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Abstract

Heuristics used for solving hard real-time search problems have regions with depressions.
Such regions are bounded areas of the search space in which the heuristic function is inac-
curate compared to the actual cost to reach a solution. Early real-time search algorithms,
like LRTA∗, easily become trapped in those regions since the heuristic values of their states
may need to be updated multiple times, which results in costly solutions. State-of-the-art
real-time search algorithms, like LSS-LRTA∗ or LRTA∗(k), improve LRTA∗’s mechanism
to update the heuristic, resulting in improved performance. Those algorithms, however,
do not guide search towards avoiding depressed regions. This paper presents depression
avoidance, a simple real-time search principle to guide search towards avoiding states that
have been marked as part of a heuristic depression. We propose two ways in which depres-
sion avoidance can be implemented: mark-and-avoid and move-to-border. We implement
these strategies on top of LSS-LRTA∗ and RTAA∗, producing 4 new real-time heuristic
search algorithms: aLSS-LRTA∗, daLSS-LRTA∗, aRTAA∗, and daRTAA∗. When the ob-
jective is to find a single solution by running the real-time search algorithm once, we show
that daLSS-LRTA∗ and daRTAA∗ outperform their predecessors sometimes by one order
of magnitude. Of the four new algorithms, daRTAA∗ produces the best solutions given a
fixed deadline on the average time allowed per planning episode. We prove all our algo-
rithms have good theoretical properties: in finite search spaces, they find a solution if one
exists, and converge to an optimal after a number of trials.

1. Introduction

Many real-world applications require agents to act quickly in a possibly unknown envi-
ronment. Such is the case, for example, of autonomous robots or vehicles moving quickly
through initially unknown terrain (Koenig, 2001). It is also the case of virtual agents in
games (e.g., Warcraft, Starcraft), in which the time dedicated by the game software to
perform tasks such as path-finding for all virtual agents is very limited. Actually, compa-
nies impose limits on the order of 1 millisecond to perform these tasks (Bulitko, Björnsson,
Sturtevant, & Lawrence, 2011). Therefore, there is usually no time to plan for full trajec-
tories in advance; rather, path-finding has to be carried out in a real-time fashion.

Real-time search (e.g., Korf, 1990; Weiss, 1999; Edelkamp & Schrödl, 2011) is a standard
paradigm for solving search problems in which the environment is not fully known in advance
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and agents have to act quickly. Instead of running a computationally expensive procedure
to generate a conditional plan at the outset, real-time algorithms interleave planning and
execution. As such, they usually run a computationally inexpensive lookahead-update-act
cycle, in which search is carried out to select the next move (lookahead phase), then learning
is carried out (update phase), and finally an action is executed which may involve observing
the environment (act phase). Like standard A∗ search (Hart, Nilsson, & Raphael, 1968),
they use a heuristic function to guide action selection. As the environment is unveiled, the
algorithm updates its internal belief about the structure of the search space, updating (i.e.
learning) the heuristic value for some states. The lookahead-update-act cycle is executed
until a solution is found.

Early heuristic real-time algorithms like Learning Real-Time A∗ (LRTA∗) and Real-
Time A∗ (RTA∗) (Korf, 1990) are amenable for settings in which the environment is initially
unknown. These algorithms will perform poorly in the presence of heuristic depressions
(Ishida, 1992). Intuitively, a heuristic depression is a bounded region of the search space
in which the heuristic is inaccurate with respect to the heuristic values of the states in
the border of the region. When an agent controlled by LRTA∗ or RTA∗ enters a region of
the search space that conforms a heuristic depression it will usually become “trapped”. In
order to leave the heuristically depressed region, the agent will need to visit and update
many states in this region, potentially several times. Furthermore, in many applications,
such as games, the behavior of the agent in a depression may look irrational and thus it is
undesirable.

State-of-the-art heuristic real-time search algorithms that are suitable for applications
with initially unknown environments are capable of escaping heuristic depressions more
quickly than LRTA∗ or RTA∗. They do so by performing more lookahead search, more
learning, or a combination of both. More search involves selecting an action by looking
farther away in the search space. More learning usually involves updating the heuristic of
several states in a single iteration. There are many algorithms that use one or a combination
of these techniques (e.g., Hernández & Meseguer, 2005; Bulitko & Lee, 2006; Koenig &
Likhachev, 2006b; Hernández & Meseguer, 2007; Rayner, Davison, Bulitko, Anderson, &
Lu, 2007; Björnsson, Bulitko, & Sturtevant, 2009; Koenig & Sun, 2009). As a result, these
algorithms perform better than LRTA∗, spending fewer moves trapped in depressions.

Two algorithms representative of the state of the art in real-time search for initially
unknown environments are LSS-LRTA∗ (Koenig & Sun, 2009) and RTAA∗ (Koenig &
Likhachev, 2006a). These algorithms generalize LRTA∗ by performing more search and
more learning in each episode. Both algorithms have been shown to perform very well in
practice. However, despite the use of more elaborate techniques, they may still perform
poorly in the presence of heuristic depressions. This is because they may sometimes rely on
increasing the heuristic value of states inside the depressions as a mechanism to exit them.

In this paper we study techniques that allow us to improve the performance of real-time
search algorithms by making them explicitly aware of heuristic depressions, and then by
guiding the search in order to avoid and, therefore, escape depressions. Specifically, the
contributions of this paper are as follows.

• We provide new empirical evidence that shows that RTAA∗ outperforms LSS-LRTA∗

in game map benchmarks in the first trial, which means that whenever there is a
single chance to run one of those real-time heuristic search algorithms to solve a search
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problem, RTAA∗ finds better solutions than LSS-LRTA∗ while making the same search
effort. Before, Koenig and Likhachev (2006b) had shown similar performance results
but in mazes. This is important since LSS-LRTA∗, and not RTAA∗, is the algorithm
that has received more attention by the real-time heuristic search community. In this
paper we consider incorporating our techniques to both LSS-LRTA∗ and RTAA∗.

• We propose a definition for cost-sensitive heuristic depressions, which is a more general
notion than Ishida’s (1992) notion of heuristic depression since it incorporates action
costs. We illustrate that our depressions better describe the regions of the search
space in which real-time search algorithms get trapped.

• We propose a simple principle to actively guide search towards avoiding cost-sensitive
heuristic depressions that we call depression avoidance, together with two strategies
to implement depression avoidance which can be incorporated into state-of-the-art
real-time heuristic search algorithms: mark-and-avoid and move-to-border.

• We propose four new real-time search algorithms; two based on mark-and-avoid, aLSS-
LRTA∗, aRTAA∗, and two based on move-to-border: daLSS-LRTA∗, and daRTAA∗.
The algorithms are the result of implementing depression avoidance on top of RTAA∗

and LSS-LRTA∗.

• We prove that all our algorithms have desirable properties: heuristic consistency is
preserved, they terminate if a solution exists, and they eventually converge to an
optimal solution after running a sufficiently large, finite number of trials.

• We carry out an extensive empirical evaluation of our algorithms over deployed game
benchmarks and mazes. Our evaluation shows that our algorithms outperform exist-
ing algorithms in both game maps and mazes. When little time is allowed for the
lookahead phase, two of our algorithms, daLSS-LRTA∗ and daRTAA∗, outperform
existing ones by an order of magnitude.

Some of the contributions of this paper have been published in conference papers
(Hernández & Baier, 2011d, 2011c). This article includes new material that has not been
presented before. In particular:

• We describe and evaluate daLSS-LRTA∗, an algorithm that is presented in this article
for the first time.

• We include full proofs for the termination results (Theorem 6), and a new theoretical
result (Theorem 7) on the convergence of all our algorithms.

• We extend previously published empirical results by including maze benchmarks,
which had not been previously considered, and by including more game domains
and problems.

• Finally, we discuss in detail some scenarios at which our techniques may not perform
particularly good.
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The rest of the paper is organized as follows. In Section 2 we explain basic concepts of
real-time search. We continue presenting LSS-LRTA∗ and RTAA∗, and we extend the results
available in the literature by comparing them over game maps. We continue elaborating
on the concept of heuristic depression. We then describe our strategies for implementing
depression avoidance and the algorithms that result from applying each of them to LSS-
LRTA∗ and RTAA∗. We continue with a detailed theoretical and experimental analysis.
Then, we present a discussion of our approach and evaluation. We finish with a summary.

2. Preliminaries

A search problem P is a tuple (S,A, c, s0, G), where (S,A) is a digraph that represents the
search space. The set S represents the states and the arcs in A represent all available actions.
A does not contain elements of form (x, x). In addition, the cost function c : A 7→ R+

associates a cost to each of the available actions. Finally, s0 ∈ S is the start state, and
G ⊆ S is a set of goal states. In this paper we assume search spaces are undirected; i.e.,
whenever (u, v) is in A, then so is (v, u). Furthermore, c(u, v) = c(v, u), for all (u, v) ∈ A.
The successors of a state u are defined by Succ(u) = {v | (u, v) ∈ A}. Two states are
neighbors if they are successors of each other.

A heuristic function h : S 7→ [0,∞) associates to each state s an approximation h(s) of
the cost of a path from s to a goal state. We denote by h∗(s) the cost of an optimal path
to reach a solution from s.

A heuristic h is consistent if and only if h(g) = 0 for all g ∈ G and h(s) ≤ c(s, s′)+h(s′)
for all states s′ ∈ Succ(s). If h is consistent and C(s, s′) is the cost of any path between
two states s and s′, then h(s) ≤ C(s, s′) +h(s′). Furthermore, if h is consistent it is easy to
prove that it is also admissible; i.e., h(s) underestimates h∗(s). For more details on these
definitions, we refer the reader to the book authored by Pearl (1984).

We refer to h(s) as the h-value of s and assume familiarity with the A∗ algorithm (Hart
et al., 1968): g(s) denotes the cost of the path from the start state to s, and f(s) is defined
as g(s) + h(s). The f -value and g-value of s refer to f(s) and g(s) respectively.

2.1 Real-Time Search

The objective of a real-time search algorithm is to make an agent travel from an initial
state to a goal state performing, between moves, an amount of computation bounded by a
constant. An example situation is path-finding in a priori unknown grid-like environments.
There the agent has sufficient memory to store its current belief about the structure of
the search space. In addition, the free-space assumption (Zelinsky, 1992; Koenig, Tovey, &
Smirnov, 2003) is taken: the environment is initially assumed as obstacle-free. The agent is
capable of a limited form of sensing: only obstacles in the neighbor states can be detected.
When obstacles are detected, the agent updates its map accordingly.

Many state-of-the-art real-time heuristic search algorithms can be described by the
pseudo-code in Algorithm 1. The algorithm iteratively executes a lookahead-update-act
cycle until the goal is reached. The lookahead phase (Line 4–6) determines the next state
to move to, the update phase (Line 7) updates the heuristic, and the act phase (Line 8)
moves the agent to its next position. The lookahead-update part of the cycle (Lines 4–7) is
referred to as the planning episode throughout the paper.
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Algorithm 1: A generic real-time heuristic search algorithm

Input: A search problem P , and a heuristic function h.
Side Effect: The agent is moved from the initial state to a goal state if a trajectory exists

1 h0 ← h
2 scurrent ← s0
3 while scurrent 6∈ G do
4 LookAhead ()
5 if Open = ∅ then return no-solution
6 snext ← Extract-Best-State()
7 Update ()
8 move the agent from scurrent to snext through the path identified by LookAhead. Stop if

an action cost along the path is updated.
9 scurrent ← current agent position

10 update action costs (if they have increased)

The generic algorithm has three local variables: scurrent stores the current position of
the agent, c(s, s′) contains the cost of moving from state s to a successor s′, and h is such
that h(s) contains the heuristic value for s. All three variables may change over time. In
path-finding tasks, when the environment is initially unknown, the initial value of c is such
that no obstacles are assumed; i.e., c(s, s′) <∞ for any two neighbor states s, s′. The initial
value of h(s), for every s, is given as a parameter.

The generic algorithm receives as input a search problem P , and starts off by initializing
some useful variables (Lines 1–2). In h0 it records the initial value of h, for all states in P ,
and in scurrent it stores the initial position of the agent, s0. We assume the cost of an arc
cannot decrease. In particular, arc costs increase to infinity when an obstacle is discovered.

In the lookahead phase (Lines 4–6), the algorithm determines where to proceed next.
The Lookahead() procedure in Line 4 implements a bounded search procedure that expands
states from the current state scurrent. The set of states generated by this call is referred
to as local search space. Different choices can be made to implement this procedure. Real-
Time A∗ (RTA∗) and Learning Real-Time A∗ (LRTA∗)—two early algorithms proposed
by Korf (1990) —and other modern real-time search algorithms run a search from the
current state up to a fixed depth (e.g., Bulitko & Lee, 2006). Another common option is
to run a bounded A∗ search; such a choice is taken by Local Search Space LRTA∗ (LSS-
LRTA∗) (Koenig & Sun, 2009), and Real-Time Adaptive A∗ (RTAA∗) (Koenig & Likhachev,
2006b). Algorithm 2 shows the pseudo-code for bounded A∗. Note that at most k states
are expanded, where k is a parameter of the algorithm usually referred to as the lookahead
parameter. The pseudo code of the generic real-time search algorithm assumes that the call
to Lookahead() stores the frontier of the local search space in Open, and, moreover, that
if a goal state is found during search, such a state is not removed from the frontier (in the
bounded A∗ pseudo-code this is guaranteed by the condition in Line 7).

In the last step of the lookahead phase (Line 6, Algorithm 1), the variable containing
the next state to move to, snext, is assigned. Here, most algorithms select the state in the
search frontier that is estimated to be closest to a goal state. When A∗ lookahead is used,
such a state usually corresponds to a state with minimum f -value in Open. Thus A∗-based
lookahead algorithms use Algorithm 3 to implement the Extract-Best-State() function.
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Algorithm 2: Bounded A∗ lookahead

1 procedure A∗ ()
2 for each s ∈ S do g(s)←∞
3 g(scurrent)← 0
4 Open← ∅
5 Insert scurrent into Open
6 expansions← 0
7 while each s′ ∈ Open with minimum f -value is such that s′ 6∈ G and expansions < k do
8 Remove state s with smallest f -value from Open
9 Insert s into Closed

10 for each s′ ∈ Succ(s) do
11 if g(s′) > g(s) + c(s, s′) then
12 g(s′)← g(s) + c(s, s′)
13 s′.back = s
14 if s′ ∈ Open then remove s′ from Open
15 Insert s′ in Open

16 expansions← expansions+ 1

Algorithm 3: Selection of the Best State used by LSS-LRTA∗, RTAA∗, and other
algorithms.

1 procedure Extract-Best-State ()
2 return argmins′∈Openg(s′) + h(s′)

In the update phase (Line 7, Algorithm 1), the heuristic of some states in the search
space is updated to a value that is a better estimate of the true cost to reach a solution,
while staying consistent. After exploring states in the vicinity of scurrent, the algorithm
gains information about the heuristic value of a number of states. Using this information,
the h-value of scurrent—and potentially that of other states in the search space—can be
updated in such a way that they reflect a better estimation of the cost to reach a solution.
Since after the update the heuristic of some states are updated to a value closer to the true
cost, this phase is also referred to as the learning phase.

The literature describes several ways in which one can implement the update of the
heuristic, e.g., mini-min (e.g., Korf, 1990), max of mins (Bulitko, 2004), and heuristic
bounded propagation (Hernández & Meseguer, 2005). The learning rules that are most
relevant to this paper, however, are those implemented by LSS-LRTA∗ and RTAA∗. They
are described in detail in the following subsections.

Finally, after learning, the agent attempts to move to the state selected by the
Extract-Best-State() function, snext. In most implementations, the path to the selected
state has been computed already by the Lookahead() procedure (in the case of Algorithm 2,
the path is reconstructed using the back pointer that is set in Line 13). When the environ-
ment is known in advance, the agent can always move to the destination. However, when
the environment is not known in advance, this process can fail (in path-finding, this can
occur due to the discovery of an obstacle). If such an obstacle is found, we assume the
agent stops moving as soon as it has detected an obstacle. In such cases, the algorithm will
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update its memory regarding the environment, which typically involves updating the cost
function. In our pseudo-code, this is reflected in Line 10.

3. LSS-LRTA∗ and RTAA∗

Now we describe LSS-LRTA∗ and RTAA∗, the two state-of-the-art real-time heuristic search
algorithms that are most relevant to this paper. We make two small contributions to the un-
derstanding of these two algorithms. First, we do an experimental comparison of them over
benchmarks that had not been considered before. Second, we prove two theoretical results
that aim at understanding the differences between their update mechanisms (Propositions 1
and 2). To our knowledge, none of these results appear in the literature.

3.1 LSS-LRTA∗

Local search space LRTA∗ (LSS-LRTA∗) was first introduced by Koenig (2004), and later
presented in detail by Koenig and Sun (2009). It is an instance of Algorithm 1. Its looka-
head procedure is a bounded A∗ search (Algorithm 2). The next state to move to corre-
sponds to a state in Open with the lowest f -value; i.e., it uses Algorithm 3 to implement
Extract-Best-State().

LSS-LRTA∗ updates the values of each state s in the local search space in such a way
that h(s) is assigned the maximum possible value that guarantees consistency with the
states in Open. It does so by implementing the Update() procedure as a modified Dijk-
stra’s algorithm (Algorithm 4). Since the value of h is raised to the maximum, the update
mechanism of LSS-LRTA∗ makes h as informed as it can get given the current knowledge
about the search space, while maintaining consistency.

Algorithm 4: LSS-LRTA∗’s Modified Dijkstra’s Procedure. We assume Open list is
a queue ordered by h-value.

1 procedure ModifiedDijkstra ()
2 for each state s in Closed do h(s)←∞
3 while Closed 6= ∅ do
4 Extract an s with minimum h-value from Open
5 if s ∈ Closed then delete s from Closed
6 for each s′ such that s ∈ Succ(s′) do
7 if s′ ∈ Closed and h(s′) > c(s′, s) + h(s) then
8 h(s′)← c(s′, s) + h(s)
9 if s′ 6∈ Open then Insert s′ in Open

Algorithm 5: RTAA∗’s Update Procedure

1 procedure Update ()
2 f ← mins∈Open g(s) + h(s)
3 for each s ∈ Closed do
4 h(s)← f − g(s)
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3.2 RTAA∗

Real-Time Adaptive A∗ (RTAA∗) was proposed by Koenig and Likhachev (2006b). It is
an instance of Algorithm 1. Its lookahead phase is identical to that of LSS-LRTA∗: a
bounded A∗ followed by selecting a state with the lowest f -value in Open as the next state
to move to. However it uses a simpler learning mechanism based on the update rule of
the incremental A∗ search algorithm Adaptive A∗ (Koenig & Likhachev, 2006a). Thus,
it updates the heuristic value of states in the interior of the local search space (i.e., those
stored in A∗’s variable Closed) using the f -value of the best state in Open. The procedure
is shown in Algorithm 5.

RTAA∗’s update procedure is considerably faster in practice than that of LSS-LRTA∗.
Obtaining the lowest f -value of a state in Open can be done in constant time if A∗ is
implemented with binary heaps. After that, the algorithm simply iterates through the
states in Closed. The worst-case performance is then O(|Closed|). On the other hand,
LSS-LRTA∗’s update procedure first needs to convert Open into a priority queue ordered
by h and then may, in the worst case, need to extract |Open| + |Closed| elements from a
binary heap. In addition, it expands each node that is ever extracted from the priority
queue. The time to complete these operations, in the worst case is Texp ·N + Tb ·N logN ,
where N = |Open| + |Closed|, Texp is the time taken per expansion, and Tb is a constant
factor associated to extraction from the binary heap. The worst-case asymptotic complexity
of extraction is thus O(N logN). However, since we usually deal with a small N it may be
the case that the term Texp ·N dominates the expression for time.

We will prove that the heuristic values that RTAA∗ learns may be less accurate than
those of LSS-LRTA∗. To state this formally, we introduce some notation. Let hn, for
n > 0, denote the value of the h variable at the start of iteration n of the main algorithm,
or, equivalently, right after the update phase of iteration n − 1. We will also denote the
heuristic function given as input as h0. Let kn(s, s′) denote the cost of an optimal path
from s to s′ that traverses states only in Closed before ending in s′.

Proposition 1 Let s be a state in Closed right after the call to A∗ has returned in the n-th
iteration of LSS-LRTA∗. Then,

hn+1(s) = min
sb∈Open

kn(s, sb) + hn(sb). (1)

Proof: We will show that the value h(s) computed by the modified Dijkstra algorithm for
each state s corresponds to the minimum cost of reaching node s from a certain state in a
particular graph G. The modified Dijkstra procedure can be seen as a run of the standard
Dijkstra algorithm (e.g., Cormen, Leiserson, Rivest, & Stein, 2001) on such a graph.

First we observe that our procedure differs from the standard Dijkstra algorithm in that
a non-singleton set of states, namely those in Open, are initialized with a finite value for h.
In the standard Dijkstra algorithm, on the other hand, only the source node is initialized
with a cumulative cost of 0 whereas the remaining nodes are initialized to ∞. With the
facts above in mind, it is straightforward to see that a run of the modified Dijkstra can be
interpreted as a run of the standard Dijkstra algorithm from node sstart of a directed graph
G that is such that:

• Its nodes are exactly those in Open ∪ Closed plus a distinguished node sstart.
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• It contains an arc (u, v) with cost c if there is an arc (v, u) with cost c in the search
graph of P such that one of v or u is not in Open.

• It contains an arc of the form (sstart, s) with cost h(s) for each s in Open.

• It contains no other arcs.

After running the Dijkstra algorithm from sstart over G, we obtain, for each node s in G
the cost of an optimal path from sstart to s. If we interpret such a cost as h(s), for each s,
Equation 1 holds, which finishes the proof. �

For RTAA∗ we can prove a sightly different result.

Proposition 2 Right after the call to A∗ returns in the n-th iteration of RTAA∗, let s∗ be
the state with lowest f -value in Open, and let s be a state in Closed. Then,

hn+1(s) ≤ min
sb∈Open

kn(s, sb) + hn(sb). (2)

However, if hn is consistent and s is in the path found by A∗ from scurrent to s∗, then

hn+1(s) = min
sb∈Open

kn(s, sb) + hn(sb). (3)

Proof: For (2), we use the fact that if the heuristic is consistent, it remains consistent
after each RTAA∗ iteration (a fact proven by Koenig & Likhachev, 2006a), to write the
inequality hn+1(s) ≤ minsb∈Open kn(s, sb) + hn+1(sb). Now note that for every state sb in
Open it holds that hn(s) = hn+1(s), since the heuristic values of states in Open are not
updated. Substituting hn+1(s) in the inequality, we obtain the required result.

For (3), we use the a fact proven by Hart et al. (1968) about A∗: if consistent heuristics
are used, g(s) contains the cost of the cheapest path from the start state to s right after s
is extracted from Open (Line 8 in Algorithm 2).

Because A∗ is run with a consistent heuristic, for any state s′ along the (optimal) path
found by A∗ from scurrent to s∗,

g(s′) = kn(scurrent, s
′), and (4)

g(s∗) = kn(scurrent, s
′) + kn(s′, s∗). (5)

RTAA∗’s update rule states that:

hn+1(s′) = f(s∗)− g(s′) = hn(s∗) + g(s∗)− g(s′) (6)

Substituting with (4) and (5) in (6), we obtain hn+1(s′) = kn(s′, s∗) + hn(s∗). Finally,
observe that

kn(s′, s∗) + h(s∗) = min
sb∈Open

kn(s′, sb) + hn(sb).

Indeed, if there were an s− in Open such that kn(s′, s∗) + h(s∗) > kn(s′, s−) + hn(s−),
then by adding g(s′) to both sides of the inequality, we would have that f(s∗) > f(s−),
which contradicts the fact that s∗ is the state with lowest f -value in Open. We conclude
henceforth that hn+1(s′) = minsb∈Open kn(s′, sb) + hn(sb). This finishes the proof. �
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Proposition 2 implies that, when using consistent heuristics, RTAA∗’s update may yield
less informed h-values than those of LSS-LRTA∗. However, at least for some of the states
in the local search space, the final h-values are equal to those of LSS-LRTA∗, and hence
they are as informed as they can be given the current knowledge about the search space.

Koenig and Likhachev (2006a) show that for a fixed value of the lookahead parame-
ter, the quality of the solutions obtained by LSS-LRTA∗ are better on average than those
obtained by RTAA∗ in path-finding tasks over mazes. This is due to the fact that LSS-
LRTA∗’s heuristic is more informed over time than that of RTAA∗. However, they also
showed that given a fixed time deadline per planning episode, RTAA∗ yields better solu-
tions than LSS-LRTA∗. This is essentially due to the fact that RTAA∗’s update mechanism
is faster: for a fixed deadline, a higher lookahead parameter can be used with RTAA∗ than
with LSS-LRTA∗.

We extend Koenig and Likhachev’s experimental analysis by running a comparison of
the two algorithms on game maps. Table 1 shows average results for LSS-LRTA∗ and
RTAA∗ ran on 12 different game maps. For each map, we generated 500 random test cases.
Observe, for example, that if a deadline of 0.0364 milliseconds is imposed per planning
episode we can choose to run RTAA∗ with a lookahead k = 128, whereas we can choose
to run LSS-LRTA∗ only with lookahead k = 64. With those parameters, RTAA∗ obtains a
solution about 36% cheaper than LSS-LRTA∗ does. Figure 1 shows average solution cost
versus time per episode. The slopes of the curves suggest that the rate at which RTAA∗

improves solutions is better than that of LSS-LRTA∗, as more time per episode is given.
In conclusion RTAA∗ seems superior to LSS-LRTA∗ when time is actually important. We
thus confirm for a wider range of tasks that, when time per episode matters, RTAA∗ is
better than LSS-LRTA∗. These findings are important because mazes (for which previous
evaluations existed) are problems with a very particular structure, and results over them
do not necessarily generalize to other types of problems.

Although we conclude that RTAA∗ is an algorithm superior to LSS-LRTA∗ when it
comes to finding a good solution quickly, it is interesting to note that recent research on
real-time heuristic search is focused mainly on extending or using LSS-LRTA∗ (see e.g.,
Bulitko, Björnsson, & Lawrence, 2010; Bond, Widger, Ruml, & Sun, 2010; Hernández &
Baier, 2011d; Sturtevant & Bulitko, 2011), while RTAA∗ is rarely considered. Since LSS-
LRTA∗ seems to be an algorithm under active study by the community, in this paper we
apply our techniques to both algorithms.

4. Heuristic Depressions

In real-time search problems heuristics usually contain depressions. The identification of
depressions is central to our algorithm. Intuitively, a heuristic depression is a bounded
region of the search space containing states whose heuristic value is too low with respect
to the heuristic values of states in the border of the depression. Depressions exist naturally
in heuristics used along with real-time heuristic search algorithms. As we have seen above,
real-time heuristic algorithms build solutions incrementally, updating the heuristic values
associated to certain states as more information is gathered from the environment.

Ishida (1992) gave a constructive definition for heuristic depressions. The construction
starts with a node s such that its heuristic value is equal to or less than those of the
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RTAA* LSS-LRTA*
k Avg. Cost Time/ep Exp/ep Per/ep Time Avg. Cost Time/ep Exp/ep Per/ep Time
1 1,146,014 0.0004 1.0 6.1 447.9 1,146,014 0.0012 8.7 14.8 1,259.6
2 919,410 0.0006 2.0 9.4 475.4 625,693 0.0020 13.7 29.3 979.4
4 626,623 0.0011 4.0 17.3 468.8 372,456 0.0034 21.3 54.3 818.1
8 363,109 0.0021 8.0 34.1 383.7 227,526 0.0058 33.8 102.4 653.6

16 188,346 0.0040 16.0 70.1 269.1 127,753 0.0102 56.1 193.5 459.9
32 95,494 0.0078 32.0 152.9 192.8 72,044 0.0187 98.7 397.7 345.3
64 48,268 0.0159 63.9 361.3 145.7 40,359 0.0364 184.9 903.4 279.6

128 25,682 0.0326 126.4 932.3 125.8 22,471 0.0750 370.1 2,338.1 258.2
256 13,962 0.0647 236.8 2,351.8 125.6 12,264 0.1534 733.6 6,003.8 272.2
512 7,704 0.1078 377.6 4,616.7 131.6 7,275 0.2620 1,207.5 11,548.9 312.4

Table 1: Average results for the 12 game maps. For lookahead value k, we report the
solution cost per test case (Avg. Cost), and four measures of efficiency: the runtime
per planning episode (Time/ep) in milliseconds, the number of cell expansions per
planning episode (Exp/ep), the number of heap percolations per planning episode
(Per/ep) and the runtime per test case (Time) in milliseconds. All results were
obtained using a Linux machine with an Intel Xeon CPU running at 2GHz and 12
GB RAM.
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Figure 1: Average solution cost obtained by LSS-LRTA∗ and RTAA∗ versus planning time
per episode on 12 game maps.
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surrounding states. The region is then extended by adding a state of its border if all states
in the resulting region have a heuristic value lower or equal than those of the states in the
border. As a result, the heuristic depression D is a maximal connected component of states
such that all states in the boundary of D have a heuristic value that is greater than or equal
to the heuristic value of any state in D.

It is known that algorithms like LRTA∗ behave poorly in the presence of heuristic
depressions (Ishida, 1992). To see this, assume that LRTA∗ is run with lookahead depth
equal to 1, such that it only expands the current state, leaving its immediate successors
in the search frontier. Assume further that it visits a state in a depression and that the
solution node lies outside the depression. To exit the depressed region the agent must follow
a path in the interior of the depressed region, say, s1 . . . sn, finally choosing a state in the
border of the region, say se. While visiting sn, the agent chooses se as the next move, which
means that se minimizes the estimated cost to reach a solution among all the neighbors of
sn. In problems with uniform action costs, this can only happen if h(se) is lower or equal
than the heuristic value of all other neighbors of sn. This fact actually means that the
depression in that region of the search space no longer exists, which can only happen if the
heuristic values of states in the originally depressed region have been updated (increased).
For LRTA∗, the update process may be quite costly: in the worst case all states in the
depression may need to be updated and each state may need to be updated several times.

Ishida’s definition is, nonetheless, restrictive. In fact, it does not take into account the
costs of the actions needed to move from the interior of the depression to the exterior. A
closed region of states may have unrealistically low heuristic values even though the heuristic
values in the interior are greater than the ones in the border. We propose a more intuitive
notion of depression when costs are taken into account. The formal definition follows.

Definition 1 (Cost-sensitive heuristic depression) A connected component of states
D is a cost-sensitive heuristic depression of a heuristic h iff for any state s ∈ D and every
state s′ 6∈ D that is a neighbor of a state in D, h(s) < k(s, s′) +h(s′), where k(s, s′) denotes
the cost of the cheapest path that starts in s, traverses states only in D, and ends in s′.

Cost-sensitive heuristic depressions better reflect the regions in which an agent controlled
by algorithms such as LRTA∗ get trapped. To illustrate this, consider the two 4-connected
grid-world problems of Figure 2. Gray cells conform an Ishida depression. The union of
yellow and gray cells conform a cost-sensitive heuristic depression. Suppose the agent’s
initial position is the lower-right corner of the Ishida depression (C4 in Figure 2(a), and
C7 in Figure 2(b)). Assume further that ties are broken such that the priorities, given
from higher to lower, are: down, left, up, and right. For such an initial state, both in
situation (a) and situation (b), the agent controlled by LRTA∗ will visit every state in
the cost-sensitive heuristic depression before reaching the goal. Indeed, cells in the cost-
sensitive depression that are not adjacent to an obstacle are visited exactly 3 times, while
cells adjacent to an obstacle are visited 2 times, before the agent escapes the depression,
and thus the performance of LRTA∗ can be described as a linear function on the size of the
cost-sensitive depression.

It is interesting to note that for problems like the ones shown in Figure 2, the size of
the Ishida depression remains the same while the width of the grid varies. Thus, the size of
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(a) (b)

Figure 2: A 4-connected grid-like search space with unitary costs. Black cells are obstacles.
The cell with a G is the goal cell. Cells show their h-value (Manhattan distance).
Ties are broken by giving priority to the down movement, then left, then up, and
then right. If the initial position of the agent in situation (a) is C4, then the cells
visited by an agent controlled by LRTA∗ are: C3, C2, C1, B1, B2, B3, B4, C4,
C3, B3, C3, C2, B2, C2, C1, B1, C1, B1, B2, B3, B4, A4, A5, A6, B6, and C6.
The solution found for (b) is analogous.

the Ishida depression is not correlated with the performance of LRTA∗. On the other hand,
the size of the cost-sensitive heuristic depression is a predictor of the cost of the solution

5. Depression Avoidance

A major issue at solving real-time search problems is the presence of heuristic depressions.
State-of-the-art algorithms are able to deal with this problem essentially by doing extensive
learning and/or extensive lookahead. By doing more lookahead, chances are that a state
outside of a depression is eventually selected to move to. On the other hand, by learning
the heuristic values of several states at a time, fewer movements might be needed in order
to raise the heuristic values of states in the interior of a depression high enough as to make
it disappear. As such, LSS-LRTA∗, run with a high value for the lookahead parameter
exits the depressions more quickly than LRTA∗ run with search depth equal to 1 for two
reasons: (1) because the heuristic function increases for states in D more quickly and (2)
because with a high value for the lookahead parameter it is sometimes possible to escape
the depression in one step.

Besides the already discussed LSS-LRTA∗ and RTAA∗, there are many algorithms de-
scribed in the literature capable of doing extensive lookahead and learning. The lookahead
ability of LRTS (Bulitko & Lee, 2006), and TBA∗ (Björnsson et al., 2009) is parametrized.
By using algorithms such as LRTA∗(k) (Hernández & Meseguer, 2005), PLRTA∗ (Rayner
et al., 2007) and LRTA∗LS(k) (Hernández & Meseguer, 2007) one can increase the number
of states updated based on a parameter. None of these algorithms however are aware of de-
pressions; their design simply allows to escape them because of their ability to do lookahead,
learning, or a combination of both. Later, in Section 9, we give a more detailed overview
of other related work.

To improve search performance our algorithms avoid depressions, a principle we call
depression avoidance. Depression avoidance is a simple principle that dictates that search
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should be guided away from states identified as being in a heuristic depression. There are
many ways in which one could conceive the implementation of this principle in a real-time
heuristic search algorithm. Below we present two alternative realizations of the principle
within the state-of-the-art RTAA∗ and LSS-LRTA∗ algorithms. As a result, we propose
four new real-time search algorithms, each of which has good theoretical properties.

5.1 Depression Avoidance via Mark-and-Avoid

This subsection presents a first possible realization of depression avoidance that we call
mark-and-avoid. With this strategy, we extend the update phase to mark states that we
can prove belong to a heuristic depression. We then modify the selection of the best state
(i.e., the Extract-Best-State() function) to select states that are not marked; i.e., states
that are not yet proven to be part of a depression.

aLSS-LRTA∗ is version of LSS-LRTA∗ that avoids depressions via mark-and-avoid. It is
obtained by implementing the Update() function using Algorithm 6 and by implementing
the Extract-Best() function with Algorithm 7. There are two differences between its
update procedure and LSS-LRTA∗’s. The first is the initialization of the updated flag in
Lines 2–3. The second is Line 7, which sets s.updated to true if the heuristic value for h
changes as a result of the update process. In the following section, we formally prove that
this means that s was inside a cost-sensitive heuristic depression (Theorem 5).

Algorithm 6: Modified Dijkstra Procedure used by aLSS-LRTA∗.

1 procedure ModifiedDijkstra ()
2 if first run then
3 for each s ∈ S do s.updated← false /* initialization of update flag */

4 for each s ∈ Closed do h(s)←∞
5 while Closed 6= ∅ do
6 Extract an s with minimum h-value from Open
7 if h(s) > h0(s) then s.updated = true
8 if s ∈ Closed then delete s from Closed
9 for each s′ such that s ∈ Succ(s′) do

10 if s′ ∈ Closed and h(s′) > c(s′, s) + h(s) then
11 h(s′)← c(s′, s) + h(s)
12 if s′ 6∈ Open then Insert s′ in Open

To select the next state snext, aLSS-LRTA∗ chooses the state with lowest f -value from
Open that has not been marked as in a depression. If such a state does not exist, the
algorithm selects the state with lowest f -value from Open, just like LSS-LRTA∗ would do.
Depending on the implementation, the worst-case complexity of this new selection mecha-
nism may be different from that of Algorithm 3. Indeed, if the Open list is implemented with
a binary heap (as it is our case), the worst-case complexity of Algorithm 7 is O(N logN)
where N is the size of Open. This is because the heap is ordered by f -value. On the
other hand the worst-case complexity of Algorithm 3 using binary heaps is O(1). In our
experimental results we do not observe, however, a significant degradation in performance
due to this factor.
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Algorithm 7: Selection of the next state used by aLSS-LRTA∗ and aRTAA∗

1 function Extract-Best-State ()
2 if Open contains an s such that s.updated = false then
3 s← argmins′∈Open∧s′.updated=falseg(s′) + h(s′)

4 else
5 s← argmins′∈Openg(s′) + h(s′)

6 return s ;

Example Figure 3 shows an example that illustrates the difference between LSS-LRTA∗

and aLSS-LRTA∗ with the lookahead parameter equal to two. After 4 search episodes, we
observe that aLSS-LRTA∗ avoids the depression, leading the agent to a position that is 2
steps closer to the goal than LSS-LRTA∗.

Algorithm 8: aRTAA∗’s Update Procedure

1 procedure Update ()
2 if first run then
3 for each s ∈ S do s.updated← false /* initialization of update flag */

4 f ← f -value of the best state in Open
5 for each s ∈ Closed do
6 h(s)← f − g(s)
7 if h(s) > h0(s) then s.updated← true

With aLSS-LRTA∗ as a reference, it is straightforward to implement the mark-and-avoid
strategy into RTAA∗. The update phase of the resulting algorithm, aRTAA∗, is just like
RTAA∗’s but is extended to mark states in a depression (Algorithm 8). The selection of
the best state to move to is done in the same way as aLSS-LRTA∗, i.e., with Algorithm
7. As a result aRTAA∗ is a version of RTAA∗ that aims at avoiding depressions using
mark-and-avoid.

5.2 Depression Avoidance via Move-to-Border

Move-to-border is a more finely grained implementation of depression avoidance. To illus-
trate the differences, consider that, after lookahead, there is no state s in the frontier of the
local search space such that s.updated is false. Intuitively, such is a situation in which the
agent is “trapped” in a heuristic depression. In this case, aLSS-LRTA∗ behaves exactly as
LRTA∗ does since all states in the search frontier are marked. Nevertheless, in these cases,
we would like the movement of the agent to still be guided away from the depression.

In situations in which all states in the frontier of the local search space are already
proven as members of a depression, the move-to-border strategy attempts to move to a
state that seems closer to the border of a depression. As a next state, this strategy chooses
the state with best f -value among the states whose heuristic has changed the least. The
intuition behind this behavior is as follows: assume ∆(s) is the difference between the actual
cost to reach a solution from a state s and the initial heuristic value of state s. Then, if
s1 is a state close to the border of a depression D and s2 is a state farther away from the
border and “deep” in the interior of D, then ∆(s2) ≥ ∆(s1), because the heuristic of s2 is
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LSS-LRTA∗ aLSS-LRTA∗
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Figure 3: First 4 iterations of LSS-LRTA∗ (left) and aLSS-LRTA∗ (right) with lookahead
equal to 2 in a 4-connected grid world with unitary action costs, where the initial
state is D2, and the goal is D4. Numbers in cell corners denote the g-value (upper
left), f -value (upper right), h-value (lower left), and new h-value of an expanded
cell after an update (lower right). Only cells that have been in a closed list show
four numbers. Cells generated but not expanded by A∗ (i.e., in Open) show three
numbers, since their h-values have not been updated. Triangles (N) denote states
with updated flag set to true after the search episode. The heuristic used is the
Manhattan distance. We assume ties are broken by choosing first the right then
bottom then the left and then top adjacent cell. The position of the agent is
given by the dot. A grid cell is shaded (gray) if it is a blocked cell that the agent
has not sensed yet. A grid cell is black if it is a blocked cell that the agent has
already sensed. The best state chosen to move the agent to after lookahead search
is pointed by an arrow.
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Figure 4: Iterations 1 and 15–18 of aLSS-LRTA∗ (left) and daLSS-LRTA∗ (right) with
lookahead equal to 1 in a 4-connected grid, analogous to our previous example, in
which the objective is the cell E2. In iterations 1 to 14 both algorithms execute in
the same way. Numbers in cells correspond to initial h-value (lower-left), current
h-value (lower-right), and difference between those two amounts (upper-right).
Triangles (N) denote states whose heuristic value has been updated.
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more imprecise than that of s1. At execution time, h is an estimate of the actual cost to
reach a solution.

daLSS-LRTA∗ and daRTAA∗ differ, respectively, from LSS-LRTA∗ and RTAA∗ in that
the selection of the next state to move to (i.e., function Extract-Best()) is implemented
via Algorithm 9. Note that the worst case complexity of this algorithm is O(N logN),
where N is the size of Open if binary heaps are used.

Algorithm 9: Selection of the next state by daRTAA∗ and daLSS-LRTA∗.

1 function Extract-Best-State ()
2 ∆min ←∞
3 while Open 6= ∅ and ∆min 6= 0 do
4 Remove state sb with smallest f -value from Open
5 if h(sb)− h0(sb) < ∆min then
6 s← sb
7 ∆min ← h(sb)− h0(sb)

8 return s

Figure 4 illustrates the differences between aLSS-LRTA∗ and daLSS-LRTA∗. Both algo-
rithms execute in the same way if, after the lookahead phase, there is a state in Open whose
heuristic value has not been updated. However, when this is not the case (i.e., when the
algorithm is “trapped” in a depression), daLSS-LRTA∗ will move to what seems to be closer
to the border of the depression. In the example of Figure 4, at iteration 15, the algorithm
chooses B4 instead of C3 since B4 is the state for which the h-value has changed the least.
After iteration 18, daLSS-LRTA∗ will move to cells in which less learning has been carried
out and thus will exit the depression more quickly.

All the new algorithms presented in this section are closely related. Table 2 shows a
schematic view of the different components of each algorithm, and the complexity of the
involved algorithms.

6. Theoretical Analysis

In this section we analyze the theoretical properties of the algorithms that we propose.
We prove that all of our algorithms also satisfy desirable properties that hold for their
ancestors. We start off by presenting theoretical results that can be proven using existing
proofs available in the literature; among them, we will show that the consistency of the
heuristic is maintained by all our algorithms during run time. We continue with results that
need different proofs; in particular, termination and convergence to an optimal solution.

As before, we use hn to refer to the value of variable h at the start of iteration n (h0,
thus, denotes the heuristic function given as a parameter to the algorithm). Similarly,
cn(s, s′) is the cost of the arc between s and s′. Finally, kn(s, s′) denotes the cost of an
optimal path between s and s′ that traverses only nodes in Closed before ending in s′ with
respect to cost function cn.

We first establish that if h is initially consistent, then h is non-decreasing over time.
This is an important property since it means that the heuristic becomes more accurate over
time.
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Algorithm

Update Phase Next State Selection

Algorithm Time (heaps) Algorithm Time (heaps)

LSS-LRTA∗ Modified Dijkstra
(Algorithm 4)

O(M logM) Best state in Open
(Algorithm 3)

O (1)

aLSS-LRTA∗ Modified Dijkstra
with Marking (Al-
gorithm 6)

O(M logM) Best unmarked
state in Open
(Algorithm 7)

O(L logL)

daLSS-LRTA∗ Modified Dijkstra
(Algorithm 4)

O(M logM) State in Open that
has changed the
least (Algorithm 9)

O(L logL)

RTAA∗ Update with
best f -value
(Algorithm 5)

O(N) Best state in Open
(Algorithm 3)

O (1)

aRTAA∗ Update with
best f -value
plus marking
(Algorithm 8)

O(N) Best unmarked
state in Open
(Algorithm 7)

O(L logL)

daRTAA∗ Update with
best f -value
(Algorithm 5)

O(N) State in Open that
has changed the
least (Algorithm 9)

O(L logL)

Table 2: Procedures used for the update phase and for the selection of the next state for
each of the algorithms discussed in the paper. Worst-case time complexity for each
procedure is included assuming the Open list is implemented as a binary heap. M
corresponds to |Open|+ |Closed|, N is equal to |Closed|, and L is |Open|.
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Theorem 1 If hn is consistent with respect to cost function cn, then hn+1(s) ≥ hn(s) for
any n along an execution of aLSS-LRTA∗ or daLSS-LRTA∗.

Proof: Assume the contrary, i.e., that there is a state s such that hn(s) > hn+1(s). State s
must be in Closed, since those are the only states whose h-value may be updated. As such,
by Proposition 1, we have that hn+1(s) = kn(s, sb) + hn(sb), for some state sb in Open.
However, since hn(s) > hn+1(s), we conclude that:

hn(s) > kn(s, sb) + hn(sb),

which contradicts the fact that hn is consistent. We thus conclude that the h-value of s
cannot decrease. �

Theorem 2 If hn is consistent with respect to cost function cn, then hn+1(s) ≥ hn(s) for
any n along an execution of aRTAA∗ or daRTAA∗.

Proof: Assume the contrary, i.e., that there is a state s such that hn(s) > hn+1(s). State
s must be in Closed, since those are the only states whose h-value may be updated. The
update rule will set the value of hn+1(s) to f(s′)− g(s) for some s′ ∈ Open, i.e.,

hn+1(s) = f(s′)− g(s) = g(s′) + hn(s′)− g(s).

But since hn(s) > hn+1(s), we have that:

hn(s) > g(s′) + hn(s′)− g(s).

Reordering terms, we obtain that:

hn(s) + g(s) > g(s′) + hn(s′),

which means that the f -value of s is greater than the f -value of s′. It is known however
that A∗, run with a consistent heuristic, will expand nodes with non-decreasing f -values.
We conclude, thus, that s′ must have been expanded before s. Since s′ is in Open, then s
cannot be in Closed, which contradicts our initial assumption. We thus conclude that the
h-value of s cannot decrease. �

Theorem 3 If hn is consistent with respect to cost function cn, then hn+1 is consistent
with respect to cost function cn+1 along an execution aLSS-LRTA∗ or daLSS-LRTA∗.

Proof: Since the update procedure used by aLSS-LRTA∗, daLSS-LRTA∗ and LSS-LRTA∗

update variable h in exactly the same way, the proof by Koenig and Sun (2009) can be
reused here. However, we provide a rather simpler proof in Section B.1. �

Theorem 4 If hn is consistent with respect to cost function cn, then hn+1 is consistent
with respect to cost function cn+1 along an execution aRTAA∗ or daRTAA∗.
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Proof: Since the update procedure used by aRTAA∗, daRTAA∗ and RTAA∗ update variable
h in exactly the same way, we can re-use the proof of Theorem 1 by Koenig and Likhachev
(2006b) to establish this result. We provide however a complete proof in Section B.2 �

The objective of the mark-and-avoid strategy is to stay away from depressions. The
following theorems establish that, indeed, when a state is marked by the aLSS-LRTA∗ or
aRTAA∗ then such a state is in a heuristic depression of the current heuristic.

Theorem 5 Let s be a state such that s.updated switches from false to true between iter-
ations n and n + 1 in an execution of aLSS-LRTA∗ or aRTAA∗ for which h was initially
consistent. Then s is in a cost-sensitive heuristic depression of hn.

Proof: We first prove the result for the case of aLSS-LRTA∗. The proof for aRTAA∗ is
very similar and can be found in Section B.3.

Let D be the maximal connected component of states connected to s such that:

1. All states in D are in Closed after the call to A∗ in iteration n, and

2. Any state sd in D is such that hn+1(sd) > hn(sd).

Let s′ be a state in the boundary of D. We first show that hn(s′) = hn+1(s′). By
definition s′ is either in Closed or Open. If s′ ∈ Closed then, since s′ 6∈ D, it must be the
case that s′ does not satisfy condition 2 of the definition of D, and hence hn+1(s′) ≤ hn(s′).
However, since the heuristic is non-decreasing (Theorems 2 and 1), it must be that hn(s′) =
hn+1(s′). On the other hand, if s′ is in Open, its heuristic value is not changed and thus
also hn(s′) = hn+1(s′). We have established, hence, that hn(s′) = hn+1(s′).

Now we are ready to establish our result: that D is a cost-sensitive heuristic depression
of hn.

Let sd be a state in D. We distinguish two cases.

• Case 1: s′ ∈ Closed. Then, by Proposition 1,

hn(s′) = kn(s′, sb) + hn(sb), (7)

for some sb ∈ Open. On the other hand, since the heuristic value has increased
for sd, hn(sd) < hn+1(sd) = mins′b∈Open kn(sd, s

′
b) + h(s′b); in particular, hn(sd) <

kn(sd, sb)+hn(sb). Since kn(sd, sb) is the optimal cost to go from sd to sb, kn(sd, sb) ≤
kn(sd, s

′) + kn(s′, sb). Substituting kn(sd, sb) in the previous inequality we have:

hn(sd) < kn(sd, s
′) + kn(s′, sb) + hn(sb). (8)

We now substitute the right-hand side of (8) using (7), and we obtain

hn(sd) < kn(sd, s
′) + hn(s′).

• Case 2: s′ ∈ Open. Because of Proposition 1 we have hn+1(sd) ≤ kn(sd, s
′) + hn(s′).

Moreover, by definition of D, we have hn+1(sd) > hn(sd). Combining these two
inequalities, we obtain:

hn(sd) < kn(sd, s
′) + hn(s′).
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In both cases, we proved hn(sd) < kn(sd, s
′) + hn(s′), for any sd in D and any s′ in the

boundary of D. We conclude D is a cost-sensitive heuristic depression of hn, which finishes
the proof. �

Now we turn our attention to termination. We will prove that if a solution exists, then
it will be found by any of our algorithms. To prove such a result, we need two intermediate
lemmas. The first establishes that when the algorithm moves to the best state in Open,
then the h-value of such a state has not changed more than the h-value of the current state.
Formally,

Lemma 1 Let s′ be the state with smallest f -value in Open after the lookahead phase of any
of aLSS-LRTA∗, daLSS-LRTA∗, aRTAA∗, or daRTAA∗, when initialized with a consistent
heuristic h. Then,

hn+1(scurrent)− h0(scurrent) ≥ hn(s′)− h0(s′).

Proof: Indeed, by Propositions 1 or 2:

hn+1(scurrent) = kn(scurrent, s
′) + hn(s′) (9)

Let π be an optimal path found by A∗ connecting scurrent and s′. Let Kπ
0 denote the cost

of this path with respect to cost function c0. Given that the heuristic h0 is consistent with
respect to the graph with cost function c0, we have that h0(scurrent) ≤ Kπ

0 + h0(s′) which
can be re-written as:

−h0(scurrent) ≥ −Kπ
0 − h0(s′). (10)

Adding (10) and (9), we obtain:

hn+1(scurrent)− h0(s) ≥ kn(scurrent, s
′)−Kπ

0 + hn(s′)− h0(s′). (11)

Now, because cn can only increase, the cost of π at iteration n, kn(scurrent, s
′), is strictly

greater than the cost of π at iteration 0, Kπ
0 . In other words, the amount kn(scurrent, s

′)−Kπ
0

is positive and can be removed from the right-hand side of (11) to produce:

hn+1(scurrent)− h0(s) ≥ hn(s′)− h0(s′),

which is the desired result. �

The second intermediate result to prove termination is the following lemma.

Lemma 2 Let n be an iteration of any of aLSS-LRTA∗, daLSS-LRTA∗, aRTAA∗, or
daRTAA∗, when initialized with a consistent heuristic h. If snext is not set equal to the
state s′ with least f -value in Open, then:

hn(s′)− h0(s′) > hn(snext)− h0(snext).

Proof: Indeed, if aRTAA∗ or aLSS-LRTA∗ are run, this means that snext is such that snext
is not marked as updated, which means that hn(snext) = h0(snext), or equivalently, that
hn(snext)− h0(snext) = 0. Moreover, the best state in Open, s′, was not chosen and hence
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it must be that s′.updated = true, which means that h(s′) − h0(s′) > 0. We obtain then
that hn(s′)− h0(s′) > hn(snext)− h0(snext).

The case of daRTAA∗ or daLSS-LRTA∗ is direct by the condition in Line 5 of Algo-
rithm 9. Hence, it is also true that hn(s′)− h0(s′) > hn(snext)− h0(snext). �

Now we are ready to prove the main termination result.

Theorem 6 Let P be an undirected finite real-time search problem such that a solution
exists. Let h be a consistent heuristic for P . Then, any of aLSS-LRTA∗, daLSS-LRTA∗,
aRTAA∗, or daRTAA∗, used with h, will find a solution for P .

Proof: Let us assume the contrary. There are two cases under which the algorithms do
not return a solution: (a) they return “no solution” in Line 5 (Algorithm 1), and (b) the
agent traverses an infinite path that never hits a solution node.

For (a) assume any of the algorithms is in state s before the call to A∗. When it reaches
Line 5 (Algorithm 1), the open list is empty, which means the agent has exhausted the
search space of states reachable from s without finding a solution; this is a contradiction
with the fact that a solution node is reachable from s and the fact that the search problem
is undirected.

For (b) assume that the agent follows an infinite path π. Observe that in such an
infinite execution, after some iteration—say, R—the value of variable c does not increase
anymore. This is because all states around states in π have been observed in the past. As
a consequence, in any iteration after R the agent traverses the complete path identified by
the A∗ lookahead procedure (Line 8 in Algorithm 1).

A second important observation is that, after iteration R, the value of h for the states in
π is finite and cannot increase anymore. Indeed, by Theorems 4 and 3, h remains consistent
and hence admissible, which means that h(s) is bounded by the actual cost to reach a
solution from s, for any s in π. Moreover, since c does not change anymore, the call to the
update function will not change the value of h(s), for every s in π.

Now we are ready to finish the proof. Consider the algorithm executes past iteration
R. Since the path is infinite and the state space is finite, in some iteration after R the
algorithm decides to go back to a previously visited state. As such, we are going to assume
the agent visits state t0 and selects to move trough states t1t2 · · · tr−1trt0 · · · . Since the
heuristic does not change anymore, we simply denote it by h, regardless of the iteration
number. We distinguish two cases.

Case 1 The agent always decides to move to the best state in Open, s′, and hence—
depending on the algorithm that is used—by Proposition 1 or 2, h(s) = k(s, s′)+h(s′),
which implies h(s) > h(s′), since action costs are positive. This implies that:

h(t0) > h(t1) > h(t2) > . . . > h(tn) > h(t0),

which is a contradiction; it cannot be the case that h(t0) > h(t0).

Case 2 At least once, the agent does not move to the best state in Open. Without loss of
generality, we assume this happens only once, for a state ti for some i < r. Let t∗ be
a state with the smallest f -value in Open after the lookahead is carried out from ti.
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By Lemma 1, we can write the following inequalities.

h(t0)− h0(t0) ≥ h(t1)− h0(t1),

...

h(ti−1)− h0(ti−1) ≥ h(ti)− h0(ti),

h(ti)− h0(ti) ≥ h(t∗)− h0(t∗),

h(ti+1)− h0(ti+1) ≥ h(ti+2)− h0(ti+2),

...

h(tr)− h0(tr) ≥ h(t0)− h0(t0).

Let I be a set containing these inequalities. Now since when in state ti the algorithm
decides to move to ti+1 instead of t∗, we use Lemma 2 to write:

hn(t∗)− h0(t∗) > hn(ti+1)− h0(ti+1). (12)

The inequalities in I together with (12) entail h(t0)− h0(t0) > h(t0)− h0(t0), which
is a contradiction.

In both cases we derive contradictions and hence we conclude the algorithm cannot enter
an infinite loop and thus finds a solution. �

We now turn our attention to convergence. The literature often analyzes the properties
of real-time heuristic search when they are run on a sequence of trials (e.g., Shimbo &
Ishida, 2003). Each trial is characterized by running the algorithm from the start state
until the problem is solved. The heuristic function h resulting from trial n is used to feed
the algorithm’s h variable in trial n+ 1.

Before stating the convergence theorem we prove a result related to how h increases
between successive iterations or trials. Indeed, each iteration of our search algorithms
potentially increases h, making it more informed. The following result implies that this
improvement cannot be infinitesimal.

Lemma 3 Let P be a finite undirected search problem, and let Sol be a set of states in P
from which a solution can be reached. Let n be an iteration of any of aLSS-LRTA∗, daLSS-
LRTA∗, aRTAA∗, or daRTAA∗. Then hn(s) can only take on a finite number of values, for
every s in P .

Proof: Given Proposition 1, along an execution of any of the algorithms of the LSS-LRTA∗

family, it is simple to prove by induction on n that:

hn(s) = K + h0(s′′′),

for any n, where K is sum of the costs of 0 or more arcs in P under cost function cn.
On the other hand, given the update rule of any of the algorithms of the RTAA∗ family

(e.g., Line 6 in Algorithm 8),

hn(s) = K −K ′ + h0(s′′′),
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for any n, where K and K ′ correspond to the sum of the costs of some arcs in P under cost
function cn.

Since in finite problems there is a finite number of arcs, the quantities referred to by K
and K ′ can only take on a finite number of values. This implies that hn(s), for any s in P ,
can only take on a finite number of values, which concludes the proof. �

Below we show that if h converges after a sequence of trials, the solution found with h
is optimal.

Theorem 7 Let P be an undirected finite real-time search problem such that a solution
exists. Let h be a consistent heuristic for P . When initialized with h, a sequence of trials
of any of aLSS-LRTA∗, daLSS-LRTA∗, aRTAA∗, or daRTAA∗, converges to an optimal
solution.

Proof: First, observe that since the heuristic is admissible, it remains admissible after a
number of trials are run. This is a consequence of Theorems 3 and 4. Hence, for every
state s from which a goal state can be reached, h(s) is bounded from above by the (finite
amount) h∗(s).

On the other hand, by Lemma 3, the h-values of states from which a solution is reachable
can only increase a finite number of times. After a sequence of trials the value of h thus
converges; i.e., at least for one complete trial, h(s) is not changed, for every s in P . We
can also assume that in such a trial, the value of c does not change either, since once h
converges, the same path of states is always followed and thus no new cost increases are
made.

Let us focus on a run of any of our algorithms in which both h and c do not change.
Observe that this means that hn(s) = h0(s) for any n (recall h0 is the heuristic given as
input to the algorithm). Independent of the algorithm used, this implies the algorithm
always moves to the best state in Open. Let s1 . . . sm be the sequence of states that were
assigned to snext during the execution (sm is thus a goal state). Observe that since c does
not change along the execution, states s1 . . . sm are actually visited by the agent. Depending
on the algorithm that is used, by Proposition 1 or 2, we know:

h(si) = k(si, si+1) + h(si+1), for all i ∈ {0, . . . ,m− 1}, (13)

where k(si, si+1) is the cost of an optimal path between si and si+1. Since the heuristic is
consistent h(sm) = 0, and thus with the family of equations in (13) we conclude h(s0) is
equal to

∑m−1
i=0 k(si, si+1), which corresponds to the cost of the path traversed by the agent.

But we know that h is also admissible, so:

h(s0) =
m−1∑
i=0

k(si, si+1) ≤ h∗(s0).

Since h∗(s0) is the cost of an optimal solution, we conclude the path found has an optimal
cost. �
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Figure 5: Upper row: the four maze maps used to test our approach; each of 512×512 cells.
Lower row: 4 out of the 12 game maps used. The first two come from Dragon
Age: Origins; the remaining 2 are from StarCraft.

7. Empirical Evaluation

We evaluated our algorithms at solving real-time navigation problems in unknown environ-
ments. LSS-LRTA∗ and RTAA∗ are used as a baseline for our comparisons. For fairness,
we used comparable implementations that use the same underlying codebase. For example,
all search algorithms use the same implementation for binary heaps as priority queues and
break ties among cells with the same f -values in favor of cells with larger g-values, which
is known to be a good tie-breaking strategy.

We carried out our experiments over two sets of benchmarks: deployed game maps and
mazes. We used twelve maps from deployed video games to carry out the experiments. The
first six are taken from the game Dragon Age, and the remaining six are taken from the game
StarCraft. The maps were retrieved from Nathan Sturtevant’s pathfinding repository.1 In
addition, we used four maze maps taken from the HOG2 repository.2 They are shown in
Figure 5. All results were obtained using a Linux machine with an Intel Xeon CPU running
at 2GHz and 12 GB RAM.

All maps are regarded as undirected, eight-neighbor grids. Horizontal and vertical move-
ments have cost 1, whereas diagonal movements have cost

√
2. We used the octile distance

(Sturtevant & Buro, 2005) as heuristic.

1. http://www.movingai.com/ and http://hog2.googlecode.com/svn/trunk/maps/. For Dragon
Age we used the maps brc202d, orz702d, orz900d, ost000a, ost000t and ost100d of size 481×530, 939×718,
656 × 1491 969 × 487, 971 × 487, and 1025 × 1024 cells respectively. For StarCraft, we used the maps
ArcticStation, Enigma, Inferno JungleSiege, Ramparts and WheelofWar of size 768 × 768, 768 × 768,
768× 768, 768× 768, 512× 512 and 768× 768 cells respectively.

2. http://hog2.googlecode.com/svn/trunk/maps/
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Figure 6: Plots showing the average solution cost found by the LSS-LRTA∗ variants versus
average planning time per episode, measured in milliseconds. (a) shows stats on
the game-map benchmarks, and (b) on the mazes benchmarks. Times are shown
in milliseconds. Costs are shown on a log-scale.

For our evaluation we ran all algorithms for 10 different lookahead values. For each map,
we generate 500 test cases. For each test case we choose the start and goal cells randomly.

In the presentation of our results we sometimes use the concept of improvement factor.
When we say that the improvement factor of an algorithm A with respect to B in terms of
average solution cost is n, it means that on average A produces solutions that are n times
cheaper than the ones found by B.

Next we describe the different views of the experimental data that is shown in plots and
tables. We then continue to draw our experimental conclusions.

7.1 An Analysis of the LSS-LRTA∗ Variants

This section analyzes the performance of LSS-LRTA∗, aLSS-LRTA∗ and daLSS-LRTA∗.
Figure 6 shows two plots for the average solution costs versus the average planning time
per episode for the three algorithms in games and mazes benchmarks. Planning time per
planning episode is an accurate measure of the effort carried out by each of the algorithms.
Thus these plots illustrate how solution quality varies depending on the effort that each
algorithm carries out.

Regardless of the search effort, we observe aLSS-LRTA∗ slightly but consistently out-
performs LSS-LRTA∗ in solution cost. In games benchmarks we observe that for equal
search effort, aLSS-LRTA∗ produces average improvement factors between 1.08 and 1.20 in
terms of solution cost. In mazes, on the other hand, improvement factors are between 1.04
and 1.25. In games, the largest improvements are observed when the lookahead parameter
(and hence the search time per episode) is rather small. Thus aLSS-LRTA∗’s advantage
over LSS-LRTA∗ is more clearly observed when tighter time constraints are imposed on
planning episodes.
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Often times results in real-time search literature are presented in the form of tables,
with search performance statistics reported per each lookahead value. We provide such
tables the appendix of the paper (Tables 5 and 6). An important observation that can be
drawn from the tables is that time per planning episode in LSS-LRTA∗ and aLSS-LRTA∗

are very similar for a fixed lookahead value; indeed, the time per planning episode of aLSS-
LRTA∗ is only slightly larger than that of LSS-LRTA∗. This is interesting since it shows
that the worst-case asymptotic complexity does not seem to be achieved for aLSS-LRTA∗

(cf. Table 2).

The experimental results show that daLSS-LRTA∗’s more refined mechanism for escap-
ing depressions is better than that of aLSS-LRTA∗. For any given value of the search effort,
daLSS-LRTA∗ consistently outperforms aLSS-LRTA∗ by a significant margin in solution
cost in games and mazes. daLSS-LRTA∗ also outperforms aLSS-LRTA∗ in total search
time, i.e., the overall time spent searching until a solution is found. Details can be found in
Tables 5 and 6. When the search effort for each algorithm is small, daLSS-LRTA∗’s average
solution quality is substantially better than aLSS-LRTA∗’s; the improvements are actually
close to an order of magnitude.

daLSS-LRTA∗ consistently outperforms LSS-LRTA∗ by a significant margin in total
search time and solution quality, independent of the search effort employed. In terms of
solution cost daLSS-LRTA∗ produces average improvement factors with respect to LSS-
LRTA∗ between 1.66 and an order of magnitude in the game benchmarks, and produces
average improvement factors between 1.49 and an order of magnitude in the mazes bench-
marks. For a fixed lookahead (see Tables 5 and 6 for the specific numbers), the time spent
per planning episode by daLSS-LRTA∗ is larger than time spent per planning episode by
LSS-LRTA∗ because daLSS-LRTA∗ makes more heap percolations than LSS-LRTA∗. How-
ever, for small values of the lookahead parameter, daLSS-LRTA∗ obtains better solutions
using less time per planning episode than LSS-LRTA∗ used with a much larger lookahead.
For example, in game maps, with a lookahead parameter equal to 32, daLSS-LRTA∗ obtains
better solutions than LSS-LRTA∗ with the lookahead parameter equal to 128, requiring, on
average, 2.6 times less time per planning episode. In mazes, with a lookahead parameter
equal to 16, daLSS-LRTA∗ obtains better solutions than LSS-LRTA∗ with the lookahead
parameter equal to 64, requiring, on average, 2.4 times less time per planning episode.

For low values of the lookahead parameter (i.e. very limited search effort) daLSS-LRTA∗

obtains better solutions in less time per planning episode than aLSS-LRTA∗ used with a
much larger lookahead. For example, in game maps, with a lookahead parameter equal to
1, daLSS-LRTA∗ obtains better solutions than aLSS-LRTA∗ with the lookahead parameter
equal to 16, requiring, on average, 14.1 times less time per planning episode. On the other
hand, in mazes with a lookahead parameter equal to 1, daLSS-LRTA∗ obtains better solu-
tions than aLSS-LRTA∗ with the lookahead parameter equal to 16, requiring, on average,
11.6 times less time per planning episode.

For a fixed lookahead (see Tables 5 and 6), the time taken by daLSS-LRTA∗ per planning
episode is larger than the time taken by aLSS-LRTA∗ per planning episode. This increase
can be explained because, on average, daLSS-LRTA∗’s open list grows larger than that of
aLSS-LRTA∗. This is due to the fact that, in the benchmarks we tried, daLSS-LRTA∗

tends to expand cells that have less obstacles around than aLSS-LRTA∗ does. As a result,
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Figure 7: Plots showing the average solution cost found by the RTAA∗ variants versus av-
erage planning time per episode. (a) shows stats on the game-maps benchmarks,
and (b) on the mazes benchmarks. Costs are shown on a log-scale.

daLSS-LRTA∗ expands more cells in the learning phase or makes more heap percolations
in the lookahead phase than aLSS-LRTA∗.

Results show that, among the LSS-LRTA∗ variants, daLSS-LRTA∗ is the algorithm
with the best performance. In fact daLSS-LRTA∗ is clearly superior to LSS-LRTA∗. Of
the 60,000 runs (12 maps × 500 test cases × 10 lookahead-values) in game benchmarks,
daLSS-LRTA∗ obtains a better solution quality than LSS-LRTA∗ in 69.9% of the cases, they
tie in 20.9% of the cases, and LSS-LRTA∗ obtains a better-quality solution in only 9.2% of
the cases.

Of the 20,000 (4 maps × 500 test cases × 10 lookahead-values) runs in mazes bench-
marks, daLSS-LRTA∗ obtains a better solution quality than LSS-LRTA∗ in 75.1% of the
cases, they tie in 3.3% of the cases, and LSS-LRTA∗ obtains a better-quality solution in
21.7% of the cases.

7.2 An Analysis of the RTAA∗ Variants

In this section we analyze the relative performance of RTAA∗, aRTAA∗, and daRTAA∗.
Figure 7 shows two plots of the average solution costs versus the average effort carried out
per search episode.

For the same search effort, we do not observe significant improvements of aRTAA∗ over
RTAA∗. Indeed, only for small values of the average time per search episode does aRTAA∗

improve the solution quality upon that of RTAA∗. In general, however, both algorithms
seem to have very similar performance.

On the other hand, the results show that daRTAA∗’s mechanism for escaping depressions
is substantially better than that of aRTAA∗. For small values for the lookahead param-
eter (and hence reduced search effort), daRTAA∗ obtains better solutions than the other
variants used with a much larger lookahead. Indeed, for limited search effort, daRTAA∗ is
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approximately an order of magnitude better than the two other algorithms. For example,
in game maps, with a lookahead parameter equal to 1, daRTAA∗ obtains better solutions
than aRTAA∗ with the lookahead parameter equal to 16, requiring, on average, 10.4 times
less time per planning episode.

daRTAA∗ substantially improves RTAA∗, which is among the best real-time heuristic
search algorithms known to date. In game maps, daRTAA∗ needs only a lookahead pa-
rameter of 16 to obtain solutions better than RTAA∗ with the lookahead parameter of 64.
With those values, daRTAA∗ requires about 2.3 times less time per planning episode than
RTAA∗.

Our results show that daRTAA∗ is the best-performing algorithm of the RTAA∗ family.
Of the 60,000 runs in game-map benchmarks, daRTAA∗ obtains a better solution quality
than RTAA∗ in 71.2% of the cases, they tie in 20.5% of the cases, and RTAA∗ obtains a
better-quality solution in only 8.3% of the cases. Of the 20,000 runs in mazes, daRTAA∗

obtains a better solution quality than RTAA∗ in 78.0% of the cases, they tie in 2.7% of the
cases, and RTAA∗ obtains a better-quality solution in 19.4% of the cases.

7.3 daLSS-LRTA∗ Versus daRTAA∗

daRTAA∗, the best performing algorithm among the RTAA∗ variants, is also superior to
daLSS-LRTA∗, the best-performing algorithm of the LSS-LRTA∗ variants. Figure 8 shows
average solution costs versus search effort, in game maps and mazes.

As can be seen in the figure, when the lookahead parameter is small (i.e., search effort
is little), the performance of daRTAA∗ and daLSS-LRTA∗ is fairly similar. However, as
more search is allowed per planning episode, daRTAA∗ outperforms daLSS-LRTA∗. For
example, in games benchmarks, daRTAA∗, when allowed to spend 0.08 milliseconds per
episode, will obtain solutions comparable to those of daLSS-LRTA∗ but when allowed do
spend 0.18 millisecconds per episode.

Furthermore, the slopes of the curves are significantly more favorable to daRTAA∗ over
daLSS-LRTA∗. This can be verified in both types of benchmarks and is important since it
speaks to an inherent superiority of the RTAA∗ framework when time per planning episode
is the most relevant factor.

7.4 An Analysis of Disaggregated Data

The performance of real-time algorithms usually varies depending on the map used. To il-
lustrate how the algorithms perform in different maps, Figure 9 shows the improvement on
solution cost of daLSS-LRTA∗ over LSS-LRTA∗ on 4 game and 4 maze benchmarks. They
confirm that improvements can be observed in all domains thus showing that average values
are representative of daLSS-LRTA∗’s behavior in individual benchmarks. Although aLSS-
LRTA∗ and daLSS-LRTA∗ outperform LSS-LRTA∗ on average, there are specific cases in
which the situation does not hold. Most notably, we observe that in one of the maze bench-
marks daLSS-LRTA∗ does not improve significantly with respect to LSS-LRTA∗ for large
values of the lookahead parameter. We discuss this further in the next section. Figure 10
shows also the improvement factors of daRTAA∗ over RTAA∗. In this plot, the different
algorithms show a similar relative performance in relation to the LSS-LRTA∗ variants.
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Figure 8: Plots showing the average solution cost found by the daRTAA∗ and daLSS-LRTA∗

versus average planning time per episode. (a) shows stats on the game-maps
benchmarks, and (b) on the mazes benchmarks. Costs are shown on a log-scale.
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Figure 9: Cost improvement factor of daLSS-LRTA∗ over LSS-LRTA∗, in game maps (left)
and maze benchmarks (right). An improvement factor equal to n indicates that
the solution found by our algorithm is n times cheaper than the one found by the
original algorithm.
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Figure 10: Cost improvement factor of daRTAA∗ over RTAA∗, in game maps (left) and
maze (right) benchmarks. An improvement factor equal to n indicates that the
solution found by our algorithm is n times cheaper than the one found by the
original algorithm.

7.5 A Worst-Case Experimental Analysis

Although all our algorithms perform a resource-bounded computation per planning episode,
it is hard to tune the lookahead parameter in such a way that both LRTA∗ and daLSS-
LRTA∗ will incur the same worst-case planning effort. This is because the time spent in
extracting the best state from the open list depends on the structure of the search space
expanded in each lookahead phase.

In this section we set out to carry an experimental worst-case analysis based on a
theoretical worst-case bound. This bound is obtained from the worst-case effort per planning
step as follows. If RTAA∗ performs k expansions per planning episode, then the open list
could contain up to 8k states. This is because each state has at most 8 neighbors. In the
worst case, the effort spent in adding all such states to the open list would be 8k log 8k. On
the other hand, daRTAA∗ would make the same effort to insert those states into the open
list, but would incur an additional cost of 8k log 8k, in the worst-case, to remove all states
from the open list. Therefore, in a worst-case scenario, given a lookahead parameter equal
to k, daRTAA∗ will make double the effort than RTAA∗ makes for the same parameter.

Based on that worst-case estimation, Figure 11 presents the performance of the RTAA∗

variants, displacing the RTAA∗ curve by a lookahead factor of 2. We conclude that in this
worst-case scenario daRTAA∗ still clearly outperforms RTAA∗. Gains vary from one order
of magnitude, for low values of the lookahead parameter, to very similar performance when
the lookahead parameter is high.

We remark, however, that we never observed this worst-case in practice. For example,
in our game benchmarks, RTAA∗, when used with a lookahead parameter 2k spends, on
average 50% more time per planning episode than daRTAA∗ used with lookahead parameter
k.
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Figure 11: Plots showing the average time per planning episode and average solution cost
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ical worst-case bound of 2. As such, for RTAA∗, the average cost reported for
for a lookahead of k actually corresponds to the cost obtained for a lookahead
2k. Costs are shown on a log-scale.

8. Discussion

There are a number of aspects of our work that deserve a discussion. We focus on two of
them. First, we discuss the setting in which we have evaluated our work, which focused on
showing performance improvements in the first trial for a search in an a priori unknown
domain, without considering other settings. Second, we discuss in which scenarios our
algorithms may not exhibit average performance improvements that were shown in the
previous section.

8.1 The Experimental Setting: Unknown Environments, First Trial

Our algorithm is tailored to solving quickly a search problem in which the environment is
initially unknown. This setting has several applications, including goal-directed navigation
in unknown terrain (Koenig et al., 2003; Bulitko & Lee, 2006). It has also been widely
used to evaluate real-time heuristic search algorithms (e.g., Koenig, 1998; Hernández &
Meseguer, 2005; Bulitko & Lee, 2006; Hernández & Meseguer, 2007; Koenig & Sun, 2009).

On the other hand, we did not present an evaluation of our algorithm in environments
that are known a priori. In a previous paper (Hernández & Baier, 2011d), however, we
showed that aLSS-LRTA∗ obtains similar improvements over LSS-LRTA∗ when the envi-
ronment is known. However, we omit results on known environments since RTAA∗ and
LSS-LRTA∗ are not representative of the state of the art in those scenarios. Indeed, algo-
rithms like TBA* (Björnsson et al., 2009) outperform LSS-LRTA∗ significantly. It is not
immediately obvious how to incorporate our techniques to algorithms like TBA*.

We did not present experimental results regarding convergence after several successive
search trials. Recall that in this setting, the agent is “teleported” to the initial location
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and a new search trial is carried out. Most real-time search algorithms—ours included—are
guaranteed to eventually find an optimal solution. Our algorithms do not particularly excel
in this setting. This is because the heuristic value of fewer states is updated, and hence
the heuristic values for states in the search space converges slowly to the correct value. As
such, generally more trials are needed to converge.

Convergence performance is important for problems that are solved offline and in which
real-time approaches may be more adequate for computing an approximation of the optimal
solution. This is the case of the problem of computing an optimal policy in MDPs using
Real-Time Dynamic Programming (Barto, Bradtke, & Singh, 1995). We are not aware,
however, of any application in deterministic search in which searching offline using real-
time search would yield better performance than using other suboptimal search algorithms
(e.g., Richter, Thayer, & Ruml, 2010; Thayer, Dionne, & Ruml, 2011). Indeed, Wilt,
Thayer, and Ruml (2010) concluded that real-time algorithms, though applicable, should
not be used for solving shortest path problems unless there is a need for real-time action.

8.2 Bad Performance Scenarios

Although our algorithms clearly outperform its originators LSS-LRTA∗ and RTAA∗ on
average, it is possible to contrive families of increasingly difficult path-finding tasks in
which our algorithms perform worse than their respective predecessors.

Consider for example the 4-connected grid-world scenario of size 7×n shown in Figure 12.
The goal of the agent is to reach the state labeled with G, starting from S. Assume
furthermore that to solve this problem we run aRTAA∗ or aLSS-LRTA∗, with lookahead
parameter equal to 1, and that ties are broken such that the up movement has priority over
the down movement. In the initial state both algorithms will determine that the initial
state (cell E3) is in a heuristic depression and thus will update the heuristic of cell E3. Cell
E3 is now marked as in a depression. Since both cells D3 and F3 have the same heuristic
value and ties are broken in favor of upper cells, the agent is then moved to cell D3. In
later iterations, the algorithm will not prefer to move to cells that have been updated and
therefore the agent will not go back to state E3 unless it is currently in D3 and (at least) C3
is also marked. However, the agent will not go back to D3 quickly. Indeed, it will visit all
states to the right of Wall 1 and Wall 2 before coming back to E3. This happens because,
as the algorithm executes, it will update and mark all visited states, and will never prefer
to go back to a previously marked position unless all current neighbors are also marked.

In the same situation, RTAA∗ and LSS-LRTA∗, run with lookahead parameter 1 will
behave differently depending on the tie-breaking rules. Indeed, if the priority is given by
up (highest), down, right, and left (lowest), then both RTAA∗ and LSS-LRTA∗ find the
goal fairly quickly as they do not have to visit states to the right of the walls. Indeed,
since the tie-breaking rules prefer a move up, the agent reaches cell A3 after 4 moves,
and then proceeds straight to the goal. In such situations, the performance of aRTAA∗ or
aLSS-LRTA∗ can be made arbitrarily worse than that of RTAA∗ or LSS-LRTA∗, as n is
increased.

A quite different situation is produced if the tie-breaking follows the priorities given by
up (highest), right, down, and left (lowest). In this case all four algorithms have to visit
the states to the right of both walls. Indeed, once A3 is reached, there is a tie between
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Figure 12: A situation in which the relative performance between LSS-LRTA∗ and aLSS-
LRTA∗ changes depending on the value of n. S is the start state, and G is the
goal. Ties are broken in favor of upper cells.

the h-value of B3 and A4. The agent prefers moving to A4, and from there on it continues
moving to the right of the grid in a zig-zag fashion.

After investigating executions of our “da-” algorithms in the maze512-4-0 benchmark
(performance is shown in Figures 9 and 10), we believe that the lack of improvement in this
particular benchmark can be explained by the situation just described. This benchmark
is a 512 × 512 maze in which corridors have a 4-cell width. For low lookahead values, the
number of updates is not high enough to “block” the corridors. As such, for low values
of the lookahead parameter the increase in performance is still reasonably good. As the
lookahead increases, the algorithm updates more states in one single iteration, and, as a
result, chances are that good paths may become blocked.

Interestingly, however, we do not observe this phenomenon on mazes with wider corridors
or on game maps. A necessary condition to “block” a corridor that leads to a solution is
that the agent has sufficient knowledge about the borders of the corridor. In mazes with
narrow corridors this may happen with relative ease, as the agent only needs a few moves
to travel between opposite walls. In grids in which corridors are wide however, knowledge
about the existence of obstacles (walls) is hard to obtain by the agent, and, thus, the chances
of updating and blocking, a corridor that leads to a solution are lower.

We believe that it is possible to prove that our algorithms are always better or always
worse for specific search space topologies. We think, nevertheless, that such an analysis
may be hard to carry out, and that its practical significance may be limited. Therefore
we decided to exclude it from the scope of this work. On the other hand, we think that
the impressive performance exhibited by our algorithms in many benchmarks is sufficiently
strong in favor of using our algorithms in domains that do not contain narrow corridors.

9. Related Work

Besides LSS-LRTA∗ and RTAA∗, there are a number of real-time search algorithms that
can be used in a priori unknown environments. LRTA∗(k) and LRTA∗LS(k) (Hernández &
Meseguer, 2005, 2007) are two algorithms competitive with LSS-LRTA∗ that are capable of
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learning the heuristic of several states at the same time; the states for which the heuristic
is learned is independent from those expanded in the lookahead phase. They may escape
heuristic depressions more quickly than LRTA∗, but its action selection mechanism is not
aware of heuristic depressions. eLSS-LRTA∗ is a preliminary version of aLSS-LRTA∗ we
presented in an extended abstract (Hernández & Baier, 2011a). It is outperformed by
aLSS-LRTA∗ on average, as it usually becomes too focused on avoiding depressions.

Our algorithms have been designed in order to find good-quality solutions on the first
search trial. Other algorithms described in the literature have been designed with different
objectives in mind. For example, RIBS (Sturtevant, Bulitko, & Björnsson, 2010) is a real-
time algorithm specifically designed to converge quickly to an optimal solution. It will move
the agent as if an iterative-deepening A∗ search was carried out. As such the first solution it
finds is optimal. As a consequence, RIBS potentially requires more time to find one solution
than LSS-LRTA∗ does, but if an optimal solution is required RIBS will likely outperform
LSS-LRTA∗ run to convergence. f -LRTA* (Sturtevant & Bulitko, 2011) is another recent
real-time search algorithm which builds upon ideas introduced by RIBS, in which the g-
cost of states is learned through successive trials. It has good convergence performance, but
needs to do more computation per planning step than LSS-LRTA∗.

Incremental A∗ methods, like D* (Stentz, 1995), D*Lite (Koenig & Likhachev, 2002),
Adaptive A* (Koenig & Likhachev, 2006a), and Tree Adaptive A* (Hernández, Sun, Koenig,
& Meseguer, 2011), are search methods that also allow solving goal-directed navigation
problems in unknown environments. If the first-move delay is required to be short, incre-
mental A* methods cannot be used since they require to compute a complete solution before
starting to move. Real-time search remains the only applicable strategy for this task when
limited time is allowed per planning episode.

Less related to our work are algorithms that abide to real-time search constraints but
that assume the environment is known in advance and that sufficient time is given prior
to solving the problem, allowing preprocessing. Examples are D LRTA∗ (Bulitko, Luštrek,
Schaeffer, Björnsson, & Sigmundarson, 2008) and kNN-LRTA∗ (Bulitko et al., 2010), tree
subgoaling (Hernández & Baier, 2011b), or real-time search via compressed path databases
(Botea, 2011).

Finally, the concept of cost-sensitive depression in real-time search could be linked to
other concepts used to describe the poor performance of planning algorithms. For example,
Hoffmann (2005, 2011) analyzed the existence of plateaus in h+, an effective admissible
domain-independent planning heuristic, and how this negatively affects the performance of
otherwise fast planning algorithms. Cushing, Benton, and Kambhampati (2011) introduced
the concept of ε-traps that is related to poor performance of best-first search in problems
in which action costs have a high variance. ε-traps are areas of the search space connected
by actions of least cost. As such, the h-values of states in ε-traps is not considered in
their analysis. Although we think that the existence of cost-sensitive heuristic depressions
does affect the performance of A∗, the exact relation between the performance of A∗ and
heuristic depressions does not seem to be obvious.
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10. Summary and Future Work

We have presented a simple principle for guiding real-time search algorithms away from
heuristic depressions. We proposed two alternative approaches for implementing the prin-
ciple: mark-and-avoid and move-to-border. In the first approach, states that are proven
to be in a depression are marked in the update phase, and then avoided, if possible, when
deciding the next move. In the second approach, the algorithm selects as the next move
the state that seems closer to the border of a depression.

Both approaches can be implemented efficiently. Mark-and-avoid requires very little
overhead, which results in an almost negligible increment in time per planning episode.
Move-to-border, on the other hand, requires more overhead per planning episode, but,
given a time deadline per planning episode, it is able to obtain the best-quality solutions.

Experimentally, we have shown that in goal-directed navigation tasks in unknown ter-
rain, our algorithms outperform their predecessors RTAA∗ and LSS-LRTA∗. Indeed, the
algorithms based on move-to-border—daLSS-LRTA∗ and daRTAA∗—are significantly more
efficient than LSS-LRTA∗ and RTAA∗, especially when the lookahead parameter is a small
value.

The four algorithms proposed have good properties: in undirected, finite search spaces,
they are guaranteed to find a solution if such a solution exists. Moreover, they converge to
an optimal solution after running a number of search trials.

Depression avoidance is a principle applicable to other real-time heuristic search algo-
rithms. Indeed, we think it could be easily incorporated into LRTA∗(k), LRTA∗LS(k), and
P-LRTA* (Rayner et al., 2007). All those algorithms have specialized mechanisms for up-
dating the heuristic, but the mechanism to select the next state is just like LSS-LRTA∗’s
run with lookahead parameter equal to 1. We think significant improvements could be
achieved if the procedure to select the next movement was changed by daLSS-LRTA∗’s. We
also believe depression avoidance could be incorporated into multi-agent real-time search
algorithms (e.g., Knight, 1993; Yokoo & Kitamura, 1996; Kitamura, Teranishi, & Tatsumi,
1996).
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Appendix A. Additional Experimental Data

Tables 3–6 show average statistics for LSS-LRTA∗, RTAA∗, and our 4 algorithms.
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RTAA∗

LookAhead Avg. # Planning Total Time per Exp. Perc.
parameter Cost Episodes Time Episode per ep. per ep.

1 5,731,135 5,307,571 2,174 0.0004 1.0 5.9
2 4,805,384 3,885,684 2,410 0.0006 2.0 9.1
4 3,217,283 2,147,060 2,321 0.0011 4.0 16.8
8 1,905,895 954,571 1,912 0.0020 8.0 33.2

16 1,004,971 353,707 1,338 0.0038 16.0 67.8
32 513,692 127,555 927 0.0073 32.0 145.6
64 262,760 46,777 661 0.0141 63.9 331.8

128 137,403 18,787 521 0.0277 126.3 816.5
256 71,939 9,012 475 0.0527 237.8 2,016.6
512 41,089 5,973 530 0.0888 397.4 4,101.6

aRTAA∗

LookAhead Avg. # Planning Total Time Exp. Perc.
parameter Cost Episodes Time per ep. per ep. per ep.

1 5,165,062 4,785,257 2,798 0.0006 1.0 10.6
2 4,038,347 3,260,134 2,981 0.0009 2.0 18.9
4 2,746,638 1,832,375 2,829 0.0015 4.0 34.0
8 1,504,379 755,334 2,034 0.0027 8.0 61.5

16 859,669 305,372 1,458 0.0048 16.0 113.3
32 455,023 114,089 992 0.0087 32.0 216.0
64 239,484 43,497 699 0.0161 63.9 440.6

128 129,765 18,478 559 0.0303 126.3 988.9
256 67,346 9,108 506 0.0555 237.5 2,272.5
512 38,939 6,172 567 0.0918 399.4 4,394.9

daRTAA∗

k
Avg. # Planning Total Time Exp. Perc.
Cost Episodes Time per ep. per ep. per ep.

1 443,773 415,327 208 0.0005 1.0 10.5
2 804,990 689,014 575 0.0008 2.0 27.3
4 419,616 321,418 502 0.0016 4.0 58.5
8 374,684 260,163 801 0.0031 8.0 129.4

16 257,126 148,616 864 0.0058 16.0 261.1
32 155,573 66,818 697 0.0104 32.0 476.7
64 108,337 34,119 626 0.0183 63.8 854.8

128 75,158 17,686 568 0.0321 126.2 1,536.7
256 49,065 10,370 590 0.0569 239.3 2,920.9
512 31,265 6,954 652 0.0937 408.9 5,074.1

Table 3: Average results of RTAA∗ variants over mazes. For a given lookahead parameter value,
we report the average solution cost (Avg. Cost), average number of planning episodes
(# Planning Episodes), total runtime (Total Time), average runtime per search episode
(Time per Episode), average number of expansions per episode (Exp. per ep.), average
number of percolations per planning episode (Perc. per ep.). All times are reported in
milliseconds.
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RTAA∗

LookAhead Avg. # Planning Total Time per Exp. Perc.
parameter Cost Episodes Time Episode per ep. per ep.

1 1,146,014 1,058,265 448 0.0004 1.0 6.1
2 919,410 747,824 475 0.0006 2.0 9.4
4 626,623 422,389 469 0.0011 4.0 17.3
8 363,109 184,753 384 0.0021 8.0 34.1

16 188,346 67,652 269 0.0040 16.0 70.1
32 95,494 24,609 193 0.0078 32.0 152.9
64 48,268 9,138 146 0.0159 63.9 361.3

128 25,682 3,854 126 0.0326 126.4 932.3
256 13,962 1,941 126 0.0647 236.8 2,351.8
512 7,704 1,220 132 0.1078 377.6 4,616.7

aRTAA∗

LookAhead Avg. # Planning Total Time Exp. Perc.
parameter Cost Episodes Time per ep. per ep. per ep.

1 958,795 885,506 549 0.0006 1.0 11.1
2 763,367 621,438 598 0.0010 2.0 19.9
4 516,545 348,785 569 0.0016 4.0 36.0
8 299,786 154,037 445 0.0029 8.0 66.1

16 151,737 55,706 290 0.0052 16.0 122.5
32 81,695 21,533 210 0.0098 32.0 235.0
64 42,883 8,357 157 0.0187 63.9 485.5

128 23,217 3,631 134 0.0368 126.3 1,114.1
256 12,510 1,845 129 0.0700 235.8 2,586.7
512 6,892 1,178 133 0.1132 372.7 4,826.3

daRTAA∗

k
Avg. # Planning Total Time Exp. Perc.
Cost Episodes Time per ep. per ep. per ep.

1 109,337 102,616 53 0.0005 1.0 11.6
2 88,947 79,951 66 0.0008 2.0 29.6
4 74,869 62,664 102 0.0016 4.0 68.0
8 62,400 48,838 165 0.0034 8.0 153.7

16 41,145 28,453 199 0.0070 16.0 327.4
32 29,469 16,857 229 0.0136 32.0 654.9
64 18,405 8,152 196 0.0241 63.9 1,167.4

128 11,924 3,908 158 0.0406 126.4 1,958.9
256 7,921 2,116 149 0.0702 238.3 3,491.5
512 5,205 1,311 145 0.1107 385.1 5,654.4

Table 4: Average results of RTAA∗ variants over game maps. For a given lookahead pa-
rameter value, we report the average solution cost (Avg. Cost), average number
of planning episodes (# Planning Episodes), total runtime (Total Time), average
runtime per search episode (Time per Episode), average number of expansions per
episode (Exp. per ep.), average number of percolations per planning episode (Perc.
per ep.). All times are reported in milliseconds.
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LSS-LRTA∗

LookAhead Avg. # Planning Total Time per Exp. Perc.
parameter Cost Episodes Time Episode per ep. per ep.

1 5,731,135 5,307,571 6,036 0.0011 8.5 14.3
2 3,346,675 2,594,738 4,967 0.0019 13.4 28.0
4 1,931,251 1,247,205 4,009 0.0032 20.7 52.1
8 1,195,330 586,084 3,187 0.0054 32.9 97.6

16 674,872 233,400 2,189 0.0094 54.5 182.9
32 391,120 96,163 1,613 0.0168 95.2 367.4
64 218,303 39,002 1,215 0.0312 175.6 799.4

128 119,177 16,649 1,010 0.0607 341.3 1,939.0
256 64,861 8,420 991 0.1177 655.0 4,704.4
512 38,182 5,805 1,143 0.1968 1,079.2 8,961.1

aLSS-LRTA∗

LookAhead Avg. # Planning Total Time Exp. Perc.
parameter Cost Episodes Time per ep. per ep. per ep.

1 5,165,062 4,785,257 6,174 0.0013 8.5 19.0
2 2,561,769 1,981,509 4,321 0.0022 13.3 37.7
4 1,670,535 1,078,512 3,923 0.0036 20.7 69.5
8 1,027,134 504,696 3,069 0.0061 33.0 126.6

16 617,302 213,959 2,217 0.0104 54.6 228.3
32 354,691 87,700 1,603 0.0183 95.8 441.1
64 205,214 37,106 1,240 0.0334 176.9 918.4

128 112,288 16,069 1,028 0.0640 344.4 2,134.7
256 61,031 8,300 1,010 0.1217 659.1 4,997.9
512 36,524 5,879 1,185 0.2016 1,082.0 9,283.8

daLSS-LRTA∗

LookAhead Avg. # Planning Total Time Exp. Perc.
parameter Cost Episodes Time per ep. per ep. per ep.

1 443,773 415,327 357 0.0009 6.2 18.9
2 433,576 353,087 603 0.0017 11.7 43.3
4 527,638 393,222 1,374 0.0035 21.9 96.6
8 317,508 205,868 1,412 0.0069 40.0 225.8

16 197,066 100,984 1,293 0.0128 70.7 459.9
32 125,511 45,682 1,023 0.0224 119.7 816.1
64 85,373 22,725 888 0.0391 209.7 1,477.1

128 65,009 13,772 977 0.0709 384.7 2,936.7
256 39,777 8,201 1,056 0.1288 698.4 5,972.6
512 28,937 6,330 1,310 0.2070 1,115.8 10,136.2

Table 5: Average results of LSS-LRTA∗ variants over mazes. For a given lookahead parameter value,
we report the average solution cost (Avg. Cost), average number of planning episodes (#
Planning Episodes), total runtime (Total Time), average runtime per search episode (Time
per Episode), average number of expansions per episode (Exp. per ep.), average number of
percolations per planning episode (Perc. per ep.). All times are reported in milliseconds.
Results obtained over a Linux PC with a Pentium QuadCore 2.33 GHz CPU and 8 GB
RAM.
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LSS-LRTA∗

LookAhead Avg. # Planning Total Time per Exp. Perc.
parameter Cost Episodes Time Episode per ep. per ep.

1 1,146,014 1,058,265 1,260 0.0012 8.7 14.8
2 625,693 488,096 979 0.0020 13.7 29.3
4 372,456 242,171 818 0.0034 21.3 54.3
8 227,526 113,236 654 0.0058 33.8 102.4

16 127,753 45,242 460 0.0102 56.1 193.5
32 72,044 18,445 345 0.0187 98.7 397.7
64 40,359 7,687 280 0.0364 184.9 903.4

128 22,471 3,444 258 0.0750 370.1 2,338.1
256 12,264 1,774 272 0.1534 733.6 6,003.8
512 7,275 1,192 312 0.2620 1,207.5 11,548.9

aLSS-LRTA∗

LookAhead Avg. # Planning Total Time Exp. Perc.
parameter Cost Episodes Time per ep. per ep. per ep.

1 958,795 885,506 1,185 0.0013 8.7 19.8
2 506,745 395,546 903 0.0023 13.7 40.1
4 313,789 204,478 786 0.0038 21.3 73.7
8 184,632 92,594 602 0.0065 34.1 135.6

16 111,633 39,857 449 0.0113 56.6 246.0
32 66,911 17,271 351 0.0203 99.5 479.6
64 37,215 7,217 278 0.0386 186.8 1,036.2

128 20,524 3,234 251 0.0776 374.5 2,553.8
256 11,053 1,677 261 0.1556 741.4 6,339.3
512 6,460 1,137 295 0.2592 1,204.5 11,823.7

daLSS-LRTA∗

k
Avg. # Planning Total Time Exp. Perc.
Cost Episodes Time per ep. per ep. per ep.

1 109,337 102,616 86 0.0008 6.1 20.8
2 79,417 69,976 116 0.0017 12.1 49.9
4 72,028 58,931 214 0.0036 23.3 118.2
8 51,753 38,862 300 0.0077 44.1 274.0

16 33,351 20,792 322 0.0155 80.3 586.2
32 21,622 10,177 293 0.0288 139.6 1,122.4
64 13,581 4,715 233 0.0494 236.9 1,911.2

128 8,693 2,424 220 0.0905 435.4 3,725.4
256 6,464 1,604 267 0.1667 791.5 7,538.1
512 4,830 1,195 317 0.2651 1,237.3 12,697.3

Table 6: Average results of LSS-LRTA∗ variants over game maps. For a given lookahead param-
eter value, we report the average solution cost (Avg. Cost), average number of planning
episodes (# Planning Episodes), total runtime (Total Time), average runtime per search
episode (Time per Episode), average number of expansions per episode (Exp. per ep.), av-
erage number of percolations per planning episode (Perc. per ep.). All times are reported
in milliseconds. Results obtained over a Linux PC with a Pentium QuadCore 2.33 GHz
CPU and 8 GB RAM.
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Appendix B. Additional Proofs for Theorems

B.1 Proof of Theorem 3

We establish that, for any pair of neighbor states, s and s′, hn+1(s) ≤ cn+1(s, s′)+hn+1(s′).
We divide the rest of the argument in three cases.
Case 1. Both s and s′ are in Closed. Then, by Proposition 1,

hn+1(s′) = kn(s′, s′′) + hn(s′′), (14)

for some s′′ ∈ Open. On the other hand, again by Proposition 1,

hn+1(s) = min
sb∈Open

kn(s, sb) + hn(sb),

and thus
hn+1(s) ≤ kn(s, s′′) + hn(s′′), (15)

since s′′ is an element of Open. However, because kn(s, s′′) is the cost of the shortest path
between s and s′′, we know that

kn(s, s′′) ≤ cn(s, s′) + kn(s′, s′′) (16)

Adding up (15) and (16), we obtain

hn+1(s) ≤ cn(s, s′) + kn(s′, s′′) + hn(s′′) (17)

Using Equation 14 we substitute kn(s′, s′′) + hn(s′′) in Inequality 17, obtaining:

hn+1(s) ≤ cn(s, s′) + hn(s′). (18)

Since the cost function can only increase, we have that cn(s, s′) ≤ cn+1(s, s′), and hence:

hn+1(s) ≤ cn+1(s, s′) + hn(s′), (19)

Finally, since h is non-decreasing (Theorem 1), we have hn(s′) ≤ hn+1(s′), which allows us
to write

hn+1(s) ≤ cn+1(s, s′) + hn+1(s′), (20)

which finishes the proof for this case.

Case 2. One state among s and s′ is in Closed, and the other state is not in Closed.
Without loss of generality, assume s ∈ Closed. Since s′ is not in Closed, it must be in
Open, because s was expanded by A∗ and s′ is a neighbor of s. By Proposition 1 we know:

hn+1(s) = min
sb∈Open

kn(s, sb) + hn(sb),

but since s′ is a particular state in Open, we have:

hn+1(s) ≤ cn(s, s′) + hn(s′).

Since cn ≤ cn+1, we obtain:

hn+1(s) ≤ cn+1(s, s′) + hn(s′),
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which concludes the proof for this case.

Case 3. Both s and s′ are not in Closed. Since hn is consistent:

hn(s) ≤ cn(s, s′) + hn(s′) (21)

Now we use that the h-value of s and s′ are not updated (hn(s) = hn+1(s) and hn(s′) =
hn+1(s′)), and the fact that the cost function increases to write:

hn+1(s) ≤ cn+1(s, s′) + hn+1(s′), (22)

which finishes the proof for this case.
In all three cases we proved the desired inequality and therefore we conclude the heuristic

hn+1 is consistent with respect to cost function cn+1.

B.2 Proof of Theorem 4

We establish that, for any pair of neighbor states, s and s′, hn+1(s) ≤ cn+1(s, s′)+hn+1(s′).
We divide the rest of the argument in three cases.
Case 1. Both s and s′ are in Closed. We have that

hn+1(s) = f(s∗)− g(s), (23)

hn+1(s′) = f(s∗)− g(s′), (24)

for some s∗ in Open. Subtracting (24) from (23), we obtain:

hn+1(s)− hn+1(s′) = g(s′)− g(s). (25)

Since hn is consistent g(s) and g(s′) correspond to the cost of the shortest path between
scurrent and, respectively, s and s′. Thus g(s′) = kn(scurrent, s

′) and g(s) = kn(scurrent, s),
and therefore:

hn+1(s)− hn+1(s′) = kn(scurrent, s
′)− kn(scurrent, s). (26)

Let us consider a path from scurrent to s′ that goes optimally to s, and then goes from s to
s′. The cost of such a path must be at least kn(scurrent, s

′). In other words:

kn(scurrent, s
′) ≤ kn(scurrent, s) + cn(s, s′),

which directly implies:

kn(scurrent, s
′)− kn(scurrent, s) ≤ cn(s, s′). (27)

Now we combine (27) and (26) to obtain:

hn+1(s) ≤ cn(s, s′) + hn+1(s′). (28)

And, finally, since cn ≤ cn+1 we conclude that:

hn+1(s) ≤ cn+1(s, s′) + hn+1(s′), (29)

which finishes the proof for this case.
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Case 2. One state among s and s′ is in Closed, and the other state is not in Closed.
Without loss of generality, assume s ∈ Closed. Since s′ is not in Closed, it must be in
Open, because s was expanded by A∗ and s′ is a neighbor of s.

For some state s∗ in Open, we have that

hn+1(s) = f(s∗)− g(s) (30)

Again we use the fact that, with the consistent heuristic hn, A∗ expands nodes with in-
creasing f -values. Note that s∗ is the state that would have been expanded next by A∗,
and that s′ would have been expanded later on. Moreover, as soon as s′ would have been
expanded the g-value for s′ is the optimal cost of the path from scurrent to s′, kn(scurrent, s

′).
Therefore, we can write:

f(s∗) ≤ kn(scurrent, s
′) + hn(s′), (31)

as kn(scurrent, s
′) +hn(s′) is the f -value of s′ upon expansion. Adding up (30) and (31), we

obtain:
hn+1(s) ≤ kn(scurrent, s

′)− g(s) + hn(s′)

However, since s is in Closed, g(s) is the cost of an optimal path from scurrent to s, and
thus:

hn+1(s) ≤ kn(scurrent, s
′)− kn(scurrent, s) + hn(s′) (32)

We use now the same argument of the previous case to conclude that:

kn(scurrent, s
′)− kn(scurrent, s) ≤ cn(s, s′). (33)

Combining (31) and (33) we obtain:

hn+1(s) ≤ cn(s, s′) + hn(s′) (34)

Since s′ is not in closed, hn+1(s′) = hn(s). Furthermore, we know that cn ≤ cn+1. Substi-
tuting in (34), we obtain:

hn+1(s) ≤ cn+1(s, s′) + hn+1(s′), (35)

which allows us to conclude the proof for this case.

Case 3. Both s and s′ are not in Closed. The proof is the same as that for Case 3 in
Theorem 3.

In all three cases we proved the desired inequality and therefore we conclude the heuristic
hn+1 is consistent with respect to cost function cn+1.

B.3 An Appendix for the Proof of Theorem 5

This section describes the proof of Theorem 5 for the specific case of aRTAA∗.
Let D be the maximal connected component of states connected to s such that (1) all

states in D are in Closed after the call to A∗ in iteration n, and (2) any state sd in D is
such that hn+1(sd) > hn(sd). We prove that D is a cost-sensitive heuristic depression of hn.

Let s′ be a state in the boundary of D; as argued for the case of aLSS-LRTA∗, we can
show that hn(s′) = hn+1(s′). Now, let sd be a state in D. We continue the proof by showing
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that hn(sd) is too low with respect to hn(s′), which means that D is a heuristic depression
of hn. For this final part of the proof, we distinguish two cases: (Case 1) s′ ∈ Closed, and
(Case 2) s′ ∈ Open.

For Case 1, given that hn+1(s′) = hn(s′), we know hn(s′) = f∗ − g(s′), where f∗ is the
lowest f -value in the open list after the algorithm is run, and hence:

f∗ = hn(s′) + g(s′) (36)

On the other hand, since by definition of D the heuristic value has increased for sd,

hn(sd) < hn+1(sd) = f∗ − g(sd). (37)

Substituting f∗ in Eq. 37 with the right-hand-side of Eq. 36, we get:

hn(sd) < hn(s′) + g(s′)− g(sd). (38)

Because the heuristic is consistent and both s′ and sd are in Closed, g(s′) and g(sd) actually
correspond to the cost of the cheapest path to reach, respectively, s′ and sd from s; i.e.,
g(s′) = k(s, s′) and g(sd) = kn(s, sd). In addition, the triangular inequality kn(s, sd) +
kn(sd, s

′) ≥ kn(s, s′), can be re-written as:

g(s′)− g(sd) ≤ kn(sd, s
′). (39)

Inequalities 38 and 39 imply hn(sd) < kn(sd, s
′) + hn(s′).

Finally, for Case 2, if s′ ∈ Open, by Proposition 2 and the fact that hn+1(sd) > hn(sd),
we also have that hn(sd) < kn(sd, s

′) + hn(s′).

In both cases, we proved hn(sd) < kn(sd, s
′) + hn(s′), for any sd in D and any s′ in the

boundary of D. We conclude D is a cost-sensitive heuristic depression of hn.
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