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Abstract

We consider how an agent should update her beliefs when her beliefs are represented by
a set P of probability distributions, given that the agent makes decisions using the minimax
criterion, perhaps the best-studied and most commonly-used criterion in the literature. We
adopt a game-theoretic framework, where the agent plays against a bookie, who chooses
some distribution from P. We consider two reasonable games that differ in what the
bookie knows when he makes his choice. Anomalies that have been observed before, like
time inconsistency, can be understood as arising because different games are being played,
against bookies with different information. We characterize the important special cases
in which the optimal decision rules according to the minimax criterion amount to either
conditioning or simply ignoring the information. Finally, we consider the relationship
between updating and calibration when uncertainty is described by sets of probabilities.
Our results emphasize the key role of the rectangularity condition of Epstein and Schneider.

1. Introduction

Suppose that an agent models her uncertainty about a domain using a set P of probability
distributions. How should the agent update P in light of observing that random variable
X takes on value x? Perhaps the standard answer is to condition each distribution in P
on X = x (more precisely, to condition those distributions in P that give X = x positive
probability on X = x), and adopt the resulting set of conditional distributions P | X = x
as her representation of uncertainty. In contrast to the case where P is a singleton, it
is often not clear whether conditioning is the right way to update a set P. It turns out
that in general, there is no single “right” way to update P. Different updating methods
satisfy different desirata, and for some sets P, not all of these desiderata can be satisfied at
the same time. In this paper, we determine to what extent conditioning and some related
update methods satisfy common decision-theoretic optimality properties. The main three
questions we pose are:

1. Is conditioning the right thing to do under a minimax criterion, that is, does it lead
to minimax-optimal decision rules?

2. Is the minimax criterion itself reasonable in the sense that it satisfies consistency
criteria such as time consistency (defined formally below)?
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3. Is conditioning the right thing do under a calibration criterion?

We show that the answer to the first two questions is “yes” if P satisfies a condition that
Epstein and Schneider (2003) call rectangularity, while the answer to the third question is
“yes” if P is convex and satisfies the rectangularity condition.1 Thus, the main contribution
of this paper is to show that, under the rectangularity condition, conditioning is the right
thing to do under a wide variety of criteria. Apart from this main conclusion, our analysis
provides new insights into the relation between minimax optimality, time consistency, and
variants of conditioning (such as ignoring the information that X = x altogether). We now
discuss our contributions in more detail.

1.1 The Minimax Criterion, Dilation, and Time Inconsistency How should an
agent make decisions based on a set P of distributions? Perhaps the best-studied and
most commonly-used approach in the literature is to use the minimax criterion (Wald,
1950; Gärdenfors & Sahlin, 1982; Gilboa & Schmeidler, 1989). According to the minimax
criterion, action a1 is preferred to action a2 if the worst-case expected loss of a1 (with
respect to all the probability distributions in the set P under consideration) is better than
the worst-case expected loss of a2. Thus, the action chosen is the one with the best worst-
case outcome.

As has been pointed out by several authors, conditioning a set P on observation X = x
sometimes leads to a phenomenon called dilation (Augustin, 2003; Cozman & Walley, 2001;
Herron, Seidenfeld, & Wasserman, 1997; Seidenfeld & Wasserman, 1993): the agent may
have substantial knowledge about some other random variable Y before observing X = x,
but know significantly less after conditioning. Walley (1991, p. 299) gives a simple example
of dilation: suppose that a fair coin is tossed twice, where the second toss may depend
in an arbitrary way on the first. (In particular, the tosses might be guaranteed to be
identical, or guaranteed to be different.) If X represents the outcome of the first toss and
Y represents the outcome of the second toss, then before observing X, the agent believes
that the probability that Y is heads is 1/2, while after observing X, the agent believes that
the probability that Y is heads can be an arbitrary element of [0, 1].

While, as this example and others provided by Walley show, such dilation can be quite
reasonable, it interacts rather badly with the minimax criterion, leading to anomalous
behavior that has been called time inconsistency (Grünwald & Halpern, 2004; Seidenfeld,
2004): the minimax-optimal conditional decision rule before the value of X is observed
(which has the form “If X = 0 then do a1; if X = 1 then do a2; . . . ”) may be different from
the minimax-optimal decision rule after conditioning. For example, the minimax-optimal
conditional decision rule may say “If X = 0 then do a1”, but the minimax-optimal decision
rule conditional on observing X = 0 may be a2. (See Example 2.1.) If uncertainty is
modeled using a single distribution, such time inconsistency cannot arise.

1.2 The Two Games To understand this phenomenon better, we model the decision
problem as a game between the agent and a bookie (for a recent approach that is similar
in spirit but done independently, see Ozdenoren & Peck, 2008). It turns out that there is
more than one possible game that can be considered, depending on what information the

1. All these results are proved under the assumption that the domain of the probability measures in P is
finite and the set of actions that the decision maker is choosing among is finite.
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bookie has. We focus on two (closely related) games here. In the first game, the bookie
chooses a distribution from P before the agent moves. We show that the Nash equilibrium
of this game leads to a minimax decision rule. (Indeed, this can be viewed as a justification
of using the minimax criterion). However, in this game, conditioning on the information is
not always optimal.2 In the second game, the bookie gets to choose the distribution after
the value of X is observed. Again, in this game, the Nash equilibrium leads to the use of
minimax, but now conditioning is the right thing to do.

If P is a singleton, the two games coincide (since there is only one choice the bookie can
make, and the agent knows what it is). Not surprisingly, conditioning is the appropriate
thing to do in this case. The moral of this analysis is that, when uncertainty is characterized
by a set of distributions, if the agent is making decision using the minimax criterion, then
the right decision depends on the game being played. The agent must consider if she is
trying to protect herself against an adversary who knows the value of X = x when choosing
the distribution or one that does not know the value of X = x.

1.3 Rectangularity and Time Consistency In earlier work (Grünwald & Halpern,
2004) (GH from now on), we essentially considered the first game, and showed that, in this
game, conditioning was not always the right thing to do when using the minimax criterion.
Indeed, we showed there are sets P and games for which the minimax-optimal decision rule
is to simply ignore the information. Our analysis of the first game lets us go beyond GH here
in two ways. First, we provide a simple sufficient condition for when conditioning on the
information is minimax optimal (Theorem 4.4). Second, we provide a sufficient condition
for when it is minimax optimal to ignore information (Theorem 5.1).

Our sufficient condition guaranteeing that conditioning is minimax optimal can be
viewed as providing a sufficient condition for time consistency. Our condition is essentially
Epstein and Schneider’s (2003) rectangularity condition, which they showed was sufficient
to guarantee what has been called in the decision theory community dynamic consistency.
Roughly speaking, dynamic consistency says that if, no matter what the agent learns, he
will prefer decision rule δ to decision rule δ′, then he should prefer δ to δ′ before learning
anything. Dynamic consistency is closely related to Savage’s (1954) sure-thing principle.
Epstein and Schneider show that, if an agent’s uncertainty is represented using sets of
probability distributions, all observations are possible (in our setting, this means that all
probability distributions that the agent considers possible assign positive probability to all
basic events of the form X = x), and the set of distributions satisfies the rectangular-
ity condition then, no matter what the agent’s loss function,3 if the agent prefers δ to δ′

after making an observation, then he will also prefer δ to δ′ before making the observa-
tion. Conversely, they show that if the agent’s preferences are dynamically consistent, then
the agent’s uncertainty can be represented by a set of probability measures that satisfies
the rectangularity condition, and the agent can be viewed as making decisions using the
minimax criterion.

Our results show that if all observations are possible and the rectangularity condition
holds, then, no matter what the loss function, time consistency holds. Time consistency

2. In some other senses of the words “conditioning” and “optimal,” conditioning on the information is
always optimal. This is discussed further in Section 7.

3. We work with loss functions in this paper rather than utility functions, since losses seem to be somewhat
more standard in this literature. However, we could trivially restate our results in terms of utility.
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holds if a decision is minimax optimal before making an observation iff it is optimal after
making the observation. Note that time consistency just considers just the optimal decision,
while dynamic consistency considers the whole preference order. However, time consistency
is an “iff” requirement: a decision is optimal before making the observation if and only
if that decision is optimal after making the observation. By way of contrast, dynamic
consistency is uni-directional: if a is preferred to a′ after making the observation, then it
must still be preferred before making the observation.

These results show that if uncertainty is represented by a rectangular set of measures, all
observations are possible, and the minimax criterion is used, then both dynamic consistency
and time consistency hold. On the other hand, as we show in Proposition 4.7, in general
dynamic consistency and time consistency are incomparable.

1.4 C-conditioning and Calibration As stated, we provide a general condition on P
under which conditioning is minimax optimal, as well as a general condition under which
ignoring the information is minimax optimal. Note that ignoring the information can also be
viewed as the result of conditioning; not conditioning on the information, but conditioning
on the whole space. This leads us to consider a generalization of conditioning. Let C be
a partition of the set of values of the random variable X, and let C(x) be the element of
the partition that contains x. Suppose that when we observe x, we condition on the event
X ∈ C(x). We call this variant of conditioning C-conditioning; standard conditioning is just
the special case where each element of C is a singleton. Is C-conditioning always minimax
optimal in the first game? That is, is it always optimal to condition on something? As we
show by considering a variation of the Monty Hall Problem (Example 5.4), this is not the
case in general.

Nevertheless, it turns out that considering C-conditioning is useful; it underlies our
analysis of calibration. As pointed out by Dawid (1982), an agent updating her beliefs
and making decisions on the basis of these beliefs should also be concerned about being
calibrated. Calibration is usually defined in terms of empirical data. To explain what it
means and its connection to decision making, consider an agent that is a weather forecaster
on your local television station. Every night the forecaster makes a prediction about whether
or not it will rain the next day in the area where you live. She does this by asserting that
the probability of rain is p, where p ∈ {0, 0.1, . . . , 0.9, 1}. How should we interpret these
probabilities? The usual interpretation is that, in the long run, on those days at which
the weather forecaster predict probability p, it will rain approximately 100p% of the time.
Thus, for example, among all days for which she predicted 0.1, the fraction of days with
rain was close to 0.1. A weather forecaster with this property is said to be calibrated. If
a weather forecaster is calibrated, and you make bets which, based on her probabilistic
predictions, seem favorable, then in the long run you cannot lose money. On the other
hand, if a weather forecaster is not calibrated, there exist bets that may seem favorable
but result in a loss. So clearly there is a close connection between calibration and decision
making.

Calibration is usually defined relative to empirical data or singleton distributions. We
first consider the obvious extension to sets of probabilities, but the obvious extension turns
out to be only a very weak requirement. We therefore define a stronger and arguably more
interesting variation that we call sharp calibration. We take an update rule Π to map a set
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P and a value x to a new set Π(P, x) of probabilities. Intuitively, Π(P, x) is the result of
updating P given the observation X = x, according to update rule Π. A calibrated update
rule Π is sharply calibrated for P if there is no other rule Π′ that is also calibrated such
that, for all x, Π′(P, x) ⊂ Π(P, x), and for some x, the inclusion is strict. We first show
that if P is convex, then C-conditioning is sharply calibrated for some C; different choices
of P require different C. We then show that, if P also satisfies the rectangularity condition,
then standard conditioning is sharply calibrated.

1.5 Discussion Both the idea of representing uncertainty by a set P of distributions and
that of handling decisions in a worst-case optimal manner may, of course, be criticized.
While we do not claim that this is necessarily the “right” or the “best” approach, it is
worth pointing out that two of the most common criticisms are, to some extent, unjustified.
First, since it may be hard for an agent to determine the precise boundaries of the set P,
it has been argued that “soft boundaries” are more appropriate. These soft boundaries
may be thought of as inducing a single distribution on ∆(X × Y), the set of probability
distributions on X × Y (with the density of Pr ∈ ∆(X × Y) proportional to the extent to
which “Pr is included in the set P”). With this single distribution, the setting becomes
equivalent to the setting of standard Bayesian decision theory. The problem with this
criticism is that in some cases, hard boundaries are in fact natural. For example, some
conditional probabilities may be known to be precisely 0, as is the case in the Monty Hall
game (Example 5.4). Similarly, the use of the minimax criterion is not as pessimistic as
is often thought. The minimax solution often coincides with the Bayes-optimal solution
under some “maximum entropy” prior (Grünwald & Dawid, 2004), which is not commonly
associated with being overly pessimistic. In fact, in the Monty Hall problem, the minimax-
optimal decision rule coincides with the solution usually advocated, which requires making
further assumptions about P to reduce it to a singleton.

The rest of this paper is organized as follows. In Section 2, we define the basic framework.
In Section 3, we formally define the two games described above and show that the minimax-
optimal decision rule gives a Nash equilibrium. In Section 4, we characterize the minimax-
optimal decision rule for the first game, in which the bookie chooses a distribution before
X is observed. In Section 5 we discuss C-conditioning and show that, in general, it is not
minimax optimal. In Section 6, we discuss calibration and C-conditioning. We conclude
with some discussion in Section 7. All proofs can be found in the appendix.

2. Notation and Definitions

In this paper, uncertainty is represented by a set P of probability distributions. For ease of
exposition, we assume throughout this paper that we are interested in two random variables,
X and Y , which can take values in spaces X and Y, respectively. P always denotes a set of
distributions on X × Y; that is, P ⊆ ∆(X × Y), where ∆(S) denotes the set of probability
distributions on S. For ease of exposition, we assume that P is a closed set; this is a standard
assumption in the literature that seems quite natural in our applications, and makes the
statement of our results simpler (otherwise we have to state our results using closures). If
Pr ∈ ∆(X ×Y), let PrX and PrY denote the marginals of Pr on X and Y, respectively. Let
PY = {PrY : Pr ∈ P}. If E ⊆ X × Y, then let P | E = {Pr | E : Pr ∈ P,Pr(E) > 0}. Here
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Pr | E (often written Pr(· | E)) is the distribution on X × Y obtained by conditioning on
E.

The represesentation of uncertainty using sets of probability distributions is closely
related to Walley’s (1991) use of (lower and upper) previsions. A prevision is an expectation
function; that is, a lower prevision is a mapping random variables to the reals satisfying
certain properties. It is well known (Huber, 1981) that what Walley calls a coherent lower
prevision (a lower prevision satisfying some minimal properties) can be identified with
the lower expectation of a set of probability measures (that is, the function E such that
E(X) = infPr∈P EPr(X)). Indeed, there is a one-to-one map between lower previsions
and closed convex sets of probability measures. The notion of conditioning we are using
corresponds to what Walley calls the regular extension of a lower prevision (see Walley,
1991, Appendix J).

2.1 Loss Functions As in GH, we are interested in an agent who must choose some
action from a set A, where the loss of the action depends only on the value of random
variable Y . We assume in this paper that X , Y, and A are finite, and that |A| ≥ 2, so that
there are always at least two possible choices. (If we allowed A to be a singleton, then some
of our results would not hold for trivial reasons.)

We assume that with each action a ∈ A and value y ∈ Y is associated some loss to the
agent. (The losses can be negative, which amounts to a gain.) Let L : Y × A → IR be the
loss function.

Such loss functions arise quite naturally. For example, in a medical setting, we can take
Y to consist of the possible diseases and X to consist of symptoms. The set A consists of
possible courses of treatment that a doctor can choose. The doctor’s loss function depends
only on the patient’s disease and the course of treatment, not on the symptoms. But, in
general, the doctor’s choice of treatment depends on the symptoms observed.

2.3 Decision Problems and Decision Settings For our purposes, a decision setting
is a tuple DS = (X ,Y,A,P), where X , Y, A, and P are as above. A decision problem
is characterized by a tuple DP = (X ,Y,A,P, L), where L is a loss function. That is, a
decision problem is a decision setting together with a loss function. We say that the decision
problem (X ,Y,A,P, L) is based on the decision setting (X ,Y,A,P).

2.4 Decision Rules Given a decision problem DP = (X ,Y,A,P, L), suppose that the
agent observes the value of the variable X. After having observed X, she must perform an
act, the quality of which is judged according to loss function L. The agent must choose a
decision rule that determines what she does as a function of her observations. We allow
decision rules to be randomized. Thus, a decision rule is a function δ : X → ∆(A) that
chooses a distribution over actions based on the agent’s observations. Let D(X ,A) be
the set of all decision rules. A special case is a deterministic decision rule, which assigns
probability 1 to a particular action. If δ is deterministic, we sometimes abuse notation
and write δ(x) for the action that is assigned probability 1 by the distribution δ(x). Given
a decision rule δ and a loss function L, let Lδ be the random variable on X × Y such
that Lδ(x, y) =

∑
a∈A δ(x)(a)L(y, a). Here δ(x)(a) stands for the probability of performing

action a according to the distribution δ(x) over actions that is adopted when x is observed.
Note that in the special case that δ is a deterministic decision rule, Lδ(x, y) = L(y, δ(x)).
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We also extend this notation to randomized actions: for α ∈ ∆(A), we let Lα be the random
variable on Y such that Lα(y) =

∑
a∈A α(a)L(y, a).

A decision rule δ0 is a priori minimax optimal for the decision problem DP if

max
Pr∈P

EPr[Lδ0 ] = min
δ∈D(X ,A)

maxPr∈PEPr[Lδ].

That is, δ0 is a priori minimax optimal if δ0 gives the best worst-case expected loss with
respect to all the distributions in Pr. We can write max here instead of sup because of our
assumption that P is closed. This ensures that there is some Pr ∈ P for which EPr[Lδ0 ]
takes on its maximum value.

A decision rule δ1 is a posteriori minimax optimal for DP if, for all x ∈ X such that
Pr(X = x) > 0 for some Pr ∈ P,

max
Pr∈P|X=x

EPr[Lδ1 ] = min
δ∈D(X ,A)

max
Pr∈P|X=x

EPr[Lδ]. (1)

To get the a posteriori minimax-optimal decision rule we do the obvious thing: if x is
observed, we simply condition each probability distribution Pr ∈ P on X = x, and choose
the action that gives the least expected loss (in the worst case) with respect to P | X = x.
Since all distributions Pr mentioned in (1) satisfy Pr(X = x) = 1, the minimum over
δ ∈ D(X ,A) does not depend on the values of δ(x′) for x′ 6= x; the minimum is effectively
over randomized actions rather than decision rules.

As the following example, taken from GH, shows, a priori minimax-optimal decision
rules are in general different from a posteriori minimax-optimal decision rules.

Example 2.1: Suppose that X = Y = A = {0, 1} and P = {Pr ∈ ∆(X × Y) : PrY(Y =
1) = 2/3}. Thus, P consists of all distributions whose marginal on Y gives Y = 1 probability
2/3. We can think of the actions in A as predictions of the value of Y . The loss function is 0
if the right value is predicted and 1 otherwise; that is, L(i, j) = |i− j|. This is the so-called
0/1 or classification loss. It is easy to see that the optimal a priori decision rule is to choose
1 no matter what is observed (which has expected loss 1/3). Intuitively, observing the value
of X tells us nothing about the value of Y , so the best decision is to predict according to
the prior probability of Y = 1. However, all probabilities on Y = 1 are compatible with
observing either X = 0 or X = 1. That is, both (P | X = 0)Y and (P | X = 1)Y consist
of all distributions on Y. Thus, the minimax optimal a posteriori decision rule randomizes
(with equal probability) between Y = 0 and Y = 1.

To summarize, if you make decisions according to the minimax optimality criterion, then
before making an observation, you will predict Y = 1. However, no matter what observa-
tion you make, after making the observation, you will randomize (with equal probability)
between predicting Y = 0 and Y = 1. Moreover, you know even before making the obser-
vation that your opinion as to the best decision rule will change in this way. (Note that
this is an example of both time inconsistency and dynamic inconsistency.)

2.5 Time and Dynamic Consistency Formally, a decision problem DP is time con-
sistent iff, for all decision rules δ, δ is a priori minimax optimal for DP iff δ is a posteriori
minimax optimal. We say that DP is weakly time consistent if every a posteriori minimax
optimal rule for DP is also a priori minimax optimal for DP . A decision setting DS is
(weakly) time consistent if every decision problem based on DS is.
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Following Epstein and Schneider (2003), we say that a decision problem DP is dynam-
ically consistent if for every pair δ, δ′ of decision rules, the following conditions both hold:

1. If, for all x such that Pr(X = x) > 0 for some Pr ∈ P,

max
Pr∈(P|X=x)

EPr[Lδ] ≤ max
Pr∈(P|X=x)

EPr[Lδ′ ], (2)

then
max
Pr∈P

EPr[Lδ] ≤ max
Pr∈P

EPr[Lδ′ ]. (3)

2. If, for all x such that Pr(X = x) > 0 for some Pr ∈ P, we have strict inequality in
(2), then (3) must hold with strict inequality as well.

Informally, dynamic consistency means that whenever δ is preferred to δ′ according to the
minimax criterion a posteriori, then δ is also preferred to δ′ according to the minimax
criterion a priori, and that whenever the a posteriori preference is strict for all possible
observations, then the a priori preference must be strict as well.

A decision setting DS is dynamically consistent if every decision problem based on DS
is.

3. Two Game-Theoretic Interpretations of P

What does it mean that an agent’s uncertainty is characterized by a set P of probability
distributions? How should we understand P? We give P a game-theoretic interpretation
here: namely, an adversary gets to choose a distribution from the set P.4 But this does not
completely specify the game. We must also specify when the adversary makes the choice.
We consider two times that the adversary can choose: the first is before the agents observes
the value of X , and the second is after. We formalize this as two different games, where we
take the “adversary” to be a bookie.

We call the first game the P-game. It is defined as follows:

1. The bookie chooses a distribution Pr ∈ P.

2. The value x of X is chosen (by nature) according to PrX and observed by both bookie
and agent.

3. The agent chooses an action a ∈ A.

4. The value y of Y is chosen according to Pr | X = x.

5. The agent’s loss is L(y, a); the bookie’s loss is −L(y, a).

This is a zero-sum game; the agent’s loss is the bookie’s gain. In this game, the agent’s
strategy is a decision rule, that is, a function that gives a distribution over actions for each
observed value of X. The bookie’s strategy is a distribution over distributions in P.

We now consider a second interpretation of P, characterized by a different game that
gives the bookie more power. Rather than choosing the distribution before observing the
value of X, the bookie gets to choose the distribution after observing the value. We call
this the P-X-game. Formally, it is specified as follows:

4. This interpretation remains meaningful in several practical situations where there is no explicit adversary;
see the final paragraph of this section.
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1. The value x of X is chosen (by nature) according to some procedure that is guaranteed
to end up with a value of x for which Pr(X = x) > 0 for some Pr ∈ P, and observed
by both the bookie and the agent.5

2. The bookie chooses a distribution Pr ∈ P such that Pr(X = x) > 0.6

3. The agent chooses an action a ∈ A.

4. The value y of Y is chosen according to Pr | X = x.

5. The agent’s loss is L(y, a); the bookie’s loss is −L(y, a).

Recall that a pair of strategies (S1, S2) is a Nash equilibrium if neither party can do
better by unilaterally changing strategies. If, as in our case, (S1, S2) is a Nash equilibrium in
a zero-sum game, it is also known as a “saddle point”; S1 must be a minimax strategy, and
S2 must be a maximin strategy (Grünwald & Dawid, 2004). As the following results show,
an agent must be using an a priori minimax-optimal decision rule in a Nash equilibrium
of the P-game, and an a posteriori minimax-optimal decision rule is a Nash equilibrium of
the P-X-game. This can be viewed as a justification for using (a priori and a posteriori)
minimax-optimal decision rules.

Theorem 3.1: Fix X , Y, A, L, and P ⊆ ∆(X × Y).

(a) The P-game has a Nash equilibrium (π∗, δ∗), where π∗ is a distribution over P with
finite support.

(b) If (π∗, δ∗) is a Nash equilibrium of the P-game such that π∗ has finite support, then

(i) for every distribution Pr′ ∈ P in the support of π∗, we have
EPr′ [Lδ∗ ] = maxPr∈PEPr[Lδ∗ ];

(ii) if Pr∗ =
∑

Pr∈P,π∗(Pr)>0 π
∗(Pr) Pr (i.e., Pr∗ is the convex combination of the

distributions in the support of π∗, weighted by their probability according to π∗),
then

EPr∗ [Lδ∗ ] = minδ∈D(X ,A)EPr∗ [Lδ]

= maxPr∈P minδ∈D(X ,A)EPr[Lδ]

= minδ∈D(X ,A)maxPr∈PEPr[Lδ]

= maxPr∈PEPr[Lδ∗ ].

Once nature has chosen a value for X in the P-X-game, we can regard steps 2–5 of the
P-X-game as a game between the bookie and the agent, where the bookie’s strategy is char-
acterized by a distribution in P | X = x and the agent’s is characterized by a distribution
over actions. We call this the P-x-game.

Theorem 3.2: Fix X , Y, A, L, P ⊆ ∆(X × Y).

5. Because x is observed by both parties, and y is chosen after x is chosen, the procedure by which nature
chooses x is irrelevant. We could assume for definiteness that nature chooses uniformly at random among
the values x such that Pr(x) > 0 for some Pr ∈ P, but any other choice would work equally well.

6. If we were to consider conditional probability distributions (de Finetti, 1936; Popper, 1968), for which
Pr(Y = y | X = x) is defined even if Pr(X = x) = 0, then we could drop the restriction that x is chosen
such that Pr(X = x) > 0 for some Pr ∈ P.
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(a) The P-x-game has a Nash equilibrium (π∗, δ∗(x)), where π∗ is a distribution over
P | X = x with finite support.

(b) If (π∗, δ∗(x)) is a Nash equilibrium of the P-x-game such that π∗ has finite support,
then

(i) for all Pr′ in the support of π∗, we have EPr′ [Lδ∗ ] = maxPr∈P|X=xEPr[Lδ∗ ];

(ii) if Pr∗ =
∑

Pr∈P,π∗(Pr)>0 π
∗(Pr) Pr, then

EPr∗ [Lδ∗ ] = minδ∈D(X ,A)EPr∗ [Lδ]

= maxPr∈P|X=x minδ∈D(X ,A)EPr[Lδ]

= minδ∈D(X ,A)maxPr∈P|X=xEPr[Lδ]

= maxPr∈P|X=xEPr[Lδ∗ ].

Since all distributions Pr in the expression minδ∈D(X ,A)maxPr∈P|X=xEPr[Lδ] in part (b)(ii)
are in P | X = x, as in (1), the minimum is effectively over randomized actions rather than
decision rules.

Theorems 3.1 and 3.2 can be viewed as although, according to the definition, there is
time inconsistency, when viewed properly, there is no real inconsistency here; rather, we
must just be careful about what game is being played. If the P-game is being played, the
right strategy is the a priori minimax-optimal strategy, both before and after the value
of X is observed; similarly, if the P-X-game is being played, the right strategy is the a
posteriori minimax-optimal strategy, both before and after the value of X is observed.
Indeed, thinking in terms of the games explains the apparent time inconsistency. In both
games, the agent gains information by observing X = x. But in the P-X game, so does
the bookie. The information may be of more use to the bookie than the agent, so, in this
game, the agent can be worse off by being given the opportunity to learn the value of X.

Of course, in most practical situations, agents (robots, statisticians,. . . ) are not really
confronted with a bookie who tries to make them suffer. Rather, the agents may have no
idea at all what distribution holds, except that it is in some set P. Because all they know
is P, they decide to prepare themselves for the worst-case and play the minimax strategy.
The fact that such a minimax strategy can be interpreted in terms of a Nash equilibrium
of a game helps to understand differences between different forms of minimax (such as a
priori and a posteriori minimax). From this point of view, it seems strange to have a bookie
choose between different distributions in P according to some distribution π∗. However, if
P is convex, we can replace the distribution π∗ on P by a single distribution in P, which
consists of the convex combination of the distributions in the support of π∗; this is just the
distribution Pr∗ of Theorems 3.1 and 3.2. Thus, Theorems 3.1 and 3.2 hold with the bookie
restricted to a deterministic strategy.

4. Conditioning, Rectangularity, and Time Consistency

To get the a posteriori minimax-optimal decision rule we do the obvious thing: if x is
observed, we simply condition each probability distribution Pr ∈ P on X = x, and choose
the action that gives the least expected loss (in the worst case) with respect to P | X = x.

We might expect that the a priori minimax-optimal decision rule should do the same
thing. That is, it should be the decision rule that says, if x is observed, then we choose
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the action that again gives the best result (in the worst case) with respect to P | X = x.
But Example 2.1 shows that this cannot be true in general, since in some cases the a priori
optimal decision rule is not to condition, but to ignore the observed value of X, and just
choose the action that gives the least expected loss (in the worst case) with respect to P, no
matter what value X has. We later show that there are cases in which the optimal a priori
rule is neither to condition nor to ignore (see Example 5.4). Our goal in this section is to
show that the rectangularity condition of Epstein and Schneider (2003) suffices to guarantee
that conditioning is optimal.

Definition 4.1: Let 〈P〉, the hull of P, be the set

{Pr ∈ ∆(X × Y) : PrX ∈ PX and, if Pr(X = x) 6= 0, then (Pr | X = x) ∈ (P | X = x)} .

Thus, 〈P〉 consists of all distributions Pr whose marginal on X is the marginal on X of
some distribution in P and whose conditional on observing X = x is the conditional of
some distribution in P, for all x ∈ X . Clearly P ⊆ 〈P〉, but the converse is not necessarily
true, as the following example shows.

Example 4.2: Suppose that X = Y = {0, 1}, and Pr1,Pr2,Pr3 ∈ ∆(X ×Y) are defined as
follows:

• Pr1(0, 0) = Pr1(1, 0) = 1/3; Pr1(0, 1) = Pr1(1, 1) = 1/6;

• Pr2(0, 0) = Pr2(1, 0) = 1/6; Pr2(0, 1) = Pr2(1, 1) = 1/3;

• Pr3(0, 0) = Pr3(1, 1) = 1/3; Pr3(0, 1) = Pr3(1, 0) = 1/6.

Suppose that P = {Pr1,Pr2}. Then Pr3 6∈ P, but it is easy to see that Pr3 ∈ 〈P〉. For
(Pr1)X = (Pr2)X = (Pr3)X is the uniform distribution on X , Pr3 | (X = 0) = Pr1 | (X = 0),
and Pr3 | (X = 1) = Pr2 | (X = 1).

Note also that for the P in Example 2.1, we have 〈P〉 = ∆(X × Y) 6= P. The notion
of the hull arises in a number of contexts. In the language of Walley (1991), the hull of
P is the natural extension of the marginals PX and the collection of sets of conditional
probabilities P | X = x for x ∈ X . Thus, if P = 〈P〉, then we can reconstruct the joint
probability distributions P from PX and the collection of sets of conditional probabilities.
The assumption that P = 〈P〉 is closely related to a set of probabilities being separately
specified, introduced by da Rocha and Cozman (2002). As da Rocha and Cozman point
out, this assumption makes it possible to apply ideas from Bayesian networks to uncertainty
represented by sets of probability distributions.

The condition P = 〈P〉 is an instance of the rectangularity condition which goes back at
least to the work of Sarin and Wakker (1998). It was introduced in its most general form by
Epstein and Schneider (2003). Epstein and Schneider define this condition for a sequence
of random variables X1, . . . , Xt, where the support of each Xj is not necessarily finite. In
the special case that t = 2, and X := X1 and Y := X2 are restricted to have finite support,
the rectangularity condition is exactly equivalent to our condition that P = 〈P〉.
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Considering 〈P〉 also gives some insight into the two games that we considered in Sec-
tion 3. In the P-X -game, the bookie has more power than in the P-game, since he gets
to choose the distribution after the agent observes x in the P-X -game, and must choose it
before the agent observes x in the P-game. That means that the agent can draw inferences
about the distribution that the bookie chose in the P-game. Such inferences cannot be
drawn if P = 〈P〉. More generally, in a precise sense, the agent has the same information
about Y in the P-X -game as in the 〈P〉-game. Rather than making this formal (since it is
somewhat tangential to our main concerns), we give an example to show the intuition.

Example 4.3: Suppose that X = Y = {0, 1}, and P = {Pr1,Pr2}, where

• Pr1(0, 0) = ε(1− ε), Pr1(0, 1) = (1− ε)2, Pr1(1, 0) = ε(1− ε), and Pr1(1, 1) = ε2;

• Pr2(0, 0) = ε(1− ε), and Pr2(0, 1) = ε2, Pr2(1, 0) = ε(1− ε), Pr2(1, 1) = (1− ε)2.

In the P-game, if the agent observes that X = 0, then he is almost certain that the
bookie chose Pr1, and thus is almost certain that Y = 1. On the other hand, in the P-
X-game, when the agent observes x, he has no idea whether the bookie will choose Pr1

or Pr2 (since the bookie makes this choice after observing x), and has no idea whether Y
is 0 or 1. Note that P 6= 〈P〉; in particular, there is a distribution Pr3 ∈ 〈P〉 such that
(Pr3)X = (Pr1)X and (Pr3) | (X = 0) = (Pr2) | (X = 0). For example, we can take Pr3

such that Pr3(0, 0) = (1− ε)2 and Pr3(0, 1) = ε(1− ε) (the values of Pr3(1, 0) and Pr3(1, 1)
are irrelevant, as long as they sum to ε and are nonnegative). Thus, after observing that
X = 0 in the 〈P〉 game, the agent would have no more of an idea of the value of Y than he
does in the P-X game.

The key point for us here is that when P = 〈P〉, conditioning is optimal, as the following
theorem shows. We first need a definition. We call P conservative if for all Pr ∈ P and all
x ∈ X , Pr(X = x) > 0.7

Theorem 4.4: Given a decision setting DS = (X ,Y,A,P) such that P = 〈P〉, then for
all decision problems DP based on DS, there exists an a priori minimax-optimal rule that
is also a posteriori minimax optimal. Indeed, every a posteriori minimax-optimal rule is
also a priori minimax optimal, so DS and DP are weakly time consistent. Moreover, if P
is conservative, then for every decision problem DP based on DS, every a priori minimax-
optimal rule is also a posteriori minimax optimal, so DS and DP are time consistent.

This raises the question as to whether the qualification “there exists” in Theorem 4.4 is
necessary, and whether the converse of the theorem also holds. Example 4.5 shows that
the answer to the first question is yes; Example 4.6 shows that the answer to the second
question is no.

Example 4.5: If for some x ∈ X , there exist Pr,Pr′ ∈ P such that Pr(X = x) = 0
and Pr′(X = x) > 0, then there may be an a priori minimax decision rule that is not a
posteriori minimax. For example, consider the decision problem DP = (X ,Y,A,P, L) with

7. Our notion of conservative corresponds to what Epstein and Schneider (2003) call the full support con-
dition.
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X = {0, 1},A = Y = {0, 1, 2}, L the classification loss (Example 2.1) and P = {Pr1,Pr2}.
We first define Pr1:

Pr1(X = 1) = 1/2,
Pr1(Y = 0 | X = 0) = Pr1(Y = 1 | X = 0) = Pr1(Y = 2 | X = 0) = 1/3, and
Pr1(Y = 0 | X = 1) = 1/2,
Pr1(Y = 1 | X = 1) = 2/5,
Pr1(Y = 2 | X = 1) = 1/10.

Pr2 is defined as follows: Pr2(X = 0) = 1, and for all j ∈ Y, Pr2(Y = j,X = 0) = Pr2(Y =
j | X = 0) := Pr1(Y = j | X = 0). It is easy to see that P = 〈P〉, so the rectangularity
condition holds.

Note that δ(0), the decision taken when observing X = 0, does not affect the expected
loss; for both Pr1 | X = 0 and Pr2 | X = 0, Y is uniform, so the expected loss is 2/3, re-
gardless of δ(0). This implies that every decision rule δ with δ(1) a randomized combination
of {0, 1} is a priori optimal, and has worst-case expected loss 2/3, since EPr2 [Lδ] = 2/3 and
EPr1 [Lδ] < 2/3. But the minimax optimal rules with δ(1) = 1 are not a posteriori optimal,
since if the player observes X = 1, he knows that the distribution is Pr1, and the minimax
loss relative to Pr1 is 1/2 for action 0 and 3/5 for action 1.

Both in this example and in Example 4.3, observing a particular value of X gives
information about which distribution in P the bookie has chosen. In Example 4.3, observing
X = 0 implies that the bookie almost certainly chose Pr1 in the P-game; in the present
example, observing X = 1 implies that the bookie certainly chose Pr1 in both the P-game
and the P −X game. We note, however, that observing X = x can give information about
the distribution chosen by the bookie in the P −X game only if there exist Pr and Pr′ in
the P-game such that Pr(X = x) = 0 and Pr′(X = x) > 0. If no such Pr and Pr′ exists,
then the bookie is completely free to choose any Pr ∈ P he likes after x has been observed,
so observing x gives no information about which Pr ∈ P has been chosen.

There exist decision settings such that P is conservative and P 6= 〈P〉, although we still
have weak time consistency. Hence, the converse of Theorem 4.4 does not hold in general.
We now give an example of such a P.

Example 4.6: Let X = A = Y = {0, 1} and P = {Pr0,Pr1} with Pr0(X = 1) = Pr1(X =
1) = 1/2 and for x ∈ {0, 1}, Pr0(Y = 0 | X = x) = 1 and Pr1(Y = 1 | X = x) = 1. Clearly
P is conservative and P 6= 〈P〉; for example, the distribution Pr3 such that Pr3(X = 1) =
1/2, Pr3(Y = 0 | X = 0) = 1, and Pr3(Y = 0 | X = 1) = 0 is in 〈P〉 − P. Note that X and
Y are independent with respect to both Pr0 and Pr1. Now take an arbitrary loss function
L. Since (Pr | X = x)Y contains two distributions, one with Pr(Y = 1) = 0 and one with
Pr(Y = 1) = 1, the minimax a posteriori act is to play δ(0) = δ(1) = (1 − α∗) · 0 + α∗ · 1
(i.e., the act that plays 0 with probability 1 − α∗ and 1 with probability α∗), where α∗ is
chosen so as to minimize f(α) = max{(1− α)L(0, 0) + αL(0, 1), (1− α)L(1, 0) + αL(1, 1)}.
For simplicity, assume that there is a unique such α∗. (If not, then it must be the case that
all α ∈ [0, 1] minimize this expression, and it is easy to check L(0, 0) = L(0, 1) = L(1, 0) =
L(1, 1), so time consistency holds trivially.)
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We want to show that δ is also a priori minimax. It is easy to check that

max
Pr∈{Pr0,Pr1}

Lδ = f(α∗),

where f is as above. So it suffices to show that for any decision rule δ′, we must have

max
Pr∈{Pr0,Pr1}

Lδ′ ≥ f(α∗),

Suppose that δ(x) = (1− βx) · 0 + βx · 1, for x ∈ {0, 1}. Then

maxPr∈{Pr0,Pr1}EPr[Lδ′ ]

= max{1
2((1− β0)L(0, 0) + β0L(0, 1) + (1− β1)L(0, 0) + β1L(0, 1)),

1
2((1− β0)L(1, 0) + β0L(1, 1) + (1− β1)L(1, 0) + β1L(1, 1)}

= max{(1− γ)L(0, 0) + γL(0, 1), (1− γ)L(1, 0) + γL(1, 1)}, where γ = β0+β1
2

= f(γ) ≥ f(α∗).

It is interesting to compare Theorem 4.4 with the results of Epstein and Schneider
(2003). For this, we first compare our notion of time consistency with their notion of
dynamic consistency. Both notions were formally defined at the end of Section 2. Our
results are summarized in Proposition 4.7. First we need two definitions: Let P be a set of
distributions on X ×Y. A decision problem is based on P if it is of the form (X ,Y,A,P, L)
for some arbitrary A and L. A decision problem satisfies strong dynamic consistency if it
satisfies condition (2) of the definition of dynamic consistency and satisfies the following
strengthening of (3):

• If, for all x such that Pr(X = x) > 0 for some Pr ∈ P, (2) holds, and for some x such
that Pr(X = x) > 0, we have

max
Pr∈(P|X=x)

EPr[Lδ] < max
Pr∈(P|X=x)

EPr[Lδ′ ], (4)

then (3) must hold with strict inequality.

Proposition 4.7:

(a) Every dynamically consistent decision problem is also weakly time consistent.

(b) Not every dynamically consistent decision problem is time consistent.

(c) Every strongly dynamically consistent decision problem is time consistent.

(d) There exist weakly time consistent decision problems that are not dynamically consis-
tent.

(e) All decision problems based on P are dynamically consistent if and only if all decision
problems based on P are weakly time consistent.
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Proposition 4.7(c) shows that the comparison between time consistency and dynamic con-
sistency is subtle: replacing ‘for all x’ by “for some x’ in the second half of the definition
of dynamic consistency, which leads to a perfectly reasonable requirement, suffices to force
time consistency. Proposition 4.7(e) leads us to suspect that a decision setting is weakly
time consistent if and only if it is dynamically consistent. We have, however, no proof of
this claim. The proof of part (e) involves two decision problems based on the same set P,
but with different sets of actions, so these decision problems are not based on the same
decision setting. It does not seem straightforward to extend the result to decision settings.

Epstein and Schneider show, among other things, that if P is closed, convex, con-
servative, and rectangular, then DS is is dynamically consistent, and hence weakly time
consistent. We remark that the convexity assumption is not needed for this result. It easy
to check that δ is prefered to δ′ with respect to P according to the minimax criterion iff
δ is preferred to δ′ with respect to the convex closure of P according to the minimax cri-
terion. Proposition 4.7 shows that dynamic and time consistency are closely related. Yet,
while there is clear overlap in what we prove in Theorem 4.4 and the Epstein-Schneider
(ES from now on) result, in general the results are incomparable. For example, we can
already prove weak time consistency without assuming conservativeness; ES assume con-
servativeness throughout. On the other hand, ES also show that if dynamic consistency
holds, then the agent’s actions can be viewed as being the minimax optimal actions relative
to a rectangular convex conservative set; we have no analogous result for time consistency.
Moreover, in contrast to the ES result, our results hold only for the restricted setting with
just two time steps, one before and one after making a single observation.

5. Belief Updates and C-conditioning

In this section we define the notion of a belief update rule, when belief is represented by
sets of probabilities, and introduce a natural family of belief update rules which we call
C-conditioning.

To motivate these notions, recall that Example 2.1 shows that the minimax-optimal a
priori decision rule is not always the same as the minimax-optimal a posteriori decision
rule. In this example, the minimax-optimal a priori decision rule ignores the information
observed. Formally, a rule δ ignores information if δ(x) = δ(x′) for all x, x′ ∈ X . If δ
ignores information, define L′δ to be the random variable on Y such that L′δ(y) = Lδ(x, y)
for some choice of x. This is well defined, since Lδ(x, y) = Lδ(x

′, y) for all x, x′ ∈ X .

The following theorem provides a general sufficient condition for ignoring information
to be optimal.

Theorem 5.1: Fix X , Y, L, A, and P ⊆ ∆(X × Y). If, for all PrY ∈ PY , P con-
tains a distribution Pr′ such that X and Y are independent under Pr′, and Pr′Y = PrY ,
then there is an a priori minimax-optimal decision rule that ignores information. Under
these conditions, if δ is an a priori minimax-optimal decision rule that ignores information,
then δ essentially optimizes with respect to the marginal on Y ; that is, maxPr∈P EPr[Lδ] =
maxPrY∈PY EPrY [L′δ].
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GH focused on the case that PY is a singleton (i.e., the marginal probability on Y is the
same for all distributions in P) and for all x, PY ⊆ (P | X = x)Y . It is immediate from
Theorem 5.1 that ignoring information is a priori minimax optimal in this case.

Standard conditioning and ignoring information are both instances of C-conditioning,
which in turn is an instance of an update rule. We now define these notions formally.

Definition 5.2: A belief update rule (or just an update rule) is a function Π : 2∆(X×Y)×X →
2∆(X×Y) − {∅} mapping a set P of distributions and an observation x to a nonempty set
Π(P, x) of distributions; intuitively, Π(P, x) is the result of updating P with the observation
x.

In the case where P is a singleton {Pr}, then one update rule is conditioning; that is,
Π({Pr}, x) = {Pr(· | X = x)}. But other update rules are possible, even for a single
distribution; for example, Lewis (1976) considered an approach to updating that he called
imaging. There is even more scope when considering sets of probabilities; for example,
both Walley’s (1991) natural extension and regular extension provide update rules (as we
said, our notion of conditioning can be viewed as an instance of Walley’s regular extension).
Simply ignoring information provides another update rule: Π(P, x) = P. As we said above,
ignoring information and standard conditioning are both instances of C-conditioning.

Definition 5.3: Let C = {X1, . . . ,Xk} be a partition of X ; that is, Xi 6= ∅ for i = 1, . . . , k;
X1 ∪ . . . ∪ Xk = X ; and Xi ∩ Xj = ∅ for i 6= j. If x ∈ X , let C(x) be the cell containing x;
that is, the unique element Xi ∈ C such that x ∈ Xi. The C-conditioning belief update rule
is the function Π defined by taking Π(P, x) = P | C(x) (if for all Pr ∈ P, Pr(C(x)) = 0,
then Π(P, x) is undefined). A decision rule δ is based on C-conditioning if it amounts to
first updating the set P to P | C(x), and then taking the minimax-optimal distribution over
actions relative to (P | C(x))Y . Formally, δ is based on C-conditioning if, for all x ∈ X with
Pr(X = x) > 0 for some Pr ∈ P,

max
Pr∈(P|X∈C(x))Y

EPr[Lδ(x)] = min
γ∈∆(A)

max
Pr∈(P|X∈C(x))Y

EPr[Lγ ].

Standard conditioning is a special case of C-conditioning, where we take C to consist of
all singletons; ignoring information is also based on C-conditioning, where C = {X}. Our
earlier results suggest that perhaps an a priori minimax-optimal decision rule must be based
on C-conditioning for some C. The Monty Hall problem again shows that this conjecture is
false.

Example 5.4: [Monty Hall] (Mosteller, 1965; vos Savant, 1990): We start with the
original Monty Hall problem, and then consider a variant of it. Suppose that you’re on a
game show and given a choice of three doors. Behind one is a car; behind the others are
goats. You pick door 1. Before opening door 1, Monty Hall, the host (who knows what is
behind each door) opens one of the other two doors, say, door 3, which has a goat. He then
asks you if you still want to take what’s behind door 1, or to take what’s behind door 2
instead. Should you switch? You may assume that initially, the car was equally likely to
be behind each of the doors.
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We formalize this well-known problem as a P-game, as follows: Y = {1, 2, 3} represents
the door which the car is behind. X = {G2, G3}, where, for j ∈ {2, 3}, Gj corresponds
to the quizmaster showing that there is a goat behind door j. A = {1, 2, 3}, where action
a ∈ A corresponds to the door you finally choose, after Monty has opened door 2 or 3. The
loss function is once again the classification loss, L(i, j) = 1 if i 6= j, that is, if you choose
a door with a goat behind it, and L(i, j) = 0 if i = j, that is, if you choose a door with a
car. P is the set of all distributions Pr on X × Y satisfying

PrY(Y = 1) = PrY(Y = 2) = PrY(Y = 3) = 1
3

Pr(Y = 2 | X = G2) = Pr(Y = 3 | X = G3) = 0.

Note that P does not satisfy the rectangularity condition. For example, let Pr∗ be the
distribution such that Pr∗(G2, 1) = Pr∗(G2, 3) = 1/3 and Pr∗(G3, 1) = Pr∗(G3, 2) = 1/6. It
is easy to see that Pr∗ ∈ 〈P〉 − P.

It is well known, and easy to show, that the a priori minimax-optimal strategy is always
to switch doors, no matter whether Monty opens door 2 or door 3. Formally, let δS be the
decision rule such that δS(G2) = 3 and δS(G3) = 2. Then δS is the unique a priori minimax-
optimal decision rule (and has expected loss 1/3). The rule δS is also a posteriori minimax
optimal. But now we modify the problem so that there is a small cost, say ε > 0, associated
with switching. The cost is associated both with switching to door 2 and with switching to
door 3. As long as ε is sufficiently small, the action δS of always switching is still uniquely a
priori minimax optimal. However, now δS is not based on C-conditioning. There exist only
two partitions of X . The corresponding two update rules based on C-conditioning amount
to, respectively, (1) ignoring X, and (2) conditioning on X in the standard way. The decision
rule based on ignoring the information is to stick to door 1, because there is a cost associated
with switching. The decision rule based on conditioning is to switch doors with probability
1/(2+ε). To see this, consider the observation X = G2, and let α be the randomized action
of switching to door 3 with probability q and sticking to door 1 with probability 1− q. Let
m(q) = maxPr∈(P|X=G2)Y EPr[Lα]. Thus, m(q) = maxp∈[0,1/2](qp(1 + ε) + (1 − q)(1 − p)).
Again, to compute m(q), we need to consider only what happens when is at the extremes of
the interval; that is, when p = 0 or p = 1/2, so m(q) = max(1− q, (1 + qε)/2). Clearly m(q)
is minimized when 1−q = (1+qε)/2, that is, when q = 1/(2+ ε). A similar analysis applies
when the observation X = G3. Thus, neither of the decision rules based on conditioning is
minimax optimal.

Although C-conditioning does not guarantee minimax optimality, it turns out to be a useful
notion. As we show in the next section, it is quite relevant when we consider calibration.

6. Calibration

As we said in the introduction, Dawid (1982) pointed out that an agent who is updating his
beliefs should want to be calibrated. In this section, we consider the effect of requiring cali-
bration. Up to now, calibration has been considered only when uncertainty is characterized
by a single distribution. Below we generalize the notion of calibration to our setting, where
uncertainty is characterized by a set of distributions. We then investigate the connection
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between calibration and some of the other conditions that we considered earlier, specifically
the conditions that P is convex and P = 〈P〉.8

Calibration is typically defined with respect to empirical data. We view the set P
of distributions not as describing empirical data, but as defining an agent’s uncertainty
regarding the true distribution. We want to define calibration in such a setting. For the
case that P is a singleton, this has already been done, for example, by Vovk, Gammerman,
and Shafer (2005). 9 Below, we first define calibration for the case where P is a singleton,
and then extend the notion to general P.

Let Π be an update rule such that Π({Pr}, x) contains just a single distribution for
each x ∈ X (for example, Π could be ordinary conditioning). Given x ∈ X and Π, define
[x]Π,P = {x′ : (Π(P, x′))Y = Π(P, x)Y}. Thus, [x]Π,P consists of all values x′ that, when
observed, lead to the same updated marginal distributions as x.

Definition 6.1 : The update rule Π is calibrated relative to Pr if, for all x ∈ X , if
Pr([x]Π,{Pr}) 6= 0, then Pr(· | [x]Π,{Pr})Y = Π({Pr}, x)Y .10

In words, this definition says that if Pr′ is the distribution on Y that results from updating
Pr after observing x according to Π and then marginalizing to Y, then Π is calibrated if Pr′ is
also the marginal distribution that results when conditioning Pr on the set of values x′ that,
when observed, result in Pr′ being the marginal distribution according to Π. Intuitively,
for each x that may be observed, an agent who uses Π produces a distribution Π({Pr}, x).
The agent may then make decisions or predictions about Y based on this distribution,
marginalized to Y. We consider the set P ′ of all distributions on Y that the agent may use
to predict Y after observing the value of X. That is, Pr′ ∈ P ′ iff with positive Pr-probability
the agent, after observing the value of X, uses Pr′ to predict Y . The set P ′ has at most
|X | elements. Definition 6.1 then says that, for each Pr′ ∈ P ′, whenever the agent predicts
with Pr′, the agent is “correct” in the sense that the distribution of Y given that the agent
uses Pr′ is indeed to Pr′. Note that in Definition 6.1, as in all subsequent definitions in
this section, we marginalize on Y. We discuss this further at the end of this section. It is
straightforward to generalize Definition 6.1 to sets P of probability distributions that are
not singletons, and update rules Π that map to sets of probabilities.

Definition 6.2: The update rule Π is calibrated relative to P if, for all x ∈ X , if Pr([x]Π,P) 6=
0 for some Pr ∈ P, then (P | [x]Π,P)Y = Π(P, x)Y .

We now want to relate calibration and C-conditioning. The following result is a first step in
that direction. It gives conditions under which standard conditioning is calibrated, and also
shows that, for convex P and arbitrary C, C-conditioning satisfies one of the two inclusions
required by Definition 6.2.

8. Recall that convexity is an innocuous assumption in the context of time and dynamic consistency.
However, as we show in this section, it is far from innocuous in the context of calibration.

9. Vovk et al.’s setting is somewhat different from ours, because they are interested only in upper bounds
on, rather than precise values of, probabilities. As a result, their definition of “validity” (as they call
their notion of calibration) is somewhat different from Definition 6.1, but the underlying idea is the same.
We have found no definition in the literature that coincides with ours.

10. As usual, if A ⊆ X , then we identify P | A with P | (A× Y).
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Theorem 6.3:

(a) If Π is C-conditioning for some partition C of X and P is convex then, for all x ∈ X ,
we have that (P | [x]Π,P)Y ⊆ Π(P, x)Y .

(b) If Π is standard conditioning, P = 〈P〉, and x ∈ X , then Π(P, x)Y ⊆ (P | [x]Π,P)Y .

Corollary 6.4 : If P is convex and P = 〈P〉, then standard conditioning is calibrated
relative to P.

This corollary will be significantly strengthened in Theorem 6.12 below. In general, both
convexity and the P = 〈P〉 condition are necessary in Corollary 6.4, as the following two
examples show.

Example 6.5: Let X = Y = {0, 1}, let P = {Pr1,Pr2,Pr3,Pr4}, where Pr1, . . . ,Pr4 are
defined below as a sequence of four numbers (a, b, c, d), with Pri(0, 0) = a, Pri(0, 1) = b,
Pri(1, 0) = c, and Pri(1, 1) = d):

• Pr1 = (1/4, 1/4, 1/4, 1/4),

• Pr2 = (1/8, 3/8, 1/8, 3/8),

• Pr3 = (1/4, 1/4, 1/8, 3/8),

• Pr4 = (1/8, 3/8, 1/4, 1/4).

Clearly P is not convex. Note that Pr1(Y = 0 | X = 0) = Pr1(Y = 0 | X = 1) =
1/2,Pr2(Y = 0 | X = 0) = Pr2(Y = 0 | X = 1) = 1/4, and Pr3(Y = 0 | X = 0) = 1/2,
Pr3(Y = 0 | X = 1) = 1/4. Since, for all Pr ∈ P, Pr(X = 0) = 1/2, and (P | X = 0)Y =
(P | X = 1)Y = {Pra,Prb} where Pra(Y = 0) = 1/2 and Prb(Y = 0) = 1/4, we have
P = 〈P〉. We now show that standard conditioning is not calibrated relative to P. Let Π
stand for standard conditioning. For x ∈ {0, 1}, we have

Π(P, x)Y = (P | X = x)Y = {Pr′1,Pr′2}, (5)

where Pr′1(Y = 0) = 1/2 and Pr′2(Y = 0) = 1/4. It also follows that, for x ∈ {0, 1},
[x]Π,P = {0, 1} = X , so that

(P | [x]Π,P)Y = PY . (6)

Since PY contains a distribution Pr′3 such that Pr′3(Y = 0) = 3/8, (5) and (6) together show
that Π is not calibrated.

Example 6.6: Let X = Y = {0, 1}, and let P consist of all distributions on X × Y with
Pr(Y = 1) = 0.5. Clearly P is convex. However, P 6= 〈P〉. To see this, note that P contains
a distribution Pr with Pr(Y = 0 | X = 0) = 1 and a distribution Pr′ with Pr′(X = 0) = 1,
but no distribution Pr′′ with Pr′′(X = 0) = 1 and Pr′′(Y = 0 | X = 0) = 1. Let Π stand for
standard conditioning. We now show that Π is not calibrated. For x ∈ {0, 1}, we have

Π(P, x)Y = (P | X = x)Y = ∆(Y), (7)
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that is, conditioning both on X = 0 and on X = 1 leads to the set of all distributions on
Y. It follows that, for x ∈ {0, 1}, [x]Π,P = {0, 1} = X , so that

(P | [x]Π,P)Y = PY = {Pr ∈ ∆(Y) | Pr(Y = 1) = 0.5}. (8)

Together, (7) and (8) show that Π is not calibrated.

Corollary 6.4 gives conditions under which standard conditioning is calibrated. Theo-
rem 6.3(a) gives general conditions under which C-conditioning satisfies one inclusion re-
quired for calibration; specifically, (P | [x]Π,P)Y ⊆ Π(P, x)Y . Rather than trying to find
conditions under which the other inclusion holds, we consider a strengthening of calibra-
tion, which is arguably a more interesting notion. For, as the following example shows,
calibration it is arguably too weak a requirement.

Example 6.7: Let X = Y = {0, 1}, and let P = {Pr} consist of all distributions on X ×Y
satisfying Pr(Y = X) = 1. Then the rule Π that ignores X, that is, with Π(P, x) = P for
x ∈ {0, 1}, is calibrated, even though (a) it outputs all distributions on Y, and (b) there
exists another calibrated rule (standard conditioning) that, upon observing X = x, outputs
only one distribution on Y.

Intuitively, the fewer distributions that there are in P, the more information P contains.
Thus, we want to restrict ourselves to sets P that are as small as possible, while still being
calibrated.

Definition 6.8: Update rule Π′ is narrower than update rule Π relative to P if, for all
x ∈ X , Π′(P, x)Y ⊆ Π(P, x)Y . Π′ is strictly narrower relative to P if the inclusion is strict
for some x. Π is sharply calibrated if there exists no update rule Π′ that is strictly narrower
than Π and that is also calibrated.

We now show that if P is convex, then every sharply calibrated update rule must involve
C-conditioning. To make this precise, we need the following definition.

Definition 6.9: Π is a generalized conditioning update rule if, for all convex P, there exists
a partition C (that may depend on P) such that for all x ∈ X , Π(P, x) = P | C(x).

Note that, as long as P is convex, in a generalized conditioning rule, we condition on a
partition of X , but the partition may depend on the set P. For example, for some convex
P, the rule may ignore the value of x, whereas for other convex P, it may amount to
ordinary conditioning. Since we are only interested in generalized conditioning rules when
P is convex, their behavior on nonconvex P is irrelevant. Indeed, the next result shows that,
if we require only that P be convex (and do not require that P = 〈P〉), then C-conditioning
is calibrated, indeed, sharply calibrated, for some C; moreover, every sharply calibrated
update rule must be a generalized conditioning rule.

Theorem 6.10: Suppose that P is convex.

(a) C-conditioning is sharply calibrated relative to P for some partition C.
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(b) If Π is sharply calibrated relative to P, then there exists some C such that Π is equiv-
alent to C-conditioning on P (i.e., Π(P, x) = Π | C(x) for all x ∈ X ).

Corollary 6.11: There exists a generalized conditioning update rule that is sharply cali-
brated relative to all convex P. Moreover, every update rule that is sharply calibrated relative
to all convex P is a generalized conditioning update rule relative to the set of all convex P.

Theorem 6.10 establishes a connection between sharp calibration and C-conditioning. We
now show that the same conditions that make standard conditioning calibrated also make
it sharply calibrated.

Theorem 6.12: If P is convex and P = 〈P〉, then standard conditioning is sharply cali-
brated relative to P.

This result shows that the P = 〈P〉 condition in Theorem 6.12 is not just relevant for
ensuring time consistency, but also for ensuring the well-behavedness of conditioning in
terms of calibration. Note, however, that the result says nothing about C-conditioning for
arbitrary partitions C. In general, C-conditioning may be sharply calibrated relative to
some convex P with P = 〈P〉, but not relative to others. For example, if P is a singleton,
then it is convex, P = 〈P〉, and the update rule that ignores x is sharply calibrated. In
Example 6.7, P is also convex and P = 〈P〉, yet ignoring x is not sharply calibrated.

Remark All the results in this section were based on a definition of calibration in which
the updated set of distributions Π(P, x) is marginalized to Y. It is also possible to define
calibration without this marginalization. However, we found that this makes for a less
interesting notion. For example, without marginalizing on Y there no longer seems to be a
straightforward way of defining “sharp” calibration, and without sharpness, the notion is of
quite limited interest. Moreover, it does not seem possible to state and prove an analogue
of Theorem 6.3 (at least, we do not know how to do it).

7. Discussion and Related Work

We have examined how to update uncertainty represented by a set of probability distri-
butions, where we motivate updating rules in terms of the minimax criterion. Our key
innovation has been to show how different approaches can be understood in terms of a
game between a bookie and an agent, where the bookie picks a distribution from the set
and the agent chooses an action after making an observation. Different approaches to updat-
ing arise depending on whether the bookie’s choice is made before or after the observation.
We believe that this game-theoretic approach should prove useful more generally in under-
standing different approaches to updating. In fact, after the publication of the conference
version of this paper, we learned that Ozdenoren and Peck (2008) use the same type of
approach for analyzing dynamic situations related to the Ellsberg (1961) paradox. Like us,
Ozdenoren and Peck resolve apparent time inconsistency by describing the decision problem
as a game between an agent and a bookie (called “malevolent nature” by them). Just as we
do, they point out that different games lead to different Nash equilibria, and hence different
minimax optimal strategies for the agent. In particular, although the precise definitions
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differ, their game Γ1 is similar in spirit to our P-game, and their game Γ3 is in the spirit of
our P-X-game.

We (as well as Ozdenoren and Peck, 2008) prove our results under the assumptions
that the set of possible values of X and Y is finite, as is the set of actions. It would be
of interest to extend this results to the case where these sets are infinite. The extension
seems completely straightforward in the case that the set of values and the set of actions
is countable, and we only consider bounded loss functions (i.e. supy∈Y,a∈A |L(y, a)| < ∞).
Indeed, we believe that our results should go through without change in this case, although
we have not checked the details. However, once we allow an uncountable set of values, then
some subtleties arise. For example, in the P-X game, we required nature to choose a value
x that was given positive probability by some Pr ∈ P. But there may not be such an x if
the set of possible values of X is the interval [0, 1]; all the measures in P may then assign
individual points probability 0.

We conclude this paper by giving an overview of the senses in which conditioning is
optimal and the senses in which it is not, when uncertainty is represented by a set of
distributions. We have established that conditioning the full set P on X = x is minimax
optimal in the P-x-game, but not in the P-game. The minimax-optimal decision rule in
the P-game is often an instance of C-conditioning, a generalization of conditioning. The
Monty Hall problem showed, however, that this is not always the case. On the other hand,
if instead of the minimax criterion, we insist that update rules are sharply calibrated, then
if P is convex, C-conditioning is always the right thing to do after all. While, in general,
C may depend on P (Theorem 6.10), if P = 〈P〉, we can take C(x) = {x}, so standard
conditioning is the “right” thing to do (Theorem 6.12).

There are two more senses in which conditioning is the right thing to do. First, Walley
(1991) shows that, in a sense, conditioning is the only updating rule that is coherent,
according to his notion of coherence. He justifies coherence decision theoretically, but not
by using the minimax criterion. Note that the minimax criterion puts a total order on
decision rules. That is, we can say that δ is at least as good as δ′ if

max
Pr∈P

EPr[Lδ] ≤ max
Pr∈P

EPr[Lδ′ ].

By way of contrast, Walley (1991) puts a partial preorder11 on decision rules by taking δ
to be at least as good as δ′ if

max
Pr∈P

EPr[Lδ − Lδ′ ] ≤ 0.

Since both maxPr∈PEPr[Lδ−Lδ′ ] and maxPr∈PEPr[Lδ′ −Lδ] may be positive, this is indeed
a partial order. If we use this ordering to determine the optimal decision rule then, as
Walley shows, conditioning is the only right thing to do.

Second, in this paper, we interpreted “conditioning” as conditioning the full given set
of distributions P. Then conditioning is not always an a priori minimax optimal strategy
on the observation X = x. Alternatively, we could first somehow select a single Pr ∈ P,
condition Pr on the observedX = x, and then take the optimal action relative to Pr | X = x.
It follows from Theorem 3.1 that the minimax-optimal decision rule δ∗ in a P-game can be

11. For a partial order � is reflexive, transitive, and anti-symmetric, so that if x � y and x � y, we must
have x = y. A partial preorder is just reflexive and transitive.
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understood this way. It defines the optimal response to the distribution Pr∗ ∈ ∆(X × Y)
defined in Theorem 3.1(b)(ii). If P is convex, then Pr∗ ∈ P. In this sense, the minimax-
optimal decision rule can always be viewed as an instance of “conditioning,” but on a single
special Pr∗ that depends on the loss function L rather than on the full set P.

It is worth noting that Grove and Halpern (1998) give an axiomatic characterization of
conditioning sets of probabilities, based on axioms given by van Fraassen (1987, 1985) that
characterize conditioning in the case that uncertainty is described by a single probability
distribution. As Grove and Halpern point out, their axioms are not as compelling as those
of van Fraassen. It would be interesting to know whether a similar axiomatization can be
used to characterize the update notions that we have considered here.
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Appendix A. Proofs

To prove Theorems 3.1 and Theorem 3.2, we need two preliminary observations. The first
is a characterization of Nash equilibria. In the P-game, a Nash equilibrium or saddle point
amounts to a pair (π∗, δ∗) where π∗ is a distribution in P and δ∗ is a randomized decision
rule such that

Eπ∗EPr[Lδ∗ ] = minδ∈D(X ,A)Eπ∗ [EPr[Lδ]]

= maxPr∈PEPr[Lδ∗ ],
(9)

where Eπ∗ [EPr[Lδ]] is just
∑

Pr∈P,π∗(Pr)>0 π
∗(Pr)EPr[Lδ]. In the P-x-game, a Nash equi-

librium is a pair (π∗, δ∗) where π∗ is a distribution in P | X = x and δ∗ is a randomized
decision rule, such that (9) holds with P replaced by P | X = x.

The second observation we need is the following special case of Theorem 3.2 from the
work of Grünwald and Dawid (2004), itself an extension of Von Neumann’s original minimax
theorem.

Theorem A.1: If Y ′ is a finite set, P ′ is a closed and convex subset of ∆(Y ′), A′ a closed
and convex subset of IRk for some k ∈ IN , and L′ : Y ′×A′ → IR is a bounded function such
that, for each y ∈ Y ′, L(y, a) is a continuous function of a, then there exists some Pr∗ ∈ P ′
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and some ρ∗ ∈ A′ such that,

EPr∗ [L
′(Y ′, ρ∗)] = minρ∈A′EPr∗ [L

′(Y ′, ρ)]
= maxPr∈P ′EPr[L

′(Y ′, ρ∗)].
(10)

With these observations, we are ready to prove Theorem 3.1:
Theorem 3.1: Fix X , Y, A, L, and P ⊆ ∆(X × Y).

(a) The P-game has a Nash equilibrium (π∗, δ∗), where π∗ is a distribution over P with
finite support.

(b) If (π∗, δ∗) is a Nash equilibrium of the P-game such that π∗ has finite support, then

(i) for every distribution Pr′ ∈ P in the support of π∗, we have

EPr′ [Lδ∗ ] = maxPr∈PEPr[Lδ∗ ];

(ii) if Pr∗ =
∑

Pr∈P,π∗(Pr)>0 π
∗(Pr) Pr (i.e., Pr∗ is the convex combination of the

distributions in the support of π∗, weighted by their probability according to π∗),
then

EPr∗ [Lδ∗ ] = minδ∈D(X ,A)EPr∗ [Lδ]

= maxPr∈P minδ∈D(X ,A)EPr[Lδ]

= minδ∈D(X ,A)maxPr∈PEPr[Lδ]

= maxPr∈PEPr[Lδ∗ ].

Proof: To prove part (a), we introduce a new loss function L′ that is essentially equivalent
to L, but is designed so that Theorem A.1 can be applied. Let Y ′ = X×Y, letA′ = D(X ,A),
and define the function L′ : Y ′ ×A′ → IR as

L′((x, y), δ) := Lδ(x, y) =
∑
a∈A

δ(x)(a)L(y, a).

Obviously L′ is equivalent to L in the sense that for all Pr ∈ ∆(X ×Y), for all δ ∈ D(X ,A),

EPr[Lδ] = EPr[L
′((X,Y ), δ)].

If we view A′ = D(X ,A) as a convex subset of IR|X |·(|A|−1), then L′((x, y), a) becomes
a continuous function of a ∈ A′. Let P ′ be the convex closure of P. Since X × Y is
finite, P ′ consists of all distributions Pr∗ on (X ,Y) of the form c1 Pr1 + · · · + ck Prk for
k = |X × Y|, where Pr1, . . . ,Prk ∈ P and c1, . . . , ck are nonnegative real coefficients such
that c1 + · · · + ck = 1. Applying Theorem A.1 to L′ and P ′, it follows that (10) holds for
some Pr∗ ∈ P ′ and some δ∗ ∈ A′ = D(X ,A) (that is, the ρ∗ in (10) is δ∗). Thus, there must
be some distribution π∗ on P with finite support such that Pr∗ =

∑
Pr∈P,π∗(Pr)>0 π

∗(Pr) Pr.
It is easy to see that the two equalities in (10) are literally the two equalities in (9). Thus,
(π∗, δ∗) is a Nash equilibrium. This proves part (a).

To prove part (b)(i), suppose first that (π∗, δ∗) is a Nash equilibrium of the P-game
such that π∗ has finite support. Let V = maxPr∈P EPr[Lδ∗ ]. By (9), we have that∑

Pr∈P,π∗(Pr)>0

π∗(Pr)EPr[Lδ∗ ] = V. (11)
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Trivially, for each Pr′ ∈ P, we must have EPr′ [Lδ∗ ] ≤ maxPr∈P EPr[Lδ∗ ]. If this inequality
were strict for some Pr′ ∈ P in the support of π∗, then∑

Pr∈P,π∗(Pr)>0

π∗(Pr)EPr[Lδ∗ ] < V,

contradicting (11). This proves part (b)(i).
To prove part (b)(ii), note that straightforward arguments show that

maxPr∈P EPr[Lδ∗ ]
≥ minδ∈D(X ,A) maxPr∈P EPr[Lδ]

≥ maxPr∈P minδ∈D(X ,A)EPr[Lδ]

≥ minδ∈D(X ,A)EPr∗ [Lδ].

(The second inequality follows because, for all Pr′ ∈ P, minδ∈D(X ,A) maxPr∈P EPr[Lδ] ≥
minδ∈D(X ,A)EPr′ [Lδ].) Since (π∗, δ∗) is a Nash equilibrium, part (b)(ii) is immediate, using
the equalities in (9).

Theorem 3.2: Fix X , Y, A, L, P ⊆ ∆(X × Y).

(a) The P-x-game has a Nash equilibrium (π∗, δ∗(x)), where π∗ is a distribution over
P | X = x with finite support.

(b) If (π∗, δ∗(x)) is a Nash equilibrium of the P-x-game such that π∗ has finite support,
then

(i) for all Pr′ in the support of π∗, we have

EPr′ [Lδ∗ ] = maxPr∈P|X=xEPr[Lδ∗ ];

(ii) if Pr∗ =
∑

Pr∈P,π∗(Pr)>0 π
∗(Pr) Pr, then

EPr∗ [Lδ∗ ]
= minδ∈D(X ,A)EPr∗ [Lδ]

= maxPr∈P|X=x minδ∈D(X ,A)EPr[Lδ]

= minδ∈D(X ,A)maxPr∈P|X=xEPr[Lδ]

= maxPr∈P|X=xEPr[Lδ∗ ].

Proof: To prove part (a), we apply Theorem A.1, setting L′ = L, Y ′ = Y, A′ = ∆(A), and
P ′ to the convex closure of P | X = x. Thus, (10) holds for some ρ∗ ∈ A′, which we denote
δ∗(x). As in the proof of Theorem 3.1, there must be some distribution π∗ on P | X = x
with finite support such that Pr∗ =

∑
Pr∈P|X=x,π∗(Pr)>0 π

∗(Pr) Pr. The remainder of the
argument is identical to that in Theorem 3.1.

The proof of part (b) is completely analogous to the proof of part (b) of Theorem 3.1,
and is thus omitted.

Theorem 4.4: Given a decision setting DS = (X ,Y,A,P) such that P = 〈P〉, then for
all decision probems DP based on DS, there exists an a priori minimax-optimal rule that
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is also a posteriori minimax optimal. Indeed, every a posteriori minimax-optimal rule is
also an a priori minimax-optimal rule. If, for all Pr ∈ P and all x ∈ X , Pr(X = x) > 0,
then for every decision problem based on DS, every a priori minimax-optimal rule is also
a posteriori minimax optimal.

Proof: Let X+ = {x ∈ X : maxPr∈P Pr(X = x) > 0}. Let mδ be a random variable on
X defined by taking mδ(x) = 0 if x /∈ X+, and mδ(x) = maxPr′∈P|X=xEPr′ [Lδ] if x ∈ X+.
We first show that for every δ ∈ D(X ,A),

max
Pr∈P

EPr[Lδ] = max
Pr∈P

∑
x∈X

PrX (X = x)mδ(x). (12)

Note that

EPr[Lδ] =
∑

(x,y)∈X×Y Pr((X,Y ) = (x, y))Lδ(x, y)

=
∑
{x∈X :PrX (x)>0} PrX (X = x)

∑
y∈Y Pr(Y = x | X = x)Lδ(x, y)

=
∑
{x∈X :PrX (x)>0} PrX (X = x)EPr|X=x[Lδ]

≤
∑
{x∈X :PrX (x)>0} PrX (X = x) maxPr′∈P|X=xEPr′ [Lδ]

=
∑
{x∈X :PrX (x)>0} PrX (X = x)mδ(x)

=
∑
x∈X PrX (X = x)mδ(x).

Taking the max over all Pr ∈ P, we get that

max
Pr∈P

EPr[Lδ] ≤ max
Pr∈P

∑
x∈X

PrX (X = x)mδ(x).

It remains to show the reverse inequality in (12). Since P is closed, there exists Pr∗ ∈ P
such that

max
Pr∈P

∑
x∈X

PrX (X = x)mδ(x) =
∑
x∈X

Pr∗X (X = x)mδ(x).

Moreover, since P | X = x is closed, if x ∈ X+, there exists Prx ∈ P | X = x such that
mδ(x) = EPrx [Lδ]. Define Pr† ∈ ∆(X × Y) by taking

Pr†((X,Y ) = (x, y)) =

{
0 if x /∈ X+

Pr∗X (X = x) Prx(Y = y) if x ∈ X+.

Clearly Pr†X = Pr∗X and (Pr† | X = x) = (Prx | X = x) ∈ P | X = x if x ∈ X+. Thus, by
definition, Pr† ∈ 〈P〉. Since, by assumption, 〈P〉 = P, it follows that Pr† ∈ P. In addition,
it easily follows that

maxPr∈P
∑
x∈X PrX (X = x)mδ(x)

=
∑
x∈X Pr†X (X = x)mδ(x)

=
∑
x∈X+ Pr†X (X = x)

∑
y∈Y Pr†(Y = y | X = x)Lδ(x, y)

= EPr† [Lδ]
≤ maxPr∈P EPr[Lδ].

This establishes (12).
Now let δ∗ be an a priori minimax decision rule. Since the P-game has a Nash equilib-

rium (Theorem 3.1), such a δ∗ must exist. Let X ′ be the set of all x′ ∈ X for which δ∗ is not
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minimax optimal in the P–x′-game, i.e., x′ ∈ X ′ iff x ∈ X+ and maxPr′∈P|X=x′ EPr′ [Lδ∗ ] >
minδ∈D(X ,A) maxPr′∈P|X=x′ EPr′ [Lδ]. Define δ′ to be a decision rule that agrees with δ∗ on
X \X ′ and is minimax optimal in the P | X = x′ game for all x′ ∈ X ′; that is, δ′(x) = δ(x)
for x /∈ X ′ and, for x ∈ X ′,

δ(x) ∈ argminδ∈D(X ,A) max
Pr′∈P|X=x′

EPr′ [Lδ].

By construction, mδ′(x) ≤ mδ∗(x) for all x ∈ X and mδ′(x) < mδ∗(x) for all x ∈ X ′. Thus,
using (12), we have

maxPr∈P EPr[Lδ′ ]
= maxPr∈P

∑
x∈X Pr(X = x)mδ′(x)

≤ maxPr∈P
∑
x∈X Pr(X = x)mδ∗(x)

= maxPr∈P EPr[Lδ∗ ].

(13)

Thus, δ′ is also an a priori minimax-optimal decision rule. But, by construction, δ′ is also
an a posteriori minimax-optimal decision rule, and it follows that there exists at least one
decision rule (namely, δ′) that is both a priori and a posteriori minimax optimal. This
proves the first part of the theorem. To prove the last part, note that if Pr(X = x) > 0 for
all Pr ∈ P and x ∈ X , and X ′ 6= ∅, then the inequality in (13) is strict. It follows that X ′ is
empty in this case, for otherwise δ∗ would not be a priori minimax optimal, contradicting
our assumptions. But, if X ′ is empty, then δ∗ must also be a posteriori minimax optimal.

It remains to show that every a posteriori minimax-optimal rule is also a priori minimax
optimal. For all x ∈ X , define mm(x) = 0 if x 6∈ X+, and mm(x) = minδ∈∆mδ(x) if x ∈ X+.
Let ∆∗ be the set of all a posteriori minimax-optimal rules. We have already shown that
∆∗ has at least one element, say δ0, that is also a priori minimax optimal. For all δ ∈ ∆∗

and all x ∈ X , we must have mδ(x) = mm(x). By (12), it follows that for every δ ∈ ∆∗,

maxPr∈P EPr[Lδ] = maxPr∈P
∑
x∈X PrX (X = x)mδ(x)

= maxPr∈P
∑
x∈X PrX (X = x)mm(x).

Hence,
max
Pr∈P

EPr[Lδ] = max
Pr∈P

EPr[Lδ0 ].

Since δ0 is a priori minimax optimal, this implies that all δ ∈ ∆∗ are a priori minimax
optimal.

Proposition 4.7:

(a) Every dynamically consistent decision problem is also weakly time consistent.

(b) Not every dynamically consistent decision problem is time consistent.

(c) Every strongly dynamically consistent decision problem is time consistent.

(d) There exist weakly time consistent decision problems that are not dynamically consis-
tent.

(e) All decision problems based on P are dynamically consistent if and only if all decision
problems based on P are weakly time consistent.

419



Grünwald & Halpern

Proof: Part (a) is immediate by part 1 of the definition of dynamic consistency. Part
(b) follows because the decision problem of Example 4.5 is dynamically consistent but
not time consistent. We already showed that it is not time consistent. To see that it is
dynamically consistent, note that every decision rule that can be defined on the domain in
the example is a priori minimax optimal, so part 1 of the definition of dynamic consistency
holds automatically. Part 2 also holds automatically, since for every two decision rules δ
and δ′, (2) does not hold with strict inequality for X = 0.

For part (c), consider an arbitrary decision problem DP that is strongly dynamically
consistent. It is easy to construct an a posteriori minimax optimal decision rule; call it δ.
Since DP is strongly dynamically consistent, δ must be a priori minimax optimal. Suppose,
by way of contradiction, that some decision rule δ′ is a priori minimax optimal but not
a posteriori minimax. Since δ is a posteriori minimax optimal, it must be the case that
(2) holds, and that the the inequality is strict for some x with Pr(X = x) > 0 for some
Pr ∈ P. Thus, by strong dynamic consistency, δ must be a priori preferred to δ′ according
the minimax criterion, a contradiction to the assumption that δ′ is a priori minimax optimal.

For part (d), consider Example 2.1 again, in which there was both time and dynamic
inconsistency. Randomizing with equal probabibility between 0 and 1, no matter what is
observed, is a posteriori preferred over all other randomized actions, but it was not the a
priori minimax optimal. Now we extend the example by adding an additional action 2 and
defining L(0, 2) = L(1, 2) = −1; L(y, a) remains unchanged for y ∈ Y and a ∈ {0, 1}. Now
both the a priori and the a posteriori minimax optimal act is to play 2, no matter what
value of X is observed, so time consistency holds. Yet dynamic consistency still does not
hold, because after observing both X = 0 and X = 1, randomizing with equal probabibility
between 0 and 1 is preferred over playing action 1, but before observing X, the decision
rule that plays action 1 no matter what is observed is strictly preferred over randomizing
between 0 and 1.

The “only if” direction of part (e) already follows from part (a). For the “if” direction,
suppose, by way of contradiction, that all decision problems based on P are weakly time
consistent, but some decision problem based on P is not dynamically consistent. This
decision problem has some loss function L, set A of actions, and two decision rules δ and δ′

such that δ is preferred a posteriori over δ′ but not a priori; thus, in the definition of dynamic
consistency, (2) holds and (3) does not. Let Lmax be the a posteriori minimax expected loss
of δ. Extend A and L with an additional act a0 such that for all y, L(y, a0) = Lmax. Now
we have a new decision problem with action set A∪{a0} in which δ has become a minimax
optimal a posteriori rule (it is not the only one, but that does not matter). However, δ
cannot be a priori minimax optimal, because (3) still does not hold for δ and δ′: δ′ is a
priori strictly better than δ. Hence, we do not have weak time consistency in this new
decision problem. Since it is still a decision problems based on P, we do not have weak
time consistency for all decision problems based on P, and we have arrived at the desired
contradiction.

Theorem 5.1: Fix X , Y, L, A, and P ⊆ ∆(X × Y). If, for all PrY ∈ PY , P con-
tains a distribution Pr′ such that X and Y are independent under Pr′, and Pr′Y = PrY ,
then there is an a priori minimax-optimal decision rule that ignores information. Under
these conditions, if δ is an a priori minimax-optimal decision rule that ignores information,
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then δ essentially optimizes with respect to the marginal on Y ; that is, maxPr∈P EPr[Lδ] =
maxPrY∈PY EPrY [L′δ].

Proof: Let P ′ be the subset of P of distributions under which X and Y are independent.
Let D(X ,A)′ be the subset of D(X ,A) of rules that ignore information. Let δ∗ ∈ D(X ,A)′

be defined as the optimal decision rule that ignores information relative to P ′, i.e.

max
Pr∈P ′

EPr[Lδ∗ ] = min
δ∈D(X ,A)′

max
Pr∈P ′

EPr[Lδ].

We have

maxPr∈P EPr[Lδ∗ ] ≥ minδ∈D(X ,A) maxPr∈P EPr[Lδ]

≥ minδ∈D(X ,A) maxPr∈P ′ EPr[Lδ]

= minδ∈D(X ,A)′ maxPr∈P ′ EPr[Lδ] [see below]

= maxPr∈P ′ EPr[Lδ∗ ].

(14)

To see that the equality between the third and fourth line in (14) holds, note that for
Pr ∈ P ′, we have

EPr[Lδ] =
∑

(x,y)∈X×Y Pr(x, y)Lδ(x, y)

=
∑
x∈X Pr(X = x)

∑
y∈Y Pr(Y = y)(

∑
a∈A δ(x)(a)L(y, a))

The decision rule that minimizes this expression is independent of x; it is the distribution
δ∗ over actions that minimizes∑

y∈Y
Pr(Y = y)(

∑
a∈A

δ∗(a)L(y, a)).

This calculation also shows that, since δ∗ ignores information, for Pr ∈ P ′, we have that

max
Pr∈P

EPr[Lδ∗ ] = max
PrY∈PY

EPrY [L′δ∗ ] = max
Pr∈P ′

EPr[Lδ∗ ]. (15)

This implies that the first and last line of (14) are equal to each other, and therefore also
equal to the second line of (14). It follows that δ∗ is a priori minimax optimal. Since every
a priori minimax optimal rule that ignores information must satisfy (15), the second result
follows. We next prove Theorem 6.3. We first need three preliminary results.

Lemma A.2: If P is convex and X0 ⊆ X , then (P | X0)Y is convex.

Proof: Without loss of generality, assume that (P | X0)Y is nonempty. Given Pr′0,Pr′1 ∈
(P | X0)Y , let Pr′β = β Pr′1 +(1− β) Pr′0. We show that, for all β ∈ [0, 1], Pr′β ∈ (P | X0)Y .
Choose Pr0,Pr1 ∈ P with Pr0(X0) > 0,Pr1(X0) > 0, (Pr0 | X0)Y = Pr′0, and (Pr1 | X0)Y =
Pr′1. For c ∈ [0, 1], let Prc = cPr1 +(1− c) Pr0. Then, for all y ∈ Y,

Prc(Y = y | X0) = Prc(X∈X0,Y=y)
Prc(X∈X0)

= cPr1(X∈X0) Pr1(Y=y|X∈X0)+(1−c) Pr0(X∈X0) Pr0(Y=y|X∈X0)
cPr1(X∈X0)+(1−c) Pr0(X∈X0)

= βc Pr′1(Y = y) + (1− βc) Pr′0(Y = y),

(16)
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where βc = cPr1(X0)/(cPr1(X0) + (1 − c) Pr0(X0)). Clearly, βc is a continuous increasing
function of c, with β0 = 0 and β1 = 1. Thus, there exists cβ such that βcβ = β. Since
βc is independent of y, (16) holds for all y ∈ Y (with the same choice of βc), That is,
(Prcβ | X0)Y = β Pr′0 +(1− β) Pr′1−Pr′β. Thus, Pr′β ∈ (P | X0)Y , as desired.

Lemma A.3: If U = {X1, . . . ,Xk} is a collection of nonoverlapping subsets of X (i.e., for
1 ≤ i < j ≤ k, Xi ∩Xj = ∅), (P | X1)Y is convex, (P | X1)Y = (P | X2)Y = . . . = (P | Xk)Y ,
and V =

⋃k
i=1Xi, then for all j ∈ {1, . . . , k}, (P | V)Y ⊆ (P | Xj)Y .

Proof: The result is immediate if (P | V) is empty. So suppose that Pr ∈ P and Pr(V) > 0.
Using Bayes’ Rule, we have that

(Pr | V)Y =
∑

{i:Pr(Xi|V)>0}
Pr(Xi | V)(Pr | Xi)Y .

Now (P | X1)Y = . . . = (P | Xk)Y by assumption. Thus, for all i such that Pr(Xi |
V) > 0, there must exist some Pri ∈ P such that (Pr | Xi)Y = (Pri | X1)Y . Thus,
(Pr | V)Y =

∑
{i:Pr(Xi|V)>0} Pr(Xi | V)(Pri | X1)Y . Since P is convex by assumption, by

Lemma A.2, (P | X1)Y is convex as well. Thus, we can write (Pr | V)Y as a convex
combination of elements of (P | X1)Y , It follows that (Pr | V)Y ∈ (P | X1)Y . Since
(P | X1)Y = . . . = (P | Xk)Y , it follows that (Pr | V)Y ∈ (P | Xj)Y for all j = 1, . . . , k.

Lemma A.4: If P = 〈P〉 and U = {x1, . . . , xk}, then
⋂k
j=1(P | X = xj)Y ⊆ (P | U)Y .

Proof: Let Q ∈
⋂k
j=1(P | X = xj)Y . There must exist Pr1, . . . ,Prk ∈ P such that, for

j = 1, . . . , k, (Prj | X = xj)Y = Q. Clearly Pr1(x1) > 0. Since P = 〈P〉, there also exists
Pr ∈ P such that PrX = (Pr1)X and for all j ∈ {1, . . . , k} such that Pr1(xj) > 0, we have
(Pr | X = xj)Y = (Prj | X = xj)Y = Q. It follows that (Pr | U)Y = Q, so Q ∈ (P | U)Y .

Theorem 6.3:

(a) If Π is C-conditioning for some partition C of X and P is convex then, for all x ∈ X ,
we have that (P | [x]Π,P)Y ⊆ Π(P, x)Y .

(b) If Π is standard conditioning, P = 〈P〉, and x ∈ X , then Π(P, x)Y ⊆ (P | [x]Π,P)Y .

Proof: For part (a), since P is convex, by Lemma A.2, (P | X ′)Y is convex for all X ′ ⊆ X .
Let U = {C(x′) | x′ ∈ [x]Π,P}. By the definition of [x]Π,P , for all x′ ∈ [x]Π,P , we have

Π(P, x′) = P | C(x′) = P | C(x) = Π(P, x).

Thus, by Lemma A.3, (P | V)Y ⊆ Π(P, x)Y , where V =
⋃
U = [x]Π,PC(x′). This proves

part (a).
For part (b), since Π is standard conditioning, we have that (P | X = x)Y = (P | X =

x′)Y for all x′ ∈ U . By assumption, P = 〈P〉. Thus, it follows immediately from Lemma A.4
(taking U = [x]Π,P) that Π(P, x)Y ⊆ (P | [x]Π,P)Y , as desired.

We next want to prove Theorem 6.10. We first need a definition and a preliminary
result.
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Definition A.5: An update rule Π is semi-calibrated relative to P if (P | [x]Π,P)Y ⊆
Π(P, x)Y .

Note that, by Theorem 6.3, if P is convex, then C-conditioning is semi-calibrated for all C.

Lemma A.6: If Π is semi-calibrated relative to P and C = {[x]Π,P | x ∈ X}, then C is a
partition of X and

(a) C-conditioning is narrower than Π relative to P.

(b) If C-conditioning is not strictly narrower than Π relative to P, then Π is equivalent
to C-conditioning on P, and is calibrated.

Proof: Clearly C is a partition of X . For part (a), if Π′ is C-conditioning then, by definition,
Π′(P, x) = P | C(x) = P | [x]Π,P . Since Π is semi-calibrated, (P | [x]Π,P)Y ⊆ (Π(P, x))Y .
Thus, C-conditioning is narrower than Π relative to P.

For part (b), if C-conditioning (i.e., Π′) is not strictly narrower than Π relative to P,
then we must have (P(Π, x))Y = (P ′(Π, x))Y for all x ∈ X , so (P | [x]Π,P)Y = Π(P, x)Y ,
and Π is claibrated relative to P.

Theorem 6.10:

(a) C-conditioning is sharply calibrated relative to P for some partition C.

(b) If Π is sharply calibrated relative to P, then there exists some C such that Π is equiv-
alent to C-conditioning on P (i.e., Π(P, x) = Π | C(x) for all x ∈ X ).

Proof: We can place a partial order ≤P on partitions C by taking C1 ≤P C2 if C1-
conditioning is narrower than C2 conditioning relative to P. Since X is finite, there are
only finitely many possible partitions of X . Thus, there must be some minimal elements
of ≤P . We claim that each minimal element of ≤P is sharply calibrated relative to P.
For suppose that C0 is minimal relative to ≤P . Because P is convex, C0-conditioning is
semi-calibrated (Theorem 6.3) and we can apply Lemma A.6 with Π as C0. Because C0

is minimal, the C defined in Lemma A.6 cannot be strictly narrower than C0. It follows
by Lemma A.6(b) that C0-conditioning is calibrated. We now show that C0-conditioning is
in fact sharply calibrated, by showing that there exists no calibrated update rule that is
a strict narrowing of C0-conditioning. For suppose, by way of contradiction, that Π is an
update rule that is calibrated and that is strictly narrower than C0 relative to P. Then by
Lemma A.6(a) there exists a partition C such that C is narrower than Π relative to P. But
then C <P C0, contradicting the minimality of C0. This proves part (a).

For part (b), suppose that Π is sharply calibrated relative to P. By Lemma A.6(a),
there must be some partition C such that C-conditioning is narrower than Π, relative to P.
Let C0 be a minimal element of ≤P such that C0 ≤P C. Part (a) shows that C0-conditioning
is sharply calibrated relative to P. Since C0-conditioning is narrower than Π, and we Π is
sharply calibrated relative to P, we must have that C0-conditioning is not strictly narrower
than Π relative to P, and hence Π is equivalent to C0-conditioning on P.

Theorem 6.12: If P is convex and P = 〈P〉, then standard conditioning is sharply
calibrated relative to P.
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Proof: By Corollary 6.4, standard conditioning is calibrated relative to P under the stated
assumptions on P. To show that it is sharply calibrated, suppose that there exists some
update rule Π′ that is narrower than standard conditioning, and that is sharply calibrated
relative to P. By Theorem 6.10, Π′ is equivalent to C-conditioning for some C relative to
P. Thus, for all x ∈ X and all x′ ∈ C(x), we have that

(P | C(x))Y ⊆ (P | x′)Y ,

so

(P | C(x))Y ⊆
⋂

x′∈C(x)

(P | x′)Y .

By Lemma A.4, it is immediate that⋂
x′∈C(x)

(P | x′)Y ⊆ (P | C(x))Y .

Thus, we must have ⋂
x′∈C(x)

(P | x′)Y = (P | C(x))Y . (17)

Now we want to show that, for all x′ ∈ C(x), we have that (P | C(x))Y = (P | x′)Y . This
will show that C is equivalent to conditioning, and that conditioning is sharply calibrated.

Suppose not, and that Q ∈ (P | x′)Y − P | C(x)Y for some x′ ∈ C(x). Let Q′ be the
distribution in (P | C(x))Y that is closest to Q. The fact that there is such a distribution
Q′ follows from the fact that P is closed (recall that we assume that P is closed throughout
the paper). (In fact, it follows from convexity that Q′ is unique, but this is not necessary for
our argument.) Since Q′ ∈ (P | C(x))Y , it follows from (17) that, for each x′′ ∈ C(x), there
must be some distribution Prx′′ ∈ P such that Prx′′(x

′′) > 0 and (Prx′′ | x′′)Y = Q. Since
P is convex, there is some distribution Pr∗ ∈ P such that Pr∗(x′′) > 0 for all x′′ ∈ C(x)
(indeed, Pr∗ can be any convex combination of the distributions Prx′′ for x′′ ∈ C where all
the coefficients are positive). Since P = 〈P〉, there must exist a distribution Pr ∈ P such
that (Pr)X = (Pr∗)X (so that Pr is positive on all elements of C), (Pr | x′′)Y = Q′ for all
x′′ ∈ C(x) other than x′, and (Pr | x′)Y = Q. Note that (Pr | (C(x)− {x′}))Y = Q′. Thus,

(Pr | C(x)Y = c(Pr | C(x)− x′)Y + (1− c)(Pr | x′)Y = cQ′ + (1− c)Q,

for some c such that 0 < c < 1. Clearly cQ′ + (1− c)Q is closer to Q than Q′ is. This gives
the desired contradiction.
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