
Journal of Artificial Intelligence Research 44 (2012) 275-333 Submitted 12/11; published 6/12

Algorithms for Generating Ordered Solutions for Explicit
AND/OR Structures

Priyankar Ghosh priyankar@cse.iitkgp.ernet.in

Amit Sharma amit.ontop@gmail.com

P. P. Chakrabarti ppchak@cse.iitkgp.ernet.in

Pallab Dasgupta pallab@cse.iitkgp.ernet.in

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Kharagpur-721302, India

Abstract

We present algorithms for generating alternative solutions for explicit acyclic AND/OR
structures in non-decreasing order of cost. The proposed algorithms use a best first search
technique and report the solutions using an implicit representation ordered by cost. In this
paper, we present two versions of the search algorithm – (a) an initial version of the best first
search algorithm, ASG, which may present one solution more than once while generating
the ordered solutions, and (b) another version, LASG, which avoids the construction of the
duplicate solutions. The actual solutions can be reconstructed quickly from the implicit
compact representation used. We have applied the methods on a few test domains, some of
them are synthetic while the others are based on well known problems including the search
space of the 5-peg Tower of Hanoi problem, the matrix-chain multiplication problem and
the problem of finding secondary structure of RNA. Experimental results show the efficacy
of the proposed algorithms over the existing approach. Our proposed algorithms have
potential use in various domains ranging from knowledge based frameworks to service
composition, where the AND/OR structure is widely used for representing problems.

1. Introduction

The use of AND/OR structures for modeling and solving complex problems efficiently
has attracted a significant amount of research effort over the last few decades. Initially,
AND/OR search spaces were mostly used in problem reduction search for solving complex
problems, logical reasoning and theorem proving, etc., where the overall problem can be
hierarchically decomposed into conjunction and disjunction of subproblems (Pearl, 1984;
Nilsson, 1980). Subsequently, AND/OR structures were also applied in a variety of do-
mains, e.g., for representing assembly plans (Homem de Mello & Sanderson, 1990), gener-
ating VLSI floor-plans (Dasgupta, Sur-Kolay, & Bhattacharya, 1995), puzzle solving (Fuxi,
Ming, & Yanxiang, 2003), etc. Traditionally the algorithm AO* (Pearl, 1984; Nilsson, 1980;
Martelli & Montanari, 1978, 1973; Chang & Slagle, 1971) has been used for searching im-
plicitly defined AND/OR structures. An empirical study of AO* can be found in Bonet
and Geffner’s (2005) work.

In the recent past there has been a renewed research interest towards the application
of AND/OR structures. In various planning problems, including conditional planning to
handle uncertainty, the AND/OR structure (Russell & Norvig, 2003) is a natural form

c©2012 AI Access Foundation. All rights reserved.

Ghosh, Sharma, Chakrabarti, & Dasgupta

for representation. The problem of generating solutions for such representations has been
studied extensively (Hansen & Zilberstein, 2001; Jiménez & Torras, 2000; Chakrabarti,
1994). Dechter and Mateescu (2007) have presented the explicit AND/OR search space
perspective for graphical models. Different search strategies (best first, branch and bound,
etc.) over the AND/OR search spaces in graphical models are discussed by Marinescu and
Dechter (2007b, 2006). AND/OR search spaces are also used for solving mixed integer
linear programming (Marinescu & Dechter, 2005), 0/1 integer Programming (Marinescu
& Dechter, 2007a), combinatorial optimization in graphical models (Marinescu & Dechter,
2009a, 2009b). AND/OR Multivalued Decision Diagrams (AOMDD), which combine the
idea of Multi-Valued Decision Diagrams(MDD) and AND/OR structures, is presented by
Mateescu, Dechter, and Marinescu (2008) and further research along this direction can
be found in the work of Mateescu and Dechter (2008). AND/OR search spaces are also
applied for solution sampling and counting (Gogate & Dechter, 2008). Smooth Determin-
istic Decomposable Negative Normal Forms (sd-DNNF) (Darwiche, 2001) exhibit explicit
AND/OR DAG structure and have been used for various applications including compiling
knowledge (Darwiche, 1999), estimating belief states (Elliott & Williams, 2006), etc.

Apart from the domains of planning, constraint satisfaction, knowledge based reasoning,
etc., AND/OR structure based techniques are also widely used for various application based
domains, e.g., web service composition (Gu, Xu, & Li, 2010; Shin, Jeon, & Lee, 2010; Gu,
Li, & Xu, 2008; Ma, Dong, & He, 2008; Yan, Xu, & Gu, 2008; Lang & Su, 2005), vision
and graphics tasks (Chen, Xu, Liu, & Zhu, 2006), etc. Lang and Su (2005) have described
an AND/OR graph search algorithm for composing web services for user requirements. Ma
et al. (2008) have advocated the use of AND/OR trees to capture dependencies between the
inputs and outputs of the component web services and propose a top-down search algorithm
to generate solutions of the AND/OR tree. Further research that uses AND/OR structures
in the context of web service composition can be found in the works of Gu et al. (2010,
2008), Shin et al. (2010) and Yan et al. (2008). Chen et al. (2006) have applied explicit
AND/OR structures for cloth modeling and recognition which is an important problem in
vision and graphics tasks.

Such recent adoption of AND/OR search spaces for a wide variety of AI problems
warrants further research towards developing suitable algorithms for searching AND/OR
structures from different perspectives. In the general setting, the fundamental problem
remains to find the minimum cost solution of AND/OR structures. For a given explicit
AND/OR graph structure, the minimum cost solution is computed using either a top-
down or a bottom-up approach. These approaches are based on the principle of dynamic
programming and have complexity which is linear with respect to the size of the search
space. Finding a minimum cost solution of an explicit AND/OR structure is a fundamental
step for the approaches that use an implicit representation and systematically explore the
search space. This is particularly the case for AO* (Nilsson, 1980) where the potential
solution graph (psg) is recomputed every time from the current explicit graph after a node
is expanded. In view of recent research where AND/OR structures are used and leveraged
in a wide variety of problems ranging from planning domain to web service composition,
the need for generating an ordered set of solutions of a given AND/OR structure becomes
imminent. We briefly mention some areas where ordered solutions are useful.

276

Generating Ordered Solutions for Explicit AND/OR Structures

Ordered set of solutions of an explicit AND/OR DAG can be used to develop useful
variants of the AO* algorithm. Currently in AO*, only the minimum cost solution is com-
puted whereas several variants of the A* algorithm exist, where solutions are often sought
within a factor of cost of the optimal solution. These approaches (Ebendt & Drechsler, 2009;
Pearl, 1984) were developed to adapt the A* algorithm for using inadmissible heuristics,
leveraging multiple heuristics (Chakrabarti, Ghose, Pandey, & DeSarkar, 1989), generating
solutions quickly within bounded sub-optimality, etc. Typically these techniques order the
Open list using one evaluation function, and the next element for expansion is selected from
an ordered subset of Open using some other criterion. Similar techniques can be developed
for AO* search if ordered set of potential solutions are made available. That set can be
used for node selection and expansion instead of expanding nodes only from the current
best psg. This opens up an interesting area with significant research potential where the
existing variations of the A* algorithm can be extended for AND/OR search spaces.

In the context of model based programming, the problem of finding ordered set of
solutions has significant importance. Elliott (2007) has used valued sd-DNNFs to represent
the problem and proposed an approach to generate k-best solutions. Since valued sd-DNNFs
have an AND/OR structure, the proposed approach is possibly the earliest algorithm for
generating ordered set of solutions of an AND/OR structure. The problem of finding
ordered set of solutions for graphical models is studied by Flerova and Dechter (2011, 2010).
However these techniques use alternative representations for the algorithm, where AND/OR
search spaces can be constructed (Dechter & Mateescu, 2007) for graphical models. Recent
research involving AOMDD based representation on weighted structures suggested future
extensions towards generalizing Algebraic Decision Diagrams and introduces the notion of
cost in AOMDDs. We envisage that ordered set of solutions finds useful applications in the
context of research around AND/OR decision diagram based representation.

In the domain of service composition, the primary motivation behind providing a set of
alternative solutions ordered by cost is to offer more choices, while trading off the specified
cost criterion (to a limited extent) in favor of other ‘unspecified’ criteria (primarily from
the standpoint of quality). Shiaa, Fladmark, and Thiell (2008) have presented an approach
for generating a ranked set of solutions for the service composition problem. Typically the
quality criteria are subjective in nature and difficult to express in terms of a single scalar cost
function which is able to combine the cost/price and the quality aspects together. These
aspects of quality are often encountered in the context of serving custom user requirements
where the user prefers to minimize the cost/price of the solution while preserving his/her
preferences. For example, for booking a holiday package for a specific destination, a travel
service portal typically offers a list of packages with various combinations of attractions,
hotel options and meal plans ordered by a single cost criterion, namely, the cost of the
package. In general any product/solution that is composed of a number of components has
a compositional flavor similar to service composition and it becomes important to present
the user a set of alternative solutions ordered by cost so that he/she can select the best
alternative according to his/her preferences.

Dynamic programming formulations typically have an underlying AND/OR DAG struc-
ture, which had been formally studied in the past (Martelli & Montanari, 1973). Besides
classical problems like matrix chain multiplication, many other real world optimization prob-
lems offer dynamic programming formulations, where alternative solutions ordered by cost

277

Ghosh, Sharma, Chakrabarti, & Dasgupta

are useful in practice. One example of such a problem is finding the secondary structure of
RNA (Mathews & Zuker, 2004) which is an important problem in Bioinformatics. RNAs
may be viewed as sequences of bases belonging to the set {Adenine(A), Cytocine(C), Gua-
nine(G), Uracil(U)}. RNA molecules tend to loop back and form base pairs with itself and
the resulting shape is called the secondary structure. The primary factor that influences the
secondary structure of RNA is the number of base pairings (higher number of base pair-
ings generally implies more stable secondary structure). Under the well established rules
for base pairings, the problem of maximizing the number of base pairings has an interest-
ing dynamic programming formulation. However, apart from the number of base pairings,
there are other factors that influence the stability, but these factors are typically evaluated
experimentally. Therefore, for a given RNA sequence, it is useful to compute a pool of
candidate secondary structures (in decreasing order of the number of base pairings) that
may be subjected to further experimental evaluation in order to determine the most stable
secondary structure.

The problem of generating ordered set of solutions is well studied in other domains.
For discrete optimization problems, Lawler (1972) had proposed a general procedure for
generating k-best solutions. A similar problem of finding k most probable configurations in
probabilistic expert systems is addressed by Nilsson (1998). Fromer and Globerson (2009)
have addressed the problem of finding k maximum probability assignments for probabilis-
tic modeling using LP relaxation. In the context of ordinary graphs, Eppstein (1990) has
studied the problem of finding k-smallest spanning trees. Subsequently, an algorithm for
finding k-best shortest paths has been proposed in Eppstein’s (1998) work. Hamacher and
Queyranne (1985) have suggested an algorithm for k-best solutions to combinatorial op-
timization problems. Algorithms for generating k-best perfect matching are presented by
Chegireddy and Hamacher (1987). Other researchers applied the k-shortest path problem
to practical scenarios, such as, routing and transportation, and developed specific solutions
(Takkala, Borndörfer, & Löbel, 2000; Subramanian, 1997; Topkis, 1988; Sugimoto & Katoh,
1985). However none of the approaches seems to be directly applicable for AND/OR struc-
tures. Recently some schemes related to ordered solutions to graphical models (Flerova &
Dechter, 2011, 2010) and anytime AND/OR graph search (Otten & Dechter, 2011) have
been proposed. Anytime algorithms for traditional OR search space (Hansen & Zhou, 2007)
are well addressed by the research community.

In this paper, we address the problem of generating ordered set of solutions for explicit
AND/OR DAG structure and present new algorithms. The existing method, proposed
by Elliott (2007), works bottom-up by computing k-best solutions for the current node
from the k-best solutions of its children nodes. We present a best first search algorithm,
named Alternative Solution Generation (ASG) for generating ordered set of solutions. The
proposed algorithm maintains a list of candidate solutions, initially containing only the
optimal solution, and iteratively generates the next solution in non-decreasing order of cost
by selecting the minimum cost solution from the list. In each iteration, this minimum cost
solution is used to construct another set of candidate solutions, which is again added to the
current list. We present two versions of the algorithm –

a. Basic ASG (will be referred to as ASG henceforth) : This version of the algorithm
may construct a particular candidate solution more than once;

278

Generating Ordered Solutions for Explicit AND/OR Structures

b. Lazy ASG or LASG : Another version of ASG algorithm that constructs every candi-
date solution only once.

In these algorithms, we use a compact representation, named signature, for storing the
solutions. From the signature of a solution, the actual explicit form of that solution can
be constructed through a top-down traversal of the given DAG. This representation allows
the proposed algorithms to work in a top-down fashion starting from the initial optimal
solution. Another salient feature of our proposed algorithms is that these algorithms work
incrementally unlike the existing approach. Our proposed algorithms can be interrupted at
any point of time during the execution and the set of ordered solutions obtained so far can
be observed and subsequent solutions will be generated when the algorithms are resumed
again. Moreover, if an upper limit estimate on the number of solutions required is known a
priori, our algorithms can be further optimized using that estimate.

The rest of the paper is organised as follows. The necessary formalisms and definitions
are presented in Section 2. In Section 3, we address the problem of generating ordered set of
solutions for trees. Subsequently in Section 4, we address the problem of finding alternative
solutions of explicit acyclic AND/OR DAGs in non-decreasing order of cost. We present two
different solution semantics for AND/OR DAGs and discuss the existing approach as well as
our proposed approach, along with a comparative analysis. Detailed experimental results,
including the comparison of the performance of the proposed algorithms with the existing
algorithm (Elliott, 2007), are presented in Section 5. We have used randomly constructed
trees and DAGs as well as some well-known problem domains including the 5-peg Tower
of Hanoi problem, the matrix-chain multiplication problem and the problem of finding
the secondary structure of RNA as test domain. The time required and the memory used
for generating a specific number of ordered solutions for different domains are reported in
detail. In Section 6, we outline briefly about applying the proposed algorithms for implicitly
specified AND/OR structures. Finally we present the concluding remarks in Section 7.

2. Definitions

In this section, we describe the terminology of AND/OR trees and DAGs followed by other
definitions that are used in this paper. Gαβ = 〈V,E〉 is an AND/OR directed acyclic graph,
where V is the set of nodes and E is the set of edges. Here α and β in Gαβ refer to the
AND nodes and OR nodes in the DAG respectively. The direction of edges in Gαβ is from
the parent node to the child node. The nodes of Gαβ with no successors are called terminal
nodes. The non-terminal nodes of Gαβ are of two types – i) OR nodes and ii) AND nodes .
Vα and Vβ are the set of AND and OR nodes in Gαβ respectively, and nαβ = |V |, nα = |Vα|,
and nβ = |Vβ |. The start (or root) node of Gαβ is denoted by vR. OR edges and AND edges
are the edges that emanate from OR nodes and AND nodes respectively.

Definition 2.a [Solution Graph] A solution graph, S(vq), rooted at any node vq ∈ V , is a
finite sub-graph of Gαβ defined as:

a. vq is in S(vq);
b. If v′q is an OR node in Gαβ and v′q is in S(vq), then exactly one of its immediate

successors in Gαβ is in S(vq);
c. If v′q is an AND node in Gαβ and v′q is in S(vq), then all its immediate successors in

Gαβ are in S(vq);

279

Ghosh, Sharma, Chakrabarti, & Dasgupta

d. Every maximal (directed) path in S(vq) ends in a terminal node;
e. No node other than vq or its successors in Gαβ is in S(vq).

By a solution graph S of Gαβ we mean a solution graph with root vR. ⊓⊔
Definition 2.b [Cost of a Solution Graph] In Gαβ , every edge eqr ∈ E from node vq to
node vr has a finite non-negative cost ce(〈vq, vr〉) or ce(eqr). Similarly every node vq has a
finite non-negative cost denoted by cv(vq). The cost of a solution S is defined recursively
as follows. For every node vq in S, the cost C(S, vq) is:

C(S, vq) =







cv(vq), if vq is a terminal node;

cv(vq) +
{
C(S, vr) + ce(〈vq, vr〉)

}
, where vq is an OR node, and

vr is the successor of vq in S;

cv(vq) +
∑{

C(S, vj) + ce(〈vq, vj〉)
}
, where 1 ≤ j ≤ k, vq is an AND node

with degree k, and v1, . . . , vk are the immediate successors of vq in S.

Therefore the cost of a solution S is C(S, vR) which is also denoted by C(S). We denote
the optimal solution below every node vq as opt(vq). Therefore, the optimal solution of the
entire AND/OR DAG Gαβ , denoted by Sopt, is opt(vR). The cost of the optimal solution
rooted at every node vq in Gαβ is Copt(vq), which is defined recursively (for minimum cost
objective functions) as follows:

Copt(vq) =







cv(vq), if vq is a terminal node;

cv(vq) +min
{
Copt(vj) + ce(〈vq, vj〉)

}
, where 1 ≤ j ≤ k, vq is an OR node

with degree k, and v1, . . . , vk are the immediate successors of vq in Gαβ ;

cv(vq) +
∑{

Copt(vj) + ce(〈vq, vj〉)
}
, where 1 ≤ j ≤ k, vq is an AND node

with degree k, and v1, . . . , vk are the immediate successors of vq in Gαβ .

The cost of the optimal solution Sopt of Gαβ is denoted by Copt(vR) or, alternatively, by
Copt(Sopt). When the objective function needs to be maximized, instead of themin function,
the max function is used in the definition of Copt(vq). ⊓⊔

It may be noted that it is possible to have more than one solution below an OR node
vq to qualify to be the optimal one, i.e., when they have the same cost, and that cost is the
minimum. Ties for the optimal solution below any such OR node vq are resolved arbitrarily
and only one among the qualifying solutions (determined after tie-breaking) is marked as
opt(vq).

An AND/OR tree, Tαβ = 〈V,E〉, is an AND/OR DAG and additionally satisfies the
restrictions of a tree structure i.e., there can be at most one parent node for any node vq
in Tαβ. In the context of AND/OR trees, we use eq to denote the edge that points to

the vertex vq. An alternating AND/OR tree, T̂αβ = 〈V,E〉, is an AND/OR tree with the
restriction that there is an alternation between the AND nodes and the OR nodes. Every
child of an AND node is either an OR node or a terminal node, and every children of an OR
node is either an AND node or a terminal node. We use the term solution tree to denote
the solutions of AND/OR trees.

We also discuss a different solution semantics, namely tree based semantics, for AND/OR
DAGs. Every AND/OR DAG can be converted to an equivalent AND/OR tree by traversing

280

Generating Ordered Solutions for Explicit AND/OR Structures

the intermediate nodes in reverse topological order and replicating the subtree rooted at
every node whenever the in-degree of the traversed node is more than 1. The details are
shown in Procedure ConvertDAG. Suppose an AND/OR DAG Gαβ is converted to an
equivalent AND/OR tree Tαβ . We define the solutions of Tαβ as the solutions of Gαβ under
tree based semantics.

Procedure ConvertDAG(Gαβ)

input : An AND/OR DAG Gαβ

output: An equivalent AND/OR tree Tαβ

Construct a list M , of non-terminal nodes of Gαβ , sorted in the reverse topological1

order;
while M is not empty do2

vq ← Remove the first element of M ;3

/* Suppose Ein(vq) is the list of incoming edges of vq */
if InDegree(vq) > 1 then4

for i← 2 to InDegree(vq) do5

et ← Ein(vq)[i];6

Replicate the sub-tree rooted at vq with v′q as the root;7

Modify the target node of et from vq to v′q;8

end9

end10

end11

In this paper we use the solution semantics defined in Definition 2.a as the default
semantics for the solutions of AND/OR DAGs. When the tree based semantics is used, it
is explicitly mentioned.

2.1 Example

v12, 34

v23, 29

〈3〉

v3

35

〈2〉

v42, 37

〈1〉

v52, 8

〈5〉

v6

12

〈1〉

v73, 11

〈4〉

v84, 17

〈3〉

v9

5

〈1〉

v10

7

〈2〉

v11

6

〈2〉

v12

9

〈3〉

v13

12

〈1〉

v14

15

〈1〉

v15

20

〈2〉

Figure 1: Alternating AND/OR Tree

v1 2, 89

v2 3, 43

〈1〉

v3 2, 41

〈2〉

v4

40

〈1〉

v5 2, 35

〈5〉 〈4〉

v6

52

〈1〉

v7 3, 9

〈4〉

v8

17

〈3〉

v9

5

〈1〉

v10

7

〈2〉

Figure 2: AND/OR DAG

281

Ghosh, Sharma, Chakrabarti, & Dasgupta

We present an example of an alternating AND/OR tree in Figure 1. In the figure, the
terminal nodes are represented by a circle with thick outline. AND nodes are shown in the
figures with their outgoing edges connected by a semi-circular curve in all the examples.
The edge costs are shown by the side of each edge within an angled bracket. The cost of the
terminal nodes are shown inside a box. For every non-terminal node vq, the pair of costs,
cv(vq) and Copt(vq), is shown inside a rectangle.

In Figure 1 the optimal solution below every node is shown using by thick dashed edges
with an arrow head. The optimal solution of the AND/OR tree can be traced by following
these thick dashed edges from node v1. The cost of the optimal solution tree is 34. Also,
Figure 2 shows an example of a DAG; the cost of the optimal solution DAG is 89.

3. Generating Ordered Solutions for AND/OR Trees

In this section we address the problem of generating ordered solutions for trees. We use
the notion of alternating AND/OR trees, defined in Section 2, to present our algorithms.
An alternating AND/OR tree presents a succinct representation and so the correctness
proofs are much simpler for alternating AND/OR trees. In Appendix C we show that every
AND/OR tree can be converted to an equivalent alternating AND/OR tree with respect to
the solution space.

It is worth noting that the search space of some problems (e.g. the search space of multi-
peg Tower of Hanoi problem) exhibit the alternating AND/OR tree structure. Moreover, the
algorithms that are presented for alternating AND/OR trees work without any modification
for general AND/OR trees. In this section, first we present the existing algorithm (Elliott,
2007) briefly, and then we present our proposed algorithms in detail.

3.1 Existing Bottom-Up Evaluation Based Method for Computing Alternative
Solutions

We illustrate the working of the existing method that is proposed by Elliott (2007) for
computing alternative solutions for trees using an example of an alternating AND/OR tree.
This method (will be referred as BU henceforth) computes the k-best solutions in a bottom-
up fashion. At every node, vq, k-best solutions are computed from the k-best solutions of
the children of vq. The overall idea is as follows.

a. For an OR node vq, a solution rooted at vq is obtained by selecting a solution of a
child. Therefore k-best solutions of vq are computed by selecting the top k solutions
from the entire pool consisting of all solutions of all children.

b. In the case of AND nodes, every child of an AND node vq will have at most k solutions.
A solution rooted at an AND node vq is obtained by combining one solution from every
child of vq. Different combinations of the solutions of the children nodes of vq generate
different solutions rooted at vq. Among those combinations, top k combinations are
stored for vq.

In Figure 3 we show the working of the existing algorithm. At every intermediate node
2-best solutions are shown within rounded rectangle. At every OR node vq, the ith-best
solution rooted at vq is shown as a triplet of the form – i

︸︷︷︸
: < child, solidx >
︸ ︷︷ ︸

, cost
︸︷︷︸

. For

example, at node v1 the second best solution is shown as – 2 : 〈v2, 2〉, 37; which means

282

Generating Ordered Solutions for Explicit AND/OR Structures

that the 2nd best solution rooted at v1 is obtained by selecting the 2nd best solution of v2.
Similarly, at every AND node vq, the ith solution rooted at vq is shown as a triplet of the
form – i : |sol vec|, cost triplets. Here sol vec is a comma separated list of solution indices
such that every element of sol vec corresponds to a child of vq. The jth element of sol vec
shows the index of the solution of jth child. For example, the 2nd best solution rooted at v2
is shown as – 2 : |2, 1|, 32. This means the 2nd best solution rooted at v2 is computed using
the 2nd best solution of the 1st child (which is v5) and the best solution (1st) of the 2nd

child (which is v6). Which index of sol vec corresponds to which child is shown by placing
the child node name above every index position.

v12, 34

1 : 〈v2, 1〉, 34
2 : 〈v2, 2〉, 37

v23, 29

〈3〉

v5 v6
1 : |1, 1|, 29
2 : |2, 1|, 32

v3

35

〈2〉

v42, 37

〈1〉

v7 v8
1 : |1, 1|, 37
1 : |1, 2|, 40

v52, 8

〈5〉

1 : 〈v9, 1〉, 8
2 : 〈v10, 1〉, 11

v6

12

〈1〉

v73, 11

〈4〉

1 : 〈v11, 1〉, 11
2 : 〈v12, 1〉, 15

v84, 17

〈3〉

1 : 〈v13, 1〉, 17
2 : 〈v14, 1〉, 20

v9

5

〈1〉

v10

7

〈2〉

v11

6

〈2〉

v12

9

〈3〉

v13

12

〈1〉

v14

15

〈1〉

v15

20

〈2〉

Figure 3: Example working of the existing algorithm

The existing method works with the input parameter k, i.e., the number of solutions to
be generated have to be known a priori. Also this method is not inherently incremental in
nature, thus does not perform efficiently when the solutions are needed on demand, e.g., at
first, top 20 solutions are needed, then the next 10 solutions are needed. In this case the
top 20 solutions will have to be recomputed while computing next 10 solutions, i.e., from
the 21st solution to the 30th solution. Next we present our proposed top-down approach
which does not suffer from this limitation.

3.2 Top-Down Evaluation Algorithms for Generating Ordered Solutions

So far we have discussed the existing approaches which primarily use bottom-up approach
for computing ordered solutions. Now we propose a top-down approach for generating al-
ternative solutions in the non-decreasing order of cost. It may be noted that the top-down

283

Ghosh, Sharma, Chakrabarti, & Dasgupta

approach is incremental in nature. We use an edge marking based algorithm, Alternative
Solution Generation (ASG), to generate the next best solutions from the previously gener-
ated solutions. In the initial phase of the ASG algorithm, we compute the optimal solution
for a given alternating AND/OR tree T̂αβ and perform an initial marking of all OR edges.
The following terminology and notions are used to describe the ASG algorithm. In the
context of AND/OR trees, we use eq to denote the edge that points to the vertex vq. We
will use the following definitions for describing our proposed top-down approaches.

Definition 3.c [Aggregated Cost] In an AND/OR DAG Gαβ , the aggregated cost, ca, for
an edge eij from node vi to node vj , is defined as : ca(eij) = ce(eij) + Copt(vj). ⊓⊔

v12, 34

v23, 29

〈3〉
[e2 : 5]

v3

35

〈2〉[e3 : 1]

v42, 37

〈1〉

v52, 8

〈5〉

v6

12

〈1〉

v73, 11

〈4〉

v84, 17

〈3〉

v9

5

〈1〉
[e9 : 3]

v10

7

〈2〉

v11

6

〈2〉
[e11 : 4]

v12

9

〈3〉

v13

12

〈1〉
[e13 : 3]

v14

15

〈1〉[e14 : 6]

v15

20

〈2〉

σ2,3 : 5 σ3,4 : 1

σ9,10 : 3 σ11,12 : 4

σ13,14 : 3 σ14,15 : 6

Figure 4: Example of OR-edge marking and swap option

Marking of an OR edge : The notion of marking an OR edge is as follows. For an OR
node vq, L(vq) is the list of OR edges of vq sorted in non-decreasing order of the aggregated
cost of the edges. We define δ(i,i+1) as the difference between the cost of OR edges, ei and
ei+1, such that ei and ei+1 emanate from the same OR node vq, and ei+1 is the edge next to
ei in L(vq). Procedure MarkOR describes the marking process for the OR edges of an OR
node. Intuitively, a mark represents the cost increment incurred when the corresponding
edge is replaced in a solution by its next best sibling. The OR edge having maximum
aggregated cost is not marked.

Consider a solution, Scur, containing the edge ei = (vq, vi), where ei ∈ Eopt(Scur). We
mark ei with the cost increment which will be incurred to construct the next best solution
from Scur by choosing another child of vq. In Figure 4 the marks corresponding to OR edges
e2, e3, e9, e11, e13, and e14 are [e2 : 5], [e3 : 1], [e9 : 3], [e11 : 4], [e13 : 3], and [e14 : 6].

284

Generating Ordered Solutions for Explicit AND/OR Structures

Procedure MarkOR(vq)

Construct L(vq) ; /* List of OR edges of vq sorted in the non-decreasing order of ca1

values */
count← number of elements in L(vq) ;2

for i← 1 to i = count− 1 do3

ec ← L(vq)[i] ;4

en ← L(vq)[i + 1] ;5

δtmp = (ca(en)− ca(ec)) ;6

Mark ec with the pair [en : δtmp] ;7

end8

Definition 3.d [Swap Option] A swap option σij is defined as a three-tuple 〈ei, ej , δij〉
where ei and ej emanate from the same OR node vq, ej is the edge next to ei in L(vq), and
δij = ca(ej)− ca(ei). Also, we say that the swap option σij belongs to the OR node vq. ⊓⊔

Consider the OR node vq and the sorted list L(vq). It may be observed that in L(vq)
every consecutive pair of edges forms a swap option. Therefore, if there are k edges in L(vq),
k−1 swap options will be formed. At node vq, these swap options are ranked according to the
rank of their original edges in L(vq). In Figure 4 the swap options are : σ(2,3) = 〈e2, e3, 5〉,
σ(3,4) = 〈e3, e4, 1〉, σ(9,10) = 〈e9, e10, 3〉, σ(11,12) = 〈e11, e12, 4〉, σ(13,14) = 〈e13, e14, 3〉, and
σ(14,15) = 〈e14, e15, 6〉. Consider the node v1 where L(v1) = 〈e2, e3, e4〉. Therefore, the swap
options, σ(2,3) and σ(3,4), belong to v1. At node v1, the rank of σ(2,3) and σ(3,4) are 1 and 2
respectively.

Definition 3.e [Swap Operation] Swap operation is defined as the application of a swap
option σij = 〈ei, ej , δij〉 to a solution Sm that contains the OR edge ei in the following way:

a. Remove the subtree rooted at vi from Sm. Let the modified tree be S′
m. Edge ei is

the original edge of σij .
b. Add the subtree opt(vj) to S′

m, which is constructed at the previous step. Let the
newly constructed solution be S′′

m. Edge ej is the swapped edge of σij.
Intuitively, a swap operation σij = 〈ei, ej , δij〉 constructs a new solution S′

m from Sm when
Sm contains the OR edge ei. Moreover, the cost of S′

m is increased by δij compared to cost
of Sm if C(Sm, vi) = Copt(vi). ⊓⊔

Our proposed algorithms use a swap option based compact representation, named sig-
nature, for storing the solutions. Intuitively, any alternative solution can be described as a
set of swap operations performed on the optimal solution Sopt. It is interesting to observe
that while applying an ordered sequence of swap options, 〈σ1, · · · , σk〉, the application of
each swap operation creates an intermediate alternative solution. For example, when the
first swap option in the sequence, σ1, is applied to the optimal solution, Sopt, a new so-
lution, say S1, is constructed. Then, when the 2nd swap option, σ2, is applied to S1, yet
another solution S2 is constructed. Let Si denote the solution obtained by applying the
swap options, σ1, · · · , σi, on Sopt in this sequence. Although, an ordered sequence of swap
options, like 〈σ1, · · · , σk〉, can itself be used as a compact representation of an alternative
solution, the following key points are important to observe.
A. Among all possible sequences that generate a particular solution, we need to preclude

those sequences which contain redundant swap options (those swap options whose orig-

285

Ghosh, Sharma, Chakrabarti, & Dasgupta

inal edge is not present in the solution to which it is applied). This is formally defined
later as superfluous swap options. Also the order of applying the swap options is an-
other important aspect. There can be two swap options, σi and σj where 1 ≤ i < j ≤ k
such that the source edge of σj belongs to the sub-tree which is included in the solution
Si only after applying σi to Si−1. In this case, if we apply σj at the place of σi, i.e.,
apply σj directly to Si−1, it will have no effect as the source edge of σj is not present
in Si−1, i.e., after swapping the location of σi and σj in the sequence, σj becomes a
redundant swap option and the solution constructed would be different for the swapped
sequence from the original sequence. We formally define an order relation on a pair of
swap options based on this observation in the later part of this section and formalize
the compact representation of the solutions based on that order relation.

B. Suppose the swap option σj belongs to a node vpj . Now it is important to observe
that the application of σj on Sj−1 to construct Sj, invalidates the application of all
other swap options that belong to an OR edge in the path from the root node to vpj in
the solution Sj . This is because in Sj the application of any such swap option which
belongs to an OR edge in the path from the root node to vpj would make the swap at
vpj redundant. In fact, for each swap option σi belonging to node vpi , where 1 ≤ i ≤ j,
the application of all other swap options that belong to an OR edge in the path from
the root node to vpi is invalidated in the solution Sj for the same reason. This condition
restricts the set of swap options that can be applied on a particular solution.

C. Finally, there can be two swap options σi and σj for 1 ≤ i < j ≤ k such that σi and
σj are independent of each other, that is, (a) applying σi to Si−1 and subsequently the
application of σj to Sj−1, and (b) applying σj to Si−1 and subsequently the application
of σi to Sj−1, ultimately construct the same solution. This happens only when the
original edges of both σi and σj are present in Si−1, thus application of one swap option
does not influence the application of the other. However, it is desirable to use only one
way to generate solution Sj . In Section 3.3, we propose a variation of the top-down
approach (called LASG) which resolves this issue.

Definition 3.f [Order Relation R̂] We define an order relation, namely R̂, between a pair
of swap options as follows.

a. If there is a path from vi to vr in T̂αβ , where ei and er are OR edges, σqi and σrj are

swap options, then (σqi, σrj) ∈ R̂. For example, in Figure 4 (σ(3,4), σ(13,14)) ∈ R̂.
b. If σpq = 〈ep, eq, δpq〉 and σrt = 〈er, et, δrt〉 are two swap options such that vq = vr,

then (σpq, σrt) ∈ R̂. In Figure 4 (σ(2,3), σ(3,4)) ∈ R̂. ⊓⊔

Implicit Representation of the Solutions : We use an implicit representation for
storing every solution other than the optimal one. These other solutions can be constructed
from the optimal solution by applying a set of swap options to the optimal solution in the
following way. If (σi, σj) ∈ R̂, σi has to be applied before σj. Therefore, every solution is
represented as a sequence Σ̂ of swap options, where σi appears before σj in Σ̂ if (σi, σj) ∈ R̂.
Intuitively the application of every swap option specifies that the swapped edge will be the
part of the solution. Since the swap options are applied in the specific order R̂, it may so
happen that an OR edge which had become the part of solution due to the application of an
earlier swap option and may get swapped out due to the application of a later swap option.

286

Generating Ordered Solutions for Explicit AND/OR Structures

Definition 3.g [Superfluous Swap Option] Consider a sequence of swap options Σ̂ =
〈σ1, · · · , σm〉 corresponding to a solution Sm. Clearly it is possible for a swap option, σi,
where 1 ≤ i ≤ m, to be present in the sequence such that the original edge of σi is not
present in the solution Si−1 which is constructed by the successive applications of swap
options σ1, · · · , σi−1 to solution Sopt. Now the application of σi has no effect on Si−1, i.e.,
solution Si is identical to solution Si−1. Each such swap option σi is a superfluous swap
option with respect to the sequence Σ̂ of swap options corresponding to solution Sm. ⊓⊔

Property 3.1 The sequence of swap options corresponding to a solution is minimal, if it
has no superfluous swap option.

This property follows from the definition of superfluous swap options and the notion of the
implicit representation of a solution.

Definition 3.h [Signature of a Solution] The minimal sequence of swap options cor-
responding to a solution, Sm, is defined as the signature, Sig(Sm), of that solution. It
may be noted that for the optimal solution Sopt of any alternating AND/OR tree T̂αβ ,
Sig(Sopt) = {}, i.e., an empty sequence. It is possible to construct more than one signature
for a solution, as R̂ is a partial order. It is important to observe that all different signatures
for a particular solution are of equal length and the sets of swap options corresponding to
these different signatures are also equal. Therefore the set of swap options corresponding
to a signature is a canonical representation of the signature. Henceforth we will use the set
notation for describing the signature of a solution.

v12, 39

v23, 29

〈3〉

v3

35

〈2〉

v42, 37

〈1〉

v52, 8

〈5〉

v6

12

〈1〉

v73, 11

〈4〉

v84, 17

〈3〉

v9

5

〈1〉

v10

7

〈2〉

v11

6

〈2〉

v12

9

〈3〉

v13

12

〈1〉

v14

15

〈1〉

v15

20

〈2〉

σ2,3 : 5 σ3,4 : 1

σ9,10 : 3 σ11,12 : 4

σ13,14 : 3 σ14,15 : 6

Figure 5: A solution, S2, of the AND/OR tree shown in Figure 4

In Figure 5 we show a solution, say S2, of the AND/OR tree shown in Figure 4. The
solution is highlighted using thick dashed lines with arrow head. The pair, cv(vq), C(S2, vq),

287

Ghosh, Sharma, Chakrabarti, & Dasgupta

is shown within rectangles beside each node vq in solution S2, and we have used the rectan-
gles with rounded corner whenever C(S2, vq) 6= Copt(vq). Since S2 is generated by applying
the swap option σ(2,3) to solution Sopt, the signature of S2, Sig(S2) = 〈σ(2,3)〉. Consider

another sequence, Σ̂2 = 〈σ(2,3), σ(9,10)〉, of swap options. It is worth noting that Σ̂2 also

represents the solution S2. Here the second swap option in Σ̂2, namely σ9,10, can not be
applied to the solution constructed by applying σ(2,3) to Sopt as the source edge of σ(9,10),

e9, is not present in that solution. Hence σ(9,10) is a superfluous swap option for Σ̂2 .

Definition 3.i [Vopt and Eopt] For any solution graph Sm of an AND/OR DAG Gαβ , we
define a set of nodes, Vopt(Sm), and a set of OR edges, Eopt(Sm), as:

a. Vopt(Sm) =
{
vq

∣
∣ vq in Sm and solution graph Sm(vq) is identical to the solution graph

opt(vq)
}

b. Eopt(Sm) =
{
epr

∣
∣ OR edge epr in Sm, and vr ∈ Vopt(Sm)

}

Clearly, for any node vq ∈ Vopt(Sm), if vq is present in Sopt, then – (a) the solution graph
Sm(vq) is identical to the solution graph Sopt(vq), and (b) C(Sm, vq) = Copt(vq) ⊓⊔

Definition 3.j [Swap List] The swap list corresponding to a solution Sm, L(Sm), is the list
of swap options that are applicable to Sm. Let Sig(Sm) = {σ1, · · · , σm} and ∀i, 1 ≤ i ≤ m,
each swap option σi belongs to node vpi . The application of all other swap options that
belong to the OR edges in the path from the root node to vpi is invalidated in the solution
Sm. Hence, only the remaining swap options that are not invalidated in Sm can be applied
to Sm for constructing the successor solutions of Sm.

It is important to observe that for a swap option σi, if the source edge of σi belongs
to Eopt(Sm), the application is not invalidated in Sm. Hence, for a solution Sm, we con-
struct L(Sm) by restricting the swap operations only on the edges belonging to Eopt(Sm).
Moreover, this condition also ensures that the cost of a newly constructed solution can be
computed directly form the cost of the parent solution and the δ value of the applied swap
option. To elaborate, suppose solution S′

m is constructed form Sm by applying σjk. The
cost of S′

m can be computed directly form C(Sm) and σjk as : C(S′
m) = C(Sm) + δjk if

ej ∈ Eopt(Sm). Procedure ComputeSwapList(Sm) describes the details of computing swap
options for a given solution Sm. ⊓⊔

Procedure ComputeSwapList(Sm)

L(Sm)← ∅; Compute Eopt(Sm);1

foreach OR edge ec in Eopt(Sm) do2

if there exists a swap option on edge ec then3

/* Suppose ec emanates from OR node vq such that ec = L(vq)[i]. Also ec is
marked with the pair 〈δtmp, en〉, where en = L(vq)[i+ 1] */

σcn ← 〈ec, en, δtmp〉; Add σcn to L(Sm);4

end5

end6

The swap list of the optimal solution, L(Sopt), in Figure 4, is {σ(2,3), σ(9,10)}. In the
solution S1, shown in Figure 6, Vopt = {v6, v10}, because except node v6 and v10, for all
other nodes vi in S1, opt(vi) 6= S1(vi). Here also rectangles with rounded corner are used
when C(S1, vq) 6= Copt(vq). Therefore, Eopt = {e6, e10}. Since there exists no swap option

288

Generating Ordered Solutions for Explicit AND/OR Structures

v12, 37

v23, 32

〈3〉

v3

35

〈2〉

v42, 37

〈1〉

v52, 11

〈5〉

v6

12

〈1〉

v73, 11

〈4〉

v84, 17

〈3〉

v9

5

〈1〉

v10

7

〈2〉

v11

6

〈2〉

v12

9

〈3〉

v13

12

〈1〉

v14

15

〈1〉

v15

20

〈2〉

σ2,3 : 5 σ3,4 : 1

σ9,10 : 3 σ11,12 : 4

σ13,14 : 3 σ14,15 : 6

Figure 6: A solution, S1, of the AND/OR tree shown in Figure 4

on the OR edges, e6 and e10, the swap list of solution S1, L(S1) = ∅. Hence, for a solution
Sm, L(Sm) may be empty, though Vopt(Sm) can never be empty.

Although we use the notation σij to denote a swap option with edge ei as the original
edge and edge ej as the swapped edge, for succinct representation, we also use σ with a single
subscript, such as σ3, σk, σij etc., to represent a swap option. This alternative representation
of swap options does not relate to any edge.

Definition 3.k [Successors and Predecessors of a Solution] The set of successors and
predecessors of a solution Sm is defined as:

a. Succ(Sm) = {S′
m

∣
∣ S′

m can be constructed from Sm by applying a swap option that
belongs to the swap list of Sm}

b. Pred(Sm) = {S′′
m

∣
∣ Sm ∈ Succ(S′′

m)} ⊓⊔

Property 3.2 For any solution Sm of an alternating AND/OR tree T̂αβ the following state-
ment holds: ∀S′

m ∈ Pred(Sm), C(S′
m) ≤ C(Sm)

The property follows from the definitions. One special case requires attention. Consider
the case when C(S′

m) = C(Sm) and S′
m ∈ Pred(Sm). This case can only arise when a swap

option of cost 0 is applied to Sm. This occurs in the case of a tie.

3.2.1 ASG Algorithm

We present ASG, a best first search algorithm, for generating solutions for an alternating
AND/OR tree in non-decreasing order of costs. The overall idea of this algorithm is as
follows. We maintain a list, Open, which initially contains only the optimal solution Sopt.
At any point of time Open contains a set of candidate solutions from which the next best

289

Ghosh, Sharma, Chakrabarti, & Dasgupta

solution in the non-decreasing order of cost is selected. At each iteration the minimum cost
solution (Smin) in Open is removed from Open and added to another list, named, Closed.
The Closed list contains the set of ordered solutions generated so far. Then the successor
set of Smin is constructed and any successor solution which is not currently present in
Open as well as is not already added to Closed is inserted to Open. However as a further
optimization, we use a sublist of Closed, named TList, to store the relevant portion of Closed
such that checking with respect to the solutions in TList is sufficient to figure out whether
the successor solution is already added to Closed. It is interesting to observe that this
algorithm can be interrupted at any time and the set of ordered solutions computed so far
can be obtained. Also, the algorithm can be resumed if some more solutions are needed.
The details of ASG algorithm are presented in Algorithm 4.

Algorithm 4: Alternative Solution Generation (ASG) Algorithm

input : An alternating AND/OR tree T̂αβ

output: Alternative solutions of T̂αβ in the non-decreasing order of cost
Compute the optimal solution Sopt, perform OR edge marking and populate the1

swap options;
Create three lists, Open, Closed, and TList, that are initially empty;2

Put Sopt in Open;3

lastSolCost← C(Sopt);4

while Open is not empty do5

Smin ← Remove the minimum cost solution from Open ;6

if lastSolCost < C(Smin) then7

Remove all the elements of TList;8

lastSolCost← C(Smin);9

end10

Add Smin to Closed and TList;11

Compute the swap list, L(Smin), of Smin;12

/* Construct Succ(Smin) using L(Smin) and add new solutions to Open */
foreach σij ∈ L(Smin) do13

Construct Sm by applying σij to Smin;14

Construct the signature of Sm, Sig(Sm), by concatenating σij after Sig(Smin);15

/* Check whether Sm is already present in Open or in TList */
if (Sm not in Open) and (Sm not in TList) then16

Add Sm to Open;17

end18

end19

Report the solutions in Closed;20

The pseudo-code from Line-1 to Line-4 computes the optimal solution Sopt, performs the
marking of OR edges, populates the swap options, and initializes Open, Closed and TList.
The loop in Line-10 is responsible for generating a new solution every time it is executed
as long as Open is not empty. In Line-6 of the ASG algorithm, the solution that is the
current minimum cost solution in Open (Smin) is selected and removed from Open. The
TList is populated and maintained from Line-7 to Line-10. The loop in Line-13 generates

290

Generating Ordered Solutions for Explicit AND/OR Structures

the successor solutions of Smin one by one and adds the newly constructed solutions to
Open if the newly constructed solution is not already present in Open as well as not added
to TList (Line-16 does the checking). The proof of correctness of Algorithm 4 is presented
in Appendix A. We discuss the following issues related to Algorithm 4.

Checking for Duplication : In order to check whether a particular solution Si is already
present in Open or TList, the signature of Si is matched with the signatures of the solutions
that are already present in Open and TList. It is sufficient to check the equality between the
set of swap options in the respective signatures because that set is unique for a particular
solution. It may be noted that TList is used as an optimization, which avoids searching the
entire Closed list.

Resolving Ties : While removing the minimum cost solution from the Open list, a tie
may be encountered among a set of solutions. Suppose there is a tie among the set Stie =
{S1, · · · , Sk}. The ties are resolved in the favor of the predecessor solutions, that is,

(
∀Si, Sj ∈ Stie

)
,
[
(If Si is the predecessor of Sj)⇒ (Si is removed before Sj)

]

For all other cases the ties are resolved arbitrarily in the favor of the solution which was
added to Open first.

3.2.2 Working of ASG Algorithm

We illustrate the working of the ASG algorithm on the example AND/OR tree shown in
Figure 4. The contents of the different lists obtained after first few iterations of outermost
while loop are shown in Table 1. We use the signature of a solution for representation
purpose. The solutions that are already present in Open and also constructed by expanding
the current Smin, are highlighted with under-braces.

It. Smin L(Smin) Open Closed TList
1 {} σ(2,3) , σ(9,10) {σ(2,3)}, {σ(9,10)} {} {}
2 {σ(9,10)} ∅ {σ(2,3)} {}, {σ(9,10)} {σ(9,10)}

3 {σ(2,3)} σ(3,4) {σ(2,3), σ(3,4)} {}, {σ(9,10)}, {σ(2,3)} {σ(2,3)}
4 {σ(2,3), σ(3,4)} σ(11,12) , σ(13,14) {σ(2,3), σ(3,4), σ(11,12)}, {}, {σ(9,10)}, {σ(2,3)}, {σ(2,3) , σ(3,4)}

{σ(2,3), σ(3,4), σ(13,14)} {σ(2,3) , σ(3,4)}
5 {σ(2,3), σ(3,4), σ(11,12) , σ(14,15) {σ(2,3), σ(3,4), σ(11,12)}, {}, {σ(9,10)}, {σ(2,3)}, {σ(2,3), σ(3,4),

σ(13,14)} {σ(2,3) , σ(3,4) , σ(13,14) , σ(11,12)} {σ(2,3) , σ(3,4)} σ(13,14)}
{σ(2,3) , σ(3,4) , σ(13,14) , σ(14,15)} {σ(2,3), σ(3,4), σ(13,14)}

6 {σ(2,3), σ(3,4), σ(13,14) {σ(2,3), σ(3,4) , σ(13,14) , σ(11,12)}
︸ ︷︷ ︸

, {}, {σ(9,10)}, {σ(2,3)}, {σ(2,3) , σ(3,4),

σ(11,12)} {σ(2,3) , σ(3,4) , σ(13,14) , σ(14,15)} {σ(2,3) , σ(3,4)} σ(11,12)}
{σ(2,3), σ(3,4), σ(13,14)}
{σ(2,3), σ(3,4), σ(11,12)}

7 {σ(2,3), σ(3,4), σ(14,15) {σ(2,3), σ(3,4) , σ(13,14) , σ(14,15)}, {}, {σ(9,10)}, {σ(2,3)}, {σ(2,3), σ(3,4),

σ(13,14) , σ(11,12)} {σ(2,3) , σ(3,4) , σ(13,14) , {σ(2,3) , σ(3,4)} σ(13,14) , σ(11,12)}
σ(11,12) , σ(14,15)} {σ(2,3), σ(3,4), σ(13,14)}

{σ(2,3), σ(3,4), σ(11,12)}
{σ(2,3), σ(3,4) , σ(13,14) ,

σ(11,12)}

Table 1: Working of ASG Algorithm

291

Ghosh, Sharma, Chakrabarti, & Dasgupta

Before entering the outermost while loop (Line 5), ASG computes the optimal solution
Sopt, populates the swap options, and inserts Sopt to Open. Thus, at this point of time, Open
contains only the optimal solution Sopt; Closed and TList are empty. In the first iteration
Sopt (the signature of Sopt is {}) is selected and removed from Open. Then the swap list of
Sopt, L(Sopt), is computed. L(Sopt), consists of two swap options, namely σ(2,3) and σ(9,10).
ASG adds two new solutions {σ(2,3)} and {σ(9,10)} to Open. Then solution Sopt is added to
both Closed and TList.

In the next iteration, solution {σ(9,10)} which has the minimum cost among the solutions
currently in Open, is selected and removed from Open, the swap list {σ(9,10)} is computed and
subsequently {σ(9,10)} is added to Open and TList. As it happens, L({σ(9,10)}) = ∅ (owing to
the fact that Eopt = {e6, e10} and there exists no swap option on the OR edges, e6 and e10),
thus nothing else happens in this iteration. In the next iteration, solution {σ(2,3)} is removed
from Open and ultimately solution {σ(2,3), σ(3,4)} is added to Open after adding {σ(2,3)} to
Closed as well as to TList. Next two iterations proceed in a similar fashion. Now, consider the
6th iteration. In this iteration, solution {σ(2,3), σ(3,4), σ(11,12)} is removed from Open, and its
successor set has only one solution, {σ(2,3), σ(3,4), σ(11,12), σ(13,14)}, which is already present
in Open (inserted to Open in Iteration-5). Therefore, solution {σ(2,3), σ(3,4), σ(11,12), σ(13,14)}
is not inserted to Open again. We have shown up to Iteration-7 in Table 1.

3.3 Technique for Avoiding the Checking for Duplicates in Open

In this section, we present a technique to avoid the checking done before adding a newly
constructed solution Sm to Open to determine whether Sm is already present in Open. We
first explain the scenario with an example, which is a portion of the previous example
shown in Figure 4. In Figure 7-10, the solutions are shown using thick dashed line with
arrow head. Also the rectangles with rounded corner are used to highlight the fact that the
corresponding node in the marked solution does not belong to the Vopt set of that solution.

v42, 37

v73, 11

〈4〉

v84, 17

〈3〉

v11

6

〈2〉

v12

9

〈3〉

v13

12

〈1〉

v14

15

〈1〉
σ11,12 : 4 σ13,14 : 3

Figure 7: Running Example

v42, 44

v73, 15

〈4〉

v84, 20

〈3〉

v11

6

〈2〉

v12

9

〈3〉

v13

12

〈1〉

v14

15

〈1〉

Figure 8: Solution S3

Consider the solutions S1, S2 and S3 (shown in Figure 9, Figure 10 and Figure 8). Here
(a) L(Sopt) = {σ(11,12), σ(13,14)}, (b) Succ(Sopt) = {S1, S2},
(c) Sig(S1) = {σ(13,14)}, (d) Sig(S2) = {σ(11,12)}, and (e) Sig(S3) = {σ(13,14), σ(11,12)}.

Algorithm 4 constructs the solution S3 (shown in Figure 8) for adding to Open twice –
(i) as a part of adding Succ(S1) to Open, and (ii) while adding Succ(S2) to Open.

292

Generating Ordered Solutions for Explicit AND/OR Structures

v42, 40

v73, 11

〈4〉

v84, 20

〈3〉

v11

6

〈2〉

v12

9

〈3〉

v13

12

〈1〉

v14

15

〈1〉
σ11,12 : 4

Figure 9: Solution S1

v42, 41

v73, 15

〈4〉

v84, 17

〈3〉

v11

6

〈2〉

v12

9

〈3〉

v13

12

〈1〉

v14

15

〈1〉
σ13,14 : 3

Figure 10: Solution S2

We use the following definitions to describe another version of the ASG algorithm, which
constructs the solutions in such a way that the check to find out whether a solution is already
added to Open is avoided.

Definition 3.l [Solution Space DAG(SSDAG)] The solution space DAG of an alternating
AND/OR tree T̂αβ is a directed acyclic graph (DAG), Gs = 〈V, E〉, where V is the set of all

possible solutions of the AND/OR tree T̂αβ , and E is the set of edges which is defined as:

E =






espm

∣
∣
∣
∣
∣
∣

Sp, Sm ∈ V, and
espm is a directed edge from node Sp to Sm, and

Sm ∈ Succ(Sp)







Clearly Sopt is the root node of Gs. ⊓⊔
Definition 3.m [Solution Space Tree and Completeness] A solution space tree of an
alternating AND/OR tree T̂αβ is a tree T s = 〈Vt, E t〉 where Vt ⊆ V, where V is the set of

all possible solutions of the AND/OR tree T̂αβ, and E t is the set of edges which is defined
as:

E t =







espm

∣
∣
∣
∣
∣
∣
∣
∣

Sp, Sm ∈ Vt, and
espm is a directed edge from node Sp to Sm, and

Sp ∈ Pred(Sm), and
∀S′

p ∈ Pred(Sm),
(
(Sp 6= S′

p)⇒ there is no edge between S′
p and Sm

)
.







The sibling set for a solution Sm, is denoted using Sib(T s, Sm). A solution space tree T s

for an AND/OR tree is complete if Vt = V. ⊓⊔
It may be noted that the complete solution space tree of an alternating AND/OR tree

is not necessarily unique. It is possible for an alternating AND/OR tree to have more than
one complete solution space tree. However the solution space DAG for any AND/OR tree
is unique.

Definition 3.n [Native Swap Options of a Solution] Consider a solution Sm of an al-
ternating AND/OR tree T̂αβ . Suppose Sm is constructed by applying swap option σij to
solution Sp. Since swap option σij = 〈ei, ej , δij〉 is used to construct Sm, AND node vj is
present in Sm. The native swap options of solution Sm with respect to swap option σij ,
N (Sm, σij), is a subset of L(Sm), and comprises of the following swap options :

293

Ghosh, Sharma, Chakrabarti, & Dasgupta

v12, 49

v23, 32

〈3〉

v3

35

〈2〉

v42, 43

〈1〉

v52, 11

〈5〉

v6

12

〈1〉

v73, 11

〈4〉

v84, 23

〈3〉

v9

5

〈1〉

v10

7

〈2〉

v11

6

〈2〉

v12

9

〈3〉

v13

12

〈1〉

v14

15

〈1〉

v15

20

〈2〉

σ2,3 : 5 σ3,4 : 1

σ9,10 : 3 σ11,12 : 4

σ13,14 : 3 σ14,15 : 6

Figure 11: A solution, S4, of the AND/OR tree shown in Figure 4

a. σjk, where σjk is the swap option on the edge ej
b. each σt, if σt belongs to an OR node vq where vq is a node in Sm(vj)

We use the term N (Sm) to denote the native swap options when σij is understood from
the context. Intuitively the native swap options for solution Sm are the swap options that
become available immediately after applying σij, but were not available in the predecessor
solution of Sm. ⊓⊔

Consider the solution S4 shown in Figure 11 where Sig(S4) = {σ(2,3), σ(3,4), σ(13,14)}. The
solution is highlighted using thick dashed lines with arrow head. We have used the rectan-
gles with rounded corner beside each node vq in solution S4, where C(S4, vq) 6= Copt(vq).
Suppose S4 is constructed form solution S3 (where Sig(S3) = {σ(2,3), σ(3,4)}) using swap
option σ(13,14). Here N (S4, σ(13,14)) = {σ(14,15)} whereas L(S4) = {σ(11,12), σ(14,15)}. Now
consider solution S6 where Sig(S6) = {σ(2,3), σ(3,4), σ(11,12), σ(13,14)). It is worth observ-
ing that applying only the native swap options to S4 instead of all swap options in L(S4)
prevents the construction of solution S6 from solution S4. S6 can also be constructed by
applying σ(13,14) to solution S5, where Sig(S5) = {σ(2,3), σ(3,4), σ(11,12)}. However, it may
be noted that σ(13,14) is not a native swap option of solution S5.

3.3.1 Lazy ASG Algorithm

The intuition behind the other version of the ASG algorithm is as follows. For a newly
constructed solution Sm, we need to check whether Sm is already present in Open because
Sm can be constructed as a part of computing the successor set of multiple solutions.
Instead of using the entire swap list of a solution to construct all successors at once and
then add those solutions to Open, using the native swap options for constructing a subset of
the successor set ensures the following. The subset constructed using native swap options

294

Generating Ordered Solutions for Explicit AND/OR Structures

consists of only those solutions that are currently not present in Open and thus can be
added to Open without comparing with the existing entries in Open. The construction of
each remaining successor solution S′

m of Sm and then insertion to Open is delayed until
every other predecessor solution of S′

m is added to Closed.

Algorithm 5: Lazy ASG (LASG) Algorithm

input : An alternating AND/OR tree T̂αβ

output: Alternative solutions of T̂αβ in the non-decreasing order of cost
Compute the optimal solution Sopt, perform OR edge marking and populate the1

swap options;
Create two lists, Open and Closed, that are initially empty;2

Put Sopt in the Closed list;3

Create a solution space tree T s with Sopt as root;4

Compute the swap list, L(Sopt), of Sopt;5

Construct Succ(Sopt) using L(Sopt);6

forall Sm ∈ Succ(Sopt) do7

Add Sm to Open;8

end9

while Open is not empty do10

Smin ← Remove the minimum cost solution from Open ;11

/* Suppose Smin is constructed from Sm applying swap option σij */
Add a node corresponding to Smin in T s and connect that node using an edge12

from Sm ;
Compute the swap list L(Smin) and the list of native swap options N (Smin, σij);13

/* Expansion using native swap options */
foreach σtmp ∈ N (Smin, σij) do14

Construct Stmp from Smin by applying σtmp;15

Construct the signature of Stmp, Sig(Stmp), by concatenating σtmp after16

Sig(Smin);
Add Stmp to Open;17

end18

/* Lazy Expansion */
forall Sp ∈ Sib(T s, Smin) do19

if σij ∈ L(Sp) then20

Construct S′
p from Sp using σij ;21

Construct the signature of S′
p, Sig(S

′
p), by concatenating σij after Sig(Sp);22

Add S′
p to Open;23

end24

end25

Add Smin to Closed;26

end27

Report the solutions in Closed;28

The solution space tree T s is maintained throughout the course of the algorithm to
determine when every other predecessor of S′

m is added to Closed. Based on this idea we

295

Ghosh, Sharma, Chakrabarti, & Dasgupta

present a lazy version of ASG algorithm, named LASG. After selecting the minimum cost
solution from Open, the algorithm explores the successor set of the current minimum cost
solution in a lazy fashion. For a solution Sm, at first a subset of Succ(Sm) is constructed
using only the native swap options of Sm. The other solutions that belong to Succ(Sm)
are explored as late as possible as described above. For resolving ties, LASG algorithm
uses the same strategy which is used by ASG algorithm. The details of LASG algorithm
are presented in Algorithm 5. The proof of correctness of this algorithm is presented in
Appendix B.

Consider the example tree shown in Figure 7 and solutions S1 and S2 (shown in Figure 9
and Figure 10). Initially the Open will contain only Sopt and N (Sopt) = {σ(11,12), σ(13,14)}.
When Sopt is selected from Open, both S1 and S2 is added to Open. Next S1 will be selected
followed by S2. Since, N (S1) = ∅ and N (S2) = ∅, after selecting S1 or S2 no successor
solutions are constructed using the native swap list. Among the predecessors of S3, S2 is
added last to Closed. After selecting and removing S2 from Open, solution S3 is constructed
from the previously selected predecessor S1 using the swap option σ(11,12) which is used to
construct solution S2 from Sopt.

3.3.2 Working of LASG Algorithm (on AND/OR tree in Figure 4)

Before entering the outermost while loop (Algorithm 5, Line 10), LASG computes the
optimal solution Sopt and constructs Succ(Sopt). Then the solutions in Succ(Sopt) are
added to Open and the contents of the Open becomes

{
{σ(2,3)}, {σ(9,10)}

}
. The contents of

the different lists when a solution is added to Closed are shown in Table 2. The solutions
are represented using their signatures. The solutions that are added to Open as a result of
lazy expansion, are highlighted using under-brace.

Iteration Smin N (Smin) Open Closed
- {} σ(2,3) , σ(9,10) {σ(2,3)}, {σ(9,10)} {}

1 {σ(9,10)} ∅ {σ(2,3)} {}, {σ(9,10)}
2 {σ(2,3)} σ(3,4) {σ(2,3) , σ(3,4)} {}, {σ(9,10)}, {σ(2,3)}

3 {σ(2,3) , σ(3,4)} σ(11,12) , σ(13,14) {σ(2,3) , σ(3,4) , σ(11,12)}, {}, {σ(9,10)}, {σ(2,3)},
{σ(2,3) , σ(3,4), σ(13,14)} {σ(2,3) , σ(3,4)}

4 {σ(2,3) , σ(3,4), σ(13,14)} σ(14,15) {σ(2,3) , σ(3,4) , σ(11,12)}, {}, {σ(9,10)}, {σ(2,3)},
{σ(2,3), σ(3,4), σ(13,14) , σ(14,15)} {σ(2,3) , σ(3,4)}

{σ(2,3), σ(3,4), σ(13,14)}
5 {σ(2,3) , σ(3,4), σ(11,12)} ∅ {σ(2,3) , σ(3,4), σ(13,14) , σ(14,15)}, {}, {σ(9,10)}, {σ(2,3)},

{σ(2,3), σ(3,4), σ(13,14) , σ(11,12)}
︸ ︷︷ ︸

{σ(2,3) , σ(3,4)}

{σ(2,3), σ(3,4), σ(13,14)}
{σ(2,3), σ(3,4), σ(11,12)}

6 {σ(2,3), σ(3,4), σ(13,14) , ∅ {σ(2,3) , σ(3,4), σ(13,14) , σ(14,15)}, {}, {σ(9,10)}, {σ(2,3)},
σ(11,12)} {σ(2,3) , σ(3,4)}

{σ(2,3), σ(3,4), σ(13,14)}
{σ(2,3), σ(3,4), σ(11,12)}
{σ(2,3), σ(3,4), σ(13,14) ,

σ(11,12)}

Table 2: Working of LASG Algorithm

While generating the first four solutions, the contents of the different lists for LASG
are identical to the contents of the corresponding lists of ASG (shown in Table 1). For

296

Generating Ordered Solutions for Explicit AND/OR Structures

each of these soltuions, the native swap list is equal to the actual swap list of that so-
lution. It is worth noting that, unlike ASG, for LASG the outermost while loop starts
after generating the optimal solution Sopt, thus while generating the same solution the
iteration number for LASG is less than that of ASG by 1. In the 4th iteration, for so-
lution S4 = {σ(2,3), σ(3,4), σ(13,14)} the native swap list is not equal to the swap list as
described previously. The same holds true for solution S5 = {σ(2,3), σ(3,4), σ(11,12)} and
solution S6 = {σ(2,3), σ(3,4), σ(13,14), σ(11,12)}. It is important to observe that LASG adds
the solution S6 = {σ(2,3), σ(3,4), σ(13,14), σ(11,12)} to Open after the generation of solution
S5 = {σ(2,3), σ(3,4), σ(11,12)} as a part of lazy expansion (highlighted using under-brace
in Table 2). Whereas, the ASG algorithm adds S6 to Open after generating solution
S4 = {σ(2,3), σ(3,4), σ(13,14)}.

3.4 Complexity Analysis and Comparison among ASG, LASG and BU

In this section we present a complexity analysis of ASG and LASG and compare them with
BU. We will use the following parameters in the analysis.

a. nαβ and nβ denote the total number of nodes and the number of OR nodes in an
alternating AND/OR tree.

b. d denotes the out degree of the OR node having maximum number of children.
c. m denotes the maximum number of OR edges in a solution.
d. o denotes the maximum size of Open. We will present the complexity analysis for

generating c solutions. Therefore the size of Closed is O(c).

3.4.1 Complexity of ASG

Time Complexity : The time complexity of the major steps of Algorithm 4 are as
follows.

a. Computing the first solution can be done in bottom-up fashion, thus requiring O(nαβ)
steps. The edges emanating from an OR node are sorted in the non-decreasing order
of aggregated cost to compute the marks of the OR edges, the marking process takes
O
(
nβ.d. log d

)
. Since the value of d is not very large in general (can be upper bounded

by a constant), O
(
nβ.d. log d

)
= O(nαβ).

b. The number of swap options available to a solution can be at most equal to the number
of OR edges in that solution. Thus, the swap list for every solution can be built in
O(m) time. For c solutions, generating swap options take O(c.m).

c. Since the size of the successor set of a solution can be m at most, the size of Open, o
can at most be c.m. Also the size of the TList can at most be equal to c (the size of
Closed).

d. The Open list can be implemented using Fibonacci heap. Individual insert and delete
operation on Open take O(1)(amortized) and O(lg o) time respectively. Hence, for
inserting in the Open and deleting from Open altogether takes O(o. lg o) time which
is O(c.m. log(c.m)).

e. The checking for duplicates requires scanning the entire Open and TList. Since the
length of TList can be at most c, for a newly constructed solution this checking takes
O(c+ o) time and at most O(c+ o) solutions are generated. Since O(c+ o) is actually
O(o), for generating c solutions, this step takes O(o)2 time. Also, the maximum value

297

Ghosh, Sharma, Chakrabarti, & Dasgupta

of o can be O(c.m). Thus, the time complexity of this step is O(c.m)2. Clearly this
step dominates O(o. lg o) which is the total time taken for all insertions into the Open
and deletions from Open.
However, this time bound can be further improved if we maintain a hash map of the
solutions in the Open and TList, and in this case the checking for duplicates can be
done in O(o) time. In that case O(o. lg o) (total time taken for all insertions into the
Open and deletions from Open) becomes dominant over the time required for checking
for duplicates.

f. An upper limit estimate of m could be made by estimating the size of a solution tree
which is

√
nαβ for regular and complete alternating AND/OR trees. It is important

to observe that the value of m is independent of the average out degree of a node in
T̂αβ .

Combining the above factors together we get the time complexity of ASG algorithm as :

O
(

nαβ + o
2
)

= O
(

nαβ + (c.m)2
)

= O
(

nαβ + c
2.nαβ

)

= O(c2.nαβ)

However if the additional hash map is used the time complexity is further reduced to :

O
(

nαβ + o. lg o
)

= O
(

nαβ + c.
√
nαβ. lg(c.nαβ)

)

= O
(

nαβ +
√
nαβ .(c. lg c+ c. lg nαβ)

)

Space Complexity: The following data-structures primarily contribute to the space com-
plexity of ASG algorithm.

a. Three lists, namely, Open, Closed, and TList are maintained throughout the course of
the running ASG. This contributes a O(o+ c) factor, which is O(o).

b. Since the number of swap options is upper bounded by the total number of OR edges,
constructing the swap list contributes the factor, O(nβ.d) to the space complexity.
Also marking a solution requires putting a mark at every OR node of the AND/OR
tree, thus adding another O(nβ) space which is clearly dominated by the previous
O(nβ.d) factor.

c. Since the signature of a solution is essentially a set of swap options, the size of a
signature is upper bounded by the total number of swap options available. Combining
the Open and Closed list, altogether (c+ o) solutions need to be stored. Since (c+ o)
is O(o), total space required for storing the solutions is O

(
o.nβ .d

)
.

Combining the above factors together we get the space complexity of ASG algorithm as :

O
(

o+ nβ.d+ o.nβ.d
)

= O(o.nβ .d)

When an additional hash map is used to improve the time complexity, another addi-
tional O

(
o.nβ .d

)
space is required for maintaining the hash map. Although the exact space

requirement is doubled, asymptotically the space complexity remains same.

3.4.2 Complexity of LASG

Time Complexity : Compared to Algorithm 4, Algorithm 5 does not check for the
duplicates and adds the solution to Open only when it is required. Therefore the other
terms in the complexity remain the same except the term corresponding to the checking for
duplicates. However, here T s is created and maintained during the course of Algorithm 5.
Creating and maintaining the tree require O(c) time. Also during the lazy expansion the
swap list of the previously generated sibling solutions are searched (Line 19 and Line 20 of
Algorithm 5). The size of the swap list of any solution is O(m), where m is the maximum
number of OR edges in a solution. Also there can be at most O(m) sibling solutions for a

298

Generating Ordered Solutions for Explicit AND/OR Structures

solution. Therefore the complexity of the lazy expansion is O(c.m2). Since O(c.m2) is the
dominant factor, the time complexity of LASG is O(c.m2) = O(c.nαβ).

Space Complexity : Compared to ASG algorithm, LASG algorithm does not maintain
the TList. However LASG maintains the solution space tree T s whose size is equal to
the Closed list, thus adding another O(c) factor to the space complexity incurred by ASG
algorithm. It is interesting to observe that the worst case space complexity remains O(o+
nβ.d+ o.nβ .d) = O(o.nβ .d) which is equal to the space complexity of ASG algorithm.

3.4.3 Comparison with BU

The time complexity of generating the c best solutions for an AND/OR tree is O(nαβ .c. log c)
and the space complexity is O(nαβ.c). The detailed analysis can be found in the work
of Elliott (2007). Since, nβ.d = O(nαβ), the space complexity of both ASG and LASG
algorithm reduces to O(nαβ.c) and the time complexity of LASG is log c factor better than
BU whereas the time complexity of ASG is quadratic with respect to c compared to the
(c. log c) factor of BU. When an additional hash-map is used to reduce the time overhead of
duplicate checking, ASG beats both LASG and BU both in terms time complexity, as both
O(nαβ) and O

(√
nαβ.(c. lg c+ c. lg nαβ)

)
is asymptotically lower than O(nαβ.c. log c).

However this worst case complexity is only possible for AND/OR trees where no dupli-
cate solution is generated. Empirical results show that the length of Open, o hardly reaches
O(c.m).

4. Ordered Solution Generation for AND/OR DAGs

In this section, we present the problem of generating solutions in non-decreasing order
of cost for a given AND/OR DAG. We present the working of the existing algorithm for
generating solution for both tree based semantics and default semantics. Next we present
the modifications in ASG and LASG for handling DAG.

4.1 Existing Bottom-Up Algorithm

Figure 12 shows an example working of the existing bottom-up approach, BU, on the
AND/OR DAG in Figure 2. We use the notations that are used in Figure 3 to describe
different solutions in Figure 12 and the generation of the top 2 solutions under tree-based
semantics is shown.

It is important to notice that although BU correctly generates alternative solutions of
an AND/OR DAGs under tree based semantics, BU may generate some solutions which are
invalid under default semantics. In Figure 13 we present a solution of the AND/OR DAG
in Figure 2. This solution is an example of such a solution which is correct under tree-based
semantics but is invalid under default semantics. The solution DAG (highlighted using
thick dashed lines with arrow heads) in Figure 13 will be generated as the 3rd solution of
the AND/OR DAG in Figure 2 while running BU. At every non-terminal node, the entry
(within rectangle) corresponding to the 3rd solution is highlighted using bold face. It may
be noted that the terminal nodes, v9 and v10, are included in the solution DAG though both
of them emanate from the same parent OR node. Therefore, this solution is not a valid one
under default semantics.

299

Ghosh, Sharma, Chakrabarti, & Dasgupta

v12, 89

v2 v3
1 : |1, 1|, 89
2 : |2, 1|, 90

v23, 43

〈1〉

1 : 〈v5, 1〉, 43
2 : 〈v4, 1〉, 44

v32, 41

〈2〉

1 : 〈v5, 1〉, 41
2 : 〈v5, 2〉, 44

v4

40

〈1〉

v52, 35

〈5〉 〈4〉

v7 v8
1 : |1, 1|, 35
2 : |2, 1|, 38

v6

52

〈1〉

v73, 9

〈4〉

1 : 〈v9, 1〉, 9
2 : 〈v10, 1〉, 12

v8

17

〈3〉

v9

5

〈1〉

v10

7

〈2〉

Figure 12: BU approach for AND/OR DAG

v12, 89

v2 v3
1 : |1, 1|, 89
2 : |2, 1|, 90

v23, 43

〈1〉

2 : 〈v4, 1〉, 44
v32, 41

〈2〉

1 : 〈v5, 1〉, 41

v4

40

〈1〉

v52, 35

〈5〉 〈4〉

v7 v8

v6

52

〈1〉

v73, 9

〈4〉

v8

17

〈3〉

v9

5

〈1〉

v10

7

〈2〉

3 : |1, 2|,92

1 : 〈v5,1〉,43
2 : 〈v5,2〉,44

1 : |1, 1|,35
2 : |2, 1|,38

1 : 〈v2,1〉,34
2 : 〈v2,2〉,37

Figure 13: A solution (tree based semantics)

Proposed Extension of BU to Generate Alternative Solutions under Default
Semantics : We propose a simple top-down traversal and pruning based extension of
BU to generate alternative solutions under default semantics. While generating the ordered
solutions at any AND node vq by combining the solutions of the children, we do the following.
For each newly constructed solution rooted at vq, a top-down traversal of that solution
starting from vq is done to check whether more than two edges of an OR node are present
in that particular solution (a violation of the default semantics). If such a violation of the
default semantics is detected, that solution is pruned from the list of alternative solutions
rooted at vq. Therefore, at every AND node, when a new solution is constructed, an
additional top-down traversal is used to detect the semantics violation.

4.2 Top-Down Method for DAGs

The proposed top-down approaches (ASG and LASG) are also applicable for AND/OR
DAGs to generate alternative solution DAGs under default semantics. Only the method of
computing the cost increment after the application of a swap option needs to be modified to
incorporate the fact that an OR node may be included in a solution DAG through multiple
paths from the root node. We use the notion of participation count for computing the cost
increment.

Participation Count : The notion of participation count is applicable to the intermediate
nodes of a solution DAG as follows. In a solution DAG, the participation count of an
intermediate node, vq, is the total number of distinct paths connecting the root node, vR,
and vq. For example, in Figure 14, the optimal solution DAG is shown using thick dashed
lines with arrow heads, and the participation count for every intermediate OR nodes are
shown within a circle beside the node.

300

Generating Ordered Solutions for Explicit AND/OR Structures

v1 2, 89

v2 3, 43

〈1〉

1 v3 2, 41

〈2〉

1

v4

40

〈1〉

v5 2, 35

〈5〉 〈4〉

2 v6

52

〈1〉

v7 3, 9

〈4〉

2 v8

17

〈3〉

v9

5

〈1〉

v10

7

〈2〉

σ2,5,4 : 1 σ3,5,6 : 14

σ7,9,10 : 3

Figure 14: AND/OR DAG

v1 2, 90

v2 3, 44

〈1〉

1 v3 2, 41

〈2〉

1

v4

40

〈1〉

v5 2, 35

〈5〉 〈4〉

1 v6

52

〈1〉

v7 3, 9

〈4〉

1 v8 17

〈3〉

v9

5

〈1〉

v10

7

〈2〉

σ3,5,6 : 14

σ7,9,10 : 3

Figure 15: Solution DAG S1

We use the notation σijk to denote a swap option in the context of AND/OR DAGs,
where swap option σijk belongs to node vi, the source edge of the swap option is eij from
node vi to node vj , and the destination edge is eik from node vi to node vk.

4.2.1 Modification in the Proposed Top-Down Approach

The ASG algorithm is modified for handling AND/OR DAGs in the following way. The
computation of the successor solution in Line 14 of Algorithm 4 is modified to incorporate
the participation count of the OR node to which the applied swap option belongs. The
overall method is shown in Algorithm 6(in the next page).

In order to apply LASG on AND/OR DAGs, apart from using the above mentioned
modification for computing the cost of a newly generated solution, another modification
is needed for computing the native swap options for a given solution. The modification is
explained with an example. Consider the solution, S1, shown in Figure 15. S1 is highlighted
using thick dashed lines with arrow heads. The pair, cv(vq), C(S1, vq), is shown within
rectangles beside each node vq; rectangles with rounded corner are used when C(S1, vq) 6=
Copt(vq). Swap option σ(2,5,4) was applied to Sopt to generate S1. After the application
of swap option σ(2,5,4), the participation count of node v5 is decremented to 1. Therefore
in S1 there is a path from the root node to node v5 and so node v5 is still present in S1.
As a result, the swap option σ(7,9,10) is available to S1 with a participation count equal to
1 for node v7, whereas σ(7,9,10) is available to its parent solution Sopt with participation
count 2 for node v7. In other words, σ(7,9,10) is not available to S1 and its parent solution
Sopt with the same value of participation count for node v7. Therefore σ(7,9,10) becomes the
native swap option of S1. The generalized definition of native swap options for a solution
is presented below.

Definition 4.o [Native Swap Options of a Solution] Consider a solution Sm of an
AND/OR DAG Gαβ , where Sm is constructed by applying swap option σhij to solution
Sp. Since swap option σhij = 〈ehi, ehj , δhij〉 is used to construct Sm, AND node vj belongs

301

Ghosh, Sharma, Chakrabarti, & Dasgupta

to Sm. Similarly, if the participation count of node vi remains greater than zero after ap-
plying σhij to Sm, node vi belongs to Sm. The native swap options of solution Sm with
respect to swap option σhij, N (Sm, σhij), a subset of L(Sm), comprises of the following
swap options :

a. σhjk, where σhjk is the swap option on the edge ehj
b. each σt, if σt belongs to an OR node vq where vq is a node in Sm(vj)
c. each σ′

t, if node vi is present in Sm and σ′
t belongs to an OR node vq where vq is a

node in Sm(vi).
We use the term N (Sm) to denote the native swap options when σhij is understood from
the context. Intuitively the native swap options for solution Sm are the swap options that
become available immediately after applying σhij , but were not available in the predecessor
solution of Sm. ⊓⊔
Algorithm 6: ASG Algorithm for AND/OR DAGs

input : An AND/OR DAG Gαβ

output: Alternative solutions of Gαβ in the non-decreasing order of cost
Compute the optimal solution Sopt, perform OR edge marking and populate the1

swap options;
Create three lists, Open, Closed, and TList, that are initially empty;2

Put Sopt in Open;3

lastSolCost← C(Sopt);4

while Open is not empty do5

Smin ← Remove the minimum cost solution from Open;6

if lastSolCost < C(Smin) then7

Remove all the elements of TList;8

lastSolCost← C(Smin);9

end10

Add Smin to Closed and TList;11

Compute the swap list, L(Smin), of Smin;12

/* Construct Succ(Smin) using L(Smin) and add new solutions to Open */
foreach σij ∈ L(Smin) do13

Construct Sm by applying σij to Smin;14

Construct the signature of Sm, Sig(Sm), by concatenating σij after Sig(Smin);15

Let σij belongs to OR node vq, p is the participation count of vq, and δ is the16

cost increment for σij ;
C(Sm) = C(Sm) + p× δ;17

/* Check whether Sm is already present in Open or in TList */
if (Sm not in Open) and (Sm not in TList) then18

Add Sm to Open;19

end20

end21

Report the solutions in Closed;22

It is worth noting that Definition 4.o of native swap option is a generalization of the
earlier definition of native swap option (Definition 3.n), defined in the context of trees. In

302

Generating Ordered Solutions for Explicit AND/OR Structures

the case of trees, the participation count of any node can be at maximum 1. Therefore,
after the application of a swap option to a solution, the participation count of the node,
to which the original edge of the swap option points to, becomes 0. Therefore the third
condition is never applicable for trees.

LASG (Algo. 5) can be applied on AND/OR DAGs, with the mentioned modification
for computing the cost of a newly generated solution and the general definition of native
swap option to generate ordered solutions under default semantics.

4.2.2 Working of ASG and LASG Algorithm on AND/OR DAG

We describe the working of ASG algorithm on the example DAG shown in Figure 2. Before
entering the outermost while loop, TList and Closed are empty, and Open contains the
optimal solution Sopt. The contents of the different lists obtained after first few cycles of
outermost while loop are shown in Table 3. Each solution is represented by its signature.
The solutions that are already present in Open and also constructed by expanding the
current Smin, are highlighted with under-braces. For example, the solution {σ(2,5,4), σ(3,5,6)}
which is added to Open in Iteration 2 (while constructing the successor solutions of {σ(2,5,4)})
constructed again in Iteration 5 while expanding solution {σ(3,5,6)}.

It. Smin L(Smin) Open Closed
1 {} σ(2,5,4), σ(3,5,6), σ(7,9,10) {σ(2,5,4)}, {σ(3,5,6)}, {σ(7,9,10)} {}

2 {σ(2,5,4)} σ(3,5,6) , σ(7,9,10) {σ(3,5,6)}, {σ(7,9,10)}, {σ(2,5,4) , σ(3,5,6)}, {}, {σ(2,5,4)}
{σ(2,5,4) , σ(7,9,10)}

3 {σ(2,5,4) , σ(7,9,10)} ∅ {σ(3,5,6)}, {σ(7,9,10)}, {σ(2,5,4) , σ(3,5,6)}, {}, {σ(2,5,4)}
{σ(2,5,4) , σ(7,9,10)}

4 {σ(7,9,10)} ∅ {σ(3,5,6)}, {σ(2,5,4) , σ(3,5,6)}, {}, {σ(2,5,4)},
{σ(2,5,4) , σ(7,9,10)},

{σ(7,9,10)}

5 {σ(3,5,6)} σ(2,5,4) , σ(7,9,10) {σ(2,5,4), σ(3,5,6)}
︸ ︷︷ ︸

, {σ(3,5,6) , σ(7,9,10)} {}, {σ(2,5,4)},

{σ(2,5,4) , σ(7,9,10)},
{σ(7,9,10)}, {σ(3,5,6)}

Table 3: Example Working of ASG Algorithm on the DAG shown in Figure 2

Now we illustrate the working of LASG algorithm on the example DAG shown in Fig-
ure 2. The contents of the different lists when a solution is added to Closed are shown
in Table 4. It is worth noting that for solution S1 = {σ2,5,4}, the swap list L(S1) =
{σ(3,5,6), σ(7,9,10)} whereas the native swap list N (S1) = {σ(7,9,10)}. The solutions that are
added to Open as a result of lazy expansion, are highlighted using under-brace. For example,
in Iteration 7 LASG adds the solution S5 = {σ(2,5,4), σ(3,5,6)} to Open after the generation
of solution S4 = {σ3,5,6} as a part of lazy expansion, whereas the ASG algorithm adds S5

to Open after generating solution S1 = {σ2,5,4}.

4.2.3 Generating Solutions under Tree Based Semantics

Unlike the default semantics, ASG or LASG does not have any straight forward extension
for generating solutions under tree based semantics. In Figure 13 we show an example
solution which is valid under tree based semantics, but invalid under default semantics,
because both OR edges emanating form the OR node v7, namely e(7,9) and e(7,10), are

303

Ghosh, Sharma, Chakrabarti, & Dasgupta

It. Smin N (Smin) Open Closed
- {} σ(2,5,4) , σ(3,5,6) , σ(7,9,10) {σ(2,5,4)}, {σ(3,5,6)}, {σ(7,9,10)} {}
1 {σ(2,5,4)} σ(7,9,10) {σ(3,5,6)}, {σ(7,9,10)}, {}, {σ(2,5,4)}

{σ(3,5,4) , σ(7,9,10)}
2 {σ(2,5,4) , σ(7,9,10)} ∅ {σ(3,5,6)}, {σ(7,9,10)}, {}, {σ(2,5,4)}

{σ(2,5,4), σ(7,9,10)}

3 {σ(7,9,10)} ∅ {σ(3,5,6)} {}, {σ(2,5,4)},
{σ(2,5,4) , σ(7,9,10)},

{σ(7,9,10)}
4 {σ(3,5,6)} σ(7,9,10) {σ(3,5,6) , σ(7,9,10)}, {}, {σ(2,5,4)},

{σ(2,5,4) , σ(3,5,6)}
︸ ︷︷ ︸

{σ(2,5,4) , σ(7,9,10)},

{σ(7,9,10)}, {σ(3,5,6)}

Table 4: Example Working of LASG Algorithm on the DAG shown in Fugure 2

present in this solution. These two OR edges are included in the solution through two
different paths emanating form the root node, v1. As the existing bottom-up approach
stores the alternative solutions at each node in terms of the solutions of the children of that
node, this representation allows these different paths to be stored explicitly, thus making
BU amenable for generating alternative solutions under tree-based semantics.

On the contrary, our approach works top-down using a compact representation (signa-
ture) for storing the solutions. In this signature based representation, it is currently not
possible to store the fact that a particular OR node is included in the solution through two
different paths which may select different child of that OR node. If we use the equivalent
tree constructed form the given graph, our compact representation will work correctly, be-
cause in that case, each node would be reachable from the root node through at most one
path. An AND/OR DAG can be converted to its equivalent AND/OR tree representation
using procedure ConvertDAG (described in Section 2) and then ASG or LASG can be ap-
plied on the equivalent tree representation in order to generate the alternative solutions
correctly under tree-based semantics. However, in the worst case, procedure ConvertDAG
incurs a space explosion which will blow up the worst case complexity of both ASG and
LASG algorithms. Using our compact representations to generate the ordered solutions
under tree-based semantics for a given AND/OR DAG while containing the space explosion
such that the worst case complexity of our algorithms remain comparable with BU turns
out to be an interesting open problem.

5. Experimental Results and Observations

To obtain an idea of the performance of the proposed algorithms and to compare with
the existing approach, we have implemented the ASG, LASG and BU (existing bottom-up
approach) and tested on the following test domains.

a. A set of synthetically generated AND/OR trees;
b. Tower of Hanoi(TOH) problem;
c. A set of synthetically generated AND/OR DAGs;
d. Matrix-chain multiplication problem; and
e. The problem of determining the secondary structure of RNA sequences.

304

Generating Ordered Solutions for Explicit AND/OR Structures

It may noted that in our implementation of the ASG algorithm, we have implemented the
more space efficient version of ASG algorithm (without a separate hash-map for storing the
solutions in Open and Closed, thereby incurring an extra overhead in time for duplication
checking). Another important point is that for every test case the reported running time of
ASG and LASG for generating a particular number of solutions includes the time required
for constructing the optimal solution graph. The details of the different test domains are
as follows.

5.1 Complete Trees

We have generated a set of complete d-ary alternating AND/OR trees by varying – (a) the
degree of the non-terminal nodes (denoted by d), and (b) the height (denoted by h).

(d, h)
100 solutions 300 solutions 500 solutions

ASG LASG BU ASG LASG BU ASG LASG BU
(2, 7) 0.027 0.005 0.004 0.086 0.014 0.009 0.186 0.023 0.020
(2, 9) 0.216 0.010 0.015 1.448 0.035 0.046 4.137 0.060 0.097
(2, 11) 1.170 0.031 0.068 10.098 0.094 0.184 27.354 0.216 0.407
(2, 13) 6.072 0.124 0.257 57.757 0.348 0.777 158.520 0.524 1.641
(2, 15) 30.434 0.517 1.180 278.453 1.433 3.917 766.201 2.806 7.257
(2, 17) 130.746 2.265 4.952 T 6.443 13.277 T 10.306 29.703

(3, 5) 0.046 0.006 0.005 0.196 0.015 0.018 0.459 0.026 0.042
(3, 7) 0.528 0.017 0.037 4.764 0.060 0.153 10.345 0.088 0.457
(3, 9) 5.812 0.106 0.343 55.170 0.290 1.733 156.158 0.494 4.913
(3, 11) 66.313 1.552 3.973 620.996 3.712 14.323 T 6.607 33.923
(3, 13) 636.822 12.363 31.043 T 34.150 128.314 T 55.510 303.785

(4, 5) 0.144 0.011 0.033 1.041 0.025 0.092 2.610 0.042 0.123
(4, 7) 2.916 0.056 0.573 25.341 0.181 1.561 69.596 0.264 2.107
(4, 9) 58.756 1.266 7.698 544.989 3.327 27.063 T 5.172 38.606

(5, 5) 0.334 0.012 0.081 2.792 0.036 0.400 7.374 0.062 0.930
(5, 7) 12.227 0.177 2.066 102.577 0.443 11.717 283.689 0.827 26.994

(6, 5) 0.699 0.022 0.161 5.384 0.071 1.418 15.133 0.134 2.235
(6, 7) 32.620 0.654 7.464 288.257 1.566 37.758 832.235 2.594 90.465

(7, 5) 1.306 0.030 0.287 12.006 0.092 1.833 29.870 0.179 4.322
(7, 7) 81.197 1.786 15.892 785.160 4.284 102.431 T 6.890 241.064

Table 5: Comparison of running time (in seconds) for generating 100, 300, and 500 solutions
for complete alternating AND/OR trees (T denotes the timeout after 15 minutes)

These trees can be viewed as the search space for a gift packing problem, where
(a) the terminal nodes represent the cost of elementary items,
(b) the OR nodes model a choice among the items (elementary or composite in nature)

represented by the children, and
(c) the AND nodes model the repackaging of the items returned by each of the children.
Every packaging incurs a cost which is modeled by the cost of the intermediate AND nodes.
Here the objective is to find the alternative gifts in the order of non-decreasing cost.

Table 5 shows the time required for generating 100, 300, and 500 solutions for various
complete alternating AND/OR trees. We have implemented the ASG, LASG and the
existing bottom-up algorithm and the corresponding running time is shown in the column
with the heading ASG, LASG and BU, respectively. We have used a time limit of 15 minutes

305

Ghosh, Sharma, Chakrabarti, & Dasgupta

(d, h)
100 solutions 300 solutions 500 solutions

ASG LASG BU ASG LASG BU ASG LASG BU
(2, 7) 12.633 13.168 11.047 28.105 32.293 14.266 41.676 49.832 16.609
(2, 9) 52.770 26.152 48.484 144.730 75.355 69.953 230.168 128.934 87.922
(2, 11) 116.582 63.254 198.234 341.227 165.824 292.703 566.766 269.766 373.172
(2, 13) 287.898 173.730 797.234 832.562 399.445 1183.703 1396.758 612.184 1514.172
(2, 15) 664.789 413.855 3193.234 1767.867 804.801 4747.703 2942.629 1197.266 6078.172
(2, 17) 1785.156 1257.387 12777.234 T 2047.859 19003.703 T 2849.617 24334.172

(3, 5) 17.270 17.258 11.688 47.531 49.230 14.812 76.270 80.980 17.938
(3, 7) 82.609 48.086 111.438 235.855 134.102 152.062 393.113 219.555 192.688
(3, 9) 335.301 184.375 1009.188 926.004 376.766 1387.312 1507.973 577.766 1765.438
(3, 11) 1474.477 1071.352 9088.938 3234.523 1656.844 12504.562 T 2238.152 15920.188
(3, 13) 9139.312 7872.055 81806.688 T 9565.598 112559.812 T 11251.035 143312.938

(4, 5) 40.285 24.469 47.453 121.336 67.102 112.609 199.254 116.535 129.016
(4, 7) 213.816 128.629 767.453 559.734 284.922 1826.359 917.824 451.223 2105.266
(4, 9) 1563.770 1158.582 12287.453 3209.145 1699.191 29246.359 T 2240.012 33725.266

(5, 5) 64.879 40.355 88.281 182.270 110.480 225.781 305.891 179.801 363.281
(5, 7) 529.738 343.254 2217.188 1254.715 596.957 5675.000 2008.344 858.852 9132.812

(6, 5) 97.703 58.191 151.047 270.027 148.453 372.141 443.656 245.227 593.234
(6, 7) 1264.828 862.332 5449.797 2747.238 1273.641 13433.391 4203.957 1695.684 21416.984

(7, 5) 137.527 90.703 242.219 369.086 205.914 576.594 606.133 317.492 910.969
(7, 7) 2628.461 1995.195 11882.781 4869.551 2627.211 28295.281 T 3273.703 44707.781

Table 6: Comparison of space required (in KB) for generating 100, 300, and 500 solutions
for complete alternating AND/OR trees

and the entries marked with T denotes that the time-out occurred for those test cases. The
space required for generating 100, 300, and 500 solutions is reported in Table 6. It can
be observed that in terms of both time and space required, LASG outperforms both ASG
and BU. Between ASG and BU, for most of the test cases BU performs better than ASG
with respect to the time required for generating a specific number of solutions. The space
requirement of ASG and BU for generating a specific number of solutions has an interesting
correlation with the degree(d) and height(h) parameter of the tree. For low numerical values
of the d and the h parameter, e.g., (d, h) combinations like (2, 7), (3, 5) etc., BU performs
better than ASG. On the contrary, for the other combinations, where at least one of these
d and h parameters has a high value, e.g., (d, h) combinations like (2, 17), (7, 5), (4, 9) etc.,
ASG outperforms BU.

5.1.1 Experimentation with Queue with Bounded Length

Since the Open can grow very rapidly, both ASG and LASG incur a significant overhead
in terms of time as well as space to maintain the Open list when the number of solutions
to be generated is not known a priori. In fact, for ASG checking for duplicates in Open is
actually the primary source of time complexity and storing the solutions in Open is a major
contributing factor in space complexity. If the number of solutions that have to generated is
known a priori, the proposed top-down approach can leverage the fact by using a bounded
length queue for implementing Open. When a bounded length queue is used, the time
requirement along with space requirement decreases significantly.

306

Generating Ordered Solutions for Explicit AND/OR Structures

(d, h)
100 solutions 300 solutions 500 solutions

ASG LASG BU ASG LASG BU ASG LASG BU
(2, 7) 0.011 0.008 0.004 0.003 0.002 0.009 0.005 0.004 0.020
(2, 9) 0.030 0.011 0.015 0.008 0.006 0.046 0.014 0.008 0.097
(2, 11) 0.051 0.031 0.068 0.020 0.011 0.184 0.023 0.017 0.407
(2, 13) 0.125 0.103 0.257 0.043 0.059 0.777 0.065 0.058 1.641
(2, 15) 0.473 0.421 1.180 0.168 0.164 3.917 0.254 0.346 7.257
(2, 17) 2.129 2.199 4.952 0.766 1.005 13.277 1.146 1.492 29.703

(3, 5) 0.012 0.009 0.005 0.003 0.002 0.018 0.005 0.004 0.042
(3, 7) 0.031 0.018 0.037 0.012 0.006 0.153 0.019 0.010 0.457
(3, 9) 0.133 0.102 0.343 0.048 0.043 1.733 0.071 0.061 4.913
(3, 11) 1.246 1.143 3.973 0.477 0.636 14.323 0.693 0.905 33.923
(3, 13) 10.713 10.313 31.043 4.160 5.555 128.314 6.013 7.890 303.785

(4, 5) 0.019 0.008 0.033 0.006 0.004 0.092 0.010 0.006 0.123
(4, 7) 0.071 0.055 0.573 0.026 0.023 1.561 0.038 0.033 2.107
(4, 9) 1.099 0.998 7.698 0.443 0.552 27.063 0.641 0.808 38.606

(5, 5) 0.025 0.013 0.081 0.009 0.031 0.400 0.015 0.008 0.930
(5, 7) 0.201 0.161 2.066 0.083 0.078 11.717 0.116 0.153 26.994

(6, 5) 0.036 0.018 0.161 0.014 0.011 1.418 0.021 0.010 2.235
(6, 7) 0.543 0.460 7.464 0.240 0.325 37.758 0.326 0.431 90.465

(7, 5) 0.042 0.029 0.287 0.020 0.013 1.833 0.025 0.022 4.322
(7, 7) 1.940 1.705 15.892 0.807 0.843 102.431 0.870 1.125 241.064

Table 7: Comparison of running time (in seconds) for generating 100, 300, and 500 solutions
for complete alternating AND/OR trees with bounded length Open queue for ASG
and LASG

(d, h)
100 solutions 300 solutions 500 solutions

ASG LASG BU ASG LASG BU ASG LASG BU
(2, 7) 10.109 2.383 11.047 27.781 5.508 14.266 45.789 8.633 16.609
(2, 9) 23.875 4.883 48.484 64.430 8.008 69.953 104.117 11.133 87.922
(2, 11) 54.609 14.883 198.234 141.203 18.008 292.703 225.969 21.133 373.172
(2, 13) 135.477 54.883 797.234 317.445 58.008 1183.703 497.508 61.133 1514.172
(2, 15) 361.859 214.883 3193.234 738.992 218.008 4747.703 1114.422 221.133 6078.172
(2, 17) 1071.258 854.883 12777.234 1845.562 858.008 19003.703 2615.656 861.133 24334.172

(3, 5) 12.008 2.617 11.688 34.609 5.742 14.812 57.617 8.867 17.938
(3, 7) 39.469 11.160 111.438 101.320 14.285 152.062 163.102 17.410 192.688
(3, 9) 169.469 88.047 1009.188 353.477 91.172 1387.312 537.328 94.297 1765.438
(3, 11) 971.930 780.027 9088.938 1529.031 783.152 12504.562 2085.367 786.277 15920.188
(3, 13) 7075.109 7007.852 81806.688 8763.023 7010.977 112559.812 10457.797 7014.102 143312.938

(4, 5) 20.664 5.016 47.453 56.703 8.141 112.609 93.031 11.266 129.016
(4, 7) 116.609 57.016 767.453 247.320 60.141 1826.359 377.922 63.266 2105.266
(4, 9) 1082.633 889.016 12287.453 1607.859 892.141 29246.359 2132.516 895.266 33725.266

(5, 5) 33.344 10.195 88.281 84.422 13.320 225.781 135.812 16.445 363.281
(5, 7) 324.258 217.715 2217.188 565.531 220.840 5675.000 806.797 223.965 9132.812

(6, 5) 51.742 19.773 151.047 121.031 22.898 372.141 190.758 26.023 593.234
(6, 7) 825.859 657.648 5449.797 1227.742 660.773 13433.391 1628.797 663.898 21416.984

(7, 5) 78.141 35.742 242.219 169.297 38.867 576.594 260.406 41.992 910.969
(7, 7) 1919.805 1677.051 11882.781 2542.047 1680.176 28295.281 3163.438 1683.301 44707.781

Table 8: Comparison of space required (in KB) for generating 100, 300, and 500 solutions
for complete alternating AND/OR trees with bounded length Open queue for ASG
and LASG

307

Ghosh, Sharma, Chakrabarti, & Dasgupta

We show the effect of using bounded length queue to implement Open in Table 7 (re-
porting the time requirement) and in Table 8 (reporting the memory usage) for generating
100, 300, and 500 solutions, where the number of solutions to be generated are known be-
forehand. Table 7 and Table 8 show that in this case both ASG and LASG outperforms
BU in terms of time as well as space requirements. Particularly, ASG performs very well in
this setting, outperforming LASG in some cases.

5.1.2 Experimentation to Compare the Incremental Nature

The proposed top-down algorithms are incremental in nature whereas the existing bottom-
up approach is not incremental. After generating a specified number of ordered solutions,
our methods can generate the next solution incrementally without needing to restart itself,
whereas the existing approach needs to be restarted. For example, after generating the
first 10 ordered solutions, ASG and LASG generate the 11th solution directly from the data
structures maintained so far by these algorithms and perform necessary updates to these
data structures. Whereas, BU needs to be restarted with input parameter 11 for generating
the 11th solution. In Table 9 we compare the time needed to generate the subsequent 11th

solution and 12th solution incrementally after generating first 10 solutions. In order to have
more clarity in the comparison among the running times of the respective algorithms, we
have used higher precision (upto the 6th decimal place) while reporting the running time
in Table 9. Clearly, both ASG and LASG outperform BU for generating the 11th and 12th

solution in terms of the time requirement.

(d, h)
ASG LASG BU

first 10 11th 12th first 10 11th 12th first 10 11th 12th

(2, 7) 0.002403 0.000201 0.000201 0.001003 0.000240 0.000123 0.001344 0.001359 0.001397
(2, 9) 0.009111 0.001957 0.001302 0.003023 0.000714 0.000629 0.003596 0.003696 0.003895
(2, 11) 0.028519 0.003311 0.003533 0.006700 0.001250 0.001346 0.014628 0.015046 0.015521
(2, 13) 0.097281 0.014776 0.015929 0.025877 0.004113 0.004918 0.059326 0.061393 0.062717
(2, 15) 0.396460 0.063641 0.059229 0.102493 0.014490 0.020031 0.238418 0.246042 0.251746
(2, 17) 1.561020 0.251839 0.277763 0.446899 0.061422 0.082366 0.962635 0.989777 1.015848

(3, 5) 0.001692 0.000158 0.000151 0.000683 0.000176 0.000112 0.001055 0.001101 0.001133
(3, 7) 0.012097 0.001542 0.001572 0.004084 0.000583 0.000959 0.009507 0.009931 0.010336
(3, 9) 0.097356 0.013046 0.014405 0.031159 0.003948 0.004604 0.085610 0.089379 0.093419
(3, 11) 0.934389 0.127943 0.156579 0.311128 0.033169 0.047594 0.778298 0.811176 0.846578
(3, 13) 7.898530 1.082319 1.194090 2.811539 0.282836 0.387715 7.037050 7.313715 7.608619

(4, 5) 0.005833 0.000650 0.000671 0.002143 0.000303 0.000582 0.004181 0.004434 0.004725
(4, 7) 0.051598 0.006956 0.007196 0.017046 0.002209 0.003115 0.044913 0.047867 0.050940
(4, 9) 0.813028 0.110205 0.124750 0.294561 0.027612 0.037281 0.727766 0.775950 0.823442

(5, 5) 0.051530 0.001327 0.001641 0.004638 0.000753 0.000652 0.005963 0.006358 0.006782
(5, 7) 0.172475 0.024262 0.024438 0.059751 0.006116 0.007197 0.152285 0.162527 0.173191

(6, 5) 0.053422 0.002701 0.003092 0.005282 0.000636 0.001087 0.010895 0.011604 0.012556
(6, 7) 0.502939 0.061417 0.069727 0.184584 0.017116 0.024042 0.406947 0.435398 0.465301

(7, 5) 0.033831 0.003706 0.003846 0.012862 0.001266 0.001282 0.018185 0.019567 0.020896
(7, 7) 1.198354 0.156145 0.166501 0.466560 0.038792 0.061305 0.929941 0.989326 1.052566

Table 9: Comparison of running time (in seconds) for generating for first 10 solutions and
then the 11th solution and 12th solution incrementally for complete alternating
AND/OR trees

308

Generating Ordered Solutions for Explicit AND/OR Structures

5.2 Multipeg Tower of Hanoi Problem

Consider the problem of Multipeg Tower of Hanoi (Majumdar, 1996; Gupta, Chakrabarti,
& Ghose, 1992). In this problem, ρ pegs are fastened to a stand. Initially γ disks rest on
the source peg A with small disk on large disk ordering. The objective is to transfer all
γ disks from A to the destination peg B with minimum legal moves. In a legal move, the
topmost disk from any tower can be transferred to any other peg with a larger disk as the
topmost disk. The problem of multi-peg tower of Hanoi can be solved recursively as follows.

a. Move recursively the topmost k (k varies from 1 to γ − 1) disks from A to some
intermediate peg, I, using all the pegs.

b. Transfer the remaining γ − k disks from A to B recursively, using the (ρ − 1) pegs
available.

c. Recursively move k disks that were transferred to I previously, from the intermediate
peg I to B, using all the ρ pegs.

It may be noted that there is a choice for the value of k, which may take any value from 1
to γ − 1. Solutions with different values of k may take different number of moves, and the
solution which incurs minimum number of moves is the optimal solution. This choice of
the value of k is modeled as an OR node, and for every such choice, the problem is divided
into three sub-problems. This decomposition into sub-problems is modeled as an AND
node. Therefore, the search spaces of the multi-peg Tower of Hanoi problem correspond to
alternating AND/OR trees.

#disks
100 solutions 300 solutions 500 solutions #Opt. No.

ASG LASG BU ASG LASG BU ASG LASG BU of Moves
8 0.034 0.030 0.069 0.104 0.084 0.252 0.200 0.138 0.577 23
9 0.119 0.116 0.264 0.314 0.289 0.942 0.590 0.458 2.183 27
10 0.479 0.635 1.310 1.706 1.658 3.305 2.303 2.829 7.592 31
11 2.421 2.178 3.171 6.573 6.161 12.998 10.651 9.678 29.242 39
12 7.453 7.448 11.437 21.232 21.081 43.358 35.825 35.663 99.593 47
13 25.379 25.115 38.458 68.574 67.170 140.392 112.411 112.470 332.113 55

Table 10: Comparison of running time (in seconds) for alternating AND/OR trees corre-
sponding to the search spaces of 5-peg Tower of Hanoi problem with different
number of disks

#disks
100 solutions 300 solutions 500 solutions

ASG LASG BU ASG LASG BU ASG LASG BU
8 36.664 43.008 416.312 64.516 80.734 660.062 105.039 117.008 903.812
9 96.211 111.320 1471.656 131.266 154.266 2359.156 166.789 197.859 3246.656
10 295.672 341.000 5074.219 326.352 383.453 8161.719 373.453 427.766 11249.219
11 957.336 1113.508 17197.312 999.602 1158.797 27728.562 1039.367 1204.719 38259.812
12 3155.086 3664.117 57512.812 3198.156 3719.352 92906.562 3247.547 3767.617 128300.312
13 10339.078 12022.883 190297.969 10412.242 12078.914 307872.969 10483.570 12137.242 425447.969

Table 11: Comparison of space required (in KB) for alternating AND/OR trees correspond-
ing to the search spaces of 5-peg Tower of Hanoi problem with different number
of disks

We have used the search space of 5 peg Tower of Hanoi problem with different number of
disks, γ, and generated alternative solutions in non-decreasing order of cost using ASG and

309

Ghosh, Sharma, Chakrabarti, & Dasgupta

LASG algorithms. Here the cost function expresses the number of legal moves. The value
of γ is varied from 8 to 13, and in Table 10 and in Table 11, we report the time required and
space required, respectively, for generating 100, 300, and 500 solutions for every test cases.
Experimental results show that the performance of ASG is similar to the performance of
LASG with respect to both space and time. However ASG as well as LASG outperforms
BU with respect to both time and space requirements.

5.3 Randomly Constructed AND/OR DAGs

We have constructed a set of randomly generated AND/OR DAGs and evaluated the ASG,
LASG, and BU algorithm for generating solutions under default semantics. We have used
the proposed extension to the BU algorithm for generating solutions under default seman-
tics.

nαβ d
100 solutions 300 solutions 500 solutions

ASG LASG BU ASG LASG BU ASG LASG BU
60 2 0.027 0.006 0.039 0.089 0.021 0.158 0.172 0.033 0.282
220 2 0.060 0.009 0.096 0.281 0.030 1.100 0.594 0.051 3.665
920 2 0.363 0.020 0.106 2.485 0.059 0.266 6.163 0.100 0.528
33 3 0.020 0.006 0.019 0.123 0.021 0.098 0.280 0.032 0.245
404 3 0.203 0.018 0.067 1.483 0.048 0.257 4.043 0.083 0.541
2124 3 3.550 0.045 0.730 30.302 0.126 1.681 85.863 0.215 2.766
9624 3 26.659 0.201 14.620 257.605 0.612 33.382 710.708 1.194 52.406
144 4 0.065 0.008 0.034 0.348 0.027 0.217 0.817 0.049 2.251
744 4 0.877 0.025 0.400 6.910 0.069 0.994 18.823 0.118 1.365
8844 4 7.422 0.160 26.683 69.097 0.449 66.558 194.452 0.927 109.076
40884 4 T 1.972 T T 5.819 T T 9.426 T

Table 12: Comparison of running time (in seconds) for generating 100, 300, and 500 solu-
tions for AND/OR DAGs (T denotes the timeout after 15 minutes)

nαβ d
100 solutions 300 solutions 500 solutions

ASG LASG BU ASG LASG BU ASG LASG BU
60 2 11.609 8.875 8.125 32.852 30.797 10.906 54.094 50.035 13.250
220 2 23.141 16.219 31.312 62.516 46.711 49.562 100.555 74.379 65.188
920 2 74.082 39.000 106.875 220.648 105.852 172.562 371.344 168.375 230.375

33 3 13.914 10.492 8.172 46.117 32.539 11.297 77.445 54.602 14.422
404 3 48.867 35.445 66.938 151.363 101.168 98.188 262.816 163.273 129.438
2124 3 229.820 118.707 389.844 705.809 312.246 621.094 1200.336 507.762 852.344
9624 3 772.441 339.676 1996.875 2245.938 825.984 3321.875 3732.523 1327.406 4646.875

144 4 30.648 17.332 29.609 85.781 53.961 73.359 140.312 93.539 86.641
744 4 121.535 65.578 287.109 381.133 168.305 737.891 659.434 275.594 883.984
8844 4 471.625 266.078 2729.297 1183.379 550.477 6945.703 1927.961 843.484 8419.922
40884 4 2722.938 1256.535 T T 2353.562 T T 3447.809 T

Table 13: Comparison of space required (in KB) for generating 100, 300, and 500 solutions
for AND/OR DAGs

Table 12 and Table 13 compare the time required and space required for running ASG,
LASG and BU for generating 100, 300, and 500 solutions for every test cases. The first
and second columns of every row provide the size (nαβ) and the average out-degree (d) of
the DAG. The results obtained for this test domain are similar to the results for randomly

310

Generating Ordered Solutions for Explicit AND/OR Structures

constructed AND/OR trees. It may be noted that in terms of both time and space required,
LASG outperforms both ASG and BU. Between ASG and BU, for most of the test cases
BU performs better than ASG with respect to the time required for generating a specific
number of solutions. Whereas, the space requirement of ASG and BU for generating a
specific number of solutions has an interesting co-relation with the average degree(d) and
the size (nαβ) parameter of the DAG. For low numerical values of the d and the nαβ

parameter, e.g., (nαβ, d) combinations like (60, 2), (33, 3) etc., BU performs better than
ASG. On the contrary, for the other combinations, where at least one of these nαβ and d
parameter has a high value, e.g., (nαβ, d) combinations like (920, 2), (9624, 3), (40884, 4)
etc., ASG outperforms BU.

5.4 Matrix-Chain Multiplication Problem

We have also used the well-known matrix-chain multiplication (Cormen, Stein, Rivest, &
Leiserson, 2001) problem for experimentation. The search space of the popular dynamic
programming formulation of this problem correspond to AND/OR DAG.

#matrices

DAG Sopt 10 solutions 15 solutions 20 solutions
Cnstr. Cnstr.
Time Time

ASG LASG BU ASG LASG BU ASG LASG BU
(Sec) (Sec)

20 0.033 0.001 0.003 0.002 0.206 0.004 0.003 0.288 0.005 0.004 0.373
30 0.200 0.003 0.009 0.008 2.785 0.012 0.010 4.087 0.015 0.012 5.406
40 0.898 0.008 0.019 0.018 15.580 0.024 0.024 23.414 0.030 0.030 31.112
50 3.033 0.016 0.047 0.048 93.267 0.062 0.065 140.513 0.079 0.081 187.227
60 8.335 0.029 0.088 0.090 342.212 0.118 0.120 509.906 0.148 0.151 678.718
70 19.591 0.046 0.140 0.142 862.387 0.187 0.190 T 0.235 0.238 T
80 41.960 0.071 0.209 0.212 T 0.280 0.282 T 0.351 0.354 T
90 82.578 0.101 0.296 0.300 T 0.396 0.398 T 0.496 0.499 T
100 151.814 0.143 0.409 0.412 T 0.546 0.548 T 0.688 0.683 T

Table 14: Comparison of time required (in seconds) for AND/OR DAGs corresponding to
the search spaces of matrix-chain multiplication with different number of matri-
ces, (T denotes the timeout after 15 minutes)

#matrices
10 solutions 15 solutions 20 solutions

ASG LASG BU ASG LASG BU ASG LASG BU
20 19.641 20.203 160.918 20.543 21.227 234.305 21.914 22.773 303.973
30 66.367 69.273 555.684 67.809 70.695 821.902 69.516 72.523 1081.902
40 156.559 160.227 1317.637 157.738 161.785 1960.281 158.758 162.852 2594.207
50 308.984 315.012 2563.965 310.277 316.543 3825.223 311.551 318.145 5075.262
60 537.383 545.117 4411.855 538.930 546.512 6592.508 539.914 547.551 8759.441
70 859.844 869.160 6978.496 862.133 870.867 T 863.977 872.219 T
80 1290.117 1301.406 T 1293.148 1303.426 T 1295.852 1305.090 T
90 1843.828 1857.480 T 1847.602 1859.812 T 1851.164 1861.789 T
100 2537.582 2556.883 T 2542.746 2560.043 T 2549.352 2566.992 T

Table 15: Comparison of space required (in KB) for AND/OR DAGs corresponding to the
search spaces of matrix-chain multiplication with different number of matrices

Given a sequence of matrices, A1, A2, · · · , An, of n matrices where matrix Ai has di-
mension pi−1×pi, in this problem the objective is to find the most efficient way to multiply

311

Ghosh, Sharma, Chakrabarti, & Dasgupta

these matrices. The classical dynamic programming approach works as follows. Suppose
A[i,j] denotes matrix that results from evaluating the product, AiAi+1 · · ·Aj, and m[i, j]
is the minimum number of scalar multiplications required for computing the matrix A[i,j].
Therefore, the cost of optimal solution is denoted by m[i, j] which can be recursively defined
as :

m[i, j] =







0, if i = j;

min
i≤k<j

{
m[i, k] +m[k + 1, j] + pi−1 × pk × pj

}
, if i < j.

The choice of the value of k is modeled as OR node and for every such choice, the problem
is divided into three sub-problems. This decomposition into sub-problems is modeled as
an AND node. It is worth noting that unlike the search space of 5-peg ToH problem, the
search space of the matrix-chain multiplication problem corresponds to AND/OR DAG.
We have used the search space for different matrix sequences having varying length and
generated alternative solutions in the order of non-decreasing cost. In Table 14, we report
the time required and in Table 15, we report the memory used for generating 10, 15, and
20 solutions for every test cases.

In Table 14, for each test case, we also report the time required for constructing the
explicit AND/OR DAG from the recursive formulation in the 2nd column, and the optimal
solution construction time in the 3rd column. It is interesting to observe that the relative
performance of ASG and LASG for this search space is very similar to that obtained for 5-
peg ToH search space though this search space for this domain is AND/OR DAG. Both ASG
and LASG perform approximately the same with respect to time and space requirement.
However, the advantage of ASG as well as LASG over BU with respect to both time and
space requirement is more significant in this domain.

5.5 Generating Secondary Structure for RNA

Another relevant problem where the alternative solutions play an important role is the
computation of the secondary structure of RNA. RNA molecules can be viewed as strings
of bases, where each base belongs to the set {Adenine,Cytocine,Guanine, Uracil} (also
denoted as {A,C,G,U}). RNA molecules tend to loop back and form base pairs with itself
and the resulting shape is called secondary structure (Mathews & Zuker, 2004). The stability
of the secondary structure largely depends on the number of base pairings (in general, larger
number of base pairings implies more stable secondary structure). Although there are other
factors that influence the secondary structure, it is often not possible to express these other
factors using a cost function and they are typically evaluated empirically. Therefore, it is
useful to generate a set of possible alternative secondary structures ordered by decreasing
numbering of base pairings for a given RNA which can be further subjected to experimental
evaluation.

The computation of the optimal secondary structure considering the underlying prin-
ciple of maximizing the number of base-pairings has a nice dynamic programming formu-
lation (Kleinberg & Tardos, 2005). Given an RNA molecule B = 〈b1b2 · · · bn〉 where each
bi ∈ {A,C,G,U}, the secondary structure on B is a set of base pairings, D = {(i, j)}, where
i, j ∈ {1, 2, · · · n}, that satisfies the following conditions:

312

Generating Ordered Solutions for Explicit AND/OR Structures

Test Case Organism Name # Bases
TC1 Anaerorhabdus Furcosa 114
TC2 Archaeoglobus Fulgidus 124
TC3 Chlorobium Limicola 111
TC4 Desulfurococcus Mobilis 129
TC5 Haloarcula Japonica 122
TC6 Halobacterium Sp. 120
TC7 Mycoplasma Genitalium 104
TC8 Mycoplasma Hyopneumoniae 105
TC9 Mycoplasma Penetrans 103
TC10 Pyrobaculum Aerophilum 131
TC11 Pyrococcus Abyssi 118
TC12 Spiroplasma Melliferum 107
TC13 Sulfolobus Acidocaldarius 126
TC14 Symbiobacterium Thermophilum 110

Table 16: Details of the RNA sequences used for Experimentation

a. if (i, j) ∈ D, then i+4 < j : This condition states that the ends of each pair in D are
separated by at least four intermediate bases.

b. The elements of any pair in D consists of either {A,U} or {C,G} (in either order).
c. No base appears in more than one pairings, i.e., D is a matching.
d. If (i, j) and (k, l) are two pairs in D, then it is not possible to have i < k < l < j, i.e.,

no two pairings can cross each other.

Test DAG Cnstr. Sopt Cnstr. 5 solutions 10 solutions 15 solutions
Case Time (Sec) Time (Sec) ASG LASG BU ASG LASG BU ASG LASG BU
TC1 34.464 0.042 0.094 0.095 449.916 0.145 0.148 893.682 0.197 0.202 1359.759
TC2 57.999 0.057 0.126 0.128 823.493 0.193 0.198 T 0.271 0.277 T
TC3 26.423 0.038 0.084 0.089 363.421 0.135 0.133 718.326 0.183 0.186 1077.094
TC4 83.943 0.065 0.144 0.152 1089.462 0.230 0.227 T 0.314 0.317 T
TC5 51.290 0.051 0.114 0.116 681.429 0.176 0.180 1349.181 0.239 0.245 T
TC6 46.508 0.047 0.107 0.108 598.419 0.166 0.175 T 0.226 0.238 T
TC7 16.766 0.029 0.068 0.069 210.806 0.101 0.103 410.817 0.136 0.144 621.792
TC8 22.775 0.033 0.077 0.078 284.455 0.120 0.122 559.318 0.153 0.165 836.359
TC9 18.831 0.031 0.068 0.072 233.999 0.109 0.111 458.290 0.144 0.148 683.411
TC10 91.419 0.073 0.167 0.170 T 0.249 0.263 T 0.347 0.355 T
TC11 47.660 0.047 0.111 0.109 627.744 0.173 0.171 1253.034 0.220 0.240 T
TC12 22.649 0.034 0.078 0.079 288.520 0.116 0.123 573.602 0.165 0.167 849.134
TC13 67.913 0.061 0.140 0.141 962.641 0.206 0.218 T 0.290 0.288 T
TC14 28.911 0.038 0.087 0.085 366.693 0.134 0.137 724.113 0.182 0.186 1072.552

Table 17: Comparison of time required (in seconds) for AND/OR DAGs corresponding to
the search spaces of RNA secondary structure with different number of bases (T
denotes the timeout after 30 minutes)

Under the above mentioned conditions the dynamic programming formulation is as follows.
Suppose P (i, j) denotes the maximum number of base pairings in a secondary structure on
bi · · · bj. P (i, j) can be recursively defined as :

P [i, j] =







0, if i+ 4 ≥ j,

max
{

P [i, j − 1], max
i≤k<j

{
1 + P [i, k − 1] + P [k + 1, j − 1]

}
,
}

if i+ 4 < j.

313

Ghosh, Sharma, Chakrabarti, & Dasgupta

Here, a choice of the value of k is modeled as an OR node and for every such choice,
the problem is divided into three sub-problems. This decomposition into sub-problems is
modeled as an AND node. We have experimented with the search space of this problem for
the set of RNA molecule sequences obtained from the test-cases developed by Szymanski,
Barciszewska, Barciszewski, and Erdmann (2005). The details of the test cases are shown
in Table 16.

For every test cases, we report the time required in Table 17 for generating 5, 10, and 15
solutions. For the same setting, the space required is reported in Table 18. In Table 17, for
each test case, we also report the time required for constructing the explicit AND/OR DAG
from the recursive formulation in the 2nd column, and the time required for constructing the
optimal solution time in the 3rd column. We use a high value of time-out (1800 seconds) in
order to gather the running time required by BU. We limit the maximum solutions generated
at 15 because for generating higher number of solutions, BU is timed out for most of the
test cases. It is worth noting that the result obtained for this domain is very similar to the
result obtained for the matrix-chain multiplication problem domain. Both space and time
wise ASG and LASG perform similarly and they outperform BU significantly with respect
to time as well as space requirement.

Test 5 solutions 10 solutions 15 solutions
Case ASG LASG BU ASG LASG BU ASG LASG BU
TC1 1647.555 1694.688 7409.336 1651.273 1697.797 14656.469 1654.367 1700.492 21846.156
TC2 2254.531 2310.008 9902.953 2258.773 2315.258 T 2262.492 2318.008 T
TC3 1473.852 1516.922 6629.891 1477.492 1521.750 13103.492 1480.555 1526.797 19518.625
TC4 2606.242 2665.820 11358.945 2610.875 2671.711 T 2615.719 2675.633 T
TC5 2045.930 2097.414 9021.273 2049.844 2101.836 17875.430 2052.867 2106.000 T
TC6 1912.227 1963.367 8499.570 1916.422 1968.305 T 1921.117 1972.172 T
TC7 1101.125 1138.633 5087.680 1104.422 1142.023 10036.938 1108.047 1144.109 14924.820
TC8 1293.812 1333.336 5855.547 1297.750 1338.070 11560.203 1302.242 1342.484 17211.406
TC9 1170.094 1207.633 5352.477 1173.023 1211.523 10562.766 1176.352 1213.906 15718.617
TC10 2984.773 3047.539 T 2990.211 3053.977 T 2994.773 3059.781 T
TC11 1974.695 2022.906 8641.422 1979.344 2030.922 17119.820 1983.664 2038.461 T
TC12 1295.141 1335.883 5924.664 1297.273 1339.516 11701.695 1299.805 1341.914 17420.719
TC13 2438.898 2496.469 10657.945 2442.961 2502.625 T 2447.172 2506.703 T
TC14 1475.477 1517.828 6627.844 1478.555 1521.352 13099.055 1482.234 1525.344 19519.742

Table 18: Comparison of space required (in KB) for AND/OR DAGs corresponding to the
search spaces of RNA secondary structure with different number of bases

5.6 Observations

The experimental data shows that the LASG algorithm generally outperforms the ASG
algorithm and the existing bottom-up approach in terms of the running time for complete
alternating AND/OR trees and AND/OR DAGs. Whereas, for the other problem domains,
i.e., the 5-peg Tower of Hanoi problem, the matrix-chain multiplication problem, and the
problem of determining secondary structure of RNA sequences, the overall performance of
the ASG algorithm is similar to the performance of the LASG algorithm. This behavior
can be explained from the average and maximum length statistics of Open list, reported in
Table 19 - Table 23, for these above mentioned test domains.

314

Generating Ordered Solutions for Explicit AND/OR Structures

In the case of complete trees and random DAGs, for ASG algorithm, the average as well
as the maximum size of Open grows much faster than that of LASG algorithm (Table 19
and Table 20), with the increase in the size of the tree/DAG.

(d, h)
100 solutions 300 solutions 500 solutions

ASG LASG ASG LASG ASG LASG

avg. max. avg. max. avg. max. avg. max. avg. max. avg. max.

(2, 7) 235 383 75 159 435 629 179 289 545 792 236 372
(2, 9) 994 1894 73 120 2657 4931 220 528 4103 7569 449 1069
(2, 11) 2427 4709 156 306 6935 13537 483 1005 11251 21843 851 1771
(2, 13) 5546 10947 524 1149 16266 32076 1550 2726 26748 52724 2261 3844
(2, 15) 11744 23291 384 523 34836 69160 677 1121 57673 114367 983 1824
(2, 17) 24264 48333 655 841 T T 1087 1611 T T 1527 2819

(3, 5) 304 549 120 242 740 1323 341 652 1107 1972 539 1007
(3, 7) 1561 3015 172 346 4359 8400 579 1260 7026 13588 1012 2084
(3, 9) 5496 10899 191 289 16272 32244 387 661 26904 53271 622 1368
(3, 11) 17336 34542 486 691 51954 103549 956 1754 T T 1460 2672
(3, 13) 53139 106155 1138 1216 T T 1267 1569 T T 1432 1776

(4, 5) 734 1427 103 176 2062 4006 256 503 3322 6375 452 1065
(4, 7) 3748 7383 194 381 10928 21489 678 1467 17932 35222 1265 2837
(4, 9) 16282 32451 422 488 48786 97196 687 1131 T T 1025 1807

(5, 5) 1216 2352 146 307 3407 6555 496 1053 5508 10694 852 1742
(5, 7) 7261 14446 249 335 21652 42972 470 888 35850 71054 832 1781

(6, 5) 1781 3489 141 276 5089 9911 507 1126 8250 16035 971 2164
(6, 7) 12362 24651 297 342 36868 73323 461 789 61221 121958 749 1573

(7, 5) 2433 4765 261 508 7072 13910 747 1483 11595 22809 1204 2273
(7, 7) 19311 38435 450 529 57754 115116 687 961 T T 984 1922

Table 19: Average and maximum length of Open while generating 100, 300, and 500 solu-
tions for complete alternating AND/OR trees

nαβ d

100 solutions 300 solutions 500 solutions
ASG LASG ASG LASG ASG LASG

avg. max. avg. max. avg. max. avg. max. avg. max. avg. max.

60 2 181 338 39 63 428 768 131 282 643 1138 219 411
220 2 479 854 77 133 1144 2058 210 417 1721 3139 329 612
920 2 1530 2957 116 227 4289 8278 332 639 6902 13305 512 946

33 3 202 409 58 102 604 1193 154 281 978 1875 234 422
404 3 1001 1969 236 447 2958 5799 675 1256 4874 9781 1013 1810
2124 3 5008 9911 374 626 14803 29314 851 1569 24442 48357 1337 2527
9624 3 14422 28666 394 491 43087 85825 746 1339 71547 142327 1254 2756

144 4 510 990 56 101 1374 2563 187 458 2140 3996 376 868
744 4 2407 4760 253 485 7166 14204 590 1018 11874 23558 885 1655
8844 4 7522 14931 258 437 22254 44062 847 1831 36743 72740 1565 3493
40884 4 T T 749 804 T T 852 1004 T T 961 1215

Table 20: Average and maximum length of Open while generating 100, 300, and 500 solu-
tions for randomly constructed AND/OR DAGs

Since ASG algorithm checks for the presence of duplicates while expanding a solution, the
time required for duplication checking grows rapidly for these test domains. Hence, the
overall time required for generating a specific number of solutions also increases rapidly
(faster than both BU and LASG) with the increase in the size of the tree/DAG. As a result,
BU outperforms ASG with respect to the time requirement for trees and DAGs. However

315

Ghosh, Sharma, Chakrabarti, & Dasgupta

the memory used for generating a specific number of solutions increases moderately (slower
than BU) with the increase in the size of the tree/DAG. Therefore with respect to space
requirement, ASG outperforms BU for larger trees and DAGs.

Between LASG and BU, the time as well as the memory requirement of BU increases
faster than that of LASG when the degree of the AND/OR tree or DAG increases. This
happens because, for BU, the time taken for merging the sub-solutions at the AND nodes
and memory required for storing alternative solutions that are rooted at different nodes
increases rapidly with the increase in the degree of that node.

On the contrary, for the other test domains, 5-peg Tower of Hanoi problem, matrix-chain
multiplication problem, and the probelm of finding secondary structure of RNA sequences,
the average and the maximum size of Open for both ASG and LASG are comparable (Ta-
ble 21, Table 22 and Table 23). Therefore, for the LASG algorithm, the time saved by
avoiding the duplication checking is compensated by the extra overhead of maintaining the
solution space tree and the checks required for lazy expansion. Hence the running time as
well as the space requirement are almost same for both algorithms for these three above
mentioned problem domains.

Moreover, due to the low values of the average and the maximum size of Open, ASG
outperforms BU with respect to both time requirement and memory used for these three
test domains. For these three domains also, between LASG and BU, the time as well as the
memory requirement of BU increases faster than that of LASG when the size of the search
space (AND/OR tree or DAG) increases.

6. Ramifications on Implicitly Specified AND/OR Structures

In this section, we briefly discuss use of our proposed algorithms for generation of alternative
solutions in the non-decreasing order of cost for implicit AND/OR search spaces. One
possible way is to extend the standard AO∗ for generating a given number of solutions,
say k, as follows. Instead of keeping only one potential solution graph(psg), at any stage k
psgs can be computed on the explicitly constructed search space and instead of expanding
one node, k nodes, (that is, one node from each psg), can be expanded at once. After
expanding the nodes, k psgs are recomputed once again. Since the cost of the nodes are
often recomputed after expanding nodes, the swap options associated with any such node
have to be updated after every such recomputation.

Another possible approach could be to run AO∗ until it generates the optimal solution.
At this point of time the swap options can be computed on the explicit portion of the
graph and swap option with minimum cost can be applied to the optimal solution. Then
the resulting psg is again expanded further resulting in the expansion of the explicit graph.
The swap options are re-evaluated to incorporate the cost update. Again the next best psg
is computed. This process continues till the second best solution is derived. Now among the
remaining successor psgs of the first solution and the successor psgs of second solution, the
most promising psg is selected and expanded. This process continues till the third solution
is found. Then the successor psgs are also added to the already existing pool of candidate
psgs. These two broad steps, (a) selecting the next best psg from the pool of candidate
psgs, and then (b) keeping on expanding the explicit graph till the next best solution is
found, is continued till k solutions are found.

316

Generating Ordered Solutions for Explicit AND/OR Structures

disks
100 solutions 300 solutions 500 solutions

ASG LASG ASG LASG ASG LASG

avg. max. avg. max. avg. max. avg. max. avg. max. avg. max.

8 55 92 41 68 111 186 91 174 174 375 135 235
9 66 122 42 71 163 331 119 252 265 484 198 382
10 109 183 53 79 216 367 142 283 345 693 234 447
11 132 218 76 140 296 611 177 373 486 882 291 558
12 219 385 85 147 473 776 234 492 668 1200 404 724
13 259 482 118 200 675 1240 252 437 1016 1828 377 697

Table 21: Average and maximum length of Open while generating 100, 300, and 500 solu-
tions for 5-peg Tower of Hanoi problem with different number of disks

matrices
10 solutions 15 solutions 20 solutions

ASG LASG ASG LASG ASG LASG

avg. max. avg. max. avg. max. avg. max. avg. max. avg. max.

20 46 87 25 39 68 121 34 59 90 176 46 95
30 84 162 71 126 123 230 94 157 160 293 116 192
40 73 123 58 90 98 182 73 129 125 226 90 152
50 86 151 75 126 120 211 100 169 151 266 123 205
60 91 144 76 112 118 189 94 137 151 267 108 160
70 136 234 85 122 188 329 103 147 243 437 117 170
80 181 324 94 132 258 469 112 157 335 607 127 180
90 226 414 103 142 328 609 122 167 427 777 136 190
100 307 576 167 259 445 823 216 337 583 1145 262 477

Table 22: Average and maximum length of Open while generating 10, 15, and 20 solutions
for matrix-chain multiplication problems

Test case
5 solutions 10 solutions 15 solutions

ASG LASG ASG LASG ASG LASG

avg. max. avg. max. avg. max. avg. max. avg. max. avg. max.

TC1 45 84 41 74 93 176 75 125 135 249 95 143
TC2 50 95 50 95 100 192 94 170 146 266 125 197
TC3 47 90 46 89 90 168 82 142 132 244 115 210
TC4 50 93 49 90 101 194 87 155 152 292 119 197
TC5 47 86 45 74 98 186 87 149 140 246 114 184
TC6 49 93 47 84 105 200 95 168 155 294 127 206
TC7 42 81 42 80 83 157 73 119 121 231 92 138
TC8 46 89 44 84 97 188 86 159 144 277 120 214
TC9 40 77 39 73 80 147 70 119 115 214 93 146
TC10 59 116 59 113 128 251 116 212 189 350 161 280
TC11 55 106 54 105 115 225 110 211 171 317 166 321
TC12 33 64 31 51 67 116 55 98 95 172 78 135
TC13 51 98 51 97 103 193 100 185 149 276 140 239
TC14 41 78 40 73 82 154 69 112 120 231 97 176

Table 23: Average and maximum length of Open while generating 5, 10, and 15 solutions
for generating secondary structure of RNA sequences

317

Ghosh, Sharma, Chakrabarti, & Dasgupta

It is important to observe that both methods heavily depend on incorporating the up-
dates in the explicit DAG like adding nodes, increase in the cost, etc., and recomputing the
associated swap options along with the signatures that use those swap options. Handling
dynamic updates in the DAG efficiently and its use in implicit AND/OR search spaces
remains an interesting future direction.

7. Conclusion

In our work we have presented a top-down algorithm for generating solutions of a given
weighted AND/OR structure (DAG) in non-decreasing order of cost. Ordered solutions
for AND/OR DAGs are useful for a number of areas including model based programming,
developing new variants of AO*, service composition based on user preferences, real life
problems having dynamic programming formulation, etc. Our proposed algorithm has two
advantages – (a) it works incrementally, i.e., after generating a specific number of solutions,
the next solution is generated quickly, (b) if the number of solutions to be generated is
known a priori, our algorithm can leverage that to generate solutions faster. Experimental
results show the efficacy of our algorithm over the state-of-the-art. This also opens up
several interesting research problems and development of applications.

8. Acknowledgments

We thank the anonymous reviewers and the editor, Prof. Hector Geffner, for their valuable
comments which have enriched the presentation of the paper significantly. We also thank
Prof. Abhijit Mitra, International Institute of Information Technology, Hyderabad, India,
for his valuable inputs regarding the test domain involving secondary structure of RNA. We
thank Aritra Hazra and Srobona Mitra, Research Scholar, Department of Comp. Sc. &
Engg., Indian Institute of Technology Kharagpur, India, for proof reading the paper.

Appendix A. Proof of Correctness of Algorithm 4

Lemma A.1 Every solution other than the optimal solution Sopt can be constructed from
Sopt by applying a sequence of swap options according to the order R̂.

Proof: [Lemma A.1] Every solution other than Sopt of an alternating AND/ OR tree T̂αβ

is constructed by choosing some non optimal edges at some OR nodes. Consider any other
solution Sm, corresponding to which the set of non-optimal OR edges is Sβ and suppose
|Sβ| = m. We apply the relation R to Sβ to obtain an ordered sequence Σ of OR edges
where ∀e1, e2 ∈ Σ, e1 appears before e2 in Σ if (e1, e2) ∈ R. We show that there exists a
sequence Σ̂ of swap options that can be constructed for Sβ . For every OR edge eij of Σ
(here eij is the ith edge of Σ and 1 ≤ i ≤ m), we append the subsequence of OR edges
ei1 , . . . , eij−1 before eij , where ei1 , . . . , eij are the OR edges that emanate from the same
parent vq, and ei1 , . . . , eij−1 are the first ij − 1 edges in L(vq).

We get a sequence of OR edges Σaug from Σ by the above mentioned augmentation.
Σaug is basically a concatenation of subsequences τ1, . . . , τm, where τi is a sequence of edges
ei1 , . . . , eij such that ei1 , . . . , eij are the OR edges that emanate from the same parent vq,

and ei1 , . . . , eij are the first ij edges in L(vq). We construct Σ̂ from Σaug as follows. From

318

Generating Ordered Solutions for Explicit AND/OR Structures

every τi, we construct τ̂i = 〈σi1,i2 , . . . , σij−1,ij 〉, where σik,ik+1 = 〈eik , eik+1, δik ,ik+1〉 and
i1 ≤ ik ≤ (ij−1). Σ̂ is constructed by concatenating every individual τ̂i. Hence there exists
a sequence of swap options Σ̂ corresponding to every other solution Sm. ⊓⊔

Definition A.p [Default Path] From Lemma A.1, every non-optimal solution Sm can
be constructed from the initial optimal solution by applying a sequence of swap options,
Σ̂(Sm), according to the order R̂. The sequence of solutions that is formed following Σ̂(Sm)
corresponds to a path from Sopt to Sm in SSDAG Gs. This path is defined as the default
path, Pd(Sm), for Sm.

Lemma A.2 The SSDAG of an alternating AND/OR tree T̂αβ contains every alternative

solution of T̂αβ.

Proof: [Lemma A.2] We prove this by induction on the length of the default path Pd of
the solutions.

[Basis (n = 1) :] Consider the swap list of Sopt. The solutions whose default path length
is equal to 1 form the Succ(Sopt). Therefore these solutions are present in G.

[Inductive Step :] Suppose the solutions whose default path length is less than or equal
to n are present in G. We prove that the solutions having default path length equal to
n+1 are also present in G. Consider any solution Sm where Pd(Sm) = n+1. Let Σ̂(Sm) =
〈σ1, · · · , σn, σn+1〉. Consider the solution S′

m where Σ̂(S′
m) = 〈σ1, · · · , σn〉. Since Pd(S′

m) =
n, S′

m ∈ V, and swap option σn+1 ∈ L(S′
m), there is a directed edge from S′

m to Sm in Gs.
Hence every solution having a default path length equal to n+ 1 is also present in G. ⊓⊔

Lemma A.3 For any alternating AND/OR tree T̂αβ , Algorithm 4 adds solutions to Closed
(at Line 11) in non-decreasing order of cost.

Proof: [Lemma A.3] Consider the following invariants of Algorithm 4 that follow from
the description of Algorithm 4.

a. The minimum cost solution from Open is always removed at Line 6 of Algorithm 4.

b. The cost of the solutions that are added in Open, while exploring the successor set of
a solution Sm (at Line 13 of Algorithm 4), are greater than or equal to C(Sm).

From these two invariants it follows that Algorithm 4 adds solutions to Closed (at Line 11)
in non-decreasing order of cost.

Lemma A.4 For any alternating AND/OR tree T̂αβ , for every node of the SSDAG of T̂αβ,
Agorithm 4 generates the solution corresponding to that node.

Proof: [Lemma A.4] From Lemma A.3 it follows that Algorithm 4 generates the solutions
in the non-decreasing order of cost. By generating a solution Sm, we mean adding Sm to
Closed (at line 11 of Algorithm 4). For the purpose of proof by contradiction, let us assume
that Algorithm 4 does not generate solution Sm. Also let Sm be the first occurrence of this

319

Ghosh, Sharma, Chakrabarti, & Dasgupta

scenario while generating solutions in the mentioned order. According to Lemma A.1, there
exists a sequence of swap options Σ̂ = σ1, . . . , σk corresponding to Sm. Also consider the
solution S′

m whose sequence of swap options is Σ̂′ = σ1, . . . , σk−1. According to Property 3.2,
C(S′

m) ≤ C(Sm). Consider the following two cases:

a. C(S′
m) < C(Sm): Since Sm is the first instance of the incorrect scenario, and Algo-

rithm 4 generates the solutions in the non-decreasing order of cost, S′
m is generated

prior to Sm.

b. C(S′
m) = C(Sm): Since Algorithm 4 resolves the tie in the favor of the parent solution,

and Sm is the first instance of the incorrect scenario – in this case also S′
m will be

generated prior to Sm.

The swap option σk belongs to the swap list of S′
m. When S′

m was generated by Algorithm 4,
that is, when S′

m was added to Closed, S′
m was also expanded and the solutions which can

be constructed from S′
m applying one swap option, were added to the Open list. Since Sm

was constructed from S′
m applying one swap option σk, Sm was also added to the Open

while exploring the successors of S′
m. Therefore Sm will also be eventually generated by

Algorithm 4 - a contradiction. ⊓⊔

Lemma A.5 For any alternating AND/OR tree T̂αβ , Algorithm 4 does not add any solution
to Closed (at Line 11 of Algorithm 4) more than once.

Proof: [Lemma A.5] For the purpose of contradiction, let us assume that Sm is the first
solution that is added to Closed twice. Therefore Sm must have been added to Open twice.
Consider the following facts.

a. When Sm was added to Closed for the first time, the value of lastSolCost was C(Sm),
and Sm was added to TList.

b. From the description of Algorithm 4 it follows that the contents of TList are deleted
only when the value of lastSolCost increases.

c. From Lemma A.3 it follows that Algorithm 4 generates the solutions in non-decreasing
order of cost. Hence, when Sm was generated for the second time, the value of
lastSolCost did not change from C(Sm).

From the above facts it follow that Sm was present in TList when Sm was added to Open
for the second time. Since, while adding a solution to Open, Algorithm 4 checks whether it
is present in TList (at Line 16 of Algorithm 4); Algorithm 4 must had done the same while
adding Sm to Open for the second time. Therefore Sm could not be added Open for the
second time – a contradiction. ⊓⊔

Theorem A.1 ∀Sj ∈ V, Sj is generated (at Line 11) by Algorithm 4 only once and in the
non-decreasing order of costs while ties among the solutions having same costs are resolved
as mentioned before.

Proof: [Theorem A.1] Follows from Lemma A.2, Lemma A.3, Lemma A.4 and Lemma A.5.
⊓⊔

320

Generating Ordered Solutions for Explicit AND/OR Structures

Appendix B. Proof of Correctness of Algorithm 5

Definition B.q [Reconvergent Paths in Solution Space DAG] Two paths, (i) p1 =
S1
i1
→ · · · → S1

in
and (ii) p2 = S2

i1
→ · · · → S2

im
, in the SSDAG Gs of an alternating

AND/OR tree T̂αβ are reconvergent if the following holds:

a. S1
i1
= S2

i1
, i.e. the paths start from the same node;

b. S1
in

= S1
im
, i.e. the paths ends at the same node;

c. (∀j ∈ [2, n− 1])(∀k ∈ [2,m− 1]),
(
S1
ij
6= S2

ik

)
; i.e. the paths do not have any common

intermediate node.

Definition B.r [Order on Generation Time] In the context of Algorithm 5, we define an
order relation, ≺t⊂ V ×V, where (Sp, Sq) ∈≺t if Sp is generated by Algorithm 5 before Sq.
Here V is set of vertices in SSDAG Gs of an alternating AND/OR tree T̂αβ .

Lemma B.1 Algorithm 5 adds the solutions to the Closed list in the non-decreasing order
of costs.

Proof: [Lemma B.1] Consider the following invariants of Algorithm 5 that follow from
the description of Algorithm 5.

a. The minimum cost solution from Open is always removed at line 11 of Algorithm 4.

b. Algorithm 5 expands any solution, say Sp, in two phases. At the first phase Sp is
expanded using the native swap options of Sp. The solutions that are added to Open
as a result of the application of the native swap options, will have cost greater than or
equal to C(Sp). In the second phase, i.e., during lazy expansion, Sp is again expanded
using a non native swap option. A solution Sp may undergo the second phase κ times
where 0 ≤ κ ≤ (|L(Sp)| − |N (Sp, σk)|) and σk is used to construct Sp. In every lazy
expansion of Sp, a new solution is added to Open. Consider a solution Sm which is
constructed from S′

m using σj by Algorithm 5 where S′
m ∈ Pred(Sm). Suppose swap

option σi ∈ L(Sm), and σi /∈ N (Sm, σj), i.e., σi is not a native swap option of Sm.
Clearly σi ∈ L(S′

m). Suppose Sc and S′
c are the successors of Sm and S′

m respectively,

constructed by the application of σi, i.e., S
′
m

σi−→ S′
c, and Sm

σi−→ Sc. Also let S′
c is

added to Closed after Sm.

Consider the fact that Algorithm 5 does not apply swap option σi to Sm, that is, Sc is
not added to Open until S′

c is added to Closed. Since C(S′
m) ≤ C(Sm), C(S′

c) ≤ C(Sc).
According to Algorithm 5, σi is applied to Sm (during the lazy expansion), and Sc is
added to Open right after S′

c is added to Closed. Consider the time period between
adding Sm and adding S′

c to Closed. During that period, every solution that is added
to Closed has cost between C(Sm) and C(S′

c), i.e., the cost is less or equal to C(Sc). In
general, the application of a swap option to add a solution to Open is delayed by such
an amount of time, say ∆, so that all the solutions, which are added to Closed during
this ∆ time interval, have cost less than or equal to the solution under consideration.

321

Ghosh, Sharma, Chakrabarti, & Dasgupta

From the above facts it follow that Algorithm 5 adds the solutions to the Closed list in
non-decreasing order of costs. ⊓⊔

Lemma B.2 Any two reconvergent paths in the SSDAG Gs of an alternating AND/OR
tree T̂αβ are of equal length.

Proof: [Lemma B.2] Consider the paths:

(i) p1 = S1
σ1−→ Sp

σ2−→ · · · σn−→ Sn, and (ii) p2 = S1
σ′

1−→ S′
p

σ′

2−→ · · · σ′

m−−→ Sn.

The edges in the paths represent the application of a swap option to a solution. Now p1
and p2 start from the same solution and also end at the same solution. Therefore the sets of
swap options that are used in these paths are also same. Hence the lengths of those paths
are equal, that is, in the context of p1 and p2, n = m.

Lemma B.3 For any set of reconvergent paths of any length n, Algorithm 5 generates at
most one path.

Proof: [Lemma B.3] The following cases are possible.

[Case 1 (n = 2) :] Consider the following two paths:

(i) p1 = S1
σ1−→ S2

σ2−→ S3, and (ii) p2 = S1
σ′

1−→ S′
2

σ′

2−→ S3.

It is obvious that σ1 = σ′
2 and σ2 = σ′

1. Suppose S2 ≺t S
′
2. Here Algorithm 5 does not

apply the swap option σ1 to S′
2. Therefore p2 is not generated by Algorithm 5.

[Case 2 (Any other values of n) :] In this case, any path belonging to the set of re-
convergent paths, consists of n different swap options, suppose σ1, · · · , σn. Also the start
node and the end node of the paths under consideration are Sp and Sm. Consider the nodes
in the paths having length 1 from Sp. Clearly there can be n such nodes.

Among those nodes, suppose Algorithm 5 adds Sp1 to Closed first, and Sp1 is constructed
from Sp by applying swap option σ1. According to Algorithm 5, σ1 will not be applied to
any other node that is constructed from Sp and is added to Closed after Sp1. Therefore,
all those paths starting from Sp, whose second node is not Sp1, will not be generated by
Algorithm 5. We can use the similar argument on the paths from Sp1 to Sm of length n− 1
to determine the paths which will not be generated by Algorithm 5. At each stage, a set of
paths will not be grown further, and at most one path towards Sm will continue to grow.
After applying the previous argument n times, at most one path from Sp to Sm will be
constructed. Therefore Algorithm 5 will generate at most one path from Sp to Sm. ⊓⊔

Definition B.s [Connection Relation Rc and R̂c] We define connection relation, Rc, a
symmetric order relation for a pair of OR nodes, vq and vr, belonging to an alternating
AND/OR tree T̂αβ as:

(vq, vr) ∈ Rc | if in T̂αβ there exists an AND node vp, from which

there exist two paths, (i) p1 = vp → . . .→ vq, and

(ii) p2 = vp → . . .→ vr

322

Generating Ordered Solutions for Explicit AND/OR Structures

Similarly the connection relation, R̂c, is defined between two swap options as follows. Con-
sider two swap options σiq and σjr, where σiq = 〈ei, eq, δiq〉 and σjr = 〈ej , er, δjr〉. Suppose
OR edges ei and eq emanate from vp, and OR edges ej and er emanate from vt. Now
(σiq, σjr) ∈ R̂c if (vp, vt) ∈ Rc.

Definition B.t [Mutually Connected Set] For a solution Sm, a set Vm of OR nodes is
mutually connected, if

∀v1, v2 ∈ Vm,
(
(v1 6= v2)⇒ {(v1, v2) ∈ Rc}

)

Consider the set of OR nodes, Vm = {v1, · · · , vk}, where swap option σj belongs to vj and
1 ≤ j ≤ k. Here the set of swap options V̂m = {σ1, · · · , σk} is mutually connected.

Lemma B.4 Suppose Sm is a solution of an alternating AND/OR tree T̂αβ , Pred(Sm) =
{S1, · · · , Sk}, and swap option σj is used to construct Sm from Sj where 1 ≤ j ≤ k. The
swap options σ1, · · · , σk are mutually connected.

Proof: [Lemma B.4] Since Sm is constructed from S1, · · · , Sk by applying σ1, · · · , σk re-
spectively, σ1, · · · , σk are present in the signature of Sm. Suppose set sσ = {σ1, · · · , σk}.
We have to show that

∀σa, σb ∈ sσ,
(
(σa, σb) ∈ R̂c

)

For the purpose of proof by contradiction, let us assume (σi1 , σi2) /∈ R̂c. Also Sm is con-
structed by applying σi1 and σi2 to Si1 and Si2 respectively. Consider the path p1 in SSDAG
of T̂αβ which starts from Sopt and ends at Sm, and along p1, Si1 is the parent of Sm. Now
along this path, σi2 is applied before the application of the swap option σi1 . Similarly con-
sider the path p2 in SSDAG of T̂αβ which starts from Sopt and ends at Sm, and along p2,
Si2 is the parent of Sm. Along this path, σi1 is applied before the application of the swap
option σi2 .

Suppose σi1 and σi2 belongs to OR node v1 and v2 respectively. Since along path p1, σi1
is the swap option which is applied last, Sm contains node v1. Similarly along path p2, σi2
is the swap option which is applied last. Hence Sm contains node v2. Therefore, there must
be an AND node vr in T̂αβ, from which there exist paths to node v1 and v2 – implies that

(σi1 , σi2) ∈ R̂c. We arrive at a contradiction that proves σ1, · · · , σk are mutually connected.
⊓⊔

Definition B.u [Subgraph of SSDAG] Consider a solution Sp of an alternating AND/OR
tree T̂αβ and mutually connected set Vm of OR nodes in Sp, where ∀vq ∈ Vm,

(
C(Sp, vq) =

Copt(vq)
)
. The subgraph Gssub(Sp, Vm) = 〈Vsub, Esub〉 of the SSDAG with respect to Sp and

Vm is defined as follows. Vsub consists of only those solutions which can be constructed from
Sp by applying a sequence of swap options belonging to Vm, and Esub is the set of edges
corresponding to the swap options that belong to Vm.

Lemma B.5 The number of total possible distinct solutions at each level d in Gssub(Sp, Vm)

is
(
n+d−2
n−1

)
, where |Vm| = n.

323

Ghosh, Sharma, Chakrabarti, & Dasgupta

Proof: [Lemma B.5] Consider the swap options that belong to the nodes in Vm. With
respect to these swap options, every solution Sr in Gssub(Sp, Vm) is represented by a sequence
of numbers of length n, Seq(Sr), where every number corresponds to a distinct node in Vm.
The numerical value of a number represent the rank of the swap option that is chosen for
a node vq ∈ Vm. According to the representation, at each level:

i. the sum of numbers in Seq(Sr) of a solution, Sr, is equal to the sum of numbers in
Seq(S′

r) of any other solution, S′
r, in that same level;

ii. the sum of numbers in Seq(Sr) of a solution, Sr, is increased by 1 from the sum of
numbers in Seq(S′′

r) of any solution, S′′
p , of the previous level.

Hence, at the dth level, there are n slots and d − 1 increments that need to be made to
Seq(Sr). This is an instance of the well known combinatorial problem of packing n+ d− 1
objects in n slots with the restriction of keeping at least one object per slot. This can be
done in

(
n+d−2
n−1

)
ways. ⊓⊔

Theorem B.1 The solution space tree constructed by Algorithm 5 is complete.

Proof: [Theorem B.1] For the purpose of contradiction, suppose Sm is the first solution
which is not generated by Algorithm 5. Also Pred(Sm) = {Spi} and Sm can be constructed
from Spi by applying σqi , where 1 ≤ i ≤ k. From Lemma B.4 it follows that the set of
swap options {σqi | 1 ≤ i ≤ k} is mutually connected. Therefore the set of OR nodes Vm to
which the swap options belong is also mutually connected. Suppose |Vm| = n.

Consider the solution Sq, where Vm is mutually connected, and for 1 ≤ i ≤ k, every σqi
belongs to the set of native swap options of Sq with respect the swap option that is used to
construct Sq. Clearly

∀vt ∈ Vm,
(
C(Sq, vt) = Copt(vt)

)

We argue that Sq is generated by Algorithm 5 because Sm is the first solution which is
not generated by Algorithm 5. Consider the subtree T s

sub of T s rooted at Sq, where only
the edges corresponding to swap options that belong to Vm are considered. Now we prove
that the number of solutions generated by Algorithm 5 at every level of T s

sub is equal to the
number of solutions at the same level in Gssub(Sq, Vm).

Consider the solution Sq and the set Succ(Sq). Suppose Succ(Sq, Vm) is the set of
successor solutions that are constructed from Sq by applying the swap options belonging
to the nodes in Vm, and S′

min is the minimum cost solution in Succ(Sq, Vm). According to
Algorithm 5 initially Succ(S′

min) is partially explored by using the set of native swap options
of S′

min. Any other non native swap option, σb, that belongs to the nodes in Vm, is used to
explore Succ(S′

min), right after the sibling solution of S′
min, constructed by applying σb to Sq,

is added to Closed. Consider the fact that for solution Sq, ∀vt ∈ Vm,
(
C(Sq, vt) = Copt(vt)

)

holds. Therefore all the swap options belonging to Vm will also be eventually used to explore
the successors of S′

min. Similarly the second best successor of Sq will be able use all but
one swap option, σc, which is used to construct S′

min.
The immediate children of S′

min in T s
sub will consist of all solutions, that can be obtained

by the application of one swap option in Vm to S′
min. The native swap list of S′

min contains
the swap option ranking next to σc. The swap options, that are used to construct the other

324

Generating Ordered Solutions for Explicit AND/OR Structures

n − 1 sibling solutions of S′
min, will be used again during lazy expansion, which accounts

for another n− 1 children of S′
min. Hence there would be n children of S′

min.
Similarly, the second best successor of Sq in T s

sub will have n − 1 immediate children.
The third best successor of Sq in T s

sub will have n− 2 children and so on. Now the children
of these solutions will again have children solutions of their own, increasing the number
of solutions at each level of the tree. This way, with each increasing level, the number of
solutions present in the level keeps increasing. We prove the following proposition as a part
of proving Theorem B.1.

Proposition B.1 At any level d, the number of solutions N(d, n,T s
sub) is given by

N(d, n,T s
sub) =

n∑

k=1

N(d− 1, k,T s
sub) =

(
n+ d− 2

n− 1

)

Proof: [Proposition B.1] At second level, there are n solutions. These give rise to

n∑

k=1

k

solutions at third level. Similarly at fourth level we have

n∑

k=1

k +

n−1∑

k=1

k +

n−2∑

k=1

k....+ 1 = N(3, n,T s
sub) +N(3, n − 1,T s

sub) + ...+ 1

We can extend this to any level d and the result is as follows.

N(1, n,T s
sub) = 1

N(2, n,T s
sub) = n

N(3, n,T s
sub) =

n∑

k=1

k =

(
n+ 1

2

)

N(4, n,T s
sub) =

n∑

k=1

N(3, k,T s
sub) =

(
n+ 2

3

)

We determine the number of solutions at any level of T s
sub by induction on the depth d.

[Basis (d = 1) :] Clearly, N(1, n,T s
sub) = n.

[Inductive Step :] Suppose, at dth level the number of solutions is
(
n+d−2
n−1

)
=

(
n+d−2
d−1

)
.

Therefore at d+ 1th level,

N(d+ 1, n,T s
sub) =

n∑

k=1

N(d, k,T s
sub) =

(
n+ d− 2

d− 1

)

+

(
n+ d− 3

d− 1

)

+ · · · + 1 =

(
n+ d− 1

n− 1

)

Since Algorithm 5 does not generate duplicate node, and from Proposition B.1 the
number of solutions in Gssub(Sq, Vm) at any level is equal to the number of solutions in
that level of T s

sub, at any level the set of solutions in Gssub(Sq, Vm) is also generated by
Algorithm 5 through T s

sub. Therefore, the level, at which Sm belongs in Gssub(Sq, Vm), will
also be generated by Algorithm 5. Therefore Sm will also be generated by Algorithm 5 – a
contradiction which establishes the truth of the statement of Theorem B.1. ⊓⊔

325

Ghosh, Sharma, Chakrabarti, & Dasgupta

Appendix C. Conversion between AND/OR Tree and Alternating
AND/OR Tree

An AND/OR tree is a generalization of alternating AND/OR tree where the restriction of
strict alternation between AND and OR nodes are relaxed. In other words an intermediate
OR node can be a child of another intermediate OR node and the similar parent child
relation is also allowed for AND node. We present an algorithm to convert an AND/OR to
an equivalent alternating AND/OR tree.

We use two operations namely, folding and unfolding for the conversions. Corresponding
to every edge, a stack, update-list, is used for the conversions. In an AND/OR tree, consider
two nodes, vq and vr, of similar type (AND/OR) and they are connected by an edge er.
Edges, e1, · · · , ek emanate from er.

[Folding OR Node :] Suppose vq and vr are OR nodes. The folding of vr is performed
as follows.

• The source of the edges e1, · · · , ek are changed from vr to vq and the costs are updated
as ce(ei) ← ce(ei) + ce(er) + cv(vr) where 1 ≤ i ≤ k, that is the new cost is the sum
of the old cost and the cost of the edge that points to the source of ei. The triplet
〈vr, cv(vr), ce(er)〉 is pushed into the update-list of ei, 1 ≤ i ≤ k.

• The edge er along with node vr is removed from vq.

[Folding AND Node :] Suppose vq and vr are AND nodes. The folding of vr is per-
formed as follows.

• The source of the edges e1, · · · , ek are changed from vr to vq. One of the edges among
e1, · · · , ek, suppose ei, is selected arbitrarily and the cost is updated as ce(ei) ←
ce(ei) + ce(er) + cv(vr) where 1 ≤ i ≤ k. The triplet 〈vr, cv(vr), ce(er)〉 is pushed into
the update-list of ei, whereas the triplet 〈vr, 0, 0〉 is pushed into the update-list of ej ,
where 1 ≤ j ≤ k and j 6= i.

• The edge er along with node vr is removed from vq.

The unfolding operation is the reverse of the folding operation and it is same for both
OR and AND nodes. It works on a node vq as follows.

Procedure Unfold(node vq)

forall edge ei that emanate from vq do1

if the update list of ei is not empty then2

〈vt, c1, c2〉 ← pop(update list of ei);3

if there exists no edge et from vq that points to the node vt then4

Create a node vt, and connect vt using edge et from vq;5

cv(vt)← c1;6

ce(et)← c2;7

else if c2 6= 0 then8

ce(et)← c2;9

end10

end11

326

Generating Ordered Solutions for Explicit AND/OR Structures

Function Convert takes the root node of AND/OR tree and transforms it to an equivalent
alternating AND/OR tree recursively.

Function Convert(vq)

if every child of vq is a terminal node then1

if vq and its parent vp are of same type then2

Apply fold operation to vq;3

end4

else5

foreach child vr of vq, where vr is an intermediate AND/OR node do6

Convert(vr);
end7

Function Revert takes the root node of an alternating AND/OR tree and converts it to the
original AND/OR tree recursively.

Function Revert(vq)

if every child of vq is a terminal node then1

return;2

Perform unfold operation to vq;3

foreach child vr of vq do4

Revert(vr);5

end6

The overall process of generating alternative solutions of an AND/OR tree is as follows.
The AND/OR tree is converted to an alternating AND/OR tree using Convert function,
and the solutions are generated using ASG algorithm. The solutions are transformed back
using the Revert function. The proof of correctness is presented below.

C.1 Proof of Correctness

Suppose in an AND/OR tree Tαβ two nodes, vq and vr, are of similar type (AND/OR) and
they are connected by an edge er. Edges e1, · · · , ek emanate from er. Now fold operation
is applied to vq and vr. Let T

1
αβ is the AND/OR tree which is generated by the application

of the fold operation.

Lemma C.1 In the context mentioned above, we present the claim of in the following two
propositions.

Proposition C.1 The set of solutions of Tαβ having node vq can be generated from the set
of solutions of T 1

αβ having node vq by applying the unfold operation to vq of the solutions of
Tαβ .

Proposition C.2 For every solution S1
m of T 1

αβ that contains node vq, there exists a solu-

tion Sm of Tαβ that can be generated from S1
m by applying unfold to vq.

Proof: [Proposition C.1] We present the proof for the following cases. Consider any
solution of Sm of Tαβ that contains node vq.

327

Ghosh, Sharma, Chakrabarti, & Dasgupta

a. vq and vr are OR nodes: There are two cases possible.

1. vr is absent from Sm: Since the fold operation modifies the edge er only, all
the other edges from vq in Tαβ are also present in T 1

αβ. Therefore Sm will also

be present in the solution set of T 1
αβ and it will remain unchanged after the

application of unfold operation.

2. vr is present in Sm: Since there are k distinct OR edges emanating from vr,
let any one of those OR edges, say ei, is present in Sm. We prove that there is
a solution S1

m of T 1
αβ , such that the application of unfold operation to S1

m will
generate Sm. The application of fold operation to the node vr modifies the source
and the cost of edge ei from vr to vq and ce(ei) to ce(ei)+ ce(er)+ cv(vr) in T 1

αβ .

Suppose S1
m is a solution of T 1

αβ , where the edge ei is present in S1
m. Also other

than the subtree rooted at vq, the remaining parts of S1
m and Sm are identical

with each other. Clearly S1
m exists as a solution of T 1

αβ and the application of

unfold operation to vq in S1
m generates Sm.

b. vq and vr are AND nodes: Since vq is an AND node Sm will contain all of the
AND edges that emanate from vq. Therefore edge er and vr both will be present in
Sm. Consider the solution S1

m of T 1
αβ , such that the following holds.

1. vq is present in S1
m.

2. The subtrees rooted at the children of vq other than vr in Sm are identical with
the subtrees rooted at those children of vq in S1

m.

3. Other than the subtree rooted at vq, remaining parts of S1
m and Sm are identical

with each other.

Clearly S1
m exists as a solution of T 1

αβ and the application of unfold operation to vq
in S1

m generates Sm.

Any other solution S′
m of Tαβ that does not contain node vq, is a valid solution for T 1

αβ

as well. ⊓⊔

Proof: [Proposition C.2] We present the proof for the following cases. Consider any
solution S1

m of T 1
αβ that contains node vq.

a. vq and vr are OR nodes: Since vq is an OR node, exactly one OR edge ei of vq will
belong to S1

m. There are two cases possible.

1. ei was not modified while folding vr in T 1
αβ: Since the fold operation modifies

the edge er and the OR edges of vr only, all the other edges from vq in Tαβ are
also present in T 1

αβ . Since ei was not modified during folding, the same solution

S1
m is also a valid solution for Tαβ .

2. ei was modified while folding vr in T 1
αβ: Suppose ei connects vq and vi in

S1
m. Apply the unfold operation to the node vq in S1

m and generate solution Sm.
The edge ei will be replaced with edge er which connects vq and vr and then ei
will connect vr and vi. We argue that Sm is a valid solution of Tαβ since the

328

Generating Ordered Solutions for Explicit AND/OR Structures

subtree rooted at vi is not modified by the sequence of – (a) the folding of vr to
construct T 1

αβ from Tαβ, and (b) the unfolding of vq to construct Sm from S1
m.

b. vq and vr are AND nodes: Since vq is an AND node, S1
m will contain all of the

AND edges that emanate from vq. There are two types of AND edges emanating from
vq in T 1

αβ and they are (a) Type-1 : the edges from vq that are also present in Tαβ from
vq, (b) Type-2 : the edges that are added to vq by folding and these edges are from
vr in Tαβ. Apply the unfold operation to the node vq in S1

m and generate solution
Sm. Sm will contain Type-1 edges, and another edge er from vq. In Sm, vq and vr
are connected by er and the Type-2 edges are originated from vr. We argue that Sm

is a valid solution of Tαβ since the subtree rooted at nodes pointed by Type-2 edges
are not modified by the sequence of – (a) the folding of vr to construct T 1

αβ from Tαβ ,

and (b) the unfolding of vq to construct Sm from S1
m.

Clearly any solution S1′
m of T 1

αβ that does not contain node vq is valid solution for Tαβ as
well.

⊓⊔

Lemma C.2 If function Convert is applied to the root node of any AND/OR tree Tαβ, an

alternating AND/OR tree T̂αβ is generated.

Proof: [Lemma C.2] Function Convert traverses every intermediate node in a depth first
manner. Consider any sequence of nodes, vq1 , vq2 , · · · , vqn of same type, where vqi is the
parent of vqi+1 in Tαβ and 1 ≤ i < n. Obviously, the fold operation is applied to vqi+1

before vqi , where 1 ≤ i < n. In other words, the fold operation applied to the sequence of
nodes in the reverse order and after folding vqi+1 , all the edges of vqi+1 are modified and
moved to vqi , where 1 ≤ i < n. When the function call Convert(vq2) returns, all the edges
of vq2 , · · · , vqn are already moved to vq1 and the sequence of nodes, vq1 , vq2 , · · · , vqn are
flattened. Therefore, every sequence of nodes of same type are flattened, when the function
call Convert(vR) returns, where vR is the root of Tαβ and an alternating AND/OR tree

T̂αβ is generated.

Lemma C.3 If function Revert is applied to an alternating AND/OR tree T̂αβ , the update-

list of every edge in T̂αβ becomes empty.

Proof: [Lemma C.3] Follows from the description of Revert.

Theorem C.1 For any AND/OR tree Tαβ , it is possible to construct an alternating AND/OR

tree T̂αβ using function Convert, where the set of all possible solutions of Tαβ is generated

in the order of their increasing cost by applying Algorithm 4 to T̂αβ , and then converting
individual solutions using function Revert.

Proof: [Theorem C.1] According to Lemma C.2, after the application of function Convert
to Tαβ an alternating AND/OR tree T̂αβ is generated. Consider the intermediate AND/OR
trees that are the generated after folding every node in Tαβ. Let T

0
αβ, T

1
αβ , · · · , T n

αβ are the

sequence of AND/OR trees and T 0
αβ = Tαβ , T̂αβ = T n

αβ. Since T i
αβ is generated from T i+1

αβ

329

Ghosh, Sharma, Chakrabarti, & Dasgupta

after folding exactly one node in T i
αβ , where 0 ≤ i < n, according to Lemma C.1, the

solutions of T i
αβ can be generated from T i+1

αβ by unfolding the same node. According to

Lemma C.3, for any solution of T̂αβ, Revert unfolds every node vq in that solution, where

vq was folded by Convert while transforming Tαβ to T̂αβ . Therefore the solutions of Tαβ

can be generated from the solutions of T̂αβ.

References

Bonet, B., & Geffner, H. (2005). An algorithm better than AO∗?. In Proceedings of the
20th national conference on Artificial intelligence - Volume 3, pp. 1343–1347. AAAI
Press.

Chakrabarti, P. P. (1994). Algorithms for searching explicit AND/OR graphs and their
applications to problem reduction search. Artif. Intell., 65 (2), 329–345.

Chakrabarti, P. P., Ghose, S., Pandey, A., & DeSarkar, S. C. (1989). Increasing search
efficiency using multiple heuristics. Inf. Process. Lett., 32 (5), 275–275.

Chang, C. L., & Slagle, J. R. (1971). An admissible and optimal algorithm for searching
AND/OR graphs. Artif. Intell., 2 (2), 117–128.

Chegireddy, C. R., & Hamacher, H. W. (1987). Algorithms for finding k-best perfect match-
ings. Discrete Applied Mathematics, 18 (2), 155–165.

Chen, H., Xu, Z. J., Liu, Z. Q., & Zhu, S. C. (2006). Composite templates for cloth modeling
and sketching. In Proceedings of the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition - Volume 1, pp. 943–950. IEEE Computer
Society.

Cormen, T. H., Stein, C., Rivest, R. L., & Leiserson, C. E. (2001). Introduction to Algorithms
(2nd edition). McGraw-Hill Higher Education.

Darwiche, A. (1999). Compiling knowledge into decomposable negation normal form. In
Proceedings of the 16th international joint conference on Artifical intelligence - Volume
1, pp. 284–289. Morgan Kaufmann Publishers Inc.

Darwiche, A. (2001). Decomposable negation normal form. J. ACM, 48, 608–647.

Dasgupta, P., Sur-Kolay, S., & Bhattacharya, B. (1995). VLSI floorplan generation and
area optimization using and-or graph search. In VLSI Design, 1995., Proceedings of
the 8th International Conference on, pp. 370 –375.

Dechter, R., & Mateescu, R. (2007). AND/OR search spaces for graphical models. Artif.
Intell., 171 (2-3), 73–106.

Ebendt, R., & Drechsler, R. (2009). Weighted A∗ search - unifying view and application.
Artificial Intelligence, 173 (14), 1310 – 1342.

Elliott, P. (2007). Extracting the k best solutions from a valued And-Or acyclic graph.
Master’s thesis, Massachusetts Institute of Technology.

Elliott, P., & Williams, B. (2006). DNNF-based belief state estimation. In Proceedings of
the 21st national conference on Artificial intelligence - Volume 1, pp. 36–41. AAAI
Press.

330

Generating Ordered Solutions for Explicit AND/OR Structures

Eppstein, D. (1990). Finding the k smallest spanning trees. In Proc. 2nd Scandinavian
Worksh. Algorithm Theory, No. 447 in Lecture Notes in Computer Science, pp. 38–
47. Springer Verlag.

Eppstein, D. (1998). Finding the k shortest paths. SIAM J. Comput., 28 (2), 652–673.

Flerova, N., & Dechter, R. (2010). M best solutions over graphical models. In 1st Workshop
on Constraint Reasoning and Graphical Structures.

Flerova, N., & Dechter, R. (2011). Bucket and mini-bucket schemes for m best solutions
over graphical models. In GKR 2011(a workshop of IJCAI 2011).

Fromer, M., & Globerson, A. (2009). An LP view of the m-best MAP problem. In Advances
in Neural Information Processing Systems (NIPS) 22, pp. 567–575.

Fuxi, Z., Ming, T., & Yanxiang, H. (2003). A solution to billiard balls puzzle using ao
algorithm and its application to product development. In Palade, V., Howlett, R., &
Jain, L. (Eds.), Knowledge-Based Intelligent Information and Engineering Systems,
Vol. 2774 of Lecture Notes in Computer Science, pp. 1015–1022. Springer Berlin /
Heidelberg.

Gogate, V., & Dechter, R. (2008). Approximate solution sampling (and counting) on
AND/OR spaces. In CP, pp. 534–538.

Gu, Z., Li, J., & Xu, B. (2008). Automatic service composition based on enhanced service
dependency graph. In Web Services, 2008. ICWS ’08. IEEE International Conference
on, pp. 246 –253.

Gu, Z., Xu, B., & Li, J. (2010). Service data correlation modeling and its application in
data-driven service composition. Services Computing, IEEE Transactions on, 3 (4),
279–291.

Gupta, P., Chakrabarti, P. P., & Ghose, S. (1992). The Towers of Hanoi: generalizations,
specializations and algorithms. International Journal of Computer Mathematics, 46,
149–161.

Hamacher, H. W., & Queyranne, M. (1985). K best solutions to combinatorial optimization
problems. Annals of Operations Research, 4, 123–143.

Hansen, E. A., & Zhou, R. (2007). Anytime heuristic search. J. Artif. Intell. Res. (JAIR),
28, 267–297.

Hansen, E. A., & Zilberstein, S. (2001). LAO∗: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129 (1-2), 35 – 62.

Homem de Mello, L., & Sanderson, A. (1990). AND/OR graph representation of assembly
plans. Robotics and Automation, IEEE Transactions on, 6 (2), 188 –199.

Jiménez, P., & Torras, C. (2000). An efficient algorithm for searching implicit AND/OR
graphs with cycles. Artif. Intell., 124, 1–30.

Kleinberg, J., & Tardos, E. (2005). Algorithm Design. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Lang, Q. A., & Su, Y. (2005). AND/OR graph and search algorithm for discovering com-
posite web services. International Journal of Web Services Research, 2 (4), 46–64.

331

Ghosh, Sharma, Chakrabarti, & Dasgupta

Lawler, E. L. (1972). A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management Science,
18 (7), pp. 401–405.

Ma, X., Dong, B., & He, M. (2008). AND/OR tree search algorithm in web service com-
position. In PACIIA ’08: Proceedings of the 2008 IEEE Pacific-Asia Workshop on
Computational Intelligence and Industrial Application, pp. 23–27, Washington, DC,
USA. IEEE Computer Society.

Majumdar, A. A. K. (1996). Generalized multi-peg Tower of Hanoi problem. The Journal
of the Australian Mathematical Society. Series B. Applied Mathematics, 38, 201–208.

Marinescu, R., & Dechter, R. (2005). AND/OR branch-and-bound for solving mixed integer
linear programming problems. In CP, p. 857.

Marinescu, R., & Dechter, R. (2006). Memory intensive branch-and-bound search for graph-
ical models. In AAAI.

Marinescu, R., & Dechter, R. (2007a). Best-first AND/OR search for 0/1 integer program-
ming. In CPAIOR, pp. 171–185.

Marinescu, R., & Dechter, R. (2007b). Best-first AND/OR search for graphical models. In
AAAI, pp. 1171–1176.

Marinescu, R., & Dechter, R. (2009a). AND/OR branch-and-bound search for combinatorial
optimization in graphical models. Artif. Intell., 173 (16-17), 1457–1491.

Marinescu, R., & Dechter, R. (2009b). Memory intensive AND/OR search for combinatorial
optimization in graphical models. Artif. Intell., 173 (16-17), 1492–1524.

Martelli, A., & Montanari, U. (1973). Additive AND/OR graphs. In Proceedings of the
3rd international joint conference on Artificial intelligence, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Martelli, A., & Montanari, U. (1978). Optimizing decision trees through heuristically guided
search. Commun. ACM, 21, 1025–1039.

Mateescu, R., & Dechter, R. (2008). AND/OR multi-valued decision diagrams for constraint
networks. In Concurrency, Graphs and Models, pp. 238–257.

Mateescu, R., Dechter, R., & Marinescu, R. (2008). AND/OR multi-valued decision dia-
grams (AOMDDs) for graphical models. J. Artif. Intell. Res. (JAIR), 33, 465–519.

Mathews, D. H., & Zuker, M. (2004). RNA secondary structure prediction. In Encyclopedia
of Genetics, Genomics, Proteomics and Bioinformatics. John Wiley & Sons, Ltd.

Nilsson, D. (1998). An efficient algorithm for finding the m most probable configurations
in probabilistic expert systems. Statistics and Computing, 8, 159–173.

Nilsson, N. J. (1980). Principles of artificial intelligence. Tioga Publishing Co.

Otten, L., & Dechter, R. (2011). Anytime AND/OR depth-first search for combinatorial
optimization. In SoCS.

Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem solving.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

332

Generating Ordered Solutions for Explicit AND/OR Structures

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach (2nd edition
edition)., chap. Planning, pp. 375–461. Prentice-Hall, Englewood Cliffs, NJ.

Shiaa, M. M., Fladmark, J. O., & Thiell, B. (2008). An incremental graph-based approach
to automatic service composition. IEEE International Conference on Services Com-
puting, 4 (2), 46–64.

Shin, D. H., Jeon, H. B., & Lee, K. H. (2010). A sophisticated approach to composing
services based on action dominance relation. In Services Computing Conference (AP-
SCC), 2010 IEEE Asia-Pacific, pp. 164 –170.

Subramanian, S. (1997). Routing algorithms for dynamic, intelligent transportation net-
works. Master’s thesis, Virginia Technical Univ., Dept. of Civil Engineering.

Sugimoto, K., & Katoh, N. (1985). An algorithm for finding k shortest loopless paths
in a directed network. Trans. Information Processing Soc. Japan, 26, 356–364. In
Japanese.

Szymanski, M., Barciszewska, M. Z., Barciszewski, J., & Erdmann, V. A. (2005). 5S Riboso-
mal RNA Database. http://biobases.ibch.poznan.pl/5SData/. Online Database.

Takkala, T., Borndörfer, R., & Löbel, A. (2000). Dealing with additional constraints in the
k-shortest path problem. In Proc. WM 2000.

Topkis, D. M. (1988). A k-shortest path algorithm for adaptive routing in communications
networks. Trans. Communications, 36 (7), 855–859.

Yan, Y., Xu, B., & Gu, Z. (2008). Automatic service composition using AND/OR graph. In
E-Commerce Technology and the Fifth IEEE Conference on Enterprise Computing,
E-Commerce and E-Services, 2008 10th IEEE Conference on, pp. 335–338.

333

