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Abstract

Social causality is the inference an entity makes about the social behavior of other entities and self.
Besides physical cause and effect, social causality involves reasoning about epistemic states of
agents and coercive circumstances. Based on such inference, responsibility judgment is the
process whereby one singles out individuals to assign responsibility, credit or blame for multi-
agent activities. Social causality and responsibility judgment are a key aspect of social
intelligence, and a model for them facilitates the design and development of a variety of multi-
agent interactive systems. Based on psychological attribution theory, this paper presents a
domain-independent computational model to automate social inference and judgment process
according to an agent’s causal knowledge and observations of interaction. We conduct
experimental studies to empirically validate the computational model. The experimental results
show that our model predicts human judgments of social attributions and makes inferences
consistent with what most people do in their judgments. Therefore, the proposed model can be
generically incorporated into an intelligent system to augment its social and cognitive
functionality.

1. Introduction

Recent years have seen an explosion of research at the intersection of computing and human
social behavior. Topics such as human-centered (Jaimes, Sebe, & Gatica-Perez, 2006), social
(Wang, Zeng, Carley, & Mao, 2007) and affective computing (Picard, 1997, 2010) emphasize
the role of computers as partners or facilitators of human social activity, and highlight the
challenge of computationally understanding and participating in human social interactions.
Traditional artificial intelligence, with its emphasis on individual problem solving and
reasoning of rational behavior, is not obviously suitable for the social, emotional, and human-
like characteristics of social interaction. In this paper, we demonstrate how Al reasoning
methods can be applied to understanding, modeling and predicting human social judgments,
with applications in human-centric social interaction.

The specific challenge we focus on in this paper is reasoning about social causality. Social
causality refers to the inference an entity makes about the social behavior of other entities and
self. Such inference differs dramatically from how traditional artificial intelligence methods
(e.g., planning) reason about physical reality. Besides physical cause and effect, social
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causality includes reasoning about mental states (e.g., did the actor intend to cause the
outcome? could she foresee the outcome?) and social power (e.g., did the actor have the
freedom to act or was she coerced by circumstances or other individuals?). Responsibility
judgment is the process whereby one forms judgment results about responsibility, credit or
blame based on the inference of social causality. Social causality and responsibility judgment
underlie how we act on and make sense of the social world around us: they lead to emotional
expressions of praise or rage; they justify public applause or prison terms. In short, they lie at
the heart of social intelligence.

With the advance of multi-agent interactive systems, adaptive user interfaces and
applications that socially interact with people, it is increasingly important to model and reason
about this human-centric form of social intelligence. Social causal reasoning facilitates multi-
agent planning by augmenting classical planners with the ability to reason about which entities
have the power to effect changes. It facilitates adaptive learning by appraising praiseworthy or
blameworthy behavior, and reinforcing the praiseworthy. In modeling the communicative and
social behavior of human-like agents, responsibility judgment helps inform models of social
emotions by characterizing which situations evoke anger, guilt or praise (Gratch, Mao, &
Marsella, 2006). As people are usually adept at taking credit and deflecting blame in social
dialogue (e.g., negotiation), the information helps guide natural language conversation strategies
(Martinovski, Mao, Gratch, & Marsella, 2005).

Social causal inference helps reason about the social and cognitive states of an entity, and
responsibility judgment helps form the assessment of the observed social behavior of an entity
(either a human user, a computer program or an agent). They thus can facilitate various forms of
interactions including human-computer, human-agent and agent-agent interactions. They can also
facilitate human-human interaction by identifying the underlying cognitive process and principles
of human judgments. In a multi-agent environment, social causality and responsibility judgment
help share responsibility in multi-agent organization (Jennings, 1992), evaluate social power and
dependence (Castelfranchi, 1990; Sichman, Conte, Demazeau, & Castelfranchi, 1994), automate
after-action review for group training (Gratch & Mao, 2003; Johnson & Gonzalez, 2008), and
support social simulation of agent society.

Our primary goal is to develop a faithful computational framework for human-like
intelligent agents so as to drive realistic behavior modeling and generation (Swartout et al.,
2006). Psychological and philosophical studies agree on the broad features people use in their
everyday behavioral judgment. Our work is particularly influenced by attribution theory, a
body of research in social psychology exploring folk explanation of behavior. Based on
psychological attribution theory, we have developed a general computational framework for
inferring social causality and forming responsibility judgment according to an agent’s causal
knowledge and observations of communication and task execution, and empirically validated
our approach using human data.

The rest of this paper is organized as follows. In Section 2, we review previous computational
work on social causality, responsibility and blame/credit. In Section 3, we introduce two
influential attributional models of behavioral judgment, Weiner’s (1995) model for responsibility
judgment and Shaver’s (1985) model for blame attribution. Based on these attributional models,
Section 4 presents our computational framework for social causality and responsibility judgment.
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We provide the computational representation, inferences and algorithm in our proposed model,
and illustrate our approach using an example from our system development. Then in Section 5,
we report our empirical studies on model validation. Section 6 further discusses some research
issues. The paper concludes in Section 7.

2. Related Work

Since the rise of cognitive science (Newell & Simon, 1972), computational methods and
metaphors have been applied to modeling and understanding human behavior. Several lines of
research have addressed aspects of social cognition, including natural language dialogue (Cassell,
Sullivan, Prevost, & Churchill, 2000; Ferguson & Allen, 2007), collaborative problem solving
(Rich, Sidner, & Lesh, 2001; Schurr, Marecki, Tambe, & Scerri, 2005), modeling emotions
(Marinier & Laird, 2004; Gratch, Marsella, & Petta, 2009), simulating human negotiation
processes (Kraus, Hoz-Weiss, Wilkenfeld, 2008; Martinovski & Mao, 2009), and understanding
human social networks (Golbeck & Hendler, 2006; Wang et al., 2010). When modeling human
social behavior, it is useful to distinguish between normative, descriptive and legal perspectives.
Normative models attempt to prescribe how people should assign responsibility and blame/credit.
Descriptive models characterize what people do in practice, which may differ considerably from
normative prescriptions. Legal models refer to the formalized processes society uses for
responsibility assignment, which can be seen as the amalgam of normative and practical
considerations. Before presenting our descriptive model of social causality and responsibility
judgment, we motivate this work by examining each of these perspectives.

2.1 Normative Models

Normative (or prescriptive) models typically put forward a set of rational principles that should
universally guide decision-making. For example, Bayesian decision theory is proposed as the
optimal method for deciding between alternative courses of actions. Game theory is proposed as
the ideal method for arriving at certain social decisions, such as whether or not to cooperate with
another, possibly deceptive, party. While game theoretic approaches model group decision
making itself in a rational way, social causality and responsibility judgment model the reasoning
and assessment of social causes and consequences resulting from such decision making. For the
judgment of causality, responsibility and blame/credit, research on normative models largely
resides on moral philosophy where the aim is to identify rational principles to govern the
assignment of social credit and blame. For example, Kant (1998) argued that, unlike what is often
observed in practice, it would be rational to assign the same standards of responsibility regardless
of the valence (i.e., praiseworthy or blameworthy) or severity of a social act. Within computer
science and artificial intelligence, we are unaware of any other complete models based on the
normative principles, with the exception of the computational model proposed by Chockler and
Halpern (2004).

2.2 Legal Models

Legal models attempt to formalize responsibility judgment and inferences realized within judicial
systems, typically with the aim of automating or verifying human legal judgments. This is a
fertile research field at the intersection of artificial intelligence and law. The field has
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continuously been progressing since the development of early legal systems such as TAXMAN
& TAXMAN-II (McCarty & Sridharan, 1981; McCarty, 1995), HYPO (Rissland & Ashley,
1987), CABARET (Rissland & Skalak, 1991) and CATO (Aleven & Ashley, 1995). There are
similarities in the judgments of normative and legal responsibility, and some researchers have
suggested using legal model as a direct analogue for normative model of responsibility judgment
(e.g., Fincham & Jaspars, 1980). However, there are fundamental differences between these two
kinds of responsibility judgment. Legal judgment largely depends on specific circumstances.
That is why most legal reasoning systems are case-based, whereas evaluating moral
responsibility identifies general theories that fall within the broad studies of cognitive
functionalism® (e.g., clarifying the roles of cause, belief and intention in explaining behavior).

In addition to case-based legal reasoning systems, researchers have proposed logic-based
approaches that focus on general reasoning mechanism, typically defeasible inference using non-
monotonic reasoning and defeasible argumentation (e.g., Hage, 1997; Prakken, 1997). The main
efforts in logic-based legal systems are on the representation of complex legal rules (e.g.,
contradictory, nonmonotonic and priority rules), inference with rules and exceptions, and
handling conflict rules (Prakken & Sartor, 2002). McCarty (1997) argued whether in real cases, a
judge would apply formal theory to evaluate complex rules, and thereby arrive at correct results.
He called for a more intuitive version of legal rules, which would be “simple and clear”.
Furthermore, we argue that a layman’s judgment of behavior in everyday situations iS not quite
the same as that made in the court. Not only does it occur in richer forms of social interaction,
but it follows different set of rules.

2.3 Descriptive Models

Descriptive models attempt to characterize how people form social judgments in practice, which
can differ from both the presumed normative principles and legal judgments. For example, in
contrast to Kant’s prescription to adopt uniform principles, people use different criteria when
assigning blame versus credit and often form different judgments depending on the severity of an
outcome. Descriptive models also differ in their criteria for validation. Whereas normative
models are judged by their consistency with universal principles such as fairness and legal
models are judged by their consistency with past legal decisions, descriptive models are assessed
by their agreement with the judgments people form in their day-to-day lives. In this sense,
descriptive models are most relevant to the field of human-centered or social computing, where
the goal is to adapt computation to human norms of practice, rather than forcing humans to adapt
to prescriptive norms of behavior. Research on descriptive models largely resides on social
psychology (Heider, 1958; Shaver, 1985; Weiner 1995, 2001, 2006) and there is little work
within artificial intelligence on attributing responsibility and blame/credit in a human-like
fashion.

2.4 Computational Approaches

In Al and causality research, computational approaches were developed to address the problem
by extending causal models (Halpern & Pearl, 2001; Chockler & Halpern, 2004). Halpern and
Pearl (2001) presented a definition of actual cause within the framework of structural causal

! The doctrine that views theories of behavior as complex mental states, introduced and individualized by the functions
or the roles they play in producing the behavior to be explained.
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models. As their approach can extract more complex causal relationships from simple ones, their
model is capable of inferring indirect causal factors including social cause. A causal model (or a
structural model) is a system of equations over a set of random variables. There are two finite
sets of variables: exogenous (U) and endogenous (V). The values of exogenous variables are
determined by factors outside the model, thus they have no corresponding equations. Each
endogenous variable has exactly one causal equation (or structural equation) that determines
their value. A causal model can be expressed as a causal diagram, with nodes corresponding to
the variables, and edges from the parents of each endogenous variable (indicated by the causal
equations) to the endogenous variable. Take the two-man firing squad example (Pearl, 1999):

There is a two-man firing squad; on their captain’s order, both riflemen shoot simultaneously
and accurately, and the prisoner dies.

Figure 1 illustrates the causal model for the firing squad example, where U={Uc} and V={C,
R1, R2, D}. A vector of values for the exogenous variables in U (called a context) in the causal
model represents a specific situation (i.e., a causal world). For instance, if we assume Uc=1 (i.e.,
the captain’s order is true) in the causal model below, then the resulting causal world describes
the two-man firing squad story above. Causal inference is based on counterfactual dependence
under some contingency. Roughly speaking, B is counterfactually dependent on A if, had A not
happened then B would not have happened. For example, in the above firing squad scenario,
given the context that the captain orders, under the contingency that rifleman-2 did not shoot, the
prisoner’s death is counterfactually dependent on rifleman-1’s shooting. So rifleman-1’s shooting
(R1=1) is an actual cause of the death. Similarly, rifleman-2’s shooting (R2=1) is an actual cause
of the death. Besides the two riflemen who physically cause the death, Halpern & Pearl’s model
can find the captain’s order (C=1) as an actual cause for the death as well.

Context (Uc)

Causal equations:

Commander orders (C) Uc=C
/ \ c-R1
Rifleman-1 Rifleman-2
shoots (R1) shoots (R2) C=R2

\ / R1vR2=D

Prisoner’s death (D)

Figure 1: Causal Model for the Firing-Squad Example

Chockler and Halpern (2004) further extended this notion of causality, to account for degree
of responsibility. They provide a definition of degree of responsibility based on the consideration
of contingencies. Given a causal model M, a variable XeV and a context g, the degree of
responsibility of a formula X=x for an outcome ¢ is measured by the minimal number of changes
k that have to be made in « in order to make ¢ counterfactually depend on X=x. If X=x is not an
actual cause of ¢, then the degree of responsibility of X=x for ¢ is 0; Otherwise the degree of
responsibility of X=x for ¢ is 1/(k+1). If ¢ counterfactually depends on X=x, then the degree of
responsibility of X=x for ¢ is 1. For example, if a person wins an election 11-0, then each voter
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who votes for her is a cause for the victory, and the degree of responsibility of each voter for the
victory is 1/6. However, in a 6-5 victory, the degree of responsibility of each voter is 1.

Based on this notion of responsibility, Chockler and Halpern (2004) then defined the degree
of blame, using the expected degree of responsibility weighed by the epistemic state of an agent.
An agent’s epistemic state is represented as a pair (K, Pr), where K is a situation with the form
(M, ) and Pr is a probability distribution over K. The degree of blame of X=x for ¢ relative to an
agent’s epistemic state (K, Pr) is computed as the sum of multiplying the expected degree of
responsibility of X=x for ¢ in each possible situation in (Mx., ) and the agent’s epistemic state
of the probability of the situation. To illustrate this, they provide the ten-man firing squad
example:

There is a firing squad consisting of ten excellent marksmen. Only one of them has live bullets
in his rifle; the rest have blanks. The marksmen do not know which of them has the live
bullets. The marksmen shoot at the prisoner and he dies.

Suppose that an agent knows that exactly one marksman has live bullets in his rifle, and that
all the marksmen will shoot. Then the agent considers 10 possible situations, depending on who
has the bullets. Let {ps, ..., p1o} be the probability distribution over these situations, where p; is
the agent’s prior probability that marksman-i has live bullets. Thus, according to the agent’s
epistemic state, the expected degree of responsibility of marksman-1’s shot for the death is 1
under the situation when he has the bullets (and O under other situations), and the degree of
blame of marksman-1’s shot for the death is p;.

Grounded on the philosophical principle (i.e., counterfactual reasoning), Chockler &
Halpern’s extended definition of responsibility accounts better for multiple causes and the
extent to which each cause contributes to the occurrence of a specific outcome. Another
advantage of their model is that their definition of degree of blame takes an agent’s epistemic
state into consideration. However, they only consider one epistemic variable, that is, an
agent’s knowledge prior to action performance. Important concepts in moral responsibility,
such as intention and freedom of choice are excluded from their definition. As a result, their
model uses one epistemic state as the only determinant for blame assignment, which is
inconsistent with psychological theories.

As Chockler & Halpern’s (2004) model is the extension of counterfactual reasoning within
the structural-model framework, and structural-model approach represents all the events as
random variables and causal information as equations over the random variables, there are
several other limitations in their model. For instance, causal equations do not have direct
correspondence in computational systems, so it is hard to obtain them for practical
applications. As communicative events are also represented as random variables in their model
(which are propositional), it is difficult to construct equations for communicative acts and
infer intermediate beliefs (e.g., beliefs about desires, intentions, etc) that are important for
social causal reasoning.

3. Attribution Theory for Behavioral Judgment

Most contemporary psychological studies of social causality and responsibility judgment draw on
attribution theory (Heider, 1958). In over 50 years of research, attribution theory has progressed
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significantly and became a core area of social psychology (Malle, 2001; Weiner, 2006).
Attribution research views that social perceivers make sense of the world by attributing behavior
and events to their underlying causes. Attribution therefore refers to the process of ascribing a
cause to an event or explaining the event, as well as the inferences or judgments made. Two
influential attributional models for social causality, responsibility and blame (or credit) are those
proposed by Shaver (1985) and Weiner (1995), which identify the underlying key factors (i.e.,
attribution variables) people use in behavioral judgment. Below we summarize their theories (we
adopt the terminology of Shaver’s model in this paper).

The assessments of physical causality and coercion identify the responsible party. Physical
causality refers to the connection between events and the outcomes they produce, which
includes personal causality (i.e., human agency) and impersonal causality (i.e., environmental
factors). Only when human agency is involved, does an event become relevant to the
investigation of responsibility and blame/credit. In the absence of coercion, the actor whose
action directly produces the outcome is regarded as responsible. However, in the presence of
coercion (as when some external force, such as a more powerful individual or a socially
sanctioned authority, limits an agent’s freedom of choice), some or all of the responsibility
may be deflected to the coercive force. For example, in the two-man firing squad example, if
the captain’s order does limit the riflemen’s freedom to avoid the prisoner’s death, the captain
should take some or all of the responsibility, depending on the degree of coercion.

Intention and foreseeability determine the degree of responsibility. Intention is generally
conceived as the commitment to work towards a certain act or outcome. Most theories view
intention as the major determinant of the degree of responsibility. Foreseeability refers to an
agent’s foreknowledge about actions and their effects. For example, although the riflemen
foresaw that shooting a gun leads to the prisoner’s death, they may not intend shooting and
killing the prisoner. However, if an agent intends an action to achieve a certain outcome, then
the agent must have the foreknowledge that the action brings about the outcome. The higher
the degree of intention, the greater the responsibility assigned. If the riflemen have no
intention of killing the prisoner, for instance, they should be assigned much less responsibility
than in the case when they really intend so.

Weiner (2001) distinguished between act intentionality and outcome intent. An agent may
intentionally perform an action, but may not intend all the action effects. For example, the
riflemen may intentionally shoot the enemy, but may not intend the side effect of exposing
themselves to the enemy force. It is outcome intention (i.e., intended action effect), rather than
act intention (i.e., intended action) that are key in responsibility and behavioral judgment.
Similar difference exists in outcome coercion (i.e., coerced action effect) and act coercion (i.e.,
coerced action). Furthermore, an agent’s intentional action and action effect may fail.
However, as long as it manifests intentions, a failed attempt can be blamed or credited almost
the same as a successful one (Zimmerman, 1988).

The result of the judgment process is the assignment of certain blame or credit to the
responsible party. Shaver’s model of blame assignment follows a strict sequential process. In
his model, first one assesses physical causality. If human agency is involved, the judgment
process proceeds by assessing other key variables. Finally, the perceiver takes possible
mitigating factors (i.e., justifications or excuses) into consideration and assigns proper blame
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to the responsible agent (mitigating factors are not modeled yet in our work). Weiner’s model
is similar, but it is more relaxed in that the sequential processing in Shaver’s model is not
presumed (we follow the implications of Weiner’s model and relax the strict sequential feature
in Shaver’s model). The intensity of blame or credit is determined by the severity or positivity
of the outcome as well as the degree of responsibility. The latter is based on the assessed
values of attribution variables.

4. Proposed Computational Model

Attribution theory identifies the general process and key variables people use in judging social
behavior. However, this process and the variables are not directly applicable to computational
systems, as they are described at an abstract conceptual level that is insufficiently precise from a
computational perspective. On the other hand, current intelligent systems are increasingly
sophisticated, usually involving natural language communication, multi-agent interactions, goal-
directed reasoning to generate and execute plans, and methods to explicitly model beliefs, desires
and intentions of agents (Pollack, 1990; Grosz & Kraus, 1996; Gratch et al., 2006; Ferguson &
Allen, 2007; Swartout et al., 2010).

To bridge the gap between conceptual descriptions of the theory and actual components in
current intelligent systems, we need to develop the computational mechanisms that automatically
convert the implications of the conceptual descriptions into a functionally workable model in use
for intelligent systems. The computational model functions as the inferential mechanism to
derive the conceptual variables in the theory from information and context available in practical
systems. Ideally, the computational model should be based on the data structures and
representations that are typically used in practical systems, and rely as little as possible on
additional structural or representational features.

In constructing our computational model, we follow the basic dimensions in Shaver’s model
but relax its strict sequential feature. We follow the implications of Weiner’s model, considering
both the actions of agents and the outcomes they produce. We adopt plan representation used by
most intelligent systems, especially in agent-based systems. This representation provides a
concise description of the causal relationship between events and states. It also provides a clear
structure for exploring alternative courses of actions, recognizing intentions, and assessing
coercive situations and plan interventions.

We take advantage of artificial intelligence modeling and reasoning techniques, in particular,
the Belief-Desire-Intention model (Bratman, 1987; Georgeff & Lansky, 1987) and commonsense
reasoning (Gordon & Hobbs, 2004; Mueller, 2006). The BDI concepts help us map sometimes
vague psychological terms into widely accepted concepts in Al and agent research, and research
in commonsense reasoning informs the design of the inferential mechanism that generally
operates on these conceptual representations. We use logic as a formal representation tool,
focusing on the design of a small number of inference rules to capture the intuitions in people’s
judgments of social behavior?.

2 Note that our focus here is not the definition of a logical language, but rather, we aim at identifying the commonsense
intuitions in people’s behavioral judgment so as to come up with the computational modeling of social causality and
responsibility attribution.
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Observations Sources

Causal
Knowledge

Inferences

Task Action Causal
Execution Sequence Inference

Beliefs Algorithm Results

Rules Values Process Blame/Credi

Social
Information

[ Inference J Attribution Judgment esponsibilit%
t

Speech Act Dialog
Sequence Inference

Commu-
nication

Figure 2: Overview of the Computational Model

We have developed a computational model that can automatically derive judgments
underlying responsibility and blame attribution from knowledge and observations about social
acts. Figure 2 illustrates an overview of the computational model. Two sources of information
contribute to the inference process. One source is the actions performed by the agents involved in
the social situation (including physical acts and communicative acts). The other is the general
causal knowledge about actions and states of the world (i.e., causal knowledge), social roles and
power relationship of agents (i.e., social information). Causal inference derives beliefs from
causal evidence. Dialog inference derives beliefs from communicative evidence. Both
inferences make use of commonsense rules and generate beliefs of attribution variables. These
beliefs serve as inputs for the judgment process, which is described as an algorithm. Finally,
the algorithm forms an overall judgment and assigns proper credit or blame to the responsible
agents.

4.1 Representations

Our computational representation is based on the plan descriptions that are widely applied to the
applications and architecture design of intelligent systems (e.g., Georgeff & Lansky, 1987;
Veloso et al., 1995; Fischer, Mueller, & Pischel, 1996; Rao, 1996; d’Inverno, Kinny, Luck, &
Wooldridge, 1997; Huber, 1999; Gil, Deelman, Blythe, Kesselman, & Tangmurarunkit, 2004;
Marsella & Gratch, 2009). More specifically, we adopt the classical STRIPS operators (Fikes &
Nilsson, 1971) with the hierarchical plan representation (Erol, Hendler, & Nau, 1994; Nau, Cao,
Lotem, & Muoz-Avila, 1999).

4.1.1 CausaL KNOWLEDGE

In our approach, causal knowledge is encoded via a hierarchical plan representation. An action
has a set of propositional preconditions and effects (including conditional effects). Actions can be
either primitive (i.e., directly executable by agents) or abstract. An abstract action may be
decomposed in multiple ways and each decomposition is one choice of executing the action.
Different choices of action execution are alternatives each other. If an abstract action can be
decomposed in multiple ways, it is a decision node (i.e., or node) and an agent must decide
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amongst the alternatives. Otherwise, if an abstract action can only be decomposed in one way, it
is a non-decision node (i.e., and node) and execution of the action is realized via executing all its
subactions.

A plan is a set of actions to achieve certain intended goal(s). As a plan may contain abstract
actions (i.e., an abstract plan), decomposing the abstract actions into primitive ones in an abstract
plan results in a set of primitive plans (i.e., plans composed of only primitive actions), which are
directly executable by agents. Consequences or outcomes (we use them as exchangeable) are
those desirable or undesirable action effects (i.e., effects having positive or negative significance
to an agent). The desirability of action effects is represented by utility values (Blythe, 1999). To
represent the hierarchical organizational structure of social agents, each action in a plan is
associated with a performer (i.e., the agent capable of performing the action) and an agent who
has authority over its execution. This is used to model the power relationships of agents.

Troop-at-aa

Support Unit 1-6
Performer: lieutenant
Authority: lieutenant

OR
Troop-at-aa /\ Troop-at-aa

Send One Squad Send Two Squads
Performer: sergeant Performer: sergeant
Authority: lieutenant Authority: lieutenant

One-sqd-at-aa A Remalnlng -at-aal | Two-sqds-at-i aa A Remaining-at-aa|

One Squad Forward
Performer: squad leader
Authority: sergeant

Remalnlng Forward
Performer: squad leader

Authority: sergeant

Two Squads Forward
Performer: squad leader
Authority: sergeant

Remaining Forward
Performer: squad leader
Authority: sergeant

[1-6 Supported} [Unit Fractured} [Not Fractured}

. |Route Secured

Figure 3: Partial Plan Representation for an Agent Team

[1-6 Supported}

Figure 3 illustrates an example of plan representation from a team training system we
developed (we shall discuss more on this example in Section 4.4). In the example, a lieutenant, a
sergeant and squad leaders work as a team in fulfilling the task of supporting a sister unit (i.e.,
unit 1-6). The lieutenant is the leader of the troop. Two alternative ways are available to support
unit 1-6, either sending one squad or sending two squads. Each alternative can be performed by
the sergeant if authorized. The alternatives can be further decomposed into subsequent primitive
actions that are directly executable by the squad leaders. Action execution brings about certain
effects, for example, two squads forward (meaning that two of the four squads in the troop leave
the scene) fractures the unit (meaning that the troop forces are split and weakened), which is
undesirable to the troop. (Unit) 1-6 supported (meaning that the sister unit is reinforced by the
departing squads) is a desirable team goal.

4.1.2 COMMUNICATIVE EVENTS

Communication between agents is a rich source of information for inferring social causality.
We represent communicative events as a sequence of speech acts (Austin, 1962; Searle, 1969).
For our purpose, we consider the speech acts commonly used in agent communication, and
especially those that help infer dialogue agents’ desires, intentions, foreknowledge and choices
in acting. We thus focus on the acts inform, request, order, accept, reject and counter-propose.
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4.1.3 ATTRIBUTION VARIABLES

Attributional models employ a set of key variables to determine social cause and responsibility.
Causality refers to the relationship between cause and effect. For the investigation of
responsibility attribution, the involvement of human agency is required (Weiner, 1995; Shaver,
1985). In our approach, we encode causal knowledge about actions (i.e., human agency) and
the effects they produce via plan representation.

We consider both act intentionality and outcome intent of agents. Act intention is
represented using intend and do, outcome intention using intend and achieve, and the
connection between act and outcome intentions using intend and by. We use know and bring
about to represent foreseeability. Two concepts are important in modeling coercion®. One
concept is social obligation. The other is (un)willingness. For example, if some authorizing
agent commands another agent to perform a certain action, then the latter agent has the
obligation to do so. But if the latter agent is actually willing to, this is a voluntary act rather
than a coercive one. We use coerce and do to represent act coercion and coerce and achieve
for outcome coercion.

4.1.4 NOTATIONS
Now we provide the symbolic expressions of the notations used in our model®.

Predicates
Let x and y be different agents, A and B be actions, e be an action effect, p and g be propositions,
E be an effect set and t be a time. We adopt the following predicates in the model:

P1. primitive(A): Ais a primitive action.

P2. and-node(A): action A is a non-decision node in plan structure.

P3. or-node(A): action A is a decision node in plan structure.

P4. alternative(A, B): actions A and B are alternatives of performing a higher-level action.

P5. do(x, A): agent x performs an action A.

P6. achieve(x, e): agent x achieves an effect e.

P7. bring-about(A, e): action A brings about an effect e.

P8. Dby(A, e): by acting A to achieve an effect e.

P9. execute(x, A, t): agent x executes an action A at time t.

P10. occur(e, t): effect e occurs at time t.

P11. inform(x,y, p, t): agent x informs agent y that p at time t.

P12. request(x, y, p, t): agent x requests agent y that p at time t.

P13. order(x,V, p, t): agent x orders agent y that p at time t.

P14. accept(x, p, t): agent x accepts that p at time t.

P15. reject(x, p, t): agent X rejects that p at time t.

P16. counter-propose(x, p, g, Y, t): agent x counters that p and proposes that g to agent y at
time t.

P17. cause(x, e, t): agent x causes an effect e at time t.

® Coercion sometimes means physical coercion, such as pushing someone’s hand to pull the trigger of a gun. Here we
mean psychological coercion, which emphasizes its impact on the psychological states of agents.

4 Although we represent these notations in first-order predicate calculus, we treat them as semi-formal notations in our
model and do not conduct theorem-proving type of inference with them in strict logical sense.
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P20.
P21.
p22.
P23.
P24.
P25.

P26.

P27.
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assist-cause(x, Y, e, t): agent x assists agent y in achieving an effect e at time t.

know(x, p, t): agent x knows that p at time t.

want(x, p, t): agent x wants that p at time t.

obligation(x, p, y, t): agent x has the obligation that p created by agent y at time t.

intend(x, p, t): agent x intends that p at time t.

coerce(x, Y, p, t): agent x coerces agent y that p at time t.

superior(x, y): agent x is a superior of agent y.

enable(x, E, t): agent x makes an effect set E true at time t (enable(x, —E, t) means that agent
x disables effect set E by making at least one effect in E false at time t).

can-enable(x, E, t): agent x is capable of making an effect set E true at time t (can-enable(x,
—E, t) means that agent x can disable effect set E by making at least one effect in E false at
time t).

true(E, t): effect set E is true at time t (this means that every effect in E is true at time t, and
—true(E, t) means at least one effect in E is false at time t).

Predicates P1-P10 denote the features related to plan structure and action execution. Predicates
P11-P16 represent communicative acts. These predicates are used to express task knowledge and
observations of action execution and agent communication. Predicates P17-P23 describe the
epistemic variables (including attributions) used for inferring intermediate beliefs. Predicates
P24-P26 represent the power relationship and capabilities of agents.

Functions
Let A be an action, e be an action effect and DT be the domain theory®. We adopt the following
functions in the model:

F1.
F2.
F3.
F4.
F>5.
F6.
F7.
F8.
F9.

F10.

F11.
F12.
F13.
F14.
F15.

subaction(A): subaction set of an abstract action A.

choice(A): choice set for performing an abstract action A.

precondition(A): precondition set of an action A.

effect(A): (definite) effect set of an action A.

conditional-effect(A): conditional effect set of an action A.

antecedent(e): antecedent set of a conditional effect e.

consequent(e): consequent of a conditional effect e.

indefinite-effect(A): indefinite effect set of an action A.

relevant-action(e, DT): relevant action set to achieve an effect e based on the domain
theory DT.

relevant-effect(e, DT): relevant effect set to achieve an effect e based on the domain theory
DT.

side-effect(e, DT): side effect set to achieve an effect e based on the domain theory DT.
performer(A): performing agent(s) of an action A.

authority(A): authorizing agent(s) of an action A.

primary-responsible(e): primary responsible agent(s) for an effect e.
secondary-responsible(e): secondary responsible agent(s) for an effect e.

® Domain theory is a general term used in planning and plan-based systems, specifying the actions performed in a
domain and state affairs (typically described as preconditions and effects) that are causally linked to the actions.
Domain theory is the general knowledge of the domain represented using a given plan representation.
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Among these functions, F1-7 denote the generic features in (hierarchical) plan representation.
Functions F8—F11 describe indefinite effect set, relevant action/effect and side effect, and functions
F12-F15 represent the agents involved.

4.2 Reasoning about Social Causality

Social causality and responsibility judgment involve evaluating outcomes of events with
personal significance to an agent. This evaluation is always from a perceiving agent’s
subjective perspective. The perceiver uses her knowledge about the observed agents and
observation of behavior to infer beliefs of social attributions. We show how automatic
methods of causal and dialogue reasoning can provide such a mechanism.

4.2.1 DIALOGUE INFERENCE

Conversation between agents is a rich source of information for deriving attribution values.
Early attribution theorists (Kidd & Amabile, 1981; Hilton, 1990) have pointed out the importance
of language communication in attributing behavior. Within Al research community, there has
been much related work on intentions in agent communication (Cohen & Levesque, 1990; Smith
& Cohen, 1996), plan inference (Allen & Perrault, 1980; Litman & Allen, 1990), discourse
structure (Grosz & Sidner, 1986; Lochbaum, Grosz, & Sidner, 2000) and speech act theory
(Perrault, 1990). Although some previous research have partially addressed the issue of inferring
intentions under different formalism, our focus here is on identifying the generic commonsense
reasoning rules of attribution variables as well as their interrelations from social
communication.

Natural language communication can be seen as a collaborative activity between
conversational agents. Successful communication requires the participants to follow the basic
conversation principles (Grice, 1975) and reach some degree of common ground (Clark &
Schaefer, 1987). Thus we assume communication between agents is grounded (Traum, 1994),
and conversation conforms to Grice’s maxims of Quality® and Relevance’. In a conversational
dialogue, the participating agents exchange information alternatively. A perceiving agent (who
can be one of the participating agents or another agent) forms and updates beliefs according to
the observed speech acts and previous beliefs.

We design commonsense rules that allow a perceiving agent to derive beliefs about the
epistemic states of the observed agents. We also take social information (i.e., social roles and
relationship) into consideration. For example, an order can be successfully issued only to
subordinates, but a request can be made of any agent; and same request performed by agents
with different social status may lead to different belief derivations.

Hobbs (1985) proposed a first-order logic notation, using eventuality® to reify events and
conditions. To avoid expressing higher-order properties in first-order logic, our formalism has
adopted this notation; but for simplification and ease of illustration, we still keep the higher-

® The quality maxim states that one ought to provide true information in conversation.

" The relevance maxim states that one’s contribution to conversation ought to be pertinent in context.

8 Eventuality is an extra argument used in each predication referring to the condition that exists when that predication
is true. For every predicate P(x), P is true of x if and only if there is an eventuality or possible situation ¢’ of P being
true of x (called P’) and e’ really exists, i.e. (VX)P(X)<>(3e )P (e’ X)AExist(e’). The work of Hobbs (1985) provided
further explanation on the ontological assumptions of the notation.
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order expressions in this paper (note that they are actually handled using Hobb’s notation in
our approach). Also, to simplify logical forms, universal quantifiers are omitted in the rules,
and we substitute A and e for do(x, A) and achieve(x, e) respectively, when causing no
confusion.

If at time t1, a speaker (s) informs (or tells) a hearer (h) the content p, then after t1, it can be
inferred that the speaker knows that proposition p as long as there is no intervening
contradictory belief (Rule D1). As conversations between agents are grounded, it can be
inferred that the hearer also knows that p (Rule D2). To further simplify the expressions of rules,
we introduce a predicate etc® which stands for the absence of contradictory situations.

Rule D1 [inform]:

inform(s, h, p, t1) A t1<t2 A etc; = know(s, p, t2)
Rule D2 [inform-grounded]:

inform(s, h, p, t1) A t1<t2 A etc, = know(h, p, t2)

A request shows what the speaker wants (Rule D3). An order (or command) shows what the
speaker intends (Rule D5). An order can only be successfully issued by someone higher in
social status. If requested or ordered by a superior, it creates a social obligation for the hearer
to perform the content of the act (Rules D4 & D6).

Rule D3 [request]:
request(s, h, p, t1) A t1<t2 A etc; = want(s, p, t2)
Rule D4 [superior-request]:
request(s, h, p, t1) A superior(s, h) A t1<t2 A etcys = obligation(h, p, s, t2)
Rule D5 [order]:
order(s, h, p, t1) A t1<t2 A etcs = intend(s, p, t2)
Rule D6 [order]:
order(s, h, p, t1) A t1<t2 A etce = obligation(h, p, s, t2)

The hearer may accept, reject or counter-propose an order (or request). Various inferences
can be made depending on the response of the hearer and the social relationship between the
speaker and the hearer. For instance, if the hearer accepts, and there is no obligation
beforehand or the hearer is willing to (i.e., wants), it can be inferred that the hearer intends
(Rules D7 & D8).

Rule D7 [accept]:

—obligation(h, p, s, t1) A accept(h, p, t2) A t1<t2<t3 A etc; = intend(h, p, t3)
Rule D8 [willing-accept]:

want(h, p, t1) A accept(h, p, t2) A t1<t2<t3 A etcg = intend(h, p, t3)

If there is no clear evidence of an agent’s willingness, yet the agent accepts the obligation,
there is evidence of coercion (Rule D9). In another case, if an agent is obviously unwilling to
(i.e., unintended) but accepts the obligation, there is clear evidence of coercion (Rule D10).

Rule D9 [accept-obligation]:

® This is similar to the notation used in the work of Hobbs, Stickel, Appelt, and Martin (1993). It essentially means that
there is no contradictory belief in between.
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—(3t1)(t1<t3 A intend(h, p, t1)) A obligation(h, p, s, t2) A accept(h, p, t3) A t2<t3<t4 A etcy
= coerce(s, h, p, t4)

Rule D10 [unwilling-accept-obligation]:
—intend(h, p, t1) A obligation(h, p, s, t2) A accept(h, p, t3) A t1<t3 A t2<t3<t4 A etc;y =
coerce(s, h, p, t4)

If the hearer rejects, infer that the hearer does not intend (Rule D11). If the hearer counters A
and proposes B instead, both the speaker and the hearer are believed to know that A and B are
alternatives (Rules D12 & D13). It also implies what the hearer wants and does not intend (Rules
D14 & D15).

Rule D11 [reject]:

reject(h, p, t1) A t1<t2 A etcy; = —intend(h, p, t2)
Rule D12 [counter-propose]:

counter-propose(h, A, B, s, t1) A t1<t2 A etc;, = know(h, alternative(A, B), t2)
Rule D13 [counter-propose-grounded]:

counter-propose(h, A, B, s, t1) A t1<t2 A etc;3 = know(s, alternative(A, B), t2)
Rule D14 [counter-propose]:

counter-propose(h, p, q, S, t1) A t1<t2 A etc;4 = —intend(h, p, t2)
Rule D15 [counter-propose]:

counter-propose(h, p, q, s, t1) A t1<t2 A etc;s = want(h, g, t2)

If the speaker has known the alternatives and still requests (or orders) one of them, infer that
the speaker wants (or intends) the chosen action and does not intend the alternative (Rules D16 &
D17). (Here z can be s or h.)

Rule D16 [know-alternative-request]:
know(s, alternative(A, B), t1) A request(s, h, do(z, A), t2) A t1<t2<t3 A etc;s = —intend(s, do(z,
B), t3)

Rule D17 [know-alternative-order]:
know(s, alternative(A, B), t1) A order(s, h, A, t2) A t1<t2<t3 A etc;; = —intend(s, do(h, B), t3)

4.2.2 CAUSAL INFERENCE

Plan representation gives further information for inferring agency, intention and coercion, in
both direct and indirect cases. Causal inference is a plan-based evaluation based on the causal
information provided by plan representation.

Agency. In a plan execution environment where multiple agents inhabit, agents’ plans can
interact in various ways. The preconditions of an agent’s action may be established by the
activities of other agents, and thus these other agents indirectly help cause the outcome. Given
the domain theory DT, observed executed actions and an outcome e, the performer of an action A
that directly causes e is the causal agent (Rule C1). Other performers of relevant actions to
achieve e have indirect agency (Rule C2). In the absence of coercion, causal agent is deemed
responsible for e, while other agents assist causing e should share responsibility with this causal
agent. (The computation of relevant actions and effects to achieve e is given in Appendix A.)

Rule C1 [cause-action-effect]:
execute(x, A, t1) A eceffect(A) A occur(e, t2) A t1<t2<t3 A etc,g = cause(x, e, t3)
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Rule C2 [cause-relevant-effect]:
cause(y, e’, t1) A e’erelevant-effect(e, DT) A cause(x, e, t2) A t1<t2<t3 A etc;g => assist-
cause(y, X, €, t3)

Intention. Attribution of intention is essential to people’s explanations of behavior (Heider, 1958;
Malle & Knobe, 1997). As we have discussed in Section 4.2.1, intentions can be inferred from
evidence in natural language conversation. Causal inference helps infer outcome intention from
evidence of act intention. For example, if an agent intends an action A voluntarily, the agent must
intend at least one action effect of A (Rule C3).

Rule C3 [intend-action]:
intend(x, do(z, A), t1) A —(3y)coerce(y, X, A, t1) A t1<t2 A etc,y = TJe(eceffect(A) A intend(X,
e, t2))

In more general cases, when an action has multiple effects, in order to identify whether a
specific outcome is intended or not, a perceiver may examine action alternatives the agent
intends and does not intend, and compare the effects of intended and unintended alternatives.
If an agent intends an action A voluntarily and does not intend its alternative B, we can infer
that the agent either intends (at least) one action effect that only occurs in A or does not intend
(at least) one effect that only occurs in B, or both. If the effect set of A is a subset of that of B,
or if the effect set of B is a subset of that of A, they can be further simplified (Rules C4 & C5).

Rule C4 [intend-one-alternative]:
intend(x, do(z, A), t1) A —intend(x, do(z, B), t1) A —(3y)coerce(y, X, A, t1) A alternative(A, B) A
effect(A)ceffect(B) A t1<t2 A etcy = Je(egeffect(A) A eceffect(B) A —intend(x, e, t2))

Rule C5 [intend-one-alternative]:
intend(x, do(z, A), t1) A —intend(x, do(z, B), t1) A —(3y)coerce(y, x, A, t1) A alternative(A, B) A
effect(B)ceffect(A) A t1<t2 A etc,, = Je(eeeffect(A) A egeffect(B) A intend(x, e, t2))

If there is no clear belief of intention derived from causal and dialogue inferences, we can
employ intention recognition as a general approach to detecting intentions. Given the observed
executed actions of agent(s) and a plan library, if the observed action sequence matches the
actions in a primitive plan, then we can certainly infer that the primitive plan is pursued by the
agent(s). In most situations, however, the observed action sequence can only partially match a
specific plan. To find a hypothesized plan that best explains the observed actions, most intention
recognition algorithms use probabilistic models for the inference. We have developed a general
intention recognition algorithm based on probabilistic plan inference (Mao, Gratch, & Li, in
press). Our algorithm recursively uses causal information in the plan representation to
compute the best candidate plan. Here we provide the criteria for determining intended actions
and effects.

If an agent intends a certain plan to achieve the goal of the plan, then the agent should
intend those actions and effects that are relevant to achieving the goal in the plan context
(Rules C6 & C7). The goal itself should be intended by definition. Other side effects are not
intended by the agent (Rule C8). (The computation of relevant actions and effects as well as
side effects in the plan context is given in Appendix A.)

Rule C6 [intend-plan]:
intend(x, by(plan, goal), t1) A Aerelevant-action(goal, plan) A t1<t2 A etc,3; = intend(x, A, t2)
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Rule C7 [intend-plan]:

intend(x, by(plan, goal), t1) A ecrelevant-effect(goal, plan) A t1<t2 A etc,; = intend(x, €, t2)
Rule C8 [intend-plan]:

intend(x, by(plan, goal), t1) A eeside-effect(goal, plan) A t1<t2 A etc,s = —intend(x, €, t2)

Foreknowledge. As foreknowledge belongs to an agent’s epistemic state, it is mainly derived
from dialogue inference. Speech act such as inform or tell, gives the evidence that the
conversants know the content of the act. Intention recognition also helps infer an agent’s
foreknowledge, as intention entails foreknowledge: if an agent intends an action A to achieve an
effect e of A, then the agent must know that A brings about e (Rule C9).

Rule C9 [intent-foreknowledge-relation]:
intend(x, by(A, e), t1) A t1<t2 A etcys = know(x, bring-about(A, e), t2)

In addition, an agent should know what her action would bring about, if the action and its
effects are general knowledge in the plan representation and the perceiver does not have
contradictory belief of the specific knowledge the involved agents have (Rules C10 & C11).

Rule C10 [foreknowledge-performer]:

eceffect(A) A etcyy = know(performer(A), bring-about(A, e), t1)
Rule C11 [foreknowledge-authority]:

eceffect(A) A etc,g = know(authority(A), bring-about(A, e), t1)

Coercion. A causal agent could be absolved of responsibility if she was coerced to cause some
outcome by other forces. But just applying coercive force does not mean outcome coercion
actually occurs. What really matters is whether this force truly constrains the causal agent’s
freedom to avoid the outcome. Causal inference helps infer outcome coercion from evidence
of act coercion.

If an agent is coerced to execute a primitive action, the agent is also coerced to achieve all
the action effects (Rule C12). If being coerced to execute an abstract action and the action has
only one decomposition (i.e., non-decision node), then the agent is also coerced to execute the
subsequent actions and achieve all the subaction effects (Rules C13 & C14).

Rule C12 [coerce-primitive]:

coerce(y, X, A, t1) A primitive(A) A eceffect(A) A t1<t2 A etc,g = coerce(y, X, e, t2)
Rule C13 [coerce-non-decision-node]:

coerce(y, X, A, t1) A and-node(A) A Besubaction(A) A t1<t2 A etcsy = coerce(y, X, B, t2)
Rule C14 [coerce-non-decision-node]:

coerce(y, X, A, t1) A and-node(A) A eceffect(A) A t1<t2 A etcs; = coerce(y, X, €, t2)

If the coerced action has multiple decompositions (i.e., decision node), then the subsequent
actions are not coerced (Rule 15). Since the agent has options, only the effects that appear in
all alternatives are unavoidable (i.e., definite), and thus these effects are coerced (Rule 16);
Other effects that only appear in some (but not all) alternatives are avoidable (i.e., indefinite),
so they are not coerced (Rule 17). (The computation of definite and indefinite effects is given
in Appendix B.)

Rule C15 [coerce-decision-node]:
coerce(y, x, A, t1) A or-node(A) A Bechoice(A) A t1<t2 A etcs, = —coerce(y, X, B, t2)
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Rule C16 [coerce-decision-node]:
coerce(y, X, A, t1) A or-node(A) A eceffect(A) A t1<t2 A etcs; = coerce(y, X, e, t2)

Rule C17 [coerce-decision-node]:
coerce(y, X, A, t1) A or-node(A) A ecindefinite-effect(A) A t1<t2 A etcs, = —coerce(y, X, €,
t2)

Given a conditional effect is coerced, if its antecedents are initially true, its consequent is also
coerced (Rule C18). Otherwise, if its antecedents are false initially, then the consequent is not
coerced (Rule C19). If the antecedents are established by self (i.e., the performer), then the
consequent is not coerced, as she could choose to do otherwise (Rule C20). If some other agent(s)
establish the antecedents, then these other agents assist coercing the consequent (Rule C21).

An agent can be indirectly coerced (e.g., by enabling/disabling action preconditions, or
blocking other action alternatives). If among the choices of the coerced action, there is only one
executable alternative available or the coerced agent can enable only one alternative (i.e., by
making action preconditions true), then the agent is coerced to execute the only alternative (Rules
C22 & C23). If the only available alternative is enabled by some other agent(s), then these other
agents assist coercing the only alternative (Rule C24). If some other agent(s) block other action
alternatives (by disabling action preconditions), then the only alternative left is coerced and these
blocking agents are also coercers (Rule C25).

Coercion entails intention. Handing over one’s wallet under the threat of “your money or your
life” may well be seen as intentional: one decides to do so, albeit unwillingly, with the goal of
saving life.

Rule C26 [coerce-intend-relation]:
coerce(y, X, p, t1) A t1<t2 A etc,3 = intend(x, p, t2)

The complete inference rules are given in Appendix C.

4.3 Attribution Algorithm

The beliefs derived from dialogue and causal inferences are used in the attribution process to
form an overall judgment. Different perceivers may have different observations, different
knowledge and preferences, thus they may form different beliefs and judge the same situation
differently. Despite individual differences, the posited attribution process is general, and
applies uniformly to different perceivers. If an action performed by an agent brings about a
positive or negative effect, and the agent is not coerced to achieve the action effect, then the
performer of the action is the primary responsible agent. Other agents who indirectly assist the
performer are the secondary responsible agents. In the presence of external coercion, the
primary responsible agent is redirected to the coercer (Note that coercion may occur in more
than one level of action hierarchy, and so the process may need to trace several levels up to
find the ultimate source of responsibility). Other agents who indirectly assist the coercer are
the secondary responsible agents. They should share responsibility with the primary
responsible agent.

We have developed an algorithm to find the responsible agent(s) for a specific outcome
(consequence e). First, based on the speech act (SA) sequence, the algorithm infers from
dialogue evidence (Step 1). Then it applies causal inference rules (Step 2). For each executed
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action that potentially leads to the consequence, if the action does cause the outcome occurrence
or the performer of the action intends to bring the outcome about (i.e. failed attempt) (Step 3.1),
then assign the performer to the primary responsible agent. Other agents who assist the
performer (by enabling action preconditions) are secondary responsible agents (Step 3.2). To
trace the coercing agent(s), the evaluation process starts from the primitive action (Step 3.3),
and works up the action hierarchy (Step 3.4). During each pass through the main loop, if there
is evidence of outcome coercion (Step 3.4.2), the authority is deemed responsible (Step 3.4.3).
If current action is not the root node in action hierarchy and outcome coercion is true, the
algorithm assigns the parent node to current action (Step 3.4.4) and evaluates the next level up.
If the outcome is intended by the responsible agent (Step 3.5), the degree of responsibility is high
(Step 3.6). If the outcome is not intended (Step 3.7), then the degree assigned is low (Step 3.8).
Otherwise, assign medium degree of responsibility (Step 3.9). At last, the algorithm returns the
primary and secondary responsible agents as well as the degrees of responsibility (Step 4).

Attribution Algorithm (SA sequence S, domain theory DT, consequence e, observations):
1. Based on the speech act sequence S, apply dialog inference rules

2. Based on DT in the plan representation, apply causal inference rules

3. FOR each executed action A in observations

3.1 IF cause(performer(A), €) OR intend(performer(A), by(A, €)) THEN
3.2 primary-responsible(e) = performer(A)

secondary-responsible(e) = performer(relevant-action(e, DT))
3.3 P=A
3.4 DO
34.1 B=P
3.4.2 IF coerce(authority(B), performer(B), e) THEN
3.4.3 primary-responsible(e) = authority(B)
344 P = parent of node B in DT

END-IF

WHILE B = root of action hierarchy AND coerce(authority(B), performer(B), €)
3.5 IF intend(primary-responsible(e), ) THEN
3.6 Assign high degree of responsibility
3.7 ELSE IF —intend(primary-responsible(e), e) THEN
3.8 Assign low degree of responsibility
3.9 ELSE assign medium degree of responsibility

END-IF
END-FOR

4. RETURN primary-responsible(e) w secondary-responsible(e); Degrees of responsibility

We adopted the categorical model of responsibility assignment. If the outcome is intended
by the responsible agent, the degree of responsibility is high (Recall that as long as it manifests
intentions, a failed attempt can be blamed or credited almost the same as a successful one). If the
outcome is not intended by the responsible agent, then the degree of responsibility is low.
Otherwise, if there is no clear evidence of outcome intention, assign medium degree of
responsibility. The intensity of credit or blame is computed by multiplying the degree of
responsibility and the utility of the outcome. Events may lead to more than one
desirable/undesirable outcomes. For evaluating multiple outcomes, we apply the algorithm the
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same way, focusing on one outcome each time during its execution. Finally, to form an overall
judgment, the results are aggregated and grouped by the responsible agents.

4.4 lllustrative Example

We use an example from the Mission Rehearsal Exercise (MRE) leadership training system
(Swartout et al., 2006) to illustrate how the model works. In the MRE system, a human trainee
can practice decision making skills through interactions with virtual autonomous agents. To
train students in high-stake social situations, these virtual agents not only have figures that
resemble humans, they should also make sense of the perceived social events and exhibit
human-like social reasoning ability. The training scenario opens with a lieutenant (played by
the student), who lead a troop of soldiers to fulfill a peacekeeping mission. On his way to
reinforce another unit, one of the troop’s vehicles has seriously injured a civilian boy. The
boy’s mother and a medic are in the accident area, and a crowd is gathering around. The
student is faced with the dilemma of whether to continue his mission or to render aid to the
boy. Many decisions are possible, and each decision he makes will lead to different outcomes
as the scenario unfolds. Here the important question for our work is that when some good or
bad outcomes occur, how to ensure the agents make reasonable judgments and react like
people in such social situations.

In one training exercise, for example, the student (i.e. lieutenant) decided to split his forces.
He ordered his sergeant (acted by an autonomous agent) to send half of his squads to assist
another unit. The sergeant informed of the bad consequence and tried to negotiate for a better
alternative. However, the student persisted with his decision, and finally, the sergeant ordered
the squad leader (Lopez) to perform the act. Three social actors are involved in this example.
The lieutenant acts as an authority over the sergeant. The squad leader acts as a subordinate of
the sergeant. The following dialogue is extracted from an actual run of the system. Below we
illustrate how to attribute responsibility and blame based on the causal knowledge and
observations of agents.

Student: Sergeant, send two squads forward. (Line 1)

Sergeant:  That is a bad idea, sir. We shouldn’t split our forces. (Line 2) Instead we
should send one squad to recon forward. (Line 3)

Student: Send two squads forward. (Line 4)

Sergeant:  Against my recommendation, sir. (Line 5) Lopez! Send first and fourth squads
to Eagle 1-6’s location. (Line 6)

Lopez: Yes, sir. Squads! Mount up! (Line 7)

Within the MRE system, conversations between agents are represented as speech acts and a
dialogue history is stored. Details on how this negotiation dialogue is automatically generated
and how natural language is mapped into speech acts can be found in the work of Traum and his
colleagues (2003, 2008). The dialogue above corresponds to the following speech acts, ordered
by the time the speakers addressed them. (The symbols It, sgt and sld stand for the lieutenant,
the sergeant and the squad leader, respectively. t1<t2<...<t7.)

Act 1: order(lt, sgt, do(sgt, send-two-sqds), t1) (Line 1)
Act 2: inform(sgt, It, bring-about(send-two-sqds, unit-fractured), t2) (Line 2)
Act 3:  counter-propose(sgt, do(sgt, send-two-sqds), do(sgt, send-one-sqd), It, t3) (Line 3)
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Act 4: order(lt, sgt, do(sgt, send-two-sqds), t4) (Line 4)
Act5: accept(sgt, do(sgt, send-two-sqds), t5) (Line 5)
Act 6: order(sgt, sld, do(sld, two-sqds-fwd), t6) (Line 6)
Act 7: accept(sld, do(sld, two-sqds-fwd), t7) (Line 7)

Figure 3 illustrates the causal knowledge of the troop underlying the example. Take the
sergeant’s perspective as an example. The sergeant has access to the partial plan knowledge of
the troop, and perceives the conversation between the actors and task execution. He observed a
physical action two-squads-forward executed by the squad leader and the occurrence of action
effects. Two effects are salient to the sergeant, (unit) 1-6 supported and unit fractured.
Supporting unit 1-6 is a desirable team goal. Assume unit fractured is undesirable to the
sergeant and so he assigns negative utility to it. This consequence serves as input of the
algorithm.

Step 1. Based on sequence 1-7 in the dialogue history, the sergeant can derive a number of
beliefs by inferring the observed speech acts (Here tl<¢] '<t2<z2’<...<t7<t7’):

Belief 1: intend(lt, do(sgt, send-two-sqds), ¢/°) (Act 1, Rule D5)
Belief 2: obligation(sgt, do(sgt, send-two-sqds), It, 1) (Act 1, Rule D6)
Belief 3: know(sgt, bring-about(send-two-sqds, unit-fractured), ¢2°) (Act 2, Rule D1)
Belief 4: know(lt, bring-about(send-two-sqds, unit-fractured), z2°) (Act 2, Rule D2)
Belief 5:  know(sgt, alternative(send-two-sqds, send-one-sqd), ¢3°) (Act 3, Rule D12)
Belief 6: know(lt, alternative(send-two-sqds, send-one-sqd), z3°) (Act 3, Rule D13)
Belief 7: —intend(sgt, do(sgt, send-two-sqds), ¢3°) (Act 3, Rule D14)
Belief 8: want(sgt, do(sgt, send-one-sqd), z3°) (Act 3, Rule D15)
Belief 9: —intend(lt, do(sgt, send-one-sqd), ¢4") (Act 4, Belief 6, Rule D17)
Belief 10: coerce(lt, sgt, do(sgt, send-two-sqds), ¢5°) (Act 5, Beliefs 2&7, Rule D10)
Belief 11: intend(sgt, do(sld, two-sqds-fwd), #6°) (Act 6, Rule D5)
Belief 12: obligation(sld, do(sld, two-sqds-fwd), sgt, ¢6°) (Act 6, Rule D6)
Belief 13: coerce(sgt, sld, do(sld, two-sqds-fwd), ¢7°) (Act 7, Belief 12, Rule D9)

Step 2. Based on the observations of task execution and the beliefs obtained in Step 1, causal
inference further derives the following beliefs of the sergeant (Here tO is the initial time,
t0<t0'<tl):

Belief 14: know(sld, bring-about(two-sqds-fwd, unit-fractured), ¢0°) (Rule C10)
Belief 15: know(sgt, bring-about(two-sqds-fwd, unit-fractured), ¢0°) (Rule C11)
Belief 16: intend(lt, unit-fractured, ¢4°) (Beliefs 1&9, Rule C5)
Belief 17: coerce(lt, sgt, do(sgt, two-sqds-fwd), ¢5°) (Belief 10, Rule C13)
Belief 18: coerce(lt, sgt, do(sgt, remaining-fwd), ¢5°) (Belief 10, Rule C13)
Belief 19: coerce(lt, sgt, 1-6-supported, #5°) (Belief 10, Rule C14)
Belief 20: coerce(lt, sgt, unit-fractured, ¢5°) (Belief 10, Rule C14)
Belief 21: coerce(sgt, sld, unit-fractured, ¢7°) (Belief 13, Rule C12)

Step 3. Steps 3.1-3.2: As action two-squads-forward directly causes the evaluated outcome unit-
fractured, and the action is performed by the squad leader, initially, assign the squad leader to
the responsible agent.
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Step 3.4: Loop 1: The algorithm starts from the primitive action two-squads-forward. The
sergeant believes that he coerced the squad leader to fracture the unit (Belief 21). The sergeant
also believes that both he and the squad leader should have foreseen the outcome unit-fractured
(Beliefs 14&15). As outcome coercion is true, the sergeant is assigned to the responsible agent.
Since outcome coercion is true and current node is not the root of the action hierarchy, the
algorithm enters next loop.

Loop 2: The action is send-two-squads, performed by the sergeant. The sergeant believes that
the lieutenant coerced him to fracture the unit (Belief 20). The sergeant also believes that the
lieutenant intended unit-fractured (Belief 16). As outcome coercion is true, the lieutenant is
assigned to the responsible agent. Since outcome coercion is true and current node is not the root
of the action hierarchy, the algorithm enters next loop.

Loop 3: The action is support-unit-1-6, performed by the lieutenant. There is no relevant
dialogue act in history, nor is there clear evidence of coercion. As current node is already the
root of the action hierarchy, the algorithm exits the loop.

Steps 3.5-3.9: As the sergeant believes that the lieutenant intended unit-fractured, the
lieutenant is assigned high degree of responsibility for the outcome.

5. Evaluation

To evaluate our computational framework, we need to assess the consistency between model
predictions and human judgments of social cause, responsibility and blame/credit. In particular,
we need to evaluate the consistency of the model’s inferential mechanism underlying human
attributions of responsibility and blame/credit — that is, whether our model uses the same sources
of evidence and draws the same intermediate conclusions as people do. Thus, we design an
experiment to test how our model performs in predicting the beliefs of intermediate variables
(including attribution variables and other epistemic variables in the model) and evidence used
for the inference process. We claim that our model predicts human judgments of social
attributions and makes inferences consistent with what most people do in their judgments. As the
alternative computational approaches are incapable of inferring the beliefs of intermediate
variables, we directly compare the predictions of our model with human data.

5.1 Method

Participants and Procedure

The study consisted of 48 subjects that were either computer science graduate students or staff
at the University of Southern California. Their ages range from 20 to 35, and 30 of the subjects
were male. Among them, 12 subjects each completed four scenarios of the survey. Other
subjects each completed two scenarios. The survey was composed of four small scenarios
where the order of the scenarios was randomized across subjects. Each scenario was followed
by a questionnaire, asking guestions about the assessments of internal variables including the
characters’ foreknowledge, desire, intentions, obligation and perceived coercions. In
answering each question, the subjects were asked to mark the (multiple) lines in the scenario
according to which they draw the answer. At the end of each questionnaire, there is a question
asking the subjects to score how much blame the characters deserve in the scenario.
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Materials

As a starting point, we adopt the “company program” scenario first used in (Knobe, 2003a).
This scenario has received much attention in recent folk psychology and experimental
philosophy research (Jones, 2009). We design three variants of the company program scenario
and the questionnaires following each scenario. The original scenario (Scenario 2), its variants
(Scenarios 1, 3 and 4) and the complete questionnaires are given in Appendix D. For the
convenience of assessing inference rules, descriptions of each scenario are organized into
separate labeled lines of evidence (e.g., E1-E6).

Scenario 2:

E1  The chairman of Beta Corporation is discussing a new program with the vice president of
the corporation.

E2  The vice president says, “The new program will help us increase profits,
E3 but according to our investigation report, it will also harm the environment.”

E4  The chairman answers, “I only want to make as much profit as I can. Start the new
program!”

E5  The vice president says, “Ok,” and executes the new program.
E6  The environment is harmed by the new program.

Figure 4: Company Program Scenario 2

Experimental Design

As our model embodies the theoretical view that people will judge social cause and
responsibility differently based on their perception of the key variables such as intention,
foreknowledge and coercion, a good experimental design is to see how the model performs
when evidence for such judgments is systematically varied. To this end, we take the
description of a single social situation and systematically vary it, using the inference rules of
our model as a guide. For example, if our model suggests that particular evidence supports the
inference of coercion, then an obvious variation would be to add a line to the scenario
encoding such evidence. By exploring the space of inference rules and generating the
scenarios accordingly, we were able to incorporate information needed for different inference
paths and to predict judgment results in a systematic way.

Based on the computational framework introduced in Section 4, the specific information
utilized in the inference process includes those causal knowledge, goal identification, and
observations of speech acts, physical actions and the occurrence of action effects. We encode
the information into each line of the scenarios. The encoded information serves as the model’s
inputs and provides evidence for the specific inference. For example, in Scenario 1, the
following information is encoded (vp and chm refer to the vice president and the chairman,
respectively):

E1l: request(vp, chm, do(vp, new-program), t1) (speech act)
E2: inform(vp, chm, bring-about(new-program, profit-increase), t2) (causal knowledge)
E3: inform(vp, chm, —bring-about(new-program, env-harm), t2) (causal knowledge)
E4: accept(chm, do(vp, hew-program), t3) (speech act)
E5: execute(vp, new-program, t4) (action execution)
E6: occur(env-harm, t5) (outcome occurrence)
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We design questions to test beliefs about different variables. Each question corresponds to
the firing of an inference rule. We select to assess most groups of dialogue and causal
inference rules (D1-D17 and C1-C17). Some rules are tested in the virtual training system in
Section 4.4. For dialogue inference, we design questions to test speech acts “inform”,
“request”, “order”, “accept”, “accept-obligation” and “counter-propose”. “Know-alternative”
is tested in the virtual training scenario. For causal inference, we design questions to test
“intend-action”, “intend-plan”, “intent-foreknowledge-relation”, “coerce-primitive” and
“coerce-decision-node”.  “Intend-one-alternative”, “foreknowledge” and “coerce-non-
decision-node” are tested in the virtual training scenario.

In Scenario 1, we manipulate evidence related to agents’ foreknowledge of the outcome
(i.e., no foreknowledge). We design questions to test the inference rules for foreseeability
(Question 4, Rule D1), relation of intent and foreknowledge (Question 5, Rule C9), connection
of act and outcome intentions (Question 3, Rule C3), etc. Scenario 2 gives clear evidence of
foreknowledge. The authority’s goal is also stated. Correspondingly, questions are designed to
test rules for intentional action/effect and side effect (Questions 3-4, Rules C7&C8), having
foreknowledge (Question 1, Rule D2), and speech acts. In Scenario 3, we manipulate the
degree of perceived coercion and unwillingness by introducing an alternative course of action
that will not harm the environment and which the vice president prefers. Specifically, we add
one line between E3 and E4 (and all the other lines remain the same as those in Scenario 2).
Questions are designed to test the agent’s willingness (Question 2, Rules D14&D15) and
perceived coercion (Questions 3-4, Rules D10&C12). In Scenario 4, we manipulate the
characters’ freedom of choice. We introduce an alternative, but the preference of the vice
president is based on a feature unrelated to the environment and the vice president is allowed
to choose from the options. We design three questions to test other important rules for
coercion (Rules C15-C17).

Model Predictions
For each question in the questionnaire, the model’s prediction of belief and belief derivation
are given in Appendix E.

5.2 Results

Here we provide the experimental results on assessing inferred beliefs and inference rules.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6

Yes No Yes No Yes No Yes No Yes No Chair VP

Scenario | Model N v w/ N N N

1 People 30 0 27 3 29 1 2 28 0 30 3.00 3.73
Scenario | Model N v N N RN N

2 People 30 0 30 0 30 0 10 20 22 8 5.63 3.77
Scenario | Model \/ N N R /A \

3 People 21 9 2 28 29 1 21 9 5.63 3.23

Scenario | Model \/ N v VA A \

4 People 21 9 5 25 5 25 413 | 5.20

Table 1: Model Predictions and Subject Responses for Company Program Scenarios
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5.2.1 ASSESSING INFERRED BELIEFS

Table 1 summarizes the experimental results. Results for questions 1 to 5 indicate the total
number of subjects that gave a particular answer. For example, for Scenario 1, all thirty
subjects reported that the vice president wanted to start the new program. Question 6 refers to
the amounts of blame attributed to the chairman and the vice president on a scale of 1 (little) to
6 (lots), and the table lists the subjects’ average reported values. The model’s predictions are
checked with “\” in the table. The data show that for most questions, people agree with each
other quite well. But certain disagreements exist on some of the questions.

As our purpose is to assess the model’s general agreement with people, we measure the
agreement between the model and each subject using the Kappa statistic. The Kappa
coefficient is the de facto standard to evaluate the agreement between raters, which factors out
expected agreement due to chance (Carletta, 1996). The K coefficient is computed as:

« _ P(W-P(E)
1-P(E)

P(A) is the propositional agreement among raters. P(E) is the expected agreement, that is,
the probability that the raters agree by chance. Di Eugenio and Glass (2004) argued that the
computation of K coefficient is sensitive to the skewed distribution of categories (i.e.,
prevalence). In our treatment, we account for prevalence and construct contingency tables for
the calculation, and average the results of Kappa agreement of the model’s predictions with
each subject’s answers. The average Kappa agreement between the model and subjects is
0.732. Based on the scales given by Rietveld and van Hout (1993), 0.6<K<0.8 indicates
substantial agreement. The empirical results show good consistency between the model’s
generation of intermediate beliefs and human data.

5.2.2 ASSESSING INFERENCE RULES

In our model, every belief is derived by a specific inference rule, so the answer to a question in
the guestionnaires corresponds to the firing of one rule (with the exception of three questions
in the questionnaires designed to test two rules each). As the condition side of each rule is
composed of a set of evidence, to assess the accuracies of the inference rules, we compare the
conditions of each rule with the evidence people use in forming each answer. Accuracy of
each rule is measured using standard confusion matrix (Kohavi & Provost, 1998). For every
subject’s evidence choice in each question, we build a confusion matrix to compute the
number of true positive TP (i.e., evidence both the rule and the subject use), true negative TN
(i.e., evidence both the rule and the subject ignore), false positive (i.e., evidence the rule
incorrectly uses), and false negative (i.e., evidence the rule incorrectly ignores).

For each question Q;, the correct selection of evidence by the corresponding rule with
respect to subjects is measured by accuracy (AC), where N is the total number of subjects and
N, is the total number of evidence for Q;.

> AC(},Qi) 2 (TP(j, Q) +TN(j, Qi)

AC (Oi) = jeSubjects _ jeSubjects
Q) Ns Ns x Ne
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Table 2 lists the accuracies of the tested rules. The average accuracy of these rules is 0.85.
The empirical results show that the evidence the model uses for inference is consistent with
human data. Thus the first experimental study generally supports our first claim of evaluation:
our model predicts human judgments of social attributions and makes inferences consistent
with what most people do in their judgments.

Question Inference Rule Average Accuracy
1 D3 [Request] 0.76
2 D7 [Accept] 0.96
Scenario 1 3 C3 [Intend-Action] 0.85
4 D1 [Inform] 0.94
5 C9 [Intent-Foreknowledge-Relation] 0.91
1 D2 [Inform-Grounded] 0.92
2 D5 [Order] 0.96
Scenario 2 3 C7 [Intend-Plan] 0.86
4 C8 [Intend-Plan] 0.70
5 D6 & D9 [Order; Accept-Obligation] 0.84
1 D13 [Counter-Propose-Grounded] 0.94
Scenario 3 2 D14 & D15 [Counter-Propose] 0.88
3 D6 & D10 [Order; Unwilling-Accept-Obligation] 0.80
4 C12 [Coerce-Primitive] 0.74
1 C16 [Coerce-Decision-Node] 0.71
Scenario 4 2 C15 [Coerce-Decision-Node] 0.84
3 C17 [Coerce-Decision-Node] 0.75

Table 2: Accuracies of Evidence Used by the Inference Rules

5.3 Discussion

Although the experimental results show fairly good consistency between our model’s predictions
and human data with respect to the inferred beliefs and inference rules, the results above also
reveal several disagreements among the subjects and the accuracies of the evidence used by
several inference rules are relatively lower. Now we briefly discuss the experimental findings
from our first study.

In Scenario 1, the questionnaire specifically queries the perceived desire, foreknowledge and
intentions of the characters. The accuracy of the rule tested in Question 1 is lower than the others
because, in addition to evidence E1, many people chose E2 as well. Post-experiment interviews
with the subjects uncovered that many subjects had assumed that making profits should be
desirable to the vice president (because of his role), and therefore, she should want to start the
new program to increase profits (which is supported by E2).

Scenarios 2 and 3 manipulate the degree of perceived coercion and willingness of the coerced
agent. In Question 4 of Scenario 2, one-third of the subjects think it the chairman’s intention to
harm the environment. Whether a side effect is intentional or not is controversial in philosophy, and
other empirical studies show similar results as ours (Nadelhoffer, 2006). Also in Question 5 of
Scenario 2, some subjects think the vice president is not coerced to start the new program by the
chairman, as the evidence is weaker than that in Scenario 3. Half of them referred to evidence ES5,
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indicating that they expect the vice president to negotiate with the chairman rather than directly
accept the order.

In the first question of Scenario 3, some subjects think the chairman does not know the
alternative program, though the vice president clearly states this in the scenario. Most of these
subjects (80%) referred to evidence E5, showing that they looked for grounding information. As our
model infers grounded information from conversation, we should have considered this in the
scenario design. In Question 4 of Scenario 3, some subjects seemed reluctant to infer outcome
coercion from evidence of act coercion. Nonetheless, they still assigned high degree of blame to the
chairman.

In Scenario 4, the vice president has some freedom of choice. In Question 1, some subjects think
that the vice president is not coerced to increase profits, for the same reason mentioned earlier. They
think it the vice president’s job to increase profits, so she must be willing to do so. The accuracies
of the inference rules for Question 1 and Question 3 are relatively low. In our model, the evidence
needed for the inference is E3, E4 and E5. Many subjects ignore knowledge E3 and this lowers the
accuracies of the two rules (similar reason for the low accuracies of the rules used in Question 4 of
Scenarios 2&3).

Comparing the blame assignments in Scenarios 2 and 3, it shows that on the one hand, the higher
the degree of coercion, the less blame is assigned to the actor — a result consistent with
psychological findings. On the other hand, even when perceived coercion is not strong, people still
assign high degree of blame to the coercer, as in Scenario 2. In Scenario 4, people assigned more
blame to the vice president, as she could have done otherwise. This result is consistent with
psychological findings (Shaver, 1985). However, people still assigned considerable blame to the
chairman, though it was the vice president’s choice to harm the environment.

5.4 Additional Experiment

In this section, we design an additional experiment to compare the overall judgment results by
our model and the alternative models with human data. In Section 2, we have introduced
Chockler and Halpern’s (2004) model (abbreviated to C&H model) for responsibility and blame
judgments. In addition to the C&H model, we also compare our model with two simple models.
A simple cause model always assigns responsibility and blame to the actor whose action directly
produces the outcome. This is the approach used by most current intelligent systems. Instead of
picking up the actor, a slightly more sophisticated model captures the intuition that hierarchical
structure is a universal characteristic of human society and organizations and social power
always flows from the top in the organizational structure. A simple authority model can choose
the highest authority as the responsible and blameworthy agent. Below we report our experiment
with human data on the overall judgments and compare our model’s predictions with the results
by simple cause model, simple authority model and the C&H model.

5.4.1 MEeTHOD

Participants and Procedure

Twenty-seven subjects participated in the experiment. They were either staffs or graduate
students at the University of Southern California, with ages ranging from 20 to 45, and 14 of the
subjects were female. The subjects were presented with four similar scenarios. Each scenario was
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followed by a questionnaire, asking questions about the assessments of physical cause,
responsibility, blame and perceived coercion of the characters. The order of the scenarios was
randomly assigned.

Materials

We took as a starting point the “firing squad” scenario typically used in causality research. For
the convenience of comparing with the related work, we used the original “firing squad” scenario
in the work of Chockler & Halpern (2004) (Scenario 1), and designed its variants (Scenarios 2, 3
and 4). Each scenario is followed by a questionnaire. The questions in the questionnaires are the
same across scenarios. The original scenario, its variants and the wording of the questions are
given in Appendix F.

Experimental Design

We designed the variants of Scenario 1 to systematically vary the perception of the key variables
such as intention and coercion. In each variant, we manipulate evidence of perceived coercion
and intentions of agents. Scenario 2 extends the example by including an authority - the
commander, who orders the squad to shoot. Scenario 3 further extends the example by presenting
a negotiation dialogue between the commander and the marksmen. The marksmen first reject the
commander’s order. The commander insists and orders again. Finally the marksmen accept the
order and shoot at the prisoner. In Scenario 4, the commander still orders, but each marksman has
freedom to choose either using blanks or live bullets before shooting.

Model Predictions

Each alternative approach represents a typical way of handling social causality, responsibility
and blame judgment. Below we give the predictions of our model (abbreviated to M&G model)
and alternative models.

Simple cause model: The simple cause model uses physical causality as a substitute for social
causality. So for each scenario, it predicts the marksman (or marksmen) with bullets as the
responsible and blameworthy agent.

Simple authority model: The simple authority model judges social cause and responsibility
from the top in power hierarchy, and regards the highest authority as being responsible. It assigns
responsibility and blame to the commander in Scenarios 2 to 4.

C&H model: As each marksman is a real cause for the outcome, the C&H model predicts all
marksmen share responsibility and blame in Scenario 1. For the similar reason, in Scenarios 2
and 3, the C&H model predicts both the commander and all marksmen are responsible and
blameworthy. The model’s prediction of Scenario 4 depends on the context (We shall discuss
more on this later).

M&G model: In Scenario 1, our model predicts the same result as that in the C&H model, but
judges the commander as the sole responsible and blameworthy agent in Scenarios 2 and 3. In
the last scenario, our model assigns responsibility and blame to the marksmen with bullets.

5.4.2 RESuULTS

In answering the questions, the subjects choose the responsible and blameworthy agents from six
categories. They are marksmen with bullets, all marksmen, commander, commander and
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marksmen with bullets, commander and all marksmen, and none of the above (see Appendix E).
Figure 5 shows the proportion of subjects that attribute blame and responsibility to different
categories of agents, and the corresponding confidence intervals (a=0.05) (Rice, 1994). For
example, in scenario 1, three subjects blame the marksman with live bullets in his rifle, 19 blame
all the marksmen and the rest do not blame any of them. The analysis of the sample data and their
confidence intervals show that a small percentage of the population will blame the marksman
with live bullets, a significant majority will blame all the marksmen, and a small percentage
won’t blame any, with 0.95 confidence.
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Figure 5: Proportion of Population Agreement on Responsibility/Blame in Scenarios

S'ml‘\’/:edcfuse S'mp'&A&‘tPO”W C&H Model M&G Model Human
Blame oce ode Majority
Results Match Results Match Results Match Results Match Agreement
Scenario with bullets no N/A no all yes all yes all marksmen
1 marksmen marksmen
Scenario commander
2 with bullets no commander yes &all no commander yes commander
marksmen
Scenario commander
3 with bullets no commander yes &all no commander yes commander
marksmen
. with bullets/
A es A .
SCETHO with bullets ;’rtial commander no dgogrtfj);t — with bullets ( gretisal) with bullets &
(P ) P P commander

Table 3: Comparison of Results by Different Models with Human Data

Table 3 summarizes the results of blame assignment generated by different models, and
compares these results with the dominant proportion (i.e., majority) of human agreement. (In
Scenario 4, however, the dominant proportion overlaps with another category; in this case, if a
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model’s prediction falls into the majority category, we regard it as a partial match). The simple
cause model partially matches the human agreement in Scenario 4, but is inconsistent with the
data in Scenarios 1 to 3. The simple authority model matches the human data in Scenarios 2 and
3, but is inconsistent with the data in other scenarios. In general, simple models use invariant
approaches to the judgment problem. Therefore, they are insensitive to the changing social
situations specified in each scenario. The C&H model matches human judgments in Scenario 1.
In the remaining scenarios, the results show that their blame model does not match human data
very well. These empirical findings show that our model approximates human judgments of
responsibility and blame/credit and performs better than other computational approaches.

5.4.3 CoMPARISON AND DiscussioN

We briefly discuss how our model appraises each scenario and compare our approach with the
C&H model.

Scenario 1. Actions and plans are explicitly represented in our approach. In Scenario 1, each
marksman performs a primitive action, shooting. The action has a conditional effect, with the
antecedent live bullets and the consequent death. All marksmen’s shooting actions constitute a
team plan squad firing, with the definite (goal) outcome death (Figure 6). The shooting actions
are observed executed, and the outcome death occurs. As all the observed primitive actions of the
marksmen match the team plan, we can certainly infer that the plan is pursued by the squad™ (i.e.,
certain case of intention recognition). The marksmen are believed to intend the actions in the
plan and the plan outcome (i.e. death).

Squad Firing
Performer: squad
Authority: none

//\

Shooting Shooting Shooting
Performer: marksman-1 Performer: marksman-2 Performer: marksman-10
Authority: none Authority: none Authority: none
Live Bullets Live Bullets Live Bullets

Death Death Death

Figure 6: Team Plan for the Squad in Scenario 1

The marksman with the bullets is the sole causal agent for the death. This marksman intends
the outcome, and thus deserves high degree of responsibility and blame. As other marksmen with
blanks also intend the actions and the outcome, and shooting actions are observed executed but
the antecedent of the conditional effect is false, their failed attempt can be detected. Therefore,
other marksmen are also blameworthy for their attempt (recall that an unsuccessful attempt can
be blamed or credited almost the same as a successful one, in Section 3).

The C&H model judges responsibility according to the actual cause of the event. As the
marksman with the bullets is the only cause of the death, this marksman has degree of
responsibility 1 for the death and others have degree of responsibility 0. This result is

1 Note that our intention recognition method is generally applied to a plan library and sequences of actions. This
example is oversimplified.
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inconsistent with human data. In determining blame, the C&H model draws the same conclusion
as ours, but their approach is different. They consider each marksman’s epistemic state before
action performance (corresponding to foreknowledge). There are 10 situations possible,
depending on who has the bullets. Each marksman is responsible for one situation (in which this
marksman has bullets), with degree of responsibility 1. Given that each situation is equally likely
to happen (i.e., with possibility 1/10), each marksman has degree of blame 1/10.

As there is no notion of intention in their model, the C&H model uses foreknowledge as the
only determinant for blame assignment. This is fine when there is no evidence of foreknowledge,
as no foreknowledge entails no intention (Rule C9). When there is evidence of foreknowledge,
however, the blame assigned is high, even if there is no intention manifested in the case. For
example, in a context different from this example, if a marksman fires the gun by mistake,
without any intention of causing or attempting the death, in the C&H model, this marksman will
be blamed just the same as those who truly have such intention.

Scenarios 2&3. In our model, we take different forms of social interactions into account. The
inference process reasons about beliefs from both causal and dialogue evidence. Figure 7
illustrates the team plan of the squad in Scenarios 2 and 3, where a commander acts as an
authority of the squad.

Squad Firing
Performer: squad
Authority: commander

//\

Shooting Shooting Shooting
Performer: marksman-1 Performer: marksman-2 Performer: marksman-10
Authority: commander Authority: commander Authority: commander

Live Bullets Live Bullets Live Bullets

Death Death Death

Figure 7: Team Plan for the Squad in Scenarios 2 and 3

The intermediate beliefs inferred from Scenario 2 are given below. (The symbols cmd, sqd
and mkn stand for the commander, the squad and the marksman with bullets, respectively.
tl<tl <t2<s2’)

(1) intend(cmd, do(sqd, squad-firing), ¢1°) (Act order, Rule D5)

(2) obligation(sqd, do(sqd, squad-firing), ¢/°) (Act order, Rule D6)

(3) intend(cmd, death, ¢7°) (Belief 1, Rule C3)

(4) coerce(cmd, sqd, squad-firing, 2°) (Act accept & Belief 2, Rule D9)
(5) coerce(cmd, sqd, shooting, ¢2°) (Belief 4, Rule C13)

(6) coerce(cmd, sqd, death, £2°) (Belief 4, Rule C14)

(7) coerce(cmd, mkn, death, ¢2°) (Belief 5, Rules C14 & C18)

So in Scenario 2, the marksman causes the death due to coercion. The commander is
responsible for the death. As the commander intends the outcome (Belief 3) and the severity of
the outcome death is high, the commander is assigned high degree of responsibility and blamed
with high intensity.
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Scenario 3 includes a sequence of negotiation acts. The derived beliefs thus change to the
following (t4<z4"):

(1) intend(cmd, do(sqd, squad-firing), ¢1°) (Act order, Rule D5)

(2) obligation(sqd, do(sqd, squad-firing), /") (Act order, Rule D6)

(3) intend(cmd, death, ¢/°) (Belief 1, Rule C3)

(4) —intend(sqd, do(sqd, squad-firing), £2”) (Act reject, Rule D11)

(5) coerce(cmd, sqd, squad-firing, #4°) (Act accept & Beliefs 2&4, Rule D10)
(6) coerce(cmd, sqd, shooting, ¢4°) (Belief 5, Rule C13)

(7) coerce(cmd, sqd, death, ¢4°) (Belief 5, Rule C14)

(8) coerce(cmd, mkn, death, #4°) (Belief 6, Rules C14 & C18)

Clearly the marksmen do not intend firing (Belief 4). Scenario 3 shows evidence of strong
coercion. This is also reflected in the data. A greater proportion of subjects regard the
commander as responsible and blameworthy in Scenario 3 than in Scenario 2.

Assume marksman-1 is the one with the live bullets. Using the C&H approach, the outcome is
counterfactually dependent on marksman-1’s shooting, so marksman-1’s shooting is an actual
cause of the death. Similarly, the commander’s order is also an actual cause of the death. Based
on the responsibility definition in the C&H model, both the commander and marksman-1 are
responsible for the death, and each has degree of responsibility 1*'. In assigning blame, there are
ten situations altogether, and in each situation, the commander has expected responsibility 1, so
the commander is to blame with degree 1. The marksmen each have degree of blame 1/10. Thus
the C&H model appraises that the commander and all marksmen are blameworthy for the
outcome.

The C&H model represents all the relevant events in the scenarios as random variables. Thus,
if we want to model the communicative acts in Scenarios 2 and 3 using their approach, each act
must be represented as a separate variable in their model (or a number of speech acts can be
clumped together and represented as one variable). As conversational dialogue involves flexible
contents and orders of the acts, it is difficult to come up with structural equations and represent
the relationships between the variables. If we ignore some of the communicative acts in between,
intermediate beliefs conveyed by them will be lost.

Scenario 4. Unlike the previous scenarios, in Scenario 4, the bullets are not initially set before
the scenario starts. The marksmen can choose to use either bullets or blanks before shooting.
Firing is still the joint action of the squad, but there is no team plan or common goal for the
squad. As the commander orders the joint action, shooting actions and conditional effects are
coerced. However, as the antecedents are enabled by a self agent (i.e., the marksmen with bullets),
the consequent death is not coerced. The inferred beliefs are as follows.

(1) intend(cmd, do(sqd, squad-firing), ¢1°) (Act order, Rule D5)
(2) obligation(sqd, do(sqd, squad-firing), ¢/ ) (Act order, Rule D6)
(3) coerce(cmd, sqd, squad-firing, 3°) (Act accept & Belief 2, Rule D9)
(4) coerce(cmd, sqd, shooting, ¢3°) (Belief 3, Rule C13)

1 Halpern and Pearl (2005) provide a refined definition of causality, where only the contingencies with allowable
settings are considered. Under this refined definition, the commander is the only responsible agent for the death. But
the results of blame assignment remain the same in each scenario.
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(5) —coerce(cmd, mkn, death, ¢3°) (Belief 4, Rules C14 & C20)

In this case, the commander is not responsible for the outcome, but rather, the marksmen who
choose to use bullets and cause the death are responsible and blameworthy. Figure 5 shows that
in Scenario 4, people’s judgments somehow diffuse. There is an overlap between blaming the
marksmen with bullets and blaming both the commander and the marksmen with bullets.
Nonetheless, the category our model predicts is clearly better than the other three.

The C&H model requires all the structural equations to be deterministic. In essence, their
model could not handle alternative courses of action, which inherently have nondeterministic
properties. One remedy for this is to push the nondeterminism into the setting of the context (see
Section 2 for the explanation of context). For example, in Scenario 4, they could build a causal
model to let the context determine whether the bullets are live or blank for each marksman, and
then have a probability distribution over contexts. After that, they can compute the probability of
an actual cause. However, since these contexts are treated as background variables whose values
are assigned by the modeler, their approach could not construct the internal reasoning process to
automate the inference for alternative courses of actions.

6. General Discussion

Based on the well-founded psychological attribution theory, we have built a general
computational model for social causality and responsibility judgment. Our model takes
different forms of social interaction into account and considers both the actions of agents and the
outcomes they produce. We make use of commonsense reasoning to infer beliefs from dialogue
communication and task execution. Our model is based on the general representation commonly
used in intelligent systems. Causal inference is a plan-based evaluation over this representation.
Both the inferences of social attributions and the overall judgments by our model have shown
strong empirical support with respect to human data and in comparison with the alternative
approaches.

Although the examples in this paper have focused on negative consequences and blame
judgment, our model is capable of both credit and blame judgments. Currently we use a uniform
model for these two types of judgments. However, several researchers made a distinction
between them. D’Arcy (1963) pointed out that the criteria for judging benefit (i.e., credit
assignment) are stricter than those for judging harm (i.e., blame assignment). The empirical
findings in the work of Knobe (2003b) also show credit and blame asymmetry in people’s
judgments of behavior. These findings suggest us to consider using an asymmetry model for
credit and blame assignments in our future extension.

Subjects tended to assign shared blame to the individuals involved. In the firing squad scenario 1,
for example, a portion of the subjects mentioned that they think the marksmen actually make group
decisions together, and so they should be collectively responsible for the outcome. Sometimes this
is true even when the individual is not causally connected to the creditworthy or blameworthy event
(e.g., the chairman is blamed in the company program scenario 1). Some researchers’ work is
relevant to this. Norman and Reed (2010) provided a logic formalism to account for delegation and
responsibility. Our model’s representational and inferential mechanism has the potential to
incorporate these extensions.
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Although attribution theory emphasizes subjective interpretation of events, it is a general theory
of layman’s judgment of behavior. We start from the general principles identified by attribution
theory. However, it is also well known that responsibility judgment is influenced by the perceiver’s
emotional states, interpersonal goals such as impression management (Mele, 2001), and
dispositional differences such as personality. People are notoriously biased when describing their
involvement in creditworthy or blameworthy events (Bradley, 1978). These biases reveal subjective
needs and motivational influence of the perceiver on responsibility judgment. Related work carried
out in our lab has explored the influence of individual difference in the explanation of social
events by modeling different explanatory styles according to agents’ personalities (Oh, Gratch,
& Woo, 2007).

In this paper, we have focused on the computational modeling of social causality and
responsibility judgment in the context of multi-agent interactions. We produce the first general
computational framework for social causality and responsibility judgment based on
psychological attribution theory. One major contribution of our work is the identification of
commonsense knowledge about the derivation of attributions from inter-agent communication
and task execution. Another contribution of our work is the empirical validation of the model
using human data. By producing the model, we also propose the computational account of
coercion and design the algorithm to describe the attribution process and responsibility judgment.
Because of the interdisciplinary nature of this work, it also takes a first step toward cognitive
modeling of human social intelligence and helps advance our understanding of the process and
principles of human social inference.

For practical applications of this work, we have taken a semi-formal approach and
implemented our model mainly as a production system. Previously, there have been several
versions of implementations and improvements regarding this work. The model was first
implemented within Soar architecture in the context of virtual training environment described
earlier. As in the virtual training system, the model was closely coupled with other system
components using the blackboard representation, and belief update was handled using Soar’s
JTMS mechanism. We then moved to general-purpose programming language and implemented
the inference engine in Java. The inference engine includes three parts: dialogue reasoner,
intention recognizer and causal reasoner. We implemented dialogue inference rules and most of
the causal inference rules in the model (Rules C22-C25 were not implemented). Intention
recognizer was implemented separately. Our experimental studies were based on the Java
inference engine.

Other implementation and improvement efforts include the extension of the basic model in
interactive environment by exploring different explanatory styles (Oh et al., 2007) and the
improvement of the basic model by adding a model of negligence (Melissen, 2008). Tomai (2009)
took the same attribution variables as ours and extended the basic model using qualitative
process theory. His work translates attribution theory’s implications of blame assignment into six
views which impose ordinal constraints on blame assignment.

7. Conclusion

The social nature of computing is pervasive in every aspect of software research and
development. With the advance of computer and communication technologies, social computing
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and intelligent system design will move toward emphasizing social intelligence (Wang et al.,
2007). In this paper, we model a key aspect of social intelligence, by formalizing the underlying
social reasoning process in people’s behavioral judgment. We show how Al knowledge
representation and reasoning methods can be utilized to automate social inference and judgment
process. We also conduct human experiments to empirically validate our proposed model. The
experimental results show that our model’s predictions of the beliefs about intermediate variables,
inferential mechanism and judgment results are consistent with people’s responses. Therefore,
our proposed model can be generally applied to the modeling of human-like social inference and
behavioral judgment for intelligent entities.
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Appendix A. Computing Relevant Actions and Effects

Given the domain theory DT, an executed action set and a specific outcome e, the relevant
actions to achieve e contain the following actions:

= The action A that causes e is relevant.
= The actions that enable a precondition of a relevant action to achieve e are relevant.

= |f e is enabled by the consequent of a conditional effect of A, the actions that establish an
antecedent of the conditional effect are relevant.

= If a precondition of a relevant action is enabled by the consequent of a conditional effect,
the actions that establish an antecedent of the conditional effect are also relevant.

The preconditions of these relevant actions comprise the relevant effects to achieve e. Except
for e, other effects of relevant actions are side effects.

If domain theory DT is confined to those actions, preconditions and effects in a specific plan
(i.e., within the plan context), relevant actions and effects to achieve the goal of the plan can be
derived based on the same computation as given above.

Appendix B. Computing Definite and Indefinite Effects

Let A be an action. If A is an abstract action and has only one decomposition, let a; be a subaction
of A. If A is an abstract action and has multiple decompositions, let a; be a choice of A. The
definite effect set of A is denoted as effect(A), and the indefinite effect set of A is denoted as
indefinite-effect(A).
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The definite effect set effect(A) is composed of those action effects, which occur in each way
of decomposing A into primitive actions. It is computed recursively as follows:

o If Ais a primitive action, effect(A) consists of all its action effects.
e If Ais an abstract action and has only one decomposition, effect(A)= () effect (ai)
o If Ais an abstract action and has multiple decompositions, effect (A) =?<supacfon (bffect (ai)

aiechoice(A

The indefinite effect set indefinite-effect(A) is composed of those action ef%ects that only
occur in some (but not all) ways of decomposing A into primitive actions. It is computed
recursively as follows:

o If Alis a primitive action, indefinite-effect(A) = &.
o If A'is an abstract action and has only one decomposition,

indefinite — effect (A) = W indefinite — effect (ai)

aiesubaction (A)
o If Alis an abstract action and has multiple decompositions,

indefinite — effect (A) = W (effect (ai) w indefinite —effect (a;)) - e effect (ai)

aiechoice(A) aiechoice(A)

Appendix C. Inference Rules

For simplification, all universal quantifies are omitted. Variables x, y and z are different agents.
Let s and h be a speaker and a hearer, p and g be propositions, and t, t1, ..., t4 be time stamps.
Let A, B and C be actions. Variable e is a state, denoting an action precondition, an effect, an
antecedent or a consequent of a conditional effect. All the rules are from a perceiving agent’s
perspective.

Dialogue Inference Rules
D1 [inform]:
inform(s, h, p, t1) A t1<t2 A etc; = know(s, p, t2)

D2 [inform-grounded]:
inform(s, h, p, t1) A t1<t2 A etc, = know(h, p, t2)

D3 [request]:
request(s, h, p, t1) A t1<t2 A etc; = want(s, p, t2)

D4 [superior-request]:
request(s, h, p, t1) A superior(s, h) A t1<t2 A etc, = obligation(h, p, s, t2)

D5 [order]:
order(s, h, p, t1) A t1<t2 A etcs = intend(s, p, t2)

D6 [order]:
order(s, h, p, t1) A t1<t2 A etcs = obligation(h, p, s, t2)

D7 [accept]:
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—obligation(h, p, s, t1) A accept(h, p, t2) A t1<t2<t3 A etc; = intend(h, p, t3)

D8 [willing-accept]:
want(h, p, t1) A accept(h, p, t2) A t1<t2<t3 A etcg = intend(h, p, t3)

D9 [accept-obligation]:
—(3t1)(t1<t3 A intend(h, p, t1)) A obligation(h, p, s, t2) A accept(h, p, t3) A t2<t3<t4 A etcg =
coerce(s, h, p, t4)

D10 [unwilling-accept-obligation]:

—intend(h, p, t1) A obligation(h, p, s, t2) A accept(h, p, t3) A t1<t3 A t2<t3<t4 A etc,, = coerce(s,
h, p, t4)

D11 [reject]:

reject(h, p, t1) A t1<t2 A etcy; = —intend(h, p, t2)

D12 [counter-propose]:
counter-propose(h, A, B, s, t1) A t1<t2 A etc;, = know(h, alternative(A, B), t2)

D13 [counter-propose-grounded]:
counter-propose(h, A, B, s, t1) A t1<t2 A etc;3 = know(s, alternative(A, B), t2)

D14 [counter-propose]:
counter-propose(h, p, q, S, t1) A t1<t2 A etcy4 = —intend(h, p, t2)

D15 [counter-propose]:
counter-propose(h, p, q, S, t1) A t1<t2 A etc;s = want(h, q, t2)

D16 [know-alternative-request]:
know(s, alternative(A, B), t1) A request(s, h, do(z, A), t2) A t1<t2<t3 A etc;s = —intend(s, do(z, B),
t3)

D17 [know-alternative-order]:
know(s, alternative(A, B), t1) A order(s, h, A, t2) A t1<t2<t3 A etc,;; = —intend(s, do(h, B), t3)

Causal Inference Rules

C1 [cause-action-effect]:
execute(x, A, t1) A eceffect(A) A occur(e, t2) A t1<t2<t3 A etcig = cause(x, e, t3)

C2 [cause-relevant-effect]:

cause(y, e’, t1) A e’erelevant-effect(e, DT) A cause(x, e, t2) A t1<t2<t3 A etc;o = assist-cause(y,
X, €, 13)

C3 [intend-action]:

intend(x, do(z, A), t1) A —(3y)coerce(y, X, A, t1) A t1<t2 A etcyy = TFe(eceffect(A) A intend(x, e,
t2))

C4 [intend-one-alternative]:

intend(x, do(z, A), t1) A —intend(x, do(z, B), t1) A —(3y)coerce(y, x, A, t1) A alternative(A, B) A
effect(A)ceffect(B) A t1<t2 A etc,; = Je(egeffect(A) A eceffect(B) A —intend(x, €, t2))

C5 [intend-one-alternative]:
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intend(x, do(z, A), t1) A —intend(x, do(z, B), t1) A —(3y)coerce(y, X, A, t1) A alternative(A, B) A
effect(B)ceffect(A) A t1<t2 A etc,, = Je(eceffect(A) A egeffect(B) A intend(x, e, t2))

C6 [intend-plan]:
intend(x, by(plan, goal), t1) A Aerelevant-action(goal, plan) A t1<t2 A etc,s = intend(x, A, t2)

C7 [intend-plan]:
intend(x, by(plan, goal), t1) A ecrelevant-effect(goal, plan) A t1<t2 A etc,, = intend(X, e, t2)

C8 [intend-plan]:
intend(x, by(plan, goal), t1) A eeside-effect(goal, plan) A t1<t2 A etc,s = —intend(x, e, t2)

C9 [intent-foreknowledge-relation]:
intend(x, by(A, e), t1) A t1<t2 A etc,s = know(x, bring-about(A, e), t2)

C10 [foreknowledge-performer]:
eceffect(A) A etc,; = know(performer(A), bring-about(A, e), t)

C11 [foreknowledge-authority]:
eceffect(A) A etc,g = know(authority(A), bring-about(A, e), t)

C12 [coerce-primitive]:
coerce(y, X, A, t1) A primitive(A) A eceffect(A) A t1<t2 A etc,g = coerce(y, X, €, t2)

C13 [coerce-non-decision-node]:
coerce(y, X, A, t1) A and-node(A) A Besubaction(A) A t1<t2 A etcsy = coerce(y, X, B, t2)

C14 [coerce-non-decision-node]:
coerce(y, X, A, t1) A and-node(A) A eceffect(A) A t1<t2 A etcs; = coerce(y, X, e, t2)

C15 [coerce-decision-node]:
coerce(y, X, A, t1) A or-node(A) A Bechoice(A) A t1<t2 A etcs, = —coerce(y, X, B, t2)

C16 [coerce-decision-node]:
coerce(y, X, A, t1) A or-node(A) A eceffect(A) A t1<t2 A etcss = coerce(y, X, e, t2)

C17 [coerce-decision-node]:
coerce(y, X, A, t1) A or-node(A) A ecindefinite-effect(A) A t1<t2 A etcs, = —coerce(y, X, €, t2)

C18 [coerce-conditional-effect-initial-antecedent-true]:
eeconditional-effect(A) A true(antecedent(e), t1) A coerce(y, X, e, 12) A t1<t2<t3 A etCy =
coerce(y, X, consequent(e), t3)

C19 [coerce-conditional-effect-initial-antecedent-false]:
eeconditional-effect(A) A —true(antecedent(e), t1) A coerce(y, X, €, t2) A t1<t2<t3 A etCzs =
—coerce(y, X, consequent(e), t3)

C20 [coerce-conditional-effect-self-establish-antecedent]:
eeconditional-effect(A) A coerce(y, X, e, t1) A enable(x, antecedent(e), t2) A t1<t2<t3 A etcs; =
—coerce(y, X, consequent(e), t3)

C21 [coerce-conditional-effect-other-establish-antecedent]:
eeconditional-effect(A) A coerce(y, x, e, t1) A enable(z, antecedent(e), t2) A —can-enable(x,
—antecedent(e), t2) A t1<t2<t3 A etczg = coerce(ywz, X, consequent(e), t3)
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C22 [coerce-decision-node-initial-one-alternative]:
Aechoice(C) A true(precondition(A), t1) A (Bechoice(C)AB=A = —true(precondition(B), t1)
A—can-enable(x, precondition(B), t1)) A coerce(y, X, C, t2) A t1<t2<t3 A etczs = coerce(y, X, A, t3)

C23 [coerce-decision-node-self-enable-alternative]:

coerce(y, X, C, t1) A Aechoice(C) A enable(x, precondition(A), t2) A (Bechoice(C)AB=A =
—true(precondition(B), t2)A—can-enable(x, precondition(B), t2)) A t1<t2<t3 A etcsg = coerce(y, X,
A t3)

C24 [coerce-decision-node-other-enable-alternative]:

coerce(y, X, C, t1) A Aechoice(C) A enable(z, precondition(A), t2) A (Bechoice(C)AB=A =
—true(precondition(B), t2)A—can-enable(x, precondition(B), t2)) A t1<t2<t3 A etc4; = coerce(yuz,
X, A, 13)

C25 [coerce-decision-node-disable-other-alternative]:

coerce(y, X, C, t1) A Aechoice(C) A true(precondition(A), t2) A (Bechoice(C)AB=A = enable(z,
—precondition(B), t3)a—can-enable(x, precondition(B), t3)) A tl<t3<td A 12<t4 A etc;, =
coerce(yuz, X, A, t4)

C26 [coerce-intend-relation]:
coerce(y, X, p, t1) A t1<t2 A etcqs = intend(x, p, t2)

Appendix D. Company Program Scenarios

Scenario 1:

E1 The vice president of Beta Corporation goes to the chairman of the board and requests,
“Can we start a new program?”

E2 The vice president continues, “The new program will help us increase profits,

E3 and according to our investigation report, it has no harm to the environment.”

E4  The chairman answers, “Very well.”

E5 The vice president executes the new program.

E6 However, the environment is harmed by the new program.

Questions:

1. Does the vice president want to start the new program?

Your answer: Yes No

Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all that apply)? El E2 E3 E4 ES5 E6

2. Does the chairman intend to start the new program?

Your answer: Yes No
Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all that apply)? El E2 E3 E4 E5 E6
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3. Is it the chairman’s intention to increase profits?
Your answer: Yes No
Your confidence: 1 2 3 4 5 6

Low High

Based on which information (circle all that apply)? El E2 E3 E4 ES E6

4. Does the vice president know that the new program will harm the environment?
Your answer: Yes No
Your confidence: 1 2 3 4 5 6

Low High

Based on which information (circle all that apply)? El E2 E3 E4 E5 E6

5. Is it the vice president’s intention to harm the environment by starting the new program?
Your answer: Yes No
Your confidence: 1 2 3 4 5 6

Low High

Based on which information (circle all that apply)? El E2 E3 E4 E5 E6

6. How much would you blame the individuals for harming the environment?

Blame the chairman: 1 2 3 4 5 6

Blame the vice president: 1 2 3 4 5 6

Little Lots

Scenario 2:

E1 The chairman of Beta Corporation is discussing a new program with the vice president of
the corporation.

E2 The vice president says, “The new program will help us increase profits,

E3 but according to our investigation report, it will also harm the environment.”

E4 The chairman answers, “I only want to make as much profit as | can. Start the new
program!”

ES5 The vice president says, “Ok,” and executes the new program.

E6  The environment is harmed by the new program.

Questions:

1. Does the chairman know that the new program will harm the environment?

Your answer: Yes No

Your confidence: 1 2 3 4 5 6

Low High

Based on which information (circle all that apply)? El E2 E3 E4 E5 E6

2. Does the chairman intend to start the new program?

Your answer: Yes No
Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all that apply)? El E2 E3 E4 ES5 E6

3.

Is it the chairman’s intention to increase profits?
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Your answer: Yes No
Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all that apply)? El E2 E3 E4 E5 E6

4, TIs it the chairman’s intention to harm the environment?

Your answer: Yes No
Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all that apply)?  E1 E2 E3 E4 ES E6

5. Is the vice president coerced to start the new program (i.e. by the obligation of obeying the

chairman)?

Your answer: Yes No

Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all that apply)? El E2 E3 E4 ES E6

6. How much would you blame the individuals for harming the environment?

Blame the chairman: 1 2 3 4 5 6
Blame the vice president: 1 2 3 4 5 6

Little Lots
Scenario 3:

E1 The chairman of Beta Corporation is discussing a new program with the vice president of
the corporation.

E2 The vice president says, “The new program will help us increase profits,

E3 but according to our investigation report, it will also harm the environment.

E4 Instead, we should run an alternative program, that will gain us fewer profits than this
new program, but it has no harm to the environment.”

E5 The chairman answers, “I only want to make as much profit as I can. Start the new
program!”

E6  The vice president says, “Ok,” and executes the new program.

E7 The environment is harmed by the new program.

Questions:

1. Does the chairman know the alternative of the new program?

Your answer: Yes No

Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all that apply)? E1 E2 E3 E4 E5 E6 E7

2.  Which program is the vice president willing to start?

Your answer: New program Alternative program
Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all that apply)? E1 E2 E3 E4 E5 E6 E7
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3. Is the vice president coerced to start the new program?

Your answer: Yes No
Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all that apply)? E1 E2 E3 E4 E5 E6 E7

4. Is the vice president coerced to harm the environment?

Your answer: Yes No
Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all thatapply)? E1 E2 E3 E4 E5 E6 E7

5. How much would you blame the individuals for harming the environment?

Blame the chairman: 1 2 3 4 5 6
Blame the vice president: 1 2 3 4 5 6

Little Lots
Scenario 4:

E1 The chairman of Beta Corporation is discussing a new program with the vice president of
the corporation.

E2 The vice president says, “There are two ways to run this new program, a simple way and a
complex way.

E3 Both will equally help us increase profits, but according to our investigation report, the
simple way will also harm the environment.”

E4 The chairman answers, “I only want to make as much profit as I can. Start the new
program either way!”

E5 The vice president says, “Ok,” and chooses the simple way to execute the new program.

E6 The environment is harmed.

Questions:

1. s the vice president coerced by the chairman to increase profits?

Your answer: Yes No

Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all that apply)?  E1 E2 E3 E4 E5 E6

2. Isthe vice president coerced by the chairman to choose the simple way?

Your answer: Yes No
Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all that apply)?  E1 E2 E3 E4 E5 E6

3. Is the vice president coerced by the chairman to harm the environment?

Your answer: Yes No
Your confidence: 1 2 3 4 5 6
Low High

Based on which information (circle all that apply)?  E1 E2 E3 E4 E5 E6
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4. How much would you blame the individuals for harming the environment?

Blame the chairman: 1 2 3 4 5 6
Blame the vice president: 1 2 3 4 5 6
Little Lots

Appendix E. Belief Derivation of Company Program Scenarios

The symbols chm and vp refer to the chairman and the vice president, respectively. Time stamps
tl<t] <t2<t2’<...<t4<t5. The severity of the outcome environmental harm is set to medium.

Scenario 1
Information Encoding:

E1 request(vp, chm, do(vp, new-program), t1)

E2 inform(vp, chm, bring-about(new-program, profit-increase), t2)
E3 inform(vp, chm, —bring-about(new-program, env-harm), t2)
E4  accept(chm, do(vp, new-program), t3)

E5 execute(vp, new-program, t4)

E6 env-harmeeffect(new-program); occur(env-harm, t5)

Question 1 (Rule D3 [request]):
request(vp, chm, do(vp, new-program), t1)
= want(vp, do(vp, new-program), ¢1°)

Question 2 (Rule D7 [accept]):
accept(chm, do(vp, new-program), t3)
= intend(chm, do(vp, new-program), ¢3°)

Question 3 (Rule C3 [intend-action]):
intend(chm, do(vp, new-program), ¢3’) A —coerce(vp, chm, new-program, ¢3°)
= profit-increase eeffect(new-program) A intend(chm, profit-increase, ¢3°)

Question 4 (Rule D1 [inform]):

inform(vp, chm, —bring-about(new-program, env-harm), t2)
= know(vp, —bring-about(new-program, env-harm), 2°)
= —know(vp, bring-about(new-program, env-harm), ¢2°)

Question 5 (Rule C9 [intent-foreknowledge-relation]):
—know(vp, bring-about(new-program, env-harm), ¢2°)
= —intend(vp, by(new-program, env-harm), 2°)

Question 6 (Attribution Algorithm):
Primary-responsible agent: vp

Degree of responsibility/Intensity of blame: low
Scenario 2

Information Encoding:

E2 inform(vp, chm, bring-about(new-program, profit-increase), t1)
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E3 inform(vp, chm, bring-about( new-program, env-harm), t1)

E4  goal(chm, profit-increase); order(chm, vp, do(vp, new-program), t2)
E5 accept(vp, do(vp, new-program), t3); execute(vp, new-program, t3)
E6 occur(env-harm, t4)

Question 1 (Rule D2 [inform-grounded]):
inform(vp, chm, bring-about( new-program, env-harm), t1)
= know(chm, bring-about( new-program, env-harm), ¢1°)

Question 2 (Rule D5 [order]):
order(chm, vp, do(vp, new-program), t2)
= intend(chm, do(vp, new-program), ¢2°)

Question 3 (Rule C7 [intend-plan]):

intend(chm, by(new-program, profit-increase), #2°) A profit-increaseerelevant-effect(profit-
increase, new-program)

= intend(chm, profit-increase, ¢2°)

Question 4 (Rule C8 [intend-plan]):

intend(chm, by(new-program, profit-increase), #2°) A env-harmeside-effect(profit-increase,
new-program)

= —intend(chm, env-harm, 2°)

Question 5 (Rules D6 [order] & D9 [accept-obligation]):

order(chm, vp, do(vp, new-program), t2)

= obligation(vp, do(vp, new-program), chm, 2°)

obligation(vp, do(vp, new-program), chm, ¢2°) A accept(vp, do(vp, new-program), t3)
= coerce(chm, vp, do(vp, new-program), ¢3°)

Question 6 (Attribution Algorithm):
Primary-responsible agent: chm
Degree of responsibility/Intensity of blame: low

Scenario 3
Information Encoding:

E2 inform(vp, chm, bring-about(new-program, profit-increase), t1)

E3 inform(vp, chm, bring-about( new-program, env-harm), t1)

E4  counter-propose(vp, do(vp, new-program), do(vp, alternative-program), chm, t1)
E5 goal(chm, profit-increase); order(chm, vp, do(vp, new-program), t2)

E6 accept(vp, do(vp, new-program), t3); execute(vp, new-program, t3)

E7  occur(env-harm, t4)

Question 1 (Rule D13 [counter-propose-grounded]):
counter-propose(vp, do(vp, new-program), do(vp, alternative-program), chm, t1)
= know(chm, alternative(new-program, alternative-program), ¢1°)

Question 2 (Rules D14 & D15 [counter-propose]):
counter-propose(vp, do(vp, new-program), do(vp, alternative-program), chm, t1)
= —intend(vp, do(vp, new-program), ¢1°)

266



MOoDELING SoclAL CAUSALITY AND RESPONSIBILITY JUDGMENT IN MULTI-AGENT INTERACTIONS

counter-propose(vp, do(vp, new-program), do(vp, alternative-program), chm, t1)
= want(vp, do(vp, alternative-program), ¢/°)

Question 3 (Rules D6 [order] & D10 [unwilling-accept-obligation]):

order(chm, vp, do(vp, new-program), t2)

= obligation(vp, do(vp, new-program), chm, ¢2°)

—intend(vp, do(vp, new-program), ¢/’) A obligation(vp, do(vp, new-program), chm, £2°) A
accept(vp, do(vp, new-program), t3)

= coerce(chm, vp, do(vp, new-program), ¢3°)

Question 4 (Rule C12 [coerce-primitive]):

coerce(chm, vp, do(vp, new-program), #3°) A primitive(new-program) A env-harmeeffect(new-
program)

= coerce(chm, vp, env-harm, ¢3”)

Question 5 (Attribution Algorithm):
Primary-responsible agent: chm
Degree of responsibility/Intensity of blame: low

Scenario 4
Information Encoding:

E2 inform(vp, chm, or-node(new-program), t1)
inform(vp, chm, simple-way echoice(new-program), t1)
inform(vp, chm, complex-way echoice(new-program,), t1)

E3 inform(vp, chm, bring-about(simple-way, profit-increase), t1)
inform(vp, chm, bring-about(complex-way, profit-increase), t1)
inform(vp, chm, bring-about(simple-way, env-harm), t1)

E4  goal(chm, profit-increase); order(chm, vp, do(vp, new-program), t2)

E5 accept(vp, do(vp, new-program), t3); intend(vp, simple-way, t3); —intend(vp, complex-way,
t3);
execute(vp, simple-way, t4)

E6 occur(env-harm, t5)

Question 1 (Rule C16 [coerce-decision-node]):

order(chm, vp, do(vp, new-program), t2)

= obligation(vp, do(vp, new-program), chm, 2°)

obligation(vp, do(vp, new-program), chm, ¢2°) A accept(vp, do(vp, new-program), t3)

= coerce(chm, vp, do(vp, new-program), ¢3°)

coerce(chm, vp, do(vp, new-program), £3°) A or-node(new-program) A profit-increase seffect(new-
program)

= coerce(chm, vp, profit-increase, ¢3°)

Question 2 (Rule C15 [coerce-decision-node]):

coerce(chm, vp, do(vp, new-program), ¢3°) A or-node(new-program) A simple-wayechoice(new-
program)

= —coerce(chm, vp, simple-way, £3°)

Question 3 (Rule C17 [coerce-decision-node]):
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coerce(chm, vp, do(vp, new-program), z3°) A or-node(new-program) A env-harmeindefinite-
effect(new-program)
= —coerce(chm, vp, env-harm, ¢3°)

Question 4 (Attribution Algorithm):
Primary-responsible agent: vp
Degree of responsibility/Intensity of blame: high

Appendix F. Firing Squad Scenarios

Scenario 1

Suppose that there is a firing squad consisting of ten excellent marksmen. Only one of them has
live bullets in his rifle; the rest have blanks. The marksmen do not know which of them has the
live bullets. The marksmen shoot at the prisoner and he dies.

Scenario 2

Suppose that there is a firing squad consisting of a commanding officer and ten excellent
marksmen that generally abide by their leader’s commands. Only one of them has live bullets in
his rifle; the rest have blanks. The commanding officer and the marksmen do not know which
marksman has the live bullets. The commander orders the marksmen to shoot the prisoner. The
marksmen shoot at the prisoner and he dies.

Scenario 3

Suppose that there is a firing squad consisting of a commanding officer and ten excellent
marksmen that generally abide by their leader’s commands. Only one of them has live bullets in
his rifle; the rest have blanks. The commanding officer and the marksmen do not know which
marksman has the live bullets. The commander orders the marksmen to shoot the prisoner. The
marksmen refuse the order. The commander insists that the marksmen shoot the prisoner. The
marksmen shoot at the prisoner and he dies.

Scenario 4

Suppose that there is a firing squad consisting of a commanding officer and ten excellent
marksmen that generally abide by their leader’s commands. The commanding officer orders the
marksman to shoot the prisoner, and each marksman can choose to use either blanks or live
bullets. The commander and the marksmen do not know whether other marksmen have live
bullets. By tradition, if the prisoner lives (i.e., everyone chooses blanks), he is set free. The
marksmen shoot at the prisoner and he dies.

Questions (in Scenario 1, Questions 1-3 only contain selections a and b):

1. Who physically caused the death?
a) the marksmen who had live bullets in their rifles
b) all the marksmen in the firing squad
c) the commanding officer
d) a)andc)
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e) everybody
f)  none of the above

2. Who would you think is responsible for the death?
a) the marksmen who had live bullets in their rifles
b) all the marksmen in the firing squad
c) the commanding officer
d) a)andc)
e) everybody
f)  none of the above

3. Who deserves blame for the death?
a) the marksmen who had live bullets in their rifles
b) all the marksmen in the firing squad
c) the commanding officer
d) a)andc)
e) everybody
f)  none of the above

4. In making your judgment, do you feel the marksmen were coerced?
a) there was strong coercion
b) there was weak coercion
c) there was no coercion

References
Aleven, V., & Ashley, K. D. (1995). Doing Things with Factors. Proceedings of the Fifth International
Conference on Artificial Intelligence and Law.

Allen, J. F., & Perrault, C. R. (1980). Analyzing Intention in Utterances. Artificial Intelligence, 15(3):143-
178.

Austin, J. (1962). How to Do Things with Words. Harvard University Press.
Blythe, J. (1999). Decision-Theoretic Planning. Al Magazine, 20(2):37-54.

Bradley, G. W. (1978). Self-Serving Biases in the Attribution Process: A Reexamination of the Fact or
Fiction Question. Journal of Personality and Social Psychology, 36(1):56-71.

Bratman, M. E. (1987). Intention, Plans, and Practical Reason. Harvard University Press.

Carletta, J. (1996). Assessing Agreement on Classification Tasks: the Kappa Statistic. Computational
Intelligence, 22(2):249-254.

Cassell, J., Sullivan, J., Prevost, S., & Churchill, E. (Eds.) (2000). Embodied Conversational Agents.
Cambridge University Press.

Castelfranchi, C. (1990). Social Power. Proceedings of the First European Workshop on Modeling
Autonomous Agents in a Multi-Agent World.

Chockler, H., & Halpern, J. Y. (2004). Responsibility and Blame: A Structural-Model Approach. Journal of
Artificial Intelligence Research, 22:93-115.

Clark, H. H., & Schaefer, E. F. (1987). Collaborating on Contributions to Conversation. Language and
Cogpnitive Processes, 2:1-23,.

269



Mao & GRATCH

Cohen, P. R., & Levesque, H. J. (1990). Intention is Choice with Commitment. Artificial Intelligence, 42(2-
3):213-261.

D’Arcy, E. (1963). Human Acts: An Essay in Their Moral Evaluation. Oxford: Clarendon.

Di Eugenio, B., & Glass, M. (2004). The Kappa Statistic: A second Look. Computational Linguistics,
30(1):95-101.

d’Inverno, M., Kinny, D., Luck, M., & Wooldridge, M. (1997). A Formal Specification of dAMARS. In: M.
P. Singh, A. Rao and M. J. Wooldridge (Eds.). Intelligent Agents IV, pp. 155-176. Springer-Verlag.

Erol, K., Hendler, J., & Nau, D. S. (1994). UMCP: A Sound and Complete Procedure for Hierarchical
Task-Network Planning. Proceedings of the Second International Conference on Artificial Intelligence
Planning Systems.

Ferguson, G., & Allen, J. (2007). Mixed-Initiative Dialogue Systems for Collaborative Problem-Solving. Al
Magazine, 28(2):23-32.

Fikes, R.E., & Nilsson, N. J. (1971). STRIPS: A New Approach to the Application of Theorem Proving to
Problem Solving. Artificial Intelligence, 2(3-4).

Fincham, F. D., & Jaspars, J. M. (1980). Attribution of Responsibility: From Man the Scientist to Man as
Lawyer. In: L. Berkowitz (Ed.). Advances in Experimental Social Psychology (Vol. 13), pp. 81-138.
Academic Press.

Fischer, K., Mueller, J. P., & Pischel, M. (1996). A Pragmatic BDI Architecture. In: M. Wooldridge, J. P.
Mueller and M. Tambe (Eds.). Intelligent Agents 11, pp. 203-218. Springer-Verlag.

Georgeff, M. P., & Lansky, A. L. (1987). Reactive Reasoning and Planning. Proceedings of the Sixth
National Conference on Artificial Intelligence.

Gil, Y., Deelman, E., Blythe, J., Kesselman, C., & Tangmurarunkit, H. (2004). Artificial Intelligence and
Grids: Workflow Planning and Beyond. IEEE Intelligent Systems, 19(1):26-33.

Golbeck, J., & Hendler, J. (2006). Inferring Binary Trust Relationships in Web-Based Social Networks,
ACM Transactions on Internet Technology, 6(4):497-529.

Gordon, A., & Hobbs, J. R. (2004). Formalizations of Commonsense Psychology. Al Magazine, 25(4):49-
62.

Gratch, J., & Mao, W. (2003). Automating After Action Review: Attributing Blame or Credit in Team
Training. Proceedings of the Twelfth Conference on Behavior Representation in Modeling and
Simulation.

Gratch, J., Mao, W., & Marsella, S. (2006). Modeling Social Emotions and Social Attributions. In: R. Sun
(Ed.). Cognition and Multi-Agent Interaction, pp. 219-251. Cambridge University Press.

Gratch, J., Marsella, S., & Petta, P. (2009). Modeling the Antecedents and Consequences of Emotion.
Journal of Cognitive Systems Research, 10(1):1-5.

Grice, H. P. (1975). Logic and Conversation. In: P. Cole and J. Morgan (Eds.). Syntax and Semantics: Vol
3, Speech Acts. Academic Press.

Grosz, B., & Kraus, S. (1996). Collaborative Plans for Complex Group Action. Artificial Intelligence,
86(2):269-357.

Grosz, B. J., & Sidner, C. L. (1986). Attention, Intentions, and the Structure of Discourse. Computational
Linguistics, 12(3):175-204.

Hage, J. C. (1997). Reasoning with Rules: An Essay on Legal Reasoning and Its Underlying logic. Kluwer
Academic Publishers.

Halpern, J. Y., & Pearl, J. (2001). Causes and Explanations: A Structural-Model Approach. Part I: Causes.
Proceedings of the Seventeenth Conference in Uncertainty in Artificial Intelligence.

Halpern, J. Y., & Pearl, J. (2005). Causes and Explanations: A Structural-Model Approach. Part I: Causes.
British Journal for Philosophy of Science, 56(4):843-887.

270


http://people.ict.usc.edu/~gratch/papers/COGSYS-RS-EMOTION-2008-1.pdf

MOoDELING SoclAL CAUSALITY AND RESPONSIBILITY JUDGMENT IN MULTI-AGENT INTERACTIONS

Heider, F. (1958). The Psychology of Interpersonal Relations. John Wiley & Sons Inc.
Hilton, D. J. (1990). Conversational Processes and Causal Explanation. Psychological Bulletin, 107:65-81.

Hobbs, J. R. (1985). Ontological Promiscuity. Proceedings of the Twenty-Third Annual Meeting of the
Association for Computational Linguistics.

Hobbs, J. R., Stickel, M., Appelt, D., & Martin, P. (1993). Interpretation as Abduction. Artificial
Intelligence, 63(1-2):69-142.

Huber, M. J. (1999). JAM: A BDI-Theoretic Mobile Agent Architecture. Proceedings of the Third
International Conference on Autonomous Agents.

Jaimes, A., Sebe, N., & Gatica-Perez, D. (2006). Human-Centered Computing: A Multimedia Perspective.
Proceedings of the Fourteenth Annual ACM International Conference on Multimedia.

Jennings, N. R. (1992). On Being Responsible. In: E. Werner and Y. Demazeau (Eds.). Decentralized A.l.,
pp. 93-102. North Holland Publishers.

Johnson, C., & Gonzalez, A. J. (2008). Automated After Action Review: State-of-the-Art Review and
Trends. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology.
5(2):108-121.

Jones, D. (2009). The Good, the Bad and the Intentional. The Psychologist, 22(8):666-669, August.
Kant, 1. (1998). Groundwork of the metaphysics of morals. Cambridge University Press.

Kidd, R. F., & Amabile, T. M. (1981). Causal Explanations in Social Interaction: Some Dialogues on
Dialogue. In: J. H. Harvey, W. J. Ickes and R. F. Kidd (Eds.). New Directions in Attribution Research
(Vol. 3), pp. 307-328. Lawrence Erlbaum Associates.

Knobe, J. (2003a). Intentional Action and Side-Effects in Ordinary Language. Analysis, 63:190-193.

Knobe, J. (2003b). Intentional Action in Folk Psychology: An Experimental Investigation. Philosophical
Psychology, 16:309-324.

Kohavi, R., & Provost, F. (1998). Glossary of Terms. Machine Learning, 30(2/3):271-274.

Kraus, S., Hoz-Weiss, P., & Wilkenfeld, J. (2008), Resolving Crises through Automated Bilateral
Negotiations. Artificial Intelligence, 172(1).

Litman, D. J., & Allen, J. F. (1990). Discourse Processing and Commonsense Plans. In: P. R. Cohen, J.
Morgan and M. E. Pollack (Eds.), Intentions in Communication, pp.365-388. The MIT Press.

Lochbaum, K. E., Grosz, B. J., & Sidner, C. L. (2000). Discourse Structure and Intention Recognition. In: R.
Dale, H. Moisl and H. Somers (Eds.), Handbook of Natural Language Processing, pp.123-146.

Malle, B. F. (2001). Attribution processes. In N. J. Smelser and P. B. Baltes (Eds.), International
encyclopedia of the social and behavioral sciences Vol. 14, pp. 913-917. Elsevier.

Malle, B. F., & Knobe, J. (1997). The Folk Concept of Intentionality. Journal of Experimental Social
Psychology, 33:101-121.

Mao, W., Gratch, J., & Li, X. (in press). Probabilistic Plan Inference for Group Behavior Prediction. IEEE
Intelligent Systems.

Marinier, R. P., & Laird, J.E. (2004). Towards a Comprehensive Computational Model of Emotions and
Feelings. Proceedings of the Sixth International Conference on Cognitive Modeling.

Marsella, S., & Gratch, J. (2009). EMA: A Process Model of Appraisal Dynamics. Journal of Cognitive
Systems Research, 10(1): 70-90.

Martinovski, B., & Mao, W. (2009). Emotion as an Argumentation Engine: Modeling the Role of Emotion
in Negotiation. Group Decision and Negotiation, 18(3):235-259.

Martinovski, B., Mao, W., Gratch, J., & Marsella, S. (2005). Mitigation Theory: An Integrated Approach.
Proceedings of the Twenty-Seventh Annual Conference of the Cognitive Science Society.

271


http://www.idiap.ch/~gatica/publications/JaimesSebeGatica-acmmm06.pdf
http://people.ict.usc.edu/~gratch/papers/COGSYS-RS-EMOTION-2008-6.pdf

Mao & GRATCH

McCarty, L. T., & Sridharan, N. S. (1981). The Representation of an Evolving System of Legal Concepts: 11.
Prototypes and Deformations. Proceedings of the Seventh International Joint Conference on Artificial
Intelligence.

MccCarty, L. T. (1995). An Implementation of Eisner v. Macomber. Proceedings of the Fifth International
Conference on Artificial Intelligence and Law.

McCarty, L. T. (1997). Some Arguments about Legal Arguments. Proceedings of the Sixth International
Conference on Artificial Intelligence and Law.

Mele, A. R. (2001). Self-Deception Unmasked. Princeton University Press.

Melissen, A. (2008). Exploring Neglected Avenues in the Modeling of Attribution Theory. Master Thesis,
Department of Human Media Interaction, University of Twente.

Mueller, E. (2006). Commonsense Reasoning. Morgan Kaufmann Publishers.
Nadelhoffer, T. (2006). On Trying to Save the Simple View. Mind & Language, 21(5):565-586, November.

Nau, D. S., Cao, Y., Lotem, A., & Muoz-Avila, H. (1999). SHOP: Simple Hierarchical Ordered Planner.
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence.

Newell, A., & Simon, H. A. (1972). Human Problem Solving. Prentice-Hall.

Norman, T. J., & Reed, C. (2010). A Logic of Delegation and Responsibility. Artificial Intelligence,
174(1):51-71.

Oh, S., Gratch, J., & Woo, W. (2007). Explanatory Styles for Socially Interactive Agents. Proceedings of
the Second International Conference on Affective Computing and Intelligent Interaction.

Pearl, J. (1999). Reasoning with Cause and Effect. Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence.

Perrault, C. R. (1990). An Application of Default Logic to Speech Act Theory. In: P. R. Cohen, J. Morgan
and M. E. Pollack (Eds.), Intentions in Communication, pp.161-186. The MIT Press.

Picard, R. W. (1997). Affective Computing. The MIT Press.

Picard, R. W. (2010). Affective Computing: From Laughter to IEEE. IEEE Transactions on Affective
Computing, 1(1):11-17, January-June.

Pollack, M. E. (1990). Plans as Complex Mental Attitudes. In: P. R. Cohen, J. Morgan and M. E. Pollack
(Eds.), Intentions in Communication, pp.77-103. The MIT Press.

Prakken, H. (1997). Logic Tools for Modeling Legal Argument: A Study of Defeasible Argumentation in
Law. Kluwer Academic Publishers.

Prakken, H., & Sartor, G. (2002). The Role of Logic in Computational Models of Legal Argument. In:
A.Kakas and F. Sadri (eds.). Computational Logic: Logic Programming and Beyond, Essays in Honor
of Robert A. Kowalski, Part Il, pp. 342-380. Springer-Verlag.

Rao, A. S. (1996). AgentSpeak(L): BDI Agents Speak out in a Logical Computable Language. In: W. Van
de Velde and J. W. Perram (Eds.). Agents Breaking Away: Proceedings of the Seventh European
Workshop on Modeling Autonomous Agents in Multi-Agent World, pp. 42-55. Springer-Verlag.

Rice J. A. (1994). Mathematical Statistics and Data Analysis (Second Edition). Duxbury Press.

Rich, C., Sidner, C. L., & Lesh, N. (2001). COLLAGEN: Applying Collaborative Discourse Theory to
Human-Computer Interaction. Al Magazine, 22(4):15-26.

Rietveld, T., & van Hout. R. (1993). Statistical Techniques for the Study of Language and Language
Behavior. Mouton de Gruyter.

Rissland, E. L., & Ashley, K. D. (1987). A Case-Based System for Trade Secrets Law. Proceedings of the
First International Conference on Artificial Intelligence and Law.

Rissland, E. L., & Skalak, D. B. (1991). CABARET: Statutory Interpretation in a Hybrid Architecture.
International Journal of Man-Machine Studies, 34:839-887.

272



MOoDELING SoclAL CAUSALITY AND RESPONSIBILITY JUDGMENT IN MULTI-AGENT INTERACTIONS

Schurr, N., Marecki, J., Tambe, M., & Scerri, P. (2005). Towards Flexible Coordination of Human-Agent
Teams. Multiagent and Grid Systems, 1(1):3-16.

Searle, J. R. (1969). Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press.

Shaver, K. G. (1985). The Attribution Theory of Blame: Causality, Responsibility and Blameworthiness.
Springer-Verlag.

Sichman, J. S., Conte, R., Demazeau, Y., & Castelfranchi, C. (1994). A Social Reasoning Mechanism
Based on Dependence Networks. Proceedings of the Eleventh European Conference on Al.

Smith, I. A., & Cohen, P. R. (1996). Toward a Semantics for Agent Communications Language Based on
Speech-Acts. Proceedings of the Thirteenth National Conference on Artificial Intelligence.

Swartout, W., Gratch, J., Hill, R., Hovy, E., Marsella, S., Rickel, J., & Traum, D. (2006). Toward Virtual
Humans. Al Magazine, 27(2):96-108.

Swartout, W., Traum, D., Artstein, R., Noren, D., Debevec, P., Bronnenkant, K., Williams, J., Leuski, A.,
Narayanan, S., Piepol, D., Lane, C., Morie, J., Aggarwal, P., Liewer, M., Chiang, J., Gerten, J., Chu, S.,
& White, K. (2010). Ada and Grace: Toward Realistic and Engaging Virtual Museum Guides.
Proceedings of the Tenth International Conference on Intelligent Virtual Agents.

Tomai, E. (2009). A Pragmatic Approach to Computational Narrative Understanding. Ph.D. Thesis,
Electrical Engineering and Computer Science Department, Northwestern University.

Traum, D. (1994). A Computational Theory of Grounding in Natural Language Conversation. Ph.D. Thesis,
Computer Science Department, University of Rochester.

Traum, D., Gratch, J., Marsella, S., Lee, J., & Hartholt, A. (2008). Multi-party, Multi-issue, Multi-strategy
Negotiation for Multi-modal Virtual Agents. Proceedings of the Eighth International Conference on
Intelligent Virtual Agents.

Traum, D., Rickel, J., Gratch, J., & Marsella, S. (2003). Negotiation over Tasks in Hybrid Human-Agent
Teams for Simulation-Based Training. Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems.

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., & Blythe, J. (1995). Integrating Planning and
Learning: the Prodigy Architecture. Journal of Theoretical and Experimental Artificial Intelligence,
7(1):81-120.

Wang, F., Zeng, D., Carley, K., & Mao, W. (2007). Social Computing: From Social Informatics to Social
Intelligence. IEEE Intelligent Systems, 22(2):79-83.

Wang, F., Zeng, D., Hendler, J. A., Zhang Q., Feng, Z., Gao, Y., Wang, H., & Lai, G. (2010). A Study of
the Human Flesh Search Engine: Crowd-Powered Expansion of Online Knowledge. Computer,
43(8):45-53.

Weiner, B. (1995). The Judgment of Responsibility: A Foundation for a Theory of Social Conduct. The
Guilford Press.

Weiner, B. (2001). Responsibility for Social Transgressions: An Attributional Analysis. In: B. F. Malle, L. J.
Moses and D. A. Baldwin (Eds.), Intentions and Intentionality: Foundations of Social Cognition, pp.
331-344. The MIT Press.

Weiner, B. (2006). Social Motivation, Justice and the Moral Emotions: An Attributional Approach.
Lawrence Erlbaum Associates.

Zimmerman, M. J. (1988). An Essay on Moral Responsibility. Rowman & Littlefield.

273


http://people.ict.usc.edu/~gratch/papers/traum-iva08.pdf
http://people.ict.usc.edu/~gratch/papers/traum-iva08.pdf

