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Abstract

Enforced hill-climbing is an effective deterministic hdlimbing technique that deals with lo-
cal optima using breadth-first search (a process calledritflia®ding”). We propose and evaluate
a stochastic generalization of enforced hill-climbing @line use in goal-oriented probabilis-
tic planning problems. We assume a provided heuristic fanatstimating expected cost to the
goal with flaws such as local optima and plateaus that thwaightforward greedy action choice.
While breadth-first search is effective in exploring basimiad local optima in deterministic prob-
lems, for stochastic problems we dynamically build and s@\heuristic-based Markov decision
process (MDP) model of the basin in order to find a good escalieypexiting the local optimum.
We note that building this model involves integrating theitgic into the MDP problem because
the local goal is to improve the heuristic.

We evaluate our proposal in twenty-four recent probaiiligianning-competition benchmark
domains and twelve probabilistically interesting prolbdefrom recent literature. For evaluation,
we show that stochastic enforced hill-climbing (SEH) proglubetter policies than greedy heuristic
following for value/cost functions derived in two very difent ways: one type derived by using
deterministic heuristics on a deterministic relaxatiod arsecond type derived by automatic learn-
ing of Bellman-error features from domain-specific expseee Using the first type of heuristic,
SEH is shown to generally outperform all planners from thet finree international probabilistic
planning competitions.

1. Introduction

Heuristic estimates of distance-to-the-goal have long been used in det¢icrirarch and deter-
ministic planning. Such estimates typically have flaws such as local extremdededys that limit
their utility. Methods such as simulated annealing (Kirkpatrick, Gelatt, & Vect®83; Cerny,
1985) and A* (Nilsson, 1980) search have been developed forihgrithws in heuristics. More
recently, excellent practical results have been obtained by “floodieg! iptima using breadth-first
search. This method is called “enforced hill-climbing” (Hoffmann & NebeD20

Deterministic enforced hill-climbing (DEH) is proposed in the work of Hoffmamu Nebel
(2001) as a core element of the successful deterministic planner FagBo(FF). DEH is an
extension of the basic “hill-climbing” approach of simply selecting actionsdileéy looking
ahead one action step, and terminating when reaching a local optimum. DEMi€Xtasic hill-
climbing by replacing termination at local optima with breadth-first search tcefisuccessor state
with strictly better heuristic value. The planner then moves to that desceaddmntepeats this
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process. DEH is guaranteed to find a path to the goal if the problem itselaiedd-free (so that
every state has such a path). While that relatively weak guarantee apgkpendent of the quality
of the heuristic function, the intent of DEH is to remediate flaws in a generatlyrate heuristic
in order to leverage that heuristic in finding short paths to the goal. In deneiere the basin
size (search depth needed to escape any optimum) is bounded, DEHbe@ie ar polynomial-time
solution method (Hoffmann, 2005).

Enforced hill-climbing is not defined for probabilistic problems, due to thetgtsiic outcomes
of actions. In the presence of stochastic outcomes, finding descermddrgter values no longer
implies the existence of a policy that reaches those descendants with higgtblitg. One may ar-
gue that FF-Replan (Yoon, Fern, & Givan, 2007)—a top performerdioent probabilistic planning
benchmarks—uses enforced hill-climbing during its call to FF. Howeveerifi@rced hill-climbing
process is used on a determinized problem, and FF-Replan does natyusena of hill climbing
directly in the stochastic problem. In fact, FF-Replan does not consideutiseme probabilities
at all.

One problem to consider in generalizing enforced hill-climbing to stochastadt is that the
solution to a deterministic problem is typically concise, a sequential plan. Imasinthe solution
to a stochastic problem is a policy (action choice) for all possibly reactatdss The essential
motivation for hill-climbing is to avoid storing exponential information during sbaand even the
explicit solution to a stochastic problem cannot be directly stored while céagehis motivation.
For this reason, we limit consideration to the online setting, where the solutioe frdblem is a
local policy around the current state. After this local policy is committed to ardwged until the
local region is exited, the planner then has a new online problem to solssiljporetaining some
information from the previous solution). Our approach generalizestljirecthe construction of
offline policies in situations where space to store such policies is available. thit, in contrast,
deterministic enforced hill-climbing is easily implemented as an offline solution tegéniq

We propose a novel tool for stochastic planning by generalizing ezddnil-climbing to goal-
based stochastic domains. Rather than seeking a sequence of actioménistieally leading to a
better state, our method uses a finite-horizon MDP analysis around tle@tstiaite to seekpolicy
that expects to improve on the heuristic value of the current state. Criticastorttess is the direct
incorporation of both the probabilistic model and the heuristic function in fognttie desired policy.
Therefore, for the finite-horizon analysis, the heuristic function is ittegrinto the MDP problem
in order to represent the temporary, greedy goal of improving on theruneuristic value. This
integration is done by building a novel “heuristic-based MDP” in which aateshas a new “exit”
action available that terminates execution with cost equal to the heuristic estonttatfstate, and
all other action costs are removedn a heuristic-based MDP, finite-horizon policies are restricted
by a requirement that at horizon one, the exit action must be selectedabatiso be selected at
other horizons). In this heuristic-based MDP, the cost of any paliey a states is the expected
value of the heuristic upon exit (or horizon)ifis executed frons.

Thus, we find the desired local policy using value iteration on the heuriaseebMDP around
the current state, with deepening horizon, until a policy is found with cogtdwipg on the heuristic
estimate at the current state. The restriction of selecting the exit actionizdimone corresponds
to initializing value iteration with the provided heuristic function. When such a padiéound, the

1. The motivation for the removal of action costs in the heuristic-base® M@liscussed in Section 3.2.
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method executes the policy until an exiting action is indicated (or to the horizzhinsomputing
the policy).

The resulting method, stochastic enforced hill-climbing (SEH), simply genegalitepthk
breadth-first search for a state with improved heuristic value (from D&ld):-horizon value iter-
ation computation seeking a policy that expects improvement in heuristic vatue tiat although
stochastic enforced hill-climbing is an explicit statespace technique, it canitadle for use in as-
tronomically large statespaces if the heuristic used is informative enough to leveffective size
of the horizonk needed to find expected heuristic improvement. Our empirical results in this wor
demonstrate this behavior successfully.

1.1 Applicability and Limitations

Stochastic enforced hill-climbing (SEH) can be applied to any heuristic functidowever, the
applicability (and likewise the limitations) of SEH greatly depends on the chaistats of the
heuristic function. SEH is appropriate in any goal-oriented problem giv&&rong enough heuristic
function, and we demonstrate empirically that SEH generally outperfornesigfellowing of the
same heuristic for a variety of heuristics in a variety of domains, even irepcesof probabilisti-
cally interesting features (Little & Thiebaux, 2007) and deadends. SBHetaupon the heuristic
function for identification of dead-ends and appropriate handling dfgisitistically interesting fea-
tures that require non-local analysis—SEH simply provides local s¢laatloften can correct other
flaws in the heuristic function. SEH is thus intended as a possible improvemensimchastic
solution methods that construct a cost-to-go (cost) function and folloveédily when using the
constructed cost function as a search heuristic. Many methods fdrectivsg value/cost functions
have been proposed and evaluated in the literature, all of which cantiptiyebe improved for
goal-based domains by using SEH in place of greedy following (Sutto; Fthiman & Lebiere,
1990; Bertsekas, 1995; Gordon, 1995; Mahadevan & Maggioni7 28a@nner & Boutilier, 2009)
We prove the correctness of SEH in Section 3.4 by showing that in dedsndomains, SEH
finds the goal with probability one (i.e. SEH does not get stuck in local optima)

While SEH is a search technique that leverages a heuristic estimate of digiagueit must
be emphasized that, unlike many other such search techniques, SEH rogkesnises about the
optimality of the solution path found. SEH is a greedy, local technique anamlgnpromise to
repeatedly find a policy that reduces the heuristic value, and only wheisthassible. As such,
SEH is an inappropriate technique for use when optimal solutions are eédquir

Stochastic enforced hill-climbing can be ineffective in the presence af pladeaus or valleys
in the heuristic functions, due to extreme resource consumption in findingeddscal policies.
Heuristic functions with huge plateaus result from methods that have faifeditany useful infor-
mation about the problem in those state regions. SEH is inappropriate adyhealrior solving
a stochastic planning problem—other tools are needed to construct & heseffistic function that
manages deadends and avoids huge plateaus. This weakness mirvegalkthess of enforced hill-
climbing in deterministic domains. SEH can also fail to find the goals when avoidahlé-ends
are present but not recognized early enough by the heuristic. tireféective dead-end detection is
a central goal in heuristic design when any greedy technique will be dgplithe heuristic.

2. For applicability of SEH, a cost function must be non-negative anst idantify goals by assigning zero to a state if
and only if it is a goal state; however, more general value/cost furectian be normalized to satisfy these require-
ments.
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Further insight into the usefulness of SEH can be gained by comparisorewéht determiniz-
ing replanners. As mentioned above, one way to exploit deterministic platethgiques such as
DEH for stochastic problems is to determinize the planning problem and ugerand@stic plan-
ner to select an action sequence. Executing this action sequence in btenpis not guaranteed
to reach the goal due to the determinization approximation, so replanningdedhée augment
this technique. In this paper, we call stochastic planners that use thisgeetideterminizing re-
planners”. Determinizing replanners using a determinization (called “allbou#s”) that retains
all possible state transitions can be shown to reach the goal with probab#itynahe absence of
dead-end states.

In contrast to determinizing replanners, SEH at no point relies on anyntieieation of the
problem, but instead analyzes increasing-size local probabilistic appab&ns to the problem.
SEH conducts a full probabilistic analysis within the horizon, seeking thectgeof reducing the
provided heuristic, using value iteration. In this way, SEH leverages tblgapilistic parameters
that are ignored by determinizing replanners, as well as the providestietunction, which can
be based upon substantial probabilistic analysis. As a result, SEH sfudlyelsandles probabilistic
problem aspects that cause major problems for determinizing replannevgever, at this point,
we have no theoretical results characterizing its gains over determinizifanrers. Instead, we
have an extensive empirical evaluation showing advantages over [plRrRg/oon et al., 2007)
and RFF (Teichteil-Konigsbuch, Kuter, & Infantes, 2010) (two deternmgizeplanners), as well
as substantial gains compared to greedy following of the heuristic (whiohuakss the transition
probability parameters).

1.2 Evaluation

We test SEH on a broad range of domains from the first three internatiootaiglistic planning
competitions (as well as the “probabilistically interesting” domains in Little & Thieb@007),
using two very different methods to generate heuristic functions. FirstegteSEH on a heuris-
tic function based on the ideas of the successful re-planner FF-R@fdan et al., 2007). This
new “controlled-randomness FF (CR-FF) heuristic” is the deterministic Ffiste (Hoffmann
& Nebel, 2001) computed on the simple determinization of the probabilistic protiiatrmakes
available a deterministic transition wherever a probabilistic transition was pesiie note that
FF-Replan itself does not use this (or any) heuristic function in the stticipasblem. Instead, FF-
Replan relies on FF to construct a plan in the deterministic problem, and thisse & in turn use
deterministic enforced hill-climbing with exactly this heuristic. Here, we conglieperformance
of this heuristic directly in the stochastic problem, comparing greedy heutalibeving with SEH-
based search around the heuristic. The latter method using SEH constitutgelanethod for
combining determinization (that removes the probabilistic parameters) withlplisbhe reasoning.
Our experiments show that this new method substantially outperforms FFrRaeplass our broad
evaluation.

We have also performed a second evaluation of our technique on hetuistiions learned
from domain-specific experience by the relational feature-learning metresgnted in the work
of Wu and Givan (2007, 2010). These heuristic functions have alrbadn shown to give good
performance when used to construct a simple greedy policy, and énerfimproved by SEH.

The SEH technique can be seen to perform well in a domain-by-domainséalgross the
broad set of competition planning domains, and full domain-by-domain rematavailable in an
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online appendix. However, to compress and summarize the extensipegidem results, we have
divided all the evaluation domains into experimenter-defined “categonwshave aggregated per-
formance measurement within each problem category. While some categi@igisgle domains,
more generally, multiple closely related domains may be aggregated within a sitegea For
example, multiple domains from the competitions have been variants of the “biowkd”, and
problems in these domains are aggregated ascaCBRSWORLD category.

In order to fairly compare SEH with FF-based planners (such as REEesasibed in Teichteil-
Konigsbuch et al., 2010, and FF-Replan) that exploit the blockswontpktiad planning heuristics
“added goal deletion” and “goal agenda”, we have provided thesgagties as extensions to SEH.
The resulting planner is called SEtdescribed in detail in Section 3.6. Our results show that SEH
performs nearly identically to SEH on non-blocksworld categories whiegtise CR-FF heuristic.
We employ these extensions when comparing SEH with the CR-FF heuristic tqptaheers.

Using experimenter-defined categories, we are able to show that SHélt&xpe heuristic
functions more effectively than greedy following of the heuristic. SEH diediy significantly
outperforms greedy following in thirteen out of seventeen categorieg tisenCR-FF heuristics
while losing in one category. SEH also outperforms greedy following in sixobseven cate-
gories using the learned heuristics. (In both cases, the other categfuoiged similar performance
between the compared planners.)

We show that SEH, when using the CR-FF heuristics, outperforms FF-Replan on ten out of
fifteen categories, with similar performance on two more categories, losiaglgthree categories.
Our aggregate results show that SEfising the CR-FF heuristics) has a particularly strong perfor-
mance advantage over FF-Replan in “probabilistically interesting” categ(irittle & Thiebaux,
2007).

Finally, we compare the performance of SEklgainst that of RFF-BG (Teichteil-Konigsbuch
et al., 2010), one winner of the fully-observable track of the third intgsnal probabilistic plan-
ning competition. SEH outperforms RFF-BG on twelve out of fifteen categories, with similar
performance on one more category, losing on only two categories.

In summary, our empirical work demonstrates that SEH provides a not@hatic technique
for improving on a heuristic function using limited searches, and that simpllyiagpSEH to
reasonable heuristic functions produces a state-of-the-art planner.

2. Technical Background: Markov Decision Processes

We give a brief review of Markov decision processes (MDPs) speeilia goal-region objectives.
For more detail on MDPs, see the work of Bertsekas (1995), Puterri@b)2and Sutton and Barto
(1998).

2.1 Goal-Oriented Markov Decision Processes

A Markov decision process (MDP)Y/ is a tuple(S, A4, C, T, sinit). Here,S is a finite state space
containing initial state;,;t, andA selects a non-empty finite available action.4ét) for each state

sin S. The action-cost functiof’ assigns a non-negative real action-cost to each state-action-state
triple (s, a, s') where actioru is enabled in state, i.e.,a is in A(s). The transition probability
function T" maps state-action paifs, a) to probability distributions ovef, P(.S), wherea is in

A(s).
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To represent the goal, we includeSra zero-cost absorbing statei.e., such that’(L, a, s) =
0OandT'(Ll,a,l)=1forall s € Sanda € A(L). Goal-oriented MDPs are MDPs where there is
a subsetz C S of the statespace, containidg such that: (1(g, a, s’) is zero whenevey € G
and one otherwise, and (2) g, a, L) is one for allg € G and alla € A(g). The set can thus be
taken to define the action-cost functioh as well as constrain the transition probabilities

A (stochastic)policy for an MDP7 : S x N — P(A) specifies a distribution over actions for
each state at each finite horizon. The cost-to-go funcfids, k) gives the expected cumulative
cost for k steps of execution starting at stateselecting actions according te() at each state
encountered. For any horizdn there is at least one (deterministic) optimal policy(-, k) for
which J™ (s, k), abbreviated/*(s, k), is no greater thad™ (s, k) at every states, for any other
policy 7. The following “Q function” evaluates an actianby using a provided cost-to-go function
J to estimate the value after actiaris applied,

Q(s,a,J) = Z T(s,a,s)[C(s,a,s) + J(s)].

s'eS
Recursive Bellman equations ug¢) to describe/* and.J™ as follows:

J"(s,k) = E[Q(s,m(s, k), J"(-,k —1))] and
J*(s,k) = min Q(s,a,J*(-,k—1)),
a€A(s)
taking the expectation over the random choice made by the possibly stogha&ticr (s, k). In
both cases, the zero step cost-to-go function is zero everywhereats6*th, 0) = J™(s,0) = 0
for all s. Value iteratiorcomputes/* (s, k) for eachk in increasing order starting at zero. Note that
when a policy or cost function does not dependipwe may dropk from its argument list.

Also usingQ(), we can select an action greedily relative to any cost function. The policy
GreedyJ) selects, at any state and horizonk, a uniformly randomly selected action from
argmir]zeA(s)Q(s7 a, ‘](7 k — 1))

While goal-based MDP problems can be directly specified as above, theglsualye specified
exponentially more compactly using planning languages such as PPDDhg¥pLittman, Weiss-
man, & Asmuth, 2005), as used in our experiments. Our technique beladsasonverting the
entire PPDDL problem explicitly into the above form, for resource regdmrisnstead constructs a
sequence of smaller problems of explicit MDP form modeling heuristic flaws.

A dead-end state a state for which every policy has zero probability of reaching the d@aiya
horizon. We say that a poliayeaches a region of states with probability drfellowing that policy
to horizonk has a probability of entering the region at some point that converges tsérgoes to
infinity. We saydead-ends are unavoidalatea problem whenever there is no policy frafg: that
reaches the goal region with probability one. (We then say a domain hesidable dead-ends if
any problem in that domain has unavoidable dead-ends.) We note thdy geebniques such as
hill-climbing can be expected to perform poorly in domains that have deddtates with attractive
heuristic values. Application of SEH thus leaves the responsibility for detgatid avoiding dead-
end states in the design of the heuristic function.

A heuristich : S — R may be provided, intended as an estimate of the cost fungtfonlarge
horizons, withi(s) = 0 for s € G, andh(s) > 0 otherwise. The heuristic may indicate dead-end
states by returning a large positive valde which we assume is selected by the experimenter to
exceed the expected steps to the goal from any state that can reachlthe gar experiments, we
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add trivial, incomplete dead-end detection (described in Section 5.2) tdheacistic function that
we evaluate.

We note that some domains evaluated in this paper do contain unavoidabéndsasio that
there may be no policy with success ratio one. The choice of the large vedaefor recognized
dead-end states effects a trade-off between optimizing success ratiptmizing expected cost
incurred to the goal when successful.

2.2 Determinizing Stochastic Planning Problems

Some stochastic planners and heuristic computation techniques, includingisechie our exper-
iments, rely on computing deterministic approximations of stochastic problemssu@heplanner,
the all-outcomes FF-Replan (Yoon et al., 2007), determinizes a stochastiunggroblem and
invokes the deterministic planner FF (Hoffmann & Nebel, 2001) on the detemiproblem. The
determinization used in FF-Replan is constructed by creating a new determauistin for each
possible outcome of a stochastic action while ignoring the probability of thabm&dappen-
ing. This effectively allows the planner to control the randomness in éxgcactions, making
this determinization a kind of relaxation of the problem. In Section 5.2, we defidemain-
independent heuristic function, the “controlled-randomness FF hellfiGi:FF), as the determin-
istic FF heuristic (Hoffmann & Nebel, 2001) computed on the all-outcomeséjtar determiniza-
tion of the probabilistic problefa A variety of relaxations have previously been combined with a
variety of deterministic heuristics in order to apply deterministic planning techritm stochas-
tic problems (Bonet & Geffner, 2005). More generally, deterministic isiars provide a general
technique for transferring techniques from deterministic planning foiruselution of stochastic
problems.

3. Stochastic Enforced Hill-Climbing

Deterministic enforced hill-climbing (DEH) (Hoffmann & Nebel, 2001) sea<ifor a successor
state of strictly better heuristic value and returns a path from the currgattstauch a successor.
This path is an action sequence that guarantees reaching the desiredssuc We illustrate the
behavior of DEH as compared to greedy policy using the example in Figuile &. stochastic
environment, there may be no single better descendant that can be redtthedobability one,
since actions may have multiple stochastic outcomes. If we simply use breattbefirch as in
DEH to find a single better descendant and ignore the other possible ogtcamenight end up
selecting an action with very low probability of actually leading to any state oftiettdristic value,
as illustrated in Figure 2. As shown in this figure, our algorithm, stochastaresd hill-climbing
(SEH), accurately analyzes the probabilistic dynamics of the problem obirimg the heuristic
value.

In this section, we give details of SEH. We note that in DEH, the local brefadthsearch
gives a local policy in a state region surrounding the current state in endeistic environment.
The value of following this policy is the heuristic value of the improved desaenhfbund during
breadth-first search. In SEH, we implement these same ideas in a stosk#stig.

3. The deterministic FF heuristic, described in the work of Hoffmann aeldeN(2001), from FF planner version 2.3
available at http://www.loria.fr/"hoffmanij/ff.ntml, efficiently computes @egy plan length in a problem relaxation
where state facts are never deleted. The plan found in the relaxedmrizbteferred to as a “relaxed plan” for the
problem.
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(a) Behavior of greedy policy. (b) Behavior of DEH.

Figure 1. Comparison between the behavior of DEH and greedy policy whecal optimum is
encountered. The solid black circle represents the current state,eskatied circle represents the
goal state (with heuristic value zero). In (a) the greedy policy keepstseeactions indicated by
the wide arrow and cannot reach the goal state. On the other hand, BesHbreadth-first search
and finds the goal state that is two steps away from the current stateyvas sh(b).

(a) Behavior of DEH in stochastic environments. (b) Behavior of SEH in stochastic environments.

Figure 2: Comparison between the behavior of SEH and DEH in a stochmatigpée. We assume
DEH first determinizes the problem, creating one deterministic action for ezsdibbe stochastic
outcome. The solid black circle represents the current state, and thedstiacle represents the
goal state (with heuristic value zero). In (a) DEH looks one step ahahdalects the action drawn
with double lines, as one of the outcomes leads to a statgwwitl®, which is better than the current
state. However, this action choice has a higher probability of going to thevgithté = 10 than
the one withh = 2. In (b) SEH first decides there is no policy with better value thavhen the
horizon in the MDP only includes states reachable from the current stateeistep. SEH then
extends the horizon to two so that all states are considered. It then gbkeeistions indicated in
the wide arrows that lead to the goal state.
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Online Planning using a Local Planner

1. Repeat

2 s <— current state

3. mocal < Find-Local-Policy(s,h)
4 Follow miocq Until @ is selected
5. Until the goal is reached

Table 1: Pseudo-code for an online planning framework. The paligy may be non-stationary,
in which case the local planner also returns the initial horizon for execafitre policy and termi-
nation in line 4 can also happen by reaching that specified horizon.

We present SEH in two steps. First, we present a simple general fraknévarnline plan-
ning that repeatedly calls a “local” planner that selects a policy aroundutiment state. Second,
we present a local planner based on the enforced hill-climbing idea. \t#eeanline planning
framework is instantiated with this local planner, the resulting algorithm is SEH.cbmbination
of these two steps constitute the central algorithmic contribution of this papellyi-we present
some analytical properties of our algorithm.

3.1 A Simple Online Planning Framework

A familiar direct approach to online planning is to call the planner at the stistate and have the
planner select an action. That action is then executed in the environmairiting in a new current
state. This process can then be repeated.

Here, we present a simple generalization of this approach that allows tireepka select more
than one action during each call, before any action is executed. The ithed ibe planner makes a
plan for the local context surrounding the current state, and thenldraigpexecuted until the local
context is exited. When the local context is exited, we have a new cigtaietand the process is
repeated.

More formally, we augment the action space with a new “terminate” action (calldndicat-
ing that the planned-for local context has been exited. We then defowakpolicy around a state
s to be a partial mapping from states to the augmented action space that is aefirmedi at every
state reachable fromunder the polic§. An online planner can then be built by repeatedly seeking
and executing a local policy around the current state using a plannimguginie. The local policy
is executed until the terminate action is called (which has no effect on the, statehich point a
new local policy must be sought. These ideas are reflected in the pseddshown in Table 1.

We note that the notion of “local context” in our discussion here is informalhe-precise
notion is given by the use of the “terminate” action. A local policy is executdd i1 selects the
“terminate” action. Thd-ind-Local-Policy routine is free to use any method to decide when a state
will be assigned the terminate action. Previously publisbedelopemethods (Dean, Kaelbling,
Kirman, & Nicholson, 1995) provide one way to address this issue, sateh@ination will be
assigned to every state outside some “envelope” of states. Howeverathesfork is more general
than envelope methods, and allows for local policies that are not selessed mpon pre-existing

4. The local policy returned can be non-stationary and finite horizanmiost then select the terminate action at the
final stage, in all reachable states.
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envelopes of states (though we can always, post-planning, interpreettof reachable states as
an envelope). The general intuition is that selecting the action for thentigt&tes may involve
analysis that is sufficient to select actions for many surrounding statesy sramework allows the
Find-Local-Policy routine to return a policy specifying all such action selections.

Also, we note that this online planning framework includes recent re-plansuch as FF-
Replan (Yoon et al., 2007) and RFF (Teichteil-Konigsbuch et al., 201@weader, replanning
because the current plan failed (e.g. because the determinization usedet@tg it was naive)
is quite different in character from SEH, which constructs plans to impitoedeuristic value, and
replans each time such a plan terminates. Thus, SEH uses the heuristicrfuoctedine subgoals
and plan for the original goal incrementally.

It remains to present the local planner we combine with this online plannimgefwark to
define stochastic enforced hill climbing. Our local planner analyzes the giioblem around the
current state, but with the heuristic function integrated into the problemtsoegsbody the subgoal
of improving on the heuristic value of the current state. We describe this sintplgration of the
heuristic function into the problem next, and then discuss the local plaasedton this integration.

3.2 Heuristic-Based Markov Decision Processes

Our method relies on finite horizon analyses of a transformed MDP probléminereasing hori-
zons. We transform the MDP problem with a nokelristic achievement transfotsefore analysis
in order to represent the goal of finding and executing a policy thatéxp@improve on the initial
(current) state’s heuristic value.

The heuristic achievement transform is very straightforward, and apjgiany goal-oriented
MDP problem. First, all action costs are removed from the problem. Settumtterminate” action
a, is assigned the action cdsts) and transitions deterministically to the absorbing stat&Vhen
a policy is executed, the selection of the actignat any state will result in replanning, as discussed
in the online planning framework just presented. The actionan be thought of as “heuristic
achievement” actions, allowing the immediate achievement of the value promised hguristic
function.

Analyzing the MDP transformed by the heuristic achievement transformfiaita horizon
aroundsg represents the problem of finding a policy for improving on the heuristicevafus
without regard to the cost of achieving such improvement in the heuristicwitpthe heuristic
achievement actioa, to be selected at any point at any state reflects the greedy nature ofdhis go
the planner is not forced to look further once an improvement is founkbrgpas there is a policy
from the initial state that expects to see improvement.

Formally, given MDPM = (S, A, C, T, so) and non-negative heuristic functian S — R, the
heuristic achievement transform df underh, written My, is given by(S, A", C", T’ sy), where
A’, C’, andT’ are as follows. Les, s, andss be arbitrary states from. We defineA’(s) to be
A(s) U {a, }, and we take®’'(s1, a, s2) = 0 andT”(s1,a, s2) = T(s1,a, s2) for eacha € A(sy).
Finally, we definel”(s,a, , 1) = 1andC’(s,a,, 1) = h(s).

The transformed MDP will have zero-cost policies at all states, and@sisunot of imme-
diate use. However, policies that are required to selecas their final action (at horizon one)
represent policies that are seeking to get to regions with low heuristic, vahgtever the cost.
An increasing-horizon search for such policies corresponds tpagla breadth-first search for an
improved heuristic value in deterministic enforced hill-climbing. Formally, we éetie class of
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heuristic-achievement policig$ as the class of policies(s, k) that satisfyr(s, 1) = a, for all s.
We defineJ; (s, k) to be the value mipezJ™ (s, k) in the heuristic transform MDP fdr and; to
be a policy that achieves this value. We note that, due to the zeroing of moim#&b action costs,
J; (s, k) represents the expected heuristic value achieved at the next exedutippwherea | is
required at horizort if not before. Formally, if we define the random variablgo be the state at
which 7y first executes: | in a trajectory froms, we haveJ; (s, k) = E[h(s")].

The rough motivation for setting action costs to zero for the analysis of thaskie-based
MDP is that such actions are being considered by our method to remedianed fieuristic. The
cumulative action cost required to reach a state of improved heuristic valuensasure of the
magnitude of the flaw in the heuristic. Here, we remove this cost from the sisatyorder to
directly express the subgoal of “reaching a state with lower heuristic vdluguding action costs
might, for example, lead to preferring cheap paths to higher heuristic vélaesto states worse
than sg) when expensive paths to lower heuristic values have been foundbdgie motivation
for enforced hill climbing is to strongly seek improved heuristic values. &t diluting this
subgoal by adding in action costs, our methods seek the “shortest” pattetaiatic improvement
by analyzing the heuristic-based MDP with an iteratively deepened finitedmras discussed in
the next subsection. This approach is most reasonable in settings velcbraction has the same
cost, so that the finite-horizon value iteration is a stochastic-setting analmgn#éorm cost search.
In settings with varying action cost, future work is needed to adapt SEHefuillysconsider that
cost without excessively diluting the focus on improving the heuristic.

3.2.1 HEURISTICACHIEVEMENT VALUE |ITERATION

Following the formalism of value iteration in Section 2.1, we compufé¢s, k) with heuristic
achievement value iterati@s follows:

J7i(s,1) = h(s), and
Ji(s,k) = min Q(s,a,J;(-,k—1))fork > 2.
acA'(s)
A non-stationary policy achieving the cost-to-go given.By-, k) can also be computed using the
following definition:

7, (s,1) = ay, and
(s, k) = argmin,c 4/ Q(s, a, Jp (-, k — 1)) for k > 2.

Note thatQ() is computed on the heuristic-achievement transformed MDAN both equations.
For technical reasons that arise when zero-cost loops are presamtjuire that tie breaking in the
argmin forr (s, k) favors the action selected hy (s, k — 1) whenever it is one of the options. This
is to prevent the selection of looping actions over shorter, more diretdgaf the same value.

3.3 A Local Planner

We consider a method to be stochastic enforced hill-climbing if it uses an ordinaipg frame-
work, such as that presented in Table 1, together with a local policy selentthod that solves
the heuristic-achievement MDP (exactly, approximately, or heuristicallgreHwve describe one
straightforward method of local policy selection by defini@gH-find-local-policy using finite-
horizon value iteration. This method generalizes the breadth-first seaezhin deterministic
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enforced hill-climbing, and seeks an expected heuristic improvement réiduera deterministic
path to an improved heuristic value. More sophisticated and heuristic metrard§inifte-horizon

value iteration should be considered if the implementation presented herthiéridsal MDP prob-

lems intractable. Our analytical results in Section 3.4 apply to any method thadlyes@lges the

heuristic-achievement MDP, such as the method presented in Table Xpmuineental results are
conducted using the implementation in Table 2 as well.

We present pseudo-code 8EH-Find-Local-Policy in Table 2. A heuristic functioh respects
goalsif h(s) = 0iff s € G. The algorithm assumes a non-negative heuristic fundtiord — R
that respects goals, as input. SEH-Find-Local-Paligy) returns the policyr; and a horizork.
The policy is only computed for states and horizons needed in order tatexgcfrom s, using
horizonk until the policy terminates.

Thus, in lines 5 to 11 of Table 2, heuristic-achievement value iteration isucted for increas-
ing horizons aroundy, seeking a policy improving(so). Note that for a given horizoh+ 1, only
states reachable withinsteps need to be included in the value iteration.

3.3.1 EARLY TERMINATION

The primary termination condition for repeated local policy construction isidwdery of a policy
improving on the heuristic estimate of the initial state. As discussed below in §ttigpol, in
domains without deadends, SEH-Find-Local-Policy will always find a paligproving onh(sy),

given sufficient resources.

However, for badly flawed heuristic functions the “large enough” lwrizthat are analyzed in
SEH-Find-Local-Policy may be unacceptably large given resourceti@nts. Moreover, in do-
mains with unavoidable deadends, there may be no horizon, howevendattya policy improving
on the heuristic at the initial state. For these reasons, in practice, the algstiips enlarging the
horizon for heuristic-based MDP analysis when user-specified resdimits are exceeded.

When horizon-limited analysis of the heuristic-transform MDP constructa@sadhot yield the
desired results inexpensively, biased random walk is used to seek @itialvstate. As an ex-
ample, consider a problem in which the provided heuristic labels all statekalgla ink steps
with cost-to-go estimates that are very similar, forming a very large plateanalysis of this large
plateau exceeds the resources available, biased random walk is indioatadk of useful heuristic
guidance.

So, once a horizow is found for whichJ; (so, k) < h(so), the system executes, from s
at horizonk until the terminate actiom ; is selected. If the resource limit is exceeded without
finding such a horizon, the system executes a biased random walk tf lengith the terminating
actiona, imposed in all states reachable by such biased random walk wWit8) < h(sg). This
additional biased random walk allows our method to retain some of the behefioerties of
random exploration in domains where heuristic flaws are too large for MiaB/sis. The resource
consumption threshold at which random walk is triggered can be viewegasmeter controlling
the blend of random walk and MDP-based search that is used in overgtmimistic flaws. We
currently do not have a principled way of analyzing the tradeoff betweswsurce consumption and
the cost of switching to biased random walk, or determining when to do suitthing. Instead,
we use domain-independent resource limits as described in Section 5.h,ambidetermined after
some experimentation.
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SEH-Find-Local-Policy{g,h)

Il sgis the current state.

Il h:SU{L} — Rthe heuristic function, extended witl{_L) = 0.

/I We assume global variabld}, is the heuristic-achievement
transform of the original problem/ underh.

Il We seek a policy in the proble¥;, achieving cost less tham(sy).
1. k=1

2. Repeat

3. k=k+1

4. /I ComputeJ; (so, k) in M}, using value iteration

5. Jp(, 1) =h(), (1) =a,n=1

6. Repeat

7. n=n+1

8. For eachs reachable froms in M), using at mosk — n steps
9. Jjy (s,n) = minge 415y Q(s,a, J5 (-,n — 1))

10. T (s,m) = argmin,c 45 Q(s, a, J;(-,n — 1))
11. Untiln = k

12. Until J; (so, k) < h(so) or resource consumption exceeds user-set limits
13. |If J;;(So, k?) < h(SO)

14. then

15. Returnt; and horizork

16. else

17. /I Return as-step biased random walk poliey

18. /I Note: implementations should computéazily online

19. Forn=1tos

20. For each state

21. If h(s) < h(so)

22. then

23. 7(s,n) selects:; with probability one

24. else

25. (s, n) selects each actiane A(s) with probability e::(t’_aé}zi,ai,h))
26. Returnr and horizork Z

Table 2: Pseudo-code for the local planner used to implement stochéasticezhhill-climbing.
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Horizon-limited analysis of the heuristic-transform MDP may also terminate witfioding
a horizonk such thatJ; (so, k) < h(so) when the entire reachable statespace has been explored,
in the presence of deadends. This may happen without exceeding iteblaveesources, and in
this case we fall back to a fixed number of iterations of standard VI on tlggnat MDP model
(including action costs and without the heuristic transform) for the redelstdtes.

3.4 Analytical Properties of Stochastic Enforced Hill-Climbing

In deterministic settings, given sufficient resources and no dead-enfisced hill-climbing can
guarantee finding a deterministic path to an improved heuristic value (if nottiagagoal state
will suffice). Given the finite state space, this guarantee implies a guariateepeated enforced
hill-climbing will find the goal.

The situation is more subtle for stochastic settings. In a problem with no dwtjfer every
states the optimal policy reaches the goal with probability one. It follows that in saroblems, for
anyh assigning zero to every goal state, for every statad real value > 0, there is some horizon
k such that/; (s, k) < e. (Recall that/;; analyzes the heuristic transform MDP wherein action costs
are dropped except that) must be realized at horizon one.) Because SEH-Find-Local-Pslidy(
considers each in turn until J; (s, k) < h(s) we then have:

Proposition 1. Given non-goal state, no dead-ends, non-negative heuristic function
h : S — R respecting goals, and sufficient resources, the routine SEH-Finaito
policy(s,h) returns the policyr; and a horizork with expected returd; (s, k) strictly
less tham(s).

However, unlike the deterministic setting, the policy found by the routine SiEH-Eocal-Policy
only expectssome improvement in the heuristic value. So particular executions of the paicy f
the current state may result in a degraded heuristic value.

Here, we prove that even in stochastic settings, in spite of this possibility efrpsolts from
one iteration, SEH will reach the goal region with probability one, in the atessehdead-end states
and with sufficient resources. In practice, the provision of “sufficiesources” is a serious hurdle,
and must be addressed by providing a base heuristic with modest-sized flaw

Theorem 1. In dead-end free domains, with unbounded memory resources, &EH r
ches the goal region with probability one.

Proof. Let xg, z1,29,...,zm,... be random variables representing the sequence of
states assigned toin line 2 of Table 1 when we execute SEH on a planning problem,
with zo being the initial state;,;;. If the algorithm achieves, € G for somer, and
thus terminates, we take_; = z; for all j > 7. (Note that as a result; € G implies
zj+1 € G, whereG is the goal region of states.)

We show that for arbitraryn > 0 the probability thatz,, is in the goal region is

at leastl — % for a real valuej > 0 defined below. This expression goes to one
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asm goes to infinity, and so we can conclude that SEH reaches the goal m&gion
probability one.

By Proposition 1, from any non-goal stateabsent dead-ends and with sufficient
resources, one iteration of SEH is guaranteed to return a policy for soiteetforizon
ks with valueJ; (s, ks) improving onh(s). Letd, = h(s) — J; (s, ks) > 0 be the value
of the improvement frons at horizonk,;. Because there are finitely many non-goal
states, there exists= min,cs_¢ d5 > 0 such that the improvements) — J;: (s, ks)
is at leasty. Consider an arbitrary i such that ¢ G. Noting thatJ; (z;, ks,) =
E[h(x;+1)] due to zero action costs i}, it follows immediately then thakb'[h(x;) —
h(zi+1)|x; ¢ G] > §, whereG is the goal region of states. Using thate G implies
bothz;+1 € G andh(z;) = h(x;4+1) = 0, we write this as

Elh(zi) — h(wit1)]
=E[h(zi) — hMzit1)|z: ¢ GlQ;

+ Elh(wi) — h(wiv1)|zi € G](1 — Q)
>Q;6,foréd > 0,

defining@; to be the probability that; ¢ G.

Now, we lower-bound the expected heuristic improvem@fit(zo) — h(z,,)] af-
ter m calls to SEH-Find-Local-Policy, for m > 0. We can decompose this expected
improvement overn calls toSEH-Find-Local-Policy as the sum of the expected im-
provements for the individual calls. Then, lower-bounding this sum ussrgmallest
term, we get

(1)

Elh(z0) — h(zm)]

m—1
=) Elh(zi) — h(zit1)]

i=0

o 2
> Q6 (from Inequality 1)

=0
= mQm0,

as@),, is non-increasing, since,,_; € G impliesz,, € G.
Next, we combine this lower bound with the natural upper bohifg;; ), sinceh
is assumed to be non-negative Bf(zo) — h(zy)] < h(sinit)) andzg = sinit. Thus,

h(sinit) > Qmmd.
Therefore the probability),,, thatz,, ¢ G is at most%, converging to zero with

largem and so SEH reaches the goal with probability one. O

While the theorem above assumes the absence of dead-ends, problenhsadittnds are cov-

ered by this theorem as well if the dead-ends are both avoidable and ekktuyfithe heuristic.
Specifically, we may require that the heuristic function assign$o a state if and only if there
is no policy to reach the goal from that state with probability one. In this dhseproblem can
be converted to the form required by our theorem by simply removing allsséasgnedo from
consideration (either in pre-processing or during local MDP constmictio
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3.5 Variants and Extensions of SEH

SEH is based on finite-horizon analysis of the MDP transformed by théskietachievement trans-
form around the current statg. The particular heuristic-achievement transform we describe is of
course not the only option for incorporating the heuristic in a local searcbndsy,. While we
have already considered a number of related alternatives in arrivihg ahoice we describe, other
options can and should be considered in future research. One natatsletion in our transform
is the removal of action costs, which is discussed in Section 3.2. It is impddratite method
to retain the actual heuristic value in the analysis so that it can trade off kng#l, positive and
negative changes in heuristic value according to their probabilities of gri§iar this reason, we
do not have the heuristic transform abstract away from the value and sasgilyn rewards of 1 or
0 according to whether the state improvesids ). Our choice to remove action costs during local
expansion can lead to poor performance in domains with flawed heuristicadtitg badly with
high variations in action costs. This is a subject for future research anétieod.

Also, the MDP models we describe in this paper are limited in some obvious waysseT
limitations include that the state space is discrete and finite, the problem settisgllackunting,
and the objective is goal-oriented. We have yet to implement any extensiglaxdese limitations,
and leave consideration of the issues that arise to future work. We noti¢ Wiauld appear that
the method is fundamentally goal-oriented, given the goal of repeatedlgirgpthe heuristic value
of the current state. However, it is possible to contemplate infinite-horimmoointed non-goal-
oriented variants that seek policies that maintain the current heuristic estimate.

3.6 Incorporating FF Goal-Ordering Techniques in SEH

The planner FF contains heuristic elements inspired by ordering issuesitigain the blocksworld
problems (Hoffmann & Nebel, 2001). These heuristic elements improvempeathce on the blocks-
world problems significantly. To assist in a fair comparison of SEH with Fple we have
implemented two of the heuristic elements, nangedg/ agendandadded goal deletigin a variant
of SEH that we call SEH.

The implementation of SEH is as follows. The stochastic planning problem is first deter-
minized using the “all outcomes determinization” described in Section 2.2. Tadleagenda tech-
nique of FF is then invoked on the determinized problem to extract a segjoétemporary goals
G4, ...,Gn, Where eaclty; is a set of goal facts and,,, is the original problem goal. SEH with a
stochastic version of added goal deletion, described next in this tidrseés then invoked repeat-
edly to compute a sequence of statgs . ., s,,, Wheresy is the initial state and for > 0 eachs;
is defined as the state reached by invoking SEH in statewith goal G; (thus satisfying=;).

Added goal deletiois the idea of pruning the state search space by avoiding repetitive addition
and deletion of the same goal fact along searched paths. In FF, farchsstates, if a goal fact
is achieved by the action arriving atbut is deleted by an action in the relaxed plan found frpm
thens is not expanded further (Hoffmann & Nebel, 2001).

For our stochastic adaptation of added goal deletion, we define the fitefadded by any
state transitioris, a, s’) to be those facts true isf but not ins and represent it as the set difference
s’ —s. Then, the set of added goal facts for the transition are those adttedaviaich are also true in
the current temporary goél,, i.e., (s’ — s) N G;. We prune any state transitigg, a, s’) whenever
the relaxed plan computed froshto the current temporary goél; contains an action that deletes
any of the added goal facts. A transitios a, s') is “pruned” by modifying the Bellman update at
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states so thats’ contributes the dead-end state vallig X to the Q-value fom at s, weighted by
the transition probability (instead of contributing the cost-to-ge'atMore formally, we define a
modified Q-function when using added goal deletiQq,q(s, a, J) as follows:

1(s') 1, if f € (s’ —s)NG;isdeleted by an action in relaxgdan(s’,G;)°
S =
0, otherwise

Qaga(s,a,J) = Y T(s,a, ) I(s)Vi + (1= I(s)J(s")]

Qagd() then replaces)() in the definition of the cost-to-go functiof() in Section 3.2. Also,
“reachability” in line 8 of Table 2 does not use pruned transitions.

In some problems, subsequent deletion of newly added goals is unakeoidaany valid plan.
Added goal deletion prunes all routes leading to the goal region for gratllems even though
no actual deadend is present. Hence, this is an incomplete technique @ssdisin the work
of Hoffmann and Nebel (2001). FF falls back to best-first search ifl&ENnot able to find a valid
plan due to pruning. Similarly, when unable to find an improved policy, SEH etk to either
value iteration or biased random walk as described in Section 3.3.

Preliminary exploration of incorporating stochastic variants of FF's helaétion pruning
(Hoffmann & Nebel, 2001) into SEH did not improve performance, much likeetffiect of added
goal deletion on all domains except the blockswdrlds a result, we do not report on helpful-
action-pruning methods here.

4. Related Work

In this section we discuss planning techniques that are close to our wank iorenore dimensions.

4.1 Fast-Foward (FF) Planner and Deterministic Enforced Hill-Climbing

For an introduction to deterministic enforced hill-climbing (DEH) and its relationutotechnique,
please see Section 3. Here, we additionally note that there are sevesabflimerk that directly
extend the FF planner to allow planning with humeric state-variables (Hoffn20@38) and plan-
ning with uncertainty (Hoffmann & Brafman, 2006, 2005; Domshlak & Hoffma2007). Although
these techniques involve significant changes to the computation of thed-gdkareheuristic and the
possible addition of the use of belief states to handle uncertainty, enfoilcetimbing is still the
primary search technique used in these lines of work. We note that altihotighwork of Domsh-
lak and Hoffmann actions with probabilistic outcome are handled, the plaRnebdbilistic-FF)
is designed for probabilistic planning with no observability, whereas oumglais designed for
probabilistic planning with full observability.

4.2 Envelope-Based Planning Techniques

Stochastic enforced hill-climbing dynamically constructs local MDPs to find @ loalicy leading
to heuristically better state regions. The concept of forming local MDP®&rmw»elopes”, and using

5. relaxedplan(s’,G;) computes the relaxed plan between stateand G; as defined in the work of Hoffmann and
Nebel (2001) using the all-outcomes problem determinization definecctin8e.2.

6. We explored ideas based on defining the helpfulness of an action tee lexplectation of the helpfulness of its
deterministic outcomes.
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them to facilitate probabilistic planning has been used in previous resemithsthe work of Bonet
and Geffner (2006), and Dean et al. (1995), which we briefly reViere.

The envelope-based methods in the work of Dean et al. (1995) anibGard Kaelbling (2003)
start with a partial policy in a restricted area of the problem (the “enve)oplegn iteratively im-
proves the solution quality by extending the envelope and recomputing thiel ganlicy. The
typical assumption when implementing this method is that the planner has an initieldrgjirom
the starting state to the goal, generated by some stochastic planner, to usadgmtlenvelope.

Another line of work, including RTDP (Barto, Bradtke, & Singh, 1995AQ* (Hansen &
Zilberstein, 2001), and LDFS (Bonet & Geffner, 2006), starts withrarelpe containing only the
initial state, and then iteratively expands the envelope by expanding sttaes are expanded
according to state values and dynamic programming methods are used tp ktatiewalues from
newly added states, until some convergence criterion is reached. Siodrgorced hill-climbing
can be viewed as repeatedly deploying the envelope method with the gdatirracof improving
on the heuristic estimate of distance-to-go. For a gofahction, most invocations result in trivial
one-step envelopes. However, when local optima or plateaus arergecl) the envelope may
need to grow to locate a stochastically reachable set of exits.

All of the above referenced previous search methods have constremtelopes seeking a high
quality policy to the goal rather than our far more limited and relatively inexpergoal of basin
escape. Our results derive from online greedy exploitation of the hieurggher than the more
expensive offline computation of converged values proving overaHrjnoptimality. LDFS, for
example, will compute/check values for at least all states reachable thvedeptimal policy (even
if given J* as input) and possibly vastly many others as well during the computation.

Some of these previous methods are able to exploit properties (such asiadity)sof the
heuristic function to guarantee avoiding state expansions in some regithresstéite space. Clearly,
SEH exploits the heuristic function in a way that can avoid expanding regibtie statespace.
However, we have not at this point conducted any theoretical anaffijgisai regions can be guar-
anteed unexpanded for particular kinds of heuristic, and such asatysg be quite difficult.

4.3 Policy Rollout

The technique of “policy rollout” (Tesauro & Galperin, 1996; Bertsegabsitsiklis, 1996) uses a
provided base policyr to make online decisions. The technique follows the polieyedy(V ™),
whereV™ is computed online by sampling simulations of the policy

The computation of the optimal heuristic-transform poligyin SEH has similarities to policy
rollout: in each case, online decisions are made by local probabilistic @ tigs leverages pro-
vided information to manage longer-range aspects of the local choic&BFdra heuristic function
is provided while, for policy rollout, a base policy is provided. In this viewljgy rollout does local
analysis under the assumption that non-local execution will use the blsg ppwhereas SEH
does local analysis under the assumption that non-local execution widélvactine base heuristic
cost estimaté.

In fact, for our goal-oriented setting, when the provided heuristic funétiis stochastic (a sim-
ple generalization of what we describe in this paper), and equal to a susipialation evaluation

of V™ for some policyr, then SEH executes the same policy as policy rollout, assuming uniform

action costs and sufficient sampling to correctly order the action choidas. claim follows be-
cause whem = V7 there is always some action to yield an expected improvemenirione step,
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in our goal-oriented setting. The need for uniform action costs in this claimbeaglaxed if a
variant of SEH is developed that retains action costs in the heuristic tramsfo

In policy rollout, only horizon-one greedy use of the sampled heuristiceged, but the main
substance of SEH is to enable the repair and use of heuristic functions awith tthat cannot be
repaired at horizon one. Thus the central differences between theidqees are reflected in the
ability of SEH to leverage arbitrary heuristic functions and repair flaws isdtionctions at larger
horizons.

Policy rollout provides an elegant guarantee that the online policy seliegpedves on the base
policy, given sufficient sampling. This result follows intuitively becausedbmputed policy is the
policy-iteration improvement of the base policy. Unfortunately, no similar @yuae is known to
apply for SEH for an arbitrary heuristic function. However, policy rotloannot be used to improve
an arbitrary heuristic function either.

4.4 Local Search in Optimization

Stochastic enforced hill-climbing can be regarded as one of many loaakhseahniques designed
to improve on greedy one-step lookahead, the most naive form of leaatts optimization. Here
we briefly discuss connections to the method of simulated annealing, onergéddaily of related
local search techniques. For more detail, please see the work of Adrteastra (1997).

Simulated annealing (Kirkpatrick et al., 1983; Cerny, 1985) allows the ts@heaf actions with
inferior expected outcome with a probability that is monotone in the action g-vahesprobability
that an inferior action will be selected often starts high and decreasesroeeaccording to a “cool-
ing” schedule. The ability to select inferior actions leads to a non-zetuapility of escaping local
optima. However, this method does not systematically search for a policydbatsth. In contrast,
stochastic enforced hill-climbing analyzes a heuristic-based MDP at singghorizons to system-
atically search for policies that give improved expected value (hencintgthe local extrema). In
our substantial preliminary experiments, we could not find successfaider settings to control
simulated annealing for effective application to online action selection in gosdtdd stochastic
planning. To our knowledge, simulated annealing has not otherwise bsted tan direct forward-
search action selection in planning, although variants have been appliesbwithsuccess to other
planning-as-search settings (Selman, Kautz, & Cohen, 1993; Kautdr8aBe 1992; Gerevini &
Serina, 2003) such as planning via Boolean satisfiability search.

5. Setup for Empirical Evaluation

Here, we describe the parameters used in evaluating our method, thdibewvis will test the
method on, the problem categories in which the tests will be conducted, tthemavariables for
aggregated evaluation, and issues arising in interpreting the results arstdtistical significance.
We run our experiments on Intel Xeon 2.8GHz machines with 533 MHz busdsped 512KB
cache.

5.1 Implementation Details

If at any horizon increase no new states are reachable, our implememtb8&H simply switches
to an explicit statespace method to solve the MDP formed by the reachable Btatespecifically,
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if the increase irk at line 3 in Table 2 does not lead to new reachable states in line 8, we trigger
value iteration on the states reachable frgm

Throughout our experiments, the thresholds used to terminate local piantime 12 of Table 2
are set al.5 x 10° states and one minute. We set the biased random walk lertgtten. This work
makes the assumption that the heuristic functions used assign large valas$ytoseognized dead-
ends, as hill-climbing works very poorly in the presence of dead-endctttratates. We enforce
this requirement by doing very simple dead-end detection on the frontfeadlo heuristic function
(described next in Section 5.2 for each heuristic) and assigning the Valuel 0° to recognized
dead-end states.

We denote this implementation running on heuristiwith SEH(h).

5.2 Heuristics Evaluated

We describe two different types of heuristic functions used in our etialuand the associated
dead-end detection mechanisms.

5.2.1 THE CONTROLLED-RANDOMNESSFF HEURISTIC

For use in our evaluations, we define a domain-independent heuristiidinnthe “controlled-
randomness FF heuristic” (CR-FF). We define CR-FF on a stétebe the FF distance-to-goal
estimate (Hoffmann & Nebel, 2001) stomputed on the all-outcomes determinization as described
in Section 2.2. We denote the resulting heuristic funcfiorWhile computing the CR-FF heuristic,
we use the reachability analysis built into the FF planner for the detectioradedes.

5.2.2 LEARNED HEURISTICS

We also test stochastic enforced hill-climbing on automatically generated tiefuisctions from
the work of Wu and Givan (2010), which on their own perform at the stéthe-art when used to
construct a greedy policy. We shift these heuristic functions to fit thensgative range require-
ment of h discussed previously. These learned heuristic functions are cureaailgble for only
seven of our test categories, and so are only tested in those categories.

We note that these heuristics were learned for a discounted setting witttart aosts and
so are not a direct fit to the “distance-to-go” formalization adopted héfe.are still able to get
significant improvements from applying our technique. We denote thesistiesiL. Only states
with no valid action choice available are labeled as deadends when appElidcsthe learned
heuristics.

5.3 Goals of the Evaluation

Our primary empirical goal is to show that stochastic enforced hill-climbingeggly improves
significantly upon greedy following of the same heuristic (using the police®fé) as described
in the technical background above). We will show that this is true for bidthecheuristics defined in
Section 5.2. We show empirically the applicability and limitation of SEH discusseddiioBel. 1,
in different types of problems including probabilistically interesting ones (L&tlhiebaux, 2007).
A secondary goal of our evaluation is to show that for some base hesiiséaesulting per-
formance is strong in comparison to the deterministic replanners FF-Repan €Y al., 2007) and
RFF (Teichteil-Konigsbuch et al., 2010). While both FF-Replan and RERhesFast-Forward (FF)
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base planner, RFF uses a most-probable-outcome determinization in témttaes all-outcomes
determinization used by FF-Replan. The primary other difference betREErand FF-Replan is
that before executing the plan, RFF grows policy trees to minimize the probadiilitaving to
replan, while FF-Replan does not.

5.4 Adapting IPPC Domains for Our Experiments

We conduct our empirical evaluation using all problems from the first thmeenational proba-
bilistic planning competitions (IPPCs) as well as all twelve "probabilistically irstémg” problems
from the work of Little and Thiebaux (2007). We omit some particular problendomains from
particular comparisons for any of several practical reasons, detaig@donline appendix.

Because enforced hill-climbing is by nature a goal-oriented technique aHdsSiermulated
for the goal-oriented setting, we ignore the reward structure (includitigraand goal rewards)
in any of the evaluated problems and assume an uniform action cost obottese problems,
transforming any reward-oriented problem description into a goal-odeonte.

We provide detailed per-problem results in an online appendix for eanhgi@valuated in this
work. However, in support of our main conclusions, we limit our presentdnere to aggregations
comparing pairs of planners over sets of related problems. For thisgmjrp@ define seventeen
problem categories and aggregate within each problem category. Whike categories are single
domains, more generally, multiple closely related domains may be aggregatedaviinigle cat-
egory. For example, the blocksworld category aggregates all blockkpmblems from the three
competitions, even though the action definitions are not exactly the sameyrseebrproblem. For
some paired comparisons, we have aggregated the results of all problestesilas or constructed
to be “probabilistically interesting” by the IPPC3 organizers or by the woikitle and Thiebaux
(2007) into a combined category PROBLEMS

In Table 3, we list all evaluated categories (including the combined catdgioPROBLEMS),
as well as the planning competitions or literature the problems in each categofom. The
evaluated problems in each category are identified in an online appendix.

The reward-oriented ¥ADMIN domain from IPPC3 was a stochastic longest-path problem
where best performance required avoiding the goal so as to continumalating reward as long
as possible (Bryce & Buffet, 2008). (Note that contrary to the orgasizeport, the domain’s goal
condition is “all servers up” rather than “all servers down”.) Our gadénted adaptation removes
the longest-path aspect of the domain, converting it to a domain where thésgoaget all the
servers up.

The BLOCKSWORLD problems from IPPC2 contain flawed definitions that may lead to a block
stacking on top of itself. Nevertheless, the goal of these problems is vigledeand is achievable
using valid actions, hence the problems are included in thed&SwWORLD category.

We have discovered that the five rectangle-tireworld problems (p11 tdrpid IPPC3 2-
TIREWORLD) have an apparent bug—no requirement to remain “alive” is included igdhkcon-
dition. The domain design provides a powerful teleport action to non-afjeats intended only to
increase branching factor (Buffet, 2011). However, lacking airement to be alive in the goal,
this domain is easily solved by deliberately becoming non-alive and then teteptarthe goal. We
have modified these problems to require the predicate “alive™ in the ggadimeWe have merged
these modified rectangle-tireworld problems with triangle-tireworld probleams foth IPPC3 and
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Category Problem Source(s)
BLOCKSWORLD IPPC1, IPPC2, IPPC3
BOXWORLD IPPC1, IPPC3

BUSFARE Little and Thiebaux (2007)
DRIVE IPPC2

ELEVATOR IPPC2

EXPLODING BLOCKSWORLD

FILEWORLD

PITCHCATCH

RANDOM

RIVER

SCHEDULE

SEARCH AND RESCUE

SYSADMIN

SYSTEMATIC-TIRE

TIREWORLD

TOWERS OFHANOI

ZENOTRAVEL

IPPC1, IPPC2, IPPC3
IPPC1

IPPC2

IPPC2

Little and Thiebaux (2007)
IPPC2, IPPC3

IPPC3

IPPC3

Triangle-tireworld (IPPC3 2-Tireworld P1 to P10, Little and Thiebaux @0
Rectangle-tireworld (IPPC3 2-Tireworld P11 to P15) with bug fixed

IPPC1, IPPC2
IPPC1

IPPC1, IPPC2

Pl PROBLEMS

BUSFARE, DRIVE, EXPLODING BLOCKSWORLD
PITCHCATCH, RIVER, SCHEDULE, SYSTEMATIC-TIRE, TIREWORLD

Table 3: List of categories and the planning competitions or literature froiohwhe problems in

each category are taken.
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the work of Little and Thiebaux (2007) into a categorySSEMATIC-TIRE, as these problems have
been systematically constructed to emphasize Pl features.

5.5 Aggregating Performance Measurements

For our experiments, we have designed repeatable aggregate meadaithiaiave can then sample
many times in order to evaluate statistical significance. We now define themavat@bles repre-
senting these aggregate measurements and describe our sampling, proeedkas our method for
evaluating statistical significance.

5.5.1 DEFINING AND SAMPLING AGGREGATEMEASUREMENT RANDOM VARIABLES

For each pair of compared planners, we define four random variedgpessenting aggregate per-
formance comparisons over the problems in each category. Each raadiatole is based upon a
sampling process that runs each planner five times on all problems in aryatagbaggregates the
per-problem result by computing the mean. We use five-trial runs to ecithecincidence of low-
success planners failing to generate a plan length comparison. Each ahgafrem a five-trial run
is a sample value of the respective random variable.

First, the per-problem success ratio (SR) is the fraction of the five rutsstitceed for each
problem. The success ratio random variable for each category angeplenthen the mean SR
across all problems in the category.

Second, the per-problem successful plan length (SLen) is the mealepigh of all successful
runs among the five runs. In order to compare two planners on plan lemgtinen define the per-
problem ratio of jointly successful plan lengths (JSLEN-RATIO) for the tempared planners as
follows. If both planners have positive SR among the five trials on the prghlSLEN-RATIO is
the ratio of the SLen values for the two planners; otherwise, JSLEN-BAJ lundefined for that
problem. We use ratio of lengths to emphasize small plan length differencedmsirort solutions
than in long solutions, and to decrease sensitivity to the granularity of thenafetfmitions.

The mean JSLEN-RATIO random variable for each category and paitaohers is then the
geometric mean of the JSLEN-RATIO across all problems in the categowhich JSLEN-RATIO
is well defined. In this manner we ensure that the two planners are codraexactly the same set
of problems. Note then that, unlike SR, JSLEN-RATIO depends on the paimapared planners,
rather than being a measurement on any single planner; it is the ratio @ss@dcplan length on
thejointly solvedproblems for the two planners.

Similarly, the per-problem ratio of jointly successful runtimes (JSTIME-RHTis defined in
the same manner used for comparing plan lengths. The mean JSTIME-R&&fain computed
as the geometric mean of well-defined per-problem JSTIME-RATIO values

Because JSLEN-RATIO and JSTIME-RATIO are ratios of two measunésna/e use the geo-
metric mean to aggregate per-problem results to generate a sample valtegswhie use arithmetic
mean for the SR variables. Note that geometric mean has the desired ptbpéekishen the plan-
ners are tied overall (so that the geometric mean is one), the mean is ingetositiiich planner is
given the denominator of the ratio.

Thus, to draw a single sample of all four aggregate random variablegofS&ach planner,
JSLEN-RATIO, and JSTIME-RATIO) in comparing two planners, we tlumtwo planners on each
problem five times, computing per-problem values for the four variablestlaen take the (arith-
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metic or geometric) means of the per-problem variables to get one samplehoaggregate vari-
able. This process is used repeatedly to draw as many samples as negelesigoificant results.

We use a plan-length cutoff of 2000 for each attempt. Each attempt is githere dimit of 30
minutes.

5.5.2 SGNIFICANCE OF PERFORMANCEDIFFERENCESBETWEEN PLANNERS

Our general goal is to order pairs of planners in overall performanaeach category of problem.
To do this, we must trade off success rate and plan length. We take the pdlitca significant

advantage in success rate is our primary goal, with plan length used onlyetonitee preference
among planners when success rate differences are not found tonbfecai.

We determine significance for each of the three performance measure(8éhtsISLEN-
RATIO, and JSTIME-RATIO) using t-tests, ascribing significance to tsiits when the p-value
is less than 0.05. The exact hypothesis tested and form of t-test usexddepn the performance
measurement, as follows:

1. SR — We use a paired one-sided t-test on the hypothesis that thertitfaretrue means is
larger than 0.02.

2. JSLEN-RATIO — We use a one-sample one-sided t-test on the hymthasthe true geo-
metric mean of JSLEN-RATIO exceeds 1.05 (log of the true mean of JSLEN@Rexceeds
log(1.05)).

3. JSTIME-RATIO — We use a one-sample one-sided t-test on the hypsttieat the true
geometric mean of JSTIME-RATIO exceeds 1.05 (log of the true mean dMESRATIO
exceedsog(1.05)).

We stop sampling the performance variables when we have achieved theefollowing crite-
ria, representing “an SR winner is determined” or “SR appears tied”:

1. Thirty samples have been drawn and the p-value for SR differeneoia 5.05 or above 0.5.
2. Sixty samples have been drawn and the p-value for SR differenckoig 65 or above 0.1.
3. One hundred and fifty samples have been drawn.

In all the experiments we present next, this stopping rule leads to only 30esabging drawn
unless otherwise mentioned. Upon stopping, we conclude a ranking etinesglanners (naming a
“winner”) if either the SR difference or the JSLEN-RATIO has p-valedol 0.05, with significant
SR differences being used first to determine the winner. If neither meadswignificant upon
stopping, we deem the experiment inconclusive.

Combining categories For some of our evaluations, we aggregate results across multiple cate-
gories of problem, e.g., the combined categoryPRbBLEMS In such cases, we have effectively
defined one larger category, and all our techniques for definingqmeaince measurements and de-
termining statistical significance are the same as in Section 5.5. However, mgg dctually re-run
planners for such combined-category measurements. Instead, we teeuplanner runs used for
the single-category experiments. Rather than use the stopping rule jugbddswe compute the
maximum number of runs available in all the combined categories and use thatsaraples of
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the combined-category performance measurements. To avoid doublingopnoblem results, we
treat combined categories separately when analyzing the results aricthgoumims and losses.

6. Empirical Results

We present the performance evaluation of stochastic enforced hill-clinfBIBH) in this section.
The experiments underlying the results presented here involve 169,8B@ptans in 17 categories.

6.1 Summary of Comparison

The results in Table 4 show that, for the CR-FF heuristic, SEH with the gdakiog and added-
goal-deletion enhancements (SEH)) improves significantly over the baseline SEH technique

(SEH(F)) in the category BoCckswORLD, but does not show significant changes in the aggregated

performance for non-blocksworld problefg or the remainder of the experiments involving CR-

FF, we evaluate only SEHF), noting that both of our comparison planners (FF-Replan and RFF)

benefit from the goal-ordering and added-goal-deletion enhancemktitsir base planner, FF-
plan.
The results we present next for SEE") show:

e SEH"(F) significantly outperforms Greed¥( in 13 categories, but is outperformed by

Greedyf’) in SCHEDULE. There were three categories where the comparison was incon-

clusive (BUSFARE, RIVER and TIREWORLD). See Table 5 for details.

e FF-Replan was inapplicable in two categories (IPPE&3RCH-AND-RESCUEand IPPC3
SYSADMIN). SEH"(F) significantly outperforms FF-Replan in 10 categories, but is outper-
formed by FF-Replan in three categoriexXfEODING BLOCKSWORLD, PITCHCATCH, and
ZENOTRAVEL). There were two categories where the comparison was inconclusive-(F
WORLD and RVER). SEH"(F) also significantly outperforms FF-Replan on the combined

category PIPROBLEMS although the winner varied between the aggregated categories. See

Table 6 for details.

e RFF-BG was inapplicable in two categoriesy&AREand IPPC1 REWORLD). SEH"(F)
significantly outperforms RFF-BG in 12 categories, but is outperformelfy-BG in two
categories (EPLODING BLOCKSWORLD and YSTEMATIC-TIRE). There was one category
where the comparison was inconclusiver §8DMIN). SEH'(F) also significantly outper-
forms RFF-BG on the combined categorydRoBLEMS although the winner varied between
the aggregated categories. See Table 7 for details.

The “learned heuristic” from the work of Wu and Givan (2010) hasnbeemputed only in
a subset of the domains, hence only seven categories are applicabie fraluation using the
learned heuristic (see an online appendix for details). The results werneext for SEH with the
learned heuristic, SEHY), show:

e SEH(L) significantly outperforms Greed§j in six categories. There was one category
(TIREWORLD) where the comparison was inconclusive. See Table 8 for details.

7. We show p-values rounded to two decimal places. For example,awest0.00 when the value of p rounded to two
decimal places is 0.
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JSLEN- JSTIME- SR JSLEN-
SR of SR of RATIO  RATIO Difference RATIO )
Category SEH"(F) SEH(F) (SEH/  (SEH/ Significant? ~ Significant? ~ Winner

SEH")  SEH") (p-value) (p-value)

BLOCKSWORLD 0.93 0.72 1.58 2.85 YES(p=0.00) YES(p=0.00) SEH (F)

NON-BLOCKSWORLD 0.69 0.69 1.01 0.97 NO(p=1.00) NO(p=1.00) Inconclusive

Table 4: Aggregated comparison of SE{") against SEHE).

e SEH(L) significantly outperforms FF-Replan in five categories, but is outpeddrby FF-
Replan in two categories {@LODING BLOCKSWORLDand ZENOTRAVEL). See Table 9 for
details.

6.2 Discussion

We now discuss the results for comparisons between pairs of planrausliing SEH versus greedy
heuristic-following, SEH versus FF-Replan, and SEH versus RFF-BG.

6.2.1 SEH/SEH VERSUSGREEDY

Our primary evaluation goal was to show that stochastic enforced hill-clinge#ngrally improves
significantly upon greedy following of the same heuristic (using the police®é) as described
in the technical background above). This was demonstrated by evalu&gvish two different
heuristics in Tables 5 and 8, where SEH§ignificantly outperforms Greedy) in nineteen out of
twenty-four heuristic/category pairs, only losing i€B=DULE for SEH™(F) against Greedyy).
We now discuss the only category where Greedy outperforms SEH tesnignificantly.

In SCHEDULE, there are multiple classes of network packets with different arrivad rétack-
ets have deadlines, and if a packet is not served before its deadliregghtencounters a class-
dependent risk of “death” as well as a delay while the packet is clegmedaureach the goal of
serving a packet from every class, the agent must minimize the dropglisiga risk of dying while
waiting for an arrival in each low-arrival-rate class. The all-outcormeerminization underlying
the CR-FF heuristic gives a deterministic domain definition where dying is op{joeeer chosen)
and unlikely packet arrivals happen by choice, leading to a very optimistidgtic value. When
using a very optimistic heuristic value, the basic local goal of SEH, which is toawepon the
current state heuristic, leads to building very large local MDPs for aisalys the presence of
dead-ends (“death”, as above), even arbitrarily large local MDPsrmoBlge able to achieve a local
improvement, and so inSHEDULE, SEH" will typically hit the resource limit for MDP size at
every action step.

In contrast, greedy local decision making is well suited to packet schegdiliany well known
packet scheduling policies (e.g. “earliest deadline first” or “static prioritythe work of Liu &
Layland, 1973) make greedy local decisions and are practically quéetie. In our experiments,
the Greedy policy applied to CR-FF benefits from locally seeking to avoid ttidantal delays of
dropped-packet cleanup: even though the heuristic sees no ribkirg-cost to dropping, it still
recognizes the delay of cleaning up lost dropped packets. Thusgysfées a class-insensitive
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JSLEN- JSTIME- SR JSLEN-
SR of SR of RATIO  RATIO Difference RATIO )
Category SEH"(F) Greedyf) (Greedy/ (Greedy/ Significant?  Significant? ~ Winner
SEHY)  SEH") (p-value) (p-value)

BLOCKSWORLD 0.93 0.35 1.40 0.63 YES(p=0.00) YES(p=0.00) SEH(F)
BOXWORLD 0.99 0.05 1.18 1.12  vYES(p=0.00) YES(p=0.00) SEH(F)
BUSFARE 1.00 0.99 0.85 0.86 NO(p=0.97) NO(p=0.21) Inconclusive
DRIVE 0.69 0.35 1.60 1.41 YEs(p=0.00) YEsS(p=0.00) SEH (F)
ELEVATOR 1.00 0.40 1.82 1.81 YEs(p=0.00) VYEs(p=0.00) SEH (F)
EXPLODING

44 A 1.01 . =0. =0. EH(F
BLOCKSWORLD 0 0.18 0 0.63 YES(p=0.00) NO(p=0.93) SEH(F)
FILEWORLD 1.00 0.21 1.03 0.24 YES(p=0.00) NO (p=1.00) SEH(F)
PITCHCATCH 0.45 0.00 - - YES (p=0.00) - SEH (F)
RANDOM 0.99 0.94 1.76 0.59 YES(p=0.00) YEs(p=0.00) SEH(F)
RIVER 0.66 0.67 0.97 0.98 NO(p=0.60) NO (p=0.75) Inconclusive
SCHEDULE 0.54 0.60 1.18 0.32 YES(p=0.00) YES(p=0.01) Greedyk)
SEARCH

1.00 1.00 1.23 1.08 =1.00 =0.00 SEH (F
AND RESCUE NO (p ) YES(p ) (F)
SYSADMIN 0.27 0.27 1.21 1.23 NO(p=1.00) YES(p=0.00) SEH(F)
-STY| EEEMAT'C 0.29 0.21 1.03 072 vES(p=0.00) NO(p=0.86) SEH(F)
TIREWORLD 0.91 0.90 0.96 0.79 NO(p=0.93) NO(p=0.74) Inconclusive
TOWERS OF _ _
HANO! 0.53 0.00 - - YES (p=0.00) SEH (F)
ZENOTRAVEL 0.90 0.20 1.31 0.74 YES(p=0.00) YES(p=0.00) SEH(F)

Table 5: Aggregated comparison of SE[E") against Greedy{). The RVER domain evalua-
tion required extending sampling to 60 samples as per the experimental pragscdbed in Sec-
tion 5.5.2. The values and p-values of JSLEN-RATIO and JSTIME-RAR PITCHCATCH and

TOWERS OFHANOI are not available due to the zero success ratio of Gré&dg(these categories.
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JSLEN- JSTIME- SR JSLEN-
SR of SR of RATIO RATIO Difference RATIO )
Category SEH"(F) FF-Replan (FFR/ (FFR/ Significant?  Significant? ~ Winner
SEH"(F)) SEH'(F)) (p-value) (p-value)
BLOCKSWORLD 0.93 0.87 1.33 1.17  vYES(p=0.00) YES(p=0.00) SEH (F)
BOXWORLD 0.99 0.88 3.93 1.57 YES(p=0.00) VYES(p=0.00) SEH (F)
BUSFARE 1.00 0.01 0.00 0.00  YEs(p=0.00) - SEH (F)
DRIVE 0.69 0.54 1.26 2.42  YES(p=0.00) VYES(p=0.00) SEH (F)
ELEVATOR 1.00 0.93 0.95 0.93 YES(p=0.00) NO(p=0.36) SEH(F)
Efgéizwﬁm 0.44 0.44 0.85 0.56  NO(p=0.96) YES(p=0.00) FF-Replan
FILEWORLD 1.00 1.00 0.97 0.57 NO (p=1.00) NO(p=1.00) Inconclusive
PITCHCATCH 0.45 0.51 2.78 0.21  YES(p=0.00) YES(p=0.00) FF-Replan
RANDOM 0.99 0.96 1.37 0.19 YES(p=0.00) VYES(p=0.00) SEH(F)
RIVER 0.66 0.65 0.94 0.93 NO (p=0.60) NO (p=0.33) Inconclusive
SCHEDULE 0.54 0.48 1.04 0.10 YES(p=0.00) NoO (p=0.59) SEH(F)
iY;LEMAT'C 0.29 0.07 0.36 0.38  YES(p=0.00) YES(p=0.00) SEH(F)
TIREWORLD 0.91 0.69 0.69 0.57 YES(p=0.00) YES(p=0.00) SEH (F)
Li’\"ﬁ’gfs OF 0.59 0.50 0.64 0.06  YES(p=0.00) YES(p=0.00) SEH(F)
ZENOTRAVEL 0.90 1.00 0.70 0.10 YES(p=0.00) YES(p=0.00) FF-Replan
EF'{OBLEMS 0.55 0.45 1.02 054 YES(p=0.00) No(p=1.00) SEH (F)

Table 6: Aggregated comparison of SE(") against FF-Replan (FFR). TheaRbpom and RVER
domains required extending sampling to 60 samples andtiveeRs oFHANOI domain required
extending sampling to 150 samples as per the experimental protocol ddsicriBection 5.5.2.
The p-value of JSLEN-RATIO in BSFAREIs not available because the extremely low success rate
of FFR leads to only one sample of JSLEN being gathered in 30 attempts, yielliegtimated

variance.
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JSLEN- JSTIME- SR JSLEN-
SR of SR of RATIO RATIO Difference RATIO )
Category SEH'(F) RFF-BG (RFF-BG/ (RFF-BG/ Significant?  Significant? ~ Winner
SEH"(F)) SEHT(F)) (p-value) (p-value)
BLOCKSWORLD 0.93 0.77 0.79 0.22  YES(p=0.00) YES(p=0.00) SEH(F)
BOXWORLD 0.99 0.89 1.03 3.70  YES(p=0.00) NO(p=1.00) SEH(F)
DRIVE 0.69 0.61 1.07 1.24  veES(p=0.00) NO (p=0.08) SEH (F)
ELEVATOR 1.00 1.00 1.27 0.15 NO (p=1.00) YEsS(p=0.00) SEH (F)
EXPLODING 0.44 0.43 0.84 056 NO(p=0.92) vES(p=0.00) RFF-BG
BLOCKSWORLD
PITCHCATCH 0.45 0.00 - - YES (p=0.00) - SEH (F)
RANDOM 0.99 0.74 1.26 0.56  YES(p=0.00) YES(p=0.00) SEH(F)
RIVER 0.66 0.51 0.77 0.21  YES(p=0.00) YES(p=0.00) SEH(F)
SCHEDULE 0.54 0.43 1.06 0.08 YES(p=0.00) NO (p=0.40) SEH(F)
SEARCH
1.00 0.01 2.99 0.86 =0.00 =0.00 SEH (F
AND RESCUE vEs (P ) YES(P ) (F)
SYSADMIN 0.27 0.27 1.10 9.31 NO (p=1.00) NO(p=0.05) Inconclusive
_STY;EMAT'C 0.29 0.81 1.22 449  YES(p=0.00) VYES(p=0.00) RFF-BG
TIREWORLD 0.91 0.71 0.68 0.21  YES(p=0.00) VYES(p=0.00) SEH(F)
L‘:\LVEFS OF 0.58 0.48 0.64 0.01 YES(p=0.03) YES(p=0.00) SEH(F)
ZENOTRAVEL 0.90 0.02 1.20 0.04 YES(p=0.00) NoO (p=0.27) SEH(F)
PI = =
PROBLEMS 0.55 0.51 0.91 0.50 YES(p=0.00) YES(p=0.00) SEH(F)

Table 7: Aggregated comparison of SE(") against RFF-BG. The RER and TOWERS OF
HANOI domains required extending sampling to 60 samples as per the experimettabpoe-
scribed in Section 5.5.2. The values and p-values of JISLEN-RATIOSNME-RATIO in PITCH-

CATCH are not available due to the zero success ratio of RFF-BG in this category.
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JSLEN- JSTIME- SR JSLEN-
SR of SR of RATIO RATIO Difference RATIO )

Category SEH(L) Greedy{) (Greedy/ (Greedy/ Significant? ~ Significant? ~ Winner

SEH) SEH) (p-value) (p-value)
BLOCKSWORLD 1.00 1.00 7.00 3.69 NO(p=1.00) YES(p=0.00) SEHL)
BOXWORLD 0.89 0.89 5.00 0.55 NO(p=1.00) YES(p=0.00) SEH()
EXPLODING

0.10 0.02 1.09 1.00 =0.00 =0.31 SEH

BLOCKSWORLD vES(p ) nolp ) 0)
_STY;;EMAT'C 0.34 0.14 0.75 0.39 YES(p=0.00) YES(p=0.00) SEH()
TIREWORLD 0.90 0.89 1.05 1.05 NO(p=0.92) NO(p=0.60) Inconclusive
TOWERS OF _ _
HANO! 0.60 0.00 - - YES (p=0.00) SEHL)
ZENOTRAVEL 0.58 0.03 13.25 5.66 YES(p=0.00) YES (p=0.00) SEHL()

Table 8: Aggregated comparison of SHH@gainst Greedy{). The values of JSLEN-RATIO and
JSTIME-RATIO and p-value of JSLEN-RATIO inGWERS OFHANOI are not available due to the
zero success ratio of Greedy(in this category.

JSLEN- JSTIME- SR JSLEN-
SR of SR of RATIO RATIO Difference RATIO )

Category SEH(L) FF-Replan (FFR/ (FFR/ Significant?  Significant? ~ Winner

SEH()) SEH()) (p-value) (p-value)
BLOCKSWORLD 1.00 0.83 0.99 2.06 YES(p=0.00) NoO (p=1.00) SEHL)
BOXWORLD 0.89 0.88 3.61 0.54 NO (p=0.97) YES(p=0.00) SEHL)
EXPLODING

0.10 0.46 0.71 0.73 =0.00 =0.00) FF-Repl

BLOCKSWORLD vEs (p ) YES(p ) eplan
_STY;TEEMAT'C 0.34 0.10 0.28 0.18  YES(p=0.00) YES(p=0.00) SEHL)
TIREWORLD 0.90 0.70 0.66 0.51 YES(p=0.00) YES (p=0.00) SEHL)
Li‘,’qvgfs OF 0.60 0.42 0.64 476  YES(p=0.00) YES(p=0.00) SEHL)
ZENOTRAVEL 0.58 1.00 0.58 0.03 YES(p=0.00) YES(p=0.00) FF-Replan

Table 9: Aggregated comparison of SHH@gainst FF-Replan (FFR).
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policy that greedily seeks to avoid dropping, similar to “earliest deadlin€.firShe problems
SEH encounters in our evaluation it SEDULE suggest future work in automatically recognizing
domains where large MDP construction is proving futile and automatically negiMdDP size
limits to adapt performance towards the behavior of a greedy policy. Wetmaitacross all tested
benchmark domains and both heuristics, there is only one domain/heuristicnetiom where this
phenomenon arose in practice.

6.2.2 SEH/SEH VERSUSFF-REPLAN AND RFF-BG

We have also demonstrated performance improvement of"'8EHover the best performing plan-
ners in the first three international probabilistic planning competitions, dotpeing FF-Replan in
ten out of fifteen categories while losing in threexiEODING BLOCKSWORLD, PITCHCATCH, and
ZENOTRAVEL), and outperforming RFF-BG in 12 out of 15 categories while loSingXRIEDDING
BLockswoRLDand S'STEMATIC-TIRE. Additionally, SEH{) outperforms FF-Replan in five out
of seven categories while losing irkELODING BLOCKSWORLDand ZENOTRAVEL. In this section
we discuss the categories where SEH) and SEH() lose to FF-Replan and RFF-BG.

ZENOTRAVEL is a logistics domain where people are transported between cities via airplanes
and each load/unload/fly action has a non-zero probability of havingfectefs a result, it takes
an uncertain number of attempts to complete each task. In domains where theradyilis-
tic effect is a choice between change and no change, the all-outcomenithiation leads to a
“safe” determinized plan for FF-Replan—one in which no replanning islew¢o reach the goal.
In such domains, including ENOTRAVEL, all-outcomes determinization can provide an effective
way to employ deterministic enforced hill-climbing on the problem. We note thougigthdhat
determinization still ignores the probabilities on the action outcomes, which cdridegery bad
choices in some domains (NOEXROTRAVEL). While both deterministic and stochastic enforced
hill-climbing must climb out of large basins inERIOTRAVEL, the substantial overhead of stochas-
tic backup computations during basin expansion leads to at least a cdastantadvantage for de-
terministic expansion. An extension to SEH that might address this problesessially in future
research would detect domains where the only stochastic choice is bethhaeege and non-change,
and handle such domains with more emphasis on determinization.

EXPLODING BLOCKSWORLD is a variant of the blocks world with two new predicathe-
onated anddestroyed Each block can detonate once, during put-down, with some probability,
destroying the object it is being placed upon. The state resulting from tiom atepicted in Fig-
ure 3 has a delete-relaxed path to the goal, but no actual path, so this statead-end attractor
for delete-relaxation heuristics such as CR-FF. FF-Replan or RFF-iB@Gever select this action
because there is no path to the goal including this action. '§EWwith the weak dead-end de-
tection used in these experiments will select the dead action shown, resulfingriperformance
when this situation arises. It would be possible to use all-outcomes determiniaatan improved
dead-end detector in conjunction with SE(") in order to avoid selecting such actions. Any such
dead-end detection would have to be carefully implemented and managedral tos run-time
costs incurred as SEH relies critically on being able to expand sufficiengg lacal MDP regions
during online action selection.

In PITCHCATCH, there are unavoidable dead-end states (used by the domain desiggisrmg-to
late cost penalties). However, the CR-FF heuristic, because it is basdidautcomes determiniza-
tion, assigns optimistic values that correspond to assumed avoidance @fatthedd states. As a
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b5 b3
Current Goal State
State b2 b4
b5 ba A
‘ b3 ‘ bl b2 .
/) % % % t:><if No Path
Destroyed Table .
Pick-up-from-table b3
b5 | [ba
bl b2

SIS SIS TTTT7 1S TTT777 7 7
Destroyed Table

Figure 3: An illustration of a critical action choice of SEKF’) in an EXPLODING BLOCKSWORLD
problem (IPPC2 P1). The middle state has no actual path to the goal kautleéete-relaxed path to
the goal. Due to the table having been exploded, no block can be placethenédle, resulting in
the middle state being a dead-end state. The middle state is a dead-end withctineatteuristic
value without regard to whether the blocks shown have remaining exploBarge or not, so this
state feature is not shown.

result, local search by SEHF) is unable to find any expected improvement on the CR-FF values,
and falls back to biased random walk in this domain. This domain suggests, tag dther do-
mains where SEH(F) performs weakly, that further work is needed on managing domains with
unavoidable deadend states.

The two categories where SEH) loses to FF-Replan (BPLODING BLOCKSWORLD and
ZENOTRAVEL) are also categories where SE{") loses to FF-Replan. Greedily following the
learned heuristics in these two categories leads to lower success ratiaekediiygfollowing CR-

FF, suggesting more significant flaws in the learned heuristics than in CRtRBugh SEH is able
to give at least a five-fold improvement over greedy following, in sugcato in these two cate-
gories, this improvement is not large enough for SEH6 match the performance of SEKF) or
FF-Replan, both based on the relaxed-plan heuristic of FF.

SEH" loses to RFF in 8STEMATIC-TIRE due to weak performance in Triangle Tireworld prob-
lems. Triangle Tireworld provides a map of connected locations arrarg#ththere is a single
“safe” path from the source to the destination, but exponentially manyeshmsafe” paths
Determinizing heuristics do not detect the risk in the unsafe paths and edygi@lowing of such
heuristics will lead planners (such as SEHo take unsafe paths, lowering their success rate. While
our results above show that SEHan often repair a flawed heuristic, in the Triangle Tireworld do-
main the heuristic attracts SEHo apparent improvements that are actually dead-ends.

In contrast, RFF is designed to increase robustness for determinizesdwgtéina high proba-
bility of failure. RFF will continue planning to avoid such failure rather thaging on replanning
after failure. Because the initial determinized plan has a high probabilitylofégrelative to RFF’s

8. The “safe” path can be drawn as following two sides of a triangular, melp many unsafe paths through the interior
of the triangle. Safety in this domain is represented by the presencereftigs to repair a flat tire that has 50%
chance of occurring on every step.
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SR of JSLEN- JSTIME- SR JSLEN-
SR of FE- RATIO RATIO Difference RATIO ]
Category SEH"(F) Replan  (FFR/ (FFR/ Significant?  Significant? ~ Winner
P SEH")  SEH") (p-value) (p-value)
BLOCKSWORLD 0.70 0.37 0.72 0.88 YES(p=0.00) YES(p=0.00) SEH(F)
BOXWORLD 0.67 0.34 5.02 0.98 YES(p=0.00) YES(p=0.00) SEH(F)

Table 10: Aggregated comparison of SE(#') against FF-Replan in scaled-up problems.

JSLEN-  JSTIME-
SR JSLEN-
SRof SR ?RAFTF'(_) ?RAFTF'? Difference  RATIO _
Category SEH"(F) BG ) BG/ BG/ Significant?  Significant? ~ Winner
SEHY) SEHY) (p-value) (p-value)
BLOCKSWORLD 0.70 0.33 0.46 0.14 vYES(p=0.00) YES(p=0.00) SEH(F)
BOXWORLD 0.67 0.00 0.88 10.81 YES(p=0.00) - SEH (F)

Table 11: Aggregated comparison of SEH') against RFF-BG in scaled-up problems.

threshold), RFF extends the plan before execution and can often thetewed to use the longer,
safe route.

6.2.3 FERFORMANCE ONLARGE PROBLEMS

In order to demonstrate that the advantages of SEH are emphasizecbbsrpeize grows, we
present aggregated performance of SEH) on additional large-sized problems we have gener-
ated using generators provided by the first IPPC. As such scalingimgques are computationally
very expensive, we have only run two domains that have been most védalyated in the plan-
ning literature: RockswoRLD and BoxwoRLD (which is a stochastic version of logistics). For
BLOCKSWORLD, we generated 15 problems each for 25- and 30-block problems. &owBRLD,
we generated 15 problems for the size of 20 cities and 20 boxes. (Onjyroblem across the three
competitions reached this size iroBwORLD, and that problem was unsolved by the competition
winner, RFF.) The aggregated results against FF-Replan and RFFeB@esented in Tables 10
and 11. The experiments for these scaled-up problems consumed 3,2650ficCPU time and
show that SEH (F') successfully completed a majority of the attempts while FF-Replan and RFF
succeeded substantially less often

Note that although the FF heuristic is very good amdBvoRLD and other logistics domains, the
failure of all-outcomes determinization to take into account the probabilitiest@namutcomes is
quite damaging to FFR in 8xWORLD, leading the planner to often select an action “hoping” for its

9. Our statistical protocol requires 30 samples of a random variableging performance over 5 solution attempts, for
each planner for each problem. With 45 problems and 3 planners, thds B¥e*5*45*3=20,250 solution attempts,
each taking approximately 10 CPU minutes on these large problems.
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low-probability “error outcome”. We note that RFF uses a most-probatliesme determinization
and will not suffer from the same issues as FFR in the boxworld. Givehititeaccuracy of the
FF heuristic in the boxworld, we believe that the ideas in RFF can likely be rkeingmted and/or
tuned to achieve better scalability in the boxworld problems. We leave this pibgsib a direction
for future work on understanding the scalability of RFF.

7. Summary

We have proposed and evaluated stochastic enforced hill-climbing, & geweralization of the
deterministic enforced hill-climbing method used in the planner FF (Hoffmann BeNe&001).
Generalizing deterministic search for a descendant that is strictly bettetrteaurrent state in
heuristic value, we analyze a heuristic-based MDP around any local aptonplateau reached at
increasing horizons to seek a policy that expects to exit this MDP with a betteed state. We
have demonstrated that this approach provides substantial improveneergreedy hill-climbing
for heuristics created using two different styles for heuristic definition.nave also demonstrated
that one resulting planner is a substantial improvement over FF-Replam @fal., 2007) and
RFF (Teichteil-Konigsbuch et al., 2010) in our experiments.

We find that the runtime of stochastic enforced hill-climbing can be a concesonie domains.
One reason for the long runtime is that the number and size of local optimas lmagtateaus may
be large. Currently, long runtime is managed primarily by reducing to biasetbna walk when
resource consumption exceeds user-set thresholds. A possible fes@arch direction regarding
this issue is how to prune the search space automatically by state or actiamgprun
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