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Abstract
This article discusses two contributions to decision-making in complex partially observable
stochastic games. First, we apply two state-of-the-art search techniques that use Monte-Carlo sam-
pling to the task of approximating a Nash-Equilibrium (NE) in such games, namely Monte-Carlo
Tree Search (MCTS) and Monte-Carlo Counterfactual Regret Minimization (MCCFR). MCTS has
been proven to approximate a NE in perfect-information games. We show that the algorithm quickly
finds a reasonably strong strategy (but not a NE) in a complex imperfect information game, i.e.
Poker. MCCFR on the other hand has theoretical NE convergence guarantees in such a game. We
apply MCCFR for the first time in Poker. Based on our experiments, we may conclude that MCTS
is a valid approach if one wants to learn reasonably strong strategies fast, whereas MCCFR is the
better choice if the quality of the strategy is most important.

Our second contribution relates to the observation that a NE is not a best response against
players that are not playing a NE. We present Monte-Carlo Restricted Nash Response (MCRNR),
a sample-based algorithm for the computation of restricted Nash strategies. These are robust best-
response strategies that (1) exploit non-NE opponents more than playing a NE and (2) are not
(overly) exploitable by other strategies. We combine the advantages of two state-of-the-art algo-
rithms, i.e. MCCFR and Restricted Nash Response (RNR). MCRNR samples only relevant parts
of the game tree. We show that MCRNR learns quicker than standard RNR in smaller games. Also
we show in Poker that MCRNR learns robust best-response strategies fast, and that these strategies
exploit opponents more than playing a NE does.

1. Introduction

This article investigates decision-making in strategic, complex multi-player games. As our most
complex test-bed, we use the game of two-player Limit Texas Hold’em Poker (henceforth abbrevi-
ated as ‘Poker’ or ‘full-scale Poker’). In this introduction, we will first briefly outline why research
in such games is relevant. Then, we discuss the complexity factors involved in games. Finally, we
outline our approach and contributions.

1.1 Relevance of Games-Related Research

Games have attracted scientific attention for years now; the importance of research in the area of
game theory became apparent during the Second World War (Osborne & Rubinstein, 1994). Nowa-
days, examples of serious games can be found in many real-life endeavors, such as economics (e.g.,

c©2011 AI Access Foundation. All rights reserved.



PONSEN, LANCTOT & DE JONG

buyers and sellers in the stock market have the goal to maximize profit) or politics (e.g., politicians
have the goal to collect sufficient political support for some cause). Games that serve as entertain-
ment, such as puzzles, board-, sports- or modern video-games, are often abstracted, simpler variants
of serious games. An example is the card game of Poker. The objective in Poker is not very different
from the objective of investors in the stock market. Players may invest (or risk) money and specu-
late on future events that may or may not yield profit. Because strategies in abstract games (such as
Poker) can be more easily and rapidly evaluated than strategies in real-life endeavors (such as acting
in the stock market), abstract games are the perfect tool for assessing and improving the strategic
decision-making abilities of humans as well as computers. For this reason, various complex multi-
player games have attracted a great deal of attention from the artificial intelligence (AI) community
(Schaeffer, 2001).

1.2 Complexity Factors in Games

Games are characterized by several complexity factors. We briefly mention some factors that are
relevant for the work presented in this article.

• Number of players. Multi-player games are generally assumed to be more complex than
single-player games. Within the class of multi-player games, fully competitive games, also
known as zero-sum games, are those games where all players have conflicting goals and
therefore deliberately try to minimize the payoff of others.

• Size of the state space. The size of the state space (the number of different situations the
game may be in) varies from game to game, depending on the number of legal situations
and the number of players. Large state spaces produce more complex games because of the
computational requirements for traversing the entire state space.

• Uncertainty. Stochastic games, as opposed to deterministic games, are more complex because
there is uncertainty about the effects of actions, or occurrences of (future) events, for instance
because die rolls are involved.

• Imperfect information. Parts of the game state may be hidden to the players, e.g., opponent
cards in any card game, or the probability of a certain chance outcome. This is also known as
partial observability.

In the remainder of this article, we deal with partially observable stochastic games (Fudenberg &
Tirole, 1991), using a full-scale Poker game as our most complex test-bed. The game is a multi-
player, competitive, partially observable stochastic game. It is a daunting game for both human and
AI players to master.

1.3 Our Contributions

We investigate two different sampling-based approaches for decision-making, namely (1) a classical
game-theoretic approach and (2) a best-response approach.

For our first approach, we apply current state-of-the-art algorithms to the task of computing
an approximated Nash-Equilibrium strategy (NES) in the game of Poker. In a two-player, zero-
sum game, the expected value of a NES is a constant, regardless of the opponent strategy or the
specific NES. In fair games (i.e. players have equal chance of winning), such strategies cannot lose

576



COMPUTING APPROXIMATE NASH EQUILIBRIA AND ROBUST BEST-RESPONSES USING SAMPLING

in expectation and may win in the long run. For complex games such as Poker, a NES can only
be computed by introducing abstractions. Also, sampling algorithms may be used to (relatively)
quickly compute an approximate NES. We use both abstractions as well as sampling in this work.
We will look at two families of algorithms, both of which rely on Monte-Carlo sampling, namely
Monte-Carlo Tree Search (MCTS), including Upper Confidence Bounds applied to Trees (Kocsis
& Szepesvári, 2006; Chaslot, Saito, Bouzy, Uiterwijk, & van den Herik, 2006; Coulom, 2006), and
a regret-minimizing algorithm, called Monte-Carlo Counterfactual Regret Minimization (MCCFR)
(Lanctot, Waugh, Zinkevich, & Bowling, 2009). We are the first to offer a comparison between these
two algorithms in full-scale Poker.1

For our second approach, we begin with the observation that a NES is not necessarily most prof-
itable against any strategy other than a NES. Above all, it is a safe strategy. If we have information on
the strategy of opponent players, we can adapt our strategy based on this, i.e., by learning so-called
best-response strategies. Rather than playing the safe NES (i.e., play not to lose), we want to learn
tailored counter-strategies based on an opponent model (i.e., play to win). For learning a good com-
promise between best response and equilibrium, we combine the general technique of Restricted
Nash Response (RNR) (Johanson, Zinkevich, & Bowling, 2008) with the Monte-Carlo Counter-
factual Regret Minimization (MCCFR) algorithm, leading to a new algorithm, named Monte-Carlo
Restricted Nash Response (MCRNR).

1.4 Structure of this Article

The remainder of this article is structured as follows. Section 2 provides a brief overview of the
background knowledge required for this article, i.e., game-theoretic concepts focussed on extensive-
form games, and a discussion on the games used in the article. Section 3 contains our work on a
comparison of Monte-Carlo Tree Search (MCTS) and Monte-Carlo Counterfactual Regret Mini-
mization (MCCFR) in full-scale Poker. Section 4 introduces Monte-Carlo Restricted Nash Response
(MCRNR) and describes a set of experiments in smaller games as well as Poker. Finally, in Section
5, we conclude the article.

2. Background

In the current section we provide some background information. In Section 2.1 we discuss game
theory (GT) fundamentals, focussing on extensive-form games. We can represent partially observ-
able stochastic games by means of such games (Fudenberg & Tirole, 1991). Our main test domain,
two-player limit Texas Hold’em Poker, is introduced in Section 2.2, along with a number of smaller
games we also use to validate our new algorithm experimentally.

2.1 Game Theory and Extensive Form Games

Game theory (GT) studies strategic decision-making in games with two or more players. The ba-
sic assumptions that underlie the theory are that players are rational, i.e. they are self-interested
and able to optimally maximize their payoff, and that they take into account their knowledge or

1. We note that we do not aim to join the ‘arms race’ to compute the closest Nash-Equilibrium (NE) approximation
for full-scale Poker. The aim of our contribution is a comparison of two recent promising algorithms. Poker is the
test-bed we chose to use because it is the most complex partially observable stochastic game both algorithms have
been applied to thus far, and because there exist reasonably strong benchmarks to test against.
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expectations of other decision-makers’ behavior, i.e. they reason strategically (Fudenberg & Tirole,
1991; Osborne & Rubinstein, 1994). The field originated in economics to analyze behaviour in non-
cooperative settings, and was firmly established by von Neumann and Morgenstern (1944). Nash
(1951) introduced what is now known as the Nash-Equilibrium (NE). In the current section we
briefly discuss the fundamentals of GT and extensive-form games.

2.1.1 GAMES

Games are descriptions of strategic interaction between players. They specify a set of available
actions to players and a payoff for each combination of actions. Game-theoretic tools can be used
to formulate solutions for classes of games and examine their properties. Typically, a distinction is
made between two types of game representations, namely normal-form games and extensive-form
games. A normal-form game is usually represented by a matrix which shows the players, actions,
and payoffs. In normal-form games it is presumed that all players act simultaneously (i.e. not having
any information on the action choice of opponents). The second representation, the extensive-form
game, describes how games are played over time. Previous action sequences are stored in a so-
called game-tree, and as such, information about the choices of other players can be observed. In
this article, we focus on extensive-form games.

2.1.2 EXTENSIVE-FORM GAMES

An extensive-form game is a general model of sequential decision-making with imperfect informa-
tion. As with perfect-information games (such as Chess or Checkers), extensive-form games consist
primarily of a game tree where nodes represent states of the game. Each non-terminal node has an
associated player (possibly chance) that makes the decision at that node, and each terminal node
(leaf) has associated utilities for the players. Additionally, game states are partitioned into informa-
tion sets Ii. A player i cannot distinguish between states in the same information set. The player,
therefore, must choose actions with the same policy at each state in the same information set.

A strategy of player i, σi, is a function that assigns a probability distribution over A(Ii) to each
Ii ∈ Ii, where Ii is an information set belonging to i, and A(Ii) is the set of actions that can be
chosen at that information set. We denote Σi as the set of all strategies for player i, and σi ∈ Σi as
the player’s current strategy. A strategy profile, σ, consists of a strategy for each player, σ1, . . . , σn.
We let σ−i refer to the strategies in σ excluding σi.

Valid sequences of actions in the game are called histories, denoted h ∈ H . A history is a
terminal history, h ∈ Z where Z ⊂ H , if its sequences of actions lead from root to leaf. A prefix
history h v h′ is one where h′ can be obtained by taking a valid sequence of actions from h.
Given h, the current player to act is denoted P (h). Each information set contains one or more valid
histories. The standard assumption is perfect recall: information sets are defined by the information
that was revealed to each player over the course of a history, assuming infallible memory.

Let πσ(h) be the probability of history h occurring if all players choose actions according to
σ. We can decompose πσ(h) into each player’s contribution to this probability. Here, πσi (h) is
the contribution to this probability from player i when playing according to σ. Let πσ−i(h) be the
product of all players’ contribution (including chance) except that of player i. Finally, let πσ(h, z) =
πσ(z)/πσ(h) if h v z, and zero otherwise. Let πσi (h, z) and πσ−i(h, z) be defined similarly. Using
this notation, we can define the expected payoff for player i as ui(σ) =

∑
h∈Z ui(h)πσ(h).
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Given a strategy profile, σ, we define a player’s best response as a strategy that maximizes
their expected payoff assuming all other players play according to σ. The best-response value for
player i is the value of that strategy, bi(σ−i) = maxσ′

i∈Σi ui(σ
′
i, σ−i). An ε-Nash-Equilibrium (NE)

is an approximation of a best response against itself. Formally, an ε-Nash-Equilibrium (NE) it is a
strategy profile σ that satisfies:

∀i ∈ N ui(σ) + ε ≥ max
σ′
i∈Σi

ui(σ
′
i, σ−i) (1)

If ε = 0 then σ is a Nash-Equilibrium (NE): no player has any incentive to deviate as they are all
playing best responses. If a game is two-player and zero-sum, we can use exploitability as a metric
for determining how close σ is to an equilibrium, εσ = b1(σ2) + b2(σ1).

It is well-known that in two-player, zero-sum games NE strategies are interchangeable. That is,
if (σ1, σ2) and (σ′1, σ

′
2) are different equilibrium profiles with σi 6= σ′i, then (σ1, σ

′
2) and (σ′1, σ2) are

also both NE profiles. This property makes equilibrium strategies for this class of games desireable
since worst-case guarantees are preserved regardless of how the opponent plays. The property is
easily extended to the case where ε > 0, therefore playing an ε−NE strategy will guarantee that a
player is only exploitable by ε. For more details, we refer the reader to the work of Fudenberg and
Tirole (1991) as well as Osborne and Rubinstein (1994).

Throughout this article, we will refer to a player that plays the NES as a rational player. A
player that plays rationally also assumes rationality on the part of its opponents. Experiments have
shown that assuming rationality is generally not correct (e.g. for experiments in Poker see Billings,
Burch, Davidson, Holte, Schaeffer, Schauenberg, & Szafron, 2003); even experienced human play-
ers in complex games at best play an approximated rational strategy, and frequently play dominated
actions (i.e., actions that should never have been chosen at all). Moreover, for complex games such
as Chess or Poker, even AI algorithms running on modern computers with a great deal of processor
speed and memory can not (yet) cope with the immense complexity required to compute a NES.
Thus, they are forced to either abstract the full game or do selective sampling to compute only an
approximated NE.

2.2 Test Domains

In the current section, we introduce the test domains used throughout this article. In particular we
describe the game of Poker, as well as some smaller games, some of which are similar to Poker.
Poker is a card game played between at least two players. In a nutshell, the objective of the game is to
win (money) by either having the best card combination at the end of the game (i.e. the showdown),
or by being the only active player. The game includes several betting rounds wherein players are
allowed to invest money. Players can remain active by at least matching the largest investment made
by any of the players, or they can choose to fold (stop investing money and forfeit the game). In
the case that only one active player remains, i.e. all other players chose to fold, the active player
automatically wins the game. The winner receives the money invested by all the players. There exist
many variants of the game. We will now specifically describe the ones used in this article.

Kuhn Poker is a two-player simple Poker game. There are only three cards (J - Jack, Q - Queen,
and K - King). There are two actions, bet and pass. In the event of a showdown, the player with the
higher card wins the pot (the King is highest and the Jack is lowest). After the deal, the first player
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Figure 1: Kuhn Poker game tree (taken from the work of Hoehn, Southey, & Holte, 2005).

has the opportunity to bet or pass. If the first player bets in round one, then in round two the second
player can either bet (and go to showdown) or pass (and forfeit the pot). If the first player passes
in round one, then in round two the second player can bet or pass. A bet leads to a third action
for the first player, namely bet (and go to showdown) or pass (and forfeit the pot), whereas with a
pass the game immediately proceeds to a showdown. Figure 1 shows the game tree with the first
players’ value for each outcome. The dominated actions have been removed from this tree. They
include actions such as betting with a Queen as a first action, or passing a King for the second player.
There are in total seven possible dominated actions to be made. The Nash-Equilibria of the game
can be summarized by three parameters (α, β, γ) (each in [0, 1]). Kuhn determined that the set of
equilibrium strategies for the first player has the form (α, β, γ) = (γ/3, (1 + γ)/3, γ). Thus, there
is a continuum of Nash-Equilibrium strategies governed by a single parameter γ. There is only one
NES for the second player, namely η = 1/3 and ξ = 1/3. If either player plays a NES, then the first
player expects to lose at a rate of −1/18 bets (i.e., size of ante) per hand. Kuhn Poker therefore is
not a balanced or fair game, since the first player is expected to lose if both players play the rational
strategy.

One-Card Poker (abbreviated OCP(N )) (Gordon, 2005) is a generalization of Kuhn Poker. The
deck contains N cards; Kuhn Poker corresponds with N = 3. Each player must ante a single chip,
has one more chip to bet with, and is dealt one card.

Goofspiel (abbreviated Goof(N )) is a bidding card game where players have a hand of cards num-
bered 1 to N , and take turns secretly bidding on the top point-valued card in a point card stack,
using cards in their hands (Ross, 1971). Our version is less informational: players only find out the
result of each bid and not which cards were used to bid, and the player with the highest total points
wins. We also use a fixed point card stack that is strictly decreasing, e.g. (N,N − 1, . . . , 1).

Bluff(1,1,N) also known as Liar’s Dice and Perudo2, is a dice-bidding game. In our version, each
player rolls a single N -sided die and looks at their die without showing it to their opponent. Then
players, alternately, either increase the current bid on the outcome of all die rolls in play, or call
the other player’s bluff (claim that the bid does not hold). The highest value on the face of a die is

2. See e.g. http://www.perudo.com/perudo-history.html.
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wild and can count as any face value. When a player calls bluff, they win if the opponent’s bid is
incorrect, otherwise they lose.

Texas Hold’em Poker (Sklansky, 2005) is the most complex game under investigation here. The
game includes 4 betting rounds, respectively called the preflop, flop, turn and river phase. During
the first betting round, all players are dealt two private cards (i.e. only known to the specific player)
out of a full deck consisting of 52 cards. To encourage betting, two players are obliged to invest a
small amount the first round (the so-called small- and big-blind). One by one, the players can decide
whether or not they want to participate in this game. If they indeed want to participate, they have to
invest at least the current bet (i.e., the big-blind in the beginning of a betting round). This is known
as calling. Players may also decide to raise the bet. If they do not wish to participate, players fold,
resulting in loss of money they may have bet thus far. In the situation of no outstanding bet, players
may choose to check (i.e., not increase the stakes) or bet more money. The size of bets and raises
can either be predetermined (i.e., Limit Poker, as used in this paper), no larger than the size of the
pot (i.e., Pot-Limit Poker) or unrestrained (i.e., No-Limit Poker). During the remaining three betting
phases, the same procedure is followed. In every phase, community cards appear on the table (three
cards in the flop phase, and one card in the other phases). These cards apply to all the players and
are used to determine the card combinations (e.g., a pair or three-of-a-kind may be formed from the
player’s private cards and the community cards). During the showdown, if two or more players are
still active, cards are compared, thus ending the game.

Princess and Monster (abbreviated PAM(R, C, H)) (Isaacs, 1965) is not a Poker game; rather,
it is a variation of the pursuit-evasion game on a graph, neither player ever knowing the location
of the other nor discovering their moves (pursuit in a “dark room”). In our experiments we use
random starting positions on a 4-connected grid graph with R rows and C columns. Players take
turns alternately moving to an adjacent location. The game ends when the monster moves to the
same location as the princess, or H moves have been taken in total with no capture. The payoff to
the evader is the number of steps uncaptured.

In the next section, we will use Kuhn Poker (or OCP(3)) and two-player Limit Texas Hold’em Poker.
In Section 4, we use all games mentioned above, except Kuhn Poker; instead of Kuhn Poker, we use
a larger game, OCP(500).

3. Computing Approximated Nash-Equilibrium Strategies

Our contribution in this section is to evaluate current and promising state-of-the-art search methods
for computing (approximated) Nash-Equilibrium strategies in complex domains, and more specif-
ically in Poker. Given the size of the game tree, such methods should (1) incorporate appropriate
abstractions, and (2) be capable of analysing small subsets of the full game (i.e., do sampling).

We will look at two families of sampling algorithms, namely an Upper Confidence Bounds
applied to Trees (UCT) based algorithm, called Monte-Carlo Tree Search (MCTS) (Kocsis &
Szepesvári, 2006; Chaslot et al., 2006; Coulom, 2006), and a regret minimizing algorithm called
Monte-Carlo Counterfactual Regret Minimization (MCCFR) (Lanctot et al., 2009). MCTS has
achieved tremendous success in perfect information games, and in particular in the game of Go
(Lee, Wang, Chaslot, Hoock, Rimmel, Teytaud, Tsai, Hsu, & Hong, 2010). In games with imper-
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fect information, it has no convergence guarantees for finding Nash-Equilibria.3 However, it has
been reported that it may nonetheless produce strong players in games with imperfect information
(Sturtevant, 2008). We will empirically evaluate the merits of MCTS in the imperfect information
game of Poker. MCCFR does have theoretical guarantees for convergence to a Nash-Equilibrium
(NE). It has only been applied to smaller games thus far; we are the first to evaluate it in the complex
domain of Poker.

This section is structured as follows. In Sections 3.1 and 3.2, we discuss existing work for
computing Nash-Equilibrium strategies in large extensive games and provide details on the two
sampling algorithms. Next, we will analyze the algorithms empirically, both in the domain of Kuhn
Poker and also in the larger domain of two-player Limit Texas Hold’em Poker (Section 3.3).

3.1 Non-Sampling Algorithms for Computing Approximate Nash Equilibria

In the current subsection, we give an overview of existing non-sampling techniques for computing
NE approximations in extensive form games. A large body of such work exists in many domains,
but here we will focus specifically on work in the domain of Poker.

The conventional method for solving extensive form games (such as Poker), is to convert them
into a linear program, which is then solved by a linear programming solver. Billings et al. (2003)
solved an abstraction of the full game of two-player Poker using sequence-form linear program-
ming. Their abstractions were three-fold. First, they learned models in separation for the different
phases of the game. Basically, phases are considered independent and are solved in isolation. How-
ever, they state that previous phases contain important contextual information that is critical for
making appropriate decisions. The probability distribution over cards for players strongly depends
on the path that led to that decision point. Therefore, they provide input (i.e., contextual information
such as pot size and the number of bets in the game) to the models learned for later phases. Second,
they shorten the game tree by allowing only three (instead of the regular four) bet actions per phase.
Third, they apply bucketing to the cards. The strategic strength of cards (i.e., private cards, possi-
bly in combination with board cards) can be reflected by a numeric value. A higher value reflects
stronger cards. Billings (2006) computed the so-called Effective Hand Strength (EHS), a value in
the range from 0 to 1, that combines the Hand Strength (i.e., current winning probability against ac-
tive opponents) and Hand Potential (i.e., the probability that currently losing/winning cards end up
winning/losing with the appearance of new board cards). The work of Billings (2006), in Sections
2.5.2.1 to 2.5.2.3, provides a more detailed discussion. Then they divide all values in buckets. For
example, in a 10-bucket discretization (equal width), which we employ in this paper, EHS values in
the range of 0 to 0.1 are grouped together in bucket 1, 0.1 to 0.2 in bucket 2, and so forth. A coarser
view implies more information loss. The solution to the linear program induces a distribution over
actions at each information set, which corresponds to a mixed behavioral strategy. A Poker-playing
program can then sample actions from this mixed strategy. The resulting Poker-playing program
was competitive with human experts.

The Counterfactual Regret Minimization (CFR) algorithm (Zinkevich, Johanson, Bowling, &
Piccione, 2008) may be used to compute an approximated NE in richer abstractions because it
requires less computational resources. In Poker, Zinkevich et al. (2008) only applied abstraction
on the cards and were capable to learn strategies using CFR that were strong enough to defeat

3. For example, Shafiei, Sturtevant, and Schaeffer (2009) provide an analysis in simultaneous imperfect-information
games, indicating that UCT finds suboptimal solutions in such games.
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human experts. Although this was an important step in solving complex games, when complexity
is increased even more (as for example by increasing the number of buckets), learning time and
memory requirements will become impractical.

Another method by Hoda et. al. (2010) and Sandholm (2010) is to use the Excessive Gap Tech-
nique applied to a relaxed optimization problem from which the linear program described above
is derived. The optimization problem is smoothened to be made differentiable; the solution to the
new, relaxed problem is suboptimal in the original problem by some amount ε0. Parameters of the
optimization problem are then modified by following the gradient of the smooth approximations of
the objective functions. At iteration i+1 the modified parameters give a new solution with improved
suboptimality εi+1 < εi. This process is repeated until the desired value of ε is reached.

3.2 Sampling Algorithms for Computing Approximate Nash Equilibria

Performing Monte-Carlo sampling can enable algorithms to deal with highly complex domains. In
this section we will discuss two algorithms that perform Monte-Carlo sampling, namely Monte-
Carlo Tree Search (MCTS) and Monte-Carlo Counterfactual Regret Minimization (MCCFR). Al-
though the internal workings of both techniques are different, they share the general procedure of
sampling a simulated game, determining utilities at a leaf node (i.e., game state that ends the game),
and backpropagating the results. The underlying idea of both techniques is to improve the quality
of simulations progressively by taking into account the simulated games previously played. More
specifically, simulations are driven to that part of the game tree that is most relevant, assuming play-
ers take rational decisions (i.e., choose actions that optimize their reward). The result of each game
is backpropagated on the visited path. Progressively, the program concentrates its search on the best
actions, leading to a deeper look-ahead ability.

We will now discuss an example in the game of Poker, as illustrated in Figure 2. As a first
step (moving down), chance nodes and action nodes are sampled until a terminal node is reached.
Chance nodes in Poker represent the dealing of cards. Similarly to previous work in Poker, we also
apply bucketing on cards in our work. Cards are grouped together in buckets based on their strategic
strength. We use a 10-bucket discretization (equal width), where EHS values (see Section 3.1) in
the range of 0 to 0.1 are grouped together in bucket 1, 0.1 to 0.2 in bucket 2, and so forth. A higher
bucket indicates a stronger hand. In our example we sampled buckets 5 and 7 in the preflop phase for
respectively player one and two. Again, these buckets now reflect the strategic strength of players’
private cards. With the appearance of new board cards in subsequent phases, we again encounter
chance nodes, and buckets may change.4

We assume imperfect recall. With imperfect recall previous action or chance nodes are for-
gotten, and as a consequence several information sets are grouped together. For example, in our
work we only take into account the current bucket assignment in information sets, and forget pre-
vious ones. This way we reduce the game complexity tremendously, which reduces both memory
requirements and convergence time. In the case of imperfect recall the CFR algorithm loses its con-
vergence guarantees to the NE, but even though we lose theoretical guarantees, this application of
imperfect recall has been shown to be practical, specifically in Poker (Waugh, Zinkevich, Johanson,
Kan, Schnizlein, & Bowling, 2009).

4. In the preflop phase the first player had the weakest hand, but with the appearance of board cards the player could,
for example, have formed a pair and its bucket therefore has increased.
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p 

5,7 

B1 C1 F1 

B2 C2 F2 

f 

6,4 

C1 

B2 C2 F2 

Continue to terminal node, and 

determine utilities: 

 util=8,-8, bucket=9,2, hist=“p-

C1-C2-f-B2-C1-t-C2-C1-r-B2-C1” 

Select a according to α         

in information-set:  

{bucket=4, hist=“p-C1-C2-f”} 

Select chance node in: 

{bucket=5,7, hist=“p-C1-C2”} 

dealing of board cards at flop 

Select a according to α         

in information-set:  

{bucket=7, hist=“p-C1”} 

Select a according to α         

in information-set:  

{bucket=5, hist=“p”} 

Select chance node: 

dealing of private cards 

Update a in information-set:  

bucket=9, hist=“p-C1-C2-f-B2-

C1-t-C2-C1-r-B2-C1” 

Update a in information-set:  

bucket=4, hist=“p-C1-C2-f” 

Update a in information-set:  

bucket=7, hist=“p-C1” 

Update a in information-set:  

bucket=5, hist=“p” 

Figure 2: Illustration of Monte-Carlo simulations in the game of Poker. On the left going down,
chancenodes (triangles) and action nodes (circles) are sampled based on some statistics
at the information set level. Utilities are then determined at the terminal nodes (squares),
having full information on both players’ cards (i.e., buckets). On the right going up, the
results of this simulated game are then backpropagated along all information sets that are
a prefix of the terminal node. Statistics are updated at information set level, effectively
altering the strategy.

Players select their actions a based on the current strategy σ given the information available
to them (i.e., not knowing the bucket for the opponent player). The letters ‘F’, ‘C’ and ‘B’, fol-
lowed by the player index, respectively correspond to the fold, call/check or bet/raise actions in the
game of Poker. This process continues until a terminal leaf node is encountered, where utilities are
determined for this simulated game.

As a second step (moving up), the utilities are backpropagated along the sampled path, and
statistics are stored at the information set level. Different statistics are required for either MCCFR
or MCTS. We discuss both algorithms in detail in the forthcoming subsections.
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3.2.1 MONTE-CARLO TREE SEARCH

MCTS is a game tree search algorithm based on Monte-Carlo simulations. MCTS converges to a
NE in perfect information games, whereas for the imperfect information case such guarantees are
not given. It has been applied successfully in several perfect-information games (Lee et al., 2010;
Chaslot et al., 2006; Bouzy & Chaslot, 2006; Coulom, 2006). It is therefore interesting to see if
MCTS can also be successfully applied to the imperfect-information game of Poker. Two statistics
of nodes are important for sampling actions in MCTS, i.e.:

1. the value, va of action node a. This is the average of the reward of all simulated games that
visited this node.

2. the visit count, na of action node a. This represents the number of simulations in which this
node was reached.

A crucial distinction with work that used MCTS in perfect-information games, is that now we as-
sume imperfect information, as for example opponent cards in Poker. As a result, one has to reason
over information sets (see Section 2.1) instead of individual nodes. Therefore, part of the algorithm
is performed on information sets rather than individual nodes. The starting state of the game is rep-
resented by the root node, which is initially the only node in the tree. MCTS consists of repeating
the following four steps (illustrated in Figure 3), as long as there is time left.

1. Selection. Actions in set A are encoded as nodes in the game tree. They are chosen according
to the stored statistics in a way that balances between exploitation and exploration. When
exploiting, actions that lead to the highest expected value are selected. Less promising actions
still have to be explored due to the uncertainty of the evaluation (exploration). We use the
Upper Confidence Bound applied to Trees (UCT) rule to select actions (Kocsis & Szepesvári,
2006). In UCT, a ∈ A is the set of nodes (possible actions) reachable from the parent node,
p. Using the following equation, UCT selects the child node a∗ of parent node p which has
the highest value.

a∗ ∈ argmaxa∈A

(
va + C ×

√
lnnp
na

)
. (2)

Here va is the expected value of the node a, na is the visit count of a, and np is the visit
count of p, the parent of node a. C is a coefficient that balances exploration and exploitation.
A higher value encourages longer exploration since nodes that have not been visited often
receive a higher value. This value is usually tweaked in preliminary experiments. Again, note
that in imperfect-information games, expected values and visit counts are stored and updated
per information set.

2. Expansion. When a leaf node is selected, one or several nodes are added to the tree. As such
the tree grows with each simulated game. Please note that the tree in memory deals with game
nodes (assuming full information), and not information sets (which are used in the selection
and backpropagating part of the algorithm).
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Selection Expension Simulation Backpropagation

The selection function is applied
recursively until a leaf node is

reached

One or more nodes
are created

The result of this game is
backpropagated in the tree

One simulated
game is played

Selection Expansion Simulation Backpropagation

The selection function is
applied recursively until

a leaf node is reached

One or more nodes
are created

The result of this game is
backpropagated in the tree

One simulated
game is played

           Repeated X times

Figure 3: Outline of Monte-Carlo Tree Search (Chaslot et al., 2008).

3. Simulation. From the newly expanded node, nodes are selected according to some simulation
policy until the end of the game. More realistic simulations will have a significant effect on
the computed expected values. Examples for simulation strategies in Poker are: (1) random
simulations, (2) roll-out simulations or (3) on-policy simulations. In the first simulation strat-
egy, one samples nodes uniformly from the set of A. In roll-out simulations, one assumes that
all remaining active players call or check until the end of the game. In other words, all remain-
ing active players stay active and compete for the pot, but the stakes are not raised. Finally,
the on-policy simulation uses current estimations of expected values or action probabilities to
select actions. In this paper, we employ the latter. More specifically we always take action a∗

according to Equation 2. This produces simulations that are closest to the actual strategy.

4. Backpropagation. After reaching a terminal node z (i.e., the end of the simulated game), we
establish the reward for all players (having full information on the buckets for all players).
Then we update each information set that contains a prefix of the terminal history. The visit
counts are increased and the expected values are modified according to the rewards obtained
at the terminal node.

After the MCTS algorithm is stopped, the (potentially mixed) action distribution is determined by
the visit counts, i.e., the actions in information sets with a high visit count have a larger probability
of being selected. In perfect-information games, those actions are selected with the highest expected
value, which in the end leads to an optimal payoff. For imperfect-information games, such as Poker,
potentially mixed strategy distributions are required for obtaining the optimal payoff (e.g., see the
NES for Kuhn poker described in Section 2.2). Therefore, the ratio between the actions selected
determines the probability distribution.

3.2.2 MONTE-CARLO COUNTERFACTUAL REGRET MINIMIZATION

Before we describe the Monte-Carlo Counterfactual Regret Minimization (MCCFR) algorithm, we
first describe the intuition behind the Counterfactual Regret Minimization (CFR) algorithm, since
MCCFR is based on it.
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CFR employs a full game-tree traversal in self-play, and updates player’ strategies at information
sets at each iteration. Strategy updates are based upon regret minimization. Imagine the situation
where players are playing with strategy profile σ. Players may regret using their strategy σi against
σ−i to some extent. In particular, for some information set I they may regret not taking a particular
action a instead of following σi. Let σI→a be a strategy identical to σ except a is taken at I . Let ZI
be the subset of all terminal histories where a prefix of the history is in the set I; for z ∈ ZI let z[I]
be that prefix. The counterfactual value vi(σ, I) is defined as:

vi(σ, I) =
∑
z∈ZI

πσ−i(z[I])πσ(z[I], z)ui(z). (3)

The algorithm applies a no-regret learning policy at each information set over these counterfactual
values (Zinkevich et al., 2008). Each player starts with an initial strategy and accumulates a coun-
terfactual regret for each action at each information set r(I, a) = v(σI→a, I) − v(σ, I) through
self-play. Minimizing the regret of playing σi at each information set also minimizes the overall
external regret, and so the average strategies approach a NE.

MCCFR (Lanctot et al., 2009) avoids traversing the entire game tree on each iteration while still
having the immediate counterfactual regrets be unchanged in expectation. Let Q = {Q1, . . . , Qr}
be a set of subsets of Z, such that their union spans the set Z. These Qj are referred to as blocks of
terminal histories. MCCFR samples one of these blocks and only considers the terminal histories in
the sampled block. Let qj > 0 be the probability of considering block Qj for the current iteration
(where

∑r
j=1 qj = 1). Let q(z) =

∑
j:z∈Qj qj , i.e., q(z) is the probability of considering terminal

history z on the current iteration. The sampled counterfactual value when updating block j is:

ṽi(σ, I|j) =
∑

z∈Qj∩ZI

1

q(z)
πσ−i(z[I])πσ(z[I], z)ui(z) (4)

Selecting a setQ along with the sampling probabilities defines a complete sample-based CFR algo-
rithm. For example, the algorithm that uses blocks that are composed of all terminal histories whose
chance node outcomes are equal is called chance-sampled CFR. Rather than doing full game-tree
traversals the algorithm samples one of these blocks, and then examines only the terminal histories
in that block.

Sampled counterfactual value matches counterfactual value in expectation (Lanctot et al., 2009).
That is, Ej∼qj [ṽi(σ, I|j)] = vi(σ, I). So, MCCFR samples a block and for each information set
that contains a prefix of a terminal history in the block, it computes the sampled counterfactual
regrets of each action, r̃(I, a) = ṽi(σ

t
(I→a), I)− ṽi(σt, I). These sampled counterfactual regrets are

accumulated, and the player’s strategy on the next iteration is determined by applying the regret-
matching rule to the accumulated regrets (Hart & Mas-Colell, 2000). This rule assigns a probability
to an action in an information set. Define r+

I [a] = max{0, rI [a]}. Then:

σ(I, a) =


1/|A(I)| if ∀a ∈ A(I) : rI [a] ≤ 0
r+I [a]∑

a∈A(I) r
+
I [a]

if rI [a] > 0

0 otherwise.

(5)

Here rI [a] is the cumulative sampled counterfactual regret of taking action a at I . If there is at
least one positive regret, each action with positive regret is assigned a probability that is normalized
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over all positive regrets and the actions with negative regret are assigned probability 0. If all the
regrets are negative, then Equation 5 yields σ(I, a) = 0 ∀a in this information set. To repair this,
the strategy is then reset to a default uniform random strategy.

There are different ways to sample parts of the game tree. Here we will focus on the most
straightforward way, outcome sampling, which is described in Algorithm 1. In outcome-sampling
Q is chosen so that each block contains a single terminal history, i.e., ∀Q ∈ Q, |Q| = 1. On
each iteration one terminal history is sampled and only updated at each information set along that
history. The sampling probabilities, Pr(Qj) must specify a distribution over terminal histories. We
specify this distribution using a sampling profile, σ′, so that Pr(z)= πσ

′
(z). Note that any choice

of sampling policy will induce a particular distribution over the block probabilities q(z). As long as
σ′i(a|I) > ε, then there exists a δ > 0 such that q(z) > δ, thus ensuring Equation 4 is well-defined.

The algorithm works by sampling z using policy σ′, storing πσ
′
(z). In particular, an ε-greedy

strategy is used to choose the successor history: with probability ε choose uniformly randomly and
probability 1 − ε choose based on the current strategy. The single history is then traversed for-
ward (to compute each player’s probability of playing to reach each prefix of the history, πσi (h))
and backward (to compute each player’s probability of playing the remaining actions of the his-
tory, πσi (h, z)). During the backward traversal, the sampled counterfactual regrets at each visited
information set are computed (and added to the total regret). Here,

r̃(I, a) =

{
wI(π

σ(z[I]a, z)− πσ(z[I], z)) if z[I]a v z
−wIπσ(z[I], z) otherwise

where wI =
ui(z)π

σ
−i(z[I])

πσ′(z)
. (6)

The algorithm requires tables to be stored at each information set; each table has a number of entries
equal to the number of actions that can be taken at that information set. Therefore, if we denote |Ai|
as the maximum number of actions available to player i over all their information sets, then the
space requirement for MCCFR is O(|I1||A1| + |I2||A2|). The time required by MCCFR, using
outcome sampling, depends on the regret bounds and the desired ε. To reach a fixed ε-NE, with
probability 1− p the number of iterations required is

O

(
2

pδ2
· |A|M

2

ε2

)
where δ is the smallest probability of sampling a terminal history over all histories, |A| is the max-
imum available actions over all information sets, and |M | is a balance factor depending on the
relative number of decisions taken by each player throughout the entire game with the property that√
|I| ≤ M ≤ |I|. In contrast, the full CFR algorithm requires O(|A|M2/ε2) iterations; however,

the iterations of MCCFR require only sampling a single history whereas an iteration of CFR requires
traversing the entire game tree in the worst case. In practice, one benefit of outcome sampling is that
information gained on previous iterations is quickly leveraged on successive iterations.

Algorithm 1 shows the pseudocode of the entire algorithm. We refer the interested reader to the
work of Lanctot et al. (2009), providing a more in-depth discussion, including convergence proofs.
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Data: root node
Data: Sampling scheme ε greedy
Data: Initialize information set markers: ∀I, cI ← 0
Data: Initialize regret tables: ∀I, rI [a]← 0
Data: Initialize cumulative strategy tables: ∀I, sI [a]← 0
Data: Initialize initial strategy: σ(I, a) = 1/|A(I)|

1 for t = 1, 2, 3 . . . do
2 current node← root node
3 SELECT:
4 while (current node 6= terminal) do
5 P ← REGRET MATCHING(rI),∀a ∈ I
6 P ∗ ← ε GREEDY(P)
7 current node← Select(current node, P ∗)

8 end
9 current node← Parent(current node)

10 UPDATE:
11 while (current node 6= root node) do
12 foreach a ∈ A[I] do
13 r̃ = r(I, a) (sampled counterfactual regret)
14 rI [a]← rI [a] + r̃
15 sI [a]← sI [a] + (t− cI)πσi (z[I])σi(I, a)

16 end
17 cI ← t
18 σ ← REGRET MATCHING(rI)
19 current node← Parent(current node)

20 end
21 end
Algorithm 1: Outcome-sampling with Monte-Carlo Counter-Factual Regret Minimization

3.2.3 MONTE-CARLO COUNTERFACTUAL REGRET EXAMPLE

We now provide an example of Algorithm 1 on Kuhn Poker, as shown in Figure 1. The algorithm
starts on the first iteration, during the selection phase. At the root node (a chance node), the chance
outcome K|Q is sampled with probability 1

6 . Following this node, the algorithm loads the informa-
tion set belonging to the first player where they have received a King and no actions have been
taken; let us call this information set I1. Since no regret has been collected for actions at I1 yet, P
is set to the uniform distribution U = (1

2 ,
1
2), which represent probabilities for (pass, bet). Then,

the sampling distribution is obtained P ∗ = (1 − ε)P + εU . Note that regardless of the value of
ε, on this first iteration each action is equally likely to be sampled. An action is sampled from P ∗;
suppose it is a bet. Following this action, the algorithm loads the information set belonging to the
second player where they have received a queen and the action made by the first player was a bet
(I2). Similarly, the algorithm constructs P and P ∗ as before – which have identical distributions
as at I1; suppose the pass action is sampled this time. Finally, this action is taken and the terminal
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node is reached. Therefore, the terminal history that was sampled on the first iteration, z1, is the
sequence: (K|Q, bet, pass).

In the update phase, the algorithm updates the information sets touched by the nodes that were
traversed in the sample in reverse order. Note that the notation z1[I1] represents the subsequence
(K|Q), and z1[I2] represents (K|Q, bet). The sampled counterfactual regret is computed for each
action at I2. Note that u2(z1) = −u1(z1) = −1. The opponents’ reaching probability is

πσ−i(z1[I2]) =
1

6
· 1

2
=

1

12
.

The probability of sampling z1 is

πσ
′
(z1) =

1

6
· 1

2
· 1

2
=

1

24
.

Therefore,wI2 = −2. The two remaining things to compute are the tail probabilities πσ(z1[I2], z) =
1
2 and for each πσ(z1[I2]a, z) = 1, where a is the pass action. Finally, from equation 6 we get

r̃(I2, pass) = −2 · (1− 1

2
) = −1,

and
r̃(I2, bet) = −(−2 · 1

2
) = 1.

After the updates on line 13, the regret table rI2 = (−1,+1). The average strategy table is then
updated. The reaching probability πσi (z1[I2]) is the product of probabilities of the strategy choices
of player 2, equal to 1 here since player 2 has not acted yet. The player’s strategy is currently
σ2(I2, pass) = σ2(I2, bet) = 1

2 . The current iteration t = 1 and cI2 = 0, therefore after the average
strategy updates the table sI2 = (1

2 ,
1
2). Finally cI2 is set to 1 and σ(I2) = (0, 1) according to

equation 5.
The algorithm then proceeds to update tables kept at I1, where

u1(z1) = 1, πσ−i(z1[I1]) =
1

6
, and πσ

′
(z1) =

1

24
, therefore wI1 = 4.

The tail reaching probabilities are πσ(z1[I1], z) = 1
4 , and πσ(z1[I1]a, z) = 1

2 , where a is the bet
action. This leads to sampled counterfactual values of

r̃(I1, pass) = −1, and r̃(I1, bet) = 1.

As before cI1 is incremented to 1. The average strategy table update is identical to the one that was
applied at I2. Since there are no previous actions taken by the player, the reaching probability is
again 1, and the player’s current strategy was uniform, as at I2. Finally t is incremented to 2 and the
entire process restarts.

3.3 Experiments

In the current section, we will empirically evaluate the chosen algorithms in the smaller domain of
Kuhn Poker and in full-scale Poker. We will present experimental results in Kuhn Poker in Section
3.3.1. Then we will give results in Poker in Section 3.3.2. Note that Kuhn and full-scale Poker are
explained in Section 2.2.
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Game Limit 2-p Poker

#iteration UCT MCCFR, E=0.6
1000000 -0.30821 -0.502385
2000000 -0.27291 -0.38137
3000000 -0.211665 -0.35938
4000000 -0.219625 -0.299085
5000000 -0.201485 -0.31999
6000000 -0.17621 -0.315805
7000000 -0.15521 -0.27771
8000000 -0.17901 -0.31643
9000000 -0.17799 -0.2864
10000000 -0.186585 -0.26078
11000000 -0.15607 -0.290925
12000000 -0.17974 -0.29087
13000000 -0.15528 -0.27865
14000000 -0.14181 -0.231025
15000000 -0.12594 -0.285545
16000000 -0.162695 -0.26514
17000000 -0.159415 -0.24142
18000000 -0.141695 -0.26353
19000000 -0.133745 -0.2314
20000000 -0.18484 -0.25223
21000000 -0.13882 -0.24581
22000000 -0.16769 -0.26161
23000000 -0.136985 -0.203455
24000000 -0.154215 -0.236695
25000000 -0.18157 -0.21148
26000000 -0.152525 -0.22165
27000000 -0.17569 -0.213335
28000000 -0.152255 -0.20121
29000000 -0.151065 -0.22558
30000000 -0.14731 -0.197915
31000000 -0.149325 -0.20694
32000000 -0.138365 -0.238875
33000000 -0.15505 -0.176595
34000000 -0.136595 -0.21927
35000000 -0.144725 -0.22413
36000000 -0.167625 -0.20264
37000000 -0.126125 -0.171715
38000000 -0.1177 -0.219025
39000000 -0.1466 -0.1911
40000000 -0.182245 -0.18643
41000000 -0.10686 -0.18665
42000000 -0.137965 -0.195105
43000000 -0.142795 -0.17549
44000000 -0.12844 -0.196955
45000000 -0.138275 -0.18438
46000000 -0.152245 -0.149855
47000000 -0.11488 -0.180895
48000000 -0.149785 -0.18449
49000000 -0.160885 -0.17541
50000000 -0.154335 -0.202345
51000000 -0.135555 -0.176805
52000000 -0.135585 -0.166755
53000000 -0.172165 -0.176525
54000000 -0.140035 -0.15277
55000000 -0.14462 -0.11999
56000000 -0.13888 -0.1564
57000000 -0.119515 -0.18582
58000000 -0.159195 -0.155025
59000000 -0.12965 -0.16708
60000000 -0.150855 -0.16455
61000000 -0.111345 -0.17555
62000000 -0.132165 -0.182095
63000000 -0.14703 -0.149315
64000000 -0.14222 -0.189185
65000000 -0.144715 -0.151055
66000000 -0.14483 -0.180865
67000000 -0.143565 -0.17185
68000000 -0.14643 -0.149485
69000000 -0.15015 -0.137985
70000000 -0.157835 -0.142525
71000000 -0.166905 -0.171325
72000000 -0.15989 -0.184765
73000000 -0.12237 -0.1488
74000000 -0.13732 -0.169455
75000000 -0.15739 -0.144705
76000000 -0.151765 -0.12328
77000000 -0.14768 -0.15946
78000000 -0.14448 -0.13819
79000000 -0.142815 -0.16202
80000000 -0.14195 -0.16011
81000000 -0.17219 -0.13438
82000000 -0.154565 -0.13179
83000000 -0.14677 -0.15241
84000000 -0.14296 -0.164015
85000000 -0.157345 -0.14014
86000000 -0.13648 -0.14606
87000000 -0.16621 -0.152785
88000000 -0.12989 -0.126545
89000000 -0.18669 -0.152755
90000000 -0.162215 -0.11338
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Figure 4: Experimental results for Monte-Carlo Counter-Factual Regret Minimization (MCCFR)
and Monte-Carlo Tree Search (MCTS) in the game of Kuhn Poker (left) and Poker (right).
In both figures the x-axis denotes the number of iterations the algorithms ran. The y-axis
denotes the quality of the Nash-Equilibrium strategy learned so far. For our experiments
in Kuhn Poker this is represented by the squared error (SQR-E) and cumulative dominated
error (DOM-E), while in Poker we use the metric named small bets per hand (sb/h). For
all metrics applies that a value close to zero indicates a near Nash-Equilibrium strategy.
The opponent in the Poker experiments is an approximated Nash Equilibrium strategy,
computed by MCCFR.

3.3.1 KUHN POKER

We ran both MCCFR and MCTS in the game of Kuhn Poker. The C-constant for MCTS was
tweaked in preliminary experiments and set to 2. It has been suggested by Balla & Fern (2009)
that the C-constant should be set in the same scale as the payoff range. Also, Auer, Cesa-Bianchi,
& Fischer (2002) discuss a modified version of the original Upper Confidence Bound (UCB) algo-
rithm (on which the Upper Confidence Bound applied to Trees (UCT) algorithm is based) that tunes
the exploration term. In our experiments, we ran several runs of MCTS with varying values for the
parameter C, and then took the best experimental run. For MCCFR we used epsilon-greedy as its
sampling scheme. As suggested in earlier work (Lanctot et al., 2009), ε was set to the relatively high
value of 0.6 to cover a large area of the search space.

After every 104 iterations we measured the performance of the current policy. Since the equilib-
ria are known in Kuhn Poker (see Section 2.2) we can compare our strategy with the theoretically
correct one. Each evaluation we compute the squared error, which is simply the correct NE prob-
ability minus our current learned probability squared. We also compute the cumulative dominated
error, which denotes the summed probabilities for selecting dominated actions.

From Figure 4 (left) we can confirm earlier results from the work of Lanctot et al. (2009) and
Sturtevant (2008), namely that MCCFR learns a NE and MCTS learns a balanced situation that
is not (necessarily) a NE. The balanced situation that MCTS eventually resides in depends on the
parameter value C. Where MCCFR obtains squared errors and dominated errors close to zero,
MCTS has converged slightly off the NE and is playing dominated actions. However, we also see
that MCTS is still unlearning these dominated actions. Therefore, unlike MCCFR, MCTS does not
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learn perfectly rational strategies, and as such is exploitable. However, it does a reasonable job at
avoiding dominated mistakes. As a consequence, it will not lose (much) to a NES.

3.3.2 LARGER TEST DOMAIN: POKER

We evaluated policies learned by MCTS and MCCFR in the game of Poker. To reduce the com-
plexity of the task of finding a NES, we decreased the size of the game-tree by applying a bucket
discretization (Billings, 2006) on the cards, along with imperfect recall (i.e., buckets of previous
phases are forgotten). At each phase, the strategic strength of private cards, along with zero or more
board cards, determines the bucket.

Learning Against a Precomputed Nash Equilibrium
In this experiment we use a 10-bucket discretization for MCCFR and MCTS. MCCFR uses similar
parameter settings compared to the experiments in Kuhn Poker, but for MCTS we change the C-
constant to 17. Again, this value was determined in preliminary experiments. At every 106 iterations
we evaluate the current policy learned by MCTS and MCCFR. Policies are evaluated in small bets
per hand (sb/h), which describes the big blinds won per hand on average; this quantity can thus be
used to reflect a player’s playing skill. The small bets per hand are computed in 105 games against a
pre-learned Nash-Equilibrium strategy (using MCCFR with a 10-bucket discretization). The results
are shown in Figure 4 (right). The x-axis denotes the number of iterations, and the y-axis the small
bets per hand. A value close to zero indicates that the strategy is no longer being exploited by the
pre-computed NES, and arguably has converged to an (approximated) Nash Equilibrium itself.

We can see that MCTS again converges fast to a balanced situation, though not necessarily to
the NE. MCCFR on the other hand converges considerably slower, but unlike MCTS it continues to
learn better NE approximations. Given these results, one may conclude that MCTS learns reasonably
good strategies fast, but MCCFR will in the long run produce better NE approximations.

It is interesting to mention here that a single iteration of MCTS requires much less computation
time and memory than a single iteration of MCCFR. If the graph in Figure 4 (right) plotted com-
putation time against performance, rather than the number of iterations required, we would see a
larger advantage for MCTS in the early phase of learning. Clearly, the end result would still be the
same; at a certain point, MCCFR surpasses MCTS.

Playing Against Benchmark Poker Bots
To get a good measure of the strength of the policies, we evaluated both policies against strong
opponent bots provided with the software tool Poker Academy Pro, namely POKI and SPARBOT.
For a more detailed explanation of POKI and experiments with this bot, we refer the reader to
the work of Billings (2006). SPARBOT is a bot that plays according to the NE strategy described
by Billings et al. (2003). It was designed solely for 2-player Poker, in contrast to POKI, which was
designed for multi-player games. Since SPARBOT specializes in two-player games, it is significantly
less exploitable in a two-player game than POKI, a stochastic rule-based bot.

We ran a large number of offline iterations for MCCFR and MCTS, froze the policies, and
evaluated them. In addition to a 10-bucket discretization for MCTS and MCCFR, we also used
MCCFR with a 100-bucket discretization to examine the effect of a finer abstraction. For clarity,
we will mention the number of buckets used after the algorithm name; e.g., MCCFR100 refers to
MCCFR with 100 buckets. All results are shown in Table 1. We performed 104 evaluation games
in the software tool Poker Academy Pro for each policy, with an estimated standard deviation of
0.06sb/h. MCCFR10, after a great deal of iterations, wins by a small margin from POKI, while

592



COMPUTING APPROXIMATE NASH EQUILIBRIA AND ROBUST BEST-RESPONSES USING SAMPLING

Opponent MCTS10 MCCFR10 MCCFR100

POKI 0.077 0.059 0.191
SPARBOT -0.103 -0.091 0.046

Table 1: Experimental results for Monte-Carlo Counter-Factual Regret Minimization (MCCFR)
and Monte-Carlo Tree Search (MCTS) against two Poker bots. Outcomes are reported in
small bets per hand (sb/h). The numbers behind the algorithm names refer to the number
of buckets used in the card abstraction.

losing a small amount from SPARBOT. This loss may be due to our chosen abstractions (10-bucket
imperfect recall), or due to our choice of using outcome sampling (Lanctot et al., 2009). Looking
at MCCFR100, we see that the abstraction level is the culprit; it wins convincingly from POKI and
SPARBOT. MCTS10 surprisingly, knowing it doesn’t necessarily learn a NES, performs slightly
better than MCCFR10 against POKI, although the difference is not significant. Against SPARBOT,
the MCTS10 strategy loses slightly more than MCCFR10, with no statistical significance.

To conclude, we evaluated two state-of-the-art algorithms in extensive-form games. We confirm
previous theoretical claims with results obtained in experiments in a smaller game (Kuhn Poker),
and for the first time apply both sampling techniques in the complex game of Poker. MCTS is a valid
approach if one wants to learn reasonably strong policies fast, but these are not necessarily a NE,
whereas MCCFR is the better choice if the quality of the strategy is more important than the learning
time and memory constraints. However, both techniques can produce strategies that are competitive
with strong Poker bots, especially if fine abstractions are used. Both sampling techniques show
promise for complex domains, not exclusively Poker.

4. Robust Best-Response Learning via Monte-Carlo Restricted Nash Response

It is well-known that a perfectly rational Nash-Equilibrium strategy (NES) is not necessarily a best-
response strategy (i.e., best counter-strategy) against strategies other than the rational strategy itself
(Osborne & Rubinstein, 1994). If the opposition employs clearly inferior strategies, these can be
exploited best using tailored counter-strategies. The resulting best-response strategy would be more
profitable than the Nash-Equilibrium strategy (NES), because it is designed to win instead of de-
signed not to lose. This stresses the importance of opponent modeling in games too complex to fully
analyze, since we can expect that our opposition is incapable of playing a perfectly rational strategy,
and we can profit from playing best-response strategies. However, we do not want to become too
exploitable ourselves by other strategies, because our opponent model may be inaccurate, or players
may switch strategies.

This section presents Monte-Carlo Restricted Nash Response (MCRNR), a sample-based algo-
rithm for the offline computation of restricted Nash strategies in complex extensive-form games.
A restricted Nash strategy is essentially a robust best-response strategy, i.e., it exploits opponents
to some degree based on some opponent model, while preventing that the strategy itself becomes
to exploitable. The new algorithm described in this section combines a state-of-the-art algorithm
and a general technique, i.e., Monte-Carlo Counterfactual Regret Minimization (MCCFR) (Lanctot
et al., 2009) (see Section 3.2.2) and Restricted Nash Response (RNR) (Johanson et al., 2008; Jo-
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hanson & Bowling, 2009). Given the promising results of applying sampling in Counterfactual Re-
gret Minimization (CFR), we apply the original Restricted Nash Response (RNR) technique using
Monte-Carlo Counterfactual Regret Minimization (MCCFR) as the underlying equilibrium solver.
Our new algorithm, Monte-Carlo Restricted Nash Response (MCRNR), benefits from sampling only
relevant parts of the game tree. The algorithm is therefore able to converge very quickly to robust
best-response strategies given a model of the opponent(s).

The section is structured as follows. We first outline related work on computing best-
response strategies. Then, we introduce our new algorithm, Monte-Carlo Restricted Nash Response
(MCRNR). Finally, we describe experiments that validate the new algorithm in a variety of games,
as discussed in Section 2.2.

4.1 Computing Best-Response Strategies

Poker is a perfect domain for investigating best-response strategies since the ability to anticipate
an opponent’s move highly influences the outcome of the game. We mention a few of the previous
approaches to perform opponent modeling in Poker. Then, we discuss work on Restricted Nash
Response (RNR).

4.1.1 GENERAL OPPONENT MODELING

One approach is the Adaptive Imperfect Information game-tree search algorithm (Billings, 2006),
which has an opponent model integrated in it. It keeps track of statistics for both the outcome of
the game and actions at opponent decision nodes for every possible betting sequence. The problem
with this approach is that it uses little generalization and hence the frequency counts are limited to a
small number of situations. A more general system for opponent modeling was obtained by training
a neural network. Davidson, Billings, Schaeffer, and Szafron (2000) use nineteen different parame-
ters as input nodes and three output nodes representing the possible actions. The input parameters
include information about the players, information about the betting history and information on the
community cards. Southey et al. (2005) use prior distributions over the opponent’s strategy space
and compute a posterior using Bayes’ rule and observations of the opponent’s decisions. It also
investigates several ways to play an appropriate response to that distribution.

In this paper we also integrate an opponent model with a search technique in order to learn a
best-response strategy. Unlike Billings (2006) we learn a model that generalizes between states. Our
work also differs from the aforementioned studies in that we learn robust best-response strategies,
which prevents the strategy from becoming too exploitable itself.

4.1.2 RESTRICTED NASH RESPONSE

It is known that a best-response strategy, in other words a strategy that maximally exploits an oppo-
nent, is more profitable than a (pessimistic) NES, given that the model of the opponent is accurate.
Experiments by Hoehn et al. in the game of Kuhn Poker, validate this claim. Johanson et al. (2008)
argue that best-response strategies are not sufficiently robust; the best-response strategy may be ex-
ploited by strategies other than the strategy of the current opponent, or even by the opponent itself
if the opponent model is not accurate. The authors therefore introduce a general technique named
Restricted Nash Response (RNR) and put it to the test in Poker using chance-sampled Counterfac-
tual Regret Minimization (CFR). Unlike Nash-Equilibrium strategies that are oblivious to opponent
play, and best-response strategies that are potentially exploitable, RNR strategies are robust best-
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Figure 5: Illustration of Restricted Nash Response. The RNR technique transforms a game; a
chance node with an outcome that is unrevealed (to the unrestricted player) is added
to the top of both trees. This new game, G′, has two subtrees: the left subtree is GR and
the right subtree is G. GR is identical to G except that one player is restricted to play the
strategy σfix. Think of the initial coin flip as a moderator that either forces the restricted
player to use σfix or some other strategy σi. Their opponent does not know which of
these two options was forced upon the restricted player. This causes the information sets
containing the same nodes in each game to be merged, because the unrestricted player
cannot tell them apart.

response strategies given a model of opponent policies (Johanson et al., 2008). It is shown that RNR
strategies are capable of exploiting opponents, with reasonable performance even when the model
is wrong. The RNR technique transforms an existing game into a modified game; an equilibrium
solver then solves this modified game using the previously mentioned CFR algorithm, wherein it is
assumed that the opponent plays according to a fixed strategy, as specified by the model, with a cer-
tain probability, denoted by the parameter p. Otherwise, the opponent plays according to a rational
regret-minimizing strategy (see Figure 5).

This p parameter is an indication of how confident we are the model is correct; it can be thought
of as a confidence value used to set the trade-off between exploitation and exploitability, where
respectively the first indicates the maximum amount we can win from a specific opponent strategy,
and the second indicates the maximum amount we risk losing by playing this strategy. Setting p = 0
leads to the unmodified game G (see Figure 5) being solved, which results in a game-theoretic
solution. The overall solution will not be exploitable (i.e., will at least break-even), but will also
not maximally exploit its opponents. The other extreme, namely setting p = 1, will result in a pure
best-response strategy against the fixed strategy denoted by the opponent model. In the game GR,
all opponent nodes have their action probabilities drawn from the opponent model. Focusing on this
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game results in a maximal exploitative strategy against the opponent model, potentially at the cost
of becoming exploitable by other strategies.5

Calculating the RNR response requires a model of the opponent’s strategy, denoted as σfix.6

Suppose in a 2-player game, the opponent (i.e., restricted) player is player 2, then σfix ∈ Σ2.
Define Σ

p,σfix
2 to be the set of mixed strategies of the form pσfix + (1 − p)σ2 where σ2 is an

arbitrary strategy in Σ2. The set of restricted best responses to σ1 ∈ Σ1 is:

BRp,σfix(σ1) = argmax
σ2∈Σ

p,σfix
2

(u2(σ1, σ2)) (7)

A (p, σfix) RNR equilibrium is a pair of strategies (σ∗1, σ
∗
2) where σ∗2 ∈ BRp,σfix(σ∗1) and σ∗1 ∈

BRp,σfix(σ∗2). In this pair, the strategy σ∗1 is a p-restricted Nash response to σfix. These are counter-
strategies for σfix, where p provides a balance between exploitation and exploitability. In fact, given
a particular value of p, solving a RNR-modified game assures the best possible trade-off between
best response and equilibrium is achieved.

4.2 Monte-Carlo Restricted Nash Response (MCRNR)

We extend the original RNR algorithm with sampling. The resulting new algorithm, MCRNR, ben-
efits from sampling only relevant parts of the game tree. It is therefore able to converge very fast
to robust best-response strategies. The pseudo-code of the algorithm is provided in Algorithm 2.
The algorithm has identical inputs compared to the MCCFR algorithm (see Algorithm 1), with an
additional two components: (1) an opponent model that translates to a fixed strategy σfix for the
so-called restricted player pr, and (2) a confidence value, p, that we assign to this model. For learn-
ing the opponent models, we apply a standard supervised learning method, namely the J48 decision
tree learner in the Weka datamining tool. Similar to the work in the original RNR article (Johanson
et al., 2008), we here use a fixed value of p.7

We then sample a terminal history h ∈ Z, either selecting actions based on a provided opponent
model, or based on the strategy obtained by regret-matching. The REGRET MATCHING routine
assigns a probability to an action in an information set (according to Equation 5). The ε-greedy
sampling routine S(σ) samples action a with probability

ε
1

|A(I)|
+ (1− ε)σi(I, a). (8)

After sampling the action, we recursively call the MCRNR routine given the extended history,
namely the history of h after applying a (see line 13). Once at a terminal node z, utilities are
determined and backpropagated through all z[I] @ z.

Regret and average strategy updates are applied when the algorithm returns from the recursive
call, in lines 14 to 18. On line 15 we add the sampled counterfactual regret (according to Equa-
tion 6; it takes as input the reaching probabilities and utility for this sampled terminal history) to

5. Note the generality of the RNR technique: since it simply modifies an extensive-form game, the underlying solution
technique used to solve the game is independent of the application of RNR. Nonetheless, from this point on we refer
to RNR as an algorithm to mean the original application of the RNR technique coupled with the CFR algorithm.

6. We refer the reader back to Section 2.1 for an overview of the notations used in this section.
7. When learning the model from data it makes sense to have different values per information set because the confidence

depends on how many observations are available per information set; counter-strategies using a model built from data
are called Data-Biased Responses (Johanson & Bowling, 2009).
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initialize: Information set markers: ∀I, cI ← 0
initialize: Regret tables: ∀I, rI [a]← 0
initialize: Strategy tables: ∀I, sI [a]← 0
initialize: Initial strategy: σ(I, a) = 1/|A(I)|
input : A starting history h
input : A sampling scheme S(σ) (e.g., ε-greedy)
input : An opponent model or fixed strategy σfix for restricted player pr
input : Confidence value p
input : Current iteration t

1 MCRNR(h) =
2 if h ∈ Z then
3 return (ui(h), πσ(h))
4 else
5 pi ← P (h)
6 if at chance node then select chance node
7 else if pi = pr then
8 if h is a prefix of a terminal history in the restricted subtree then σi(I)← σfix(I)
9 else σi(I)← REGRET MATCHING(rIi)

10 else
11 σi(I)← REGRET MATCHING(rIi)
12 Sample a from S(σi(I))
13 (u, π)←MCRNR(h+a)
14 foreach a ∈ A(I) do
15 rI [a]← rI [a] + r̃(I, a)
16 sI [a]← sI [a] + (t− cI)πσi σi(I, a)

17 end
18 cI ← t
19 return (u, σ)

20

Algorithm 2: One iteration of the Monte-Carlo Restricted Nash Response algorithm.

the cumulative regret. On line 16 the average strategy is updated using optimistic averaging, which
assumes that nothing has changed since the last visit at this information set.8 Finally, the strategy
tables are updated before a new iteration starts. In the next iteration, another player becomes the
restricted player. This process is repeated a number of times until satisfactory; meanwhile, each
player has been assigned to be the restricted player. At any iteration, the average strategy σ(I, a)
can be obtained by normalizing sI . When pr = 2 then σ∗1 = σ1. When pr = 1 then σ∗2 = σ2. Over
time, σ∗ = (σ∗1, σ

∗
2) approaches an RNR equilibrium.9

8. For more information on update strategies, we refer to the work of Lanctot et al. (2009).
9. Note that the Data-Biased Response (DBR) variant (Johanson & Bowling, 2009) works in a slightly different way.

Instead of having the selection of restricting the player or not at the root as a chance node, it is done before each
information set and then hidden from the restricted player (Johanson & Bowling, 2009). The restricted player is
forced to used a mixed strategy based on the confidence value for the current information set pConf . Lines 8 and 9
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4.3 Experiments

We performed experiments in smaller games and in Poker. In the smaller games we performed two
types of experiments; one to characterize the relationship between exploitation and exploitability
and the other for evaluating convergence rates of sampling versus non-sampling algorithms. In Poker
we evaluate the strength of learned strategies against benchmark opponent players.

4.3.1 SMALLER GAMES

We ran two separate sets of experiments for the games OCP (we use a deck of size N = 500),
Goofspiel, Bluff, and PAM. The first set of experiments aims to characterize the relationship be-
tween exploitation and exploitability for different values of p. The second set of experiments is a
comparison of the convergence rates of RNR and MCRNR. In both cases perfect opponent models
were taken from runs of MCCFR and ε was set to 0.6. Results are shown in Figures 6 and 7.

Results from the first set of experiments may influence the choice of p. If exploitation is much
more important than exploitability then a value above 0.9 is suggested; on the other hand a notice-
able boost in exploitation can be achieved for a small loss of exploitability for 0.5 ≤ p ≤ 0.8. In
every game except Bluff it seems that the region p ∈ [0.97, 1] has high impact on to the magnitude
of this trade-off. Results from Figure 7 confirm the performance benefit of sampling since MCRNR
produces a better NE approximation in less time, especially in the early iterations. This is particu-
larly important when attempting to learn online (i.e. during playing, rather than beforehand), when
time might be limited.

4.3.2 LARGER TEST DOMAIN: POKER

We evaluated the policies learned by MCRNR against two poker bots, namely POKI and SPARBOT.
Both opponents were also used in experiments with a game theoretic (or rational) player in Section
3. The experimental settings as well as chosen abstractions are identical to those in the experiments
in Section 3.3.2. We remind the reader that SPARBOT is a bot designed to play according to a NES
in an abstracted game; it is therefore less exploitable than POKI.

Our MCRNR implementation in Poker restricts the player at each information set, and in essence
represents a MCDBR algorithm (see Section 4.2). However, unlike the original DBR paper, in our
experiments pConf is a global constant and its value is not biased from data. The resulting algo-
rithm therefore is a mix between the two algorithms. We will continue using the name MCRNR
here, but the reader should note that the original RNR algorithm is slightly different.10

For the opponent modeling, we deliberately chose a setup that was ‘realistically difficult’. We
observed only ∼ 20K games played against both POKI and SPARBOT, as opposed to, e.g., the 1
million games used by Johanson and Bowling (2009) for RNR. These games were used to gather
opponent data concerning the two bots. Learning an opponent model can be approached as a pattern
recognition task (Bishop, 2006), wherein a model is learned based on experience (in this case,
previous Poker games of the players that are modeled). The model is then used to estimate the
behavior of opponents in unseen situations. Since the opponent data we gathered is rather sparse
due to the 20K games, and since a frequency count cannot generalize, we chose to apply a standard

from Algorithm 2 are replaced by σi(I)← pConfσfix(I) + (1− pConf)σi(I), where pConf is a specific value
of p per information set.

10. Based on experimental results in the smaller games, we noticed that the difference between vanilla RNR and MCDBR
with a fixed pConf is very small – both algorithms are thus similar.
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Figure 6: The trade-off between exploitation and exploitability with Monte-Carlo Restricted Nash
Response. The exploitation value is the gain in payoff when using the Monte-Carlo
Restricted Nash Response equilibrium profile compared to a Nash equilibrium pro-
file, summed over pr ∈ {1, 2}. The exploitability is bi(σ−i) summed over i =
pr ∈ {1, 2}. The value of p used, from bottom-left point to top-right point, was:
0, 0.5, 0.7, 0.8, 0.9, 0.93, 0.97, 1.

decision tree induction algorithm (i.e., the J48 algorithm in the Weka data-mining tool) to learn
an opponent model from the sparse data. We provided the J48 algorithm with five simple features,
namely (1) the starting seat relative to the button, (2) the sum of bets or raises during the game, (3)
the sum of bets or raises in the current phase, (4) the sum of bets or raises of the modeled player
in the game, and finally (5) the bucket of the modeled player (if it was observed). For each specific
phase, we learn a model that predicts the strategy of the modeled player. We set p to a fixed value of
0.75.11 We ran offline iterations of MCRNR, froze the policy, and evaluated it. All results are shown
in Table 2, including the results for MCCFR, which we already presented earlier. We performed 104

evaluation games for each player. Again, we provide mostly results with a 10-bucket abstraction
(labeled ‘MCRNR10’). A 100-bucket abstraction (‘MCRNR100’) was used as well, against POKI,
to demonstrate the effect of finer abstraction levels.

11. This value is not adapted based on the experience in a specific information set, as was done in the data-biased
approach (Johanson & Bowling, 2009).
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Figure 7: The convergence rates of Restricted Nash Response versus Monte-Carlo Restricted Nash
Response. Fixed strategy profiles σfix were generated using MCCFR and run until
εσfix ≤ 0.1. Each data point in the graphs represent two separate runs with average pro-
files (σr1, σ2) and (σ1, σ

r
2), where a superscript of r represents the restricted player. The

profile of interest is then σ = (σ1, σ2). The value on the y-axis is εσ = b1(σ2) + b2(σ1).
The profile σ is an RNR equilibrium when εσ is minimized. Note that εσ does not neces-
sary approach 0 when p > 0; the strategies may be always be somewhat exploitable due
to opponent exploitation.

As expected, MCRNR exploits POKI considerably more than MCCFR, namely with 0.369 sb/h
(using a 10-bucket abstraction) and 0.482 sb/h (100 buckets). Interestingly, as depicted in Figure 8,
even MCRNR10 has learned to exploit POKI in only ∼20 million sampled iterations. We note that
in a sampled iteration, only very few nodes are touched (i.e., only information sets are updated along
the history of the sampled terminal node), while in a RNR (and CFR, for that matter) iteration all
information sets are updated. Consequently, 20 million sampled iterations with MCRNR (or MC-
CFR) map to far less full-backup iterations with RNR (or CFR), and require much less computation
time than 20 million full backups.

Against SPARBOT, which plays a better NES approximation, an improvement in performance
is also observed, but here, the difference is not significant. This is not surprising, given that SPAR-
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Figure 8: An online evaluation of a MCRNR policy during learning against POKI. While the bot
is playing 1, 000 online games, an approximated 6 million offline iterations with Monte-
Carlo Restricted Nash Response, using a 10-bucket abstraction, are run.

Opponent MCCFR10 MCRNR10 MCCFR100 MCRNR100

POKI 0.059 0.369 0.191 0.482
SPARBOT -0.091 -0.039 0.046 0.061

Table 2: Experimental results with MCRNR versus two bots. We repeat the results of Monte-Carlo
Counter-Factual Regret Minimization (MCCFR) as reported in Section 3. Outcomes are in
small bets per hand (sb/h). Numbers behind algorithm names refer to the abstraction level
(number of buckets).

BOT is not as (extremely) exploitable as Poki. Clearly, though, MCRNR performs similarly against
SPARBOT as MCCFR, implying that the MCRNR policy plays very few dominated actions.

In conclusion, against both POKI as well as SPARBOT, MCRNR finds at least an equally good
policy as MCCFR. Against POKI, an exploitable opponent, the benefit of the algorithm becomes ap-
parent; the MCRNR policy earns much more than the MCCFR policy, even with a coarse abstraction
(compare 0.191 sb/h for MCCFR100 with 0.369 sb/h for MCRNR10; a coarser abstraction).

We also deliberately limited the amount of data available for the opponent model to illustrate
the performance of the new algorithm under difficult conditions. Under more ideal conditions, i.e.,
most prominently with more opponent data, the algorithm can be expected to further outperform
MCCFR in terms of (simulated) money won when playing against an exploitable opponent, and to
further outperform both RNR and MCCFR in terms of the time required to find a good policy.

5. Conclusion

This article highlights two of our contributions in the field of decision-making in complex partially
observable stochastic games. We first applied two existing recent search techniques that use Monte-
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Carlo sampling to the task of approximating a Nash-Equilibrium strategy (NES), namely Monte-
Carlo Tree Search (MCTS) and Monte-Carlo Counterfactual Regret Minimization (MCCFR). These
algorithms have not been compared before in a game as complex as we use, namely two-player Limit
Texas Hold’Em Poker. MCTS has been used predominantely in perfect-information games such as
Go. In such games, the algorithm is proven to compute a NES. In imperfect-information games, bal-
anced situations are learned that are not necessarily a Nash-Equilibrium (NE) (Sturtevant, 2008). In
our experiments, we confirm this finding: the algorithm can indeed learn reasonably strong policies
in Poker, with the drawback that these strategies are not necessarily a NE. MCCFR on the other hand
has already been shown to converge to a NE in smaller imperfect information games, such as the
ones we outlined in Section 2.2 (Lanctot et al., 2009). We apply it for the first time in the complex
game of Poker, and show that it indeed does approximate a NES. The initial convergence of MCCFR
is slower than that of MCTS. This may be due to the fact that we used outcome sampling. Other
sampling schemes, e.g., external sampling (Lanctot et al., 2009), may lead to MCCFR converging
as fast as MCTS (where ‘fast’ is measured in number of iterations required). It should be mentioned
that a typical iteration of MCCFR takes significantly longer (in actual time) than one of MCTS,
due to additional computational complexity involved in the backpropagation process. MCCFR also
takes up more memory because more statistics are required for computing strategy distributions.

Our second contribution relates to the observation that Nash-Equilibrium strategies are not nec-
essarily best to deal with clearly irrational opposition (i.e., players not playing a NES). A tailored
best-response strategy can yield more profit. Pure best-response strategies however may be brittle
and exploitable against strategies other than the one they were trained against. We present Monte-
Carlo Restricted Nash Response (MCRNR), a sample-based algorithm for the computation of re-
stricted Nash strategies, essentially robust best-response strategies that (1) exploit irrational oppo-
nents more compared to the NES and (2) are not (too) exploitable by other strategies. This algorithm
combines the advantages of two state-of-the-art existing algorithms, i.e., MCCFR and Restricted
Nash Response (RNR). MCRNR samples only relevant parts of the game tree. It is therefore able to
converge faster to robust best-response strategies than RNR. We evaluate our algorithm on a variety
of imperfect-information games that are small enough to solve yet large enough to be strategically
interesting. We empirically show that MCRNR learns much quicker than standard RNR in smaller
games. We also apply MCRNR in the large game of Poker, deliberately choosing hard settings, i.e.,
relatively few iterations to come up with a policy, and relatively little opponent data. Even with such
hard settings, MCRNR learns to exploit the strong (yet exploitable) opponent bot POKI significantly
more than the NES learned by MCCFR, while performing similarly as MCCFR against the strong
(hardly exploitable) opponent bot SPARBOT. MCRNR achieves this performance in a fraction of
the computation time required by previous algoritms.

The strong results obtained by MCCFR and MCRNR in the complex game of two-player Poker
point to many possible applications for (refinements of) these algorithms. Most prominently, we
see ample opportunity for continued work in Poker. One of the first applications of interest is two-
player Poker with even finer abstractions. We show that a 100-bucket abstraction performs much
better than a 10-bucket one. Indeed, state-of-the-art two-player NE bots use strategies computed
with extremely fine-grained abstractions. Less abstractions would further improve performance con-
siderably against the opponent bots used in this article. However, in such settings, we would require
more opponent-model data, and also need to allow more iterations to learn policies. Second, inte-
grating the Data-Biased Response (DBR) approach may lead to increased performance. Third, it
would be highly interesting to evaluate the performance of the algorithms in Poker with more than
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two players. In zero-sum games with more than two players, the NES is no longer guaranteed not
to lose; coalitions between players may be formed. Nonetheless, the first work on applying algo-
rithms such as CFR to games with more than two players suggests that the NES still is a very strong
strategy (Risk & Szafron, 2010). It would be very interesting to determine whether MCCFR and
MCRNR are as beneficial (for the speed of convergence and the quality of the solution converged
to) in three-player games as in a two-player game.
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