiffΣ(T1, T2), for some ELΣ-concept C, if, and only if, by Theorem 2, a ∈
CIK1 and a /∈ CIK2 . But this condition is, by Lemma 29, equivalent to (IK1 , a) 6≤Σ (IK2 , a).
The latter condition can be checked in polynomial time.

Similarly, for any role name r ∈ Σ we have

r ∈ iWtnlhs
Σ (T1, T2) ⇔ (IK1 , a) 6≤Σ (IK2 , a) or (IK1 , b) 6≤Σ (IK2 , b)

where Ki = (Ti,A), A = {r(a, b)}, and IKi is the canonical model for Ki, i = 1, 2. Again,
the latter condition can be checked in polynomial time.

6. ELHr-Concept Difference

In this section we present polynomial-time algorithms deciding Σ-concept inseparability and
computing a succinct representation of the concept difference between ELHr-terminologies.
The algorithms are essentially by reduction to the instance difference case.

We start by introducing the succinct representation of the Σ-concept difference. Let
T1 and T2 be ELHr-terminologies. Since cDiffΣ(T1, T2) ⊆ cDiffran

Σ (T1, T2), it follows from
Theorem 40 for C v D ∈ cDiffΣ(T1, T2) that there exists an inclusion of at least one of the
following forms

(i) C ′ v A,

(ii) ran(r) u C ′ v A,

(iii) A v D′,
(iv) ∃r.> v D′, or

(v) ran(r) v D′

in cDiffΣ(T1, T2), where r ∈ sig(ϕ), A ∈ sig(ϕ) is a concept name, C ′ is a subconcept of C
and D′ is a subconcept of D. Notice in particular for case (ii) that C ′ is an EL-concept.
Hence, just as in the case of the Σ-instance difference, we obtain the following representation
of the Σ-concept difference. Assume T1 and T2 are given. Let

• the set of role inclusion Σ-concept difference witnesses, cWtnR
Σ(T1, T2), consist of all

r v s such that T1 |= r v s and T2 6|= r v s;

• the set of right-hand Σ-concept difference witnesses, cWtnrhs
Σ (T1, T2), consist of all

A ∈ Σ such that there exists an EL-concept C with either C v A ∈ cDiffΣ(T1, T2) or
there additionally exists a role name r ∈ Σ such that ran(r)uC v A ∈ cDiffΣ(T1, T2).

• the set of left-hand Σ-concept difference witnesses, cWtnlhs
Σ (T1, T2), consist of all A ∈ Σ

such that there exists an EL-concept C with A v C ∈ cDiffΣ(T1, T2), and of all
role names r ∈ Σ such that there exists an EL-concept C with either ∃r.> v C ∈
cDiffΣ(T1, T2) or ran(r) v C ∈ cDiffΣ(T1, T2).

The set of all Σ-concept difference witnesses is defined as

cWtnΣ(T1, T2) = (cWtnR
Σ(T1, T2), cWtnrhs

Σ (T1, T2), cWtnlhs
Σ (T1, T2)).
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Observe that cWtnΣ(T1, T2) = (∅, ∅, ∅) if, and only if, cDiffΣ(T1, T2) = ∅. We also obtain
that the sets cWtnR

Σ(T1, T2) and cWtnlhs
Σ (T1, T2) coincide with the corresponding witness sets

for the instance difference, which allows us to re-use some results that we have developed
for detecting instance differences.

Lemma 50. Let T1 and T2 be normalised ELHr-terminologies and Σ a signature. Then the
following holds:

1. cWtnR
Σ(T1, T2) = iWtnR

Σ(T1, T2),

2. cWtnlhs
Σ (T1, T2) = iWtnlhs

Σ (T1, T2)

3. cWtnrhs
Σ (T1, T2) ⊆ iWtnrhs

Σ (T1, T2)

Proof. Point 1 follows directly from the definition. Proving cWtnlhs
Σ (T1, T2) ⊆ iWtnlhs

Σ (T1, T2)
and cWtnrhs

Σ (T1, T2) ⊆ iWtnrhs
Σ (T1, T2) is similar to Lemma 10. Finally, to prove that

iWtnlhs
Σ (T1, T2) ⊆ cWtnlhs

Σ (T1, T2), assume that A ∈ iWtnlhs
Σ (T1, T2). Then there exists an EL-

concept D(a) with ({A(a)}, D(a)) ∈ iDiffΣ(T1, T2). But then T1 |= A v D and T2 6|= A v D
and, therefore, A ∈ cWtnlhs

Σ (T1, T2). The argument for r ∈ iWtnlhs
Σ (T1, T2) is similar.

We have presented polynomial-time algorithms which can compute iWtnlhs
Σ (T1, T2) and

iWtnR
Σ(T1, T2). Thus, it remains to analyse cWtnrhs

Σ (T1, T2).

6.1 Tractability of cWtnrhs
Σ (T1, T2)

We prove tractability of cWtnrhs
Σ (T1, T2) by modifying the ABox AT2,Σ that has been intro-

duced to prove tractability of iWtnrhs
Σ (T1, T2). Recall thatA ∈ iWtnrhs

Σ (T1, T2) iff (T1,AT2,Σ) |=
A(ξB) for some B ∈ non-conjT2(A) (cf. Lemma 45). Not all A satisfying this condition are in

cWtnrhs
Σ (T1, T2) since the ABox AT2,Σ cannot always be “captured” by a set of EL-concepts

(cf. Example 4). Our modification of AT2,Σ is motivated by the observation that if an ABox
A does not contain any individual in the range of two distinct role names, then EL-concepts
rather than Cran-concepts are sufficient to capture the consequences of the ABox. Thus, we
are going to modify AT2,Σ in a minimal way so that the resulting ABox does not contain
any individual name in the range of two distinct role names.

Definition 51. An ABox A is role-splitting if there is no pair of assertions r(a, c), s(b, c) ∈
A, for individual names a, b, c and distinct role names r, s.

The following lemma states the main property of role-splitting ABoxes.

Lemma 52. Let T1 and T2 be normalised ELHr-terminologies, Σ a signature with A ∈ Σ
and let A be a role-splitting Σ-ABox such that (T1,A) |= A(a) and (T2,A) 6|= A(a). Then
A ∈ cWtnrhs

Σ (T1, T2).

Proof. By Lemma 36, there exists n ≥ 0 such that T1 |= Cn,ranA,a v A and T2 6|= Cn,ranA,a v A.
Assume first that there does not exist b ∈ obj(A) and r ∈ Σ such that r(b, a) ∈ A. Then,
by definition and since A is role-splitting, ran(r) only occurs in Cn,ranA,a in the direct scope

of the existential restriction ∃r. Hence Cn,ranA,a is equivalent to an ELΣ-concept, and we
are done. Now assume there exists r(b, a) ∈ A. Then, again since A is role-splitting,
Cn,ranA,a is equivalent to a concept ran(r) u C, where C is an ELΣ-concept. In this case
T1 |= ran(r) u C v A and T2 6|= ran(r) u C v A, as required.
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For a Σ-ABox A such that sig(A) ∩ NR 6= ∅, we define its role-splitting unfolding A��
with individuals { ar | a ∈ obj(A), r ∈ sig(A) ∩ NR } by setting

A�� = {A(ar) | A(a) ∈ A, r ∈ sig(A) ∩ NR } ∪ { r(as, br) | r(a, b) ∈ A, s ∈ sig(A) ∩ NR }.

Example 53. Consider T1 = {ran(r) v A1, ran(s) v A2, B ≡ A1 u A2}, T2 = ∅, Σ =
{r, s, B} and A = {r(a, c), s(b, c)} from Example 4. We have (T1,A) |= B(c) but (T2,A) 6|=
B(c). Notice that the role-splitting unfolding A�� = {r(ar, cr), r(as, cr), s(br, cs), s(bs, cs)}
does not contain any individual in the range of more than one role

A

a

c

b

r s
A��

ar br

cr

as bs

cs

r

r s

s

and (T1,A��) 6|= B(cr), (T1,A��) 6|= B(cs).

We apply the role-splitting unfolding to the ABox AT ,Σ from Figure 6. The following
result is the concept version of Lemma 44 and is proved in the appendix by a reduction to
Lemma 44. The ABox AC corresponding to an EL-concept C has been introduced before
Lemma 36. For simplicity, we consider signatures Σ containing at least one role name.

Lemma 54. For every normalised ELHr-terminology T , signature Σ such that Σ∩NR 6= ∅,
concept name A that is non-conjunctive in T , role name r ∈ Σ, and ELΣ-concepts C the
following conditions are equivalent for D = C and D = ran(r) u C:

• T 6|= D v A;

• for some r ∈ Σ ∩ NR, (ξA)r ∈ obj(A��T ,Σ) and (AD, aD) ≤ran
Σ (A��T ,Σ, (ξA)r).

The following lemma can now be proved similarly to Lemma 45, using Lemma 54 instead
of Lemma 44.

Lemma 55. Let T1 and T2 be normalised ELHr-terminologies, Σ a signature with A ∈ Σ
such that Σ ∩ NR 6= ∅. Then the following conditions are equivalent:

• A ∈ cWtnrhs
Σ (T1, T2);

• there exists r ∈ Σ such that (T1,A��T2,Σ) |= A((ξB)r) for some B ∈ non-conjT2(A).

Proof. Assume that A ∈ cWtnrhs
Σ (T1, T2). Then, there either exists an ELΣ-concept C

with T1 |= C v A and T2 6|= C v A, or there additionally exists r ∈ Σ such that T1 |=
ran(r) u C v A and T2 6|= ran(r) u C v A. Hence, for D = C and D = ran(r) u C,
respectively, T2 6|= D v B, for some B ∈ non-conjT2(A), and by Lemma 54, there exists
r ∈ Σ with (ξA)r ∈ obj(A��T ,Σ) and (AD, aD) ≤ran

Σ (A��T2,Σ, (ξB)r). But then, by Lemma 42

(T1,A��T2,Σ) |= A((ξB)r) as (T1,AD) |= A(aD) holds by Lemma 36.

For the converse direction, it is easy to see that (ξB)r ∈ obj(A��T2,Σ), ξB ∈ obj(AT2,Σ), and

(A��T2,Σ, (ξB)r) ≤ran
Σ (AT2,Σ, ξB), which implies that (T2,A��T2,Σ) 6|= A((ξB)r) by Lemma 44.

Consequently, we obtain A ∈ cWtnrhs
Σ (T1, T2) by applying Lemma 52 and by using the fact

that the ABox A��T2,Σ is role-splitting.
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Finally, we obtain the tractability result.

Theorem 56. Let T1 and T2 be ELHr-terminologies and Σ a signature. Then the set
cWtnrhs

Σ (T1, T2) can be computed in polynomial time.

Proof. If Σ ∩ NR = ∅, then cWtnrhs
Σ (T1, T2) = iWtnrhs

Σ (T1, T2), which can be computed in
polynomial time by Theorem 46.

Otherwise Σ ∩ NR 6= ∅ and the result follows from Lemma 55 and the fact that A��T2,Σ
can be constructed in polynomial time in the size of T2.

7. ELHr-Query Difference

To investigate the query difference between ELHr-terminologies, we introduce the language
ELran,u,u that extends ELran with the universal role and intersections of roles. We show
that concept differences in ELran,u,u correspond to query differences in ELHr. For ELran,u,u
we can prove an analogue of Theorem 40, which states that any inclusion in the concept
difference “contains” an inclusion in which either the left-hand side or the right-hand side
is atomic. Using the correspondence between concept difference in ELran,u,u and query
difference in ELHr we then obtain a meaningful definition of a succinct representation of
the query difference qDiffΣ(T1, T2). Finally, we provide polynomial-time algorithms deciding
Σ-query inseparability and computing the succinct representation of the query difference.

7.1 ELran,u,u-Concept Difference

We start this section by defining the language ELran,u,u.

Definition 57 (ELran,u,u). Let u (the universal role) be a fresh logical symbol. Cu,u-
concepts are constructed using the following syntax rule

C := A | C uD | ∃R.C | ∃u.C,

where A ∈ NC, C,D range over Cu,u-concepts and R = r1 u · · · u rn with r1, . . . , rn ∈ NR for
some n ≥ 1. The set of ELran,u,u-inclusions consists of concept inclusions C v D and role
inclusions r v s, where C is a Cran-concept, D a Cu,u-concept, and r, s ∈ NR.

The semantics of the additional constructors is straightforward by setting, for any in-
terpretation I,

• (r1 u · · · u rn)I = rI1 ∩ · · · ∩ rIn;

• uI = ∆I ×∆I .

Note that we regard the universal role u as a logical symbol; i.e., u 6∈ NR and sig(∃u.C) =
sig(C) for any concept C. Assuming that u is a logical symbol reflects the fact that its first-
order translation uses no non-logical symbols. For example, the signature of the first-order
translation ∃x.A(x) of ∃u.A does not contain any non-logical symbols with the exception
of A itself.

It will be convenient to decompose Cu,u-concepts. The set of Cu-concepts is defined as
the set of all Cu,u-concepts without the universal role. Every Cu,u-concept C is equivalent
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to a concept of the form D0 u ∃u.D1 u · · · u ∃u.Dk, where D0, . . . , Dk are Cu-concepts. To
see this, observe that any concept C with a subconcept ∃u.D is equivalent to ∃u.D u C ′,
where C ′ is obtained from C by replacing all occurrences of ∃u.D by >. For example,
A u ∃r.(B u ∃u.E) is equivalent to the concept ∃u.E uA u ∃r.(B u >).

In the following we denote by Cu,uΣ (CuΣ) the set of all Cu,u (Cu) concepts whose signature
is contained in Σ.

Clearly, every ELran-inclusion is an ELran,u,u-inclusion. In addition, role conjunctions
and the universal role in ELran,u,u-inclusions can be used to capture differences between
ELHr-TBoxes that cannot be captured by ELHr-inclusions.

Example 58. We first reconsider Example 8. Recall that

T1 = ∅, T2 = {A v ∃r.B}, Σ = {A,B}.

Then T2 |= A v ∃u.B but T1 6|= A v ∃u.B and, as the universal role is regarded as a
logical symbol, sig(A v ∃u.B) ⊆ Σ. Thus, by employing the universal role ELran,u,u we can
simulate the query difference ({A(a)}, ∃x.B(x)) using the subsumption A v ∃u.B.

Second, we reconsider Example 9. Recall that

T1 = {A v ∃s.>, s v r1, s v r2}, T2 = {A v ∃r1.> u ∃r2.>}, Σ = {A, r1, r2}.

Then T1 |= A v ∃(r1 u r2).> and T2 6|= A v ∃(r1 u r2).>. Thus, we can simulate the query
difference ({A(a)},∃x.(r1(a, x) ∧ r2(a, x))) using the subsumption A v ∃(r1 u r2).>.

We introduce the appropriate notion of Σ-concept difference for ELran,u,u.

Definition 59 (ELran,u,uΣ -difference). The ELran,u,uΣ -difference between ELHr-TBoxes T1

and T2 is the set cDiffran,u,u
Σ (T1, T2) of all ELran,u,uΣ -inclusions α such that T1 |= α and

T2 6|= α.

We now extend Lemma 39 for concepts that use the universal role or conjunctions of
roles.

Lemma 60. Let T be an ELHr-terminology and ∃R.D a Cu-concept with R = t1 u · · · u tq
a conjunction of role names. Assume

T |=
l

1≤i≤l
ran(si) u

l

1≤j≤n
Aj u

l

1≤k≤m
∃rk.Ck v ∃R.D,

where Ck, 1 ≤ k ≤ m, are Cran-concepts and l,m, n ≥ 0. Then at least one of the following
conditions holds:

(e1u) there exists rk, 1 ≤ k ≤ m, such that rk vT t1,. . . , rk vT tq, and T |= Ckuran(rk) v
D;

(e2u) there exists Aj, 1 ≤ j ≤ n, such that T |= Aj v ∃R.D;

(e3u) there exists rk, 1 ≤ k ≤ m, such that T |= ∃rk.> v ∃R.D;

(e4u) there exists si, 1 ≤ i ≤ l, such that T |= ran(si) v ∃R.D.
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If u is the universal role and T |= C v ∃u.D, where C is a Cran-concept and D is a
Cu-concept, then at least one of the following holds:

(e1u) there exists a subconcept ∃r.C ′ of C such that T |= C ′ u ran(r)v D;

(e2u) there exists a concept name A in C such that T |= A v ∃u.D;

(e3u) there exists a role name r in C such that T |= ∃r.> v ∃u.D;

(e4u) there exists a role name r in C such that T |= ran(r) v ∃u.D;

(e5u) T |= C v D;

(e6u) there exists a subconcept (ran(r) u C ′) of C such that T |= ∃r.C ′ v D.

Theorem 61 (Primitive witnesses for ELran,u,u). Let T1 and T2 be ELHr-terminologies
and Σ a signature. If ϕ ∈ cDiffran,u,u

Σ (T1, T2), then either there exist {r, s} ⊆ sig(ϕ) with
r v s ∈ cDiffran,u,u

Σ (T1, T2) or ϕ is of the form C v D, and one of

1. C ′ v A

2. A v D′, ∃r.> v D′ or ran(r) v D′

is a member of cDiffran,u,u
Σ (T1, T2), where A ∈ sig(ϕ) is a concept name, r ∈ sig(ϕ) is a role

name, C ′ is a Cran-concept, D′ is a Cu,u-concept, and sig(C ′), sig(D′) ⊆ sig(ϕ).

Proof. Let C v D ∈ cDiffran,u,u
Σ (T1, T2), where C is a Cran-concept and D a Cu,u-concept.

We prove the result by induction on the structure of D. The proof is very similar to the
proof of Theorem 40 and so we consider the case D = ∃u.D1 only. Let C =

d
1≤i≤l ran(si)ud

1≤j≤nAj u
d

1≤k≤m ∃rk.Ck. Then, by Lemma 60, one of (e1u)–(e6u) holds.
Cases (e2u)–(e4u) directly entail the existence of an inclusion from Point 2 of the

theorem. In case (e1u) there exists a subconcept ∃r.C ′ of C such that T1 |= C ′uran(r) v D1.
We have that T2 6|= C ′ u ran(r) v D1 as otherwise we have T2 |= ∃r.C ′ v ∃r.D1, i.e.
T2 |= C v D would hold. Thus, C ′ u ran(r) v D1 ∈ cDiffran,u,u

Σ (T1, T2). We can apply the
induction hypothesis to D1 and infer that an inclusion from Point 1 or Point 2 exists.

Similarly, for case (e5u), we have C v D1 ∈ cDiffran,u,u
Σ (T1, T2) as otherwise T2 |= C v

D1, i.e. T2 |= C v D due to D = ∃u.D1. By applying the induction hypothesis to D1, we
obtain that an inclusion from Point 1 or Point 2 exists.

Finally, in case (e6u) there exists a subconcept ran(r)uC ′ of C such that T1 |= ∃r.C ′ v
D1. Observe first that for every model I of T2 and for every d ∈ CI , there exists d′ ∈
(ran(r) u C ′)I , which implies that there exists d′′ ∈ (∃r.C ′)I . If we now assume that
T2 |= ∃r.C ′ v D1, it would follow that for every model I of T2 and for every d ∈ CI ,
there exists d′′ ∈ DI1 , i.e. T2 |= C v ∃u.D1 would hold. We can infer that ∃r.C ′ v D1 ∈
cDiffran,u,u

Σ (T1, T2) and by applying the induction hypothesis to D1, we conclude that an
inclusion from Point 1 or Point 2 exists.

7.2 Query Difference Witnesses

We start by connecting concept differences in ELran,u,u with query differences between
ELHr-terminologies. The direction from query differences in ELHr to concept differences
in ELran,u,u is straightforward: observe that every assertion C(a) with C a Cu,u-concept can
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be regarded as a Boolean conjunctive query qC,a. For example, the assertion (∃u.Au∃r.B)(a)
is equivalent to the conjunctive query ∃x∃y.(A(x)∧r(a, y)∧B(y)) (details of the translation
are provided in the appendix). We obtain (where AC is the ABox defined before Lemma 36):

Lemma 62. For any two ELHr-TBoxes T1 and T2 and signature Σ, we have C v D ∈
cDiffran,u,u

Σ (T1, T2) if, and only if, (AC , qD,aC ) ∈ qDiffΣ(T1, T2).

In what follows we will not distinguish between an assertion C(a) with C a Cu,u-concept
and the conjunctive query qC,a. It follows from Lemma 62 that if qDiffΣ(T1, T2) = ∅, then
cDiffran,u,u

Σ (T1, T2) = ∅.
We come to the (considerably more involved) direction from query differences to concept

differences in ELran,u,u. The following lemma provides a rather abstract description of how
inclusions in qDiffΣ(T1, T2) are reflected by members of cDiffran,u,u

Σ (T1, T2) by stating that
they are given in the same signature.

Lemma 63. For any two ELHr-TBoxes T1 and T2 and signature Σ, if ϕ ∈ qDiffΣ(T1, T2),
then there exists ϕ′ ∈ cDiffran,u,u

Σ (T1, T2) with sig(ϕ′) ⊆ sig(ϕ).

The interested reader can extract a more detailed description from the proof given in the
appendix. The proof of Lemma 63 given in the appendix is model-theoretic and employs
the close relationship between conjunctive query entailment and homomorphisms (Chandra
& Merlin, 1977). The intuition behind the result, however, is rather straightforward: if
(T ,A) |= q[~a] for a conjunctive query q(~x) = ∃~yψ(~x, ~y) and ELHr-TBox T , then for every
model I of (T ,A) there is a mapping π from the variables ~x and ~y into ∆I such that ~a is a
π-match of q(~x) and I. (T ,A) has models that are essentially forest-shaped: they consist
of tree-shaped models attached to the ABox individuals in A (cf. Lutz et al., 2009). In
such forest-shaped models, the individuals from ~y that are not mapped to individuals in
A are mapped to the trees attached to the ABox individuals. Such a mapping, however,
exists already for a conjunctive query q′ such that q is a homomorphic image of q′ and q′ is
essentially forest-shaped: the individuals not mapped to ABox individuals form trees that
are attached to the core of q′ that is mapped to the ABox individuals. In other words, we
obtain q′ by partitioning q into a core and into subsets that correspond to Cu,u-concepts!
Now, if there exists a Σ-ABox A and a conjunctive Σ-query q(~a) such that (T2,A) |= q[~a]
and (T1,A) 6|= q[~a], then we find such a conjunctive Σ-query q′ with the same behaviour as
q that is essentially forest-shaped. From (A, q′) one can then obtain the required ELran,u,u-
inclusion C v D, where D captures some subtree of the query q′ (a Cu,u-concept) and C
(a Cran-concept) the ABox A. The intuition for the last step is exactly the same as for
Lemma 36.

We note that the result holds for general TBoxes and not only terminologies. From
Lemma 63 and Theorem 61, we directly obtain the following description of primitive wit-
nesses for query differences.

Theorem 64 (Primitive witness for ELHr-query differences). Let T1 and T2 be ELHr-
terminologies and Σ a signature. If ϕ ∈ qDiffΣ(T1, T2), then at least one of the following
conditions holds (for some individual names a, b):

1. ({r(a, b)}, s(a, b)) ∈ qDiffΣ(T1, T2), for some r, s ∈ sig(ϕ);
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2. (A, A(b)) ∈ qDiffΣ(T1, T2), for some concept name A ∈ sig(ϕ) and ABox A with
sig(A) ⊆ sig(ϕ);

3. (A, D(b)) ∈ qDiffΣ(T1, T2), for some singleton ABox A and Cu,u-concept D such that
sig(A), sig(D) ⊆ sig(ϕ).

Observe that Theorem 64 coincides with Theorem 41 with the exception that in Point 3
the concept D can now be a Cu,u-concept. We can, therefore, define the following finite
representation of the Σ-query difference. Assume T1 and T2 are given. Define the set

• qWtnR
Σ(T1, T2) of role Σ-query difference witnesses as the set of role Σ-instance differ-

ence witnesses; i.e., qWtnR
Σ(T1, T2) = iWtnR

Σ(T1, T2);

• qWtnrhs
Σ (T1, T2) of right-hand Σ-query difference witnesses as the set of right-hand

Σ-instance difference witnesses; i.e., qWtnrhs
Σ (T1, T2) = iWtnrhs

Σ (T1, T2);

• qWtnlhs
Σ (T1, T2) of left-hand Σ-instance difference witnesses as the set of all A ∈ Σ such

that there exists a Cu,u-concept C with ({A(a)}, C(a)) ∈ qDiff lhs
Σ (T1, T2) and all r ∈ Σ

such that there exists a Cu,u-concept C such that ({r(a, b)}, C(c)) ∈ qDiffΣ(T1, T2) for
c = a or c = b.

The set of all Σ-query difference witnesses is defined as

qWtnΣ(T1, T2) = (qWtnR
Σ(T1, T2), qWtnrhs

Σ (T1, T2), qWtnlhs
Σ (T1, T2)).

By Theorem 64, qWtnΣ(T1, T2) = (∅, ∅, ∅) if, and only if, qDiffΣ(T1, T2) = ∅. Algorithms
computing qWtnR

Σ(T1, T2) and qWtnrhs
Σ (T1, T2) have been presented in the section on instance

difference. It thus remains to consider qWtnlhs
Σ (T1, T2).

7.3 Tractability of qWtnlhs
Σ (T1, T2)

To prove tractability of qWtnlhs
Σ (T1, T2) we first capture the expressive power of Cu,u-concepts

using a stronger form of simulation between interpretations. Let I1 and I2 be interpre-
tations. A Σ-simulation S between I1 and I2 is called a global intersection preserving
Σ-simulation if, in addition,

• for every d ∈ ∆I1 there exists a d′ ∈ ∆I2 with (d, d′) ∈ S;

• if (d, e) ∈ S, d′ ∈ ∆I1 , and R = {r ∈ Σ | (d, d′) ∈ rI1} 6= ∅, then there exists e′ with
(e, e′) ∈ S and (d′, e′) ∈ rI2 for all r ∈ R.

We write (I1, d) ≤∩Σ (I2, e) if there exists a global intersection preserving Σ-simulation S
between I1 and I2 such that (d, e) ∈ S.

Lemma 65. Let I1 and I2 be finite interpretations, Σ a signature, d ∈ ∆I1, and e ∈ ∆I2.
Then

(I1, d) ≤∩Σ (I2, e) ⇔ for all C ∈ Cu,uΣ : d ∈ CI1 ⇒ e ∈ CI2 .

It can be checked in polynomial time whether (I1, d) ≤∩Σ (I2, e).
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The proof is a straightforward extension of the proof of Lemma 29 and the polynomial-
time algorithm deciding the existence of Σ-simulations.

We observe that Theorem 2 about the properties of the canonical model IK of a KB K
can be extended to Cu,u-concepts (in the appendix, the proof is given for Cu,u-concepts as
well). Namely, we have for all Cu,u-concepts C0:

• K |= C0(a) if, and only if, aIK ∈ CIK0 .

• T |= C uD v C0 if, and only if, xC,D ∈ CIK0 .

It follows that for any concept name A ∈ Σ, we have

A ∈ qWtnlhs
Σ (T1, T2) ⇔ (IK1 , a) 6≤∩Σ (IK2 , a),

where Ki = (Ti,A) and A = {A(a)}, for i = 1, 2. We also have for every role name r ∈ Σ
that

r ∈ qWtnlhs
Σ (T1, T2) ⇔ (IK1 , a) 6≤∩Σ (IK2 , a) or (IK1 , b) 6≤∩Σ (IK2 , b)

where Ki = (Ti,A) and A = {r(a, b)}, for i = 1, 2. Thus, we obtain the following tractability
result:

Theorem 66. Let T1 and T2 be ELHr-terminologies and Σ a signature. Then the set
qWtnlhs

Σ (T1, T2) can be computed in polynomial time.

8. Implementation and Experiments

In this section, we describe an experimental evaluation of the theoretical work devel-
oped above. Our experiments employ the CEX2 tool.4 In CEX2, we have implemented
polynomial-time algorithms which, given acyclic ELHr-terminologies T1 and T2 and a sig-
nature Σ as input, compute witnesses for the concept difference cDiffΣ(T1, T2) and the
instance difference iDiffΣ(T1, T2).5

CEX2 is written in OCaml and the reasoner CB (Kazakov, 2009) is internally used as
classification engine. In the implementation of CEX2, we have employed the algorithms
developed in this paper. In more detail, for the instance difference case for acyclic ELHr-
terminologies T1 and T2,

• to compute iWtnR
Σ(T1, T2), CEX2 performs a straightforward comparison of the role

inclusion chains entailed by the terminologies T1 and T2;

• to compute iWtnrhs
Σ (T1, T2), CEX2 uses the NotWitness algorithm in Figure 7 and then

employs Theorem 48;

• to compute iWtnlhs
Σ (T1, T2), CEX2 checks for the existence of a Σ-simulation between

the canonical models (Theorem 49).

4. Available under an open-source license at http://www.csc.liv.ac.uk/~michel/software/cex2/

5. An extended version of CEX2 computing witnesses for the query difference qDiffΣ(T1, T2) as well is
presented by (Konev, Ludwig, & Wolter, 2012). In addition, Konev et al. describe experiments comparing
query difference witnesses with concept and instance difference witnesses that are not presented in this
paper.
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The output for iWtnlhs
Σ (T1, T2) is partitioned into three sets:

• the set of left-hand atomic Σ-instance difference witnesses, iWtnlhs,A
Σ (T1, T2), which is

defined as the set of all concept names A ∈ Σ such that there exists an EL-concept C
such that ({A(a)}, C(a)}) ∈ iDiffΣ(T1, T2) (equivalently A v C ∈ cDiffΣ(T1, T2));

• the set of left-hand domain Σ-instance difference witnesses, iWtnlhs,dom
Σ (T1, T2), which

is defined as the set of all role names r ∈ Σ such that there exists an EL-concept C
with ({r(a, b)}, C(a)) ∈ iDiffΣ(T1, T2) (equivalently, ∃r.> v C ∈ cDiffΣ(T1, T2)); and

• the set of left-hand range Σ-instance difference witnesses, iWtnlhs,ran
Σ (T1, T2), which is

defined as the set of all role names r ∈ Σ such that there exists an EL-concept C with
({r(a, b)}, C(b)) ∈ iDiffΣ(T1, T2) (equivalently, ran(r) v C ∈ cDiffΣ(T1, T2)).

Obviously, it holds that:

iWtnlhs
Σ (T1, T2) = iWtnlhs,A

Σ (T1, T2) ∪ iWtnlhs,dom
Σ (T1, T2) ∪ iWtnlhs,ran

Σ (T1, T2).

For the concept difference case, recall that

cWtnR
Σ(T1, T2) = iWtnR

Σ(T1, T2), cWtnlhs
Σ (T1, T2) = iWtnlhs

Σ (T1, T2),

and so we use the same algorithms as in the instance case. We also set

cWtnlhs,X
Σ (T1, T2) = iWtnlhs,X(T1, T2)

for X ∈ {A, dom, ran}. To compute iWtnrhs
Σ (T1, T2), CEX2 exploits that cWtnrhs

Σ (T1, T2) ⊆
iWtnrhs

Σ (T1, T2) (Lemma 50) and first computes iWtnrhs
Σ (T1, T2) and then checks using a

straightforward variant of the NotWitness algorithm for concept differences whether A ∈
cWtnrhs

Σ (T1, T2).
In the following three subsections we describe the experiments that we have conducted.

The experimental settings were as follows. All programs were run on PCs equipped with
an Intel Core 2 Duo E6400 CPU and 3 GiB of main memory. Version 2.0.1 of CEX2 was
used.

8.1 Comparing Different Versions of Snomed CT

We applied CEX2 to compare a January 2009 (SM09a) and a July 2009 (SM09b) ver-
sion of Snomed CT. SM09a and SM09b contain 310013 and 307693 concept names, re-
spectively. Both versions use the same 62 role names, and they contain role inclusions
but no domain or range restrictions are present. Consequently, one can infer from Corol-
lary 47 that iWtnΣ(SM09b,SM09a) = cWtnΣ(SM09b,SM09a). In what follows we consider
cWtnΣ(SM09b,SM09a) only.

For our experiments we used signatures ranging over so called Snomed CT subsets,
which are employed in the UK for the deployment of Snomed CT in specific areas. We com-
pared SM09a with SM09b on 159 such signatures Σ by computing cWtnΣ(SM09b,SM09a)
for each of these sets Σ. The considered signatures always contain all of the 62 Snomed
CT role names. The comparisons which resulted in a non-empty difference are reproduced
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in Table 2. In none of the cases, differences regarding role inclusions have been detected. In
Table 2, the second column gives the number of concept names in the respective subset Σ,
and the third and fifth column the number of concept witness differences. Observe that the
number of differences does not correlate with the size of the considered signatures Σ, i.e.
there exist signatures that are somewhat comparable in size, but induce a greatly varying
number of difference witnesses (see e.g. the subsets “Diagnosis” and “Manumat”).

In order to determine how many difference witnesses computed by CEX2 can be obtained
from a straightforward comparison of the class hierarchies already, we have also computed
the sets

clsWtnlhs
Σ (SM09b,SM09a) = {A ∈ Σ | ∃B ∈ Σ: A v B ∈ cDiffΣ(SM09b, SM09a) }

and

clsWtnrhs
Σ (SM09b,SM09a) = {B ∈ Σ | ∃A ∈ Σ: A v B ∈ cDiffΣ(SM09b, SM09a) }

for each of the considered comparison signatures Σ. The results that we have obtained are
also depicted in Table 2. One can see that often a great number of differences cannot be
detected by considering the classification difference only.

In the last three columns of Table 2, we give the CPU times required for computing all
concept witnesses:

• first, the times are given when CEX2 is directly applied to the full terminologies
SM09a and SM09b;

• second, the times are given when one first extracts Σ-modules using the module extrac-
tion tool MEX (Konev, Lutz, Walther, & Wolter, 2008) from SM09a and, respectively,
SM09b and then applies CEX2 to the extracted Σ-modules. Observe that a Σ-module
extracted by MEX is Σ-query (and, therefore, Σ-concept and Σ-instance) inseparable
from the whole terminology. Thus, the computed concept witnesses are the same.

• finally, the times are given if, in addition to computing concept witnesses from the full
terminologies SM09a and SM09b, CEX2 also computes examples of concept inclusions
in the logical difference that explain the witnesses. We discuss this feature of CEX2
below.

One can observe that extracting MEX modules leads to a significant improvement of the
performance of CEX2. Of course, if the signature is very large (e.g., for “Diagnosis” and
“Finding”), the resulting modules are almost as large as Snomed CT itself and the effect
is less significant. Secondly, one can observe that the additional computation of exam-
ple concept inclusions in the logical difference roughly doubles the times needed for the
comparison.

Finally, to evaluate the practical feasibility of using the ABox approach to compute
the sets iWtnrhs

Σ (SM09b,SM09a), we have implemented the computation of ABoxes AT ,Σ
together with an ABox reasoning algorithm for checking the second condition of Lemma 45.
We have then tested our implementation on the subsets Σ of Snomed CT used for eval-
uating the performance of CEX2. To limit the size of the ABoxes AT ,Σ and to speed up
computations, we first computed modules using MEX. The results that we obtained are
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shown in Table 3. The size of the Σ-modules computed by MEX, i.e. T1 of SM09b and T2

of SM09a, is shown in columns two and three, respectively. As expected from the defini-
tion of AT ,Σ, one can observe that the number of concept and role membership assertions
present in the ABoxes AT2,Σ can grow very large, even for modules and signatures with only
a few thousand concept names.

For 8 of the 41 considered subsets our implementation ran out of available physical
memory (indicated by a time value ‘-’) when all possible concept membership consequences
of the ABox were to be computed. Overall, we observed the longest execution time of
over 5 hours for the set “Specmatyp”. In conclusion, one can see that a straightforward
implementation of the ABox approach is practically useful “only” for terminologies and
signatures of a few thousand concept names.

8.2 Comparing Different Versions of the NCI Thesaurus

We have also used the CEX2 tool to compare distinct versions of the NCI Thesaurus. Most
distributed releases of the NCI Thesaurus contain language constructs which are not part of
ELHr (such as disjunction and value restriction). To obtain ELHr-terminologies, we have
removed all inclusions that contain a non-ELHr constructor from the original terminologies.
Typically, this affected 5%-8% of the inclusions present in each of the distributed NCI
versions. Most of the ELHr-versions generated in this way contain role inclusions as well
as domain and range restrictions.

Similarly to the work of Gonçalves et al. (2011), we have compared 71 consecutive
ELHr-versions of the NCI Thesaurus ranging between the versions 03.10J and 10.02d, with
the exception of 05.03F and 05.04d, which could not be parsed correctly. Version 10.03h
and some later versions of the NCI Thesaurus are not acyclic, and hence, they could not
be handled by the CEX2 tool.

For any two consecutive versions NCIn and NCIn+1 within the considered range, we
computed the sets cWtnΣ(NCIn+1,NCIn) and iWtnΣ(NCIn+1,NCIn) on signatures Σ =
sig(NCIn) ∩ sig(NCIn+1). An overview of the set sizes for cWtnrhs

Σ (NCIn+1,NCIn) and

cWtnlhs,A
Σ (NCIn+1,NCIn) that we obtained can be found in Figure 8. The comparisons are

sorted chronologically along the x-axis according to the release dates of the NCI ontology
versions, whereas the corresponding number of left-hand atomic difference witnesses or
right-hand difference witnesses can be found on the y-axis. One can see the number of right-
hand difference witnesses remained fairly low throughout the different versions. However,
occasional spikes occurred in the number of left-hand atomic difference witnesses with a
maximum value of 33487 for comparing the versions 05.01d and 05.03d. Moreover, in none
of the comparisons except for those shown in Figure 9 left-hand role domain or left-hand role
range difference witnesses were identified. Overall, no witnesses regarding role inclusions
were detected and we found that for every two considered consecutive versions NCIn and
NCIn+1 on Σ = sig(NCIn) ∩ sig(NCIn+1),

cWtnΣ(NCIn+1,NCIn) = iWtnΣ(NCIn+1,NCIn).

A running time of 140 seconds and 228 MiB of memory were required on average for
computing witnesses and example inclusions for iDiffΣ(NCIn+1,NCIn). Computing wit-
nesses and example inclusions for cDiffΣ(NCIn+1,NCIn) on average took 157 seconds and
used 228 MiB of memory.
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Time (s) Time (s) Time (s)
cWtnΣ - from cWtnΣ - with cWtnΣ

Subset Name Σ |Σ ∩ NC| |cWtnrhs
Σ | |clsWtnrhs

Σ | |cWtnlhs,A
Σ | |clsWtnlhs

Σ | full ontologies module extraction with examples

Admin 7684 7 5 29 7 358.51 9.89 654.12
Adminproc 3198 0 0 6 0 344.60 8.24 642.23
Cdacarest 355 1 1 1 1 337.91 6.76 556.41
Crcareneur 1640 28 8 197 13 399.57 15.58 704.21
Crcareresp 1082 72 18 262 64 377.36 12.24 680.51
Devicetyp 6539 26 26 22 22 369.20 8.01 589.81
Diagimg 4162 27 13 13 8 444.66 38.56 775.37
Diagnosis 75879 7410 881 12409 5406 844.26 486.53 2699.89
Drgadrcon 8009 131 131 47 47 1419.52 10.17 1708.49
Endosfind 178 0 0 13 0 363.23 7.86 662.67
Endosproc 73 1 1 5 3 352.84 7.30 573.66
Epcream.6a 403 0 0 3 0 337.41 7.39 631.51
Epenema.7a 25 0 0 3 0 337.42 6.86 556.31
Epenema.7b 6 0 0 2 0 337.50 6.76 629.57
Epeye.4 223 0 0 6 0 337.53 7.20 1236.84
Epiuds16 1 0 0 1 0 337.26 6.69 1233.89
Famhist 416 8 5 31 4 339.36 8.84 633.94
Finding 168383 11824 2497 31228 20063 1559.23 1366.08 5017.02
Foodadrcon 2378 11 11 15 14 481.20 7.74 1516.47
Ffoodaller 468 1 1 9 9 379.42 7.03 677.97
Invest 14839 1396 534 5549 5441 511.12 76.90 769.93
Labinvest 3904 61 45 2520 133 382.32 12.47 680.94
Labinvmeth 3794 103 81 3380 3374 367.20 10.70 1290.83
Labisolate 16313 150 150 661 661 671.36 14.14 1005.95
Labmorph 4854 32 32 45 45 858.11 8.28 1113.70
Labspec 1221 3 3 18 3 360.80 13.38 1272.51
Labtopog 27277 866 220 169 169 1947.19 38.05 4463.05
Lifestyle 13090 77 41 826 148 445.75 32.49 765.10
Manumat 90503 2 0 22 0 349.73 15.36 1224.92
Nofoodall 686 1 1 13 13 421.23 7.11 721.74
Nonhuman 1839 24 11 469 131 678.53 12.50 1907.70
Pbcl 5866 633 116 1342 402 395.27 12.18 1358.88
Pbhllng 1113 1 0 27 0 454.39 7.99 761.00
Pf 79 0 0 4 0 337.68 7.12 634.26
Provadv 1052 2 1 158 108 343.78 8.19 569.56
Sf 613 0 0 3 0 338.13 7.44 629.50
Socpercir 6786 8 8 2 2 366.14 8.99 1300.47
Specmatyp 8830 10 8 46 10 380.19 16.10 685.35
Treatment 43660 2419 1255 9251 8740 793.12 330.45 1315.23
Vmp 13667 2 0 22 0 342.70 12.95 1247.18
Vtm 2117 0 0 13 0 339.14 9.45 633.50

Table 2: Subset Comparisons for T1 = SM09b and T2 = SM09a Resulting in a Non-Empty
Difference

680



The Logical Difference for the Lightweight Description Logic EL

|{A(a) | A(a) ∈ AT2,Σ }| |{ r(a, b) | r(a, b) ∈ AT2,Σ }|
Subset Name Σ |Σ ∩ NC| |sig(T1) ∩ NC| |sig(T2) ∩ NC| (in thousands) (in thousands) Time (s)

Admin 7684 6746 6750 66942 1081 9291.75

Adminproc 3198 3071 3120 12352 480 1642.41

Cdacarest 355 322 323 148 52 3.86

Crcareneur 1640 6484 6375 8568 651 3110.07

Crcareresp 1082 5273 5206 4361 503 3689.22

Devicetyp 6539 3617 3619 43743 830 2381.00

Diagimg 4162 11007 11074 40817 1220 12503.63

Diagnosis 75879 156588 156441 8636801 14134 -

Drgadrcon 8009 8323 8361 70643 1095 2097.23

Endosfind 178 1487 1534 210 148 143.87

Endosproc 73 809 826 48 82 17.88

Epcream.6a 403 1425 1446 641 198 315.58

Epenema.7a 25 85 86 4 19 0.32

Epenema.7b 6 13 15 0 10 0.06

Epeye.4 223 851 859 214 120 60.80

Epiuds16 1 5 7 0 8 0.05

Famhist 416 3126 3136 1003 301 137.34

Finding 168383 323809 324400 41381927 30521 -

Foodadrcon 2378 2716 2723 6745 353 277.80

Foodaller 468 636 644 326 87 11.57

Invest 14839 42071 42559 504618 4224 -

Labinvest 3904 9308 9302 36048 1147 8632.09

Labinvmeth 3794 10132 10147 36738 1203 4131.02

Labisolate 16313 16281 16313 267268 2033 7785.59

Labmorph 4854 4575 4558 24538 628 1275.48

Labspec 1221 7106 7064 5566 570 646.59

Labtopog 27277 27118 27142 723594 3294 -

Lifestyle 13090 26233 26473 250140 2374 -

Manumat 90503 11605 11649 8851332 12127 -

Nofoodall 686 990 991 727 132 26.99

Nonhuman 1839 8728 8848 13698 926 10110.25

Pbcl 5866 8497 8793 64174 1357 16410.12

Pbhllng 1113 2488 2487 3083 344 933.00

Pf 79 386 389 37 59 3.86

Provadv 1052 3104 3014 3202 378 518.47

Sf 613 1856 1860 1332 270 249.26

Socpercir 6786 6757 6754 48627 889 5819.23

Specmatyp 8830 12928 12871 112252 1580 18306.56

Treatment 43660 111178 111612 3716810 10578 -

Vmp 13667 11972 12018 289683 2629 -

Vtm 2117 7655 7711 16540 970 2861.37

Table 3: Performance of the ABox Approach for Computing iWtnrhs
Σ (SM09b,SM09a)
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Figure 8: Sizes of cWtnrhs
Σ (NCIn+1,NCIn) and cWtnlhs,A

Σ (NCIn+1,NCIn) between Consec-
utive ELHr-versions NCIn and NCIn+1 of the NCI Thesaurus

T1 T2 |Σ ∩ NC| |Σ ∩ NR| |cWtnrhs
Σ | |cWtnlhs,A

Σ | |cWtnlhs,dom
Σ | |cWtnlhs,ran

Σ |
04.04j 04.03n 34245 76 252 4926 1 1
04.11a 04.09a 35976 91 106 4023 2 2
05.03d 05.01d 38020 92 138 33487 92 92
06.02d 06.01c 45582 113 419 1438 1 1
08.10e 08.09d 66052 123 1774 19055 113 113
08.12d 08.11d 68229 123 968 4726 114 113
09.06e 09.05d 70493 123 1305 575 1 1

Figure 9: Detailed Results for cWtnrhs
Σ (T1, T2) and cWtnlhs

Σ (T1, T2) on Selected Versions of
the NCI Thesaurus using Shared Signatures Σ = sig(T1) ∩ sig(T2)
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The peaks in atomic left-hand difference witnesses mostly resulted from changes to a few
very general concepts. As mentioned above already, Gonçalves et al. (2011) provide an in-
depth analysis of NCI versions. A systematic comparison of the methods used by Gonçalves
et al. with the logical diff introduced in this paper would be very interesting, but is beyond
the scope of this paper. One interesting observation that can be made is, however, that the
peak of atomic left-hand witnesses that we observed between the versions 05.01d and 05.03d
correlates with the fact that according to Gonçalves et al. a large number of non-redundant
axioms were added to version 05.03d. However, a comparable number of non-redundant
axioms were also added to version 04.12g, but no peak in atomic left-hand or right-hand
witnesses was observed in our analysis.

8.3 Scalability Analysis

We demonstrated in the previous sections that CEX2 is capable of finding the logical differ-
ence between two unmodified versions of Snomed CT and between distinct versions of the
NCI thesaurus restricted to ELHr. In order to see how CEX2’s performance scales, we have
also tested it on randomly generated acyclic terminologies of various sizes. Each randomly
generated terminology contains a certain number of defined- and primitive concept names
and role names. The ratio between concept equations and concept inclusions is fixed, as is
the ratio between existential restrictions and conjunctions. The random terminologies were
generated for a varying number of defined concept names using the parameters of SM09a:
62 role names; the equality-inclusion ratio is 0.525; and the exists-conjunction ratio is 0.304.
For every chosen size, we generated 10 samples consisting of two random terminologies as
described above. We then applied CEX2 to find the logical difference of the two terminolo-
gies over their joint signature. Figure 10 shows the average memory consumption of CEX2
over 10 randomly generated terminologies of various sizes. In 10(a) the maximum length
of conjunctions was fixed as two (M=2), and in 10(b) the number of conjuncts in each con-
junction is randomly selected between two and M. It can be seen that the performance of
CEX2 crucially depends on the length of conjunctions. In 10(b), the curves break off at the
point where CEX2 runs out of physical memory6. For instance, in the case of M=22, this
happens for terminologies with more than 7 500 defined concept names. Finally, we note
that the time required by CEX2 to compare two such random terminologies highly varied
across the different samples. The maximum time required by CEX2 was 11 333 seconds.

8.4 Additional User Support for Analysing Differences

So far we have discussed experiments with CEX2 in which one computes the set of concept
and instance difference witnesses between two terminologies. Clearly, such witnesses do not
provide sufficient information for a detailed analysis of the logical difference between two
terminologies. For a more thorough analysis, it is required to consider examples α from
cDiffΣ(T1, T2) and iDiffΣ(T1, T2) that show why certain concept names are concept/instance
difference witnesses. Thus, whenever it searches for concept names A such that there
exists a C with C v A ∈ cDiffΣ(T1, T2), CEX2 can output example concept inclusions
C v A ∈ cDiffΣ(T1, T2). Similarly, if requested, CEX2 can also compute example inclusions

6. In some cases the classification of the terminologies through CB already requires more than 3 GiB of
memory.
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Figure 10: Memory Consumption of CEX2 on Randomly Generated Terminologies

illustrating left-hand concept differences A v C, ∃r.> v C, or ran(r) v C, and examples for
the instance difference case. We know from Example 12 that even minimal such examples
can be of exponential size in the input terminologies. In practice, however, for Snomed CT
and NCI the additional computation of an example inclusion for every concept/instance
difference witness “only” doubles the times required for the computation. As described
above already, this can be observed in Table 2, where the computation times with examples
are shown in the last column and the computation times without examples are shown in the
7th column. The examples computed by CEX2 are often of reasonable size. For instance, if
we consider the subset “Specimen Material Type” (Specmatyp) from Table 2, it holds that

(i) there exist 10 right-hand Σ-concept witnesses, i.e. |cWtnrhs
Σ (SM09b,SM09a)| = 10;

(ii) the set of left-hand atomic Σ-concept difference witnesses, cWtnlhs,A
Σ (SM09b,SM09a),

contains 46 concept names.

In Point (i) and (ii), the longest concepts C, D for C v A ∈ cDiffΣ(SM09b,SM09a) and
A v D ∈ cDiffΣ(SM09b, SM09a) that were computed by CEX2 had twelve concept and role
name occurrences (thus were far smaller than the exponential worst case suggests).

Having computed not only difference witnesses but also example concept inclusions for
witnesses, it is of interest to explain why an example concept inclusion is entailed by one
terminology but not the other. Computing minimal subsets of a terminology that entail an
example concept inclusion is a promising approach to explaining logical differences that is
also known as axiom pinpointing or justification. It is not supported by CEX2, but has been
investigated extensively for various description logics including EL (Schlobach & Cornet,
2003; Baader, Peñaloza, & Suntisrivaraporn, 2007; Kalyanpur, Parsia, Horridge, & Sirin,
2007; Horridge, Parsia, & Sattler, 2010; Peñaloza & Sertkaya, 2010). To illustrate this
approach, consider again the subset “Specimen Material Type” (Specmatyp) from Table 2.
CEX2 outputs

VenipunctureForBloodTest ∈ cWtnlhs,A
Σ (SM09b,SM09a).
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(1) LaboratoryTest v LaboratoryProcedure u EvaluationProcedure

(2) BloodTest ≡ LaboratoryTest u ∃roleGroup .∃hasSpecimen .BloodSpecimen

(3) VenipunctureForBloodTest ≡ (∃roleGroup .∃hasFocus .BloodTest)

uVenipuncture

u (∃roleGroup .((∃procedureSiteDirect .VenousStructure)

u (∃method .PunctureAction)))

Figure 11: Minimal Axiom Set

It also computes the following concept inclusion (slightly simplified by hand) as a mem-
ber of cDiffΣ(SM09b, SM09a):

(∗) VenipunctureForBloodTest
v ∃roleGroup.∃hasFocus.EvaluationProcedure

Using axiom pinpointing one can then compute a minimal set of inclusions from SM09b
which entails the concept inclusion above; such a set is shown in Figure 11. Axioms 2 and 3
are in both terminologies, but SM09a contains

LaboratoryTest v LaboratoryProcedure

instead of Axiom 1, which explains this difference between the two terminologies. Note
that concept and role names from Σ are shaded in grey. It can be seen that the interaction
between Σ-concepts heavily depends on inclusions that are built up mainly from non-Σ-
concepts; actually none of inclusions required to derive (∗) is a Σ-inclusion.

We finally note that CEX2 is a text-based tool. In order to make it more accessible to
ontology users, a Protégé plugin, LogDiffViz7, was created, which calls CEX2 and visualises
both ontology versions and the differences as a hierarchical structure. LogDiffViz also
provides basic axiom pinpointing. The plugin is distributed as a self-contained Java archive
file (JAR) in which CEX2 is bundled.

9. Related Work

We describe the relationship between the work presented in this paper and existing work on
logical difference and inseparability of ontologies. Related work on versioning and the dis-
tinction between syntactical, structural, and logic-based approaches to versioning have been
discussed in the introduction already and will not be presented again here. The problem
of deciding whether two ontologies are Σ-inseparable for some signature Σ has been inves-
tigated for many ontology languages and different notions of inseparability such as concept
inseparability, instance inseparability, conjunctive query inseparability, and model-theoretic
inseparability (i.e., the Σ-reducts of models of the first ontology coincide with the Σ-reducts
of models of the second ontology). Inseparability is also closely related to the notion of con-
servative extensions since one ontology is a conservative extension of another ontology if
it contains the other ontology as a subset and both are inseparable w.r.t. the signature of

7. Available at http://protegewiki.stanford.edu/wiki/Logical_Difference_Vizualiser_(LogDiffViz)
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the smaller ontology. Thus, algorithmic results on deciding conservativity are directly rele-
vant for inseparability as well. The tractability results presented in this paper are in sharp
contrast to most other known results. We start with general EL-TBoxes: for general EL-
TBoxes deciding inseparability and conservative extensions are ExpTime complete problems
for concept, instance and conjunctive queries. Both problems are undecidable for model-
theoretic inseparability and model-theoretic conservative extensions (Lutz & Wolter, 2010).
(We note, however, that in the model-theoretic case unexpected positive algorithmic results
have been obtained in Konev, Lutz, et al., 2008, for acyclic EL and ALC and their extensions
with inverse roles.) For ALC and its standard extensions without nominals deciding concept
inseparability and conservative extensions is 2ExpTime-complete (Ghilardi, Lutz, & Wolter,
2006; Lutz et al., 2007; Lutz & Wolter, 2011) and for ALCQIO deciding concept insepa-
rability and conservative extensions becomes undecidable (Lutz et al., 2007; Cuenca Grau
et al., 2008). Nothing is known for ALC about the complexity of inseparability for instance
and conjunctive queries. For DL-Lite dialects (Calvanese, Giacomo, Lembo, Lenzerini, &
Rosati, 2006), the complexity of concept, instance, and query inseparability ranges from
PSpace-hard (and in ExpTime) for the description logic underlying the OWL 2 QL stan-
dard, NP-complete for DL-Litehorn, and Πp

2-complete for DL-Litebool (Konev, Kontchakov,
Ludwig, Schneider, Wolter, & Zakharyaschev, 2011; Kontchakov et al., 2010). For DL-
Litebool model-theoretic inseparability is decidable (Kontchakov et al., 2010) and for DL-
Litecore concept, instance, and query inseparability are in PTime (Konev et al., 2011). In
contrast to the work presented in this paper, however, no attempt is made to present the
logical difference to the user if two ontology are not inseparable. As mentioned above, in
the work of Konev et al. (2012), CEX2 is extended to the conjunctive query difference case
between acyclic ELHr-terminologies and various experiments based on the NCI thesaurus
are discussed.

The work discussed so far is concerned with the logical difference and inseparability be-
tween description logic TBoxes. The difference between description logic concepts has been
investigated, for example, in the work of Teege (1994), and of Brandt, Küsters, and Turhan
(2002) but besides of the interest in some kind of difference the problems considered as well
as the techniques employed are rather different. Inseparability and conservativity between
ontologies given in ontology languages that are more expressive than description logics (in-
cluding first-order logic) have been considered in the work of Kutz and Mossakowski (2008,
2011). Similar relationships between theories have also been investigated in answer set
programming (Pearce & Valverde, 2004; Eiter, Fink, & Woltran, 2007; Pearce & Valverde,
2012).

Finally, we note that Lemma 15 and the ABox constructed in Figure 3 appear to cap-
ture and describe fundamental properties of EL and ELHr-terminologies. Both have been
applied to investigate seemingly unrelated problems such as query containment for ontology
based data access using EL-terminologies (Bienvenu, Lutz, & Wolter, 2012b) and first-order
rewritability of instance queries (Bienvenu, Lutz, & Wolter, 2012a).

10. Conclusion

In this paper, we have presented polytime algorithms that decide concept, instance, and
query-inseparability w.r.t. a signature Σ for ELHr-terminologies and compute a represen-
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tation of the difference if it is non-empty. Experiments using CEX2 based on SNOMED
CT and NCI show that the outputs given by our algorithm are mostly of reasonable size
and can be analysed by users. Many extensions, applications, and open problems remain
to be explored. Here we mention some of them:

(1) We have motivated the study of Σ-inseparability between terminologies by the prob-
lem of comparing different versions of a terminology regarding “what they say” about a
certain signature. Other potential and promising applications can be found in the area
of decomposing and composing ontologies. For example, when importing an ontology T
into an ontology T ′ (i.e., forming T ∪ T ′) it is often important to ensure that T ′ does not
interfere with the signature of T . In other words, T ∪T ′ should be a conservative extension
of T in the sense that the consequences of T ∪ T ′ in the signature of T should coincide
with the consequences of T itself (Cuenca Grau et al., 2008; Ghilardi et al., 2006; Vescovo,
Parsia, Sattler, & Schneider, 2011). As observed above already, Σ-inseparability gener-
alises conservative extensions and, therefore, our algorithms can be used to check whether
one terminology is a conservative extension of another terminology. Algorithms checking
conservative extensions can also be used to extract modules from ontologies (Cuenca Grau
et al., 2008; Kontchakov, Pulina, Sattler, Schneider, Selmer, Wolter, & Zakharyaschev, 2009;
Konev et al., 2011). It would be of interest to explore applications of our inseparability
testing algorithms to extract modules of terminologies and check conservativity.

(2) Inseparability as defined in this paper does not mean that one terminology can be
replaced by another terminology in every context. In various applications of inseparability
for modularity it is important to ensure that if T1 and T2 are Σ-inseparable, then T1 ∪ T
and T2 ∪ T are Σ-inseparable as well, for any ontology T . This is called the replacement
property by Konev, Lutz, Walther, and Wolter (2009) and has been exploited and discussed,
for example, in the work of Cuenca Grau et al. (2008) and of Kontchakov et al. (2010). The
notions of inseparability introduced in this paper do not have the replacement property. To
see this, let Σ = {A,A′, B,B′} and

T1 =

{
A v ∃r.B
A′ ≡ ∃r.B′

}
and T2 =

{
A v ∃r.B
A′ v ∃r.B′

}
.

T1 and T2 are Σ-query inseparable (and, therefore, Σ-concept and Σ-instance inseparable),
but T1 ∪ T is not even Σ-concept inseparable from T2 ∪ T , for T = {B v B′}. Indeed,
observe that (T1 ∪ T ) |= A v A′, but (T2 ∪ T ) 6|= A v A′.

It is an important open research problem to determine the complexity of, and to develop
algorithms for strong versions of inseparability with the replacement property for EL and
ELHr-terminologies.

(3) ELHr is a rather weak description logic. It would be of great interest to explore in
how far techniques developed for ELHr can be applied to ontologies which contain addi-
tional constructors, but still consist mainly of ELHr-inclusions. It is unlikely that tractable
sound and complete algorithms for interesting extensions exist, but it seems worth explor-
ing algorithms that are sound and incomplete extensions of the algorithms presented in this
paper. Some results in that direction have been presented by Gonçalves, Parsia, and Sattler
(2012).
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Appendix A. Proofs for Section 2

Lemma 1 For every terminology T , one can construct in polynomial time a normalised
terminology T ′ of polynomial size in |T | such that sig(T ) ⊆ sig(T ′), T ′ |= T , and for every
model I of T there exists a model J of T ′ such that ∆I = ∆J and XI = XJ for every
X ∈ sig(T ). Moreover, T ′ is acyclic if T is acyclic.

Proof. Given a terminology T , construct a normalised terminology T ′ in five steps as follows:
First, remove all occurrences of > in conjunctions, and replace C in each occurrence of ∃r.C,
where C is not a concept name or >, with a fresh concept name A and add the concept
definition A ≡ C to the terminology. Repeat the last step exhaustively.

Second, replace every ∃ri.Bi in each inclusion with a right-hand side of the form F u
∃r1.B1 u · · · u ∃rm.Bm (m ≥ 1), where each Bi is either a concept name or Bi = >, and F
is a conjunction of concept names such that F 6= > or m ≥ 2, with a fresh concept name
B′i and add the concept definition B′i ≡ ∃ri.Bi to the terminology.

Third, replace every inclusion of the form A ≡ ∃r.> with two inclusions A v ∃r.> and
∃r.> v A in the terminology.

Fourth, consider any concept name A such that there are sequences B0, . . . , Bn−1 and
F0, . . . , Fn, where the Fi are conjunctions of concept names, such that the terminology
contains the concept definitions A ≡ F0 and Bi ≡ Fi+1, for i < n, where Bi is a conjunct of
Fi and A a conjunct of Fn. Let F ′n be the conjunction of concept names in Fn except A. Let,
recursively, F ′i−1 be the result of replacing the conjunct Bi−1 in Fi−1 with the conjunction
F ′i , for 1 ≤ i ≤ n. Replace the concept definition A ≡ F0 in the terminology with the
primitive concept definition A v F ′0.

Fifth, for each inclusion A ≡ F , A v F , ∃r.> v F , or ran(r) v F , where F is a
conjunction of concept names, replace every conjunct B in F for which there is a B ≡ F ′

in the terminology, where F ′ is a conjunction of non-conjunctive concept names, with F ′.

To see that the construction indeed yields a normalised terminology T ′, observe that
the steps 1, 2, and 3 ensure that each inclusion has one of the following forms: A ≡ ∃r.B,
A ≡ F , E v ∃r.B, E v ∃r.>, or E v F , where B is a concept name, E is either a concept
name, or is of the form ∃s.>, or ran(s), and F is a conjunction of (possibly conjunctive)
concept names. Step 4 breaks cycles in concept definitions and Step 5 takes care that all
conjuncts of the conjunction of concept names F in the right-hand side of each inclusion of
the form A ≡ F , A v F , ∃r.> v F , or ran(r) v F are non-conjunctive concept names. It is
readily verified that T ′ is acyclic if T is acyclic as none of the above steps introduces cycles
in concept definitions.

We now show that T ′ can be obtained in polynomial time and that T ′ is of polynomial
size in |T |. Let n be the number of inclusions in T and c the maximal length of an inclusion’s
right-hand side in T . Clearly, the steps 1, 2 and 3 each do not increase the number of
inclusions by more than c ·n, raising the total number of inclusions to at most 4nc. Steps 4

688



The Logical Difference for the Lightweight Description Logic EL

and 5 do not increase the number of inclusions, but the length of their right-hand sides. The
length of the right-hand side of an inclusion can increase to at most the sum of the lengths
of the right-hand sides of all inclusions, i.e., 4nc2 is an upper bound for each right-hand
side. The upper bound of the running time for each of the steps in the construction is
therefore 16n2c3. Hence, the size of T ′ and the running time of the construction are both
in O(n2 · c3).

Notice that every new concept name occurs on the left-hand side of a unique concept
definition A ≡ C in T ′. Thus, every model I of T can be expanded to a model J of T ′ by
interpreting the fresh concept names in sig(T ′) \ sig(T ) by setting AJ = CI .

Moreover, it is readily checked that T ′ |= T .

We prove an extended version of Theorem 2 according to which not only EL-concepts
and concepts of the form ran(r) are evaluated “correctly” in the canonical model IK, but
also Cu,u-concepts (which are introduced in Definition 57).

Theorem 2[Extended Version] Let K = (T ,A) be an ELHr-KB. Then

1. IK is a model of K;

2. IK can be computed in polynomial time in the size of K;

3. for all xC,D ∈ ∆IK and all a ∈ obj(A), if C0 is a Cu,u-concept or of the form ran(r),
then

• K |= C0(a) if, and only if, aIK ∈ CIK0 .

• T |= C uD v C0 if, and only if, xC,D ∈ CIK0 .

Proof. Point 2 follows from the fact that instance checking in ELHr can be done in poly-
nomial time.

We first prove Point 3 for EL-concepts C0 ∈ sub(T ). The proof is by simultaneous
induction on the construction of C0. The interesting step is for C0 = ∃r.D0.

We start with the proof of the direction from left to right. Assume first that K |= C0(a).
Then (a, xran(r),D0

) ∈ rIK . We have T |= (ran(r) u D0) v D0. Thus, by the induction

hypothesis, xran(r),D0
∈ DIK0 . But then a ∈ CIK0 , as required. Now assume T |= CuD v C0.

Then (xC,D, xran(r),D0
) ∈ rIK . We have T |= (ran(r) u D0) v D0. By the induction

hypothesis, xran(r),D0
∈ DIK0 . But then xC,D ∈ CIK0 , as required.

Conversely, assume that aIK ∈ CIK0 . There exists d ∈ ∆IK such that (aIK , d) ∈ rIK

and d ∈ DIK0 . Assume first that d = b ∈ obj(A). By the induction hypothesis, K |= D0(b).
There exists s such that s(a, b) ∈ A and s vT r. Thus, K |= C0(a), as required. Assume
now that d = xran(s),F . Then K |= ∃s.F (a), s vT r and xran(s),F ∈ DIK0 . By the induction
hypothesis, T |= ran(s) u F v D0. Thus, K |= C0(a), as required.

Now assume xC,D ∈ CIK0 . There exists xran(s),F with T |= C uD v ∃s.F , s vT r and

xran(s),F ∈ DIK0 . By the induction hypothesis, T |= ran(s) u F v D0. Thus T |= C uD v
∃r.D0, as required.

We now prove Point 3 for concepts of the form C0 = ran(r). Assume K |= (ran(r))(a).
Then there exist b and s with s(b, a) ∈ A and s vT r. But then a ∈ ran(r)IK . Conversely,
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assume that a ∈ ran(r)IK . Then, by definition of IK, there exist b and s with s(b, a) ∈ A
and s vT r. Hence K |= (ran(r))(a), as required.

Assume T |= C u D v ran(r). Then we have, for C = ran(s), s vT r. Then xC,D ∈
ran(r)IK since there is a path in WK with tail xC,D. The converse direction is similar.

It follows from what has been proved so far that IK is a model of (T ,A). Thus we have
proved Point 1, and it remains to prove Point 3.

We prove Point 3 for arbitrary Cu,u-concepts C0. The interesting step is for C0 = ∃S.D0,
where S = r1 u · · · u rn.

Assume first that K |= C0(a). Then a ∈ CIK0 since IK is a model of K. Similarly, if

T |= C uD v C0, then xC,D ∈ CIK0 since xC,D ∈ (C uD)IK and IK is a model of T .

Conversely, assume that a ∈ CIK0 . There exists d ∈ ∆IK such that (aIK , d) ∈ SIK and

d ∈ DIK0 . Assume first that d = b ∈ obj(A). By the induction hypothesis, K |= D0(b). For
every ri, 1 ≤ i ≤ n, there exists si with si(a, b) ∈ A and si vT ri. Thus, K |= C0(a), as
required.

Assume now that d = xran(s),F . Then K |= ∃s.F (a), s vT ri for 1 ≤ i ≤ n and

xran(s),F ∈ DIK0 . By the induction hypothesis, T |= ran(s) u F v D0. Thus, K |= C0(a), as
required.

Now assume xC,D ∈ CIK0 . There exists xran(s),F with T |= C u D v ∃s.F , s vT ri,

1 ≤ i ≤ n, and xran(s),F ∈ DIK0 . By the induction hypothesis, T |= ran(s) u F v D0. Thus
T |= C uD v ∃S.D0, as required.

Appendix B. Proofs for Section 5

In some proofs, we require models for infinite sets of concepts. We introduce some notation
and a well known result about the existence of “minimal” models. Let Γ be a (possibly
infinite) set of Cran-concepts (which are introduced in Definition 32), T an ELHr-TBox, and
D either a Cu,u-concept (which are introduced in Definition 57) or a Cran-concept. We write
T ∪Γ |= D and say that Γ is included in D w.r.t. T if, for every model I of T and d ∈ ∆I ,
d ∈ DI follows from d ∈ CI for all C ∈ Γ. The following observation follows from the fact
that all Cu,u and Cran-concepts are equivalent to Horn formulas (in the sense of Chang and
Keisler, 1990):

Lemma 67. For all ELHr-TBoxes T and sets Γ of Cran-concepts there exists a model I of
T and d ∈ ∆I such that the following are equivalent, for all Cu,u ∪ Cran-concepts D:

• T ∪ Γ |= D;

• d ∈ DI .

We now come to the proof of Lemma 36. For the convenience of the reader we formulate
the result again.

Lemma 36. For every ELHr-TBox T , ABox A, and all Cran-concepts C0 and D0, and
a0 ∈ obj(A):

• (T ,A) |= D0(a0) if, and only if, there exists n ≥ 0 such that T |= Cn,ranA,a0
v D0;
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• T |= C0 v D0 if, and only if, (T ,AC0) |= D0(aC0).

Proof. We prove Point 1. For the direction from right to left observe that A |= Cn,ranA,a0
(a0)

for all n ≥ 0. Thus, T |= Cn,ranA,a0
v D0 implies (T ,A) |= D0(a0).

Now assume (T ,A) |= D0(a0). We show that T ∪CranA,a0
|= D0. Then, using compactness,

we find an n ≥ 0 such that T |= Cn,ranA,a0
v D0, as required.

Assume T ∪ CranA,a0
6|= D0. Take, for every a ∈ obj(A), a model Ia of T with a point

da ∈ ∆Ia such that for all Cran-concepts C: da ∈ CIa if, and only if, T ∪ CranA,a |= C. Such
models exist by Lemma 67. We may assume that they are mutually disjoint. Take the
following union I of the models Ia:

• ∆I =
⋃
a∈obj(A) ∆Ia ;

• AI =
⋃
a∈obj(A)A

Ia , for A ∈ NC;

• rI =
⋃
a∈obj(A) r

Ia ∪ {(da, db) | r′(a, b) ∈ A, r′ vT r}, for r ∈ NR;

• aI = da, for a ∈ obj(A).

Claim 1. For all Cran-concepts C and all a ∈ obj(A) the following holds for all d ∈ ∆Ia :

d ∈ CIa iff d ∈ CI .

The proof is by induction on the construction of C. The interesting cases are C = ran(r)
and C = ∃r.D and the direction from right to left.

Let d ∈ CI and assume first that C = ran(r). Let d ∈ CI ∩∆Ia and (d′, d) ∈ rI . For
(d′, d) ∈

⋃
a∈obj(A) r

Ia , the claim follows from the definition. Otherwise, d = da, d
′ = db

for some b with r′(b, a) ∈ A and r′ vT r. Thus, ran(r′) ∈ Cn,ranA,a for every n ≥ 0. Hence,

T ∪ CranA,a |= ran(r) and we obtain d ∈ CIa .

Assume now that C = ∃r.D and d ∈ CI ∩∆Ia . Take d′ with (d, d′) ∈ rI and d′ ∈ DI .
For (d, d′) ∈

⋃
a′∈obj(A) r

Ia′ , d ∈ CIa follows immediately from the induction hypothesis.

Otherwise, d = da and d′ = db for some b with r′(a, b) ∈ A and r′ vT r. By the induction
hypothesis, d′ ∈ DIb . Hence, T ∪CranA,b |= D. By compactness, there exists a concept E ∈ CranA,b
such that T |= E v D. From r′(a, b) ∈ A, we obtain ∃r′.E ∈ Cn,ranA,a for every n > 0. But

then, T ∪ CranA,a |= ∃r′.D and we obtain da ∈ CIa using r′ vT r. This finishes the proof of
the claim.

Now, for C v D ∈ T , let d ∈ ∆I with d ∈ CI , i.e. d ∈ ∆Ia for some a ∈ obj(A). By
Claim 1 we have d ∈ CIa , which implies that d ∈ DIa as CIa ⊆ DIa . We can conclude
that d ∈ DI by applying Claim 1 again. Similarly, one can show that CI = DI for every
C ≡ D ∈ T and rI ⊆ sI for every r v s ∈ T . It follows that I is a model of T . By
construction of I, we have (aI , bI) ∈ rI for every r(a, b) ∈ A. Moreover, for A(a) ∈ A with
a ∈ obj(A), it holds that T ∪ CranA,a |= A, which implies that da ∈ AIa and aI ∈ AI by our
claim. We can thus infer that I is a model of (T ,A) and I 6|= D0(a0) as T ∪ CranA,a0

6|= D0,

which implies that da0 6∈ D
Ia0
0 and aI0 6∈ DI0 , by Claim 1. Hence, (T ,A) 6|= D0(a0) and we

have derived a contradiction.
The proof of Point 2 is a simple application of the definition.
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Now we prove cut elimination, correctness, and completeness of the calculus for ELHr
given in Figures 1 and 5. We start with some basic observations, which can be easily proved
by induction on the length of derivations.

Lemma 68. For any ELHr-terminology T , Cran-concepts C, D and any role names r, s
we have

1. if T ` > v D, then T ` C v D;

2. if T ` C v A and A v CA ∈ T or A ≡ CA ∈ T , then T ` C v CA;

3. if T ` C v ∃r.D then T ` C v ∃r.(D u ran(r));

4. if T ` C v ∃r.D, and ∃r.> v B ∈ T , then T ` C v B;

5. if T ` C v ran(r) and ran(r) v A ∈ T , then T ` C v A;

6. if T ` C v ∃r.D, and r v s ∈ T , then T ` C v ∃s.D;

7. if T ` C v ran(r) and r v s ∈ T , then T ` C v ran(s).

Lemma 69 (Cut elimination). For any ELHr-terminology T , Cran-concepts C, D, and E,
if T ` C v D and T ` D v E then T ` C v E.

Proof. Let D1 be the derivation of C v D and D2 be the derivation of D v E. Let Li be
the length of Di, i = 1, 2. The proof of the lemma is by induction on the lexicographical
ordering on pairs (L2, L1).

The case when L2 = 0 or L1 = 0, as well as the cases when L2 ends with one of
AndL1, AndL2, AndR, Ex, DefL, DefR or PDefL are virtually the same as in the
proof of Hofmann (2005). Assume D2 ends with Dom, and so its last sequent is of the form
∃r.D′ v E, and the sequent above it is B v E. By Lemma 68, Item 4, T ` C v ∃r.D′
implies T ` C v B, so by the induction hypothesis, T ` C v E.

The cases when D2 ends with ExRan, Ran, Sub, or RanSub can be dealt with in the
similar way using Lemma 68, Items 3, 5–7.

Theorem 38. Let T be an ELHr-terminology; C0 and D0 be Cran-concepts. Then T |=
C0 v D0 if, and only if, T ` C0 v D0.

Proof. It can be easily checked that the proof system rules are sound and so if T ` C0 v D0,
then T |= C0 v D0.

Conversely, assume that T |= C0 v D0. To prove T ` C0 v D0 we construct an
interpretation I based on the derivability of sequents from T . We show that I is a model
of T . As a consequence we obtain CI0 ⊆ DI0 and conclude that T ` C0 v D0 based on the
properties of I.

The domain ∆I is the set of all well-formed pairs x = 〈C,RC〉, where C is a Cran-concept
and RC is a finite set of role names such that

∀s ∈ NR : if T ` (C u
l

r∈RC

ran(r)) v ran(s), then s ∈ RC .
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We introduce the following abbreviation. Let

Ran(RC) =
l

r∈RC

ran(r).

Cran-concepts C are interpreted as

I(C) = {〈D,RD〉 ∈ ∆I | T ` (D u Ran(RD)) v C},

and r ∈ NR are interpreted as

I(r) = {(〈C,RC〉 , 〈D,RD〉) ∈ ∆I ×∆I | r ∈ RD
and T ` (C u Ran(RC)) v ∃r.(D u Ran(RD))}.

Note that I(C) is nonempty for every C: consider R0
C = {s ∈ NR | T ` C v ran(s)}. As

T is finite, R0
C is finite. Notice that, by Ax and AndR, T ` C v C u Ran(R0

C) so, by
Lemma 69, if T ` (Cu

d
r∈R0

C
ran(r)) v ran(s), for some s, then T ` C v ran(s), so s ∈ R0

C .

That is,
〈
C,R0

C

〉
is a well-formed pair and, obviously,

〈
C,R0

C

〉
∈ I(C).

We now show that I(C) = CI for all Cran-concepts C. The proof is by induction on the
construction of C.

1. I(>) = ∆I .
For any well-formed pair 〈C,RC〉, T ` C u Ran(RC) v > is an axiom.

2. I(C uD) = I(C) ∩ I(D).
Let 〈C,RC〉 ∈ I(D1uD2), that is T ` (C uRan(RC)) v (D1uD2). Since T ` (D1uD2) v
D1, by Lemma 69, we have T ` (C u Ran(RC)) v D1, that is, 〈C,RC〉 ∈ I(D1). Similarly,
〈C,RC〉 ∈ I(D2).

Conversely, suppose 〈C,RC〉 ∈ I(D1) and 〈C,RC〉 ∈ I(D2) holds, that is, T ` (C u
Ran(RC)) v D1 and T ` (CuRan(RC)) v D2. By AndR, T ` (CuRan(RC)) v (D1uD2),
that is, 〈C,RC〉 ∈ I(D1 uD2).

3. I(∃r.C) = {x ∈ ∆I | ∃y ∈ I(C) : (x, y) ∈ I(r)}.
Suppose for some well-formed pair 〈D,RD〉 we have 〈D,RD〉 ∈ I(∃r.C), that is T `
(DuRan(RD)) v ∃r.C. Then, by Lemma 68, Item 3, T ` (DuRan(RD)) v ∃r.(Cu ran(r)).
Consider RrC = {s ∈ NR | T ` (C u ran(r)) v ran(s)}. Clearly, r ∈ RrC and, similarly
to the argument for R0

C above, 〈C,RrC〉 is a well-formed pair. By Ax and AndR, T `
Curan(r) v CuRan(RrC), by Ex, T ` ∃r.(Curan(r)) v ∃r.(CuRan(RrC)) and by Lemma 69,
T ` (D u Ran(RD)) v ∃r.(C u Ran(RrC)). Then, by definition, (〈D,RD〉 , 〈C,RrC〉) ∈ I(r)
and, since T ` (C u Ran(RrC)) v C, we have 〈C,RrC〉 ∈ I(C).

Conversely, let (〈D1,RD1〉 , 〈D2,RD2〉) ∈ I(r) and 〈D2,RD2〉 ∈ I(C), that is, T ` (D1u
Ran(RD1)) v ∃r.(D2uRan(RD2)), r ∈ RD2 , and T ` (D2uRan(RD2)) v C. By Ex we have
T ` ∃r.(D2uRan(RD2)) v ∃r.C, and, by Lemma 69, we have T ` (D1uRan(RD1)) v ∃r.C,
that is, 〈D1,RD1〉 ∈ I(∃r.C).

4. I(ran(r)) = {y ∈ ∆I | ∃x : (x, y) ∈ I(r)}.
First we show that I(ran(r)) = {〈C,RC〉 ∈ ∆I | r ∈ RC}. If r ∈ RC , we have T `
C u Ran(RC) v ran(r), that is, I(ran(r)) ⊇ {〈C,RC〉 ∈ ∆I | r ∈ RC}. Suppose 〈C,RC〉 ∈
I(ran(r)), that is, T ` (C u Ran(RC)) v ran(r). Then, since 〈C,RC〉 is a well-formed pair,
r ∈ RC , that is, I(ran(r)) ⊆ {〈C,RC〉 ∈ ∆I | r ∈ RC}.
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Suppose now that 〈C,RC〉 ∈ I(ran(r)), that is, 〈C,RC〉 is such that r ∈ RC . Let D
denote (CuRan(RC)). By induction on the length of derivations one can see that a sequent
of the form ∃r.D v ran(s) is not derivable for any s ∈ NR. Therefore, 〈∃r.D, ∅〉 is a well-
formed pair and (〈∃r.D, ∅〉 , 〈C,RC〉) ∈ I(r). Conversely, let (〈D1,RD1〉 , 〈D2,RD2〉) ∈ I(r)
then, in particular, r ∈ RD2 . That is, 〈D2,RD2〉 ∈ I(ran(r)).

Now we show that I is a model of T . We need to show that all axioms of T are true in
I.

1. I(X) ⊆ I(CX), whenever X ≡ CX ∈ T or X v CX ∈ T .
Let 〈C,RC〉 ∈ I(X), that is, T ` (C u Ran(RC)) v X. By Lemma 68, Item 2, T `
(C u Ran(RC)) v CX , that is, 〈C,RC〉 ∈ I(CX).

2. I(CX) ⊆ I(X), whenever X ≡ CX ∈ T .
Let 〈C,RC〉 ∈ I(CX), that is, T ` (C u Ran(RC)) v CX . Since by Ax and DefR
T ` CX v X, by Lemma 69, T ` (C u Ran(RC)) v X, that is 〈C,RC〉 ∈ I(X).

3. (x, y) ∈ I(r)⇒ y ∈ I(A), whenever ran(r) v A ∈ T .
Let (〈C,RC〉 , 〈D,RD〉) ∈ I(r), that is, T ` (C u Ran(RC)) v ∃r.(D u Ran(RD)) and
r ∈ RD. Since r ∈ RD and, as, by Ax and Ran, T ` ran(r) v A, by AndL1, AndL2 we
have T ` (D u Ran(RD)) v A, that is, 〈D,RD〉 ∈ I(A).

4. (x, y) ∈ I(r)⇒ x ∈ I(B), whenever ∃r.> v B ∈ T .
Let (〈C,RC〉 , 〈D,RD〉) ∈ I(r), that is, T ` (C u Ran(RC)) v ∃r.(D u Ran(RD)) and
r ∈ RD. Notice that, by Lemma 68, Item 4, we have T ` (C u Ran(RC)) v B, that is,
〈C,RC〉 ∈ I(B).

5. I(s) ⊆ I(r), whenever s v r ∈ T .
Let (〈C,RC〉 , 〈D,RD〉 ∈ I(r)), that is T ` (CuRan(RC)) v ∃r.(DuRan(RD)) and r ∈ RD.
By Lemma 68, Item 6, T ` (C u Ran(RC)) v ∃s.(D u Ran(RD)). Since r v s ∈ T , by
Ax and RanSub, T ` ran(r) v ran(s) and T ` (D u Ran(RD)) v ran(s) by AndL1 and
AndL2. Since 〈D,RD〉 is well-formed, s ∈ RD. Thus, (〈C,RC〉 , 〈D,RD〉) ∈ I(s)

As T |= C0 v D0, we have I(C0) ⊆ I(D0). Since
〈
C0,R0

C0

〉
∈ I(C0), we have〈

C0,R0
C0

〉
∈ I(D0), that is T ` (C0 u Ran(R0

C0
)) v D0. As T ` C0 v C0 u Ran(R0

C0
),

we have T ` C0 v D0 by Lemma 69.

Proof of Lemma 44. Let T be a normalised ELHr-terminology and Σ a signature. Ad-
ditionally, let A be a Σ-ABox, A ∈ sig(T ) ∪ Σ non-conjunctive in T and a ∈ obj(A).

For the direction “(1.) ⇒ (2.)”, it is a direct consequence of the construction of AT ,Σ
that for all b ∈ obj(A) and B ∈ sig(T ) ∪ Σ non-conjunctive in T if (T ,A) 6|= B(b) then
ξB ∈ obj(AT ,Σ).

Assume that (T ,A) 6|= A(a). Then ξA ∈ obj(AT ,Σ). We now define a Σ-range simula-
tion S by setting,

• for b ∈ obj(A) and for B ∈ sig(T ) ∪ Σ non-conjunctive in T with ξB ∈ obj(AT ,Σ) :
(b, ξB) ∈ S if, and only if, (T ,A) 6|= B(b),

• (b, ξΣ) ∈ S for all b ∈ obj(A).

We show that S is indeed a Σ-range simulation with (a, ξA) ∈ S by verifying that the
conditions (S1)–(S3) and (RS) introduced on page 663 hold.
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(S1) As (T ,A) 6|= A(a) and ξA ∈ obj(AT ,Σ), it immediately follows that (a, ξA) ∈ S.

(S2) Let now (b, ξ) ∈ S and B̃(b) ∈ A with B̃ ∈ Σ. We have to prove that B̃(ξ) ∈ AT ,Σ.
For ξ = ξB with B ∈ sig(T ) ∪ Σ non-conjunctive in T , we obtain from the definition of S
that (T ,A) 6|= B(b). Moreover, it holds that B̃ 6∈ preCΣ

T (B) as otherwise (T ,A) |= B(b).
Thus, by the definition of AT ,Σ(B) we have B̃(ξB) ∈ AT ,Σ. For ξ = ξΣ, it immediately
follows that B̃(ξΣ) ∈ AT ,Σ by the definition of AT ,Σ.

(S3) Now, let (b, ξ) ∈ S and r(b, b′) ∈ A with r ∈ Σ. We have to prove that there exists
ξ′ ∈ obj(AT ,Σ) with (b′, ξ′) ∈ S and r(ξ, ξ′) ∈ AT ,Σ. For ξ = ξΣ, it immediately follows from
the definition of AT ,Σ that r(ξΣ, ξΣ) ∈ AT ,Σ and (b′, ξΣ) ∈ S holds by the definition of S.

For ξ = ξB with B ∈ sig(T ) ∪ Σ non-conjunctive in T it follows from the definition
of S that (T ,A) 6|= B(b). Additionally, we can infer that r 6∈ preDomΣ

T (B) as otherwise
(T ,A) |= (∃r.>)(b) would imply that (T ,A) |= B(b).

Consider cases how B is defined in T . If B is pseudo-primitive in T , we obtain from the
definition of AT ,Σ(B) that r(ξB, ξΣ) ∈ AT ,Σ and it holds that (b′, ξΣ) ∈ S by the definition
of S.

For B ≡ ∃r′.B′ ∈ T , we have to distinguish between the following two cases. If r 6∈
preRoleΣ

T (r′), we obtain r ∈ Σ \ (preRoleΣ
T (r′) ∪ preDomΣ

T (B)) and thus r(ξB, ξΣ) ∈ AT ,Σ by
the definition of AT ,Σ and it holds again that (b′, ξΣ) ∈ S by the definition of S. In the case
where r ∈ preRoleΣ

T (r′), we have r ∈ preRoleΣ
T (r′) \ preDomΣ

T (B). Furthermore, as (T ,A) 6|=
B(b) and so (T ,A) 6|= (∃r′.B′)(b), it is easy to see that there must exist B′′i ∈ non-conjT (B′)
with r 6∈ preRanΣ

T (B′′i ) and (T ,A) 6|= B′′i (b′). Then we have r(ξB, ξB′′i ) ∈ AT ,Σ by the
definition of AT ,Σ(B) and (b′, ξB′′i ) ∈ S by the definition of S.

(RS) Let now (b, ξ) ∈ S such that r(c, b) ∈ A for r ∈ Σ. We have to show that there exists
ξ′ with r(ξ′, ξ) ∈ AT ,Σ. For ξ = ξB with B ∈ sig(T ) ∪ Σ non-conjunctive in T , we obtain
again from the definition of S that (T ,A) 6|= B(b). Furthermore, we have r 6∈ preRanΣ

T (B)
as otherwise (T ,A) |= B(b). Thus, by the definition of AT ,Σ(B) we have r(ξΣ, ξB) ∈ AT ,Σ.
For ξ = ξΣ, it follows by the definition of AT ,Σ that r(ξΣ, ξΣ) ∈ AT ,Σ.

For the converse direction “(2.) ⇒ (1.)”, we assume that ξA ∈ obj(AT ,Σ) and (A, a) ≤ran
Σ

(AT ,Σ, ξA). It is then sufficient to show for all n that

T 6|= Cn,ranAT ,Σ,ξA v A

as this implies that (T ,AT ,Σ) 6|= A(ξA) by Lemma 36. We then obtain from Lemma 42 that
(T ,A) 6|= A(a) holds.

Thus, we now prove by induction on n that for every concept name B ∈ sig(T ) ∪ Σ
non-conjunctive in T with ξB ∈ obj(AT ,Σ), we have T 6|= Cn,ranAT ,Σ,ξB v B.

Let n = 0 and B ∈ sig(T )∪Σ non-conjunctive in T with ξB ∈ obj(AT ,Σ). It then follows
that

C0,ran
AT ,Σ,ξB =

l

B′∈Σ\preCΣ
T (B)

B′ u
l

s∈Σ\preRanΣ
T (B)

ran(s) u
l

Ã≡∃r̃.B̃∈T
B∈non-conjT (B̃)

s∈preRoleΣ
T (r̃)\(preDomΣ

T (Ã)∪preRanΣ
T (B))

ran(s)
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Hence, one can see that for every subconcept of the form ran(s) that occurs in C0,ran
AT ,Σ,ξB ,

we obtain that s 6∈ preRanΣ
T (B). As B it non-conjunctive in T , it holds that either B is

pseudo-primitive in T or that B ≡ ∃r′.B′ ∈ T . Hence, by Lemma 39 we can conclude that
T 6|= C0,ran

AT ,Σ,ξB v B.

For n > 0, let again B ∈ sig(T )∪Σ non-conjunctive in T with ξB ∈ obj(AT ,Σ). We then
distinguish between the following two cases. If B is pseudo-primitive in T , we obtain

Cn,ranAT ,Σ,ξB =
l

B′∈Σ\preCΣ
T (B)

B′ u
l

s∈Σ\preRanΣ
T (B)

ran(s) u
l

Ã≡∃r̃.B̃∈T
B∈non-conjT (B̃)

s∈preRoleΣ
T (r̃)\(preDomΣ

T (Ã)∪preRanΣ
T (B))

ran(s)

u
l

s∈Σ\preDomΣ
T (B)

∃s.Cs

for Cran-concepts Cs. It follows again from Lemma 39 that T 6|= Cn,ranAT ,Σ,ξB v B.

For B ≡ ∃r′.B′, we obtain

Cn,ranAT ,Σ,ξB =
l

B′∈Σ\preCΣ
T (B)

B′ u
l

s∈Σ\preRanΣ
T (B)

ran(s) u
l

Ã≡∃r̃.B̃∈T
B∈non-conjT (B̃)

s∈preRoleΣ
T (r̃)\(preDomΣ

T (Ã)∪preRanΣ
T (B))

ran(s)

u
l

s∈Σ\(preRoleΣ
T (r′)∪preDomΣ

T (B))

∃s.Cs u
l

B′′∈non-conjT (B′)

s∈preRoleΣ
T (r′)\(preDomΣ

T (B)∪preRanΣ
T (B′′))

∃s.Cn−1,ran
AT ,Σ,ξB′′

for Cran-concepts Cs. It is easy to see that the conditions (e2), (e3) and (e4) of Lemma 39
do not hold. Thus, for T |= Cn,ranAT ,Σ,ξB v B to hold, condition (e1) would have to be fulfilled.

We observe that for every subconcept ∃s.Cn−1,ran
AT ,Σ,ξB′′

of Cn,ranAT ,Σ,ξB with B′′ ∈ non-conjT (B′)

and s ∈ preRoleΣ
T (r′) \ (preDomΣ

T (B) ∪ preRanΣ
T (B′′)), we obtain T 6|= Cn−1,ran

AT ,Σ,ξB′′
v B′′ from

the induction hypothesis. Thus, we have T 6|= Cn−1,ran
AT ,Σ,ξB′′

u ran(s) v B′ by Lemma 39

for every such B′′ and s. We can infer that condition (e1) does not hold and, therefore,
T 6|= Cn,ranAT ,Σ,ξB v B.

Appendix C. Proofs for Section 6

Proof of Lemma 54. Let T be a normalised ELHr-terminology and Σ a signature such
that Σ ∩ NR 6= ∅. Additionally, let A ∈ NC be a concept name that is non-conjunctive
in T , let r ∈ Σ be a role name, and let C be an ELΣ-concept. Finally, let D = C or
D = ran(r) u C.

First observe that we obtain from Lemma 36 that T 6|= D v A holds if, and only if,
(T ,AD) 6|= A(aD). Additionally, by Lemma 44, we have (T ,AD) 6|= A(aD) if, and only if,
ξA ∈ obj(AT ,Σ) and (AD, aD) ≤ran

Σ (AT ,Σ, ξA). Thus, it is sufficient to show the following
equivalence:

(AD, aD) ≤ran
Σ (AT ,Σ, ξA) ⇔ ∃ r ∈ Σ: (ξA)r ∈ obj(A��T ,Σ) and (AD, aD) ≤ran

Σ (A��T ,Σ, (ξA)r)
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Next note that the ABox AD is role-splitting as C is an EL-concept and if D = ran(r)uC,
then { s(b, aD) ∈ AD | b ∈ obj(AD), s ∈ sig(AD) } = {r(aran, aD)}.

Assume first ξA ∈ obj(AT ,Σ), (AD, aD) ≤ran
Σ (AT ,Σ, ξA) and let S ⊆ obj(AD)×obj(AT ,Σ)

be the corresponding Σ-range simulation. We define a relation S∗ ⊆ obj(AD) × obj(A��T ,Σ)
by setting for every a ∈ obj(AD), every ξ ∈ obj(AT ,Σ) and every role name r ∈ Σ such that
ξr ∈ obj(A��T ,Σ):

(a, ξr) ∈ S∗ ⇔ (a, ξ) ∈ S and if s(c, a) ∈ AD for some s ∈ sig(AD) and c ∈ obj(AD),

then s = r

Note that S∗ is well-defined as AD is role-splitting.

To show that S∗ is a Σ-range simulation such that there exists r ∈ sig(AΣ,T ) with (ξA)r ∈
obj(A��T ,Σ) and (aD, (ξA)r) ∈ S∗, we prove that the conditions (S1)–(S3) and condition (RS)
from page 663 hold.

(S1) If there exists s(c, aD) ∈ AD for some s ∈ sig(AD) ⊆ Σ and c ∈ obj(AD), then there
exists ξ′ ∈ obj(AT ,Σ) with s(ξ′, ξA) ∈ AT ,Σ as (aD, ξA) ∈ S and S is a Σ-range simulation,
i.e. s((ξ′)s, (ξA)s) ∈ A��T ,Σ and (ξA)s ∈ obj(A��T ,Σ). Hence, (aD, (ξA)s) ∈ S∗.

Otherwise, it is easy to see that there exists r ∈ Σ with (ξA)r ∈ obj(A��T ,Σ) as ξA ∈
obj(AT ,Σ) and sig(AT ,Σ) ⊆ Σ. Thus, as (aD, ξA) ∈ S, we have (aD, (ξA)r) ∈ S∗.

(S2) Let (a, ξr) ∈ S∗ and A(a) ∈ AD for a ∈ obj(AD), ξ ∈ obj(AT ,Σ), A ∈ Σ and
r ∈ sig(AT ,Σ). It follows from the definition of S∗ that (a, ξ) ∈ S. Hence, as S is a Σ-range
simulation, we have A(ξ) ∈ AT ,Σ, which implies that A(ξr) ∈ A��T ,Σ by the definition of

A��T ,Σ.

(S3) Let (a, ξr) ∈ S∗ and s(a, a′) ∈ AD for a, a′ ∈ obj(AD), ξ ∈ obj(AT ,Σ), r ∈ sig(AT ,Σ)
and s ∈ Σ. From the definition of S∗ we obtain (a, ξ) ∈ S. Additionally, as S is a Σ-range
simulation, there exists ξ′ ∈ obj(AT ,Σ) such that (a′, ξ′) ∈ S and s(ξ, ξ′) ∈ AT ,Σ. Thus, we
have s(ξr, ξ

′
s) ∈ A��T ,Σ by the definition of A��T ,Σ and (a′, ξ′s) ∈ S∗ by the definition of S∗ as

AD is role-splitting.

(RS) Let (a, ξr) ∈ S∗ and s(c, a) ∈ AD for a, c ∈ obj(AD), ξ ∈ obj(AT ,Σ), r ∈ sig(AT ,Σ)
and s ∈ Σ. By the definition of S∗, (a, ξ) ∈ S holds and r = s. As S is a Σ-range simulation,
there exists ξ′ ∈ obj(AT ,Σ) with s(ξ′, ξ) = r(ξ′, ξ) ∈ AT ,Σ. Hence, r(ξ′r, ξr) ∈ A��T ,Σ holds by

the definition of A��T ,Σ.

For the converse direction, we assume that there exists r̃ ∈ Σ such that (ξA)r̃ ∈ obj(A��T ,Σ)

and (AD, aD) ≤ran
Σ (A��T ,Σ, (ξA)r̃) holds. Let S∗ ⊆ obj(AD)×obj(A��T ,Σ) be the corresponding

Σ-range simulation. We define a relation S ⊆ obj(AD) × obj(AT ,Σ) by setting for every
a ∈ obj(AD) and every ξ ∈ obj(AT ,Σ):

(a, ξ) ∈ S ⇔ ∃ r ∈ sig(AT ,Σ) : (a, ξr) ∈ S∗.

It is straightforward to verify that ξA ∈ obj(AT ,Σ) and that S is a Σ-range simulation with
(aD, ξA) ∈ S.

697



Konev, Ludwig, Walther, & Wolter

Appendix D. Proofs for Section 7

Proof of Lemma 60. We require some preliminary observations. Let AC be the ABox
associated with a Cran-concept C (Lemma 36). Then, for any ELHr-terminology T , Cran-
concept C and Cu,u concept D, we have T |= C v D if, and only if K |= D(aC), where
K = (T ,AC). By Theorem 2 (extended version),

• T |= C v D if, and only if, IK |= D(aC), where IK is the canonical model for K.

Note that T |= C v ∃u.D if, and only if, DIK 6= ∅ and that for any d, d′ ∈ ∆IK and
R = t1 u · · · u tn, we have (d, d′) ∈ RIK if, and only if, there exists a role name s such that
(d, d′) ∈ sIK and s vT ti, for i = 1, . . . , n. We summarise the consequences we require in

the proof below:

(i) if D is a Cu-concept with occurrences Si = ri,1 u . . . u ri,mi of intersections of roles,
1 ≤ i ≤ k, then T |= C v D if, and only if, there exist role names si, 1 ≤ i ≤ k, such
that si vT ri,j for 1 ≤ i ≤ k, 1 ≤ j ≤ mi and T |= C v D′, where D′ is obtained from
D by replacing Si with si.

(ii) If D is a Cu-concept, then T |= C v ∃u.D if, and only if, there exists a sequence
r′1, . . . , r

′
n such that IK |= (∃r′1. · · · ∃r′n.D)(aran) or IK |= (∃r′1. · · · ∃r′n.D)(aC). In

the first case, there exists a subconcept (ran(r) u C ′) of C (up to commutativity
and associativity of u) such that T |= ∃r.C ′ v ∃r′1. · · · ∃r′n.D. In the second case
T |= C v ∃r′1. · · · ∃r′n.D.

Now assume that C =
d

1≤i≤l ran(si)u
d

1≤j≤nAju
d

1≤k≤m ∃rk.Ck and T |= C v ∃R1.D.
Let R1, . . . , Rk be all the occurrences of role intersections in ∃R1.D, where Ri = ri,1 u . . .u
ri,mi , for 1 ≤ i ≤ k. By (i), we find role names si, 1 ≤ i ≤ k, such that si vT ri,j for
1 ≤ i ≤ k, 1 ≤ j ≤ mi and T |= C v D′, where D′ is obtained from D by replacing Ri with
si. By applying Lemma 39 to T |= C v ∃s1.D

′ and by using that t1 vT r1,j , for 1 ≤ j ≤ m1

and T |= D′ v D, we obtain that one of the conditions (e1u), (e2u), (e3u), or (e4u) must
hold.

For the second part of the lemma, we first prove by induction on n ≥ 1 for every Cran-
concept C and for every Cu-concept D with T |= C v ∃r1. · · · ∃rn.D that at least one of
the following conditions holds

(e1n) there exists a subconcept ∃r.C ′ of C such that T |= C ′ u ran(r)v D;

(e2n) there exists a concept name A in C such that T |= A v ∃u.D;

(e3n) there exists a role name r in C such that T |= ∃r.> v ∃u.D;

(e4n) there exists a role name r in C such that T |= ran(r) v ∃u.D.

For n = 1, let C be a Cran concept and D be a Cu-concept with T |= C v ∃r1.D. We
then obtain that at least one of the conditions (e1u), (e2u), (e3u), or (e4u) must hold from
the first part of the lemma, and hence, one of (e1n), (e2n), (e3n), or (e4n) is satisfied. For
n > 1, let C now be a Cran concept and D be a Cu-concept such that T |= C v ∃r1. · · · ∃rn.D.
We can apply the first part of the lemma again, and if conditions (e2u), (e3u), or (e4u) are
fulfilled, then we can conclude that conditions (e2n), (e3n), or (e4n) are also satisfied. In the
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case where (e1u) holds, there exists a subconcept ∃r.C ′ of C such that T |= C ′ u ran(r) v
∃r2. · · · ∃rn.D. From the induction hypothesis we obtain that at least one of the conditions
(e1n), (e2n), (e3n), or (e4n) is fulfilled for T |= C ′ u ran(r) v ∃r2. · · · ∃rn.D, and thus also
for T |= C v ∃r1. · · · ∃rn.D as r ∈ sig(C) and as every subconcept of C ′ is also a subconcept
of C.

Now, if T |= C v ∃u.D for a Cran-concept C and a Cu-concept D, then by (ii) we have
to distinguish between the following two cases:

• There exists a subconcept ran(r) u C ′ of C and a sequence r′1, . . . , r
′
n′ such that T |=

∃r.C ′ v ∃r′1. · · · ∃r′n′ .D. For n′ = 0, we have T |= ∃r.C ′ v D and condition (e6u)
holds. For n′ ≥ 1 we obtain that at least one of the conditions (e1n), (e2n), (e3n), or
(e4n) is satisfied. If (e1n) holds, then there exists a subconcept ∃r′.C ′′ of ∃r.C ′ such
that T |= C ′′ u ran(r′) v D. If ∃r.C ′ = ∃r′.C ′′, we have T |= C ′ u ran(r) v D. If
(C ′ u ran(r)) occurs at the top-level of the concept C, then T |= C v D holds, and
thus, condition (e5u). Otherwise, there exists a subconcept ∃s.((C ′ u ran(r)) u E) in
C and (e1u) is satisfied as T |= C ′u ran(r)uEu ran(s) v D. If ∃r.C ′ 6= ∃r′.C ′′, ∃r′.C ′′
is a subconcept of C ′ (thus, of C) and so condition (e1u) holds. Finally, if one of the
conditions (e2n), (e3n), or (e4n) is satisfied, then one of (e2u), (e3u), or (e4u) holds
by (ii).

• There exists a sequence r′1, . . . , r
′
n′ with T |= C v ∃r′1. · · · ∃r′n′ .D. For n′ = 0 condition

(e5u) holds. If n′ ≥ 1, then at least one of the conditions (e1n), (e2n), (e3n), or (e4n)
holds. Then, by (ii), we can conclude that one of the conditions (e1u), (e2u), (e3u),
or (e4u) is satisfied as well.

We give the translation of Cu,u-assertions to conjunctive queries. It is similar to the
construction of an ABox from a Cran-concept given in Section 5.1. First, given a Cu-concept
C, we define a path in C as a finite sequence C0 ·R1 · C1 . . . Rn · Cn, where C0 = C, n ≥ 0,
and ∃Ri+1.Ci+1 is a conjunct of Ci, for 1 ≤ i < n (Ri are conjunctions of role names). Let
xp for p ∈ paths(C) be pairwise distinct variable names and set

XC = { s(xp, xq) | p, q ∈ paths(C); q = p ·R · C ′, s conjunct of R }
∪ {A(xp) | A is a conjunct of tail(p), p ∈ paths(C) }

Let ~x be the sequence of all variables in XC except xC . Then the conjunctive query qC,a is
obtained from ∃~x.

∧
ϕ∈XC ϕ by replacing xC with a. Finally, for D = D0u∃u.D1u· · ·u∃u.Dk

we obtain the conjunctive query qD,a from ∃~x.(
∧

0≤i≤k
∧
ϕ∈XDi

ϕ), (we assume that distinct

variables are used in every XDi , 0 ≤ i ≤ k, and that ~x is a sequence of all variables except
xD0) by replacing xD0 with a.

To prove Lemma 63 we require some preparation. Query answering is closely related to
the existence of certain homomorphisms between interpretations. Let Σ be a signature, O
a set of individual names, and I1, I2 interpretations. A function f : ∆I1 → ∆I2 is called a
(O,Σ)-homomorphism if

• f(aI1) = f(aI2) for all a ∈ O;
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• d ∈ AI1 implies f(d) ∈ AI2 for all A ∈ Σ;

• (d1, d2) ∈ rI1 implies (f(d1), f(d2)) ∈ rI2 for all r ∈ Σ.

It is known (Chandra & Merlin, 1977) that if there exists a (O,Σ)-homomorphism from I1

to I2 and I1 |= q[~a] for a conjunctive Σ-query q using only individual names from O and
~a = a1, . . . , ak from O, then I2 |= q[~a].

For the proof below we slightly refine the notion of an (O,Σ)-homomorphism by consid-
ering partial (O,Σ)-homomorphisms with domains that satisfy certain conditions. Namely,
for every n ≥ 0, we will call a partial (O,Σ)-homomorphism a level n homomorphism if its
domain contains all elements reachable by a Σ-role chain of length at most n from either
a named individual or from an element without a Σ-predecessor. We then prove that if
for every ELran,u,u-inclusion C v D with depth(C), depth(D) ≤ n, T1 |= C v D implies
T2 |= C v D, then there exists a such a partial level n homomorphism from a certain model
of (T1,A) to a certain model of (T2,A).

We consider such partial homomorphisms on certain interpretations only, which we
introduce first. Let O be a finite set of individual names and I an interpretation. d ∈ ∆I

is called O-named if there exists a ∈ O with d = aI . A model I is called an O-forest if

(F1) for every d ∈ ∆I which is not O-named, there exists at most one d′ ∈ ∆I such that
(d′, d) ∈

⋃
r∈NR

rI ;

(F2) there are no infinite sequences d0, d1, . . . with (di+1, di) ∈
⋃
r∈NR

rI for all i ≥ 0 such
that no di is O-named.

(F3) if (d, d′) ∈
⋃
r∈NR

rI and d′ is O-named, then d is O-named.

Let O be a finite set of individual names, n ≥ 0, and Σ a signature. A partial function f
from an O-forest I to a model I ′ is called an (O,n,Σ)-homomorphism if

(H1) for all a ∈ O: aI is in the domain of f and f(aI) = aI
′
;

(H2) for all d, d′ in the domain of f and r ∈ Σ: (d, d′) ∈ rI implies (f(d), f(d′)) ∈ rI′ ;

(H3) for all d in the domain of f and A ∈ Σ: d ∈ AI implies f(d) ∈ AI′ ;

(H4) for all d if there does not exist a chain d1, . . . , dm = d with (di, di+1) ∈
⋃
r∈Σ r

I of
length m > n of not O-named di, then d is in the domain of f .

Now one can prove the following

Lemma 70. Suppose I is an O-forest, I ′ an interpretation and for every m > 0 there
exists a (O,m,Σ)-homomorphism from I to I ′. Assume as well that I |= q[~a] with q a
conjunctive Σ-query using only individual names from O and ~a = a1, . . . , ak from O. Then
I ′ |= q[~a].

Proof. Assume that ~a is a π-match of I and q(~x) = ∃~y.q′(~x, ~y) such that ~a consists of
elements of O. By (F2) and (F3) in the definition of O-forests and (H1) and (H4) in the
definition of partial homomorphisms, there exists m > 0 such that all π(v), v from ~x ∪ ~y,
are in the domain of any (O,m,Σ)-homomorphism f . Take a (O,m,Σ)-homomorphism f .
Then ~a is a π′-match of q(~x) and I ′, where π′(v) = f(π(v)), for all v ∈ ~x ∪ ~y.
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Finally, we also need a technique for constructing (O,m,Σ)-homomorphisms. Let I be
an interpretation. For each d ∈ ∆I and m > 0, let

tm,Σ,uI (d) = {C ∈ CuΣ | depth(C) ≤ m, d ∈ CI},

where, as above, depth(C) is the role-depth of C; i.e., the number of nestings of existential
restrictions in C.

Lemma 71. Let Σ be a finite signature and let m > 0 Suppose I is an O-forest and I ′ an
interpretation such that

(in0) (aI , bI) ∈ rI implies (aI
′
, bI

′
) ∈ rI′, for all a, b ∈ O and r ∈ Σ;

(in1) tm,Σ,uI (aI) ⊆ tm,Σ,uI′ (aI
′
), for all a ∈ O;

(in2) for all d ∈ ∆I there exists d′ ∈ ∆I
′

such that tm,Σ,uI (d) ⊆ tm,Σ,uI′ (d′);

Then there exists a (O,m,Σ)-homomorphism g from I to I ′.

Proof. We construct g by constructing a sequence of functions f0, . . . , fm, where fi : I → I ′,
as follows: the domain dom(f0) of f0 consists of all aI with a ∈ O and all d ∈ ∆I such that
there does not exist a d′ with (d′, d) ∈

⋃
r∈Σ r

I . For aI with a ∈ O we set f0(aI) = aI
′
.

For every remaining d ∈ dom(f0) choose a d′ according to (in2) and set f0(d) = d′. Observe
that tm,Σ,uI (d) ⊆ tm,Σ,uI′ (f0(d)) for all d ∈ dom(f0).

Now suppose that fn has been constructed and

(in3) tm−n,Σ,uI (d) ⊆ tm−n,Σ,uI′ (fn(d)) for all d ∈ dom(fn);

(in4) for n > 0: d ∈ dom(fn) if, and only if, d is not O-named and there exists a sequence
d0r
I
1 d1r

I
2 · · · rIndn = d of which at most d0 is O-named such that ri ∈ Σ and d0 ∈

dom(f0).

To construct fn+1 consider a d ∈ dom(fn) and a not O-named d′ such that (d, d′) ∈
⋃
r∈Σ r

I .
The domain of fn+1 consists of all such d′. Let Rd,d′ = {r ∈ Σ | (d, d′) ∈ rI} and Rud,d′ =
(
d
r∈Rd,d′

r). Then

∃Rud,d′ .
l

D∈tm−n−1,Σ,u
I (d′)

D ∈ tm−n,Σ,uI (d)

By (in3),

∃Rud,d′ .
l

D∈tm−n−1,Σ,u
I (d′)

D ∈ tm−n,Σ,uI′ (fn(d))

Thus, we can choose an e with (fn(d), e) ∈ rI
′

for all r ∈ Rd,d′ and tm−n−1,Σ,u
I (d′) ⊆

tm−n−1,Σ,u
I′ (e) and set fn+1(d′) = e. This defines fn+1. Observe further that fn+1 is well-

defined by (F1). Observe that fn+1 has the properties (in3) and (in4), by (F3).

Now we set g =
⋃

0≤n≤m fm. It is readily checked that g is as required.
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We are now in the position to prove Lemma 63.

Lemma 63 If ϕ ∈ qDiffΣ(T1, T2), then there exists ϕ′ ∈ cDiffran,u,u
Σ (T1, T2) with sig(ϕ′) ⊆

sig(ϕ).

Proof. Assume T1 and T2 are given and let (A, q(~a)) ∈ qDiffΣ(T1, T2). Let Σ′ = sig(A) ∪
sig(q). Assume that, in contrast to what is to be shown,

(∗) T1 |= α ⇒ T2 |= α

for all ELran,u,u-inclusions α with sig(α) ⊆ Σ′.
Consider a model I ′ of (T2,A) with I ′ 6|= q[~a]. By Lemma 70, we obtain a contradiction

if there exists an obj(A)-forest I which is a model of (T1,A) and such that for every n > 0
there exists an (obj(A), n,Σ′)-homomorphism fn from I to I ′.

Take, for every a ∈ obj(A) a model I ′a of T1 with da ∈ ∆I
′
a such that for all Cran ∪ Cu,u-

concepts C:
da ∈ CI

′
a ⇔ T1 ∪ tI′(a) |= C

where
tI′(a) = {C ∈ CranΣ′ | aI

′ ∈ CI′}.

Such interpretations I ′a exist by Lemma 67. We now define the unfolding Ia of I ′a. A path
in I ′a is a finite sequence d0R1d1 . . . Rndn, n ≥ 0, such that Ri+1 =

d
Ri+1 for a set Ri+1

of role names with r ∈ Ri+1 iff (di, di+1) ∈ rI′a , for all i < n. For a path p, tail(p) denotes
the last element of p. Now let ∆Ia consist of all paths in I ′a and set

• AIa = {p ∈ ∆Ia | tail(p) ∈ AI′a};

• rIa = {(d, dRd′) ∈ ∆Ia ×∆Ia | r ∈ R}.

Then Ia is an O-forest for O = ∅. Moreover, for all Cu,u-concepts C and all p ∈ Ia:

(∗∗) p ∈ CIa ⇔ tail(p) ∈ CI′a .

In particular, Ia is still a model of T1.
Take the following (disjoint) union I of the interpretations Ia:

• ∆I =
⋃
a∈obj(A) ∆Ia ;

• AI =
⋃
a∈obj(A)A

Ia , for A ∈ NC;

• rI =
⋃
a∈obj(A) r

Ia ∪ {(da, db) | r′(a, b) ∈ A, r′ vT1 r}, for r ∈ NR;

• aI = da, for a ∈ obj(A).

We show that I is an obj(A)-forest, a model of (T1,A) and that there exist (obj(A), n,Σ)-
homomorphisms from I to I ′ for all n > 0. First observe the following:

Claim 1. For all EL concepts C and d ∈ ∆Ia :

d ∈ CI ⇔ d ∈ CIa
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The proof is by induction on the construction of C. The interesting case is C = ∃r.D and
the direction from left to right. Assume that d ∈ CI ∩ ∆Ia . Take d′ with (d, d′) ∈ rI

and d′ ∈ DI . For (d, d′) ∈
⋃
a′∈obj(A) r

Ia′ , d ∈ CIa follows immediately from the induction

hypothesis. Otherwise, d = da, d
′ = db for some b with r′(a, b) ∈ A and r′ vT1 r. By the

induction hypothesis, d′ ∈ DIb . Hence, by (∗∗), T1 ∪ tI′(b) |= D. By compactness, there
exists a concept E ∈ tI′(b) such that T1 |= E v D. We obtain ∃r′.E ∈ tI′(a). But then
T1 |= ∃r′.E v ∃r′.D and we obtain da ∈ CIa using r′ vT1 r and (∗∗).

Claim 2. I is an obj(A)-forest and a model of (T1,A).

That I is an obj(A)-forest and a model of A follows from the construction. It remains to
show that I is a model of T1. For role inclusions r v s ∈ T1 it follows from the construction
that rI ⊆ sI . Suppose C1 v C2 ∈ T1. If C1 is an EL-concept, then I |= C1 v C2 follows
from Claim 1 and the condition that the Ia are models of T1. Now assume that C1 = ran(r)
and let d ∈ ran(r)I . If d 6= da for any a, then d ∈ CI2 since the Ia are models of T1. If d = da,
there exists r′(b, a) ∈ A with r′ vT1 r. We have ran(r′) ∈ tI′(a), and so T1 ∪ tI′(a) |= C2.
Hence, by (∗∗), da ∈ CIa2 , i.e. da ∈ CI2 by Claim 1.

Claim 3. For every n > 0 there exists an (obj(A), n,Σ′)-homomorphism from I to I ′.

By Lemma 71, it is sufficient to show conditions (in0), (in1), and (in2). Condition (in0)
follows directly from (∗). Condition (in1) is proved by induction on the construction of C.
The interesting step is for C = ∃S.D with S = r1 u · · · u rm. Let a ∈ obj(A) and C ∈
tn,Σ

′,u
I (aI). Take d′ with (aI , d′) ∈ SI and d′ ∈ DI . If d′ ∈ ∆Ia , then, by (∗∗), T1∪ tI′(a) |=
∃S.D. By (∗) and compactness, T2 ∪ tI′(a) |= ∃S.D. Hence C ∈ tn,Σ

′,u
I′ (aI

′
). Now assume

d′ 6∈ ∆Ia . Then there are r′1, . . . , r
′
k and b with d′ = bI such that r′i(a, b) ∈ A for 1 ≤ i ≤ k

and for every 1 ≤ i ≤ m there exists an 1 ≤ j ≤ m with r′j vT1 ri. We have D ∈ tn,Σ
′,u

I (bI).

By the induction hypothesis D ∈ tn,Σ
′,u

I′ (bI
′
). By (∗), for every 1 ≤ j ≤ m there exists an

1 ≤ j ≤ k with r′j vT2 ri. But then C ∈ tn,Σ
′,u

I′ (aI
′
), as required.

For (in2), let d ∈ ∆I and C =
d
D∈tn,Σ

′,u
I (d)

D. If d 6= aI for any a ∈ obj(A), then

by (∗∗) there exists b ∈ obj(A) such that T1 ∪ tI′(b) |= ∃u.C. By compactness and (∗),
T2 ∪ tI′(b) |= ∃u.C. Hence, there exists d′ ∈ ∆I

′
with tn,Σ

′,u
I (d) ⊆ tn,Σ

′,u
I′ (d′), as required. If

d = aI for some a ∈ obj(A), then, by (in1) shown above, d′ = aI
′

is as required.

This finishes the proof of Lemma 63.
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