
Journal of Artificial Intelligence Research 42 (2011) 353-392 Submitted 5/11; published 11/11

Learning to Make Predictions In Partially Observable

Environments Without a Generative Model

Erik Talvitie erik.talvitie@fandm.edu

Mathematics and Computer Science
Franklin and Marshall College
Lancaster, PA 17604-3003, USA

Satinder Singh baveja@umich.edu

Computer Science and Engineering

University of Michigan

Ann Arbor, MI 48109-2121, USA

Abstract

When faced with the problem of learning a model of a high-dimensional environment, a
common approach is to limit the model to make only a restricted set of predictions, thereby
simplifying the learning problem. These partial models may be directly useful for making
decisions or may be combined together to form a more complete, structured model. How-
ever, in partially observable (non-Markov) environments, standard model-learning methods
learn generative models, i.e. models that provide a probability distribution over all possi-
ble futures (such as POMDPs). It is not straightforward to restrict such models to make
only certain predictions, and doing so does not always simplify the learning problem. In
this paper we present prediction profile models: non-generative partial models for partially
observable systems that make only a given set of predictions, and are therefore far simpler
than generative models in some cases. We formalize the problem of learning a prediction
profile model as a transformation of the original model-learning problem, and show em-
pirically that one can learn prediction profile models that make a small set of important
predictions even in systems that are too complex for standard generative models.

1. Introduction

Learning a model of the dynamics of an environment through experience is a critical capa-
bility for an artificial agent. Agents that can learn to make predictions about future events
and anticipate the consequences of their own actions can use these predictions to plan and
make better decisions. When the agent’s environment is very complex, however, this learn-
ing problem can pose serious challenges. One common approach to dealing with complex
environments is to learn partial models, focusing the model-learning problem on making
a restricted set of particularly important predictions. Often when only a few predictions
need to be made, much of the complexity of the dynamics being modeled can be safely ig-
nored. Sometimes a partial model can be directly useful for making decisions, for instance
if the model makes predictions about the agent’s future rewards (e.g., see McCallum, 1995;
Mahmud, 2010). In other cases, many partial models making restricted predictions are
combined to form a more complete model as in, for instance, factored MDPs (Boutilier,
Dean, & Hanks, 1999), factored PSRs (Wolfe, James, & Singh, 2008), or “collections of
local models” (Talvitie & Singh, 2009b).

c©2011 AI Access Foundation. All rights reserved.

Talvitie & Singh

The most common approach to learning a partial model is to apply an abstraction
(whether learned or supplied by a domain expert) that filters out detail from the train-
ing data that is irrelevant to making the important predictions. Model-learning methods
can then be applied to the abstract data, and typically the learning problem will be more
tractable as a result. However, especially in the case of partially observable systems, ab-
straction alone may not sufficiently simplify the learning problem, even (as we will see in
subsequent examples) when the model is being asked to make intuitively simple predictions.
The counter-intuitive complexity of learning a partial model in the partially observable case
is a direct result of the fact that standard model-learning approaches for partially observ-
able systems learn generative models that attempt to make every possible prediction about
the future and cannot be straightforwardly restricted to making only a few particularly
important predictions.

In this paper we present an alternative approach that learns non-generative models that
make only the specified predictions, conditioned on history. In the following illustrative
example, we will see that sometimes a small set of predictions is all that is necessary for
good control performance but that learning to make these predictions in a high-dimensional
environment using standard generative models can pose serious challenges. By contrast we
will see that there exists a simple, non-generative model that can make and maintain these
predictions and this will form the learning target of our method.

1.1 An Example

Consider the simple game of Three Card Monte. The dealer, perhaps on a crowded street,
has three cards, one of which is an ace. The dealer shows the location of the ace, flips over
the cards, and then mixes them up by swapping two cards at every time step. A player of
the game must keep track of location of the ace. Eventually the dealer stops mixing up the
cards and asks for a guess. If a player correctly guesses where the ace is, they win some
money. If they guess wrong, they lose some money.

Consider an artificial agent attempting to learn a model of the dynamics of this game
from experience. It takes a sequence of actions and perceives a sequence of observations.
The raw data received by the agent includes a rich, high-dimensional scene including the
activities of the crowd, the movement of cars, the weather, as well as the game itself (the
dealer swapping cards). Clearly, learning a model that encompasses all of these complex
phenomena is both infeasible and unnecessary. In order to win the game, the agent needs
only focus on making predictions about the cards, and need not anticipate the future be-
havior of the city scene around it. In particular, the agent need only make three predictions:
“If I flip over card 1, will it be the ace?” and the corresponding predictions for cards 2
and 3. One can safely ignore much of the detail in the agent’s experience and still make
these important predictions accurately. Once one filters out the irrelevant detail, the agent’s
experience might look like this:

bet pos2 watch swap1, 2 watch swap2, 3 . . . ,

where the agent takes the bet action, starting the game, and observes the dealer showing
the card in position 2. Then the agent takes the watch action, observes the dealer swapping
cards 1 and 2, takes the watch action again, observes the dealer swapping cards 2 and 3, and

354

Learning to Make Predictions Without a Generative Model

so on until the dealer prompts the agent for a guess (note that this is not an uncontrolled
system; watch is indeed an action that the agent must select over, say, reaching out and
flipping the cards itself, which in a real game of Three Card Monte would certainly result
in negative utility!) Now the data reflects only the movement of the cards. One could learn
a model using this new data set and the learning problem would be far simpler than before
since complex and irrelevant phenomena like the crowd and the weather have been ignored.

In the Markov case, the agent directly observes the entire state of the environment and
can therefore learn to make predictions as a direct function of state. Abstraction simplifies
the representation of state and thereby simplifies the learning problem. Note, however, that
the Three Card Monte problem is partially observable (non-Markov). The agent cannot
directly observe the state of the environment (the location of the ace and the state of the
dealer’s mind are both hidden to the agent). In the partially observable case, the agent
must learn to maintain a compact representation of state as well as learn the dynamics of
that state. The most common methods to achieve this, such as expectation-maximization
(EM) for learning POMDPs (Baum, Petrie, Soules, & Weiss, 1970), learn generative models
which provide a probability distribution over all possible futures.

In Three Card Monte, even when all irrelevant details have been ignored and the data
contains only information about the cards’ movement, a generative model will still be in-
tractably complex! A generative model makes predictions about all future events. This
includes the predictions the model is meant to make (such as whether flipping over card 1
in the next time-step will reveal the ace) but also many irrelevant predictions. A generative
model, will also predict, for instance, whether flipping over card 1 in 10 time-steps will
reveal the ace or whether cards 1 and 2 will be swapped in the next time-step. To make
these predictions, the model must capture not only the dynamics of the cards but also of
the dealer’s decision-making process. If the dealer decides which cards to swap using some
complex process (as a human dealer might) then the problem of learning a generative model
of this abstract system will be correspondingly complex.

Of course, in Three Card Monte, predicting the dealer’s future behavior is entirely
unnecessary to win. All that is required is to maintain the ace’s current location over time.
As such, learning a model that devotes most of its complexity to anticipating the dealer’s
decisions is counter-intuitive at best. A far more reasonable model can be seen in Figure 1.
Here the “states” of the model are labeled with predictions about the ace’s location. The
transitions are labeled with observations of the dealer’s behavior. As an agent plays the
game, it could use such a model to maintain its predictions about the location of the ace
over time, taking the dealer’s behavior into account, but not predicting the dealer’s future
behavior. Note that this is a non-generative model. It does not provide a distribution
over all possible futures and it cannot be used to “simulate the world” because it does not
predict the dealer’s next move. It only provides a limited set of conditional predictions
about the future, given the history of past actions and observations. On the other hand,
it is far simpler than a generative model would be. Because it does not model the dealer’s
decision-making process, this model has only 3 states, regardless of the underlying process
used by the dealer.

The model in Figure 1 is an example of what we term a prediction profile model. This
paper will formalize prediction profile models and present an algorithm for learning them
from data, under some assumptions (to be specified once we have established some necessary

355

Talvitie & Singh

Figure 1: Maintaining predictions about the location of the ace in Three Card Monte. Tran-
sitions are labeled with the dealer’s swaps. States are labeled with the predicted
position of the special card.

terminology). We will empirically demonstrate that in some partially observable systems
that prove too complex for standard generative model-learning methods, it is possible to
learn a prediction profile model that makes a small set of important predictions that allow
the agent to make good decisions. The next sections will formally describe the setting
and establish some notation and terminology and formalize the general learning problem
being addressed. Subsequent sections will formally present prediction profile models and
an algorithm for learning them, as well as several relevant theoretical and empirical results.

1.2 Discrete Dynamical Systems

We focus on discrete dynamical systems. The agent has a finite set A of actions that it can
take and the environment has a finite set O of observations that it can produce. At every
time step i, the agent chooses an action ai ∈ A and the environment stochastically emits
an observation oi ∈ O.

Definition 1. At time step i, the sequence of past actions and observations since the
beginning of time hi = a1o1a2o2 . . . aioi is called the history at time i.

The history at time zero, before the agent has taken any actions or seen any observations
h0, is called the null history.

1.2.1 Predictions

An agent uses its model to make conditional predictions about future events, given the his-
tory of actions and observations and given its own future behavior. Because the environment
is assumed to be stochastic, predictions are probabilities of future events. The primitive
building block used to describe future events is called a test (after Rivest & Schapire, 1994;
Littman, Sutton, & Singh, 2002). A test t is simply a sequence of actions and observations

356

Learning to Make Predictions Without a Generative Model

that could possibly occur, t = a1o1 . . . akok. If the agent actually takes the action sequence
in t and observes the observation sequence in t, we say that test t succeeded. A prediction
p(t | h) is the probability that test t succeeds after history h, assuming the agent takes the
actions in the test. Essentially, the prediction of a test is the answer to the question “If
I were to take this particular sequence of actions, with what probability would I see this
particular sequence of observations, given the history so far?” Formally,

p(t | h)
def

= Pr(o1 | h, a1)Pr(o2 | ha1o1, a2) . . .Pr(ok | ha1o1a2o2 . . . ak−1ok−1, ak). (1)

Let T be the set of all tests (that is, the set of all possible action-observation sequences
of all lengths). Then the set of all possible histories H is the set of all action-observation
sequences that could possibly occur starting from the null history, and the null history itself:
H

def

= {t ∈ T | p(t | h0) > 0} ∪ {h0}.
A model that can make a prediction p(t | h) for all t ∈ T and h ∈ H can make any

conditional prediction about the future (Littman et al., 2002). Because it represents a
probability distribution over all futures, such a model can be used to sample from that
distribution in order to “simulate the world,” or sample possible future trajectories. As
such, we call a model that makes all predictions a generative model.

Note that the use of the word “generative” here is closely related to its broader sense
in general density estimation. If one is attempting to represent the conditional probability
distribution Pr(A | B), the generative approach would be to represent the full joint distribu-

tion Pr(A,B) from which the conditional probabilities can be computed as Pr(A,B)
Pr(B) . That is

to say, a generative model in this sense makes predictions even about variables we only wish
to condition on. The non-generative or, in some settings, discriminitive approach would
instead directly represent the conditional distribution, taking the value of B as un-modeled
input. The non-generative approach can sometimes result in significant savings if Pr(B) is
very difficult to represent/learn, but Pr(A | B) is relatively simple (so long as one is truly
disinterested in modeling the joint distribution).

In our particular setting, a generative model is one that provides a probability distribu-
tion over all futures (given the agent’s actions). As such, one would use a generative model

to compute p(t | h) for some particular t and h as p(ht|h0)
p(h|h0)

. In fact, from Equation 1 one

can see that the prediction for any multi-step test can be computed from the predictions of
one-step tests:

p(a1o1a2o2 . . . akok | h) = p(a1o1 | h)p(a2o2 | ha1o1) . . . p(akok | ha1o1a2o2 . . . akok).

This leads to a simple definition of a generative model:

Definition 2. Any model that can provide the predictions p(ao | h) for all actions a ∈ A,
observations o ∈ O and histories h ∈ H is a generative model.

A non-generative model, then, would not make all one-step predictions in all histories
and, consequently, would have to directly represent the prediction p(t | h) with the history h

as an un-modeled input. It would condition on a given history, but not necessarily be capable
of computing the probability of that history sequence. As we saw in the Three Card Monte
example, this can be beneficial if making and maintaining predictions for t is substantially
simpler than making predictions for every possible action-observation sequence.

357

Talvitie & Singh

Note that a test describes a very specific future event (a sequence of specific actions
and observations). In many cases one might wish to make predictions about more abstract
events. This can be achieved by composing the predictions of many tests. For instance set
tests (Wingate, Soni, Wolfe, & Singh, 2007) are a sequence of actions and a set of observation
sequences. A set test succeeds when the agent takes the specified action sequence and sees
any observation sequence contained within the set occur. While traditional tests allow an
agent, for instance to express the question “If I go outside, what is the probability I will see
this exact sequence of images?” a set test can express the far more useful, abstract question
“If I go outside, what is the probability that it will be sunny?” by grouping together all
observations of a sunny day. Even more generally, option tests (Wolfe & Singh, 2006; Soni
& Singh, 2007) express future events where the agent’s behavior is described abstractly as
well as the resulting observations. These types of abstract predictions can be computed as
the linear combination of a set of concrete predictions.

1.2.2 System Dynamics Matrix and Linear Dimension

It is sometimes useful to describe a dynamical system using a conceptual object called the
system dynamics matrix (Singh, James, & Rudary, 2004). The system dynamics matrix
contains the values of all possible predictions, and therefore fully encodes the dynamics of
the system. Specifically,

Definition 3. The system dynamics matrix of a dynamical system is an infinity-by-infinity
matrix. There is a column corresponding to every test t ∈ T . There is a row corresponding
to every history h ∈ H. The ijth entry of the system dynamics matrix is the prediction
p(tj | hi) of the test corresponding to column j at the history corresponding to row i and
there is an entry for every history-test pair.

Though the system dynamics matrix has infinitely many entries, in many cases it has
finite rank. The rank of the system dynamics matrix can be thought of as a measure of the
complexity of the system (Singh et al., 2004).

Definition 4. The linear dimension of a dynamical system is the rank of the corresponding
system dynamics matrix.

For some popular modeling representations, the linear dimension is a major factor in the
complexity of representing and learning a generative model of the system. For instance, in
POMDPs, the number of hidden states required to represent the system is lower-bounded
by the linear dimension. In this work we adopt linear dimension as our measure of the
complexity of a dynamical system. When we say a system is “simpler” than another, we
mean it has a lower linear dimension.

1.2.3 The Markov Property

A dynamical system is Markov if all that one needs to know about history in order to make
predictions about future events is the most recent observation.

Definition 5. A system is Markov if for any two histories h and h′ (that may be the null
history), any two actions a and a′, any observation o, and any test t, p(t | hao) = p(t | h′a′o).

358

Learning to Make Predictions Without a Generative Model

In the Markov case we will use the notational shorthand p(t | o) to indicate the prediction
of t at any history that ends in observation o. In the Markov case, because observations
contain all the information needed to make any prediction about the future, they are often
called state (because they describe the state of the world). When a system is not Markov,
it is partially observable. In partially observable systems predictions can depend arbitrarily
on the entire history. We focus on the partially observable case.

2. Learning to Make Predictions

In this work we assume that, as in Three Card Monte, though the agent may live in a
complex environment, it has only a small set of important predictions to make. These
predictions could have been identified as important by a designer, or by some other learning
process. We do not address the problem of identifying which predictions should be made,
but rather focus on the problem of learning to make predictions, once they are identified.
In general, we imagine that we are given some finite set T I = {t1, t2, . . . , tm} of tests of
interest for which we would like our model to make accurate predictions. Here the term
“test” should be construed broadly, possibly including abstract tests in addition to raw
sequences of actions and observations. The tests of interest are the future events the model
should predict. For instance, in the Three Card Monte problem, in order to perform well
the agent must predict whether it will see the ace when it flips over each card. So it will
have three one-step tests of interest: flip1 ace, flip2 ace, and flip3 ace (representing the
future events where the agent flips over card 1, 2, and 3, respectively, and sees the ace). If
the agent can learn to maintain the probability of these events over time, it can win the
game.

As such, the general problem is to learn a function φ : H → [0, 1]m where

φ(h)
def

= 〈p(t1 | h), p(t2 | h), . . . , p(tm | h)〉, (2)

that is, a function from histories to the predictions for the test of interest (which we will refer
to as the predictions of interest) at that history. Note that the output of φ is not necessarily
a probability distribution. The tests of interest may be selected arbitrarily and therefore
need not represent mutually exclusive or exhaustive events. We will call a particular vector
of predictions for the tests of interest a prediction profile.

Definition 6. We call φ(h) the prediction profile at history h.

We now describe two existing general approaches to learning φ: learning a direct func-
tion from history to predictions (most common in the Markov case), and learning a fully
generative model that maintains a finite-dimensional summary of history (common in the
partially observable case). Both have strengths and weaknesses as approaches to learning
φ. Section 2.3 will contrast these with our approach, which combines some of the strengths
of both approaches.

2.1 Direct Function Approximation

When the system is Markov, learning φ is conceptually straightforward; essentially it is
a problem of learning a function from observation (“state”) to predictions. Rather than

359

Talvitie & Singh

learning φ which takes histories as input, one can instead learn a function φMarkov : O →
[0, 1]m, which maps an observation to the predictions for the tests of interest resulting from
all histories that end in that observation. Note that, as an immediate consequence, in
discrete Markov systems there is a finite number of distinct prediction profiles. In fact,
there can be no more distinct prediction profiles than there are observations.

When the number of observations and the number of tests of interest are small enough,
φMarkov can be represented as a |O| × |T I | look-up table, and the entries estimated using
sample averages1:

p̂(ti | o) =
times t succeeds from histories ending in o

times acts(t) taken from histories ending in o
. (3)

The main challenge of learning Markov models arises when the number of observations is
very large. Then it becomes necessary to generalize across observations, using data gathered
about one observation to learn about many others. Specifically, one may be able to exploit
the fact that some observations will be associated with very similar (or identical) prediction
profiles (that is, the same predictions for the tests of interest) and share data amongst them.
Restricting a model’s attention to only a few predictions can afford more generalization,
which is why learning a partial model can be beneficial in the Markov setting.

Even when the system is partially observable, one can still attempt to learn φ directly,
typically by performing some sort of regression over a set of features of entire histories. For
instance, U-Tree (McCallum, 1995) takes a set of history features and learns a decision tree
that attempts to distinguish histories that result in different expected asymptotic return
under optimal behavior. Wolfe and Barto (2006) apply a U-Tree-like algorithm but rather
than restricting the model to predicting future rewards, they learn to make predictions
about some pre-selected set of features of the next observation (a special case of the more
general concept of tests of interest). Dinculescu and Precup (2010) learn the expected value
of a given feature of the future as a direct function of a given real-valued feature of history
by clustering futures and histories that have similar associated values.

Because they directly approximate φ these types of models only make predictions for T I

and are therefore non-generative (and therefore able, for instance, to avoid falling into the
trap of predicting the dealer’s decisions in Three Card Monte). Though this approach has
demonstrated promise, it also faces a clear pragmatic challenge, especially in the partially
observable setting: feature selection. Because φ is a function of history, an ever-expanding
sequence of actions and observations, finding a reasonable set of compactly represented fea-
tures that collectively capture all of the history information needed to make the predictions
of interest is a significant challenge. In a sense, even in the partially observable setting,
this type of approach takes only a small step away from the Markov case. It still requires
a good idea a priori of what information should be extracted from history (in the form of
features) in order to make the predictions of interest.

1. Bowling, McCracken, James, Neufeld, and Wilkinson (2006) showed that this estimator is unbiased only
in the case where the data is collected using a blind policy, in which action selection does not depend on
the history of observations and provided an alternative estimator that is unbiased for all policies. For
simplicity’s sake, however, we will assume throughout that the data gathering policy is blind.

360

Learning to Make Predictions Without a Generative Model

2.2 Generative Models

If one does not have a good idea a priori of what features should be extracted from history
to make accurate predictions, one faces the additional challenge of learning to summarize
the relevant information from history in a compact sufficient statistic.

There exist methods that learn from training data to maintain a finite-dimensional
statistic of history from which any prediction can be computed. In analogy to the Markov
case, this statistic is called the state vector. Clearly any model that can maintain state
can be used to compute φ (since it can make all predictions). We briefly mention two
examples of this approach that are particularly relevant to the development and analysis of
our method.

POMDPs By far the most popular representation for models of partially observable
systems is the partially observable Markov decision process (POMDP) (Monahan, 1982).
A POMDP posits an underlying MDP (Puterman, 1994) with a set S of hidden states that
the agent never observes. At any given time-step i, the system is in some particular hidden
state si−1 ∈ S (unknown to the agent). The agent takes some action ai ∈ A and the system
transitions to the next state si according to the transition probability Pr(si | si−1, ai). An
observation oi ∈ O is then emitted according to a probability distribution that in general
may depend upon si−1, ai, and si: Pr(oi | si−1, ai, si).

Because the agent does not observe the hidden states, it cannot know which hidden
state the system is in at any given moment. The agent can however maintain a probability
distribution that represents the agent’s current beliefs about the hidden state. This prob-
ability distribution is called the belief state. If the belief state associated with history h is
known, then it is straightforward to compute the prediction of any test t:

p(t | h) =
∑

s∈S

Pr(s | h)Pr(t | s),

where Pr(t | s) can be computed using the transition and observation emission probabilities.
The belief state is a finite summary of history from which any prediction about the

future can be computed. So, the belief state is the state vector for a POMDP. Given the
transition probabilities and the observation emission probabilities, it is possible to maintain
the belief state over time using Bayes’ rule. If at the current history h one knows Pr(s | h)
for all hidden states s and the agent takes action a and observes observation o, then one
can compute the probability of any hidden state s at the new history:

Pr(s | hao) =

∑
s′∈S Pr(s′ | h)Pr(s | s′, ai)Pr(oi | s

′, ai, s)∑
s′′∈S

∑
s′∈S Pr(s′ | h)Pr(s′′ | s′, ai)Pr(oi | s′, ai, s′′)

. (4)

The parameters of a POMDP that must be learned in order to be able to maintain
state are the transition probabilities and the observation emission probabilities. Given these
parameters, the belief state corresponding to any given history can be recursively computed
and the model can thereby make any prediction at any history. POMDP parameters are
typically learned using the Expectation Maximization (EM) algorithm (Baum et al., 1970).
Given some training data and the number of actions, observations, and hidden states as
input, EM essentially performs gradient ascent to find transition and emission distributions
that (locally) maximize the likelihood of the provided data.

361

Talvitie & Singh

PSRs Another more recently introduced modeling representation is the predictive state
representation (PSR) (Littman et al., 2002). Instead of hidden states, PSRs are defined more
directly in terms of the system dynamics matrix (described in Section 1.2.2). Specifically,
PSRs find a set of core tests Q whose corresponding columns in the system dynamics matrix
form a basis. Recall that the system dynamics matrix often has finite rank (for instance, the
matrix associated with any POMDP with finite hidden states has finite linear dimension)
and thus Q is finite for many systems of interest. Since the predictions of Q are a basis,
the prediction for any other test at some history can be computed as a linear combination
of the predictions of Q at that history.

The vector of predictions for Q is called the predictive state. While the belief state was
the state vector for POMDPs, the predictive state is the state vector for PSRs. It can also
be maintained by application of Bayes’ rule. Specifically, if at some history h, p(q | h)
is known for all core tests q and the agent takes some action a ∈ A and observes some
observation o ∈ O, then one can compute the prediction of any core test q at the new
history:

p(q | hao) =
p(aoq | h)

p(ao | h)
=

∑
q′∈Q p(q′ | h)maoq(q

′)
∑

q′∈Q p(q′ | h)mao(q′)
, (5)

where maoq(q
′) is the coefficient of p(q′ | h) in the linear combination that computes the

prediction p(aoq | h).
So, given a set of core tests, the parameters of a PSR that must be learned in order

to maintain state are the coefficients mao for every action a and observation o and the
coefficients maoq for every action a, observation o, and core tests q. Given these parameters
the predictive state at any given history can be recursively computed and used to make any
prediction about the future. PSRs are learned by directly estimating the system dynam-
ics matrix (James & Singh, 2004; Wolfe, James, & Singh, 2005) or, more recently, some
sub-matrix or derived matrix thereof (Boots, Siddiqi, & Gordon, 2010, 2011) using sample
averages in the training data. The estimated matrix is used to find a set of core tests and
the parameters are then estimated using linear regression.

Note that both of these types of models are inherently generative. They both rely
upon the maintenance of the state vector in order to make predictions and, as can be
seen in Equations 4 and 5, the state update equations of these models rely upon access to
one-step predictions to perform the Bayesian update. As such, unlike the direct function
approximation approach, one cannot simply choose a set of predictions for the model to
make. These models by necessity make all predictions.

There are many reasons to desire a complete, generative model. Because it makes all
possible predictions, such a model can be used to sample possible future trajectories which is
a useful capability for planning. A generative model is also, by definition, very flexible about
what predictions it can be used to make. On the other hand, in many cases a complete,
generative model may be difficult to obtain. Both PSR and POMDP training methods scale
very poorly with the linear dimension of the system being learned. The linear dimension
lower-bounds the number of hidden states needed to represent a system as a POMDP and
is precisely the number of core tests needed to represent it as a PSR. The learning methods
for POMDPs and PSRs are rarely successfully applied to systems with a linear dimension of

362

Learning to Make Predictions Without a Generative Model

Figure 2: Size 10 1D Ball Bounce

more than a few hundred (though the work of Boots et al. is pushing these limits further).
Most systems of interest will have several orders of magnitude higher linear dimension.

Furthermore, a complete, generative model is overkill for the problem at hand. Recall
that we do not seek to make all predictions; we are focused on making some particularly
important predictions T I . Even in problems where learning to make all predictions might
be intractable, it should still be possible to make some simple but important predictions.

2.2.1 Abstract Generative Models

As discussed earlier, when there is a restricted set of tests of interest, the learning problem
can often be simplified by ignoring irrelevant details through abstraction. Of course, having
an abstraction does not solve the problem of partial observability. What is typically done
is to apply the abstraction to the training data, discarding the irrelevant details (as we
did in the Three Card Monte example) and then to apply model learning methods like the
ones described above to the abstract data set. Just as in the Markov setting, in some cases
observation abstraction can greatly simplify the learning problem (certainly learning about
only the cards in Three Card Monte is easier than learning about the cards and the crowd
and weather and so on).

Ignoring details irrelevant to making the predictions of interest is intuitive and can
significantly simplify the learning problem. On the other hand, because they are generative
models, an abstract POMDP or PSR will still make all abstract predictions. This typically
includes predictions other than those that are directly of interest. If these extra predictions
require a complex model, even an abstract generative model can be intractible to learn. This
is true of the Three Card Monte example (where a generative model ends up modeling the
dealer as well as the cards). The following is another simple example of this phenomenon.

Example. Consider the uncontrolled system pictured in Figure 2, called the “1D Ball
Bounce” system. The agent observes a strip of pixels that can be black or white. The
black pixel represents the position of a ball that moves around on the strip. The ball has
a current direction and every time-step it moves one pixel in that direction. Whenever it
reaches an edge pixel, its current direction changes to move away from the edge. In Figure
3(a) a complete POMDP model of a 10 pixel version of this system is pictured. If there
are k pixels, the POMDP has 2k − 2 hidden states (because the ball can have one of 2
possible directions in one of k possible positions, except the two ends, where there is only
one possible direction).

Now say the agent wishes only to predict whether the ball will be in the position marked
with the x in the next time step. Clearly this prediction can be made by only paying
attention to the immediate neighborhood of the x. The details of what happens to the
ball while it is far away do not matter for making these predictions. So, one could apply

363

Talvitie & Singh

(a) (b)

Figure 3: POMDP model of the size 10 1D Ball Bounce system (a) and of the abstracted
1D Ball Bounce system (b).

an abstraction that lumps together all observations in which the neighborhood about x

looks the same. The problem is that an abstract generative model of this system makes
predictions not only about x, but also about the pixels surrounding x. Specifically, the
model still makes predictions about whether the ball will enter the neighborhood in the near
future. This of course depends on how long it has been since the ball left the neighborhood.
So, the POMDP model of the abstract system (pictured in Figure 3(b)) has exactly the same
state diagram as the original system, though its observations have changed to reflect the
abstraction. The abstract system and the primitive system have the same linear dimension.

In order to make predictions about x, one must condition on information about the
pixels surrounding x. Consequently, a generative model also makes predictions about these
pixels. Counterintuitively, the abstract model’s complexity is mainly devoted to making
predictions other than the predictions of interest. In general, while learning an abstract
model can drastically simplify the learning problem by ignoring irrelevant details, an ab-
stract generative model still learns to make predictions about any details that are relevant,
even if they are not directly of interest.

2.3 Prediction Profile Models

The contribution of this paper, prediction profile models, seek to combine the main strengths
of the two model-learning approaches discussed above. As with a direct approximation of
φ, a prediction profile model will only make the predictions of interest, and no others.
As such, it can be far simpler than a generative model, which will typically make many
extraneous predictions. However, the learning method for prediction profile models will
not require a set of history features to be given a priori. By leveraging existing generative
model learning methods, prediction profile models learn to maintain the state information
necessary for making the predictions of interest.

364

Learning to Make Predictions Without a Generative Model

Figure 4: Prediction profile model for the 1D Ball Bounce system

A typical model learns to make predictions about future observations emitted by the
system. The main idea behind prediction profile models is to instead model the values of
the predictions themselves as they change over time, conditioned on both the actions chosen
by the agent and the observations emitted by the system.

We have already seen an example of this in Three Card Monte. The prediction profile
model (shown in Figure 1) takes observations of the dealer’s behavior as input and outputs
predictions for the tests of interest. It does not predict the dealer’s behavior, but it takes it
into account when updating the predictions of interest. Recall that, though the Three Card
Monte system can be arbitrarily complicated (depending on the dealer), this prediction
profile system has three states, regardless of the dealer’s decision making process.

Another example is shown in Figure 4. This is the prediction profile system for the 1D
Ball Bounce system (Figure 2), where the model must predict whether the ball will enter
position x in the next time-step. Each state of the prediction profile model is labeled with a
prediction for pixel x (white or black). The transitions are labeled with observations of the
3-pixel neighborhood centered on position x. In this case the transitions capture the ball
entering the neighborhood, moving to position x, leaving the neighborhood, staying away
for some undetermined amount of time, and returning again. Recall that a POMDP model
of this system has 2k− 2 hidden states, where k is the number of pixels, even after ignoring
all pixels irrelevant to making predictions about pixel x. By contrast, the prediction profile
model always has three states, regardless of the number of pixels.

The next section will formally describe prediction profile models as models of a dynam-
ical system that results from a transformation of the original system. Subsequent sections
will discuss how to learn prediction profile models from data (by converting data from the
original system into data from the transformed system and learning a model from the con-
verted data set) and present results that help to characterize the conditions under which
prediction profile models are best applied.

3. The Prediction Profile System

We now formally describe a theoretical dynamical system, defined in terms of both the
dynamics of the original system and the given tests of interest. We call this constructed
system the prediction profile system. A prediction profile model, which it is our goal to

365

Talvitie & Singh

construct, is a model of the prediction profile system (that is, the system is an ideal,
theoretical construct, a model may be imperfect, approximate, etc.). As such, our analysis of
the problem of learning a prediction profile model will depend a great deal on understanding
properties of the prediction profile system.

In this paper we make the restrictive assumption that, as in the Markov case, there is
a finite number of distinct prediction profiles (that is, the predictions of interest take on
only a finite number of distinct values). This is certainly not true of all partially observable
systems and all sets of tests of interest, though it is true in many interesting examples.
Formally, this assumption requires that φ map histories to a finite set of prediction profiles:

Assumption 7. Assume there exists a finite set of prediction profiles P = {ρ1, ρ2, . . . , ρk} ⊂
[0, 1]m such that for every history h, φ(h) ∈ P .

This assumption allows the definition of the prediction profile system (or PP for short)
as a discrete dynamical system that captures the sequence of prediction profiles over time,
given an action observation sequence. The prediction profile system’s actions, observations,
and dynamics are defined in terms of quantities associated with the original system:

Definition 8. The prediction profile system is defined by a set of observations, a set of
actions, and a rule governing its dynamics.

1. Observations: The set of prediction profile observations, OPP , is defined to be the set
of distinct prediction profiles. That is, OPP

def

= P = {ρ1, . . . , ρk}.

2. Actions: The set of prediction profile actions, APP , is defined to be the set of action-
observation pairs in the original system. That is, APP

def

= A×O.

3. Dynamics: The dynamics of the prediction profile system are deterministically gov-
erned by φ. At any prediction profile history, 〈a1, o1〉ρ1〈a2, o2〉ρ2 . . . 〈aj , oj〉ρj , and
for any next PP -action, 〈aj+1, oj+1〉, the prediction profile system deterministically
emits the PP -observation φ(a1o1a2o2 . . . ajojaj+1oj+1).

We now present some key facts about the prediction profile system. Specifically, it
will be noted that the prediction profile system is always deterministic. Also, though the
prediction profile system may be Markov (as it is in the Three Card Monte example), in
general it is partially observable.

Proposition 9. Even if the original system is stochastic, the prediction profile system is
always deterministic.

Proof. This follows immediately from the definition: every history corresponds to exactly
one prediction profile. So a PP -history (action-observation-profile sequence) and a PP -
action (action-observation pair) fully determine the next PP -observation (prediction pro-
file). The stochastic observations in the original system have been folded into the un-
modeled actions of the prediction profile system.

Proposition 10. If the original system is Markov, the prediction profile system is Markov.

366

Learning to Make Predictions Without a Generative Model

Proof. By definition, if the original system is Markov the prediction profile at any time
step depends only on the most recent observation. So, if at time step t, the current profile
is ρt, the agent takes action at+1 and observes observation ot+1, the next profile is simply
ρt+1 = φMarkov(ot+1). So, in fact, when the original system is Markov, the prediction profile
system satisfies an even stronger condition: the next PP -observation is fully determined
by the PP -action and has no dependence on history whatsoever (including the most recent
PP -observation).

Proposition 11. Even if the original system is partially observable, the prediction profile
system may be Markov.

Proof. Consider the Three Card Monte example. The original system is clearly non-Markov
(the most recent observation, that is the dealer’s most recent swap, tells one very little about
the location of the ace). However, the prediction profile system for the tests of interest
regarding the location of the special card (pictured in Figure 1) is Markov. The next profile
is fully determined by the current profile and the PP -action.

In general, however, the PP system may be partially observable. Though in the Three
Card Monte example the current prediction profile and the next action-observation pair
together fully determine the next prediction profile, in general the next prediction profile is
determined by the history of action-observation pairs (and prediction profiles).

Proposition 12. The prediction profile system may be partially observable.

Proof. Recall the 1D Ball Bounce example. The corresponding prediction profile system is
shown in Figure 4. Note that two distinct states in the update graph are associated with
the same prediction profile (pixel x will be white). Given only the current prediction profile
(pixel x will be white) and the PP -action (observe the ball in a neighboring pixel on the left
or right), one cannot determine whether the ball is entering or leaving the neighborhood,
and thus cannot uniquely determine the next profile. This prediction profile system is
partially observable.

So, in general, the prediction profile system is a deterministic, partially-observable dy-
namical system. A model of the prediction profile system can only be used to make the
predictions of interest. As such, if one wishes to use a prediction profile model as a generative
model, one must select the tests of interest carefully. For instance:

Proposition 13. If the tests of interest include the set of one-step primitive tests, that is
if {ao | a ∈ A, o ∈ O} ⊆ T I , then a model of the prediction profile system can be used as a
generative model of the original system.

Proof. This follows immediately from the definition of generative model.

While in this special case a prediction profile model can be a complete, generative
model of the system, it will be shown in Section 5 that if one desires a generative model,
it is essentially never preferable to learn a prediction profile model over a more traditional
representation. A prediction profile model is best applied when it is relatively simple to make
and maintain the predictions of interest in comparison to making all predictions. In general,

367

Talvitie & Singh

Figure 5: Flow of the algorithm.

a prediction profile model conditions on the observations, but it does not necessarily predict
the next observation. As such, a model of the prediction profile system cannot typically be
used for the purposes of model-based planning/control like a generative model could. The
experiments in Section 6 will demonstrate that the output of prediction profile models can,
however, be useful for model-free control methods.

4. Learning a Prediction Profile Model

The definition of the prediction profile system straightforwardly suggests a method for
learning prediction profile models (estimate the prediction profiles, and learn a model of
their dynamics using a standard model-learning technique). This section will present such
a learning algorithm, discussing some of the main practical challenges that arise.

Let S be a training data set of trajectories of experience with the original system (action-
observation sequences) and let T I = {t1, t2, . . . , tk} be the set of tests of interest. The
algorithm presented in this section will learn a model of the prediction profile system from
the data S. The algorithm has three main steps (pictured in Figure 5). First the training
data is used to estimate the prediction profiles (both the number of unique profiles and their
values). Next, the learned set of prediction profiles is used to translate the training data into
trajectories of experience with the prediction profile system. Finally, any applicable model
learning method can be trained on the transformed data to learn a model of the prediction
profile system. Ultimately, in our experiments, the learned prediction profile models will be
evaluated by how useful their predictions are as features for control.

4.1 Estimating the Prediction Profiles

Given S and T I , the first step of learning a prediction profile model is to determine how
many distinct prediction profiles there are, as well as their values. The estimated prediction
for a test of interest t at a history h is:

p̂(t | h) =
times t succeeds from h

times acts(t) taken from h
. (6)

One could, at this point, directly estimate φ by letting φ̂(h)
def

= 〈p̂(t1 | h), p̂(t2 | h), . . . , p̂(tk |
h)〉. Of course, due to sampling error, it is unlikely that any of these estimated profiles
will be exactly the same, even if the true underlying prediction profiles are identical. So,

368

Learning to Make Predictions Without a Generative Model

to estimate the number of distinct underlying profiles, statistical tests will be used to find
histories that have significantly different prediction profiles.

To compare the profiles of two histories, a likelihood-ratio test of homogeneity is per-
formed on the counts for each test of interest in the two histories. If the statistical test
associated with any test of interest rejects the null hypothesis that the prediction is the
same in both histories, then the two histories have different prediction profiles.

In order to find the set of distinct prediction profiles, we greedily cluster the estimated
prediction profiles. Specifically, an initially empty set of exemplar histories is maintained.
The algorithm searches over all histories in the agent’s experience, comparing each history’s
estimated profile to the exemplar histories’ estimated profiles. If the candidate history’s
profile is significantly different from the profiles of all exemplar histories, the candidate is
added as a new exemplar. In the end, the estimated profiles corresponding to the exemplar
histories are used as the set of prediction profiles. In order to obtain the best estimates
possible, the search is ordered so as to prioritize histories with lots of associated data.

The prediction profile estimation procedure has two main sources of complexity. The
first is the sample complexity of estimating the prediction profiles. It can take a great
deal of exploration to see each history enough times to obtain good statistics, especially if
the number of actions and observations is large. This issue could be addressed by adding
generalization to the estimation procedure, so that data from one sample trajectory could
improve the estimates of many similar histories. In one of the experiments in Section 6,
observation abstraction will be employed as a simple form of generalization. The second
bottleneck is the computational complexity of searching for prediction profiles, as this in-
volves exhaustively enumerating all histories in the agent’s experience. It would be valuable
to develop heuristics to identify the histories most likely to provide new profiles, in order
to avoid searching over all histories. In the experiments in Section 6, a simple heuristic
of limiting the search to short histories is employed. Long histories will tend to have less
associated data, and will therefore be less likely to provide distinguishably new profiles.

4.2 Generating Prediction Profile Trajectories

Having generated a finite set of distinct prediction profiles, the next step is to translate the
agent’s experience into sequences of action-observation pairs and prediction profiles. These
trajectories will be used to train a model of the prediction profile system.

The process of translating an action-observation sequence s into a prediction profile tra-
jectory s′ is straightforward and, apart from a few practical concerns, follows directly from
Definition 8. Recall that, for an action-observation sequence s = a1o1a2o2 . . . akok, the cor-
responding PP -action sequence is 〈a1, o1〉〈a2, o2〉 . . . 〈ak, ok〉. The corresponding sequence of
profiles is φ(a1o1)φ(a1o1a2o2) . . . φ(a1o1 . . . akok). Thus, in principle, every primitive action-
observation sequence can be translated into an action-observation-profile sequence.

Of course φ is not available to generate the sequence of prediction profiles. So, it is
necessary to use an approximation φ̂, generated from the training data. Specifically, the
estimated predictions for the tests of interest at each history h (computed using Equation
6) are compared, using statistical tests, to the set of distinct estimated prediction profiles
from Section 4.1. If there is only one estimated profile ρ̂ that is not statistically significantly
different from the estimated predictions at h, then let φ̂(h) = ρ̂.

369

Talvitie & Singh

Given sufficient data, the statistical tests will uniquely identify the correct match with
high probability. In practice, however, some histories will not have very much associated
data. It is possible in such a case for the test of homogeneity to fail to reject the null
hypothesis for two or more profiles. This indicates that there is not enough data to dis-
tinguish between multiple possible matches. In the experiments in Section 6, two different
heuristic strategies for handling this situation are employed. The first strategy lets φ̂(h)
be the matching profile that has the smallest empirical KL-Divergence from the estimated
predictions (summed over all tests of interest). This is a heuristic choice that may lead to
noise in the prediction profile labeling, which could in turn affect the accuracy of the learned
model. The second strategy is to simply cut off any trajectory at the point where multiple
matches occur, rather than risk assigning an incorrect labeling. This ensures that labels
only appear in the prediction profile trajectories if there is a reasonable level of confidence
in their correctness. However, it is wasteful to throw out training data in this way.

4.3 Learning a Prediction Profile Model

The translation step produces a set S′ of trajectories of interaction with the prediction
profile system. Recall that the prediction profile system is a deterministic, partially observ-
able, discrete dynamical system and these trajectories can be used to train a model of the
prediction profile system using, in principle, any applicable model-learning method.

There is an issue faced by models of the prediction profile system that is not present in
the usual discrete dynamical systems modeling setting. While the prediction profile labels
are present in the training data, when actually using the model they are not available. Say
the current history is h, and an action a1 is taken and an observation o1 is emitted. Together,
this action-observation pair constitutes a PP -action. Being a model of the prediction profile
system, a prediction profile model can identify the next profile, ρ. This profile can be used
to compute predictions p(t | ha1o1) for the tests of interest at the history ha1o1. Now
another action a2 and observation o2 occur. It is now necessary to update the PP-model’s
state in order to obtain the next prediction profile. A typical dynamical systems model
makes predictions about the next observation, but is then able to update its state with the
actual observation that occurred. A prediction profile model’s observations are prediction
profiles themselves, which are not observable when interacting with the world. As such,
the prediction profile model will update its state with prediction profile it itself predicted
(ρ). Once updated, the prediction profile model can obtain the profile that follows 〈a2, o2〉
which gives the predictions for the tests of interest at the new history ha1o1a2o2.

If the prediction profile model is a perfect model of the prediction profile system, this
poses no problems. Because the prediction profile system is deterministic, there is no need
to observe the true prediction profile label; it is fully determined by the history. In practice,
of course, the model will be imperfect and different modeling representations will require
different considerations when performing the two functions of providing predictions for the
tests of interest, and providing a profile for the sake of updating the model.

4.3.1 PP-POMDPs

Since the prediction profile system is partially observable it is natural to model it us-
ing a POMDP. Unfortunately, even when the training data is from a deterministic sys-

370

Learning to Make Predictions Without a Generative Model

tem, POMDP training using the EM algorithm will generally not provide a deterministic
POMDP. Thus, at any given history, a learned POMDP model of the prediction profile
system (PP-POMDP) will provide a distribution over prediction profiles instead of deter-
ministically providing the one profile associated with that history. The implementation
used in Section 6 simply takes the most likely profile from the distribution to be the profile
associated with the history and uses it to make predictions for the tests of interest, as well
as to update the POMDP model.

4.3.2 PP-LPSTs

Another natural choice of representation for a prediction profile model is a looping predictive
suffix tree (LPST) (Holmes & Isbell, 2006). LPSTs are specialized to deterministic, partially
observable systems. As such, they could not be used to model the original system (which
is assumed to be stochastic in general), but they do apply to the prediction profile system
(and they do not have to be determinized like a POMDP).

Briefly, an LPST captures the parts of recent history relevant to predicting the next
observation. Every node in the tree corresponds to an action-observation pair. A node
may be a leaf, may have children, or it may loop to one of its ancestors. Every leaf of the
tree corresponds to a history suffix that has a deterministic prediction of an observation
for every action. In order to predict the next observation from a particular history, one
reads the history in reverse order, following the corresponding links on the tree until a leaf
is reached, which gives the prediction. Holmes and Isbell provide a learning algorithm that,
under certain conditions on the training data, is guaranteed to produce an optimal tree.
The reader is referred to the work of Holmes and Isbell (2006) for details.

One weakness of LPSTs, however, is that they fail to make a prediction for the next
observation if the current history does not lead to a leaf node in the tree (or if the leaf
node reached does not have a prediction for the action being queried). This typically occurs
when some history suffixes do not occur in the training data but do occur while using the
model. For a PP-LPST, this can mean that in some histories the model cannot uniquely
determine the corresponding prediction profile. When this happens the implementation
used in Section 6 simply finds the longest suffix of the current history that does occur in the
data. This suffix will be associated with multiple prediction profiles (otherwise the LPST
would have provided a prediction). To make predictions for the tests of interest, the model
provides the average prediction over this set of profiles. The profile used to update the
model is picked out of the set uniformly randomly.

4.3.3 PP-PSRs

Applying PSR learning algorithms to prediction profile data poses a practical concern.
Specifically, methods that attempt to estimate the system dynamics matrix (James & Singh,
2004; Wolfe et al., 2005) implicitly presume that every action sequence could in principle
be taken from every history. If some action sequences can be taken from some histories but
not from others, then the matrix will have undefined entries. This poses challenges to rank
estimation (and, indeed, the very definition of the model representation). Unfortunately,
this can be the case for the prediction profile system since PP -actions (action-observation
pairs) are not completely under the agent’s control; they are partly selected by the environ-

371

Talvitie & Singh

ment itself. The recent spectral learning algorithms presented by Boots et al. (2010) may
be able to side-step this issue, as they have more flexibility in selecting which predictions
are estimated for use in the model-learning process, though we have not investigated this
possibility in this work.

Note that, though our method for learning a prediction profile model involves standard
model-learning methods for partially observable environments, the result is not a generative
model of the original system. A prediction profile model is a generative model of the
prediction profile system and, as such, cannot be used to make any predictions about the
original system, other than the predictions of interest.

5. Complexity of the Prediction Profile System

The learning algorithm we have presented will be evaluated empirically in Section 6. First,
however, we analyze the complexity of the prediction profile system in relation to the com-
plexity of the original system. This will give some indication of how difficult it is to learn a
prediction profile model and provide insight into when it is appropriate to learn a prediction
profile model over a more typical generative model approach.

There are many factors that affect the complexity of learning a model. This section
will largely focus on linear dimension as the measure of complexity, taking the view that,
generally speaking, systems with lower linear dimension are easier to learn than systems with
larger linear dimension. As discussed in Section 1.2.2, this is generally true for POMDPs,
where the linear dimension lower-bounds the number of hidden states. So comparing the
linear dimension of the prediction profile system to that of the original system can give
some idea of whether it would be easier to learn a PP-POMDP or just to learn a standard
POMDP of the original system. Of course, there are other model-learning methods for
which other complexity measures would be more appropriate (for instance it is not known
precisely how LPSTs interact with linear dimension). Extending some of these results to
other measures of complexity may be an interesting topic of future investigation.

5.1 Linear Dimension Comparison

This section will discuss how the linear dimension of the prediction profile system relates
to that of the original system. The first result is a “proof of concept” that simply states
that there exist problems in which the prediction profile system is vastly more simple than
the original system. In fact, such a problem has already been presented.

Proposition 14. The prediction profile system can have linear dimension that is arbitrarily
lower than that of the original system.

Proof. Recall the Three Card Monte example. Thus far the domain has been described
without describing the dealer’s behavior. However, note that the prediction profile system
for the tests of interest relating to the location of the special card (pictured in Figure 1) has
a linear dimension of 3, regardless of how the dealer’s swaps are chosen. If a very complex
dealer is chosen, the original system will have high linear dimension, but the prediction
profile system’s linear dimension will remain constant. For instance, in the experiments in
Section 6, the dealer chooses which cards to swap stochastically, but is more likely to choose

372

Learning to Make Predictions Without a Generative Model

the swap that has been selected the least often so far. Thus, in order to predict the dealer’s
next decision, one must count how many times each swap has been chosen in history and
as a result the system effectively has infinite linear dimension.

On the other hand, prediction profile models are not a panacea. The following results
indicate that there are problems for which learning a prediction profile model would not
be advisable over learning a standard generative model, in that the linear dimension of the
prediction profile system can be far greater than that of the original system. Later in the
section some special cases will be characterized where prediction profile models are likely to
be useful. The next result shows that the linear dimension of the prediction profile model
can be infinite when the original system has finite linear dimension, via a lower bound on
linear dimension that is true of all deterministic dynamical systems.

Proposition 15. For any deterministic dynamical system with actions A, and observations
O, the linear dimension, n ≥ log(|A|−1)+log(|O|+1)

log |A| .

Proof. See Appendix A.1.

Because Proposition 15 applies to all deterministic dynamical systems, it certainly ap-
plies to the prediction profile system. Though it is a very loose bound, the basic implication
is that as the number of prediction profiles (the observations of PP) increases in compari-
son to the number of action-observation pairs (the actions of PP), the linear dimension of
the prediction profile system necessarily increases. This bound also clearly illustrates the
importance of the assumption that there is a finite number of distinct prediction profiles.

Corollary 16. If there are infinitely many distinct prediction profiles, the prediction profile
system has infinite linear dimension.

Proof. Clearly |APP | = |A × O| is finite so long as there are finitely many actions and
observations. So, from the last result it follows immediately that as the number of distinct
prediction profiles |OPP | approaches infinity, then so must the linear dimension of the
prediction profile system.

Hence, so long as prediction profile models are represented using methods that rely
on a finite linear dimension, it is critical that there be finitely many prediction profiles.
Note that this is not a fundamental barrier, but a side effect of the representational choice.
Model learning methods that are not as sensitive to linear dimension (such as those designed
to model continuous dynamical systems) may be able to effectively capture systems with
infinitely many prediction profiles.

One conclusion to be drawn from the last few results is that knowing the linear dimension
of the original system does not, in itself, necessarily say much about the complexity of the
prediction profile system. The prediction profile system may be far simpler or far more
complex than the original system. Thus it may be more informative to turn to other factors
when trying to characterize the complexity of the prediction profile system.

373

Talvitie & Singh

5.2 Bounding the Complexity of The Prediction Profile System

The results in the previous section do not take into account an obviously important aspect
of the prediction profile system: the predictions it is asked to make. Some predictions
of interest can be made very simply by keeping track of very little information. Other
predictions will rely on a great deal of history information and will therefore require a more
complex model. The next result identifies the “worst case” set of tests of interest for any
system: the tests of interest whose corresponding prediction profile model has the highest
linear dimension. Ultimately this section will present some (non-exhaustive) conditions
under which the prediction profile system is likely to be simpler than the original system.

Proposition 17. For a given system and set of tests of interest, the linear dimension of
the corresponding prediction profile system is no greater than that of the prediction profile
system associated with any set of core tests for the system (as described in Section 2.2).

Proof. See Appendix A.2.

With this worst case identified, one can immediately obtain bounds on how complex
any prediction profile system can possibly be.

Corollary 18. For any system and any set of tests of interest, the corresponding prediction
profile system has linear dimension no greater than the number of distinct predictive states
for the original system.

Proof. The prediction profile system for a set of core tests Q is a deterministic MDP where
the observations are prediction profiles for Q (that is, predictive states). That is, each state
is associated with a unique prediction profile. The linear dimension of an MDP is never
greater than the number of observations (Singh et al., 2004). Therefore, by the previous
result the prediction profile system for any set of tests of interest can have linear dimension
no greater than the number of predictive states.

Corollary 19. If the original system is a POMDP, the prediction profile system for any set
of tests of interest has linear dimension no greater than the number of distinct belief states.

Proof. This follows immediately from the previous result and the fact that the number of
distinct predictive states is no greater than the number of distinct belief states (Littman
et al., 2002).

The bounds presented so far help explain why the prediction profile system can be more
complex than the original system. However, because they are focused on the worst possible
choice of tests of interest, they do little to illuminate when the opposite is true. A prediction
profile model is at its most complex when it is asked to perform the same task as a generative
model: keep track of as much information from history as is necessary to make all possible
predictions (or equivalently, the predictive state or the belief state). These results indicate
that, generally speaking, if one desires a generative model, standard approaches would be
preferable to learning a prediction profile model.

On the other hand, our stated goal is not to learn a generative model, but instead to
focus on some particular predictions that will hopefully be far simpler to make than all
predictions. The examples we have seen make it clear that in some cases, some predictions

374

Learning to Make Predictions Without a Generative Model

can be made by a prediction profile model far simpler than a generative model of the original
system. In general one might expect the prediction profile model to be simple when the
predictions of interest rely on only a small amount of the state information required to
maintain a generative model. The next bound aligns with this intuitive reasoning.

Essentially what this result points out is that often much of the hidden state information
in a POMDP will be irrelevant to the predictions of interest. The linear dimension of the
prediction profile system is bounded only by the number of distinct beliefs over the relevant
parts of the hidden state, rather than the number of distinct beliefs states overall. The idea
of the result is that if one can impose an abstraction over the hidden states of a POMDP
(not the observations) that still allows the predictions of interest to be made accurately
and that allows abstract belief states to be computed accurately, then the prediction profile
system’s linear dimension is bounded by the number of abstract belief states.

Proposition 20. Consider a POMDP with hidden states S, actions A, and observations
O. Let T I be the set of tests of interest. Let ai be the action taken at time-step i, si be the
hidden state reached after taking action ai, and oi be the observation emitted by si. Now,
consider any surjection σ : S → Sσ mapping hidden states to a set of abstract states with
the following properties:

1. For any pair of primitive states s1, s2 ∈ S, if σ(s1) = σ(s2), then for any time-step i

and any test of interest t ∈ T I , p(t | si = s1) = p(t | si = s2).

2. For any pair of primitive states s1, s2 ∈ S, if σ(s1) = σ(s2), then for any time-step i,
abstract state S ∈ Sσ, observation o ∈ O, and action a ∈ A,

Pr(σ(si+1) = S | si = s1,a
i+1 = a, oi+1 = o) =

Pr(σ(si+1) = S | si = s2, a
i+1 = a, oi+1 = o).

For any such σ, the prediction profile system for T I has linear dimension no greater than
the number of distinct beliefs over abstract states, Sσ.

Proof. See Appendix A.3

There are a few things to note about this result. First, a surjection σ always exists that
has properties 1 and 2. One can always define σ : S → S with σ(s)

def

= s. This degenerate
case trivially satisfies the requirements of Proposition 20 and recovers the bound given in
Corollary 19. However, Proposition 20 applies to all surjections that satisfy the conditions.
There must be a surjection that satisfies the conditions and results in the smallest number of
beliefs over abstract states. Essentially, this is the one that ignores as much state information
as possible while still allowing the predictions of interest to be made accurately and it is this
surjection that most tightly bounds the complexity of the prediction profile system (even if
σ is not known).

Of course, there may still be a large or even infinite number of distinct beliefs, even over
abstract states, so other factors must come into play to ensure a simple prediction profile
system. Furthermore, this result does not characterize all settings in which the prediction
profile system will be simple. That said, this result does support the intuition that the

375

Talvitie & Singh

prediction profile system will tend to be simple when the predictions it is asked to make
depend on small amounts of state information.

In order to build intuition about how this result relates to earlier examples, recall the
Three Card Monte problem. In Three Card Monte there are two sources of hidden state:
the ace’s unobserved position and whatever hidden mechanism the dealer uses to make its
decisions. Clearly the agent’s predictions of interest depend only on the first part of the
hidden state. So, in this case one can satisfy Property 1 with a surjection σ that maps
two hidden states to the same abstract state if the ace is in the same position, regardless
of the dealer’s state. Under this σ there are only 3 abstract states (one for each possible
position), even though there might be infinitely many true hidden states. Now, different
states corresponding to the same ace position will have different distributions over the ace’s
next position; this distribution does, after all, depend upon the dealer’s state. However,
Property 2 is a statement about the distribution over the next abstract state given the
observation that is emitted after entering the abstract state. If one knows the current
abstract state and observes what the dealer does, the next abstract state is fully determined.
So Property 2 holds as well. In fact, since the ace’s position is known at the beginning of the
game, this means the current abstract state is always known with absolute certainty, even
though beliefs about the dealer’s state will in general be uncertain. Hence, there are only 3
distinct beliefs about the abstract states (one for each state). As such, the prediction profile
model’s linear dimension is upper-bounded by 3, regardless of the dealer’s complexity (and
in this case the bound is met).

5.3 Bounding the Number of Prediction Profiles

The previous section describes some conditions under which the prediction profile system
may have a lower linear dimension than the original system. Also of concern is the number
of prediction profiles, and whether that number is finite. This section will briefly discuss
some (non-exhaustive) cases in which the number of prediction profiles is bounded.

One case that has already been discussed is when the original system is Markov. In that
case the number of prediction profiles is bounded by the number of observations (states).
Of course, when the original system is Markov, there is little need to use prediction profile
models. Another, similar case is when the system is partially observable, but completely
deterministic (that is, the next observation is completely determined by history and the
selected action). If the system is a deterministic POMDP then at any given history the
current hidden state is known. As such, the number of belief states is bounded by the
number of hidden states. Since there cannot be more prediction profiles than belief states,
the number of prediction profiles are bounded as well.

One can move away from determinism in a few different ways. First, note that the key
property of a deterministic POMDP is that the hidden state is fully determined by history.
It is possible to satisfy this property even in stochastic systems, as long as one can uniquely
determine the hidden state, given the observation that was emitted when arriving there. In
that case, observations can be emitted stochastically, but the number of belief states (and
the number of prediction profiles) is still bounded by the number of hidden states.

Another step away from determinism is a class of systems, introduced by Littman (1996),
called Det-POMDPs. A Det-POMDP is a POMDP where the transition function and

376

Learning to Make Predictions Without a Generative Model

the observation function are both deterministic, but the initial state distribution may be
stochastic. A Det-POMDP is not a deterministic dynamical system, as there is uncertainty
about the hidden state. Because of this uncertainty, the system appears to emit observations
stochastically. It is only the underlying dynamics that are deterministic. Littman showed
that a Det-POMDP with n hidden states and an initial state distribution with m states in
its support has at most (n + 1)m − 1 distinct belief states. So, this bounds the number of
prediction profiles as well.

Finally, and most importantly, if the hidden state can be abstracted as in Proposition 20,
then these properties only really need to hold for abstract beliefs. That is, the environment
itself may be complex and stochastic in arbitrary ways, but if the abstract hidden state
described in Proposition 20 is fully determined by history, then the number of prediction
profiles is bounded by the number of abstract states (as was the case in Three Card Monte).
Similarly, Det-POMDP-like properties can be imagined for abstract hidden states as well.

These cases by no means cover all situations where the number of prediction profiles
can be bounded, but they do seem to indicate that the class of problems where the number
of prediction profiles is finite is quite broad, and may contain many interesting examples.

6. Experiments

This section will empirically evaluate the prediction profile model learning procedure devel-
oped in Section 4. In each experiment an agent faces an environment for which a generative
model would be a challenge to learn due to its high linear dimension. However, in each
problem the agent could make good decisions if it could only have the predictions to a small
number of important tests. A prediction profile model is learned for these important tests
and the accuracy of the learned predictions is evaluated.

These experiments also demonstrate one possible use of prediction profile models (and
partial models in general) for control. Because they are not generative, prediction profile
models cannot typically be used directly by offline, model-based planning methods. How-
ever, their output may be useful for model-free methods of control. Specifically, in these
experiments, the predictions made by the learned prediction profile models are provided as
features to a policy gradient algorithm.

6.1 Predictive Features for Policy Gradient

Policy gradient methods (e.g., Williams, 1992; Baxter & Bartlett, 2000; Peters & Schaal,
2008) have been very successful as viable options for model-free control in partially ob-
servable domains. Though there are differences between various algorithms, the common
thread is that they assume a parametric form for the agent’s policy and then attempt to
alter those parameters in the direction of the gradient with respect to expected average re-
ward. These experiments will make use of Online GPOMDP with Average Reward Baseline
(Weaver & Tao, 2001), or OLGARB (readers are referred to the original paper for details).
OLGARB assumes there is some set of features of history, and that the agent’s policy takes
the parametric form:

Pr(a | h; ~w) =
e
∑

i wi,afi(h)

∑
a′ e

∑
i wi,a′fi(h)

377

Talvitie & Singh

where fi(h) is the ith feature and each parameter wi,a is a weight specific to the feature
and the action being considered.

Typically the features used in policy gradient are features that can be directly read
from history (e.g., features of the most recent few observations or the presence/absence of
some event in history). It can be difficult to know a priori which historical features will be
important for making good control decisions. In contrast, the idea in these experiments is
to provide the values of some predictions as features. These predictive features have direct
consequences for control, as they provide information about the effects of possible behaviors
the agent might engage in. As such, it may be easier to select a set of predictive features
that are likely to be informative about the optimal action to take (e.g., “Will the agent
reach the goal state when it takes this action?” or “Will taking this action damage the
agent?”). Furthermore, information may be expressed compactly in terms of a prediction
that would be complex to specify purely in terms of past observations. As seen in the
discussion of PSRs in Section 2.2, an arbitrary-length history can be fully captured by
a finite set of short-term predictions. For these reasons it seems reasonable to speculate
that predictive features, as maintained by a prediction profile model, may be particularly
valuable to model-free control methods like policy gradient.

6.2 Experimental Setup

The learning algorithm will be applied to two example problems. In each problem prediction
profile models are learned with various amounts of training data (using both LPSTs and
POMDPs as the representation and using both strategies for dealing with multiple matches,
as described in Section 4.3). The prediction accuracy of the models is evaluated, as well as
how useful their predictions are as features for control. The training data is generated by
executing a uniform random policy in the environment.

The free parameter of the learning algorithm is the significance value of the statistical
tests, α. Given the large number of contingency tests that will be performed on the same
data set, which can compound the probability of a false negative, α should be set fairly
low. In these experiments we use α = 0.00001, though several reasonable values were tried
with similar results. As discussed in Section 4, there will also be a maximum length of
histories to consider during the search for prediction profiles. This cutoff allows the search
to avoid considering long histories, as there are many long histories to search over and they
are unlikely to provide new prediction profiles.

After a prediction profile model is learned, its predictions are evaluated as features for
the policy gradient algorithm OLGARB. Specifically, for each test of interest t the unit
interval is split up into 10 equally-sized bins b and a binary feature ft,b is provided that is
1 if the prediction of t lies in bin b, and 0 otherwise. Also provided are binary features fo,
for each possible observation o. The feature fo = 1 if o is the most recent observation and
0, otherwise. The parameters of OLGARB, the learning rate and discount factor, are set
to 0.01 and 0.95, respectively in all experiments.

To evaluate a prediction profile model OLGARB is run for 1,000,000 steps. The average
reward obtained and the root mean squared error (RMSE) of the predictions for the tests
of interest accrued by the model along the way are reported. Prediction performance is
compared to that obtained by learning a POMDP on the training data and using it to

378

Learning to Make Predictions Without a Generative Model

0 2 4 6
x 10

4

0

0.2

0.4

0.6

0.8

1

Training Trajectories

A
vg

. R
M

S
E

 (
20

 T
ria

ls
)

Prediction Performance

Flat POMDP

PP−LPST(KLD)
PP−LPST(cut)

PP−POMDP(KLD)
PP−POMDP(cut)

0 2 4 6
x 10

4

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Training Trajectories

A
vg

. R
ew

ar
d

(2
0

tr
ia

ls
)

Control Performance

Flat POMDP

True

Expert

SOM

PP−POMDP(KLD)
PP−POMDP(cut)

PP−LPST(KLD)
PP−LPST(cut)

Figure 6: Results in the Three Card Monte domain.

make the predictions of interest. Because these problems are too complex to feasibly train
a POMDP with the correct number of underlying states, 30-state POMDPs were used
(stopping EM after a maximum of 50 iterations)2. Control performance is compared to
that obtained by OLGARB using the predictions provided by a learned POMDP model as
features, as well as OLGARB using the true predictions as features (the best the prediction
profile model could hope to do), OLGARB using second-order Markov features (the two
most recent observations, as well as the action between them) but no predictive features at
all, and a hand-coded expert policy.

6.3 Three Card Monte

The first domain is the Three Card Monte example. The agent is presented with three
cards. Initially, the card in the middle (card 2) is the ace. The agent has four actions
available to it: watch, flip1, flip2, and flip3. If the agent chooses a flip action, it observes
whether the card it flipped over is the special card. If the agent chooses the watch action,
the dealer can swap the positions of two cards, in which case the agent observes which two
cards were swapped, or the dealer can ask for a guess. If the dealer has not asked for a
guess, then watch results in 0 reward and any flip action results in -1 reward. If the dealer
asks for a guess and the agent flips over the special card, the agent gets reward of 1. If the
agent flips over one of the other two cards, or doesn’t flip a card (by selecting watch), it
gets reward of -1. The agent has three tests of interest, and they take the form flipX ace,
for each card X (that is, “If I flip card X, will I see the ace?”).

As discussed previously, the complexity of this system is directly related to the com-
plexity of the dealer’s decision-making process. In this experiment, when the agent chooses
“watch” the dealer swaps the pair of cards it has swapped the least so far with probability
0.5; with probability 0.4 it chooses uniformly amongst the other pairs of cards; otherwise
it asks for a guess. Since the dealer is keeping a count of how many times each swap was
made, the process governing its dynamics effectively has an infinite linear dimension. The

2. Similar results were obtained with 5, 10, 15, 20, and 25 states.

379

Talvitie & Singh

prediction profile system, on the other hand, has only 3 states, regardless of the dealer’s
complexity (see Figure 1).

Training trajectories were of length 10. Figure 6 shows the results for various amounts of
training data, averaged over 20 trials. Both PP-POMDPs and PP-LPSTs learned to make
accurate predictions for the tests of interest, eventually achieving zero prediction error. In
this case, PP-POMDPs did so using less data. This is likely because a POMDP model is
more readily able to take advantage of the fact that the prediction profile system for Three
Card Monte is Markov. As expected, the standard POMDP model was unable to accurately
predict the tests of interest.

Also compared are the two different strategies for dealing with multiple matches dis-
cussed in Section 4.3. Recall that the first one (marked “KLD” in the graph) picks the
matching profile with the smallest empirical KL-Divergence from the estimated predictions.
The second (marked “cut” in the graph) simply cuts off the trajectory at the point of
a multiple match to avoid any incorrect labels. In this problem these two strategies re-
sult in almost exactly the same performance. This is likely because the profiles in Three
Card Monte are deterministic, and are therefore quite easy to distinguish (making multiple
matches unlikely). The next experiment will have stochastic profiles.

The predictive features provided by the prediction profile models are clearly useful for
control, as the control performance of OLGARB using their predictions approaches, and
eventually exactly matches that of OLGARB using the true predictions (marked “True”).
The inaccurate predictions provided by the POMDP were not very useful for control; OL-
GARB using the POMDP provided predictions does not even break even, meaning it loses
the game more often than it wins. The POMDP features did, however, seem to contain
some useful information beyond that provided by the second-order Markov features (marked
“SOM”) which, as one might expect, performed very poorly.

6.4 Shooting Gallery

The second example is called the Shooting Gallery, pictured in Figure 7(a). The agent
has a gun aimed at a fixed position on an 8×8 grid (marked by the X) . A target moves
diagonally, bouncing off of the boundaries of the image and 2×2 obstacles (an example
trajectory is pictured). The agent’s task is to shoot the target. The agent has two actions:
watch and shoot. When the agent chooses watch, it gets 0 reward. If the agent chooses
shoot and the target is in the crosshairs in the step after the agent shoots, the agent gets
reward of 10, otherwise it gets a reward of -5. Whenever the agent hits the target, the
shooting range resets: the agent receives a special “reset” observation, each 2× 2 square on
the range is made an obstacle with probability 0.1, and the target is placed in a random
position. There is also a 0.01 probability that the range will reset at every time step. The
difficulty is that the target is “sticky.” Every time step with probability 0.7 it moves in its
current direction, but with probability 0.3 it sticks in place. Thus, looking only at recent
history, the agent may not be able to determine the target’s current direction. The agent
needs to know the probability that the target will be in its sights in the next step, so clearly
the single test of interest is: watch target (that is “If I choose the watch action, will the
target enter the crosshairs?”). When the target is far from the crosshairs, the prediction of
this test will be 0. When it target is in the crosshairs, it will be 0.3. When the target is

380

Learning to Make Predictions Without a Generative Model

(a) (b)

Figure 7: The Shooting Gallery domain. (a) A possible arrangement of obstacles and tra-
jectory for the target (lighter is further back in time). In this case the target will
definitely not enter the agent’s crosshairs, since it will bounce off of the obstacle.
(b) The abstraction applied to the most recent observation.

near the crosshairs, the model must determine whether the prediction is 0.7 or 0, based on
the target’s previous behavior (its direction) and the configuration of nearby obstacles.

This problem has stochastic prediction profiles, so it is expected that more data will
be required to differentiate them. Also, due to the number of possible configurations of
obstacles and positions of the target, this system has roughly 4,000,000 observations and
even more latent states. This results in a large number of possible histories, each with only
a small probability of occurring. As discussed in Section 4, this can lead to a large sample
complexity for obtaining good estimates of prediction profiles. Here this is addressed with
a simple form of generalization: observation abstraction. Two observations are treated as
the same if the target is in the same position and if the configuration of obstacles in the
immediate vicinity of the target is the same. In other words, each abstract observation
contains information only about the target’s position and the obstacles surrounding the
target, and not the placement of obstacles far away from the target (see Figure 7(b)) for an
example. Under this abstraction, the abstract observations still provide enough detail to
make accurate predictions. That is, two histories do indeed have the same prediction profile
if they have the same action sequence and their observation sequences correspond to the
same sequence of aggregate observations. This enables one sample trajectory to improve
the estimates for several histories, though, even with this abstraction, there are still over
2000 action-observation pairs. The same observation abstraction was applied when training
the POMDP model.

Training trajectories were length 4 and the search for profiles was restricted to length
3 histories. Results are shown in Figure 8. Perhaps the most eye-catching feature of
the results is the upward trending curve in the prediction error graph, corresponding to
the PP-POMDP with the KL-Divergence based matching (labeled “PP-POMDP(KLD)”).
Recall that the danger of the KL-divergence based matching strategy is that it may produce
incorrect labels in the training data. Apparently these errors were severe enough in this
problem to drastically mislead the POMDP model. With a small amount of data it obtained

381

Talvitie & Singh

0 2 4 6 8 10
x 10

5

0

0.05

0.1

0.15

0.2

0.25

Training Trajectories

A
vg

. R
M

S
E

 (
20

 T
ria

ls
)

Prediction Performance

Flat POMDP

PP−POMDP(cut)

PP−LPST(cut)
PP−LPST(KLD)

PP−POMDP(KLD)

0 2 4 6 8 10
x 10

5

−0.005

0

0.005

0.01

0.015

0.02

0.025

Training Trajectories

A
vg

. R
ew

ar
d

(2
0

T
ria

ls
)

Control Performance

PP−LPST(KLD)

Expert
True

PP−POMDP(KLD)

PP−LPST(cut)

PP−POMDP(cut)

SOM

Flat POMDP

Figure 8: Results in the Shooting Gallery domain.

very good prediction error, but with more data came more misleading labelings, and the
performance suffered. The PP-POMDP trained with the other matching method (“PP-
POMDP(cut)”) displays a more typical learning curve (more data results in better error),
though it takes a great deal of data before it begins to make reasonable predictions. This
is because cutting off trajectories that have multiple matches throws away data that might
have been informative to the model. The PP-LPSTs generally outperform the PP-POMDPs
in this problem. With the trajectory cutting method, the PP-LPST (“PP-LPST(cut)”)
quickly outperforms the flat POMDP and, with enough data, outperforms both versions of
PP-POMDP. The PP-LPST with the KL-divergence based matching (“PP-LPST(KLD)”)
is by far the best performer, quickly achieving small prediction error. Clearly the incorrect
labels in the training data did not have as dramatic an effect on the LPST learning, possibly
because, as a suffix tree, an LPST mostly makes its predictions based on recent history,
limiting the effects of labeling errors to a few time-steps.

Control performance essentially mirrors prediction performance, with some interesting
exceptions. Note that even though PP-POMDP(KLD) obtains roughly the same prediction
error as the flat POMDP at 1,000,000 training trajectories, the predictive features it provides
still result in substantially better control performance. This indicates that, even though the
PP-POMDP is making errors in the exact values of the predictions, it has still captured more
of the important dynamics of the predictions than the flat POMDP has. The flat POMDP
itself provides features that are roughly as useful as second-order Markov features, which
do not result in good performance. Again, OLGARB using these features does not break
even, meaning it is wasting bullets when the target is not likely to enter the crosshairs. The
best-performing prediction profile model, PP-LPST(KLD) approaches the performance of
OLGARB using the true predictions with sufficient data.

7. Related Work

The idea of modeling only some aspects of the observations of a dynamical system has
certainly been raised before. For instance, in a recent example Rudary (2008) learned linear-

382

Learning to Make Predictions Without a Generative Model

Gaussian models of continuous partially observable environments where some dimensions of
the observation were treated as unmodeled “exogenous input.” These inputs were assumed
to have a linear effect on state transition. Along somewhat similar lines, but in the context of
model minimization (taking a given, complete model and deriving a simpler, abstract model
that preserves the value function) Wolfe (2010) constructed both an abstract model and a
“shadow model” that predicts observation details that are ignored by the abstraction. The
“shadow model” takes the abstract observations of the abstract model as unmodeled input.
Splitting the observation into modeled and un-modeled components and then learning a
generative model is certainly related to our approach. In that case, a model would make all
conditional predictions about the modeled portion of the observation, given the exogenous
inputs (as well as actual actions and the history). Prediction profile models take this to an
extreme, by treating the entire observation as input. Instead of predicting future sequences
of some piece of the next observation conditioned on another piece, prediction profile models
predict the values of an arbitrary set of predictions of interest at the next time step, given
the entire action and observation. This allows significantly more freedom in choosing which
predictions the model will make (and, more importantly, will not make).

One modeling method closely related to prediction profiles is Causal State Splitting
Reconstruction (CSSR) (Shalizi & Klinker, 2004). CSSR is an algorithm for learning gen-
erative models of discrete, partially observable, uncontrolled dynamical systems. The basic
idea is to define an equivalence relation over histories where two histories are considered
equivalent if they are associated with identical distributions over possible futures. The
equivalence classes under this relation are called causal states. The CSSR algorithm learns
the number of causal states, the distribution over next observations associated with each
causal state, and the transitions from one causal state to the next, given an observation.
It is straightforward to see that there is a one-to-one correspondance between causal states
and the predictive states of a PSR. As such, a causal state model is precisely the prediction
profile model where the set of tests of interest is Q, some set of core tests. With this corre-
spondance in hand, the results in Section 5.2 show that in many cases the number of causal
states will greatly exceed the linear dimension of the original system and that therefore
CSSR may be inadvisable in many problems, in comparison to more standard modeling
approaches. It is possible that the CSSR algorithm could be adapted to the more general
setting of arbitrary sets of tests of interest, however the algorithm does rely heavily on the
fact that a prediction profile model with Q as the tests of interest is Markov, which is not
generally the case for other sets of tests of interest.

As mentioned in Section 2, McCallum (1995) presented UTree, a suffix-tree-based al-
gorithm for learning value functions in partially observable environments. Because UTree
learns only the value function (a prediction about future rewards), and does not make any
predictions about observations, UTree does learn a non-generative partial model. Wolfe
and Barto (2006) extend UTree to make one-step predictions about particular observation
features rather than limiting predictions to the value function. Because it learns a suffix
tree, UTree is able to operate on non-episodic domains (whereas our method requires seeing
histories multiple times) and is not required to explicitly search for distinct prediction pro-
files. UTree also directly incorporates abstraction learning, learning simultaneously which
observation features are important, and where in the history suffix to attend to them. That
said, the main drawback of the suffix tree approach is that the tree only takes into account

383

Talvitie & Singh

information from relatively recent history (a suffix of the history). It cannot “remember”
important information for an arbitrary number of steps as a recurrent state-based model
can. In the Three Card Monte example, for instance, having access to a depth-limited suffix
of history would be of little help. In order to track the ace, one must take into account
every move the dealer has made since the beginning of the game. UTree would essentially
forget where the card was if the game’s length surpassed the depth of its memory.

McCallum (1993) and Mahmud (2010) both provide methods for learning state machines
that predict the immediate reward resulting from any given action-observation pair in par-
tially observable control tasks (and thus do not suffer from the issue of finite-depth memory
that suffix trees do). Thus, their learning problem is a special case of ours, where they
restrict their models to make one-step predictions about the immediate reward. In both
cases, a simple model is incrementally and greedily elaborated by proposing states to be split
and evaluating the results (via statistical tests in the case of McCallum and via likelihood
hill-climbing in the case of Mahmud). McCallum expressed concern that his approach had
difficulty extracting long-range dependencies (for instance, learning to attend to an event
that does not appear to affect the distribution of rewards until many steps later); it is not
clear the extent to which Mahmud’s approach addresses this issue. These methods have
some of the advantages of UTree, most notably that they can be applied to non-episodic
domains. That said, our approach has advantages as well. By re-casting the problem of
learning a non-generative model as a standard generative model-learning problem, we have
been able to gain deeper understanding of the complexity and applicability of prediction
profile models compared to more standard generative models. Furthermore, this has al-
lowed us to incorporate standard, well-studied generative model-learning methods into our
learning algorithm, thereby leveraging their strengths in the non-generative setting. Most
specifically, this has resulting in a principled (albeit heuristic) learning algorithm, that does
not rely on guess-and-check or stochastic local search.

The prediction profile system is also similar in spirit to finite state controllers for
POMDPs. Sondik (1978) noted that in some cases, it is possible to represent the opti-
mal policy for a POMDP as a finite state machine. These finite state controllers are very
much like prediction profile models in that they take action-observation pairs as inputs,
but instead of outputting predictions associated with the current history, they output the
optimal action to take. Multiple authors (e.g., Hansen, 1998; Poupart & Boutilier, 2003)
provide techniques for learning finite state controllers. However, these algorithms typically
require access to a complete POMDP model of the world to begin with which, in our setting,
is assumed to be impractical.

8. Conclusions and Future Directions

The most standard methods for learning models in partially observable environments learn
generative models. If one has only a small set of predictions of interest to make (and
therefore does not require the full power of a generative model), one can ignore irrelevant
detail via abstraction to simplify the learning problem. Even so, a generative model will
necessarily make predictions about any relevant details, even if they are not directly of
interest. We have seen by example that the resulting model can be counter-intuitively
complex, even if the predictions the model is being asked to make are quite simple.

384

Learning to Make Predictions Without a Generative Model

We presented prediction profile models, which are non-generative models for partially
observable systems that make only the predictions of interest and no others. The main idea
of prediction profile models is to learn a model of the dynamics of the predictions themselves
as they change over time, rather than a model of the dynamics of the system. The learning
method for prediction profile models learns a transformation of the training data and then
applies standard methods to the transformed data (assuming that the predictions of interest
take on only a finite number of distinct values). As a result, it retains advantages of methods
like EM for POMDPs that learn what information from history must be maintained in order
to make predictions (rather than requiring a set of history features a priori). We showed
that a prediction profile model can be far simpler than a generative model, though it can
also be far more complex, depending on what predictions it is asked to make. However, if
the predictions of interest depend on relatively little state information, prediction profile
models can provide substantial savings over standard modeling methods such as POMDPs.

While the experiments in Section 6 demonstrate that it is possible to learn prediction
profile models in contrived systems too complex for POMDPs, the specific learning algo-
rithm presented here is not likely to scale to more natural domains without modification.
The most critical scaling issues for prediction profile models are the sample complexity of
estimating the prediction profiles, and the computational complexity of searching for pre-
diction profiles and translating the data. In both cases, the critical source of complexity is
essentially how many distinct histories there are in the training data (more distinct histories
means the data is spread thin amongst them and there are more estimated profiles to search
through). As such, generalization of prediction estimates across many histories would be
a key step toward applying these ideas to more realistic domains. We are currently de-
veloping learning algorithms that combine the ideas behind prediction profile models with
methods for learning abstractions that allow many essentially equivalent histories to be
lumped together for the purposes of estimating the predictions of interest.

Another limitation of the prediction profile model learning method presented here is its
reliance on the assumption of a finite number of prediction profiles. While this assumption
does hold in many cases, an ideal method would be able to deal gracefully with a very large
or infinite number of prediction profiles. One possibility is to simply cluster the predictions
in other ways. For instance, one may only desire a certain level of prediction accuracy and
may therefore be willing to lump some distinct prediction profiles together in exchange for a
simpler prediction profile system. Another idea would be to learn a prediction profile model
using continuous-valued representations such as Kalman filters (Kalman, 1960) or PLGs
(Rudary, Singh, & Wingate, 2005) (or their nonlinear variants, e.g., Julier & Uhlmann,
1997; Wingate, 2008). These representations and learning algorithms explicitly deal with
systems with an infinite number of observations (prediction profiles in this case). Even
when there are finitely many prediction profiles, methods for learning non-linear continuous
models may still be able to (approximately) capture the discrete dynamics.

Additionally, though our results have focused on discrete systems, the main motivation
behind prediction profile models also has purchase in the continuous setting. Typical meth-
ods for learning models of partially observable systems in continuous systems, much like
their discrete valued counterparts, learn generative models. As such, the non-generative
approach of prediction profile models may provide similar benefits in the continuous setting
if not all predictions need be made. In this setting, prediction profiles might be represented

385

Talvitie & Singh

in a parametric form (for instance, the mean and variance of a Gaussian). The main idea of
prediction profile models (though not the specific method presented here) could still then
be applied: learn a model of the dynamics of these distribution parameters, rather than the
dynamics of the system itself.

Finally, we have not discussed in this work how the tests of interest should be deter-
mined, only how to predict them once they are selected. Automatically selecting inter-
esting/important predictive features as targets for partial models would certainly be an
interesting research challenge. Of course, this would depend on what the predictions will
be used for. If the predictions will be used as features for control, as we have done in
our experiments, then it would certainly seem intuitive to start with predictive features
regarding the reward signal, and perhaps observation features that strongly correlate with
reward (as we have intuitively done by hand in our experiments). It may also be useful to
consider making predictions about those predictions in the style of TD Networks (Sutton
& Tanner, 2005). For instance, one could imagine learning models that make predictions
about which profile another model will emit. In this way models could be chained together
to make predictions about more extant rewards, rather than focusing solely on predicting
the immediate reward signal (which is not always a particularly good feature for temporal
decision problems). Another common use of partial models is to decompose a large modeling
problem into many small ones, as in, for instance, factored MDPs (Boutilier et al., 1999),
factored PSRs (Wolfe et al., 2008), or collections of local models (Talvitie & Singh, 2009b).
In this setting, choosing tests of interest would be an example of the structure learning
problem: decomposing one-step predictions into relatively independent components and
then assigning them to different models.

Acknowledgments

Erik Talvitie was supported under the NSF GRFP. Satinder Singh was supported by NSF
grant IIS-0905146. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the NSF.

The work presented in this paper is an extension of work presented at IJCAI (Talvitie &
Singh, 2009a). We are grateful to the anonymous reviewers whose helpful comments have
improved the presentation of this work.

Appendix A.

A.1 Proof of Proposition 15

This result will follow straightforwardly from a general fact about dynamical systems. Let
h[i...j] be the sequence of actions and observations from h starting with the ith time-step in
the sequence and ending with the jth time-step in the sequence. For convenience’s sake, if
i > j let h[i...j] = h0, the null sequence. The following two results will show that if some
test t ever has positive probability, then it must have positive probability at some history
with length less than the linear dimension of the system.

386

Learning to Make Predictions Without a Generative Model

Figure 9: The matrix constructed in Lemma 21 is full rank (a contradiction).

Lemma 21. If the linear dimension of a dynamical system is n, then for any test t and
history h with length(h) = k ≥ n and p(t | h) > 0, ∃i, j with 0 ≤ i < j − 1 ≤ k such that
p(t | h[1...i]h[j...k]) > 0.

Proof. Note that because p(t | h) > 0, p(h[(i+1)...k]t | h[1...i]) = p(t | h)p(h[(i+1)...k] | h[1...i]) >
0 for all 0 ≤ i ≤ k. Now assume for all i, j with 0 ≤ i < j − 1 ≤ k that p(h[j...k]t | h[1...i]) =
p(t | h[1...i]h[j...k])p(h[j...k] | h[1...i]) = 0 and seek a contradiction. Consider a submatrix of
the system dynamics matrix. The rows of this submatrix correspond to prefixes of h: h[1...i]

for all 0 ≤ i ≤ k. The columns correspond to suffixes of h pre-pended to the test t: h[j...k]t
for all 1 ≤ j ≤ k + 1. This is a k + 1 × k + 1 matrix. Under the above assumption, this
matrix is triangular with positive entries along the diagonal (Figure 9 shows this matrix
when k = 4). As such, this matrix is full rank (rank k + 1). This is a contradiction since
k ≥ n and a submatrix can never have higher rank than the matrix that contains it.

The next result follows immediately from Lemma 21.

Corollary 22. If the system has linear dimension n and for some test t and history h

p(t | h) > 0, then there exists a (possibly non-consecutive) subsequence h′ of h such that
length(h′) < n with p(t | h′) > 0.

Proof. By Lemma 21, every history h with length k ≥ n such that p(t | h) > 0 must have
a subsequence h1 with length k1 < k such that p(t | h) > 0. If k1 ≥ n, then h1 must have a
subsequence h2 with length k2 < k1. This argument can be repeated until the subsequence
has length less than n.

The consequence of Corollary 22 is that every test that ever has positive probability,
must have positive probability following some history of length less than n. With this fact
in hand, Proposition 15 can now be proven.

Proposition 15. For any deterministic dynamical system with actions A, and observa-
tions O, the linear dimension, n ≥ log(|A|−1)+log(|O|+1)

log |A| .

387

Talvitie & Singh

Proof. Since the system is deterministic, each history and action correspond to exactly one
resulting observation. A history is a sequence of actions and observations. However, since
the sequence of observations is fully determined by the sequence of actions in a deterministic
system, the number of distinct histories of length k is simply |A|k. At each history there
are |A| action choices that could each result in a different observation. So, the number
of observations that could possibly occur after histories of length k is simply |A|k+1. By
Corollary 22, if the linear dimension is n, all observations must occur after some history h

with length(h) ≤ n−1. Thus, the number of observations that can possibly follow histories
of length less than n is:

|O| ≤
n−1∑

i=0

|A|i+1 =
|A|n+1 − 1

|A| − 1
− 1.

Solving for n yields the bound on linear dimension in terms of the number of actions and
the number of observations.

A.2 Proof of Proposition 17

Proposition 17. For a given system and set of tests of interest, the linear dimension of
the corresponding prediction profile system is no greater than that of the prediction profile
system associated with any set of core tests for the system (as described in Section 2.2).

Proof. Recall from the discussion of PSRs in Section 2.2 that a set of core tests, Q, is
a set of tests whose corresponding columns in the system dynamics matrix constitute a
basis. The predictions for the core tests at a given history form the predictive state at that
history. So, the predictive state is precisely the prediction profile for the core tests Q. The
prediction for any other test can be computed as a linear function of the prediction profile
for Q. Note that the prediction profile system for Q is itself an MDP. It was shown in
Section 2.2 how to compute the next predictive state given the current predictive state and
an action-observation pair.

Now consider some other set of tests of interest T I . Because the predictions for Q

can be used to compute the prediction for any other test, it must be that there is some
function ζ that maps the prediction profiles for Q to the prediction profiles for T I . In
general, multiple predictive states may map to the same prediction profile for T I so ζ is a
surjection. Now it is easy to see that the prediction profile system for T I is the result of
applying the observation abstraction ζ to the prediction profile system for Q. Performing
observation abstraction on an MDP generally produces a POMDP, but never increases the
linear dimension (Talvitie, 2010). Hence, the prediction profile system for any set of tests
of interest T I has linear dimension no greater than that of the prediction profile system for
any set of core tests, Q.

A.3 Proof of Proposition 20

Proposition 20. Consider a POMDP with hidden states S, actions A, and observations
O. Let T I be the set of tests of interest. Let ai be the action taken at time-step i, si be the
hidden state reached after taking action ai, and oi be the observation emitted by si. Now,

388

Learning to Make Predictions Without a Generative Model

consider any surjection σ : S → Sσ mapping hidden states to a set of abstract states with
the following properties:

1. For any pair of primitive states s1, s2 ∈ S, if σ(s1) = σ(s2), then for any time-step i

and any test of interest t ∈ T I , p(t | si = s1) = p(t | si = s2).

2. For any pair of primitive states s1, s2 ∈ S, if σ(s1) = σ(s2), then for any time-step i,
abstract state S ∈ Sσ, observation o ∈ O, and action a ∈ A,

Pr(σ(si+1) = S | si = s1,a
i+1 = a, oi+1 = o) =

Pr(σ(si+1) = S | si = s2, a
i+1 = a, oi+1 = o).

If such a σ exists, then the prediction profile system for T I has linear dimension no greater
than the number of distinct beliefs over abstract states, Sσ.

Proof. The proof follows similar reasoning to the proof of Proposition 17. Note that, because
of Property 1 the belief over abstract states at a given history is sufficient to compute the
prediction profile. For any history h and any test of interest t ∈ T I :

p(t | h) =
∑

s∈S

Pr(s | h)p(t | s) =
∑

S∈Sσ

∑

s∈S

Pr(s | h)p(t | s)

=
∑

S∈Sσ

p(t | S)
∑

s∈S

Pr(s | h) =
∑

S∈Sσ

p(t | S)Pr(S | h),

where the third equality follows from property 1: for any S ∈ Sσ, all hidden states s ∈ S

have the same associated probabilities for the tests of interest.
Now, consider the dynamical system with beliefs over abstract states as “observations”

and action-observation pairs as “actions.” Call this the abstract belief system. Just as
with the predictive state, because it is possible to compute the prediction profile from
the abstract beliefs, the prediction profile model for T I can be seen as the result of an
observation aggregation of the abstract belief system. As a result, the prediction profile
system has linear dimension no greater than that of the abstract belief system.

The rest of the proof shows that, because of Property 2, the abstract belief system is
an MDP, and therefore has linear dimension no greater than the number of distinct beliefs
over abstract states.

Given the probability distribution over abstract states at a given history h, and the agent
takes an action a and observes and observation o, it is possible to compute the probability
of an abstract state S ∈ Sσ at the new history:

Pr(S | hao) =
∑

s∈S

Pr(s | h)Pr(S | s, a, o) =
∑

S′∈Sσ

∑

s∈S′

Pr(s | h)Pr(S | s, a, o)

=
∑

S′∈Sσ

Pr(S | S′, a, o)
∑

s∈S′

Pr(s | h) =
∑

S′∈Sσ

Pr(S | S′, a, o)Pr(S′ | h),

where the third equality follows from Property 2: for any S ∈ Sσ, all hidden states s ∈ S

have the same associated conditional distribution over next abstract states, given the action
and observation.

389

Talvitie & Singh

So, because one can compute the next abstract beliefs from the previous abstract beliefs,
the abstract belief system is an MDP, and therefore has linear dimension no greater than
the number of observations (the number of distinct abstract beliefs). Because one can
compute the prediction profile from the abstract beliefs, the prediction profile system can
be constructed by applying an observation abstraction to the abstract belief system. Thus,
the prediction profile system has linear dimension no greater than the number of distinct
abstract beliefs.

References

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occuring
in the statistical analysis of probabilistic functions of markov chains. The Annals of
Mathematical Statistics, 41 (1), 164–171.

Baxter, J., & Bartlett, P. L. (2000). Reinforcement learning in POMDPs via direct gra-
dient ascent. In Proceedings of the Eighteenth International Conference on Machine
Learning (ICML), pp. 41–48.

Boots, B., Siddiqi, S., & Gordon, G. (2010). Closing the learning-planning loop with predic-
tive state representations. In Proceedings of Robotics: Science and Systems, Zaragoza,
Spain.

Boots, B., Siddiqi, S., & Gordon, G. (2011). An online spectral learning algorithm for
partially observable nonlinear dynamical systems. In Proceedings of the Twenty-Fifth
National Conference on Artificial Intelligence (AAAI).

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural as-
sumptions and computational leverage. Journal of Artificial Intelligence Research,
11, 1–94.

Bowling, M., McCracken, P., James, M., Neufeld, J., & Wilkinson, D. (2006). Learning
predictive state representations using non-blind policies. In Proceedings of the Twenty-
Third International Conference on Machine Learning (ICML), pp. 129–136.

Dinculescu, M., & Precup, D. (2010). Approximate predictive representations of partially
observable systems. In Proceedings of the Twenty-Seventh International Conference
on Machine Learning (ICML), pp. 895–902.

Hansen, E. (1998). Finite-Memory Control of Partially Observable Systems. Ph.D. thesis,
University of Massachussetts, Amherst, MA.

Holmes, M., & Isbell, C. (2006). Looping suffix tree-based inference of partially observ-
able hidden state. In Proceedings of the Twenty-Third International Conference on
Machine Learning (ICML), pp. 409–416.

James, M., & Singh, S. (2004). Learning and discovery of predictive state representations
in dynamical systems with reset. In Proceedings of the Twenty-First International
Conference on Machine Learning (ICML), pp. 417–424.

Julier, S. J., & Uhlmann, J. K. (1997). A new extension of the kalman filter to nonlinear
systems. In Proceedings of AeroSense: The Eleventh International Symposium on
Aerospace/Defense Sensing, Simulation and Controls, pp. 182–193.

390

Learning to Make Predictions Without a Generative Model

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans-
actions of the ASME – Journal of Basic Engineering, 82, 35–45.

Littman, M., Sutton, R., & Singh, S. (2002). Predictive representations of state. In Advances
in Neural Information Processing Systems 14 (NIPS), pp. 1555–1561.

Littman, M. L. (1996). Algorithms for Sequential Decision Making. Ph.D. thesis, Brown
University, Providence, RI.

Mahmud, M. M. H. (2010). Constructing states for reinforcement learning. In Proceedings
of the Twenty-Seventh International Conference on Machine Learning (ICML), pp.
727–734.

McCallum, A. K. (1995). Reinforcement Learning with Selective Perception and Hidden
State. Ph.D. thesis, Rutgers University.

McCallum, R. A. (1993). Overcoming incomplete perception with utile distinction memory.
In Proceedings of the Tenth International Conference on Machine Learning (ICML),
pp. 190–196.

Monahan, G. E. (1982). A survey of partially observable markov decisions processes: Theory,
models, and algorithms. Management Science, 28 (1), 1–16.

Peters, J., & Schaal, S. (2008). Natural actor-critic. Neurocomputing, 71, 1180–1190.

Poupart, P., & Boutilier, C. (2003). Bounded finite state controllers. In Advances in Neural
Information Processing Systems 16 (NIPS).

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley and Sons, New York, NY.

Rivest, R. L., & Schapire, R. E. (1994). Diversity-based inference of finite automata. Journal
of the Association for Computing Machinery, 41 (3), 555–589.

Rudary, M. (2008). On Predictive Linear Gaussian Models. Ph.D. thesis, University of
Michigan.

Rudary, M., Singh, S., & Wingate, D. (2005). Predictive linear-gaussian models of stochas-
tic dynamical systems. In Uncertainty in Artificial Intelligence: Proceedings of the
Twenty-First Conference (UAI), pp. 501–508.

Shalizi, C. R., & Klinker, K. L. (2004). Blind construction of optimal nonlinear recursive
predictors for discrete sequences. In Proceedings of the Twentieth Conference on
Uncertainty in Artificial Intelligence (UAI), pp. 504–511.

Singh, S., James, M. R., & Rudary, M. R. (2004). Predictive state representations: A
new theory for modeling dynamical systems. In Uncertainty in Artificial Intelligence:
Proceedings of the Twentieth Conference (UAI), pp. 512–519.

Sondik, E. J. (1978). The optimal control of partially observable markov processes over the
infinite horizon: Discounted costs. Operations Research, 26, 282–304.

Soni, V., & Singh, S. (2007). Abstraction in predictive state representations. In Proceedings
of the Twenty-Second National Conference on Artificial Intelligence (AAAI), pp. 639–
644.

391

Talvitie & Singh

Sutton, R. S., & Tanner, B. (2005). Temporal-difference networks. In Advances in Neural
Information Processing Systems 17 (NIPS), pp. 1377–1384.

Talvitie, E. (2010). Simple Partial Models for Complex Dynamical Systems. Ph.D. thesis,
University of Michigan, Ann Arbor, MI.

Talvitie, E., & Singh, S. (2009a). Maintaining predictions over time without a model. In
Proceedings of the Twenty-First International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 1249–1254.

Talvitie, E., & Singh, S. (2009b). Simple local models for complex dynamical systems. In
Advances in Neural Information Processing Systems 21 (NIPS), pp. 1617–1624.

Weaver, L., & Tao, N. (2001). The optimal reward baseline for gradient-based reinforce-
ment learning. In Uncertainty in Artificial Intelligence: Proceedings of the Seventeenth
Conference (UAI), pp. 538–545.

Williams, R. (1992). Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8, 229–256.

Wingate, D. (2008). Exponential Family Predictive Representations of State. Ph.D. thesis,
University of Michigan.

Wingate, D., Soni, V., Wolfe, B., & Singh, S. (2007). Relational knowledge with predictive
state representations. In Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence (IJCAI), pp. 2035–2040.

Wolfe, A. P. (2010). Paying Attention to What Matters: Observation Abstraction in Partially
Observable Environments. Ph.D. thesis, University of Massachussetts, Amherst, MA.

Wolfe, A. P., & Barto, A. G. (2006). Decision tree methods for finding reusable MDP
homomorphisms. In Proceedings of the Twenty-First National Conference on Artificial
Intelligence (AAAI).

Wolfe, B., James, M., & Singh, S. (2008). Approximate predictive state representations. In
Proceedings of the Seventh Conference on Autonomous Agents and Multiagent Systems
(AAMAS).

Wolfe, B., James, M. R., & Singh, S. (2005). Learning predictive state representations in
dynamical systems without reset. In Proceedings of the Twenty-Second International
Conference on Machine Learning (ICML), pp. 985–992.

Wolfe, B., & Singh, S. (2006). Predictive state representations with options. In Proceed-
ings of the Twenty-Third International Conference on Machine Learning (ICML), pp.
1025–1032.

392

