
Journal of Artificial Intelligence Research 42 (2011) 211-274 Submitted 03/11; published 10/11

Representing and Reasoning with Qualitative Preferences for

Compositional Systems

Ganesh Ram Santhanam gsanthan@cs.iastate.edu

Samik Basu sbasu@cs.iastate.edu

Vasant Honavar honavar@cs.iastate.edu

Department of Computer Science

Iowa State University

Ames, IA 50011, USA

Abstract

Many applications, e.g., Web service composition, complex system design, team forma-
tion, etc., rely on methods for identifying collections of objects or entities satisfying some
functional requirement. Among the collections that satisfy the functional requirement,
it is often necessary to identify one or more collections that are optimal with respect to
user preferences over a set of attributes that describe the non-functional properties of the
collection.

We develop a formalism that lets users express the relative importance among attributes
and qualitative preferences over the valuations of each attribute. We define a dominance
relation that allows us to compare collections of objects in terms of preferences over at-
tributes of the objects that make up the collection. We establish some key properties of the
dominance relation. In particular, we show that the dominance relation is a strict partial
order when the intra-attribute preference relations are strict partial orders and the relative
importance preference relation is an interval order.

We provide algorithms that use this dominance relation to identify the set of most
preferred collections. We show that under certain conditions, the algorithms are guaranteed
to return only (sound), all (complete), or at least one (weakly complete) of the most
preferred collections. We present results of simulation experiments comparing the proposed
algorithms with respect to (a) the quality of solutions (number of most preferred solutions)
produced by the algorithms, and (b) their performance and efficiency. We also explore
some interesting conjectures suggested by the results of our experiments that relate the
properties of the user preferences, the dominance relation, and the algorithms.

1. Introduction

Many applications call for techniques for representing and reasoning about preferences over
a set of alternatives. In such settings, preferences over the alternatives are expressed with
respect to a set of attributes that describe the alternatives. Such preferences can be either
qualitative or quantitative. A great deal of work on multi-attribute decision theory has
focused on reasoning with quantitative preferences (Fishburn, 1970a; Keeney & Raiffa,
1993). However, in many settings it is more natural to express preferences in qualitative
terms (Doyle & Thomason, 1999) and hence, there is a growing interest on formalisms for
representing and reasoning with qualitative preferences (Brafman & Domshlak, 2009) in AI.

An important problem in this context has to do with representing qualitative preferences
over multiple attributes and reasoning with them to find the most preferred among a set of

c©2011 AI Access Foundation. All rights reserved.

Santhanam, Basu & Honavar

alternatives. Brafman, Domshlak and Shimony’s seminal work (2006) attempts to address
this problem by introducing preference networks that capture: (a) intra-variable or intra-
attribute preferences specifying preferences over the domains of attributes; (b) the relative
importance among the attributes. Preference networks use a graphical representation to
compactly encode the above types of preferences from the user, and employ the ceteris
paribus1 semantics to reason about the most preferred alternatives. In this model, each
alternative is completely described by the values assigned to a set of attributes.

In many AI applications such as planning and scheduling, the alternatives have a com-
posite structure, i.e., an alternative represents a collection or a composition of objects rather
than simple objects. In such settings, typically there are a set of user specified functional re-
quirements that compositions are required to satisfy2. Among all the possible compositions
that do satisfy the functional requirements, there is often a need to choose compositions
that are most preferred with respect to a set of user preferences over a set of non-functional
attributes of the objects that make up the composition. We illustrate the above problem
using the following example.

1.1 Illustrative Example

Consider the task of designing a program of study (POS) for a Masters student in the
Computer Science department. The POS consists of a collection of courses chosen from a
given repository of available courses spanning different areas of focus in computer science.
Apart from the area of focus, each course also has an assigned instructor and a number of
credit hours. A repository of available courses, their areas of focus, their instructors and
the number of credit hours are specified in Table 1.

Course Area Instructor Credits
CS501 Formal Methods (FM) Tom 4
CS502 Artificial Intelligence (AI) Gopal 3
CS503 Formal Methods (FM) Harry 2
CS504 Artificial Intelligence (AI) White 3
CS505 Databases (DB) Bob 4
CS506 Networks (NW) Bob 2
CS507 Computer Architecture (CA) White 3
CS508 Software Engineering (SE) Tom 2
CS509 Theory (TH) Jane 3
CS510 Theory (TH) Tom 3

Table 1: List of courses the student can choose from

In this example, each POS can be viewed as a composition of courses. The requirements
for an acceptable Masters POS (i.e., a feasible composition) are as follows.

F1. The POS should include at least 15 credits

1. A Latin term for ‘all else being equal’
2. For example, in planning, a valid plan is a collection of actions that satisfies the goal; and in scheduling,

a valid schedule is a collection of task-to-resource assignments that respects the precedence constraints.

212

Representing and Reasoning with Qualitative Preferences

FM TH

AI

DB NW

SE CA

(a) ≻A

Jane

GopalBob

White Harry

Tom

(b) ≻I

Figure 1: Intra-attribute preferences for Area (≻A) and Instructor (≻I).

F2. The POS should include the two core courses CS509 and CS510

F3. There should be courses covering at least two breadth areas of study (apart from the
area of Theory (TH))

Given the repository of courses (see Table 1; there may be one or more acceptable
programs of study, i.e., feasible compositions). For example:

• P1 = CS501⊕ CS502⊕ CS503⊕ CS504⊕ CS509⊕ CS510

• P2 = CS501⊕ CS502⊕ CS505⊕ CS506⊕ CS509⊕ CS510

• P3 = CS503⊕ CS504⊕ CS507⊕ CS508⊕ CS509⊕ CS510

Suppose that in addition to the above requirements, a student has some preferences
over the course attributes such as the area of focus, the choice of instructors and difficulty
level in terms of credit hours. Among several acceptable programs of study, the student
may be interested in those programs of study that: (a) satisfy the minimum requirements
(see above) for an acceptable POS, and (b) those that are most preferred with respect to
his/her preferences specified above. The preferences of a student with respect to the course
attributes Area (A) and Instructor (I) are illustrated in Figure 1 (arrows are directed
toward the preferred area/instructor in the figure, e.g., AI is preferred to FM and Bob is
preferred to Tom). In addition let us say that the student prefers the POS that have lesser
total number of credits (this specifies ≻C). Further, let the relative importance among the
attributes A, I and C be I ⊲A⊲C, i.e., I is relatively more important than A, which is in
turn relatively more important than C.

1.2 Problem Statement for the Illustrative Example

The problems that we try to address in this paper for the above example are:

• Given two programs of study, namely Pi and Pj , determine whether Pi dominates
(i.e., is preferred to) Pj or vice versa with respect to the student’s preferences;

• Given a repository of courses and an algorithm for computing a set of acceptable
programs of study, find the most preferred, acceptable programs of study with respect
to the above dominance relation.

213

Santhanam, Basu & Honavar

In the example given in Section 1.1, the functional requirements correspond to the three
conditions F1 to F3, all of which must be satisfied for a collection of courses to be an
acceptable POS. Area (A), instructor (I) and number of credits (C) constitute the non-
functional attributes, and the user preferences over these attributes are given by {≻A,≻I

,≻C} and I ⊲ A ⊲ C. One can envision similar problems in several other applications,
ranging from assembling hardware and software components in an embedded system (such
as designing a pacemaker or anti-lock braking system) to putting together a complex piece
of legislation (such as the one for reforming health care).

In general, we are interested in the problem of (a) reasoning about preferences over com-
positions of objects, given the preferences over a set of non-functional attributes describing
the objects; and (b) identifying compositions that satisfy the functional requirements of the
compositional system, and at the same time are optimal with respect to the stated prefer-
ences over the non-functional attributes. Against this background, we present a preference
formalism and a set of algorithms to address this problem in compositional systems.

1.3 Contributions

We adopt the preference network representation introduced by Brafman et al. (2006) for
the specification of qualitative preferences3 over valuations of each attribute as well as the
relative importance among the attributes. We extend reasoning about preferences over
single objects to deal with preferences over collections of objects. The main contributions
of this paper are as follows.

1. We develop a preference formalism that allows users to specify preferences in terms
of intra-attribute and relative importance preferences over a set of attributes, and
includes mechanisms for:

a) Computing the valuation of a composition: With respect to each attribute, we
define a generic aggregation function to compute the valuation of a composition
as a function of the valuations of its components. We also present a strict partial
order preference relation for comparing two compositions with respect to their
aggregated valuations of each attribute.

b) Comparing the valuations of compositions: We introduce a dominance relation
that compares compositions (in terms of their aggregated valuations) with respect
to the stated preferences, and establish some of its key properties. In particular,
we show that this relation is a strict partial order whenever the intra-attribute
preferences are strict partial orders and relative importance preference is an
interval order.

2. We develop a suite of algorithms that identify the set, or subset of the most preferred
composition(s) with respect to the user preferences. In particular, we show that
under certain conditions, the algorithms are guaranteed to return only (sound), all
(complete), or at least one (weakly complete) of the most preferred compositions. The
algorithms we develop fall into two classes:

3. We do not deal with conditional preferences in this work.

214

Representing and Reasoning with Qualitative Preferences

a) those that first compute the set of all feasible compositions using a functional
composition algorithm as a black box, and then proceed to find the most preferred
among them using the preference relations developed in (1); and

b) an algorithm that interleaves at each step the execution of a functional com-
position algorithm and the ordering of partial solutions with respect to user
preferences. It requires the functional composition algorithm to be able to con-
struct a composition satisfying the functional requirement incrementally, i.e., by
iteratively extending partial compositions with additional components.

We analyze some key properties of the algorithms that yield specific conditions on the
structure of preferences, under which the algorithms produce only/at least one/all of
the most preferred solutions.

3. We present results of experiments that compare performance of the above algorithms
for computing the most preferred compositions on a set of simulated composition
problem instances. The results demonstrate the feasibility of our approach in prac-
tice, and compare our algorithms with respect to the quality of (number of good or
most preferred) solutions produced by the algorithms and their performance (run-
ning time) and efficiency (the number of times they invoke the functional composition
algorithm). Based on analysis of the experimental results, we also establish some
previously unknown key theoretical properties of the dominance relation directly as a
function of the user preferences.

Our formalism is generic in the sense that one can use any aggregation function that
appropriately represents the valuation of the composition as a function of the valuations
of its constituents. In particular, we show examples of aggregation functions that compute
the summation (numeric), the minimum/maximum valuation (totally ordered), or the set
of worst valuations (partially ordered) of the constituents of a composition. Our formalism
also provides flexibility in choosing the preference relation that compares sets of valuations
of two compositions, so that any strict partial order preference relation can be used.

All our algorithms are completely independent of various aspects of the preference for-
malism, namely, the choice of aggregation functions, the preference relation used to compare
aggregated valuations over a single attribute, and the dominance relation used to compare
compositions over all attributes, except that the preference relations are strict partial or-
ders. The theoretical and experimental results provide precise conditions under which the
algorithms produce only/at least one/all of the most preferred solutions. This enables the
user to choose an algorithm of his/her choice for particular problem instance, depending
on the quality of solutions that is needed. In addition, our analysis also allows the user to
trade off the quality of solutions produced against performance and efficiency.

1.4 Related Work

The closest work related to our paper is a paper by Binshtok, Brafman, Domshlak, and
Shimony (2009), where preferences are expressed over collections based on the number of
objects in the collection that satisfy a desired property (e.g., having at least two political
and two sports articles in choosing articles for a newspaper publication). In contrast, we

215

Santhanam, Basu & Honavar

develop a formalism that considers the desirability of the collection as a whole based on
the attributes of the objects that make up the collection, and algorithms to identify the
most preferred collection(s) among those that satisfy the requirement. We further show
how the problems solved using the formalism due to Binshtok et al. can also be solved in
our formalism (see Section 7.3.2).

In the recent years, there has been a lot of work in the database community on the
evaluation of preference queries (e.g., skyline queries) to find the most preferred subset of
tuples from a result set. The problem of finding the most preferred set of tuples is analogous
to finding the most preferred set of alternatives, where each alternative is a simple object,
i.e., a tuple described by a set of attributes. Our problem then corresponds to finding the
most preferred set of alternatives, where each alternative is in turn a set of tuples that satisfy
some requirement (e.g., the set of tuples that satisfy a set of integrity constraints). Moreover,
the algorithms found in the database literature mostly address totally or weakly ordered
preferences over the values of attributes, while we address partially ordered preferences
as well. In addition, most of them rely on the maintenance of database indexes over the
attributes of the tuples because they typically cater to large scale, static data which is not
typical in our setting. We however note the relevance and possible utility of techniques
developed in the databases community for our problem in specific scenarios.

We refer the reader to Section 7.3 for a more detailed discussion of related work.

1.5 Organization

The rest of the paper is organized as follows. In Section 2, we define a compositional system,
discuss the types of preferences that we will consider, and specify the problem in formal
terms. In Section 3, we present our preference formalism including the dominance relation
and analyze its properties. In Section 4, we present four algorithms for identifying the most
preferred compositions and discuss their properties. The proofs of the results in this section
are given in Appendix A. In Section 5, we discuss the complexity of our algorithms.In
Section 6, we present results of experiments that we performed to compare our algorithms
in terms of the quality of solutions produced, performance and efficiency. In Section 7, we
summarize our contributions and discuss the related and future work in this area.

2. Preliminaries

We recall some basic properties and definitions concerning binary relations that we will use
in the rest of the paper (see Fishburn, 1985, for a comprehensive treatment of the same).

2.1 Properties of Binary Relations

Let ≻ be a binary relation on a set S, i.e., ≻⊆ S×S. We say that ≻ is an equivalence (eq),
a (strict) partial order (po), an interval order (io), a weak order (wo) or a total order (to),
as defined in Table 2.

A total order is also a weak order; a weak order is also an interval order; and an interval
order is also a strict partial order.

216

Representing and Reasoning with Qualitative Preferences

Property of relation Definition eq po io wo to
1. reflexive ∀x ∈ S : x ≻ x X

2. irreflexive ∀x ∈ S : x 6≻ x X X X X

3. symmetric ∀x, y ∈ S : x ≻ y ⇒ y ≻ x X

4. asymmetric ∀x, y ∈ S : x ≻ y ⇒ y 6≻ x X X X X

5. transitive ∀x, y, z ∈ S : x ≻ y∧ y ≻ z ⇒ x ≻ z X X X X X

6. total or complete ∀x, y ∈ S : x 6= y ⇒ x ≻ y ∨ y ≻ x X

7. negatively transitive ∀x, y, z ∈ S : x ≻ y ⇒ x ≻ z∨ z ≻ y X X

8. ferrers ∀x, y, z, w ∈ S : (x ≻ y ∧ z ≻ w) ⇒
(x ≻ w ∨ z ≻ y)

X X X

Table 2: Properties of binary relations

2.2 Compositional System

A compositional system consists of a repository of pre-existing components from which we
are interested in assembling compositions that satisfy a pre-specified functionality. Formally,
a compositional system is a tuple 〈R,⊕, |=〉 where:

• R = {W1,W2 . . .Wr} is a set of available components,

• ⊕ denotes a composition operator that functionally aggregates components and en-
codes all the functional details of the composition. ⊕ is a binary operation on com-
ponents Wi,Wj in the repository that produces a composition Wi ⊕Wj .

• |= is a satisfaction relation that evaluates to true when a composition satisfies some
pre-specified functional properties.

Definition 1 (Compositions, Feasible Compositions and Extensions). Given a composi-
tional system 〈R,⊕, |=〉, and a functionality ϕ, a composition C = Wi1 ⊕Wi2 ⊕ . . .Win is
an arbitrary collection of components Wi1 ,Wi2 , . . . ,Win s.t. ∀j ∈ [1, n] : Wij ∈ R.

i. C is a feasible composition whenever C |= ϕ;

ii. C is a partial feasible composition whenever ∃Wj1 . . .Wjm ∈ R : C ⊕Wj1 ⊕ . . .⊕Wjm

is a feasible composition; and

iii. C ⊕Wi is a feasible extension of a partial feasible composition C whenever C ⊕Wi is
a feasible or a partial feasible composition.

Given a compositional system 〈R,⊕, |=〉 and a functionality ϕ, an algorithm that pro-
duces a set of feasible compositions (satisfying ϕ) is called a functional composition algo-
rithm. The most general class of functional composition algorithms we consider can be
treated as black boxes, simply returning a set of feasible compositions satisfying ϕ in a sin-
gle step. Some other functional composition algorithms proceed by computing the set of
feasible extensions of partial feasible compositions incrementally.

Definition 2 (Incremental Functional Composition Algorithm). A functional composition
algorithm is said to be incremental if, given an initial partial feasible composition C and the
desired functionality ϕ, the algorithm computes the set of feasible extensions to C.

217

Santhanam, Basu & Honavar

An incremental functional composition algorithm can be used to compute the feasible
compositions by recursively invoking the algorithm on the partial feasible compositions it
produces starting with the empty composition (⊥), and culminating with a set of feasible
compositions satisfying ϕ. In this sense, incremental functional composition algorithms are
similar to their “black box” counterparts. However, (as we later show in Section 4.5) in
contrast to their “black box” counterparts, incremental functional composition algorithms
can be exploited in the search for the most preferred feasible compositions, by interleaving
each step of the functional composition algorithm with the optimization of the valuations of
non-functional attributes (with respect to the user preferences). This allows us to develop
algorithms that can eliminate partial feasible compositions that will lead to less preferred
feasible compositions from further consideration early in the search.

Different approaches to functional composition, (e.g., Traverso & Pistore, 2004; Lago,
Pistore, & Traverso, 2002; Baier, Fritz, Bienvenu, & McIlraith, 2008; Passerone, de Alfaro,
Henzinger, & Sangiovanni-Vincentelli, 2002) differ in terms of (a) the languages used to
represent the desired functionality ϕ and the compositions, and (b) the algorithms used to
verify whether a composition C satisfies ϕ, i.e., C |= ϕ. We have intentionally abstracted the
details of how functionality ϕ is represented (e.g., transition systems, logic formulas, plans,
etc.) and how a composition is tested for satisfiability (|=) against ϕ, as the primary focus
of our work is orthogonal to details of the specific methods used for functional composition.

2.3 Preferences over Non-functional Attributes

We now turn to the non-functional aspects of compositional systems. In addition to obtain-
ing functionally feasible compositions, users are often concerned about the non-functional
aspects of the compositions, e.g., the reliability of a composite Web service. In such cases,
users seek the most preferred compositions among those that are functionally feasible, with
respect to a set of non-functional attributes describing the components. In order to compute
the most preferred compositions, it is necessary for the user to specify his/her preferences
over a set of non-functional attributes X .

2.3.1 Notation

In general, for any relation ≻P , we use the same notation, i.e., ≻P to denote the transitive
closure of the relation as well, and 6≻P or ¬ ≻P to denote its complement. The list of
notations used in this paper are given in Table 3.

We focus only on strict partial order preference relations, i.e., relations that are both
irreflexive and transitive, because transitivity is a natural property of any rational preference
relation (von Neumann & Morgenstern, 1944; French, 1986; Mas-Colell, Whinston, & Green,
1995), and irreflexivity ensures that the preferences are strict.

With respect to any strict partial order preference relation ≻P , we say that two elements
u and v are indifferent, denoted u ∼P v, whenever u 6≻P v and v 6≻P u. For preference
relations ≻i, ≻

′
i,⊲ and ≻d , we denote the corresponding indifference relation by ∼i, ∼

′
i,∼⊲

and ∼d respectively. We will drop the subscripts whenever they are understood from the
context.

Proposition 1. For any strict partial order preference relation ≻P , the corresponding in-
difference relation ∼P is reflexive and symmetric.

218

Representing and Reasoning with Qualitative Preferences

Notation Meaning
P(S) Power set of the set S
R = {W1 · · ·Wr} Set of components in the repository
⊕ Operation that composes components from R
C,U ,V,Z Composition or collection 4n of a set of components from R
C A set {Ci} of compositions
X = {X1 · · ·Xm} Set of non-functional attributes
D = {D1 · · ·Dm} Set of possible valuations (domains) of attributes in X respectively
ui, vi, ai, bi · · · ∈ Di Valuations of an attribute with domain Di

VWi
Overall valuation of the component Wi with respect to all attributes
X

VCi
Overall valuation of the composition Ci with respect to all attributes
X

VWi
(Xj) Valuation of the component Wi with respect to the attribute Xj

VCi
(Xj) Valuation of the composition Ci with respect to the attribute Xj

≻i,≻X Intra-attribute preference over valuations of Xi or X respectively
(user input)

⊲ Relative importance among attributes (user input)
Φi Aggregation function that computes the valuation of a composition

with respect to Xi as a function of the valuation of its components
F (Xi) Range of the aggregation function Φi for attribute Xi

≻′
i Derived preference relation on the aggregated valuations with respect

to Xi

≻d Dominance relation that compares two compositions in terms of their
aggregated valuations over all attributes

Ψ≻(S) The non-dominated set of elements in S with respect to ≻
ϕ User specified functionality to be satisfied by a feasible composition

Table 3: Notation

Proof. Follows from a well-known property of strict partial orders due to Fishburn (1970b).

It is important to note that indifference with respect to a strict partial order is not
necessarily transitive. For instance, ≻X= {(b, c)} is a strict partial order on the set {a, b, c}
with b ∼X a, a ∼X c but b ≻X c.

2.3.2 Representing Multi-Attribute Preferences

Following the representation scheme introduced by Boutilier et al. (2004) and Brafman et
al. (2006), we model the user’s preferences with respect to multiple attributes in two forms:
(a) intra-attribute preferences with respect to each non-functional attribute in X , and (b)
relative importance over all attributes.

4. We will use the terms composition and collection; and component and object interchangeably.

219

Santhanam, Basu & Honavar

Definition 3 (Intra-attribute Preference). The intra-attribute preference relation, denoted
by ≻i is a strict partial order (irreflexive and transitive) over the possible valuations of an
attribute Xi ∈ X . ∀u, v ∈ Di : u ≻i v iff u is preferred to v with respect to Xi.

Definition 4 (Relative Importance). The relative importance preference relation, denoted
by ⊲ is a strict partial order (irreflexive and transitive) over the set of all attributes X .
∀Xi,Xj ∈ X : Xi ⊲Xj iff Xi is relatively more important than Xj .

Given a set X of attributes, the intra-attribute preference relations {≻i} over their
respective domains, and the relative importance preference relation ⊲ on X , we address the
following problems.

• Given two compositions Cj and Ck, determine whether VCj
≻d VCk

or vice versa;

• Given a compositional system 〈R,⊕, |=〉, and an algorithm for computing a set of
feasible compositions {Cf : Cf |= ϕ}, find the most preferred feasible compositions
with respect to the above dominance relation.

3. Preference Formalism

Given a compositional system with a repository of components described by attributes X
and preferences ({≻i},⊲) over them, we are interested in reasoning about preferences over
different compositions. Note that based on preferences {≻i} and ⊲, one can make use of
existing formalisms such as TCP-nets (Brafman et al., 2006) to select the most preferred
components. However, the problem of comparing compositions (as opposed to comparing
components) with respect to the attribute preferences is complicated by the fact that the
valuation of a composition is a function of the valuations of its components. Our approach
to developing the preference formalism is as follows.

First, given a composition and the valuations of its components with respect to the
attributes, we obtain the aggregated valuation of the composition with respect to each
attribute as a function of the valuations of its components. Next, we define preference
relations to compare the aggregated valuations of two compositions with respect to each
attribute. Finally, we build a dominance preference relation ≻d that qualitatively compares
any two compositions with respect to their aggregated valuations across all attributes.

3.1 Aggregating Attribute Valuations across Components

In order to reason about preferences over compositions, it is necessary to obtain the valua-
tion of a composition with respect to each attribute Xi in terms of its components, using
some aggregation function Φi. There are several ways to aggregate the preference valuations
attribute-wise across components in a composition. The aggregation function Φi defines the
valuation of a composition with respect to an attribute Xi as a function of the valuations
of its components.
Remark. In the compositional systems considered here, we assume that the valuation
of a composition with respect to its attributes is a function of only the valuations of its
components. In other words, if C = W1 ⊕W2 ⊕ . . . ⊕Wn, then VC is a function of only
{VW1

, VW2
, . . . , VWn}. However, in the most general setting, the aggregation functions Φi

220

Representing and Reasoning with Qualitative Preferences

need to take into account, in addition to the valuations of the components themselves, the
structural or functional details of a composition encoded by ⊕ (e.g., the reliability of a Web
service composition depends on whether the service components are composed in a series
or parallel structure).

Definition 5 (Aggregation Function). The aggregation function on a multiset5 of possible
valuations (Di) of attribute Xi is

Φi :M(Di) −→ F (Xi)

where F (Xi) denotes the range of the aggregation function.

Aggregation with respect to an attribute Xi amounts to devising an appropriate aggre-
gation function Φi that computes the valuation of a composition in terms of the valuations
of its components for Xi. The range F (Xi) of Φi depends on the choice of aggregation
function. Some examples of aggregation functions are given below.

1. Summation. This is applicable in cases where an attribute is real-valued and repre-
sents some kind of cost. For example, the cost of a shopping cart is the sum of the
costs of the individual items it includes. In our running example, the total number
of credits in a POS consisting of a set of courses is the sum of the credits of all the
courses it includes. That is, if S is the set of credit hours (valuations of the courses
with respect to the attribute C) of courses in a POS, then

ΦC(S) := {Σs∈Ss}

2. Minimum/Maximum. Here, the valuation of a composition with respect to an at-
tribute is the worst, i.e., the minimum among the valuations of its components. This
type of aggregation is a natural one to consider while composing embedded systems
or Web services. For example, when putting together several components in an em-
bedded system, the system is only as secure (or safe) as its least secure (or safe)
component.

Φi(S) := {mins∈Ss}

Analogously, one could choose as the valuation of the composition the maximum (best)
among the valuations of its components. Such an aggregation function may be useful
in applications such as parallel job scheduling, where the maximum response time is
used to measure the quality of a schedule.

3. Best/Worst Frontier. In some settings, it is possible that the intra-attribute prefer-
ence over the values of an attribute is a partial order (not necessarily a ranking or a
total order). Hence, it may not be possible to compute the valuation of a composi-
tion as the best or worst among the valuations of its components because a unique
maximum or minimum may not exist. For example, it may be useful to compute the

5. A multiset is a generalization of a set that allows for multiple copies of its elements.

221

Santhanam, Basu & Honavar

valuation of a composition as the minimal set of valuations among the valuations of
its components, which we call the worst frontier. The worst frontier represents the
worst possible valuations of an attribute Xi with respect to ≻i, i.e., the minimal set6

among the set of valuations of the components in a composition.

Definition 6 (Aggregation using Worst Frontier). Given a set S of valuations of an at-
tribute Xi, the worst frontier aggregation function is defined by

∀S ⊆ Di : Φi(S) := {v : v ∈ S ∧ ∄u ∈ S : v ≻i u}

In our running example (see Section 1.1), the user would like to avoid courses not in his
interest area and professors whom he is not comfortable with. That is, a program of study
is considered only as good as the least interesting areas of study it covers, and the set of
professors he is least comfortable with. Hence, the worst frontier aggregation function is
chosen for the breadth area and instructor attributes.

Example. The “worst possible” valuations of the attributes A and I for the program of
study (composition) P1 with respect to ≻A and ≻I are {FM,TH} and {White,Harry}
respectively. Similarly, for P2 the valuations of the attributes A and I are {DB,NW}
and {Jane, Tom} respectively; and for P3 the valuations of the attributes A and I are
{CA,SE} and {Harry,White} respectively. These sets correspond to the “worst fron-
tiers” of the respective attributes. The different areas of focus covered in the POS P2 are
{FM,AI,DB,NW,TH}, and the worst frontier of this set is ΦA({FM,AI,DB,NW,TH}) =
{DB,NW} because AI ≻A DB,FM ≻A DB,TH ≻A NW . Similarly the set of instruc-
tors in P2 are {Tom,Gopal,Bob, Jane}, and hence we have ΦI({Tom,Gopal,Bob, Jane}) =
{Jane, Tom} because Bob ≻I Jane and Gopal ≻I Tom. For attribute C, the aggregation
function evaluates the sum of credits of the constituent courses in a POS. Therefore, for P2

we have ΦC({4, 3, 4, 2, 3, 3}) = 4 + 3 + 4 + 2 + 3 + 3 = 19. ⋄

We note that other choices of the aggregation function can be accommodated in our
framework (such as average or a combination of best and worst frontier sets), and that the
above is only a representative list of choices.

Proposition 2 (Indifference of Frontier Elements). Consider an attribute Xi, whose valu-
ations are aggregated using the best or worst frontier aggregation function. Let A ∈ F (Xi).
Then u ∼i v for all u, v ∈ A.

Proof. Follows from Definition 6 (or the analogous definition of a best frontier) and a well-
known result due to the work of Fishburn (1985).

Definition 7 (Valuation of a Composition for Attributes Aggregated using Best/Worst
Frontier). Consider an attribute Xi, whose valuations are aggregated using the best or worst
frontier aggregation function. The valuation of a component W with respect to an attribute
Xi is denoted as VW (Xi) ∈ Di. The valuation of a composition of two components W1 and
W2 with respect to an attribute Xi, each with valuation VW1

(Xi) and VW2
(Xi) respectively,

is given by

6. Note that if ≻i is a total order, then worst frontier represents the minimum or lowest element in the set
with respect to the total order.

222

Representing and Reasoning with Qualitative Preferences

VW1⊕W2
(Xi) := Φi(VW1

(Xi) ∪ VW2
(Xi))

Example. Consider P2 = CS501 ⊕ CS502 ⊕ CS505 ⊕ CS506 ⊕ CS509 ⊕ CS510 in our
running example (see Section 1.1).

VP2
(I) = ΦI(VCS501(I) ∪ VCS502(I) ∪ VCS505(I) ∪ VCS506(I) ∪ VCS509(I) ∪ VCS510(I))

= ΦI({Tom} ∪ {Gopal} ∪ {Bob} ∪ {Bob} ∪ {Jane} ∪ {Tom})

= ΦI({Tom,Gopal,Bob, Jane})

= {Tom, Jane}

⋄

It must be noted that VW1⊕W2
(Xi) = VW2⊕W1

(Xi) according to the above definition,
because the valuations of compositions are subsets of the union of individual component
valuations.

3.2 Comparing Aggregated Valuations

Having obtained an aggregated valuation with respect to each attribute, we next proceed
to discuss how to compare aggregated valuations attribute-wise. We denote the preference
relation used to compare the aggregated valuations for an attribute Xi by ≻′

i. In the simple
case when an aggregation function Φi with respect to an attribute Xi returns a value in
Di (F (Xi) = Di), the intra-attribute preference ≻i can be (re)used to compare aggregated
valuations, i.e., ≻′

i =≻i. Other choices of ≻′
i can be considered as long as ≻′

i is a partial
order. In order to obtain a strict preference relation, we require irreflexivity, and to obtain
a rational preference relation, we require transitivity7.

For worst frontier-based aggregation (Definition 6), we present a preference relation that
uses the following idea: Given two compositions with different aggregated valuations (worst
frontiers) A,B with respect to an attribute Xi, we say that A is preferred to B if for every
valuation of Xi in B, there is some valuation in A that is strictly preferred.

Definition 8 (Preference over Worst Frontiers). Let A,B ∈ F (Xi) be two worst frontiers
with respect to attribute Xi. We say that valuation A is preferred to B with respect to
Xi, denoted by A≻′

iB, if for each element in B, there exists an element in A that is more
preferred.

∀A,B ∈ F (Xi) : A≻′
iB ⇔ ∀b ∈ B,∃a ∈ A : a ≻i b

Example. In our running example (see Section 1.1), we have {FM,TH}≻′
A{DB,NW}

because FM ≻A DB and TH ≻A NW . ⋄

Given a preference relation over a set of elements, there are several ways of obtaining a
preference relation over subsets of elements from the set (see Barbera, Bossert, & Pattanaik,
2004, for a survey on preferences over sets). Definition 8 is one simple way to achieve
this. In some settings, in contrast to Definition 8, it might be useful to compare only

7. Any preference relation, including the one that compares only the uncommon elements of two sets can
be used, provided it is irreflexive and transitive.

223

Santhanam, Basu & Honavar

elements in the two sets that are not common. In such settings, a suitable irreflexive
and transitive preference relation can be used, such as the asymmetric part of preference
relations developed by Brewka et al. (2010) and Bouveret et al. (2009). In the absence of
transitivity, the transitive closure of the relation may be used to compare sets of elements,
as done by Brewka et al.

We now discuss some properties of the specific relation ≻′
i as introduced in Definition 8.

Proposition 3 (Irreflexivity of ≻′
i). A ∈F (Xi)⇒ A 6 ≻′

i A.

Proof. ∀a, b ∈ A, a ∼i b (follows from Proposition 2)

Proposition 4 (Transitivity of ≻′
i). If A,B,C ∈F (Xi), then A≻′

iB ∧B≻
′
iC ⇒ A≻′

iC.

Proof. Immediate from Definition 8.

Definition 9. Let A,B ∈ F (Xi). We say that valuation A is at least as preferred as B
with respect to Xi, denoted �′

i iff

A�′
iB ⇔ A = B ∨A≻′

iB

Proposition 5. �′
i is reflexive and transitive.

Proof. Follows from the facts that = is reflexive and transitive, and ≻′
i is irreflexive and

transitive.

Definition 10 (Complete Valuation). The complete valuation or outcome or assignment of
a composition C is defined as a tuple VC := 〈VC(X1), . . . VC(Xm)〉, where VC(Xi) ∈ F (Xi).

The set of all possible valuations or outcomes is denoted as

m
∏

i=1

F (Xi).

Example. In case of our example in Section 1.1:

VP1
= 〈ΦA({FM,AI, TH}),ΦI ({Tom,Gopal,Harry,White, Jane}),ΦC ({4, 3, 2, 3, 3, 3})〉

= 〈{FM,TH}, {White,Harry}, {18}〉

VP2
= 〈ΦA({FM,AI,DB,NW,TH}),ΦI ({Tom,Gopal,Bob, Jane}),ΦC ({4, 3, 4, 2, 3, 3})〉

= 〈{DB,NW}, {Tom, Jane}, {19}〉

VP3
= 〈ΦA({FM,AI,CA, SE, TH}),ΦI ({Harry,White, Tom, Jane}),ΦC ({2, 3, 3, 2, 3, 3})〉

= 〈{CA,SE}, {Harry,White}, {16}〉

⋄

3.3 Dominance: Preference over Compositions

In the previous sections, we have discussed how to evaluate and compare a composition
with respect to the attributes as a function of its components. In order to identify preferred
compositions, we need to compare compositions with respect to their aggregated valuations
over all attributes, based on the originally specified intra-attribute and relative importance
preferences. We present a specific dominance relation for performing such a comparison.

224

Representing and Reasoning with Qualitative Preferences

≻′
1⊆ F (D1)×F (D1) ≻′

2⊆ F (D2)×F (D2) ≻′
m⊆ F (Dm)×F (Dm)

F (D1) F (D2) F (Dm)

Φ1 Φ2 Φm

P(D1) P(D2) P(Dm)

≻1⊆ D1 ×D1 ≻2⊆ D2 ×D2 ≻m⊆ Dm ×Dm

D1 = {a1, a2 . . .} D2 = {b1, b2 . . .} Dm = {u1, u2 . . .}

⊲ ⊆ X × X

X = {X1,X2, . . . Xm} . . .

. . .

. . .

≻d⊆
m
∏

i=1

F (Di)×
m
∏

i=1

F (Di)

Intra-attribute preferencesRelative Importance

User

Input

Compute
aggregated valuations

Compare
compositions

U ≻d V ⇔ ∃Xi ∈ X : U(Xi) ≻
′
i V(Xi) ∧

∀Xk ∈ X : (Xk ⊲Xi ∨Xk ∼⊲ Xi)⇒ U(Xk) �
′
k V(Xk)

aggregated valuations
Compare

Layer 1

Layer 2

(Aggregation)

(Dominance)

Figure 2: Dominance: Preference over compositions

Definition 11 (Dominance). Dominance ≻d is a binary relation defined as follows: for

all U8,V ∈
m
∏

i=1

F (Xi)

U ≻d V ⇔ ∃Xi : U(Xi)≻
′
iV(Xi) ∧

∀Xk : (Xk ⊲Xi ∨Xk ∼⊲ Xi) ⇒ U(Xk)�′
kV(Xk)

In Definition 11, we call the attributeXi as the “witness” of the relation. The dominance
relation ≻d is derived from and respects both the intra-attribute preferences (≻i) as well as
the relative importance preferences (⊲) asserted by the user. Figure 2 graphically illustrates
how dominance is derived from user-specified preferences. First, to start with we have user
specified preferences, namely intra-attribute (≻i) and relative importance (⊲) preferences.
Next, from ≻i preferences, the valuations of compositions with respect to attributes are
computed using the aggregation function (Φi). Then the intra-attribute preference relation
to compare the aggregated valuations (≻′

i) is derived from ≻i. Finally, the global dominance
(≻d) is defined in terms of ≻′

i and ⊲.

The definition of dominance states that a composition U dominates V iff we can find
a witness attribute Xi such that with respect to the intra-attribute preference ≻i, the
valuation of U dominates V in terms of ≻′

i, and for all attributes Xk which the user considers
more important than (⊲) or indifferent to (∼⊲) Xi, the valuation of Xk in U is at least as
preferred (�′

i) as the valuation of Xk in V.

8. To avoid excessively cluttering the notation, for a given composition C, we will slightly abuse notation
by using C interchangeably with VC.

225

Santhanam, Basu & Honavar

Example. In our running example (see Section 1.1), we have VP2
≻d VP1

with I as witness
and VP1

≻d VP3
with A as witness. If I⊲A, I⊲C but A ∼⊲ C then VP2

≻d VP1
and VP2

≻d VP3

with I as witness, but VP1
6 ≻d VP3

and VP3
6 ≻d VP1

. This is because P1 is preferred to P3

with respect to A ({FM,TH}≻′
A{CA,SE}); but P3 is preferred to P1 with respect to C

({16}≻′
C{18}), and neither A nor C is relatively more important than the other. ⋄

3.4 Properties of ≻d

We now proceed to analyze some properties of ≻d with respect to the worst-frontier ag-
gregation function. First, we show that a partial feasible composition is not dominated
with respect to ≻d by any of its extensions. This property will be useful in establishing
the soundness of algorithms that compute the most preferred compositions (see Section 4).
Next, we observe that ≻d is irreflexive (follows from the irreflexivity of ≻i), and proceed to
identify the conditions under which ≻d is transitive. We focus on transitive preferences be-
cause many studies have considered transitivity to be a key property of preference relations
(von Neumann & Morgenstern, 1944; French, 1986; Mas-Colell et al., 1995)9.

Proposition 6. Whenever preferences are aggregated using the worst-frontier based aggre-
gation function, for any partial feasible composition C, there is no feasible extension C ⊕W
that dominates it, i.e., VC⊕W 6 ≻d VC.

Proof. The proof proceeds by showing that with respect to each attribute Xi, VC⊕W (Xi) 6 ≻
′
i

VC(Xi), thereby ruling out the existence of a witness for VC⊕W ≻d VC . Suppose that by
contradiction, C ⊕W is a feasible extension of C such that VC⊕W ≻d VC . By Definition 11,
VC⊕W ≻d VC requires the existence of a witness attributeXi ∈ X such that VC⊕W (Xi)≻

′
iVC(Xi),

i.e.,
∀b ∈ VC(Xi) ∃a ∈ VC⊕W (Xi) : a ≻i b (1)

By Definition 7, we have VC⊕W (Xi) = Φi(VC(Xi) ∪ VW (Xi)). However, by Definition 6
a ∈ Φi(VC(Xi)∪VW (Xi))⇒ ∄b ∈ VC(Xi)∪VW (Xi) : a ≻i b, which contradicts Equation (1).
This rules out the existence of a witness for VC⊕W ≻d VC . Hence, VC⊕W 6 ≻d VC .

We next proceed to show that ≻d is not necessarily transitive when intra-attribute and
relative importance preference relations are both arbitrary strict partial orders.

Proposition 7. When intra-attribute preferences ≻i as well as relative importance among
attributes ⊲ are arbitrary partial orders, U ≻d V ∧ V ≻dZ ; U ≻dZ

Proof. We show a counter example of a compositional system with partially ordered {≻i},⊲
and compositions U ,V,Z such that U ≻d V, V ≻dZ but U 6≻dZ.

Consider a system with a set of attributes X = {X1,X2,X3,X4}, each with domains
D1 = {a1, b1}, . . . D4 = {a4, b4}. Let the relative importance relation ⊲ on X and the intra-
attribute preferences ≻1 . . . ≻4 be given by ⊲ = {(X1,X3), (X2,X4)} and ≻i= {(ai, bi)}, i =
1, 2, 3, 4 respectively (Figure 3). The valuations of U ,V,Z with respect to the attributes X
are given in Table 4.

9. While some studies of human decision making have argued that human preferences are not necessarily
transitive (Tversky, 1969), others have offered evidence to the contrary (Regenwetter, Dana, & Davis-
Stober, 2011).

226

Representing and Reasoning with Qualitative Preferences

X1

X3

X2

X4

Relative Importance (⊲)

a1 ≻1 b1

a2 ≻2 b2

a3 ≻3 b3

a4 ≻4 b4

Intra-variable preferences

U = 〈{a1}, {a2}, {b3}, {b4}〉

V = 〈{b1}, {a2}, {a3}, {b4}〉

Z = 〈{b1}, {b2}, {a3}, {a4}〉

Figure 3: Counter example

Comp. (C) VC(X1) VC(X2) VC(X3) VC(X4)

U a1 a2 b3 b4
V b1 a2 a3 b4
Z b1 b2 a3 a4

Table 4: Valuations of U ,V,Z

Clearly U ≻d V with X1 as the witness, and V ≻dZ with X2 as the witness. In addition,
note that:

Z(X3)≻
′
3U(X3) (2)

Z(X4)≻
′
4U(X4) (3)

However, we observe that U 6 ≻d Z:

a. X1 is not a witness due to X4 ∼⊲ X1 and Equation (3).

b. X2 is not a witness due to X3 ∼⊲ X2 and Equation (2).

c. X3 is not a witness due to Equation (2).

d. X4 is not a witness due to Equation (3).

The above proposition shows that the dominance relation ≻d is not transitive when
≻i and ⊲ are arbitrary partial orders, when considering worst-frontier based aggregation.
Because transitivity of preference is a necessary condition for rational choice (von Neumann

227

Santhanam, Basu & Honavar

& Morgenstern, 1944; French, 1986; Mas-Colell et al., 1995), we proceed to investigate the
possibility of obtaining such a dominance relation by restricting ⊲. We later prove that
such a restriction is necessary and sufficient for the transitivity of ≻d .

Definition 12 (Relative Importance as an Interval Order). A relative importance relation
⊲ is a binary relation which is reflexive and satisfies the following axiom.

∀Xi,Xj ,Xk,Xl ∈ X : (Xi ⊲Xj ∧Xk ⊲Xl)⇒ (Xi ⊲Xl ∨Xk ⊲Xj) (4)

We say that Xi is relatively more important than Xj if Xi ⊲Xj .

Proposition 8 (Transitivity of ⊲ see Fishburn, 1985). ⊲ is transitive.

Remarks.

1. Definition 12 imposes an additional restriction on the structure of the relative impor-
tance relation ⊲, over a strict partial order. A strict partial order is just irreflexive
and transitive; however, the relative importance relation in Definition 12 should in
addition satisfy Equation (4), thereby yielding an interval order (Fishburn, 1985).

2. The indifference relation with respect to ⊲, namely ∼⊲ is not transitive. For example,
if there are three attributes X = {X1,X2,X3}, and ⊲ = {(X1,X2)}. ⊲ satisfies the
condition for an interval order, and we have X1 ∼⊲ X3 and X3 ∼⊲ X2, but X1 6∼⊲ X2

because X1 ⊲X2.

Propositions 9-12 establish the properties of the dominance relation ≻d in the case
where the relative importance relation ⊲ is an interval order. In particular, we prove that
≻d is irreflexive (Proposition 9) and transitive (Proposition 12), making ≻d a strict partial
order (Theorem 1).

Proposition 9 (Irreflexivity of ≻d). U ∈
m
∏

i=1

F (Xi)⇒ U 6≻d U .

Proof. Suppose that U ≻d U by contradiction. Then ∃Xi, s.t. U(Xi)≻
′
iU(Xi) by definition.

But this contradicts Proposition 3.

The above proposition ensures that the dominance relation ≻d is strict over composi-
tions. In other words, no composition is preferred over itself. Next, we proceed to establish
the other important property of rational preference relations: transitivity of ≻d . We make
use of two intermediate propositions 10 and 11 that are needed for the task.

In Proposition 10, we prove that if an attribute Xi is relatively more important than
Xj , then Xi is not more important than a third attribute Xk implies that Xj is also not
more important than Xk. This will help us prove the transitivity of the dominance relation.
Figure 4 illustrates the cases that arise.

Proposition 10. ∀Xi,Xj ,Xk :

Xi ⊲Xj ⇒
(

(Xk ⊲Xi ∨Xk ∼⊲ Xi)⇒ (Xk ⊲Xj ∨Xk ∼⊲ Xj)
)

228

Representing and Reasoning with Qualitative Preferences

Xk

Xi

Xi

Xj

Xj

Xk Xi

Xj

Xk

Xk ∼⊲ Xi

(a) (b) (c)

Xk ⊲ Xi

Figure 4: Xi ⊲Xj ∧ (Xk ⊲Xi ∨Xk ∼⊲ Xi)

The proof follows from the fact that ⊲ is a partial order.

Proof.

1. Xi ⊲Xj (Hyp.)

2. Xk ⊲Xi ∨Xk ∼⊲ Xi (Hyp.) Show Xk ⊲Xj ∨Xk ∼⊲ Xj

2.1. Xk ⊲Xi ⇒ Xk ⊲Xj By transitivity of ⊲ and (1.); see Figure 4(a)

2.2. Xk ∼⊲ Xi ⇒ Xk ⊲Xj ∨Xk ∼⊲ Xj

i. Xk ∼⊲ Xi (Hyp.)

ii. (Xk ⊲Xj) ∨ (Xj ⊲Xk) ∨ (Xk ∼⊲ Xj) Always; see Figure 4(b,c)

iii. Xj ⊲Xk ⇒ Xi ⊲Xk (1.) Contradiction!

iv. Xk ⊲Xj ∨Xk ∼⊲ Xj (2.2.ii., iii.)

3. Xi ⊲Xj ⇒
(

(Xk ⊲Xi ∨Xk ∼⊲ Xi)⇒ (Xk ⊲Xj ∨Xk ∼⊲ Xj)
)

(1., 2.1, 2.2)

Proposition 11 states that if attributes Xi,Xj are such that Xi ∼⊲ Xj then at least
one of them, Xu is such that with respect to the other, Xv, there is no attribute Xk that
is less important while at the same time Xk ∼⊲ Xu. This result is needed to establish the
transitivity of the dominance relation.

Proposition 11. ∀Xi,Xj , u 6= v,Xi ∼⊲ Xj ⇒ ∃Xu,Xv ∈ {Xi,Xj},∄Xk : (Xu ∼⊲ Xk ∧
Xv ⊲Xk)

The proof makes use of the fact that relative importance is an interval order relation.

Proof. Let Xi ∼⊲ Xj , and X ′
i and X ′

j be attributes that are less important than Xi and Xj

respectively (if any). Figure 5 illustrates all the cases. Figure 5(a, b, c, d, e) illustrates the
cases when at most one of X ′

i and X ′
j exists, and in each case the claim holds trivially. For

example, in the cases of Figure 5(a, b, c), both Xu = Xi;Xv = Xj and Xu = Xj ;Xv = Xi

satisfy the implication, and in the cases of Figure 5(d, e), the corresponding satisfactory
assignments to Xu and Xv are shown in the figure. The case of Figure 5(f) never arises
because ⊲ is an interval order (see Definition 12). Hence, the proposition holds in all
cases.

229

Santhanam, Basu & Honavar

Xi

X ′j

Xj Xi

X ′i

Xj

(a) (b) (c)

Xi Xj

Xi

X ′j

Xj Xi

X ′i

Xj

(d) (e)

X ′j

XjXi

X ′i

(f)

Xu = Xj Xu = Xi

Xv = Xi Xv = Xj

Contradiction!

(⊲ is an interval order)

Figure 5: Xi ∼⊲ Xj

The above proposition reflects the interval order property of the ⊲ relation, and it
complements the result of Proposition 7, where ≻d was shown to be intransitive when ⊲

is not an interval order. In fact, if relative importance was defined as a strict partial order
instead, the above proof does not hold. Given that U ≻d V with witness Xi and V ≻dZ with
witness Xj , the above proposition guarantees that one among Xi and Xj can be chosen as
a potential witness for U ≻dZ so that the conditions demonstrated in the counter example
of Proposition 7 are avoided. Using the propositions 10 and 11, we are now in a position to
prove transitivity of ≻d in Proposition 12.

Proposition 12 (Transitivity of ≻d). ∀ U ,V,Z ∈
m
∏

i=1

F (Xi),

U ≻d V ∧ V ≻dZ ⇒ U ≻dZ.

The proof proceeds by considering all possible relationships between Xi,Xj , the respec-
tive attributes that are witnesses of the dominance of U over V and V over Z. Lines 5, 6, 7 in
the proof establish the dominance of U over Z in the cases Xi ⊲Xj , Xj ⊲Xi and Xi ∼⊲ Xj

respectively. In the first two cases, the more important attribute among Xi and Xj is shown
to be the witness for U ≻dZ with the help of Proposition 10; and in the last case we make
use of Proposition 11 to show that at least one of Xi,Xj is a witness for U ≻dZ.

Proof.

1. U ≻d V (Hyp.)

2. V ≻dZ (Hyp.)

3. ∃Xi : U(Xi)≻
′
iV(Xi) (1.)

4. ∃Xj : V(Xj)≻
′
jZ(Xj) (2.)

Three cases arise: Xi ⊲Xj(5.), Xj ⊲Xi(6.) and Xi ∼⊲ Xj(7.).

230

Representing and Reasoning with Qualitative Preferences

5. Xi ⊲Xj ⇒ U ≻dZ

5.1. Xi ⊲Xj (Hyp.)

5.2. V(Xi)�
′
iZ(Xi) (2., 5.1.)

5.3. U(Xi)≻
′
iZ(Xi) (3., 5.2.)

5.4. ∀Xk : (Xk ⊲Xi ∨Xk ∼⊲ Xi)⇒ U(Xk)�
′
kZ(Xk)

i. Let Xk ⊲Xi ∨Xk ∼⊲ Xi (Hyp.)

ii. U(Xk)�′
kV(Xk) (1., 5.4.i.)

iii. Xk ⊲Xj ∨Xk ∼⊲ Xj (5.4.i., P roposition 10)

iv. V(Xk)�′
kZ(Xk) (2., 5.4.iii.)

v. U(Xk)�′
kZ(Xk) (5.4.ii., 5.4.iv.)

5.5. Xi ⊲Xj ⇒ U ≻dZ (5.1., 5.3., 5.4.)

6. Xj ⊲Xi ⇒ U ≻dZ

6.1. This is true by symmetry ofXi,Xj in the proof of (5.); in this case, it can easily be
shown that U(Xj)≻

′
iZ(Xj) and ∀Xk : (Xk⊲Xj∨Xk ∼⊲ Xj)⇒ U(Xk)�

′
kZ(Xk).

7. Xi ∼⊲ Xj ⇒ U ≻dZ

7.1. Xi ∼⊲ Xj (Hyp.)

7.2. ∃Xu,Xv ∈ {Xi,Xj} : Xu 6= Xv∧∄Xk : (Xu ∼⊲ Xk∧Xv⊲Xk) (7.1., P roposition 11)

7.3. Without loss of generality, suppose that Xu = Xi,Xv = Xj (Hyp.).

7.4. V(Xi)�
′
iZ(Xi) (2., 7.1.)

7.5. U(Xi)≻
′
iZ(Xi) (3., 7.4.)

7.6. ∀Xk : Xk ⊲Xi ⇒ U(Xk)�
′
kZ(Xk).

i. Xk ⊲Xi (Hyp.)

ii. U(Xk)�′
kV(Xk) (1., 7.6.i.)

iii. Xk ⊲Xj ∨Xk ∼⊲ Xj Because Xj ⊲Xk Contradicts (7.1., 7.6.i.)!

iv. V(Xk)�′
kZ(Xk) (2., 7.6.iii.)

v. U(Xk)�′
kZ(Xk) (7.6.ii., 7.6.iv.)

7.7. ∀Xk : Xk ∼⊲ Xi ⇒ U(Xk)�
′
kZ(Xk)

i. Xk ∼⊲ Xi (Hyp.)

ii. U(Xk)�′
kV(Xk) (1., 7.7.i.)

iii. Xk ⊲Xj ∨Xk ∼⊲ Xj Because Xj ⊲Xk Contradicts (7.2., 7.3.)!

iv. V(Xk)�′
kZ(Xk) (2., 7.7.iii.)

v. U(Xk)�′
kZ(Xk) (7.7.ii., 7.7.iv.)

7.8. ∀Xk : Xk ⊲Xi ∨Xk ∼⊲ Xi ⇒ U(Xk)�′
kZ(Xk) (7.6., 7.7.)

7.9. Xi ∼⊲ Xj ⇒ U ≻dZ (7.5., 7.8.)

8. (Xi ⊲Xj ∨Xj ⊲Xi ∨Xi ∼⊲ Xj)⇒ U ≻dZ (5., 6., 7.)

9. U ≻d V ∧ V ≻dZ ⇒ U ≻dZ (1., 2., 8.)

Theorem 1. If the intra-attribute preferences ≻i are arbitrary strict partial orders and
relative importance ⊲ is an interval order, then ≻d is a strict partial order.

Proof. Follows immediately from Propositions 9 and 12.

231

Santhanam, Basu & Honavar

X ′j

XjXi

X ′i

Figure 6: A 2⊕ 2 substructure, not an Interval Order

3.5 Role of Interval Order Restriction on ⊲ in the Transitivity of ≻d

Theorem 1 establishes that given partially ordered intra-attribute preferences ≻i, if the
relative importance relation (⊲) is an interval order (Definition 12), then ≻d is transitive.
In addition, we have also seen a counter example in Proposition 7, which shows that the
transitivity of ≻d does not necessarily hold when ⊲ is an arbitrary partial order.

Is there a condition weaker than the interval order restriction that still makes ≻d

transitive when retain intra-attribute preferences as arbitrary partial orders and dominance
as in Definition 11? The answer turns out to be ‘no’, which we prove next.

Before we proceed to prove the necessity of an interval ordered relative importance
relation ⊲ for a transitive dominance relation ≻d , we will examine interval orders more
closely. Recall from Definition 12 that every interval order ⊲ on X is a partial order, and
it additionally satisfies Ferrer’s axiom for all X1,X2,X3,X4 ∈ X :

(X1 ⊲X2 ∧X3 ⊲X4)⇒ (X1 ⊲X4 ∨X3 ⊲X2)

We borrow a characterization of the above axiom by Fishburn (1970a, 1985) that the
relation ⊲ is an interval order if and only if 2⊕ 2 * ⊲, where 2⊕ 2 is a relational structure
shown in Figure 6. In other words, a partial order is an interval order if and only if it has
no restriction of itself that is isomorphic to the partial order structure shown in Figure 6.

Theorem 2 (Necessity of Interval Order). For partially ordered intra-attribute preferences
and dominance relation in Definition 11, ≻d is transitive only if relative importance ⊲ is
an interval order.

Proof. Assume that ⊲ is not an interval order. This is true if and only if 2 ⊕ 2 ⊆ ⊲.
However, we showed in Proposition 7 that in this case, ≻d is not transitive using a counter
example (see Figure 3). Hence, ≻d is transitive only if relative importance ⊲ is an interval
order.

3.6 Additional Properties of ≻d with Respect to the Properties of {≻i} and ⊲

We now present some additional properties10 of ≻d that hold when certain restrictions are
imposed on the intra-attribute and relative importance preference relations.

Proposition 13. If ⊲ is a total order and Xi is the most important attribute in X with
respect to ⊲, then ≻′

i ⊆ ≻d .

10. The results in this section essentially prove conjectures that arose out of analysis of the results of our
experiments (see Section 6).

232

Representing and Reasoning with Qualitative Preferences

Proof. Let Xi be the (unique) most important attribute in X . Suppose that U(Xi)≻
′
iV(Xi),

thereby making Xi a potential witness for U ≻d V. Since Xi is the most important attribute,
∀Xk ∈ X : Xi ⊲Xk, the second clause in the definition of U ≻d V trivially holds. Hence, Xi

is a witness for U ≻d V (see Definition 11).

Note that the proof of the above proposition only made use of the fact that ∀Xk ∈
X : Xi ⊲Xk, which is a weaker condition than ⊲ being a total order. Hence, we have the
following more general result.

Proposition 14. If ⊲ is such that there is a unique most important attribute Xi, i.e.,
∃Xi ∈ X : ∀Xk ∈ X \ {Xi} : Xi ⊲Xk, then ≻′

i ⊆ ≻d .

We proceed to prove an important result that gives conditions under which ≻d is a
weak order.

Theorem 3. When the aggregation function ≻′
i is defined as in Definition 8, if ⊲ as well

as {≻i} are total orders, then ≻d is a weak order.

Proof. ≻d is a weak order if and only if it is a strict partial order and negatively transitive.
We have already shown that ≻d is a strict partial order in Theorem 1, and hence we are
only left with proving that ≻d is negatively transitive, i.e., U 6 ≻d V ∧V 6 ≻d Z ⇒ U 6≻d Z.

First, we note that since ≻i is a total order, ≻′
i is also a total order (see Definition 8).

U 6 ≻d V ⇒ (∀Xi : U(Xi)≻
′
iV(Xi) ⇒ ∃Xk : (Xk ⊲Xi ∧ U(Xk) 6 �′

k V(Xk))) (Xk ∼⊲ Xi

is not possible because ⊲ is a total order). (1)
Let Xi and Xj be the most important attributes s.t. U(Xi)≻

′
iV(Xi) and V(Xj)≻

′
jZ(Xj)

respectively. (2)
Let Xp and Xq be the most important attributes s.t. Xp ⊲Xi ∧ U(Xp) 6 �

′
p V(Xp) and

Xq ⊲Xj ∧ V(Xq) 6 �
′
q Z(Xq) respectively (such Xp and Xq must exist by (1)). (3)

Case 1 Both Xi and Xj as defined in (2) exist (cases when such Xi and/or Xj don’t exist
will be dealt with separately).

Three sub-cases arise: Xp ⊲Xq, Xq ⊲Xp and Xp = Xq.
Case 1a: Suppose that Xp ⊲Xq (see Figure 7). (4)

• From (3) we know that Xp ⊲Xi ∧ U(Xp) 6 �
′
p V(Xp), i.e., V(Xp)≻

′
pU(Xp). (5)

• From (3) and (4) we know that V(Xp)�
′
pZ(Xp), because Xq is the most important

attribute that is also more important than Xj and V(Xq) 6 �
′
q Z(Xq), and Xp is more

important than Xq (and hence Xj as well). (6)

• But because Xj is the most important attribute with V(Xj)≻
′
jZ(Xj), and Xp ⊲Xj

(since Xq ⊲Xj and Xp ⊲Xq), we have V(Xp) 6 ≻
′
p Z(Xp) (as Xj is the most important

attribute with V(Xj)≻
′
jZ(Xj), using (2)). Along with (6), this means that V(Xp) =

Z(Xp). (7)

• From (5) and (7), Z(Xp)≻
′
pU(Xp). (8)

• Also, ∀Xk : Xk ⊲ Xp ⇒ U(Xk) = V(Xk) ∧ V(Xk) = Z(Xk) (because Xk is more
important than Xi,Xj and Xp,Xq). (9)

233

Santhanam, Basu & Honavar

Xp

Xq

U(Xk) = V(Xk)

U(Xi) ≻
′
i V(Xi)

V(Xj) ≻′j Z(Xj)

V(Xk) = Z(Xk)

Figure 7: The case when Xp ⊲Xq

• From (8) and (9), Z ≻d U with Xp as witness. Hence, U 6 ≻d Z.

Case 1b: Suppose that Xq ⊲Xp. The claim holds by symmetry.
Case 1c: Suppose that Xp = Xq.

• From (3) we know that Xp ⊲Xi ∧ U(Xp) 6 �
′
p V(Xp), i.e., V(Xp)≻

′
pU(Xp).

• Similarly, Z(Xp)≻
′
pV(Xp).

• Hence, Z(Xp)≻
′
pU(Xp). Moreover, ∀Xk : Xk ⊲ Xp ⇒ U(Xk) = V(Xk) ∧ V(Xk) =

Z(Xk) (because Xk is more important than Xi,Xj and Xp,Xq).

• Therefore, Z ≻d U with Xp as witness. Hence, U 6 ≻d Z.

Case 2 : If Xi (say) does not exist, then ∀Xi : U(Xi) 6 ≻
′
i V(Xi). Let Xp be the most

important attribute s.t. V(Xp)≻
′
pU(Xp) (if Xp does not exist, then trivially U 6 ≻d Z

because U = V). (10)
Case 2a: Suppose Xp ⊲Xq. Then ∀Xk : Xk ⊲Xp ⇒ V(Xk) = Z(Xk) (because Xk ⊲Xq

as well). Moreover, Xp ⊲ Xq ⇒ V(Xp) = Z(Xp). Hence, Z ≻d U with Xp as witness and
therefore U 6 ≻d Z.

Case 2b: Suppose Xq ⊲Xp. Then ∀Xk : Xk ⊲Xq ⇒ U(Xk) = V(Xk) (because Xk ⊲Xp

as well). Moreover, Xq ⊲Xp ⇒ U(Xq) = V(Xq). Hence, Z ≻d U with Xq as the witness and
therefore U 6 ≻d Z.

Case 2c: SupposeXp = Xq. Then ∀Xk : Xk⊲Xp ⇒ V(Xk) = Z(Xk) (becauseXk⊲Xq as
well) and similarly ∀Xk : Xk ⊲Xq ⇒ U(Xk) = V(Xk) (because Xk ⊲Xp as well). Moreover,
since V(Xq) 6 �

′
q Z(Xq) (by (3)), V(Xp)≻

′
pU(Xp) (using (10)) we have Z(Xp)≻

′
pU(Xp).

Hence, Z ≻d U with Xp as the witness and therefore U 6 ≻d Z.

Case 3 : If Xj (say) does not exist, the proof is symmetric to Case 2.

Case 4 : Suppose that both Xi and Xj do not exist. Then, for any attribute Xi,
V(Xi)�

′
iU(Xi) and Z(Xi)�

′
iV(Xi), i.e., ∀Xi : Z(Xi)�

′
iU(Xi). Hence, there is no witness

for U ≻dZ, or U 6 ≻d Z.

Cases 1 - 4 are exhaustive, and in each case U 6 ≻d Z. This completes the proof.

234

Representing and Reasoning with Qualitative Preferences

We further conjecture that ≻d is a weak order when {≻i} are total orders and ⊲ is an
arbitrary interval order (i.e., under conditions that are more general than the conditions of
Theorem 3). We leave this as an open problem.

Conjecture 1. If {≻i} are total orders and ⊲ is an arbitrary interval order, then ≻d is a
weak order.

Remark.

As stated, Conjecture 1 and Theorem 3 apply whenever {≻i} are totally ordered, and when
using our method of comparing two aggregated valuations (≻′

i) (see Definition 8). More
generally, we note that they hold whenever {≻′

i} are total orders, regardless of the chosen
method of comparing two aggregated valuations, and regardless of the properties of the
input intra-attribute preferences {≻i}. For example, suppose that {≻i} are ranked weak
orders (i.e., not total orders). As such, Conjecture 1 and Theorem 3 do not apply. However,
for each attribute Xi if we define Φi(S) to be the rank number corresponding to the worst
frontier of S, and ≻′

i as the natural total order over the ranks in the weak order, then the
consequences of Conjecture 1 and Theorem 3 hold.

We summarize the theoretical results relating the properties of the dominance relation
and the properties of the preference relations ⊲ and {≻′

i} in Table 5.

⊲ ≻′
i ≻d Remarks

io po po Theorem 1
io to wo Conjecture 1
to to wo Theorem 3

Table 5: Summary of results and conjectures relating to the properties of ≻d with respect
to the properties of ⊲ and {≻′

i}.

3.7 Choosing the Most Preferred Solutions

Given a set C = {Ci} of compositions and a preference relation ≻ (e.g., ≻d) that allows
us to compare any pair of compositions, the problem is to find the most preferred compo-
sition(s). When the preference relations are totally ordered (e.g., a ranking) over a set of
alternative solutions, rationality of choice suggests ordering the alternatives with respect
to the complete preference and choosing the “best” alternative, i.e., the one that ranks the
highest. However, when the preference relation is a strict partial order, e.g., in the case of
≻d , not every pair of solutions (compositions) may be comparable. Therefore, a solution
that is the most preferred with respect to the preference relation may not exist. Hence, we
use the notion of the non-dominated set of solutions defined as follows.

Definition 13 (Non-dominated Set). The non-dominated set of elements (alternatives or
solutions or compositions) of a set C with respect to a (partially ordered) preference relation
≻ (e.g., ≻d), denoted Ψ≻(C), is a subset of C such that none of the elements in S are
preferred to any element in Ψ≻(C).

235

Santhanam, Basu & Honavar

Ψ≻(C) = {Ci ∈ C|∄Cj ∈ C : Cj ≻ Ci}

Note that as per this definition, Ψ≻(C) is the maximal set of elements in C with respect to
the relation ≻. It is also easy to observe that C 6= ∅ ⇔ Ψ≻(C) 6= ∅.

4. Algorithms for Computing the Most Preferred Compositions

We now turn to the problem of identifying from a set of feasible compositions (that satisfy
a pre-specified functionality (ϕ)), the most preferred subset, i.e., the non-dominated set.

4.1 Computing the Maximal/Minimal Subset with Respect to a Partial Order

The straightforward way of computing the maximal (non-dominated) elements in a set
S of n elements with respect to any preference relation ≻ is the following algorithm: For
each element si ∈ S, check if ∃sj ∈ S : sj ≻ si, and if not, si is in the non-dominated
set. This simple “compare all pairs and delete dominated” approach involves computing
dominance with respect to ≻ O(n2) times.

Recently Daskalakis, Karp, Mossel, Riesenfeld and Verbin (2009) provided an algorithm
that performs at most O(wn) pairwise comparisons to compute the maximal elements of a
set S with respect to a partial order ≻, where n = |S| and w is the width of the partial
order ≻ on S (the size of the maximal set of pairwise incomparable elements in S with
respect to ≻). The algorithm presented by Daskalakis et al. finds the minimal elements;
the corresponding algorithm for finding the maximal elements is as follows.

Let T0 = ∅. Let the elements of the set S be x1, x2, · · · xn. At step t(≥ 1):

• Compare xt to all elements in Tt−1.

• If there exists some a ∈ Tt−1 such that a ≻ xt, do nothing.

• Otherwise, remove from Tt−1 all elements a such that xt ≻ a and put xt into Tt.

On termination, the set Tn contains all the maximal elements in S, i.e., non-dominated
subset of S with respect to ≻. We make use of the above algorithm to compute the non-
dominated (maximal) subsets (namely, Ψ≻(·)), and the original version of the algorithm
given in by Daskalakis (2009) to compute the worst-frontiers (minimal subsets).

4.2 Algorithms for Finding the Most Preferred Feasible Compositions

We proceed to develop algorithms for finding the most preferred feasible compositions, given
a compositional system 〈R,⊕, |=〉 consisting of a repository R of pre-existing components,
a user specified functionality ϕ, user preferences {≻i} and ⊲ and a functional composition
algorithm f . We analyze the properties of the algorithms with respect to the worst-frontier
based aggregation (see Definition 6).

Definition 14 (Soundness and Completeness). An algorithm A that, given a set C of
feasible compositions, computes a set of feasible compositions SA ⊆ Ψ≻d

(C) is said to be
sound with respect to C. Such an algorithm is complete with respect to C if SA ⊇ Ψ≻d

(C).

236

Representing and Reasoning with Qualitative Preferences

Algorithm 1 ComposeAndFilter(≻, f, ϕ)

1. Find the set C of feasible compositions w.r.t. ϕ using f
2. return Ψ≻(C)

Given a compositional system 〈R,⊕, |=〉 consisting of a repository R of pre-existing com-
ponents, and a user specified functionality ϕ, the most straightforward approach to finding
the most preferred feasible compositions involves: (a) computing the set C of functionally
feasible compositions using a functional composition algorithm f , and (b) choosing the
non-dominated set according to preferences over non-functional attributes.

Algorithm 1 follows this simple approach to produce the set Ψ≻d
(C) of all non-dominated

feasible compositions, when invoked with the preference relation ≻d , the functional com-
position algorithm f and the desired functionality ϕ. Ψ≻d

(C) can be computed using the
procedure described in Section 4.1. Algorithm 1 is both sound and complete with respect
to C.

4.3 A Sound and Weakly Complete Algorithm

Note that in the worst case, Algorithm 1 evaluates the dominance relation ≻d between
all possible pairs of feasible compositions C. However, this can be avoided if we settle for
a non-empty subset of Ψ≻d

(C). Note that every solution in such a subset is guaranteed
to be “optimal” with respect to user preferences ≻d . We introduce the notion of weak
completeness to describe an algorithm that computes a set of feasible compositions, at least
one of which is non-dominated with respect to ≻d .

Definition 15 (Weak Completeness). An algorithm A that, given a set C of feasible compo-
sitions, computes a set SA of feasible compositions is said to be weakly complete with respect
to C if Ψ≻d

(C) 6= ∅ ⇒ SA ∩Ψ≻d
(C) 6= ∅.

We now proceed to describe a sound and weakly complete algorithm, i.e., one that com-
putes a non-empty subset of Ψ≻d

(C). The algorithm is based on the following observation:
Solutions that are non-dominated with respect to each of the relatively most-important
attributes are guaranteed to include some solutions that are non-dominated overall with
respect to ≻d as well. Hence, the solutions that are most preferred with respect to each
such attribute can be used to compute a non-empty subset of Ψ≻d

(C). We proceed by
considering solutions that are most preferred with respect to an attribute Xi.

Definition 16 (Non-dominated solutions w.r.t. attributes). The set Ψ≻′
i
(C) of solutions

that are non-dominated with respect to an attribute Xi is defined as

Ψ≻′
i
(C) = {U | U ∈ C ∧ ∄V ∈ C : V(Xi)≻

′
iU(Xi)}.

Let I ⊆ X be the set of most important attributes with respect to ⊲, i.e., I = Ψ⊲(X) =
{Xi|∄Xj ∈ X : Xj ⊲Xi}. Clearly, I 6= ∅ because there always exists a non-empty maximal
set of elements in the partial order ⊲. The following proposition states that for every Xi ∈ I,
at least one of the solutions in Ψ≻′

i
(C) is also contained in Ψ≻d

(C).

Proposition 15. ∀Xi ∈ I : Ψ≻d
(C) 6= ∅ ⇒ Ψ≻′

i
(C) ∩ Ψ≻d

(C) 6= ∅ (See Appendix A for a
proof).

237

Santhanam, Basu & Honavar

Algorithm 2 constructs a subset of Ψ≻d
(C), using the sets {Ψ≻′

i
(C) | Xi ∈ I}. First, the

algorithm computes the set I of most important attributes in X with respect to ⊲ (Line 2).
The algorithm iteratively computes Ψ≻′

i
(C) for each Xi ∈ I (Lines 3, 4), identifies the subset

of solutions that are non-dominated with respect to ≻d in each case, and combines them
to obtain θ ⊆ Ψ≻d

(C).

Algorithm 2 WeaklyCompleteCompose({≻i | Xi ∈ X},⊲, f, ϕ)

1. θ ← ∅
2. I ← Ψ⊲(X) = {Xi | ∄Xj : Xj ⊲Xi}
3. for all Xi ∈ I do
4. Ψ≻′

i
(C)← ComposeAndFilter(≻′

i, f, ϕ)
5. θ ← θ ∪Ψ≻d

(Ψ≻′
i
(C))

6. end for
7. return θ

Theorem 4 (Soundness and Weak Completeness of Algorithm 2). Given a set of attributes
X , preference relations ⊲ and ≻′

i, Algorithm 2 generates a set θ of feasible compositions
such that θ ⊆ Ψ≻d

(C) and Ψ≻d
(C) 6= ∅ ⇒ θ 6= ∅ (See Appendix A for a proof).

In general, Algorithm 2 is not guaranteed to yield a complete set of solutions, i.e., θ 6=
Ψ≻d

(C). The following example illustrates such a case.

Example. Consider a compositional system with two attributes X = {X1,X2}, with
domains {a1, a2, a3} and {b1, b2, b3} respectively. Let their intra-attribute preferences be
total orders: a1 ≻1 a2 ≻1 a3 and b1 ≻2 b2 ≻2 b3 respectively, and let both attributes be
equally important (⊲ = ∅). Suppose the user-specified goal ϕ is satisfied by three feasible
compositions C1, C2, C3 with valuations VC1

= 〈{a1}, {b3}〉, VC2
= 〈{a3}, {b1}〉 and VC3

=
〈{a2}, {b2}〉 respectively. Given the above preferences, Ψ≻′

1
(C) = {C1} and Ψ≻′

2
(C) = {C2}.

Thus, θ = {C1, C2} However, Ψ≻d
(C) = {C1, C2, C3} 6= θ. ⋄

The above example shows that the most preferred valuation for one attribute (e.g., X1)
can result in poor valuations for one or more other attributes (e.g., X2). Algorithm 2 may
thus leave out solutions like C3 that are not most preferred with respect to any one ≻′

i,
but nevertheless may correspond to a good compromise when we consider multiple most
important attributes. It is a natural question to ask what are the minimal conditions
under which Algorithm 2 is complete. A related question is whether Algorithm 2 can be
guaranteed to produce a certain minimum number of non-dominated solutions (|θ|) under
some specific set of conditions. Note that in general, the cardinality of θ depends not only
on the user preferences ≻i,⊲, but also on the user specified functionality ϕ which together
with the repository R determines the set C of feasible compositions. However, in the special
case when ⊲ specifies a single attribute Xt that is relatively more important than all other
attributes, we can show that Algorithm 2 is complete.

Proposition 16. If I = {Xt} ∧ ∀Xk 6= Xt ∈ X : Xt ⊲ Xk, then Ψ≻d
(C) ⊆ θ, i.e.,

Algorithm 2 is complete (See Appendix A for a proof).

It remains to be seen what are all the necessary and sufficient conditions for ensuring
the completeness of Algorithm 2, and we plan to address this problem in the future.

238

Representing and Reasoning with Qualitative Preferences

4.4 Optimizing with Respect to One of the Most Important Attributes

As we will see in Section 5, Algorithm 2 has a high worst case complexity, especially if
the set I of most important attributes is large. This is due to the fact that for each
most important attribute Xi ∈ I, the algorithm computes the non-dominated set over
the feasible compositions with respect to ≻′

i first, and then with respect to ≻d , i.e., θ ∪
Ψ≻d

(Ψ≻′

i
(C)) (Line 4). The computation of the non-dominated set with respect to ≻d ,

although expensive, is crucial to ensuring the soundness of Algorithm 2.

While soundness is a desirable property, there may be settings requiring faster compu-
tation of feasible compositions, where it may be acceptable to obtain a set S of feasible
compositions that contains at least one (whenever there exists one) of the most preferred
feasible compositions (one that is non-dominated by any other feasible composition with
respect to ≻d). In such a case, it might be useful to have an algorithm with lower com-
plexity that finds a set of feasible compositions of which at least one is most preferred (i.e.,
weakly complete), as opposed to one with a higher complexity that finds a set of feasible
compositions all of which are most preferred (i.e., sound).

Algorithm 3 AttWeaklyCompleteCompose({≻i | Xi ∈ X},⊲, f, ϕ)

1. I ← Ψ⊲(X) = {Xi | ∄Xj : Xj ⊲Xi}
2. for some Xi ∈ I
3. θ ← Ψ≻′

i
(C) = ComposeAndFilter(≻′

i, f, ϕ)
4. return θ

We consider one such modification of Algorithm 2, namely Algorithm 3, that arbitrarily
picks one of the most important attributes Xi ∈ I (as opposed to the entire set I as in
Algorithm 2) and finds the set of all feasible compositions that are non-dominated with
respect to ≻′

i, i.e., θ = Ψ≻′
i
(C) for Algorithm 3.

The weak completeness of Algorithm 3 follows directly from Proposition 15. In the
following example, however, we show that some of the feasible compositions produced by
Algorithm 3 may be dominated by some other feasible composition with respect to ≻d ,
i.e., Algorithm 3 is not sound.

Example. Consider a compositional system with two attributes X = {X1,X2}, with
domains {a1, a2} and {b1, b2} respectively. Let their intra-attribute preferences be: a1 ≻1 a2

and b1 ≻2 b2 respectively, and let both attributes by equally important (⊲ = ∅; I =
{X1,X2}). Suppose the user-specified goal ϕ is satisfied by three feasible compositions
C1, C2, C3 with valuations VC1

= 〈{a1}, {b1}〉, VC2
= 〈{a2}, {b1}〉 and VC3

= 〈{a1}, {b2}〉
respectively. Given the above preferences, if we choose to maximize the preference with
respect to attribute X1 ∈ I, then θ = Ψ≻′

1
(C) = {C1, C3}. If we choose X2 ∈ I instead, we

get θ = Ψ≻′
2
(C) = {C1, C2}. However, in any case Ψ≻d

(C) = {C1} 6= θ. ⋄

The following proposition gives a condition under which Algorithm 3 is complete.

Proposition 17. If |I| = 1, i.e., there is a unique most important attribute with respect to
⊲, then Algorithm 3 is complete (See Appendix A for a proof).

239

Santhanam, Basu & Honavar

Algorithm 4 InterleaveCompose(L,≻, f, ϕ)

1. if L = ∅ then
2. return ∅
3. end if
4. θ = Ψ≻(L)
5. θ′ = ∅
6. for all C ∈ θ do
7. if C 6|= ϕ then
8. θ′ = θ′ ∪ f(C)
9. else

10. θ′ = θ′ ∪ {C}
11. end if
12. end for
13. if θ′ = θ then
14. return θ
15. else
16. InterleaveCompose((L \ θ) ∪ θ′,≻, f, ϕ)
17. end if

4.5 Interleaving Functional Composition with Preferential Optimization

Algorithms 1, 2 and 3 identify the most preferred feasible compositions using the two
step approach: (a) find the feasible compositions C; and (b) compute a subset of C that is
preferred with respect to the user preferences. We now develop an algorithm that eliminates
some of the intermediate partial feasible compositions from consideration based on the user
preferences. This is particularly useful in settings (such as when |C| is large relative to
|Ψ≻d

(C)|), where it might be more efficient to compute only a subset of C that are likely
(based on ≻i and ⊲) to be in Ψ≻d

(C).

Algorithm 4 requires that the functional composition algorithm f is incremental (see
Definition 2), i.e., that it produces a set f(C) of functionally feasible extensions given any
existing partial feasible composition C. At each step, Algorithm 4 chooses a subset of
the feasible extensions produced by applying f on all the non-dominated partial feasible
compositions, based on the user preferences. Algorithm 4 computes the non-dominated
set of feasible compositions by interleaving the execution of the incremental functional
composition algorithm f with the ordering of partial solutions with respect to preferences
over non-functional attributes.

Algorithm 4 is initially invoked using the parameters L = (⊥) 11, ≻d , the functional
composition algorithm f and ϕ. The algorithm maintains at each step a list L of partial
feasible compositions under consideration. If L is empty at any step, i.e., there are no
more partial feasible compositions to be explored, then the algorithm terminates with no

11. It is not necessary to invoke the algorithm with L = (⊥) (i.e., only ⊥ in the list L) initially. There
may be functional composition algorithms that begin with an non-empty composition C and proceed to
obtain a feasible composition by iteratively altering C. For instance, one could think of randomized or
evolutionary algorithms that begin with a random, non-empty composition which is somehow repeatedly
“improved” during the course of composition.

240

Representing and Reasoning with Qualitative Preferences

solution (Lines 1− 3); otherwise it selects from L, the subset θ that is non-dominated with
respect to some preference relation ≻ (Line 4). If all the partial feasible compositions in
θ are also feasible compositions, then the algorithm outputs θ and terminates (Lines 13 −
14). Otherwise, it replaces the partial feasible compositions in θ that are not feasible
compositions, with their one-step extensions (Lines 7 − 8). The algorithm continues to
recurse (Line 16), at each iteration updating the dominated set by replacing θ with θ′ until
there are no changes in the dominated set i.e., θ = θ′. Note that it is not possible to
eliminate the dominated compositions (L\ θ) at this stage because some of their extensions
(in a later iteration) could result in non-dominated compositions.

Proposition 18 (Termination of Algorithm 4). Given a finite repository of components,
Algorithm 4 terminates in a finite number of steps (See Appendix A for a proof).

We next investigate the soundness, weak-completeness and completeness properties of Al-
gorithm 4. Proposition 19 states that the algorithm is in general not sound with respect to
C, i.e., it is not guaranteed to produce feasible compositions that are non-dominated with
respect to ≻d . However, this does not discount the usefulness of the algorithm, as we will
show that it is sound under some other assumptions (see Theorem 5).

Proposition 19 (Unsoundness of Algorithm 4). Given a functional composition algorithm
f and user preferences ≻′

i and ⊲ over a set of attributes X , Algorithm 4 is not guaranteed
to generate a set of feasible compositions θ such that θ ⊆ Ψ≻d

(C) (See Appendix A for a
proof).

This result implies that in general, not all feasible compositions returned by Algorithm 4
(θ) are in Ψ≻d

(C). The example shown in Figure 8 illustrates this problem. At the time
of termination, there may exist some partial feasible composition B in the list L that is
dominated by some feasible composition E in θ; however, it may be possible to extend B to
a feasible composition B⊕W that dominates one of the compositions F in θ (as illustrated
by the counter example in the proof, see Appendix A). In other words, VE ≻d VB, VF ∼d VE ,
VF ∼d VB and VB⊕W ≻d VF .

�
E F B

B �W

............

Figure 8: The case when Algorithm 4 is not sound

Although Algorithm 4 is not sound in general, we show that it is sound when the ≻d

relation is an interval order (as opposed to an arbitrary partial order).

Theorem 5 (Soundness of Algorithm 4). If ≻d is an interval order, then given a func-
tional composition algorithm f and user preferences {≻′

i},⊲ over a set of attributes X ,

241

Santhanam, Basu & Honavar

Algorithm 4 generates a set θ of feasible compositions such that θ ⊆ Ψ≻d
(C) (See Appendix

A for a proof).

Because Theorem 5 requires ≻d to be an interval order, an important question arises:
What are the conditions under which ≻d an interval order? Theorem 3 (see Section 3.6)
gives us one such condition when ≻d is a weak order (i.e., also an interval order). The next
two theorems give conditions under which Algorithm 4 is weakly complete and complete
respectively.

Theorem 6 (Weak Completeness of Algorithm 4). If ≻d is an interval order, then given a
functional composition algorithm f and user preferences {≻′

i},⊲ over a set of attributes X ,
Algorithm 4 produces a set θ of feasible compositions such that Ψ≻d

(C) 6= ∅ ⇒ θ∩Ψ≻d
(C) 6=

∅ (See Appendix A for a proof).

Theorem 7 (Completeness of Algorithm 4). If ≻d is a weak order, then given a func-
tional composition algorithm f and user preferences {≻′

i},⊲ over a set of attributes X ,
Algorithm 4 generates a set θ of feasible compositions such that Ψ≻d

(C) ⊆ θ (See Appendix
A for a proof).

Remark. The above algorithm does not explore feasible compositions that can be gen-
erated by extending other feasible compositions (by the condition in Line 7). Proposition
6 shows that when worst-frontier based aggregation is used, extending a feasible compo-
sition cannot yield a more preferred feasible composition. This guarantees the soundness
of Algorithm 4 (Theorem 5). However, when other aggregation schemes are used, it might
be the case that a feasible extension of a feasible composition is more preferred, in which
case, in order to ensure the soundness of Algorithm 4, Line 10 will have to be changed to
θ′ = θ′ ∪ {C} ∪ f(C).

A summary of the conditions (in terms of the properties of the relative importance or
dominance preference) under which the algorithms are sound, complete and weak complete
are given in Table 6.

Algorithm Sound Weakly Complete Complete

A1 po po po
A2 po po |I| = 1
A3 − po |I| = 1
A4 io io wo

Table 6: Properties of ≻d or ⊲ for which the algorithms are sound, weakly complete and
complete. po stands for ≻d being a partial order; io stands for ≻d being an
interval order; wo stands for ≻d being a weak order; and |I| = 1 is when ⊲ is such
that there is a unique most important attribute. ‘–’ indicates that condition(s)
under which A3 is sound remains as an open problem.

242

Representing and Reasoning with Qualitative Preferences

5. Complexity

In this section, we study the complexity of dominance testing (evaluating ≻d , see Sec-
tion 3.3) as well as the complexity of the algorithms for computing the non-dominated set
of feasible compositions (see Section 4). We express the worst case time complexity of
dominance testing in terms of the size of user specified intra-attribute, relative importance
preference relations and the attribute domains (see Table 7).

Relation / Set Symbol Cardinality Remarks

Attributes X m Number of attributes
Domain of Attributes Di n Number of possible valuations of Xi

Intra-attribute preferences ≻i wint Width of the partial order ≻i

Intra-attribute preferences ≻i kint Size of the relation ≻i

Relative Importance ⊲ wrel Width of the partial order ⊲

Relative Importance ⊲ krel Size of the relation ⊲

Most Important Attributes I mI Number of most important attributes
Repository R r Number of components in R
Feasible Compositions C c Number of feasible compositions
Dominance Relation ≻d wdom Width of the dominance relation

Table 7: Cardinalities of sets and relations

5.1 Computing the Maximal(Non-dominated)/Minimal Subset.

Let ≻ be a partial order on the set S, with a width of w (size of the maximal set of elements
which are pairwise incomparable) and n = |S|. The algorithm due to Daskalakis et al.
discussed in Section 4.1 finds the maximal or minimal subset of S with respect to ≻ within
O(wn) pairwise comparisons. Note that the maximum width of any partial order is w = n,
when ≻= ∅. Hence, in the worst case O(n2) comparisons are needed.

5.2 Complexity of Dominance Testing

Computing Worst Frontiers (Φi). Let S ⊆ Di. Recall from Definition 6 that the worst
frontier of a set S with respect to an attribute Xi is Φi(S) := {v : v ∈ S,∄u ∈ S s.t. v ≻i u},
i.e., the minimal set of elements in S with respect to the preference relation ≻i. Using the
algorithm due to Daskalakis et al. to find the minimal set with respect to a partial order
(see above), the complexity of computing Φi(S) is O(nwint).

Comparing Worst Frontiers (≻′
i). Let A,B ∈ F (Xi). As per Definition 8, A≻′

iB ⇔
∀b ∈ B,∃a ∈ A : a ≻i b. In the worst case, computing A≻′

iB would involve checking
whether a ≻i b for each pair a, b, which would cost O(kint). Hence, the complexity of
comparing the worst frontiers A and B is O(n2kint).

Dominance Testing (≻d). Recall from Definition 11 the definition of dominance:

U ≻d V ⇔ ∃Xi : U(Xi)≻
′
iV(Xi) ∧

∀Xk, (Xk ⊲Xi ∨Xk ∼⊲ Xi) ⇒ U(Xk)�
′
kV(Xk)

243

Santhanam, Basu & Honavar

The complexity of dominance testing is the complexity of finding a witness attribute
in X for U ≻d V. For each attribute Xi, the complexity of computing the first clause
in the conjunction of the definition of U ≻d V is O(n2kint); and that of computing the
second clause is O

(

m(n2kint + krel)
)

, where O(krel) and O(n2kint) are the complexities of
evaluating the left and right hand sides of the implication (respectively) for each Xk ∈ X .
Hence, the complexity of dominance testing is O

(

m
(

n2kint +m(n2kint + krel)
))

, or simply
O

(

m2(n2kint + krel)
)

. We will use the shorthand d to denote m2(n2kint + krel).

5.3 Complexity of Algorithms

Each of the algorithms for computing the non-dominated feasible compositions (presented in
Section 4) makes use of a functional composition algorithm f to find feasible compositions.
Hence, the complexity analysis of the algorithms needs to incorporate of the complexity of
the functional composition algorithm as well.

Recall that Algorithms 1, 2 and 3 begin by computing the set of all feasible compositions
in a single shot using a functional composition algorithm as a black box, and then proceed
to find the most preferred among them. Algorithm 4 instead makes use of a functional
composition algorithm that produces the set of feasible compositions by iteratively extend-
ing partial feasible compositions. Specifically, it interleaves the execution of the functional
composition algorithm with the ordering of partial solutions with respect to preferences
over non-functional attributes.

We denote by O(fe) and O(fg) respectively, the complexity of computing the set of
feasible extensions of a partial feasible composition with respect to ϕ and the complexity
of computing the set of all feasible compositions with respect to ϕ.

5.4 Complexity of Algorithm 1

The overall complexity for finding the set of all non-dominated feasible compositions is
O(fg+cwdomd), where O(d) is the complexity of evaluating ≻d for any pair of compositions.
The first term fg accounts for Line 1 of the algorithm which computes the set of all feasible
compositions, and the term cwdomd corresponds to the computation of Ψ≻d

(C) as per the
algorithm given in Section 4.1.

5.5 Complexity of Algorithm 2

The complexity of identifying the most important attributes I with respect to ⊲ (Line 1)
is O(mwrelkrel). For each most important attribute Xi ∈ I, Algorithm 2 (a) invokes Algo-
rithm 1 using the derived intra-attribute preference ≻′

i to compute Ψ≻′
i
(C); (b) identifies

the subset of Ψ≻′
i
(C) that is non-dominated with respect to ≻d ; and (c) adds them to the set

of solutions. Hence, the complexity of Algorithm 2 is O
(

mwrelkrel +mI(fg +cwdomn
2kint)+

mI |Ψ≻′

i
(C)|2d

)

.

Since the feasible compositions with respect to any given ϕ are fixed, by computing
the feasible compositions only once (during the first invocation of Algorithm 1 and stor-
ing them), the complexity of Algorithm 2 can be further reduced to O(fg + mwrelkrel +
mIcwdomn

2kint +mI |Ψ≻′

i
(C)|2d).

244

Representing and Reasoning with Qualitative Preferences

5.6 Complexity of Algorithm 3

The complexity of identifying the most important attributes I with respect to ⊲ (Line 1) is
O(mwrelkrel). In contrast to Algorithm 2, Algorithm 3 invokes Algorithm 1 using the de-
rived intra-attribute preference ≻′

i to compute Ψ≻′
i
(C) for exactly one of the most important

attributes, Xi ∈ I. Hence, the complexity of Algorithm 3 is O
(

fg+mwrelkrel+cwdomn
2kint).

5.7 Complexity of Algorithm 4

We consider the worst case wherein the space of partial feasible compositions explored by
Algorithm 4 is a tree rooted at ⊥; let b be its maximum branching factor (corresponding to
the maximum number of extensions produced by the functional composition algorithm), and
h its height (corresponding to the maximum number of components used in a composition
that satisfies ϕ). In the worst case, in each iteration of Algorithm 4, every element of L,
the list of current partial feasible compositions, ends up in the non-dominated set θ.

Each level in the tree corresponds to one iteration of Algorithm 4, and at the lth iter-
ation, in the worst case there are bl nodes in L. Hence, the complexity of the lth iteration
is O

(

(bl)2d + blfe

)

, where the first term corresponds to computing the non-dominated set
among the current set of partial feasible compositions, and the second term corresponds to
computing the feasible extensions of each partial feasible composition. Hence, the overall
complexity of Algorithm 4 is O

(
∑h

l=0 (b2ld+ blfe)
)

≈ O(b2hd+ bhfe).

We further conducted experiments on the algorithms using simulated problem instances
to study how the algorithms perform in practice, which we describe next.

6. Experiments, Results & Analysis

We now describe the design and results of our experiments aimed at comparing the algo-
rithms described in Section 4 with respect to the following attributes.

a) Quality of solutions produced by the algorithms. We measure the quality
of the solutions produced by the algorithms as follows. First, among all the most
preferred solutions that exist to the composition problem, we measure the fraction
that is produced by the algorithm. Second, among all the solutions produced by
the algorithm, we measure the fraction of solutions that are most preferred for the
composition problem.

b) Performance and efficiency of the algorithms. The performance of an algorithm
is measured in terms of response time (time taken to return the set of solutions), and
the efficiency is measured in terms of the number of times an algorithm invokes the
functional composition algorithm.

6.1 Experimental Setup

We now describe the data structure used to model the search space of compositions and the
simulation parameters used to generate the compositions in our experiments.

245

Santhanam, Basu & Honavar

6.1.1 Modeling the Search Space of Compositions using Recursive Trees

The uniform recursive tree (Smythe & Mahmoud, 1995) serves as a good choice to model
the search space of partial compositions and their feasible extensions. A tree with n vertices
labeled by 1, 2, . . . n is a recursive tree if the node labeled 1 is distinguished as the root,
and ∀k : 2 ≤ k ≤ n, the labels of the nodes in the unique path from the root to the node
labeled with k form an increasing sequence. A uniform recursive tree of n nodes (denoted
URTree(n)) is one that is chosen with equal probability from the space of all such trees.

A simple growth rule can be used to generate a uniform random recursive tree of n
nodes, given such a tree of n−1 nodes: Given URTree(n−1), choose uniformly at random
a node in URTree(n − 1), and add a node labeled n with the randomly chosen node as
parent to obtain URTree(n). The properties of this class of uniform random recursive trees
are well studied in the literature of random data structures (see Smythe & Mahmoud, 1995,
for a survey).

The rationale behind choosing the uniform recursive tree data structure to model the
search space of our problem is that the growth rule that generates the recursive tree is similar
in intuition to the process of searching for a feasible composition. Recall that the search
space of partial compositions is generated by the recursive application of the functional
composition algorithm f . The nodes in the recursive tree correspond to components in
the repository of the composition problem. The tree is built starting with the root node –
the search for feasible compositions correspondingly begins with ⊥. The recursive tree is
further grown by attaching new nodes to any of the existing nodes – this corresponds to
extending feasible partial compositions by adding (composing) new components to any of
the existing feasible partial compositions. Finally, the leaves of a recursive tree at depth
d from the root correspond to a (possibly feasible) composition of d components from the
repository in the composition problem.

We now show the precise correspondence between a recursive tree data structure and a
search space of partial compositions.

• Each node in the tree corresponds to a composition.

• The root node corresponds to the empty composition ⊥,

• Each node at level 1 corresponds to the composition of ⊥ with a component W in the
repository, i.e., ⊥⊕W = W,W ∈ R,

• Each node at level i corresponds to the composition of a component W in the repos-
itory with the composition associated with the parent of this node,

• A leaf node is called a feasible node if the composition associated with this node
satisfies ϕ.

For the purpose of experimentally evaluating our algorithms for finding the most pre-
ferred compositions and to compare them, we generate random recursive trees with varying
number of nodes (or |R|, the number of components in the repository). In the generated
random recursive tree, a certain fraction (feas) of leaves are picked uniformly randomly
and are labeled to be feasible compositions. For each node in the generated and labeled

246

Representing and Reasoning with Qualitative Preferences

random recursive tree, the valuation of attributes X = {Xi} (corresponding to the partial
composition it represents) is randomly generated based on the respective domains ({Di})

12.

6.1.2 User Preferences

We generate user preferences by generating random partial/total orders for each ≻i and
random interval/total order for ⊲ for varying number of attributes m = |X | and domain
size of attributes n = |Di|.

A summary of the simulation parameters is given in Table 8.

Parameter Meaning Range

feas Fraction of leaves in the search tree that are feasi-
ble compositions

{0.25, 0.5, 0.75, 1.0}

|Di| Domain size of preference attributes {2, 4, 6, 8, 10}
|X | Number of preference attributes {2, 4, 6, . . . 20}
|R| Number of components in the repository (nodes in

the search tree)
{10, 20, . . . 200}

fdelay Overhead (in milliseconds) per invocation of the
step-by-step functional composition algorithm f

{1, 10, 100, 1000}

≻i Intra-attribute preference over the values of Xi {po, to}
⊲ Relative importance preference over X {io, to}

Table 8: Simulation parameters and their ranges

6.1.3 Implementation of Algorithms

Computing Dominance

In order to check if one valuation dominates another with respect to the user preferences
{≻i} and ⊲, we iterate through all attributes X and check if there exists a witness for the
dominance to hold (see Definition 11).

Computing the most preferred solutions

We implemented algorithms A1, A2, A3 and A4 in Java. Preliminary experiments with A2
showed that the algorithm did not scale up for large problem instances. In particular, when
the number of attributes is large and dominance testing is computationally intensive, A2
timed out due to the computation of the non-dominated set multiple times for each of the
most important attributes. Hence we did not proceed to run experiments on the samples
with A2. However, we were able to run experiments with algorithm A3 that arbitrarily picks
one of the most important attributes and finds the most preferred solutions with respect
to the intra-attribute preferences of that attribute.

In algorithms A1 and A3 we first compute all solutions using the functional composition
algorithm (simulated by f), whereas in A4, we interleave calls to f with choosing preferred

12. Note that in the setup described here, the valuations for attributes is generated randomly for each node.
In real applications, the valuations of the nodes may depend on the valuations of their parents.

247

Santhanam, Basu & Honavar

compositions (partial solutions) at each step. At each step, A4 chooses a subset of the
feasible extensions of the current compositions for further exploration. Table 9 gives a brief
description of the implemented algorithms.

Alg. Name of Algorithm Remarks

A1 ComposeAndFilter First identifies functionally feasible com-
positions; then finds the non-dominated
set of feasible compositions with respect
to ≻d

A2 WeaklyCompleteCompose First identifies functionally feasible com-
positions; then finds the non-dominated
set of feasible compositions with respect
to ≻i for the most important attributes
{Xi}

A3 AttWeaklyCompleteCompose First identifies functionally feasible com-
positions; then picks an arbitrary most im-
portant attribute Xi and finds the non-
dominated set of feasible compositions
with respect to ≻′

i

A4 InterleaveCompose Identifies the non-dominated set of feasi-
ble extensions with respect to ≻d at each
step; and recursively identifies their feasi-
ble extensions until all the non-dominated
feasible extensions are feasible composi-
tions

Table 9: Implemented Algorithms

Table 10 shows the attributes that are recorded during the execution of each of the
algorithms A1, A3 and A4 for each composition problem.

6.2 Results

We compare the algorithms A1, A3, A4 with respect to:

1. Quality of solutions produced by the algorithms, in terms of SP/PF and SP/S

2. Performance and efficiency in terms of running time and number of calls to the func-
tional composition algorithm f

6.2.1 Quality of Solutions

We compare the quality of solutions produced by the algorithms in terms of the following
measures.

248

Representing and Reasoning with Qualitative Preferences

Attribute Meaning Remarks

F Set of solutions (feasible compositions) in a sample
problem instance

F = Cϕ

PF Set of most preferred solutions in a sample problem
instance with respect to the user preferences and
the dominance relation

PF = Ψ≻d
(Cϕ) ⊆ F

S Set of solutions produced by the composition al-
gorithm

SP Set of solutions produced by the composition algo-
rithm that are also most preferred solutions with
respect to the user preferences and the dominance
relation

SP = PF ∩ S ⊆ S

T Running time of the composition algorithm (ms)
fcount Number of times the algorithm invokes the step-

by-step functional composition algorithm f

Table 10: Attributes observed during the execution of each algorithm

• SP/PF 13: Proportion of most preferred solutions produced by the algorithm (fraction
of all optimal solutions produced by the algorithm). If the algorithm is complete, then
SP/PF = 1.

• SP/S: Proportion of solutions produced by the algorithm that are most preferred
(fraction of solutions produced by the algorithm, that are optimal). If the algorithm
is sound, then SP/S = 1.

The algorithm A1 exhaustively searches the entire space of compositions to identify all
the feasible compositions F , and then finds the most preferred among them with respect to
the user preferences ⊲ and {≻i}. Because it computes the set Ψ≻d

(F), we observed that
for A1, SP = PF = S, i.e., it is both sound (finds only the most preferred solutions) and
complete (finds all the most preferred solutions).

We next compare the algorithms A3 and A4 with respect to SP/PF and SP/S for
various types of ordering restrictions on the user preferences {≻i} and ⊲. Table 11 reports
results for the following combinations: (i) ⊲ is an interval order, {≻i} are partial orders;
(ii) ⊲ is an interval order, {≻i} are total orders; (iii) ⊲ is a total order, {≻i} are partial
orders; and (iv) ⊲ is a total order, {≻i} are total orders.

Comparison of SP/PF

• In general, most of the most preferred solutions were found by both the algorithms
(see Table 11).

13. For the sake of readability, we use the notation used to denote the set to denote its cardinality as well,
e.g., SP is used to denote both the set and its cardinality (|SP |).

249

Santhanam, Basu & Honavar

⊲ ≻i A3 A4

io po 77.50 83.95
io to 71.00 100.00
to po 100.00 85.88
to to 100.00 100.00

Table 11: Comparison of SP/PF for algorithms A3 and A4 with respect to various ordering
restrictions on {≻i},⊲. The percent of problem instances for which SP/PF = 1
is shown in each row with respect to the corresponding ordering restrictions on
the preference relations ⊲ and {≻i}. The parameters used for simulating the
problem instances and their ranges are given in Table 8.

• We observe that when relative importance (⊲) is a total order and {≻i} are arbitrary
partial orders, 100% of the most preferred solutions are produced by A3. Proposi-
tions 13 and 14 (see Section 3.6) were obtained based on this insight.

⊲ ≻i A3 A4

io po 41.78 98.45
io to 30.78 100.00
to po 33.90 96.98
to to 27.30 100.00

Table 12: Comparison of SP/S for algorithms A3 and A4 with respect to various ordering
restrictions on {≻i},⊲. The percent of problem instances for which SP/S = 1
is shown in each row with respect to the corresponding ordering restrictions on
the preference relations ⊲ and {≻i}. The parameters used for simulating the
problem instances and their ranges are given in Table 8.

Comparison of SP/S

• In general, most of the solutions that were found by the interleaved algorithm A4
were the most preferred solutions (see Table 12). On the other hand, algorithm A3
produced many solutions that were not the most preferred.

• The second (and fourth) row(s) of Tables 12 and 11 suggests that when intra-attribute
preferences ({≻i}) are total orders and ⊲ is an arbitrary interval order, the interleaved
algorithm A4 is sound and complete, i.e., it produces exactly the non-dominated set
of solutions with respect to ≻d . Conjecture 1 and Theorem 3 in Section 3.6 were
obtained based on this insight.

250

Representing and Reasoning with Qualitative Preferences

6.2.2 Performance and Efficiency

We compare the performance and efficiency of A3, A4 in terms of the number of times the
functional composition algorithm f is invoked, and running time (in milliseconds) for the
algorithms to compute their solutions.

Number of calls to functional composition f
The plots in Figures 9 and 10 show the results of our experiments performed on problem

instances where relative importance preferences are interval/total orders and intra-attribute
preferences are partial/total orders, and they yield the following observations.

• In general, our experiments show that the interleaved algorithm A4 makes fewer calls
to f compared to A3. This can be seen in Figures 9 and 10, where all the data points
corresponding to the number of calls to f made by A4 (colored red) lie below those
that correspond to A3 (colored green) in plots (a) and (b). This is because A4 explores
only the most preferred subset of the available feasible extensions at each step in the
search. On the other hand, A3 exhaustively explores all feasible extensions at each
step.

• When the intra-attribute preferences {≻i} are total orders, the difference in the num-
ber of calls to f made by A3 and A4 is more pronounced. This can be observed in
Figures 9 and 10, where the data points corresponding to the number of calls to f
made by A4 (colored red) lie much closer to the axis corresponding to the number of
feasible compositions, in comparison to A3 (colored green). This can be explained by
the fact that in this case the dominance relation is larger, due to which the number
of incomparable pairs of compositions is smaller. Therefore, at each interleaving step
the non-dominated set computed for extension is smaller.

• For both A3 and A4, the number of calls to f decreases as the fraction of feasible
compositions (feas) increases. Figures 9 and 10 show that as the number of feasible
compositions increases, the data points corresponding to the number of calls to f
(for all algorithms) gets closer to the axis corresponding to the number of feasible
compositions.

Running time
We observed that the running times of both algorithms A3, A4 depend on two key factors:

• fdelay, the time taken per execution of the functional composition at each step

• Complexity of dominance testing which is in turn a function of |Di|, |X | and the
properties of {≻i} and ⊲. In particular, the complexity of dominance testing depends
on the size of the preference relations {≻i} and ⊲ (see Section 5.2).

In order to understand the effect of fdelay on the running times of the algorithms, we
ran experiments with fdelay = 10ms and fdelay = 1000ms on problem instances where
relative importance preferences are interval/total orders and intra-attribute preferences are
partial/total orders (see Table 8 for the other parameters used and their ranges). The
respective results are shown in Figures 11 – 14. The results yield the following observations.

251

Santhanam, Basu & Honavar

���������������������������

� �� �� �� �� ��� ���
���	

�

�� � ������� ������������
������

���������������������������

� �� �� �� �� ��� ���
���	

�

��� � ������� ������������
������

�� !"#$� %&'()"!*+�,, -("! .)/�)0 %*")!,!"")#12"� 3 4!)"#! .)/�)

�� !"#$� %&'()"!*+� 3 %*"�)$! .)/�)0 %*")!,!"")#12"� 3 4!)"#! .)/�)

Figure 9: A comparison of the algorithms A1, A3 and A4 with respect to the number of
times they invoke the step-by-step functional composition algorithm during their
execution. The plots (a) and (b) correspond to results of running the algorithms
on simulated problem instances, where the intra-attribute preference (≻i) is a
partial order, and the relative importance preference (⊲) is an interval or total
order. The four distinct “bands” seen in the plots correspond to various fractions
of leaves in the search tree of the problem instance that are feasible compositions:
feas = 0.25, 0.5, 0.75, 1.0.

252

Representing and Reasoning with Qualitative Preferences

565758595:55:65:75:85:95655

5 65
;<=>??@

ABC

565758595:55:65:75:85:95655

5 65
;<=>??@

ADC

EFGHIJKF LMNOPI

EFGHIJKF LMNOPI 75 85 95 :55Q RSBTUDVS WXY ZXTU[UX\T

75 85 95 :55Q RSBTUDVS WXY ZXTU[UX\T

H]^F _ L]IFPKHG `PaFPb L]IPHcHIIPJdeIF _ fOIHG `PaFP

IH]^F _ fOIHG `PaFPb L]IPHcHIIPJdeIF _ fOIHG `PaFP :65
g:ghg7

:65
g:ghg7

P

Figure 10: A comparison of the algorithms A1, A3 and A4 with respect to the number
of times they invoke the step-by-step functional composition algorithm during
their execution. The plots (a) and (b) correspond to results of running the
algorithms on simulated problem instances, where the intra-attribute preference
(≻i) is a total order, and the relative importance preference (⊲) is an interval
or total order. The four distinct “bands” seen in the plots correspond to various
fractions of leaves in the search tree of the problem instance that are feasible
compositions: feas = 0.25, 0.5, 0.75, 1.0.

253

Santhanam, Basu & Honavar

• In general, in comparison to the running time of the algorithm A4 when the intra-
attribute preferences (≻i) are partial orders, A4 is faster when≻i are total orders. This
trend is observed in plots (a) and (b) of Figure 12 (where intra-attribute preferences
are total orders), as the data points corresponding to the running time of A4 (colored
red) are much closer to the axis corresponding to the number of feasible compositions,
in comparison to the plots (a) and (b). A similar trend is also observed in Figures 13
and 14.

• The algorithm A3 almost always outperforms the blind search algorithm A1 in terms
of running time. This is because A3 computes the non-dominated set in the last step
with respect to the intra-attribute preference over the valuations of one attribute ≻′

i

(in place of the dominance relation ≻d used by A1).

• The interleaved algorithm A4 is more sensitive to the complexity of dominance than
A1 and A3, because at each step A4 computes the non-dominated subset of extensions
to explore. On the other hand, A1 and A3 involve computation of dominance only
in the last step. A3 is faster than A1, more than A4, because it computes the non-
dominated set with respect to the intra-attribute preference over the valuations of one
attribute ≻′

i (in place of the dominance relation ≻d used by A1 and A4).

• Algorithms A1 and A3 are more sensitive to fdelay than the interleaved algorithm
A4. This is because at each step A1 and A3 explore all feasible extensions, but A4
only explores the preferred subset of the feasible extensions at each step.

• The overall running times of A1, A3 and A4 depend on the relative trade-offs among
|Di|, |X |, the properties of {≻i},⊲ (those that influence the complexity of dominance
testing) on the one hand and fdelay on the other.

7. Summary and Discussion

We now summarize our contributions in this paper.

7.1 Summary

Many applications, e.g., planning, Web service composition, embedded system design, etc.,
rely on methods for identifying collections (compositions) of objects (components) satis-
fying some functional specification. Among the compositions that satisfy the functional
specification (feasible compositions), it is often necessary to identify one or more composi-
tions that are most preferred with respect to user preferences over non-functional attributes.
Of particular interest are settings where user preferences over attributes are expressed in
qualitative rather than quantitative terms (Doyle & Thomason, 1999).

In this paper, we have proposed a framework for representing and reasoning with quali-
tative preferences over compositions in terms of the qualitative preferences over attributes of
their components; and developed a suite of algorithms to compute the most preferred feasi-
ble compositions, given an algorithm that computes the functionally feasible compositions.
Specifically,

254

Representing and Reasoning with Qualitative Preferences

ijiiiikiiiiliiiimiiiiniiiioiiii

i ki mi oi pi jii jki
qrsstsuvtwxy
wz{

|}~ � ��}����� ������������
�j�l�m

iniiijiiiijniiikiiiikniiiliiiilniiimiiiimniii

i ki mi oi pi jii jki
qrsstsuvtwxy
wz{

|�~ � ��}����� ������������
�j�l�m

�������� ���������� � �������� ������ ����������� ¡�� � ¢������ �����

�������� ���������� � £���� ������ ����������� ¡�� � ¢������ �����

Figure 11: A comparison of the algorithms A1, A3 and A4 with respect to their running
times as a function of the number of feasible compositions, when each invocation
step in the step-by-step functional composition algorithm has a overhead of
10 milliseconds. The plots (a) and (b) correspond to results of running the
algorithms on simulated problem instances, where the intra-attribute preference
(≻i) is a partial order, and the relative importance preference (⊲) is an interval
or total order. The four distinct “bands” seen in the plots correspond to various
fractions of leaves in the search tree of the problem instance that are feasible
compositions: feas = 0.25, 0.5, 0.75, 1.0.

255

Santhanam, Basu & Honavar

¤¥¤¤¤¦¤¤¤¤¦¥¤¤¤§¤¤¤¤§¥¤¤¤

¤ §¤ ¨¤ ©¤ ª¤ ¦¤¤ ¦§¤
«¬®̄°®±²³
±́µ

¶·¸ ¹ º»·¼½¾¿» ÀÁÂÃÁ¼½Ä½ÁÅ¼
Æ¦ÆÇÆ¨

¤§¤¤¤¨¤¤¤©¤¤¤ª¤¤¤¦¤¤¤¤¦§¤¤¤¦¨¤¤¤¦©¤¤¤

¤ §¤ ¨¤ ©¤ ª¤ ¦¤¤ ¦§¤
«¬®̄°®±²³
±́µ

¶¾¸ ¹ º»·¼½¾¿» ÀÁÂÃÁ¼½Ä½ÁÅ¼
Æ¦ÆÇÆ¨

ÈÉÊËÌÍÎÉ ÏÐÑÒÓÌËÔÕÉ Ö ÏÔÌÉÓÎËÊ ×ÓØÉÓÙ ÏÔÌÓËÚËÌÌÓÍÛÜÌÉ Ö ÝÒÌËÊ ×ÓØÉÓ

ÈÉÊËÌÍÎÉ ÏÐÑÒÓÌËÔÕÉ Ö ÝÒÌËÊ ×ÓØÉÓÙ ÏÔÌÓËÚËÌÌÓÍÛÜÌÉ Ö ÝÒÌËÊ ×ÓØÉÓ

Figure 12: A comparison of the algorithms A1, A3 and A4 with respect to their running
times as a function of the number of feasible compositions, when each invocation
step in the step-by-step functional composition algorithm has a overhead of
10 milliseconds. The plots (a) and (b) correspond to results of running the
algorithms on simulated problem instances, where the intra-attribute preference
(≻i) is a total order, and the relative importance preference (⊲) is an interval
or total order. The four distinct “bands” seen in the plots correspond to various
fractions of leaves in the search tree of the problem instance that are feasible
compositions: feas = 0.25, 0.5, 0.75, 1.0.

256

Representing and Reasoning with Qualitative Preferences

ÞßÞÞÞÞàÞÞÞÞáÞÞÞÞâÞÞÞÞãÞÞÞÞÞãßÞÞÞÞãàÞÞÞÞãáÞÞÞÞãâÞÞÞÞßÞÞÞÞÞ

Þ ßÞ àÞ áÞ âÞ ãÞÞ ãßÞ
äåææçæèéçêëì
êíî

ïðñ ò óôðõö÷øô ùúûüúõöýöúþõ
ÿãÿ�ÿà

ÞßÞÞÞÞàÞÞÞÞáÞÞÞÞâÞÞÞÞãÞÞÞÞÞãßÞÞÞÞãàÞÞÞÞãáÞÞÞÞãâÞÞÞÞßÞÞÞÞÞ

Þ ßÞ àÞ áÞ âÞ ãÞÞ ãßÞ
äåææçæèéçêëì
êíî

ï÷ñ ò óôðõö÷øô ùúûüúõöýöúþõ
ÿãÿ�ÿà

�������� �	
������ � ������� ������ �������������� � ������� �����

�������� �	
������ � ����� ������ �������������� � ������� �����

Figure 13: A comparison of the algorithms A1, A3 and A4 with respect to their running
times as a function of the number of feasible compositions, when each invocation
step in the step-by-step functional composition algorithm has a overhead of
1000 milliseconds. The plots (a) and (b) correspond to results of running the
algorithms on simulated problem instances, where the intra-attribute preference
(≻i) is a partial order, and the relative importance preference (⊲) is an interval
or total order. The four distinct “bands” seen in the plots correspond to various
fractions of leaves in the search tree of the problem instance that are feasible
compositions: feas = 0.25, 0.5, 0.75, 1.0.

257

Santhanam, Basu & Honavar

���

� �� �� �� �� ��� ���
�� ! "#!$%&
$'(

)*+ , -.*/012. 34564/07048/
9�9:9�

���

� �� �� �� �� ��� ���
�� ! "#!$%&
$'(

)1+ , -.*/012. 34564/07048/
9�9:9�

;<=>?@A< BCDEF?>GH< I BG?<FA>= JFK<FL BG?F>M>??F@NO?< I PE?>= JFK<F

;<=>?@A< BCDEF?>GH< I PE?>= JFK<FL BG?F>M>??F@NO?< I PE?>= JFK<F

Figure 14: A comparison of the algorithms A1, A3 and A4 with respect to their running
times as a function of the number of feasible compositions, when each invocation
step in the step-by-step functional composition algorithm has a overhead of
1000 milliseconds. The plots (a) and (b) correspond to results of running the
algorithms on simulated problem instances, where the intra-attribute preference
(≻i) is a total order, and the relative importance preference (⊲) is an interval
or total order. The four distinct “bands” seen in the plots correspond to various
fractions of leaves in the search tree of the problem instance that are feasible
compositions: feas = 0.25, 0.5, 0.75, 1.0.

258

Representing and Reasoning with Qualitative Preferences

a) We have defined a generic aggregation function to compute the valuation of a com-
position as a function of the valuations of its components. We have also presented a
strict partial order preference relation for comparing two compositions with respect
to their aggregated valuations of each attribute;

b) We have introduced a dominance relation for comparing compositions based on user
specified preferences and established some of its key properties. In particular, we
have shown that this dominance relation is a strict partial order when intra-attribute
preferences are strict partial orders and relative importance preferences are interval
orders.

c) We have developed four algorithms for identifying the most preferred composition(s)
with respect to the user preferences. The first three algorithms first compute the
set of all feasible compositions (solutions) using a functional composition algorithm
as a black box, and then proceed to find the most preferred among them (1) based
on the dominance relation (ComposeAndFilter); and (2) based on the preferred val-
uations with respect to the most important attribute(s) (WeaklyCompleteCompose
and AttWeaklyCompleteCompose). The fourth algorithm interleaves the execution of
a functional composition algorithm that produces the set of solutions by iteratively
extending partial solutions and the ordering of partial solutions with respect to user
preferences (InterleaveCompose).

d) We have established some key properties of the above algorithms. ComposeAndFilter
is guaranteed to return the set of all non-dominated solutions; WeaklyCompleteCom-
pose is guaranteed to return a non-empty subset of non-dominated solutions; At-
tWeaklyCompleteCompose is guaranteed to return at least one of the non-dominated
solutions; and InterleaveCompose is guaranteed to return (i) a non-empty subset of
non-dominated solutions when the dominance relation is an interval order; and (ii) the
entire set of non-dominated solutions when the dominance relation is a weak order.

e) We have performed simulation experiments to compare the algorithms with respect to
(i) the ratio of most preferred solutions produced to the actual set of most preferred
solutions, and the ratio of the most preferred solutions produced to the entire set
of solutions produced by the algorithm; (ii) their running times as a function of the
search space and the overhead in each call to the functional composition algorithm;
and (iii) the number of calls each algorithm makes to the functional composition
algorithm during the course of its execution. The results showed the feasibility of our
algorithms for composition problems that involve up to 200 components.

f) We have analyzed the results of experiments to obtain additional theoretical prop-
erties of the dominance relation as a function of the properties of the underlying
intra-attribute preference relations and relative importance preference relation. In
particular, we obtained non-trivial results as a consequence of our analysis of exper-
imental results, which were not known apriori, including conditions under which the
dominance relation is a weak order. These conjectures/results are significant because
they give the properties of the dominance relation directly as a function of the input

259

Santhanam, Basu & Honavar

user preferences. In turn, they also throw light on the soundness, weak-completeness
and/or completeness properties of the algorithms.

The proposed techniques for reasoning with preferences over non-functional attributes
are independent of the language used to express the desired functionality ϕ of the compo-
sition, and the method used to check whether a composition C satisfies the desired func-
tionality, i.e., C |= ϕ. Our formalism and algorithms may be applicable to a broad range of
domains including Web service composition (see Dustdar & Schreiner, 2005; Pathak, Basu,
& Honavar, 2008, for surveys), planning (see Hendler, Tate, & Drummond, 1990; Baier &
McIlraith, 2008a), team formation (see Lappas, Liu, & Terzi, 2009; Donsbach, Tannenbaum,
Alliger, Mathieu, Salas, Goodwin, & Metcalf, 2009) and indeed any setting that calls for
choosing the most preferred solutions from a set of candidate solutions, where each solution
is made up of multiple components.

7.2 Discussion

In the following, we discuss some of the alternate choices that one could make in applying
our formalism for specific applications.

Aggregation Functions. In our previous work (Santhanam, Basu, & Honavar, 2008), we
had proposed the use of TCP-net representation with ceteris paribus semantics (Brafman
et al., 2006) for reasoning with preferences in addressing the problem of Web service com-
position. We had assumed that the intra-attribute preferences are total orders; however,
this assumption does not hold in many practical settings involving qualitative preferences
over non-functional attributes. In this paper, we have relaxed this requirement, allowing
intra-attribute preferences that are strict partial orders.

In this paper we demonstrated the use of the summation (e.g., number of credits in
a POS) and worst frontier (e.g., areas of study and instructors) aggregation functions. In
some scenarios, it might be necessary to consider other ways of aggregating the valuations of
the components, for example, using the best frontier denoting the best possible valuations of
the components (i.e., the maximal valuations for each attribute Xi with respect to ≻i). Any
aggregation function can be used in our formalism, provided that the preference relation
over the aggregated valuations is a strict partial order. Otherwise, the choice of aggregation
function and the preference relation to compare aggregated valuations may impact the
properties of the resulting dominance relation, and as a result, may also affect the soundness
and completeness properties of some of the proposed algorithms.

The aggregation functions demonstrated in this paper are independent of the how the
components interact or are assembled, i.e., the structure of a composition. However, in
general, it may be necessary for the aggregation function to take into account the struc-
ture and/or other interactions between the valuations of components in a composition. For
example, in evaluating the reliability of a composition, one needs to consider the precise
structure of the composition. The reliability of a composition Ci is the product of the reli-

abilities of the components (

n
∏

i=1

VWi
(Reliability)) when the components are arranged in a

series configuration (Rausand & Høyland, 2003). On the other hand, when the same set of
components {Wi} are arranged in a parallel configuration, the reliability of Ci is computed

260

Representing and Reasoning with Qualitative Preferences

as (1 −
n

∏

i=1

(1− VWi
(Reliability))). In general, it might be necessary to introduce aggrega-

tion functions that take into consideration a variety of factors including the structure, the
function, as well as the non-functional attributes of the composition.

Comparing Sets of Aggregated Valuations. In this paper, we presented a preference relation
(≻′

i) to compare sets of valuations computed using the worst frontier aggregation function
(Definition 8). This preference relation requires that given two sets of valuations, every
element in the dominated set is preferred to at least one of the elements in the dominating
set of valuations. Other choices of ≻′

i can be used as well, but care should be taken because
the properties of the chosen preference relation may affect the properties of the dominance
(≻d) relation and the properties of the algorithms. However, as long as ≻′

i is a strict partial
order (irreflexive and transitive), the dominance relation continues to remain a strict partial
order (subject to ⊲ being an interval order), and hence the properties of the algorithms
hold. This provides the user with a wide range of preference relations for comparing sets of
valuations to choose from (see Barbera et al., 2004, for a survey of preferences over sets).

Note that Definition 8 does not ignore common elements when comparing two sets of
elements. However, some settings may require a preference relation that compares only
elements in the two sets that are not common. In such settings, a suitable irreflexive
and transitive preference relation can be used, such as the asymmetric part of preference
relations developed by Brewka et al. (2010) and Bouveret et al. (2009). In the absence of
transitivity, the transitive closure of the relation may be used to compare sets of elements,
as done by Brewka et al.

Dominance and its Properties. The dominance relation (≻d) adopted in this paper is a
strict partial order when the intra-attribute preferences are arbitrary strict partial orders
and the relative importance is an interval order. It would be interesting to explore alterna-
tive notions of dominance that preserve the rationality of choice, by requiring a different set
of properties (e.g., those that satisfy negative-transitivity instead of transitivity). It would
also be of interest to examine the relationships between ≻d and alternative dominance rela-
tions. Some results comparing ≻d with the dominance relations proposed by other authors
(Brafman et al., 2006; Wilson, 2004b, 2004a) have been presented elsewhere (Santhanam,
Basu, & Honavar, 2010b, 2009).

Implementation. The current implementation of dominance testing with respect to ≻d is
based on iteratively searching all the attributes to find a witness. It would be interesting to
compare this with other methods for dominance testing such as the one proposed in one of
our earlier works (Santhanam, Basu, & Honavar, 2010a) that uses efficient model checking
techniques. We would also like to use other multi-attribute preference formalisms that
include conditional preferences in our framework for compositional systems and compare
the performance of the resulting implementation with the current implementation.

7.3 Related Work

Techniques for representing and reasoning with user preferences over a set of alternatives
have been studied extensively in the areas of decision theory, microeconomics, psychol-

261

Santhanam, Basu & Honavar

ogy, operations research, etc. The seminal work by von Neumann and Morgenstern (1944)
models user preferences using utility functions that map the set of possible alternatives
to numeric values. More recently, models for representing and reasoning with quantita-
tive preferences over multiple attributes have been developed (Fishburn, 1970a; Keeney
& Raiffa, 1993; Bacchus & Grove, 1995; Boutilier, Bacchus, & Brafman, 2001). Such
models have been used to address problems such as identifying the most preferred tuples
resulting from database queries (Agrawal & Wimmers, 2000; Hristidis & Papakonstanti-
nou, 2004; Börzsönyi, Kossmann, & Stocker, 2001), assembling preferred composite Web
services (Zeng, Benatallah, Dumas, Kalagnanam, & Sheng, 2003; Zeng, Benatallah, Ngu,
Dumas, Kalagnanam, & Chang, 2004; Yu & Lin, 2005; Berbner, Spahn, Repp, Heckmann,
& Steinmetz, 2006), and in other composition problems.

However, in many applications it is more natural for users to express preferences in
qualitative terms (Doyle & McGeachie, 2003; Doyle & Thomason, 1999; Dubois, Fargier,
Prade, & Perny, 2002) and hence, there is a growing interest in AI on formalisms for
representing and reasoning with qualitative preferences (Brafman & Domshlak, 2009). We
now proceed to place our work in the context of some of the recent work on representing
and reasoning with qualitative preferences.

7.3.1 TCP-nets

Notable among qualitative frameworks for preferences are preference networks (Boutilier
et al., 2004; Brafman et al., 2006) that deal with qualitative and conditional preferences.
A class of preference networks, namely Tradeoff-enhanced Conditional Preference networks
(TCP-nets) (Brafman et al., 2006) are closely related to our work, and we now proceed to
discuss where our framework departs from and adds to the existing TCP-net framework.

TCP-nets provide a very elegant and compact graphical model to represent qualitative
intra-attribute and relative importance preferences over a set of attributes. In addition,
TCP-nets can also model conditional preferences using dependencies among attributes.
While TCP-nets allow us to represent and reason about preferences in general over simple
objects (each of which is described by a set of attributes), the focus of our work is to reason
about such preferences over compositions of simple objects (i.e., a collection of objects
satisfying certain functional properties). For example, in the domain of Web services, the
problem of identifying the most preferred Web services from a repository of available ones
based on their non-functional attributes, namely Web service selection can be solved using
the TCP-net formalism. On the other hand, in addition to Web service selection, our
formalism can also address the more complicated problem of identifying the most preferred
composite Web services that collectively satisfy a certain functional requirement, namely
Web service composition.

Our formalism is based on the intra-attribute and relative importance preferences over a
set of attributes describing the objects. As a result, the graphical representation scheme of
TCP-nets can still be used to compactly encode the intra-attribute and relative importance
preferences of the users within our formalism 14.

14. In our setting, we do not consider conditional preferences that correspond to edges denoting conditional
dependencies in the TCP-nets.

262

Representing and Reasoning with Qualitative Preferences

We have extended reasoning about preferences over single objects to enable reasoning
about preferences over collections of objects. We have: (a) provided an aggregation func-
tion for computing the valuation of a composition as a function of the valuations of its
components; (b) defined a dominance relation for comparing the valuations of compositions
and established some of its properties; and (c) developed algorithms for identifying a subset
or the set of most preferred composition(s) with respect to this dominance relation.

Our formalism departs from TCP-nets in the interpretation of the intra-attribute and
relative importance preferences over objects: the dominance relation in a TCP-net is defined
as any partial order relation that is consistent with the given preferences over attributes
of the objects, based on the ceteris-paribus semantics. We introduce a dominance relation
(see Definition 11) that allows us to reason about preferences over collections of objects in
terms of sets of valuations of the attributes of objects that make up the collection. For
instance, our worst frontier aggregation function returns the set of worst possible attribute
valuations among all the components.

When our dominance relation is applied in the simpler setting where each collection
consists of a single object, the aggregation function for each attribute reduces to the iden-
tity function, and the preference relation ≻′

i over sets of valuations of each attribute Xi

reduces to the intra-attribute preference ≻i. We have recently shown in our earlier works
(Santhanam et al., 2010b, 2009) that in general, when TCP-nets are restricted to uncondi-
tional preferences, our dominance relation (when each collection consists of a single object)
and the dominance relation used in TCP-nets are incomparable; when relative importance
is restricted to be an interval order, our dominance relation is more general than the dom-
inance relation used in TCP-nets with only unconditional preferences. In the latter case,
our dominance relation is computable in polynomial time, whereas there are no known
polynomial time algorithms for computing TCP-net dominance (Santhanam et al., 2010b,
2009).

7.3.2 Preferences over Collections of Objects

Several authors have considered ways to extend user preferences to obtain a ranking of
collections of objects (see Barbera et al., 2004, for a survey). In all these works, preferences
are specified over individual objects in a set as opposed to preferences over valuations of
the attributes of the objects. The preferences over objects are in turn used to reason
about preferences over collections of those objects. This scenario can be simulated by our
framework, by introducing a single attribute whose valuations correspond to objects in the
domain.

DesJardins et al. (2005) have considered the problem of finding subsets that are optimal
with respect to user specified quantitative preferences over a set of attributes in terms of the
desired depth, feature weight and diversity for each attribute. In contrast, our framework
focuses on qualitative preferences. In our setting, depth preferences that map attribute
valuations to their relative desirability can be mapped to qualitative intra-attribute prefer-
ences and feature weights can be mapped to relative importance. Diversity preferences over
attributes refer to the spread (e.g., variance, range, etc.) of component valuations with re-
spect to the corresponding attributes. It would be interesting to explore whether a suitable

263

Santhanam, Basu & Honavar

Property Denoted by New Attribute Attribute Domain

Party Affiliation P XP {Re,De}
Views V XV {Li,Co,Ul}
Experience E XE {Ex, In}

Table 13: Properties/Attributes describing the senators

dominance relation can be defined so as to simultaneously capture in our framework the
user preferences with respect to the depth, diversity and feature weights.

More recently, Binshtok et al. (2009) have presented a language for specification of
preferences over sets of objects. This framework, in addition to intra-attribute and relative
importance preferences over attributes, allows users to express preferences over the number
(|ϕ|) of elements in a set that satisfy a desired property ϕ. The preference language in this
case allows statements such as “Si : |ϕ| REL n” (number of elements in the preferred set
with property ϕ should be REL n), “Sj : |ϕ| REL |ψ|” (number of elements in the preferred
set with property ϕ should be REL number of elements in the preferred set with property
ψ), etc., where REL is one of the arithmetic operators >,<,=,≥,≤ and n is an integer.
In addition, there can be relative importance between the various preference statements
such as “Si is more important than Sj” as well as external cardinality constraints such as
a bound on the number of elements in the preferred set.

Our formalism can accommodate such preference statements, by representing each pref-
erence statement Si as a new binary valued attribute in the compositional system. For
example, preference statements Si : |ϕ| ≥ n and Sj : |ϕ| ≤ |ψ| can be represented in
our formalism by creating new binary attributes Xi and Xj with intra-attribute preferences
1 ≻i 0 and 1 ≻j 0 respectively. The relative importance statements such as “Si is more
important than Sj” can then be directly mapped to Xi ⊲ Xj . Any external cardinality
constraints on the size of the preferred set can be encoded in our setting by functional re-
quirements, so as to restrict the feasible solutions to only those that satisfy the cardinality
constraints.

Consider the example discussed by Binshtok et al. (2009), with preferences over senate
members described by attributes: Party affiliation (Republican, Democrat), Views (lib-
eral, conservative, ultra conservative), and Experience (experienced, inexperienced). The
attributes and their domains are listed in Table 13. The set preferences are given by:

• S1 : 〈|P = Re ∨ V = Co| ≥ 2〉

• S2 : 〈|E = Ex| ≥ 2〉

• S3 : 〈|V = Li| ≥ 1〉

Note that the senate members (i.e., the individual objects) are described by three at-
tributes XP ,XV ,XE representing the party affiliation, views and experience respectively.
The valuation function for these attributes is defined in the obvious manner, e.g., if a senator
Wj is a republican, then VWj

(XP) = Re. We introduce three additional boolean attributes

264

Representing and Reasoning with Qualitative Preferences

X1,X2,X3 corresponding to the preference statements S1, S2, S3 respectively. The valuation
function for each new attribute of a senator Wi can then be defined as follows.

• VWi
(X1) =

{

1 , if Wi |= S1 i.e., VWi
(XP) = Re or VWi

(XV) = Co

0 , otherwise

• VWi
(X2) =

{

1 , if Wi |= S2 i.e., VWi
(XE) = Ex

0 , otherwise

• VWi
(X3) =

{

1 , if Wi |= S3 i.e., VWi
(XV) = Li

0 , otherwise

The valuation of the collection of senators W1 ⊕W2 ⊕ . . .⊕Wn for i ∈ {1, 2, 3} is:

VW1⊕W2⊕...⊕Wn(Xi) = Φi(VW1
, VW2

, . . . VWn) = VW1
(Xi) + VW2

(Xi) + · · ·+ VWn(Xi)

Note that the aggregation function Φi defined above differs from the worst-frontier
based aggregation function adopted in Definition 6. The preference relation for comparing
groups of senators with respect to each new attribute Xi can then be defined based on
the preference statement Si. For example, in the case of X1 we define ≻′

1 such that any
value ≥ 2 is preferred to any value < 2, etc. Having defined the above aggregation function
and comparison relation for each new attribute, any dominance relation can be adopted
to compare compositions (arbitrary subsets) with respect to all attributes including the
dominance relation used by Binshtok et al. (2009).

In contrast to the framework of Binshtok et al., (2009) our formalism focuses on collec-
tions of objects that satisfy some desired criteria, rather than arbitrary subsets. We provide
algorithms for finding the most preferred compositions that satisfy the desired criteria.

7.3.3 Database Preference Queries

Several authors (Börzsönyi et al., 2001; Chomicki, 2003; Kiessling & Kostler, 2002; Kiessling,
2002) have explored techniques for incorporating user specified preferences over the result
sets of relational database queries. For instance, Chomicki’s framework (2003) allows user
preferences over each of the attributes of a relation to be expressed as first order logic for-
mulas. Suppose Sq is the set of tuples that match a query q. For each attribute Xi, from Sq,
a subset Sqi

of tuples that have the most preferred value(s) for Xi is identified. The result
set for the query q is then given by ∩iSqi

. A similar framework for expressing and com-
bining user preferences is presented by Kiessling (2002) and Kiessling and Kostler (2002).
Brafman and Domshlak (2004) have pointed out some of the semantic difficulties associated
with above approaches, and considered an alternative approach to identifying the preferred
result set based on the CP-net (Boutilier et al., 2004) dominance relation. Because of the
high computational complexity of dominance testing for CP-nets, Boutilier et al. proposed
an efficient alternative based on an ordering operator that orders the tuples in the result
set in a way that is consistent with the user preferences. Our formalism can be used in the
database setting, similar in spirit to that of Brafman and Domshlak, by considering each

265

Santhanam, Basu & Honavar

tuple in Sq as a collection with a single object. The differences in the semantics of the
CP-net dominance and our dominance relation is discussed in Section 7.3.1.

A host of algorithms have also been proposed for computing the non-dominated result
set in response to preference queries, especially for the efficient evaluation of skyline queries
(Börzsönyi et al., 2001; Chomicki, 2003). A skyline query yields the non-dominated result
set from a database, where dominance is evaluated based on the notion of pareto dominance
that considers all attributes to be equally important. Most of the proposed algorithms
for computing the skylines (see Jain, 2009, for a survey) are applicable only when intra-
attribute preferences are totally or weakly ordered. Some other algorithms that can handle
partially ordered attribute domains (Chan, Eng, & Tan, 2005; Sacharidis, Papadopoulos, &
Papadias, 2009; Jung, Han, Yeom, & Kang, 2010) rely on creating and maintaining indexes
over the attributes in the database, and on data structures specifically designed to identify
the skyline with respect to pareto dominance. These algorithms may be considered if a
particular problem instance involves such a large set of components are already stored in
a database and indexed. However, it is not obvious that they generalize to an arbitrary
notion of dominance such as the one presented here. On the other hand, our algorithms
for finding the non-dominated set are applicable to any notion of dominance, provided the
user preferences are such that the dominance relation is a partial order.

7.3.4 Planning with Preferences

The classical planning problem consists of finding a sequence of actions that take a system
from an initial state to one of the states that satisfies the user specified goal. Preference
based planning refers to the problem of finding plans that are most preferred with respect to
a set of user preferences over the plans. Such preferences are usually compactly expressed in
terms of the preferences over the properties satisfied by the plans in the goal or intermediate
states, or over actions, or over action sequences (i.e., temporal properties of the plans). We
refer the interested reader to surveys by Baier et al. (2008b) and Bienvenu et al. (2011) for
an overview of qualitative and quantitative preference languages used in preference based
AI planning, and different algorithms for computing the most preferred plans.

Preference based planning can be viewed as a problem of finding the most preferred
composition in a compositional system, where the components correspond to the actions,
and the feasible compositions correspond to the states of the plans that satisfy the goal
in the planning problem. The allowed set of actions that can be performed from a given
state in the planning problem can be encoded in the compositional system in terms of a
set of functional requirements (or constraints on the functionality). The preferences over
the various actions that can be taken at any given state in a plan can be captured by
preferences over the components with which a composition can be extended in terms of
their properties or attribute valuations. The properties satisfied by a state of a plan in the
planning problem can be captured by the valuations of the attributes of the corresponding
composition in the compositional system. Based on the mapping of actions performed in
a given state to the properties of the resulting state in the planning problem, aggregation
functions can be suitably defined in the compositional system. The addition of an action to
a partial plan in the planning problem can be represented in the compositional system by
the extension of a partial composition by a new component, and the properties satisfied by

266

Representing and Reasoning with Qualitative Preferences

the resulting state in the planning problem correspond to the valuations of the attributes
of the extended composition as determined by the aggregation functions. Finding the most
preferred plans then involves finding the most preferred feasible compositions.

The algorithms presented in this paper can be used to find the most preferred plans with
respect to the user specified preferences over actions in terms of the properties satisfied by
their resulting states, or over the properties satisfied by the plans in the goal state. However,
planning problems that involve preferences over the orderings of states and actions in a plan,
e.g., preferences over the properties that hold over the entire sequence of states of a plan
(Baier, Bacchus, & McIlraith, 2009; Bienvenu et al., 2011) cannot be handled within our
framework.

8. Acknowledgments

Aspects of this work were supported in part by NSF grants CNS0709217, CCF0702758,
IIS0711356 and CCF1143734. The work of Vasant Honavar was supported by the National
Science Foundation, while working at the Foundation. Any opinion, finding, and conclusions
contained in this article are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

We are grateful to anonymous reviewers for a thorough review and Dr. Ronen Brafman
for many useful suggestions that have helped improve the manuscript.

Appendix A. Proofs of Propositions and Theorems in Section 4

Proposition 15 ∀Xi ∈ I : Ψ≻d
(C) 6= ∅ ⇒ Ψ≻′

i
(C) ∩Ψ≻d

(C) 6= ∅.

Proof. Let Xi ∈ I and U ∈ Ψ≻′
i
(C). There are two possibilities: U ∈ Ψ≻d

(C) and U /∈
Ψ≻d

(C). If U ∈ Ψ≻d
(C), then there is nothing left to prove.

Suppose that U /∈ Ψ≻d
(C). Then we show that ∃V 6= U such that V ∈ Ψ≻′

i
(C)∩Ψ≻d

(C).

U ∈ Ψ≻′

i
(C) ∧ U /∈ Ψ≻d

(C)⇒ ∃V ∈ Ψ≻d
(C) : V ≻d U .

By Definitions 11 and 16, it follows that ∄V ∈ Ψ≻d
(C) : V(Xi)≻

′
iU(Xi). Hence, Xi

cannot be a witness for V ≻d U . Now there are two cases to consider.

Case 1: U(Xi)≻
′
iV(Xi).

Let attribute Xj 6= Xi be a witness for V ≻d U . Since Xi ∈ I, (Xi ⊲ Xj) ∨ (Xi ∼⊲

Xj). It therefore follows that V(Xi)�
′
iU(Xi), which contradicts our assumption that

U(Xi)≻
′
iV(Xi). Hence, U(Xi) 6 ≻

′
i V(Xi).

Case 2: U(Xi)∼
′
iV(Xi).

Let attribute Xj 6= Xi be a witness for V ≻d U . Since Xi ∈ I, (Xi ⊲ Xj) ∨ (Xi ∼⊲

Xj). From Definition 11, V ≻d U only if V(Xi)�
′
iU(Xi). Because of our assumption that

U(Xi)∼
′
iV(Xi), it must be the case that V(Xi) = U(Xi), i.e., V ∈ Ψ≻′

i
(C). Thus, we have:

U ∈ Ψ≻′

i
(C) \Ψ≻d

(C)⇒ ∃V ∈ Ψ≻′

i
(C) ∩Ψ≻d

(C) : V ≻d U (5)

This completes the proof.

267

Santhanam, Basu & Honavar

Theorem 4 [Soundness and Weak Completeness of Algorithm 2] Given a set of attributes
X , preference relations ⊲ and ≻′

i, Algorithm 2 generates a set θ of feasible compositions
such that θ ⊆ Ψ≻d

(C) and Ψ≻d
(C) 6= ∅ ⇒ θ 6= ∅.

Proof.
Soundness: The proof proceeds by contradiction. Suppose that the algorithm returns a
solution U ∈ θ such that U /∈ Ψ≻d

(C). Because U ∈ θ, it is necessary (by Line 5) that
∃Xi ∈ I : U ∈ Ψ≻′

i
(C) \ Ψ≻d

(C). Then, from Equation (5) in the proof of Proposition 15,
∃V ∈ Ψ≻′

i
(C) ∩ Ψ≻d

(C) : V ≻d U , which means that U /∈ Ψ≻d
(Ψ≻′

i
(C)). However, this

contradicts Line 5 of the algorithm. Hence, θ ⊆ Ψ≻d
(C), i.e., Algorithm 2 is sound.

Weak Completeness: Because I 6= ∅, Line 5 is executed by the algorithm at least once for
some Xi ∈ I. By Definition 13, we have C 6= ∅ ⇒ Ψ≻′

i
(C) 6= ∅ ⇒ Ψ≻d

(Ψ≻′
i
(C)) 6= ∅ ⇒ θ 6=

∅. Hence, Algorithm 2 is weakly complete by Definition 15.

Proposition 16 If I = {Xt}∧∀Xk 6= Xt ∈ X : Xt⊲Xk, then Ψ≻d
(C) ⊆ θ, i.e., Algorithm 2

is complete.

Proof. The proof proceeds by contradiction. Let I = {Xt} and ∀Xk 6= Xt ∈ X : Xt ⊲Xk,
and suppose that ∃V ∈ Ψ≻d

(C) \ Ψ≻′
t
(C). Since V /∈ Ψ≻′

t
(C), by Definition 13 it must be

the case that ∃U ∈ Ψ≻′
t
(C) : U(Xt)≻

′
tV(Xt). However, then U ≻d V by Definition 11 thus

contradicting our assumption that V ∈ Ψ≻d
(C).

Proposition 17 If |I| = 1, i.e., there is a unique most important attribute with respect
to ⊲, then Algorithm 3 is complete.

Proof. Let I = {Xi}. We know from Proposition 14 that ≻′
i ⊆ ≻d . It follows that

Ψ≻d
(S) ⊆ Ψ≻′

i
(S) for any set S. Hence, Ψ≻d

(C) ⊆ Ψ≻′
i
(C) = θ, i.e., Algorithm 3 is

complete.

Proposition 18 [Termination of Algorithm 4] Given a finite repository of components,
Algorithm 4 terminates in a finite number of steps.

Proof. Given a finite repository R of components, and an algorithm f that computes feasible
extensions of partial feasible compositions15, and due to the fact that Algorithm 4 does not
re-visit any partial feasible composition, the number of recursive calls is finite.

Proposition 19 [Unsoundness of Algorithm 4] Given a functional composition algorithm
f and user preferences ≻′

i and ⊲ over a set of attributes X , Algorithm 4 is not guaranteed
to generate a set of feasible compositions θ such that θ ⊆ Ψ≻d

(C).

Proof. We provide an example wherein Algorithm 4 returns a feasible composition that is
dominated by some other feasible composition. Consider a compositional system with a
single attribute X = {X1}, with a domain of {a1, a2, a3, a4}. Let the intra-attribute prefer-
ence of the user over those values be the partial order: a4 ≻1 a1 and a2 ≻1 a3 (Figure 15).
Let R = {W1,W2,W3,W4} be the repository of components in the compositional system
such that VWi

(X1) = {ai}.

15. An f that terminates with a set of feasible extensions is guaranteed by the decidability of ϕ.

268

Representing and Reasoning with Qualitative Preferences

a1

a2

a3

a4

Figure 15: Intra-attribute preference ≻1 for attribute X1

Suppose that there are three feasible compositions in C satisfying the user specified
functionality ϕ, namely C1 = W1, C2 = W2, C3 = W3 ⊕ W4. Their respective valuations
are: VC1

= 〈{a1}〉, VC2
= 〈{a2}〉 and VC3

= 〈{a3, a4}〉. Clearly, Ψ≻d
(C) = {C2, C3}, because

VC3
≻d VC1

(due to the fact that {a3, a4}≻
′
1{a1}).

W1

⊥

W2 W3

W3 ⊕W4

Iteration 0

Iteration 1

Iteration 2

Algorithm terminates with

dominates W1 !

W1 and W2 as solutions
as W2 dominates W3 and
W1 in incomparable to W3

Figure 16: Execution of Algorithm 4

Now suppose that there exists a functional composition algorithm f that produces
the following sequence of partial feasible compositions (Figure 16): {⊥}, {W1,W2,W3},
{W1,W2,W3 ⊕W4}. According to Line 13 of Algorithm 4, the algorithm will terminate af-
ter the first invocation of f , i.e., when the set {W1,W2,W3} of partial feasible compositions
is produced by f . This is because after the first iteration, θ = {W1,W2}, with VW2

≻d VW3
,

and both W1 and W2 are feasible compositions. This results in θ = {C1, C2} 6⊆ Ψ≻d
(C).

Theorem 5 [Soundness of Algorithm 4] If ≻d is an interval order, then given a func-
tional composition algorithm f and user preferences {≻′

i},⊲ over a set of attributes X ,
Algorithm 4 generates a set θ of feasible compositions such that θ ⊆ Ψ≻d

(C).

Proof. Suppose that by contradiction, F ∈ θ and there is a feasible composition C /∈ θ such
that VC ≻d VF . If C is present in the list L upon termination of the algorithm, then C should
have been in θ, because the algorithm terminates only when all compositions in Ψ≻d

(L)
are feasible. This implies that the algorithm did not terminate with an L containing C.

The algorithm keeps track of all partial feasible compositions that can be extended from
⊥ in L, without discarding any of them before termination. Therefore, the existence of
any such feasible composition C that is not in L at the time of termination must imply the
existence of some partial feasible composition B in the list (at the time of termination) that
can be extended to produce the feasible composition C, i.e., B ⊕W1 ⊕W2 ⊕ . . . ⊕Wn = C
such that B 6|= ϕ and C |= ϕ.
B 6|= ϕ ⇒ B /∈ θ at the time of termination, and therefore ∃E ∈ θ : VE ≻d VB. Because

≻d is transitive (by Proposition 12), since VC 6 ≻d VB (by Proposition 6), it follows that
VC 6 ≻d VE (otherwise, VC ≻d VE ∧ VE ≻d VB ⇒ VC ≻d VB, a contradiction). Hence, C must

269

Santhanam, Basu & Honavar

dominate some composition other than E , say F ∈ θ at the time of termination, i.e.,
VC ≻d VF . Because E ,F ∈ θ, it follows that VF ∼d VE , which in turn implies that VE 6 ≻d VC .
Therefore, ∃F ∈ θ : VC ≻d VF , VF ∼d VE and VE ∼d VC (see Figure 17).

VF

VE

VB

VD

Figure 17: Dominance relationships that violate the interval order restriction on ≻d

From VE ≻d VB, VC ≻d VF , VF ∼d VE and VC 6 ≻d VB, it follows that VC ∼d VB (because
VB≻d VC would otherwise imply VE ≻d VF , a contradiction). Finally, it must be the case
that: VB 6 ≻d VF , since otherwise it would contradict VF ∼d VE ; and VF 6 ≻d VB, since
otherwise it would contradict VC ∼d VB. Therefore, VB ∼d VF . Thus, the only possible
dominance relationships among the compositions B, C, E ,F are as follows (see Figure 17):

• VE ≻d VB

• VC ≻d VF

However, this scenario is ruled out by the fact that ≻d is an interval order. Hence
∀F ∈ θ,∀C ∈ C \ θ : VC 6 ≻d VF , i.e., θ ⊆ Ψ≻d

(C).

Theorem 6 [Weak Completeness of Algorithm 4] If ≻d is an interval order, then given a
functional composition algorithm f and user preferences {≻′

i},⊲ over a set of attributes X ,
Algorithm 4 produces a set θ of feasible compositions such that Ψ≻d

(C) 6= ∅ ⇒ θ∩Ψ≻d
(C) 6=

∅.

Proof. From Theorem 5, we have θ ⊆ Ψ≻d
(C) when ≻d is an interval order. It suffices to

show that Ψ≻d
(C) 6= ∅ ⇒ θ 6= ∅. The algorithm terminates with the non-dominated set

of compositions in the current list L, i.e., the maximal elements of L with respect to ≻d .
The set of maximal elements of any partial order on the set of elements in L is not empty
whenever L is not empty, and the set of elements in L is in turn not empty whenever C is
not empty. Therefore, Ψ≻d

(C) 6= ∅ ⇒ C 6= ∅ ⇒ L 6= ∅ ⇒ θ 6= ∅ as required.

Theorem 7 [Completeness of Algorithm 4] If ≻d is a weak order, then given a func-
tional composition algorithm f and user preferences {≻′

i},⊲ over a set of attributes X ,
Algorithm 4 generates a set θ of feasible compositions such that Ψ≻d

(C) ⊆ θ.

Proof. It suffices to show that there is no feasible composition C ∈ Ψ≻d
(C) \ θ.

Suppose by contradiction that C ∈ Ψ≻d
(C), and C /∈ θ. This means that C was not

present in the list L upon the termination of the algorithm (because otherwise C ∈ θ as per
Lines 4, 6, 13 in Algorithm 4). Hence, C must be a feasible extension of some partial feasible
composition B that is present in L at the time of termination such that B ⊕W1 ⊕W2 ⊕
. . .⊕Wk = C.

From Proposition 6, we have VC 6 ≻d VB. Because ≻d is a weak order, (a) ∀E ∈
θ : VE ≻d VB; and (b) VC 6 ≻d VB ∧ VE ≻d VB ⇒ VE ≻d VC . However, this contradicts our
assumption that C ∈ Ψ≻d

(C).

270

Representing and Reasoning with Qualitative Preferences

References

Agrawal, R., & Wimmers, E. L. (2000). A framework for expressing and combining prefer-
ences. SIGMOD Rec., 29 (2), 297–306.

Bacchus, F., & Grove, A. J. (1995). Graphical models for preference and utility. In Pro-
ceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence
(UAI-1995), pp. 3–10.

Baier, J. A., Bacchus, F., & McIlraith, S. A. (2009). A heuristic search approach to planning
with temporally extended preferences. Artificial Intelligence, 173 (5-6), 593 – 618.

Baier, J. A., Fritz, C., Bienvenu, M., & McIlraith, S. (2008). Beyond classical planning:
Procedural control knowledge and preferences in state-of-the-art planners. In Proceed-
ings of the 23rd AAAI Conference on Artificial Intelligence (AAAI), Nectar Track,
pp. 1509–1512, Chicago, Illinois, USA.

Baier, J. A., & McIlraith, S. A. (2008a). Planning with preferences. AI Magazine, 29 (4),
25–36.

Baier, J. A., & McIlraith, S. A. (2008b). Planning with preferences. AI Magazine, 29 (4),
25–36.

Barbera, S., Bossert, W., & Pattanaik, P. K. (2004). Ranking sets of objects. In Handbook
of Utility Theory. Volume II Extensions, chap. 17, pp. 893–977. Kluwer Academic
Publishers.

Berbner, R., Spahn, M., Repp, N., Heckmann, O., & Steinmetz, R. (2006). Heuristics for qos-
aware web service composition. In Proceedings of the IEEE International Conference
on Web Services, pp. 72–82.

Bienvenu, M., Fritz, C., & McIlraith, S. A. (2011). Specifying and computing preferred
plans. Artificial Intelligence, 175 (7-8), 1308 – 1345.

Binshtok, M., Brafman, R. I., Domshlak, C., & Shimony, S. E. (2009). Generic preferences
over subsets of structured objects. Journal of Artificial Intelligence Research, 34,
133–164.

Börzsönyi, S., Kossmann, D., & Stocker, K. (2001). The skyline operator. In Proceedings
of the 17th International Conference on Data Engineering, pp. 421–430, Washington,
DC, USA. IEEE Computer Society.

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., & Poole, D. (2004). CP-nets: A tool
for representing and reasoning with conditional ceteris paribus preference statements.
Journal of Artificial Intelligence Research, 21, 135–191.

Boutilier, C., Bacchus, F., & Brafman, R. I. (2001). UCP-networks: A directed graphi-
cal representation of conditional utilities. In Proceedings of the 17th Conference in
Uncertainty in Artificial Intelligence (UAI-2001), pp. 56–64.

Bouveret, S., Endriss, U., & Lang, J. (2009). Conditional importance networks: A graphical
language for representing ordinal, monotonic preferences over sets of goods. In IJCAI,
pp. 67–72.

271

Santhanam, Basu & Honavar

Brafman, R. I., Domshlak, C., & Shimony, S. E. (2006). On graphical modeling of preference
and importance. Journal of Artificial Intelligence Research, 25, 389–424.

Brafman, R. I., & Domshlak, C. (2004). Database preference queries revisited. Tech. rep.
1934, Department of Computing and Information Science, Cornell University.

Brafman, R. I., & Domshlak, C. (2009). Preference handling - an introductory tutorial. AI
magazine, 30 (1).

Brewka, G., Truszczynski, M., & Woltran, S. (2010). Representing preferences among sets.
In AAAI. AAAI Press.

Chan, C.-Y., Eng, P.-K., & Tan, K.-L. (2005). Stratified computation of skylines with
partially-ordered domains. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pp. 203–214, New York, NY, USA.
ACM.

Chomicki, J. (2003). Preference formulas in relational queries. ACM Trans. Database Syst.,
28 (4), 427–466.

Daskalakis, C., Karp, R. M., Mossel, E., Riesenfeld, S., & Verbin, E. (2009). Sorting and
selection in posets. In SODA, pp. 392–401.

desJardins, M., & Wagstaff, K. (2005). DD-PREF: A language for expressing preferences
over sets. In AAAI, pp. 620–626.

Donsbach, J. S., Tannenbaum, S. I., Alliger, G. M., Mathieu, J. E., Salas, E., Goodwin,
G. F., & Metcalf, K. A. (2009). Team composition optimization: The team optimal
profile system (tops). Tech. rep. ARI TR 1249, U.S. Army Research Institute for the
Behavioral and Social Sciences.

Doyle, J., & McGeachie, M. (2003). Exercising qualitative control in autonomous adaptive
survivable systems. In Self-Adaptive Software: Applications, chap. 8. Springer Berlin
Heidelberg.

Doyle, J., & Thomason, R. H. (1999). Background to qualitative decision theory. AI
magazine, 20, 55–68.

Dubois, D., Fargier, H., Prade, H., & Perny, P. (2002). Qualitative decision theory: from
savage’s axioms to nonmonotonic reasoning. Journal of the ACM, 49 (4), 455–495.

Dustdar, S., & Schreiner, W. (2005). A survey on web services composition. International
Journal on Web and Grid Services, 1 (1), 1–20.

Fishburn, P. (1970a). Utility Theory for Decision Making. John Wiley and Sons.

Fishburn, P. (1970b). Utility theory with inexact preferences and degrees of preference.
Synthese, 21, 204–221. 10.1007/BF00413546.

Fishburn, P. (1985). Interval Orders and Interval Graphs. J. Wiley, New York.

French, S. (1986). Decision theory: An introduction to the mathematics of rationality..

Hendler, J., Tate, A., & Drummond, M. (1990). AI planning: systems and techniques. AI
Mag., 11 (2), 61–77.

Hristidis, V., & Papakonstantinou, Y. (2004). Algorithms and applications for answering
ranked queries using ranked views. The VLDB Journal, 13 (1), 49–70.

272

Representing and Reasoning with Qualitative Preferences

Jain, R. (2009). Handling worst case in skyline. Masters thesis, York University, Department
of Computer Science and Engineering.

Jung, H., Han, H., Yeom, H. Y., & Kang, S. (2010). A fast and progressive algorithm for
skyline queries with totally- and partially-ordered domains. Journal of Systems and
Software, 83 (3), 429 – 445.

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: Preferences and
value trade-offs..

Kiessling, W. (2002). Foundations of preferences in database systems. In VLDB ’02:
Proceedings of the 28th international conference on Very Large Data Bases, pp. 311–
322. VLDB Endowment.

Kiessling, W., & Kostler, G. (2002). Preference sql: design, implementation, experiences.
In VLDB ’02: Proceedings of the 28th international conference on Very Large Data
Bases, pp. 990–1001. VLDB Endowment.

Lago, U. D., Pistore, M., & Traverso, P. (2002). Planning with a language for extended
goals. In Eighteenth national conference on Artificial intelligence, pp. 447–454, Menlo
Park, CA, USA. American Association for Artificial Intelligence.

Lappas, T., Liu, K., & Terzi, E. (2009). Finding a team of experts in social networks.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD), pp. 467–476, New York, NY, USA. ACM.

Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic Theory. Oxford
University Press.

Passerone, R., de Alfaro, L., Henzinger, T. A., & Sangiovanni-Vincentelli, A. L. (2002). Con-
vertibility verification and converter synthesis: two faces of the same coin. In ICCAD
’02: Proceedings of the 2002 IEEE/ACM international conference on Computer-aided
design, pp. 132–139, New York, NY, USA. ACM.

Pathak, J., Basu, S., & Honavar, V. (2008). Assembling composite web services from au-
tonomous components. In Emerging Artificial Intelligence Applications in Computer
Engineering, Maglogiannis, I., Karpouzis, K., and Soldatos, J. (ed). IOS Press. In
press.

Rausand, M., & Høyland, A. (2003). System Reliability Theory: Models, Statistical Methods
and Applications Second Edition. Wiley-Interscience.

Regenwetter, M., Dana, J., & Davis-Stober, C. P. (2011). Transitivity of preferences. Psy-
chological Review, 118 (1), 42 – 56.

Sacharidis, D., Papadopoulos, S., & Papadias, D. (2009). Topologically sorted skylines for
partially ordered domains. In ICDE ’09: Proceedings of the 2009 IEEE International
Conference on Data Engineering, pp. 1072–1083, Washington, DC, USA. IEEE Com-
puter Society.

Santhanam, G. R., Basu, S., & Honavar, V. (2008). TCP-compose⋆ - a TCP-net based
algorithm for efficient composition of web services using qualitative preferences. In
Bouguettaya, A., Krger, I., & Margaria, T. (Eds.), Procceedings of the Sixth Inter-
national Conference on Service-Oriented Computing, Vol. 5364 of Lecture Notes in
Computer Science, pp. 453–467.

273

Santhanam, Basu & Honavar

Santhanam, G. R., Basu, S., & Honavar, V. (2009). A dominance relation for unconditional
multi-attribute preferences. Tech. rep. 09-24, Department of Computer Science, Iowa
State University.

Santhanam, G. R., Basu, S., & Honavar, V. (2010a). Dominance testing via model check-
ing. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence
(AAAI), pp. 357–362. AAAI Press.

Santhanam, G. R., Basu, S., & Honavar, V. (2010b). Efficient dominance testing for un-
conditional preferences. In Proceedings of the Twelfth International Conference on
the Principles of Knowledge Representation and Reasoning (KR), pp. 590–592. AAAI
Press.

Smythe, R. T., & Mahmoud, H. M. (1995). A survey of recursive trees. Theor Prob Math
Stat, pp. 1–27.

Traverso, P., & Pistore, M. (2004). Automated composition of semantic web services into
executable processes. In Proceedings of ISWC 2004, pp. 380–394. Springer-Verlag.

Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76, 31–48.

von Neumann, J., & Morgenstern, O. (1944). Theory of Games and Economic Behavior.
Princeton University Press.

Wilson, N. (2004a). Consistency and constrained optimisation for conditional preferences.
In ECAI, pp. 888–894.

Wilson, N. (2004b). Extending CP-nets with stronger conditional preference statements.
In AAAI, pp. 735–741.

Yu, T., & Lin, K. J. (2005). Service selection algorithms for composing complex services
with multiple qos constraints. In Service-Oriented Computing - ICSOC 2005, pp.
130–143. Springer Berlin / Heidelberg.

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., & Sheng, Q. Z. (2003). Quality
driven web services composition. In Proceedings of the 12th International Conference
on World Wide Web, pp. 411–421. ACM.

Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, M., Kalagnanam, J., & Chang, H. (2004).
Qos-aware middleware for web services composition. IEEE Transactions on Software
Engineering, 30 (5), 311–327.

274

